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Chapter 1

Introduction

The need for communication is born with man, and the ways to communi-
cate evolved with him, starting from smoke signals and drums covering some
kilometres, to internet and satellite communications connecting the complete
Earth. Nowadays, thanks to these developments, some perceptions of dis-
tances have to be redefined: for example the time you need to talk or even
see a person on the other side of the Earth is now just a few seconds. This
space barrier has not been broken down but seriously reduced by the use of
satellite communication, changing everybody’s’ life both in the working and
the social environments. In the coming years more and more services will be
provided through the satellite network, making space antenna an even more
actual and interesting field of research.

1.1 Satellite communication: an overview

Some present and future generations of communication satellites use mul-
tiple beam antennas providing down-link and up-link coverages over a field
of view for personal communication, and direct broadcast over linguistic ar-
eas. High gain, multiple overlapping spot beams, employing both frequency
and polarization reuse, will provide the needed coverage. In order to gener-
ate high gain spot beams, electrically large antenna apertures are required.
These apertures may be generated in different ways, from reflectors to lenses
and phased arrays.

Nowadays the preferred choice consists of reflector-based multiple beam
antennas adopting, for up and down links, one feed per beam architecture.
With this type of configuration, depicted in Fig. 1.1(a), adjacent beams are
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generated by different reflectors fed by one or several horns [6]. This leads
to three or four reflector antennas for European or CONUS (CONtiguous
United States) coverage receive and transmit functions.

(a) Multi-reflector antenna architecture on
board of satellite

(b) Example of FAFR
antenna, courtesy of
Thales Alenia Space

Figure 1.1: Most used configurations on board of satellites.

The described multiple-aperture antenna architecture is the one usu-
ally implemented since, when a single aperture is used, inter-feed spacing
requirements and feed diameter lead to inefficient illumination of the reflec-
tor and insufficient performance in terms of isolation levels. The volume
required to accommodate the multi reflectors is very large. Moreover the
system does not allow for much flexibility in terms of coverage.

A possible solution to generate a multi-beam coverage using a single
aperture is the Focal Array Fed Reflector (FAFR) described in [8, 55], (see
Fig. 1.1(b)). This concept is based on overlapped beam footprints in the
reflector focal plane. This overlapping is performed by connecting individ-
ual feeds using a beamforming network, some of these feeds being used for
several beams. This antenna concept is quite complex at focal array level
but, with limitation on the maximum number of beams, has the advantage
to allow the generation of different beams sizes and shapes with only one
aperture. An alternative approach based on a single aperture and consisting
of overlapping contiguous feeds in a completely radiative way, i.e. without
any bulky beamforming network, has been proposed in [7, 9]. Some recent
studies have demonstrated that this radiative overlapping is achievable us-
ing EBG materials or Fabry-Perot resonators positioned in front of an array
[48, 49].



Satellite communication: an overview 13

Lately the possibility to exploit active lenses to generate a multiple
spot continuous beam coverage has also been investigated [63]. This type
of architecture is composed of a first array of radiating elements on one
side of the lens, which transmit and receive energy from free space, and a
second array located at the back surface, i.e. the surface in front of the feeds.
Each radiating element of the back array is connected to the corresponding
element of the front array by two coaxial cables of variable length (one for
each linear polarization), two attenuators and two high power amplifiers.
This type of configuration has been usually discarded for its high volume,
weight, deployment issues and thermo-elastic problems.

All mentioned concepts suffer from severe accommodation or imple-
mentation difficulties; for example, in the first case discussed (one feed per
beam) 3-4 large reflectors area used in transmission and in reception have to
be accommodated on board of a satellite and to share the available, reduced
space facing the Earth. In the case of employing a FAFR architecture it
is possible to avoid using several reflectors but at the expense of a limited
number of realizable spot beams and increased complexity of the beamform-
ing network (BFN) . The lens architecture is, as already mentioned, bulky
and complicated too. For these reasons it is necessary to investigate, in a
long term perspective, solutions based on a single planar aperture that could
offer important advantages, especially in terms of costs, mass and spacecraft
accommodation.

Phased arrays would be a natural choice to generate multiple beams
but they have been often discarded essentially because of their complexity
and cost [51]. In transmission, one way to make the array more competitive
consists of reducing as much as possible the number of active elements and
having all High Power Amplifiers (HPA) operating at the same level, while
maintaining under control the main radiative characteristics.

Uniformly spaced antenna arrays have been extensively studied and
several methods have already been formulated in order to obtain a desired
radiation pattern [14, 69]. All these pattern shaping methods require an am-
plitude distribution and phase distribution law to be applied to the radiators,
resulting in an amplifier and a phase shifter for each array element.

In order to reduce the number of controls, non-uniform arrays can be
considered but have not yet received much attention [54, 85]. Non-uniformly
spaced arrays will be a major theme in this PhD thesis.
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1.2 Lines of research

The aim of this investigation is to identify different array configurations
characterized by a reduced complexity and cost with respect to conventional
arrays or to reflector configurations, able to satisfy the stringent requirements
of a communication mission from GEOstationary satellite, catalogued in Ap-
pendix A, and solving some existing problems formulated in Paragraph 1.1.
In particular, the PhD thesis will focus on transmit, planar, direct radiating
arrays (DRA) with non-uniform element placing and a reduced number of
controls. In order to limit the price and to diminish the losses on board
of the satellite, the design will aim at minimizing the number of amplifiers.
Moreover all amplifiers (driving) the non-uniform configuration will have to
operate at the same, optimised point. This last choice has been adopted
in such a way to solve some problems and limitations that affect amplifiers
on boards of satellites. More in detail, if a configuration using one kind of
amplifiers only is selected, in order to create a taper in the amplitude dis-
tribution on the aperture, some of the amplifiers would be used not at their
optimum operational point, and for this reason some wasted power would
be transformed into heat and create additional problems related to the heat
dissipation [72]. If, instead, different kinds of amplifiers are used in the array
configuration, problems may arise as their behaviour with temperature and
also their non-linearities are not the same. For these two reasons, the usage
of identical amplifiers working all at the same point is considered of high
interest in the satellite antenna community.
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Figure 1.2: European coverage divided into 64 overlapping spots. The circu-
lar spots filled with red color represent the areas where the same frequency
sub-band is used.
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The transmitting antenna under study will have a high EIRP (Effective
Isotropic Radiated Power) defined as the amount of power that a theoretical
isotropic antenna would emit to produce the peak power density observed
in the direction of maximum antenna radiation. The reason for this be-
comes obvious considering the Friis formulas for transmission [2] (p. 88):
this expression clearly evidences that a high EIRP allows for a small receiv-
ing effective aperture resulting in an antenna easier to be embedded in a
receiving terminal.

Furthermore, in order to improve the system capacity, the frequency
band in use has been split into 4 sub-bands and each of them has been
used several times according to the scheme in Fig. 1.2, where the red circles
represent the spots (out of the total 64 in which Europe is divided in this
example) using the same frequency sub-band. To apply this frequency re-use
scheme, stringent requirements in terms of inter-beam isolation have to be
satisfied.

In order to shape the beam without resorting to an amplitude taper
of the amplifier excitations, non-regular lattices have to be considered (see
Chapter 2.2). By randomising the element spacing or using unequal sub-
array sizes and shapes, good results may be achieved [53, 67]. The unequal
spacing with a low element density at the array periphery is considered as of
major interest for arrays with medium to high number of elements. Besides
acting on the element positions, the partition of a complete large array in
several sub-arrays could allow reducing the cost of the array antenna. Prob-
lems due to the possible grating lobes (GL) appearance or scan-blindness
are avoidable thanks to the non-regular spacing, making this array category
even more appealing for the application addressed in this thesis.

1.3 State of the art

Sparse array antennas are widely appreciated in the antenna community for
several interesting properties. Firstly, even without resorting to an element
amplitude taper, it is possible to shape the pattern and control the Side
Lobe Level (SLL) by varying in a proper way the position of the radiators.
Having all amplifiers working at the same, optimised point will ensure a
minimum waste of energy in the transmitting front-end if a configuration
with all identical amplifiers is considered. Secondly, as the elements are
not deployed on a regular uniform lattice, the GL are spread over a certain
region [30], related to the maximum and the minimum spacing, and not
concentrated in a particular direction. Thanks to this effect, it is often
possible to reduce the number of controls by increasing the average inter-
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element distance [54] that, usually, is taken as half the free space wavelength
in uniform arrays in order to prevent the appearance of GL in the complete
visible space.

In many applications, like for example satellite communication, a re-
duction of the needed controls is highly desirable (for the impact on cost and
weight of the complete structure) and non-uniform arrays are a suitable way
to implement such a reduction. Consider, for example, the case of a trans-
mitting DRA for satellite applications. The required main-beam is really
narrow, as the dimension of each spot to be covered is extremely small when
compared to the distance between the satellite and the Earth. This would
naturally lead to a large radiating aperture (see [51] pp.19-21) and, in case
of a uniform placement of the elements, would request the usage of more
than 900 antennas. In Chapter 4 it will be demonstrated that this figure can
be reduced to about 300 if non-uniformly spaced arrays are employed.

Recent design techniques focus on two categories of non-uniform arrays:
the ones with non-uniformly spaced elements and the uniformly spaced ones
in which some of the elements are selectively switched off or removed from
the uniform array. While in the first category, the spacings are not multiples
of the same quantity and, for this reason, a large inter-element spacing can
be employed while GL appearance may be avoided, for the second category
this is not the case. This drawback is compensated by an easier technolog-
ical implementation and manufacture due to the regular positioning of the
elements. Moreover, the mutual coupling effects between the elements are
easier to compute and can be taken into account during the simulations in
the design phase.

The analysis of unequally spaced antenna arrays originated with the
work of Unz [76], who developed a matrix formulation in order to obtain
the current distribution necessary to generate a prescribed radiation pattern
from an unequally spaced linear array (with prespecified geometry). The
synthesis of the positions of space tapered arrays, i.e. non-uniformly spaced
arrays, has been studied since the sixties when some of the best works on
this topic were presented. Willey [85] analytically derived a space taper
equivalent to a given amplitude taper by dividing the aperture in annular
rings and integrating the amplitude taper in each of this zones. In this way,
he obtained the number of elements to be placed in each annular ring as a
fraction of the total number of elements: the radiator percentage in the ring
is an approximation of the integral over the considered ring divided by the
integral over the complete aperture. The antenna elements are then placed
uniformly on a circle inside the corresponding annular region.

The papers from Maffet describe, in a different way, a similar proce-
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dure [54], introducing for the first time the concept of ‘cumulative current
distribution’ (see Appendix C).

Tang [71], in the same period, solved the problem of approximating
the pattern of an amplitude tapered, uniformly spaced array with a uni-
formly excited, space tapered array by minimizing the difference between
the spatial/amplitude taper distributions of the two. Firstly, the ampli-
tude distribution of a uniform array is expressed as a summation of linear
piece-wise terms and then the taper distribution of the non-uniform array is
represented as a staircase function, with the bases of the steps replicating the
antenna position in the linear array, while the steps heights being taken such
that all areas are identical. The difference between the two distributions is
finally minimized in order to obtain the antenna element positions.

Other analytical or quasi-analytical methods have been proposed, re-
sulting in a variety of interesting works. One of the possibilities analysed is
to express the positions of the non-uniform array antenna elements as the
ones of a uniform array plus some perturbation terms [23, 27]. In this way,
if these terms are sufficiently small, it is possible to expand the field as a
Fourier series and to minimize, with some iterative techniques, the L2 norm
of the difference between the achieved field and the targeted one. The aim
of this particular method is the reduction of the SLL in a discrete number
of angular directions according to a given reduction law. These algorithms,
even if analytic, require some computational time as they resort to iterative
solving techniques. Moreover they can only be applied when the distances
between the elements are not too different from those in an uniform array,
thus excluding the large category of highly non-uniform arrays. Another lim-
itation is that the achieved accuracy in the array synthesis strongly depends
on the number of iterations and on the choice of the reduction functions.

Other particular assumptions have been made by Ishimaru and Chen
in [30, 31], where by expressing the spacings as a function of the type x +
c sin(πx), where x is the element position in the linear array and c is a
properly chosen constant value, they were able to compute the field in terms
of Anger functions [35].

Most of the recent works on this subject are related to the use of
stochastic optimisation [3, 10, 37, 74]. The most used ones, Simulated An-
nealing (SA), Particle Swarm Optimisation (PSO) and Genetic Algorithms
(GA), use natural laws as the minimization of the energetic level, the sharing
of information in an animal group and the evolution of a species, respectively,
to optimise antenna configurations. All these techniques are able to find the
global optimum of a specified objective function, without being trapped in
local minima as it may happen with non-stochastic techniques. Such tech-
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niques are usually effective in finding the global optimum also in complex
problems and are particularly useful if the starting point is sufficiently close
to the global optimum solution. Unfortunately, these algorithms are quite
time and CPU consuming especially for large array problems characterized
by a significant number of unknowns to be optimised. Hence, to overcome
this limitation, analytically based approaches are surely to be preferred,
especially in the first phase of the optimisation. Some different synthesis
techniques, developed in the frame of this investigation, will be introduced
in Chapter 3 and then further analysed in Appendix C.

1.4 Main achievements

The main novelties presented in this thesis, are here after summarized:

• Sunflower antenna positioning law : a new law for determining the
element positions in a non-uniform array antenna has been developed.
This sunflower non-uniform array is characterized by excellent pattern
behaviour and it is recognized as a household name in the international
antenna engineering community.

• Number of controls: The sunflower array antenna makes use of a
strongly reduced number of controls when compared to a classic ar-
ray antenna with similar pattern behavior. A reduction of the number
of active chains of about 70% and 50% was proven possible.

• Taper function: In this work it has been proved that element positions,
amplitudes, phases and type of elements can contribute to the beam
shaping, in a different and predictable way.

• Synthesis techniques: Different analytical and non-analytical techniques
for the non-uniform antenna array synthesis have been developed (Chap-
ter 3 and in Appendix C) and succesfully applied to satellite commu-
nication problems.

• A truly non-uniform array : With sunflower analytical design tech-
nique, the spacing between the elements is truly non-uniform and not,
as in other presented methods, the multiple of a basic inter-element
distance.

• Simple one dimensional law : The particular placement of the elements
in a planar array is provided according to two simple independent
equations, one for the distance of the elements from the centre and
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one for their angles. It has been proved possible to mimick a reference
amplitude taper with a reduced computation time.

• Natural laws: The concept of optimal angular spreading, inherited
from the natural world, has been applied to the sunflower array antenna
in order to guarantee the sparsity of the element positions both in the
radial and angular coordinates.

• Efficient antenna aperture usage: The chosen synthesis technique has
been applied to a satellite communication problem and for the first time
the formulation for non-uniform radiating arrays has been generalized
and used for employing in the same array differently sized sub-arrays,
all fed with the same input power. In this way, a better use of the
available antenna aperture is possible.

• Feasibility : The sub-arrays for the real demonstrator have been im-
plemented, certifying the feasibility of a ‘low cost’ non-uniform array
realized with off the shelf technology. The behaviour of the proposed
sub-arrays has been simulated and measured (Chapter 5).

1.5 Research framework

This PhD investigation has been carried out within the frame of a three
parties collaborative research effort entitled ”Innovative non-uniform array
architectures for space applications”. The three parties in this scientific
undertaking are:

IRCTR (the International Research Centre for Telecommunication
and Radar), part of the Faculty of Electrical Engineering, Mathemat-
ics and Computer Science of the Delft University of Technology, is a
project-driven institute and performs research projects in the field of
telecommunications and radar.

ESA and more precisely the European Space Technology and Research
Centre (ESTEC) is a research organization whose mission is to shape
the development of Europes space capability and ensure that invest-
ment in space continues to deliver benefits to the citizens of Europe
and the world.

Thales Alenia Space TAS is a leading European company for satellite
systems and orbital infrastructures, involved in both civil and defence
sectors.



20 Introduction

The dissertation is organized as follows:

• Chapter 2 introduces, from a theoretical point of view, uniform and
non-uniform array antennas. The main differences and potentialities
of the two are analysed and formulations for both cases are presented.

• Chapter 3 discusses different ways to design non-uniformly spaced ar-
rays. An outline of each technique is given (with more details being
included in Appendix C) and some representative results are compared.

• Chapter 4 focuses on a particular non-uniform array, following a char-
acteristic spiral element placement, referred to in this thesis as the
‘sunflower array antenna’. To begin with, the uniform ‘sparse’ array is
introduced and the concept of density taper is explained and applied
to this particular configuration. The formulation presented takes into
account the possibility to design an array populated by differently sized
radiators. Some examples of how this techniques has been applied to
the design of a non-uniform array antenna for satellite application are
shown.

• Chapter 5 provides an overview on the design and manufacturing of
the selected sub-array tiles. Measured results concerning the radiated
patterns and coupling are presented. Moreover, different ways to group
the tiles into sub-arrays are considered and the relevant pattern of the
chosen configurations are assessed. In the same chapter the extremely
favourable solution obtained by employing the sub-arrays (as studied
in Chapter 5) within non-uniform arrays and assembled by means of
the synthesis technique described in Chapter 4 is analysed.

• Chapter 6 gives the conclusions about this research and some possible
future extensions of this PhD work.

• Appendix A contains the requirements for the satellite communica-
tion antenna problem at the core of the “Innovative non-uniform array
architectures for space applications” project.

• Appendix B describes the properties of regular arrays; particular atten-
tion is given to the GL position, insisting on the formulation presented
in Chapter 2.

• In Appendix C a more detailed description of the mathematical formu-
lation used in the design techniques presented in Chapter 3 is given.

• Appendix D provides details on the Fibonacci and Fermat spirals and
their properties.
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• Appendix E recalls the well-know formulation for the Taylor amplitude
distribution in the case of linear and circular arrays.

• In Appendix F the design of the patch used to simulate the complete
array performance of some configurations in Chapter 4 is introduced
and the patch’s behaviour is discussed.

This chapter is now concluded by outlining some general choices, the
employed reference system among them, and by summarizing the notational
conventions utilized throughout this work on innovative non-uniform array
architectures for space applications.

1.6 General choices and notations in the thesis

All examined configurations are considered with respect to a background or-
thogonal Cartesian reference frame with the origin O and the three mutually
perpendicular base vectors îx, îy, îz of unit length each (see Fig. 1.3). In
the indicated order, the base vectors form a right-handed system. Whenever
appropriate, vectors are indicated by boldface symbols, with r denoting the
position vector

r = x̂ix + yîy + zîz (1.1)

of the observation point of coordinates {x, y, z}. The modulus r = | r | of the
vector r represents the distance (L2 norm) between the observation point P
and the origin O. The time coordinate is denoted as t. For expressing far-
field quantities ([2], p. 28), a polar reference frame Orθφ is considered (see
Fig. 1.3), with θ (0◦ � θ � 180◦) measuring the tilting with respect to the
Oz−axis, and φ (0◦ � φ < 360◦) measuring the rotation from the Ox−axis
in the xOy−plane. The three mutually perpendicular base vectors îr, îθ, îφ

of unit length each form, in this order, a right-handed system, as well. In the
course of this work, the θ dependence of certain radiation parameters will be
examined in planes defined by the relation {(r, θ, φ)|φ = φ0} ∪ {(r, θ, φ)|φ =
φ0 + 180◦}, with φ0 < 180◦. These planes will be generically referred to as
‘φ−cuts’ and will be identified by the φ0 value. For simplifying the notation
in the plots depicting θ dependencies in arbitrary φ− cuts, the θ coordinate
will be conventionally taken to assume negative values in the half-planes
where φ > 180◦.

Throughout this work, the time dependence will be taken to be time-
harmonic, with constant frequency f and angular frequency ω = 2πf . All
considered problems refer to free-space radiation in which the wave velocity
is c0=299792458 m/s, for which the technical approximation c0=3 108 m/s
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Figure 1.3: Cartesian reference system used in this work.

will be consistently accounted for. In the free-space, the permeability and
permittivity are μ0 and ε0, respectively, with μ0 = 4π10−7 H/m and ε0 =
(c20μ0)−1 F/m. The combination of frequency and wave velocity gives rise
in the standard way to a wavelength λ = c0ν m, a propagation constant
k0 = ω

c0
m−1 and a free-space wave impedance η0 =

√
μ0

ε0
≈ 120πΩ.

The antenna radiation pattern, a “mathematical function or a graphical
representation of the radiation properties of the antenna as function of the
space coordinates” [2] (p. 27), is usually subdivided and described in terms
of lobes. Two particular regions in the pattern will receive special attention
in this work, namely the region of the so-called main lobe, “the radiation
lobe containing the direction of maximum radiation”, and the region of the
sidelobes “the radiation lobes in any direction other than the intended lobe”
[2] (p. 31).

When referring to the far field characteristics of an antenna they will
always be intended the behaviours of the field in the region where the nor-
malized angular field distribution does not depend anymore on the distance
between the antenna and the observation point P in Fig. 1.3 (see [2] p. 35),
i.e. for distances

|r| ≥ 2D2

λ
(1.2)

where D is the antenna aperture dimension. Throughout this analysis, the
International System of Units (SI) [70] is used .



Chapter 2

Uniform and nonuniform
array antenna: theory

In this chapter some basic notions about antennas and some definitons that
will be used throughout this thesis are introduced. Particular emphasis will
be placed on the definition of some antenna parameters, particularly useful
to have a clear understanding of the requirements applying to the antenna
design addressed in this investigation (see Appendix A). In Paragraphs 2.2
and following more concepts and formulas for array antennas, needed for the
array synthesis techniques introduced in Chapter 4, will be discussed.

2.1 Antenna definitions and parameters

An antenna is a device reciprocally translating conducted and radiated elec-
tromagnetic energy: it converts circuit currents into propagating electromag-
netic waves and, by reciprocity, collects power from electromagnetic waves
and converts it into circuit currents [58]. The term antenna was used to in-
dicate this transducer for the first time in 1895 by Guglielmo Marconi when,
during one of his first tests on wireless communications on the Mont Blanc,
he tried to use as transmitting and receiving device a long wire attached
to a pole, referred to in Italian as antenna. The radiation of an antenna
conforms, as any electromagnetic phenomenon, to the well-known Maxwell’s
equations [57]. While these equations provide a general, comprehensive de-
scription of the behaviour of this device, over the years a series of synthetic
parameters have been introduced in order to provide practical handles useful
to describe the antenna performances and capabilities.
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Hereafter some of the most commonly used parameters are introduced,
starting with the ones related to the circuit characteristic of the device and
following with the parameters expressing the radiation antenna behaviour.

2.1.1 Central frequency and bandwidth

An antenna is usually designed to work at a specific frequency, denoted as
central frequency or, more generally, in a frequency range constituting its op-
erational bandwidth. In this bandwidth, the main radiative characteristic of
the antenna are supposed to satisfy specified criteria (usually in terms of re-
flection coefficient and pattern). Antennas are frequently classified according
to their bandwidth into narrowband, broadband and frequency-independent
antennas. The first ones are used when it is important to realize stable long-
range communication, e.g. in satellite communication, . The second ones,
spreading the transmitted information over a large bandwidth and allowing
for high value of range resolution are mainly used for short range wireless
communication [65] and high resolution and ground penetrating radars [13].
The last category of antennas is mainly used as feeds for reflectors and lenses
and for surveillance of the frequency spectrum.

2.1.2 Efficiency

The antenna efficiency η is a quality factor of the radiator and represents
how much of the input power Pin is effectively radiated Prad [38], namely

η =
Prad

Pin
. (2.1)

The losses, always present and not allowing for η = 100%, are mainly due
to possible mismatching between the feeding line and the antenna, internal
losses in the antenna or, in the case of having more than one radiator to
mutual coupling.

2.1.3 Antenna mutual coupling

When several radiators are placed in (close) proximity, a part of the field
radiated by each element is captured by its neighbours, a phenomenon re-
ferred to as antenna coupling. A quantitative measure of this parameter, in
case of N individual radiators, can be expressed as

Cm,n =
Pin,n

Pout,m
for m,n = 1, 2, ..., N (2.2)
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where, considering the case in which only the mth antenna is transmitting
and all the other ones are closed on matched loads, Pout,m is the power
that feed the mth antenna and Pin,n is the power measured on the matched
load connected to the nth antenna. The total effect due to all antennas
constituting the array is quantified by collecting the Cn,m coefficients in the
so-called scattering matrix [22].

While being relatively easy to be measured, the antenna coupling is
not easy to be predicted. It depends on several parameters such as: the
antenna type, the relative positioning of the elements and in which way the
elements are fed [2] (p. 478). An even more accurate description of this
phenomenon can be provided by considering the decoupling efficiency of the
different antennas in the array environment [38, 21]. In order to simplify
the simulations and the design of antennas composed of several elements,
the mutual coupling between the radiators is frequently neglected. This
simplification, resulting in the computation of the total radiated field as the
superposition of the field of each single element, can be implemented only
if the values of the mutual coupling are sufficiently low. In all other cases,
usually where the element spacing are less or equal to λ/2 (see [39] and
[33]) this simplification would lead to the calculation of a radiation pattern
quite different from the real (measured) one. More in details, usually the
coupling between antennas in a system composed of different elements is a
phenomenon that deteriorates the expected radiation pattern or, more in
general, changes it in a not easily predictable way.

Different techniques to reduce the mutual coupling have been developed
in the last years. The most frequently used methods involve procedures to
isolate every antenna element from the others and then use, in the total
array simulation, the radiation properties measured or computed without
the influence from the other antennas. When baffles or absorbers between
the antennas are introduced [59], only a reduced scanning of the beam can be
performed. For printed technology, solutions resorting to cavities are usually
preferred. These cavities may be generated by either metallized holes around
the radiating elements (usually referred to as vias) or for example by real
metal shielding [52]. This second option will be used in this investigation
and will better exploited in Chapter 5.

2.1.4 Antenna pattern

As already mentioned, electromagnetic radiation is described by the Maxwell
equations [57]. Under the assumption of free-space, far field approximation,
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the electric and magnetic field strenghts are related as

E

η0
= H × ir (2.3)

where E and H represent the electric and magnetic fields respectively. The
electric field of an antenna deployed on the xOy−plane and composed of N
radiators, under the hypothesis of no mutual coupling, can be expressed as

E(r, θ, φ) = −jωμ0

N∑
n=1

Infn(θ, φ)
exp (jk0r · dn)

4πr
(2.4)

where In represents the excitation of the nth radiator, fn(θ, φ) is the Element
Factor expressing the behaviour of the individual nth radiator, and dn is the
vector describing the position of the nth radiator with respect to the origin
O. When all radiators composing the antenna are identical the expression
in (2.4) is usually factored as

E(r, θ, φ) = −jωμ0
exp (jk0r)

4πr
f̃(θ, φ)

N∑
n=1

In exp {jk0 [x sin(θ) cos(φ) + y sin(θ) sin(φ)]}
(2.5)

the first term accounting for the free-space (wave) propagation, the second
f̃(θ, φ) term describing the (isolated) element radiation pattern and the last
one, termed as Array Factor, reflecting the radiation properties due to the
positions and alimentation of the several elements composing the antenna.
All examples in this work will be confined to the product of the last two
terms in (2.5), an expression that is referred to as the antenna pattern.

2.1.5 Beamwidth

With the term beamwidth it is usually described the angular distance be-
tween two points on the pattern. This vague definition may lead to misun-
derstandings and it is important, for this reason, to specify which points are
referred to, using for example the term Half-Power BeamWidth (HPBW)
or First-Nulls BeamWidth (FNBW). These two are the angular distances,
measured in a plane containing the maximum of the main beam, between the
two points at which the radiation intensity is half of the maximum one and
the angular distance between the first two nulls enclosing the main beam,
respectively.
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2.1.6 Directivity and gain

The directivity D(θ, φ) of an antenna is defined as the ratio between the
radiation intensity U(θ, φ) in a given direction (θ, φ) and the radiation
intensity averaged over all directions.

It can also be equivalently defined as the ratio between the power den-
sity that the antenna radiates in a direction and the power density radiated
by an ideal isotropic antenna radiating the same total power. It means that

D(θ, φ) =
4πU(θ, φ)
Prad(θ, φ)

= 4π
U(θ, φ)∫

Ω
U(θ, φ)dΩ

(2.6)

where Ω is the solid angle defined as in [2] (p. 38).

Under the far-field assumption, the electromagnetic wave transmitted
(or received) by the antenna can be considered as a uniform plane wave. In
this case the electric field E(θ, φ) and the magnetic field H(θ, φ) are per-
pendicular and the ratio between their modulus is equal to the characteristic
impedence of the medium in which the wave is propagating, as already pre-
sented in (2.3). Then it is possible to write the directivity as

D(θ, φ) =
4πE(θ, φ)2∫
Ω
E(θ, φ)2dΩ

(2.7)

The gain parameter G(θ, φ) is similar to the directivity [58] but it takes into
account the efficiency of the antenna considered.

G(θ, φ) = ηD(θ, φ) (2.8)

A more precise definition of this function, would lead to the definition
of three different gain function [87]

2.1.7 Polarization

With the term polarization of an antenna it is usually indicated a feature
that is put in correspondence with the apparent temporal rotation of the
representative electric field vector due to the time-harmonic variation of
its two orthogonal components Ex and Ey (see Fig. 2.1). Depending on
the amplitude of the two components and their phase shift, the end point
of the vector describes an elliptic trajectory. Two polarization states are
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Figure 2.1: Polarization ellipse.

of particular interest. The first refers to the case when the electric field
components have equal amplitudes and are shifted in quadrature in time.
In this case, the polarization ellipse becomes a circle, the vector rotating
clockwise when Ey is shifted 90◦ ahead - the so-called Right Hand Circular
Polarization (RHCP) - or anti-clockwise when that component is shifted 90◦

behind - the so-called Left Hand Circular Polarization (LHCP) [2]. The
second important (remarkable) polarization state corresponds to the linear
polarization case when the two components are in phase. In this case, the
polarization ellipse becomes a line segment, the angle τ being determined by
the ratio between Ex and Ey.

The polarization parameter is usually constant for angle directions
within the main beam but it can significantly change in the secondary lobes
region.

2.2 General theory of linear array

An array antenna can be defined as a collection of individual elements in
which the location and feeding are properly selected such that to enforce
a desired far field pattern. Usually, array antennas are used when it is
important to have a directive beam and, at the same time, suppress the
radiation in other directions [50].

Array antennas were not extensively used in the past due their difficult
feeding network and costly implementation. Nevertheless, present day tech-
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Figure 2.2: Example of linear array.

nology advancements render this category of antennas a suitable alternative
to other more common antenna choices. One of the classes of applications
where array antennas are particularly adequate is that concerning the sys-
tems requiring both beam shaping and beam scanning. In that case the
electronic phase shifting allows for scanning the beam devoid of a mechani-
cal movement of the antenna. This class of antenna front-ends are frequently
encountered in radar applications and, increasingly, in space platforms where
mechanical movement is to be avoided.

Linear arrays are antenna configurations in which the elements are
deployed along a straight line (see Fig. 2.2).

The linear array architecture allows for the control of the radiation
pattern in planes containing the Ox axis, only, the field distribution in planes
parallel to yOz being determined by the element pattern. This limitation
can be overcome by resorting to planar arrays that provide full control over
the complete space (over a full hemisphere in the case of uni-directional
radiation), as it will be demonstrated in Paragraph 2.3.

The far field radiated in the free space from a linear array composed
by N elements can be written as

E(θ, φ) =
N−1∑
n=0

Infn(θ, φ) exp [jk0 sin(θ) xn] (2.9)
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xn represents the x coordinate of the nth element, the term fn(θ, φ) repre-
sents its element factor and In is a complex number accounting for its feeding
as

In = an exp(jαn) (2.10)

When αn = 0 for n = 1,...N , the array pattern points at boresight (θ = 0◦);
more in general if their values are equal to αn = −kxn sin(β), where β is a
preferred pointing direction, then the all antennas contributions are summing
up coherently in that particular direction β [2] (p. 267). The quantities an,
αn, and xn are variables that can be optimized in order to obtain a radiation
pattern able to satisfy given directional requirements.

Hereafter the particular case of the antenna elements being equally
spaced is discussed in detail.

2.2.1 Uniform linear arrays

When the antenna elements used are identical and the coordinates xn are
multiple of a constant spacing dn = nd̃x, as shown in Fig. 2.3, Eq. (2.9)
becomes

E(θ, φ) =
N−1∑
n=0

fn(θ, φ) exp
[
jk0nd̃x sin(θ)

]
(2.11)

Uniform linear array: directivity

In a generic linear array the maximum directivity DM of the array is derived
from Eq. (2.6). In the case of identical radiators in a phased array pinting
at boresight, it can be expressed as ([51] at p. 79)

DM =

∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣
2

N∑
n=1

N∑
m=1

anam exp [j(αn − αm)] sinc [k(xn − xm)]

DMelem
(2.12)

where DMelem
is the maximum directivity of the single radiators. Sometimes

this last term is not taken into account in the formulation regarding the
array theory as it is related to the element radiative properties and not to



General theory of linear array 31

the array. If these identical antenna elements are also equi-spaced, then
(2.12) reduces to the well know expression

DM =

∣∣∣∣∣
N∑
n=1

an

∣∣∣∣∣
2

N∑
n=1

a2
n

DMelem
(2.13)

and furthermore for equi-fed element an = 1 [17] (p. 155)

DM = NDMelem
=

2D
λ

DMelem
(2.14)

where D is total array length.

In this case the first (highest) SLL associated to the pattern in planes
containing the Ox axis is equal to 13.2 dB under the maximum value (see
[51] at p. 20).

Uniform linear array: grating lobes

Depending on the choice of d̃x and assuming isotropic radiating elements
one or more side lobes, as high as the main one, can appear in the visible

Figure 2.3: Example of linear uniform array.
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space: This is due to the electromagnetic waves radiated from each antenna
element adding up in phase at several angles, depending on the argument of
the exponential in (2.11). The angles at which these copies of the main lobe
occur are usually referred to as Grating Lobe (GL) angles [22].

Upon assuming that the main beam points in the direction θ0, the GL
occur at angles θGL [22]

d̃x
λ

=
p

sin θ0 − sin θGL
p = ±1,±2, ... . (2.15)

By accounting for the fact that the absolute value of the sine function is
bounded up by 1, (2.15) indicates that no GL is generated as long as d̃x ≤ λ

2 .

Alternatively, when a spacing d̃x = λ is chosen, grating lobes will
appear at θ = 90◦ when the main beam is pointing at boresight. For a more
detailed description of the GL angles, see Appendix B.

According to the requirements for antenna beam scanning, it is clear
that a proper element spacing has to be selected in order to avoid the GL
occurrence.

2.3 General planar array theory

As already mentioned in the previous section, planar arrays are useful to
address more general antenna problems where the pattern needs to be shaped
and controlled in the complete visible space.

In order to describe the radiative properties of a planar array (see
Fig. 2.4), it is convenient to use polar coordinates, with the polar axis normal
to the plane containing the array, as already stated in Paragraph 1.6.

The general expression for the far-field generated by N antenna ele-
ments and measured on a sphere of constant radius can be expressed, as-
suming no mutual coupling, in a similar way to that employed for linear
arrays as

E(θ, φ) =
N−1∑
n=0

Infn(θ, φ) exp [jk sin(θ) dn · r] (2.16)

where, with reference to Fig. 2.4, dn represents the position of the nth ele-
ment with respect to the origin O, and In is, as in (2.10), a complex number
representing the current fed to the nth antenna element.
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Figure 2.4: Example of a generic planar array.

Usually the term fn(θ, φ), representing the element factor of the nth

antenna, is considered constant for all array elements, resulting in a simpler
formulation

E(θ, φ) = f̃(θ, φ)
N−1∑
n=0

In exp [jk sin(θ) (xn cos(φ) + yn sin(φ))]

= f̃(θ, φ)AF (θ, φ) (2.17)

where xn and yn are the projections of dn along the Ox axis and Oy axis
respectively, the term AF indicates the Array Factor and takes into account
all radiative properties that depend on excitation and element location (see
Paragraph 1.6). For sake of completeness and since in this PhD investigation
several different elements will be considered in the same array, the formula-
tion used in this thesis will include the Element Factor fn in the summation
as depending on index n.

2.3.1 Uniform planar arrays

In most of the cases studied thus far in literature, [14, 43, 68, 69] the pat-
tern shaping was done by applying properly chosen amplitudes and relative
phases to the array antenna elements. In these cases the elements are de-
ployed on a linear or planar, ”regular” lattice, with the attribute ”regular”
indicating that the lattice is chosen such that the element locations parti-
tion the antenna surface into identical regular polygonal cells. Only three
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regular polygons can ensure a complete, uniform sub-division of the antenna
surface [12, 81], namely squares, equilateral triangles and hexagons that lead
to square, hexagonal and triangular lattices, respectively. The nodes of the
lattices are located at the centers of the relevant polygons.

Hereafter, a short description of the radiative properties of rectangular
(as extension of the square lattice), triangular and hexagonal lattice arrays
will follow. For a more detailed analysis see Appendix B.

Rectangular lattice, uniform arrays

The most frequently used planar array layout is the one where the elements
are deployed on a regular grid of perpendicular lines (see Fig. 2.5). In this
case, the nth element distance from the origin, dn, can be expressed as

Figure 2.5: Example of array antenna with elements deployed on a rectan-
gular lattice.

dn = ld̃xîx +md̃y îy (2.18)

in which d̃x represents the fixed distance between two consecutive elements
along the Ox axis, d̃y represents the fixed distance between two consecutive
elements along the Oy axis, l = 1, ... , L and m = 1, ... ,M , with L the
total number of lines of linear arrays parallel to the y axis and M the total
number of linear arrays parallel to the x axis, respectively (see Fig. 2.6).
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Figure 2.6: Planar array as a series of M linear arrays parallel to the x axis.

Considering the particular case of a rectangular aperture with identical
antenna elements deployed on a rectangular lattice, the pattern expression
becomes

E(θ, φ) = f̃(θ, φ)
L−1∑
l=0

M−1∑
m=0

Ilm exp
{

jk
[
ld̃x sin(θ) cos(φ) +md̃y sin(θ) sin(φ)

]}
(2.19)

with Ilm the excitation of the element with coordinates (ld̃x,md̃y).

Rectangular lattice, uniform array: directivity

In order to compute the directivity of a uniform planar array the general
formula (2.7) has to be taken into account if no simplifying hypotheses
are made. If, instead, a relatively large planar array is considered, the
beamwidth and directivity are related to the following approximate equa-
tion [16]

DM ≈ 32, 400
cos(θ0)
θx3θy3

(2.20)

where θx3 and θy3 are the 3-dB beamwidths of the pencil or elliptical beam
at broadside and θ0 is the direction in which the beam points. In this
formula, the beamwidths are in degrees. Elliott [17] (p. 206) shows that for
a relatively large rectangular array, with a separable distribution and not
scanned too close to endfire, the directivity is approximately given by the
following expression

DM = πDxDy cos(θ0) (2.21)
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that further reduces to

DM = πLMD2
Melem

cos(θ0) (2.22)

by using Eq. (2.14) and assuming all elements being equally fed.

In this particular case, the first (highest) SLL associated to the pattern,
if a circular aperture is considered, is equal to 17.6 dB under the maximum
value [51] (p. 21).

Rectangular lattice, uniform array: grating lobes

For this configuration GL may occur along the two main directions (φ = 0◦

and φ = 90◦) i.e. where the projections of the element positions create the
regular linear array [78], an effect that can be easily understood based on the
configuration shown in Fig. 2.6. Upon invoking Eq. (2.15), the respective
conditions along the Ox and Oy axes become

d̃x
λ

=
p1

sin(θ0) cos(φ0) − sin(θGLφ=0◦)
p1 = ±1,±2, ... (2.23)

d̃y
λ

=
p2

sin(θ0) sin(φ0) − sin(θGLφ=90◦)
p2 = ±1,±2, ... (2.24)

where (θ0, φ0) is the direction where the beam is pointing.

Triangular lattice, uniform array

Triangular grid uniform arrays are antenna configurations in which the el-
ements are deployed on a regular triangular grid. In such configurations,
the distance between a generic element and its six immediate neighbours is
constant and equal to dt, as shown in Fig. 2.7. An expedient artifice for fa-
cilitating the evaluation of the radiative characteristics of uniform triangular
arrays is to resort to a superposition of two regular rectangular lattices, as
suggested by the use of the empty and full circles in Fig. 2.7. It is important
to note that this lattice entails a higher element density than that obtain-
able with a square lattice of identical inter-element distance. Consequently,
triangular lattices are preferred in the case when the available area estate
is limited. Hence the formulas relating the radiated field and the element
positions can be readily obtained as (see Appendix B) [78]:



General planar array theory 37

Figure 2.7: Example of array antenna with element deployed on a triangular
lattice

E(θ, φ) = f̃(θ, φ)
L1∑
l1=0

M1∑
m1=0

Il1m1 exp
{
jk
[
l1d̃x sin(θ) cos(φ)

+ m1d̃y sin(θ) sin(φ)
]} L2∑

l2=0

M2∑
m2=0

Il2m2 exp
{
jk
[
(l2d̃x

+ δx) sin(θ) cos(φ) + (m2d̃y + δy) sin(θ) sin(φ)
]}

(2.25)

where dx =
√

3dt, dy = dt and one of the two rectangular, identical lattices
is shifted, when compared to the other one, over δx =

√
3/2dt along the Ox

axis and over δy = dt/2 along the Oy axis.

For this configuration GL occur along several directions, namely, φ =
0◦ + s160◦ with s1 = 1, 2, ... and φ = 30◦ + s260◦ with s2 = 1, 2, .... The
angles θGL can be derived from

d̃t sin(60◦)
λ

=
p1

sin(θ0) cos(φ0) − sin(θGL φ=0◦)
p1 = ±1,±2, ... (2.26)

for φ = 0◦ + s160◦, and

d̃t cos(60◦)
λ

=
p2

sin(θ0) sin(φ0) − sin(θGLφ=30◦)
p2 = ±1,±2, ... (2.27)
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for φ = 30◦+s260◦ where (θ0, φ0) is the direction where the beam is pointing
(see [51], p. 184).

The triangular lattice is often used, especially in antenna designs where
the space available for the antenna aperture is limited, because, by using this
instead of, for example, a rectangular lattice with the same inter-element
distance, it is possible to accommodate more antenna radiators in the same
space.

Hexagonal lattice, uniform array

Another interesting uniform lattice is the hexagonal one (see Fig. 2.8). It
should be noted that this lattice is less frequently used as the polygonal cell
resulting from this lattice are equilateral triangles.

Figure 2.8: Example of array antenna with element deployed on a hexagonal
lattice.

In this case each element is surrounded by three equi-distant ones at
d = d̃h. If we now consider the fix spacing along the axis and d̃x = d̃h/2 and
d̃y =

√
3/2d̃h it is possible to write the field in a compact manner as (see

[66] and Appendix B)

E(θ, φ) = f̃(θ, φ)
L−1∑
l=0

M−1∑
m=0

Ilm exp
{
jk
[
(mod(m, 2) + 4l) d̃x sin(θ) cos(φ)+

+ md̃y sin(θ) sin(φ)
]}

(2.28)
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where the operator mod(q, w) gives the rest of the entire division q/w and
the element identified by the indexes (l,m) is the (l+1)th radiator along the
(m+ 1)th column parallel to the Ox axis.

As just stated, each element is surrounded by three equi-distant neigh-
bours spaced at a distance d̃h. It is interesting to note that for the same
characteristic spacing d the cell area is 50% larger in the case of the hexag-
onal lattice when compared to the triangular one (see Appendix B, p. 130).
This element density reduction has a twofold beneficial effect: on the one
hand, it simplifies the feeding network; on the other hand, it allows the use
of larger elements, potentially increasing the individual antenna gain [66].

The grating lobe positions and the positions of high lobes (HL), whose
level is not the same as the grating ones but still may affect heavily the
pattern performance, can be computed as (see Appendix B)

θGL = sin−1

(
λm

d/2

)
for φ = k60◦, k = 1, 2, ..., andm = 1, 2, ... (2.29)

θHL = sin−1

(
λn

3d/2

)
for φ = k60◦, k = 1, 2, ..., andn �= 3, 6, 9... (2.30)

θGL = sin−1

(
λ

d
√

(3)/2

)
for φ = 30◦ + k60◦, k = 1, 2, ... (2.31)

2.4 Non uniform Direct Radiating Array

When the positions of the elements are not a multiple of a fixed quantity
or easily expressed according to a known law, it is not possible to use the
simplified formulations presented in the previous sections. Regarding the
radiated field, the general formula presented in Eq. (2.9) for the linear case,
and Eq. (2.16) for the planar one, has to be used. For a general expression
of the directivity, [45] is still one of the few published results.

Regarding the grating lobes level values (or better high SLL values as
in non-periodic array, as already discussed, GL are not appearing), many
formulations have been presented in the past years for particular classes of
non-regular arrays. For example, formulas relating the GL positions with the
elements distances can be found in case the elements are spaced according
to specific laws [30] or their placement is completely random [67].



40 Uniform and nonuniform array antenna: theory

2.5 Concluding considerations

After this overview on uniform and non-uniform arrays it is possible to draw
some conclusions:

• In order not to have GL appearing in the angles of interest a maximum
spacing between the elements in a regular lattice configuration has to
be imposed. This leads to a fixed, high number of elements to be used
for covering the available antenna aperture. In case of non-uniform
arrays the inter-element distance can be increased and, in this way,
the number of radiators reduced.

• If the excitations of the different antennas are to be the same, then, in
case of regular lattice array, the SLL is -13 dB for a linear array and
-17 dB for a circular shaped aperture array. If a lower SLL is required
the only opportunity is resorting to a proper non-uniform spacing of
the elements.



Chapter 3

Non-uniform array synthesis
techniques

In this chapter different synthesis techniques developed by the author for the
design of non-uniform arrays will be presented. From evolutionary methods
to analytic design procedures for linear and planar arrays, a selection of
possibilities will be presented and compared.

In view of enhancing the readability of this account, this chapter will be
confined to discussing a number of significant examples that have been dealt
with by the author during this PhD research. The pertaining mathematical
details are collected in Appendix C.

3.1 Non-uniform arrays

Various techniques for the synthesis of non-uniform arrays are available in
the literature; some of them try to solve a particular class of non-uniform
array problems in an analytical way [30, 85]; others resort to perturbative
methods, describing the position of the elements as the one of an initial
configuration plus a small increment, moving every iteration closer to the
solution optimized according to certain requirements and cost functions.
Other methods, called probabilistic techniques, like for example the Particle
Swarm Optimization (PSO), the Ant Colony Optimization (ACO) and the
Genetic Algorithms (GA), make use of laws mimicking the natural world to
find the globally optimal solution. A particularly beneficial feature of this
last category of techniques is that they don’t get trapped in local minima:
such a phenomenon can happen depending on the behaviour of the cost
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function, in other non-probabilistic algorithms.

Hereafter, an illustrative selection of the categories mentioned before,
will be presented. It has to be noted that the examples shown in the following
sections have been obtained imposing requirements that can deviate from the
ones reported in Appendix A. This is due to the fact that these synthesis
methods have been developed over a large time span and not always for the
same specific application.

3.2 Genetic Algorithm synthesis technique

The first synthesis technique presented is an evolutionary algorithm called
Genetic Algorithm (GA). It is a versatile technique that has been lately
applied to the optimization of problems in different research areas. More
details on the general method are reported in Paragraph C.1.

Figure 3.1: Thinned, optimized planar array designed by using the GA. The
filled and empty circles represent the on and off elements, respectively.

The most important step in this algorithm is the definition of a cost
function, i.e. of a law that gives the possibility to asses the suitability of
a particular configuration. From a genetic point of view, this value mea-
sures the capacity of a certain individual of the generation to survive and
procreate. From an antenna point of view it expresses how well a particular
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configuration satisfies the imposed requirements.

In most of the papers published on the application of GA to antenna
optimization problems [18] [25] the main objective is the pattern shaping
according to a given mask. The technique discussed in this work approaches
a multi-objective optimization task [79, 80]. Besides reducing as much as
possible the number of elements used in the array configuration, the array
shall guarantee a fixed gain value at the end of coverage (EOC) of each
beam, and a maximum interfering isolation (C/I) in adjacent beams reusing
the same frequency and polarization (see Appendix A for the definitions of
EOC and C/I).

This technique developed by the author has been applied to selecting
the element to be switched off in a large array with elements deployed on a
regular triangular lattice (see Fig. 3.1 for the complete aperture). In Fig. 3.2
the radiation pattern of the proposed hexagonal array is depicted; the SLL
values are in good agreement with the requirements of SLL = −20 dB with
respect to the main lobe. A significant part of the elements of the initially

Figure 3.2: Pattern of the hexagonal array antenna shown in Fig. 3.1 for two
φ cuts. φ = 0◦ – dotted line; φ = 90◦ – continuous thin line.

fully populated array can be switched off (the empty circles in Fig. 3.1, about
30% of the intial 397 elements), while maintaining the array beamwidth and
improving the radiation characteristics in the sidelobe region in order to
comply with stringent constraints. Moreover, the final configuration per-
mits having all High Power Amplifier (HPA) operating at the same point,
optimized for the efficiency.
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The application of the Genetic Algorithms to selecting the elements
to be switched off in a uniform array is particularly straightforward, since
these techniques, in their standard implementation, deal with binary data
and the one presented before is inherently binary [20] [26]. Unfortunately,
the possibilities to shape the pattern, while guaranteeing a minimum gain
level in determined areas, are quite limited. Using this technique for find-
ing the position of the elements in a non-uniformly spaced array is not as
direct and simple as finding which of the elements have to be switched off
to properly shape the pattern. Some of the papers published so far on this
subject, [10, 64] codify in the chromosome (possible solution of the problem)
the position of the elements. In this case, since the positions are real num-
bers, depending on how many bits are used, the results become a more or
less accurate approximation of the optimal solution. It is evident that using
longer chromosomes implies a larger solution space and an increased compu-
tational burden, rendering this method not efficient especially if compared
with deterministic techniques.

3.3 Null matching synthesis technique

The aim of the synthesis technique presented in this section is to design
a non-uniform array in such a way that its nulls occur exactly at some
given angles. With this technique, as already seen with the zero crossing
sampling [36], it is possible to reproduce, without taking into account mutual
coupling effects, the radiative properties not only close to the null positions
but everywhere in the pattern. The rigorous approach would imply the
solution of a set of real, transcendental equations which can be practically
solved when the number of array elements is considerably limited. With the
algorithm proposed here (see [73] and Paragraph C.2), based on a similar
zero-matching strategy, the design of non-uniform arrays is achievable for an
arbitrary number of elements. Moreover, the technique has been extended
to the case of planar array design, as demonstrated in [56].

Most of the techniques presented so far for the design of arrays with
deep nulls occurring at certain angles in the radiation pattern [32, 64] make
use of iterative perturbations of the element position (see next section). On
the contrary, the technique presented here [56, 73] is able to achieve good
results just by applying a simple minimization procedure.

The method has been applied to the design of non-uniform arrays for
satellite communications by using the formulation in Paragraph C.2. In the
hereby considered case, a set of nulls are imposed over Europe’s coverage; the
aim is to obtain a deep null in the radiation pattern exactly at the angular
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Figure 3.3: Planar non-uniform array consisting of 271 elements, designed
by using the optimization technique of Paragraph 3.3.

position where the beam using the same frequency is located. Starting from
a regular triangular lattice array, the positions have been modified as in
Fig. 3.3, according to the formulation described at p. 141, the array factor
corresponding to the synthesized array being shown in Fig. 3.4. In the same
figure it is possible to notice how, by using this technique, it becomes possible
to enforce nulls in the pattern, the desired position of them being represented
by the triangles and dots for φ = 90◦ and φ = 0◦, respectively.

The null-matching synthesis technique is quite useful in the design of
linear non-uniformly spaced arrays. In the simple case of extending the tech-
nique to a planar array by specifying the positions of some of the interfering
spot beams and enforcing a null in that area, it provides good results in
terms of SLL only in the neighborhood of the considered angles. The main
disadvantage of this technique is that, in order to obtain a good agreement
between the pattern of the achieved non-uniform array and the one of the
reference array, one can only specify requirements in terms of nulls in the ra-
diation pattern. If locations and values other than nulls are used, the pattern
behaviour is not able to match the reference one. This is also the main dif-
ference when compared with the previously discussed GA technique, where
depending on the cost function definition, different requirements could be
included for steering the optimization. The null-match synthesis method is
anyway faster then the GA one and effective for some particular applications
where the attention is focused on the nulls in the radiation pattern.
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Figure 3.4: Array Factor along φ = 0◦ – continuous line and φ = 90◦ –
dotted line, obtained with the min-max technique described in this section.
The triangles represent the null position for φ = 90◦, the circle the ones for
φ = 0◦.

3.4 Perturbative synthesis technique

Another interesting category of synthesis techniques is the pertubative one.
This category encompasses a family of methods that reach an optimum con-
figuration by starting from a given one and altering at each iteration the
position of the elements by small increments.

Figure 3.5: Linear array antenna designed with the perturbative synthesis
technique.

In the past years this method was, in conjunction with the null-matching
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technique, the author’s desing method of choice for linear arrays. Starting
from the positions found by the previously described algorithm it was pos-
sible to find, in a fast and accurate way, the best solution close to the one
achieved with the null-matching technique.

A detailed mathematical description of the employed strategy is given
in Paragraph C.3. Several examples of perturbative approaches can be found
in the literature. Some of them, like [23, 27], aim at the reduction of the SLL
in a discrete number of angular directions according to a given reduction law,
by starting from an initial uniform array and introducing a perturbation at
each step. Other techniques change the position of the radiators, by means
of small increments, in order to impose deep nulls in the pattern [32],[64].
This is also the case of the synthesized example discussed in this section.

The perturbative technique is applied to the design of a linear non-
uniform array with nulls matching the ones of a Tchebyschev distribution
[14]. In this example the design of an array with 20 elements, whose zeros
are to match the ones of a Tchebyschev distribution with SLL = −21 dB,
is addressed. The position of the radiators in the non-uniform array have
been depicted in Fig. 3.5; these positions have been obtained starting from
a uniform array configuration. All antenna elements are fed with an equal
amplitude. As it can be noticed from Fig. 3.6, the nulls are exactly matching
the reference ones (black dots in the figure), while all sidelobes have a SLL �
−21 dB.

It is stressed that the perturbative variant presented in this section can

Figure 3.6: The Array Factor of the non-uniform array in Fig. 3.5 The
continuous line represents the Array Factor and the black dots the position
of the Tchebyschev nulls.
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be applied by starting from a configuration already optimized with other
techniques, thus close to the optimal one, or by starting from a uniform con-
figuration. In that case, larger computation times or, alternatively, limited
accuracy in the replicated pattern should be expected. In order to apply
rigorously this technique, it has to be ensured that the positions found at
each iteration are not too far from the ones achieved at the previous step.
It has to be noticed that the presented technique can be applied also to
the design of non-uniform arrays that satisfy a required radiation level at
pre-determined angles and not necessary for matching the radiation pattern
nulls. The achieved accuracy in the array synthesis strongly depends on the
number of iterations.

3.5 Auxiliary array function synthesis technique

This section focuses on a design technique aimed at synthesizing a non-
uniform linear array having a desired array factor. The method is completely
analytic and can take into account requirements in terms of minimum spac-
ing. The technique, discussed in detail in Paragraph C.4, makes use of
the continuous counterpart of the array factor, here denoted as the Aux-
iliary Array Function (AAF). Thanks to a proper piece-wise linearization
of the continuous normalized positioning, amplitude and phase functions, it
is possible to equate the transform of the AAF to the one of the objective
function in the Fourier domain. This leads to a rigorous and straightfor-
ward procedure to compute the array element positions without resorting to
any optimization procedure. More details on this method are provided in
Appendix C.

It should be noted that the use of a normalized source position function
of the type employed by this method was already proposed in [30]. Neverthe-
less, the hereby advocated synthesis technique brings in a clear conceptual
progress and functional effectiveness by resorting to an analytical relation-
ship of the Fourier transform of the AAF and the objective function.

The capabilities of the Array Factor Function (AAF) synthesis tech-
nique are now exemplified by discussing the design of a linear non-uniformly
spaced array for uniform radio coverage of the Earth surface from geosyn-
chronous satellites. The resulting antenna configuration, consisting of 10
radiators, has been then used for planar array implementation, as shown in
Fig. 3.7. Two cuts of the AF pattern have been plotted in Fig. 3.8. The
continuous line represents the pattern for φ = 0◦ or φ = 90◦ , i.e. along
the main axes Ox and Oy, where the projections of the array position corre-
spond to the designed linear array. In these particular directions the pattern
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Figure 3.7: Position of the radiators in a two-dimensional array configuration
for Earth radio coverage from a GEO satellite.

Figure 3.8: Array Factor of the designed rectangular array configuration in
Fig. 3.7. Continuous line – pattern for φ = 0◦, dotted line – pattern for
φ = 45◦.

properly matches the imposed mask, while in all the other intermediate cuts,
like for example φ = 45◦, plotted in the figure in dotted line, the match is
only partial.

This technique has been developed for linear non-uniform arrays and
has been extended to planar arrays by using the pattern multiplication
method only. Unfortunately, the pattern multiplication method is not the
best way to design a planar array, A proper extension of this technique to
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the planar case would make it a really powerful tool to be used every time
a desired pattern has to be obtained.

3.6 Concluding considerations

The techniques catalogued in this chapter are quite useful for some applica-
tions. However, none of them is satisfactory for the antenna design at the
core of this work for any of the following reasons:

• The GA based synthesis techniques, even if they have been extended
to the case of continuous variables [10], are more suited for problems
like switching off some of the elements in a uniform array, where the
parameter to be optimized is easily convertible into a binary number.
Moreover the time needed for an optimization and the computation
burden associated to each of them are quite demanding.

• The null-matching synthesis technique is particularly efficient when the
aim of the design is to obtain nulls in the pattern for specified angles
but fails in cases where requirements like the minimum directivity in
specified angular region and a maximum SLL have to be guaranteed.

• The pertubative technique, as evident from the formulation in Ap-
pendix C, needs to start the optimization from a point that is not too
far from the optimal solution in order to give fast and good results.
In this case, in order to apply the technique rigorously, the user has
also to ensure that, at each step, small increments are added to the
positions.

• The AAF method is quite general, dealing both with an excitation
taper and element positions. Unfortunately it has been extended to
planar arrays by means of a simple, pattern multiplication, algorithm.
This approach results in a square array whose pattern along the prin-
cipal planes is satisfying the desired specifications, but not in other
φ planes. This technique is powerful in order to replicate a desired
pattern but not when the requirements are expressed in terms of sev-
eral SLL as for example with reference masks, as the method aims to
replicate the Fourier transform of the objective function.

For these reasons a new synthesis algorithm has been developed and it will
be presented in the following chapter.



Chapter 4

A deterministic synthesis
technique for planar
non-uniform arrays

In this chapter an array antenna synthesis technique inspired by natural spi-
ral shapes is presented. Firstly, a spiral element positioning law is introduced
and its properties are discussed. The case of a spiral uniform placement, al-
ready partially presented in [4], is investigated and used as a starting point
for an original synthesis method that is elaborated upon in this chapter.
Thanks to a non-uniform density taper of the element positions, it is here-
after shown how it is possible to shape the array antenna pattern without
resorting to any taper on the element excitations. In this way it is possible
to achieve the same pattern performances in terms of SLL, obtainable by
means of applying an amplitude taper to the element illumination.

4.1 Spirals

Spirals are among the most common regular shapes in nature: from the snail
shell, to the sunflower seed placement, to the Milky way arms. Different
kinds of spirals are known in the literature.

A particular type of spiral, frequently encountered in nature, turns out
to be extremely beneficial for array antenna synthesis. Concretely, it was
observed that, by relating the radial and the angular spacing in the spiral to
the Golden Ratio , an irrational number known also as the Fibonacci number,
the generated subdivision of the space has a remarkable uniformity. This
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Figure 4.1: Example of spiral placement of the seeds in a sunflower.

feature can straightforwardly be recognized in nature where, for example,
the leaves around a stem or the seeds in a sunflower (see Fig. 4.1), use
this positioning to share in an optimal way space and light [1]. Due to
the visual similarity between the array elements positions determined by
the laws to be presented hereafter, and the sunflower seed positions, the
original synthesis method discussed in this work and the antennas designed
in this manner will be termed as sunflower law and sunflower antennas,
respectively. Details on the specific properties of this spirals are discussed at
length in Appendix D. Hereafter, it will be shown how the features of this
kind of spiral can be effectively used for synthesizing planar arrays that allow
for large inter-element spacing while preventing the onset of Grating Lobes
(GL) (see Paragraph 2.4). By then using an original artifice, the good GL-
free characteristic of the pattern will be supplemented by a proper spatial
tapering. The resulting antennas will be shown to combine extremely low
sidelobe levels, GL-free scanning capabilities and large inter-element spacing
allowing for radiators characterized by high gain to be accommodated. All
these positive characteristics recommend the presented type of antennas,
among others, for space applications.
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4.2 Uniform spiral array

Consider the elements in a planar array to be placed along the spiral ac-
cording to the following equations (see Fig. 4.2 for the significance of the
employed geometric parameters)

ρn = s

√
n

π
, for n = 1, . . . , N (4.1)

φ′n = 2πnβ1, for n = 1, . . . , N (4.2)

where ρn is the distance from the spiral center to the nth element, n =
1, . . . , N , with N denoting the total number of elements, the parameter s
relates to the distance between neighbour elements [4] and the parameter β1

controls the angular displacement φ′ between two consecutive elements.

Figure 4.2: The Fermat spiral. The location of the current point is specified
in polar coordinates ρ, φ′.

Next we assume a non-uniform array deployed on a circular aperture of
radius Rap along the proposed spiral (usually referred to as a Fermat spiral,
see Appendix D), with element locations given by Eqs. (4.1) and (4.2).

Let us now introduce a normalized element density function

d̃(ρn) =
Kn

π
(
R2
n −R2

n−1

) , for n = 1, . . . , N (4.3)
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where Rn−1 and Rn are the inner and outer radii of the annular ring enclos-
ing the nth element, respectively, and Kn represents the amount of current
distribution A(r, ψ) enclosed by that annular region, namely

Kn =
∫ 2π

0

∫ Rn

Rn−1

A(r, ψ) r dr dψ, for n = 1, . . . , N. (4.4)

Note that R0 will be always taken equal to zero. By taking A as being a
rotationally symmetric amplitude taper it is possible to write Eq. (4.4) as

Kn = 2π
∫ Rn

Rn−1

A(r) r dr for n = 1, . . . , N. (4.5)

Now, since it was assumed that each annular ring contains one radiator
only, the normalized density function in Eq. (4.3) corresponds, in fact, to
the current of a single element divided by the area of the relevant annular
ring.

With the assumption that each element n is fed by the same amount
of current the quantities Kn read

Kn =
2π
N

∫ Rap

0
A(r)rdr = K for n = 1, . . . , N. (4.6)

By taking the radii Rn as

R2
n =

ρ2
n+1 + ρ2

n

2
for n = 1, . . . , N (4.7)

the substitution of Eqs. (4.1) and (4.6) in Eq. (4.3) yields a normalized
element density function

d̃(ρn) =
K

π
(
ρ2
n+1 − ρ2

n−1

) =
K

s2
for n = 1, . . . , N, (4.8)

that is, evidently, constant. It can now be concluded that an element place-
ment strategy using the choice of radii in Eq. (4.3), this choice being the one
adopted in [4], will result into a non-uniform array with a uniform distribu-
tion (in the sense of the density function in Eq. (4.3)).

In support of this statement, an array consisting of 250 isotropic radia-
tors is synthesized in this manner, the resulting configuration being shown in
Fig. 4.3. A visual inspection of the plot confirms its high degree of uniformity
with remarkably similar inter-element spacing. For providing a quantitative
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Figure 4.3: Distribution of the 250 elements in the non-uniform array an-
tenna with almost identical inter-element spacings, as reported in [4].

proof of this property, a normalized density taper is computed by selecting
P = 25 equi-pollent annular rings covering the complete aperture, count-
ing the elements in each ring Ap and, finally, normalizing the numbers to
the maximum value via Ãp = Ap/max(Ap) (see Fig. 4.4). The result of this
operation is shown in Fig. 4.5, demonstrating that the element density is, in-
deed, uniform. The experiment is rounded off by evaluating the array factor
of the array in Fig. 4.3. In the vicinity of the main beam (see Fig. 4.6), the
array pattern behaves similarly to a uniformly spaced, uniformly fed array,
the maximum first SLL amounting to about −17dB [51]. However, outside
the interval [−5◦, 5◦], the array factor starts deviating from this behaviour,
with the SLL rising and, then, remaining approximately constant at a value
that depends on the number of radiators [10, 30].

This angular region can be estimated by taking into account the max-
imum inter-element distance. In fact, while in uniform lattice arrays a large
inter-element distance causes the onset of GL, in non-uniform arrays, as the
periodicity is broken, the energy of these GL is spread over a larger area,
resulting in higher SLL’s over a region that depends on the minimum and
maximum inter-element spacing.

Concluding: a non-regular lattice array with uniform density taper
is attractive when the interest focuses on only avoiding GL, as it was the
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Figure 4.4: Example of the aperture subdivision in equipollent rings. The
elements in different rings are in different colors.

Figure 4.5: Amplitude and density taper for the non-uniform configuration
in Fig. 4.3. Thick black line – reference constant amplitude taper; alternate
grey rectangles – normalized density taper.
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Figure 4.6: Array Factor of the non-uniform array in Fig. 4.3 for two φ cuts.
φ = 0◦ – dotted line; φ = 90◦ – black line.

case in [4]. Having elements characterized by the same amplitude, placed
in the array such that they all occupy the same area leads to a uniform
density taper. This corresponds to a uniform amplitude taper and results in
a maximum SLL that remains around −17 dB, irrespective of the number
of elements in the array and their spacing.

It is now clear that the only possibility to control the SLL, as well, is by
introducing a non-uniform density taper, hence associating a different area
to the radiators in the array. In the next section it will be demonstrated
how, by translating a Taylor amplitude tapering law [69] (see Appendix E)
into a corresponding spatial density law, the SLL can be drastically reduced.

4.3 Spiral array with density tapering

The spiral non-uniform lattice with a uniform element density introduced in
the previous paragraph is an excellent starting point to apply a space taper-
ing strategy. The spreading of the elements in the spiral arms guarantees
an optimal behaviour in terms of GL even when the inter-element spacing is
larger than λ. In order to be able to control the SLL it is possible to vary the
elements positions with respect to the array center, thus obtaining an effect
similar to an amplitude taper. For reasons that will become clear, it is con-
venient to implement apertures accommodating elements of different sizes.
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However, for facilitating the understanding of the proposed algorithm, it
will be firstly assumed that all elements are identical and, subsequently, the
strategy will be extended such that to cover the case of different elements.

4.3.1 Procedure for the case of apertures populated by iden-
tical elements

Figure 4.7: Subdivision of the total volume into N equal contribution.

The space taper technique presented here relies on choosing a refer-
ence amplitude distribution whose pattern satisfies the assigned require-
ments and, then, emulating it by varying the radiator distance from the
center. Concretely, a Taylor amplitude taper law with a certain SLL and
n̄ [69] is selected as a reference (see Appendix E). The locations of the ele-
ments in the non-uniform array are determined by means of a simple, 2 step
algorithm

• Firstly, as shown in Fig. 4.7, N circles of increasing radii ρn, n=1, 2
...N are selected by sequentially applying the relations

2π
∫ ρn

Rn−1

A(r)rdr =
2π
2N

∫ Rap

0
A(r)rdr (4.9)

2π
∫ Rn

Rn−1

A(r)rdr =
2π
N

∫ Rap

0
A(r)rdr (4.10)
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by starting from R0 = 0. Here, A(r) denotes the Taylor amplitude
taper and Rap is the radius of the complete (circular) aperture.

Figure 4.8: Distribution of the 250 elements in the tapered sunflower array
antenna.

Note that Eq. (4.9) emulates the desired taper by equating the surface
integral over the annular ring delimited by Rn−1 and ρn to half of the
N th part of the total aperture excitation.

• Subsequently, the element positions are determined by choosing their
pertaining angle φn according to Eq. (4.2).

The result of this placement strategy is illustrated in Fig. 4.8 where a
56 λ aperture is filled with 250 elements distributed in a manner such that we
can obtain a pattern similar to the one achievable with a Taylor amplitude
law characterized by SLL=32 dB and n̄=4. A total number N = 250 is
selected here as an example (see Appendix E).

For verifying the accuracy of the replication of the desired Taylor ta-
per, the normalized density taper is calculated in a manner that is similar
to the one discussed in Paragraph 4.2. The only difference concerns the
normalization that becomes, in this case

Ãp =
Ap

max(Ap)
2π
∫ Rap

0 A(r)/max [A(r)] rdr

π
∑P

q=1 [Aq/max(Aq)] (R2
q −R2

q−1)
for p = 1, . . . , P. (4.11)
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where, as in the previouse case, Ap represents the number of elements en-
closed in the equi-pollent annular ring delimited by Rp−1 and Rp and the
second term represents the ratio between the total normalized amplitude
distribution and the total normalized density distribution. This last term
ensures that the total current following from the reference, continuous Tay-
lor distribution and its discrete counterpart are the same. The continuous
and discrete tapers are compared in Fig. 4.9. The plot demonstrates the
high accuracy of the obtained spatial density taper. The study of the con-
figuration in Fig. 4.8 is supplemented by evaluating the array factor (see
Fig. 4.10). The massive drop in the SLL, according to the chosen Taylor
taper distribution characterized by a SLL = −32dB, demonstrates the per-
formances of the non-uniform sunflower placement. As in the case of the
example discussed in Paragraph 4.2, the SLL increases for angles |θ| ≥ 5◦,
creating a kind of plateaux [30].

Figure 4.9: Amplitude and density taper for the non-uniform array config-
uration in Fig. 4.8. Thick black line – reference amplitude taper; alternate
grey rectangles – normalized density taper.
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Figure 4.10: Array Factor of the non-uniform array in Fig. 4.8 for two φ
cuts. φ = 0◦ – dotted line; φ = 90◦ – black line.

4.3.2 Procedure for the case of apertures populated by dif-
ferently sized elements

An examination of the configuration in Fig. 4.8 reveals that the elements are
quite agglomerated in the center, but the array becomes increasingly sparse
when moving towards the periphery. When the element size is chosen in
order to fit the dense central distribution it is evident that a lot of empty
space will remain at the periphery, this impeding on the overall aperture
efficiency. This effect can be counteracted by employing differently sized
elements.

At this point it is important to stress that all implementations consid-
ered in this work employ sub-arrays as ‘elementary radiators’. The elements
in each sub-array, and the sub-arrays themselves, can be fed such that a given
amplitude or a given power are ensured. The first choice has the advantage of
resulting into an easier, more flexible design methodology since the designer
can group together elements in sub-arrays in an arbitrary manner as long as
they are fed with the same amplitude. Nevertheless, this is technologically
cumbersome since the distribution networks inside sub-arrays (the most com-
monly used being Wilkinson dividers [61] (pp. 318–323) and the T-junction
power dividers [61] (pp. 315–318)) distribute the same power. Assuming all
elements in a sub-array to have the same input impedance, ensuring iden-
tical elementary amplitudes will require sub-arrays consisting of different
numbers of elements to be fed by different input powers, an approach that is
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not favorable for the space application aimed at in this work. It then follows
that an equi-power sub-array feeding is to be preferred. However, this choice
induces some design complications in the sense that the sunflower placement
requires the total number of sub-arrays of each type to be known a priori.
In practice, this restriction can be easily circumvented since, the placement
being deterministic, possible variants can be evaluated in a fast manner this
directly yielding an optimal allocation of sub-arrays per types.

Several options of element grouping were experimented with:

• Completely filled arrays – equi-amplitude. The complete available
aperture is populated by elementary radiators deployed on a triangular
lattice. The position of the sub-array phase centers are found using
Eqs. (4.9) and (4.2). Then the elementary radiators are associated
to their closest phase center and grouped. In this way the complete
aperture is used, resulting in high directivity. Unfortunately, as each
sub-array is different, this configuration is not easy from a technologi-
cal point of view to be implemented and tested.

• Non-completely filled arrays – equi-amplitude. A procedure similar to
the one adopted in the previous example is enforced. In this case just
some of the elementary radiators, the closest to the phase centers, are
selected and grouped. The farther ones are not employed in the array.
For this configuration a reduced number of elementary radiators can
be used, still satisfying the requirements in Appendix A. However the
same main disadvantage of the previous array configuration has to be
faced.

• Arrays composed of hexagonal sub-arrays – equi-amplitude. In this
configuration just a few kinds of sub-arrays are employed. Their po-
sition can be found with Eqs. (4.9) and (4.2). It is easier to be im-
plemented when compared with the previous two options proposed,
but shares with them the difficulty of providing the same amplitude
to differently sized sub-arrays. It is for this reason that the hexagonal
sub-array configuration with equi-amplitude is considered as a good
architecture in case of employing different amplifiers in the same array
design.

• Arrays composed of hexagonal sub-arrays – equi-power. In this case
the phase center positions of the sub-arrays are found according to the
approach further explained below. The approach takes into account,
from the beginning of the design, how many elementary radiators com-
pose each sub-array. This results into an easier implementation from a
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technological point of view, especially when the requirements impose
to use the same amplifier for each sub-array.

The performance of each of these variants will be studied in Paragraph 4.4

4.3.3 Equi-power condition

The enumeration above made a clear distinction between the equi-amplitude
and the equi-power placement variants. The identical amplitude condition
was seen to allow for a direct use of the formulation presented in Para-
graph 4.3.1. Nevertheless, when an equi-power condition needs being en-
forced, that formulation has to be amended slightly. To this end, let Ptot

be the total power fed into the array. The equi-power requirement directly
yields for N sub-arrays the power injected into each sub-array

Psub =
Ptot

N
. (4.12)

Recall now that the reference taper employed for determining the element lo-
cation is an amplitude condition. By denoting as N̄n the number of elements
in the nth sub-array and assuming an equal power distribution network for
the sub-array, the corresponding amplitude for each element in the sub-array
will read

Asubn =

√
Psub

N̄n
=
√

1
NN̄n

Ptot, n = 1, ..., N. (4.13)

yielding a total sub-array excitation

Atot,subn = N̄nAsubn =

√
N̄n

N
Ptot, n = 1, ..., N. (4.14)

The quantity Atot,subn in (4.14) represents the area under the reference am-
plitude taper that corresponds to each of the N sub-arrays. Obviously, the
summation of all sub-array contributions will correspond to the total area
under the amplitude taper

Atot =
N∑
n=1

Atot,subn =

√
Ptot

N

N∑
n=1

√
N̄n. (4.15)

By substituting (4.15) in (4.14) it is now found that

Atot,subn = Atot

√
N̄n∑N

n=1

√
N̄n

(4.16)
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that demonstrates that the total sub-array excitation is proportional to the
square root of the number of elementary radiators in it. Just like in the case
examined in Paragraph 4.3.1, Atot is now equated to the total current on
the circular aperture

Atot = 2π
∫ Rap

0
A(r)rdr. (4.17)

This immediately allows for determining the phase center positions by means
of the expressions

2π
∫ ρn

Rn−1

A(r)rdr =
2π
√
N̄n

2
∑N

n=1

√
N̄n

∫ Rap

0
A(r)rdr (4.18)

2π
∫ Rn

Rn−1

A(r)rdr =
2π
√
N̄n∑N

n=1

√
N̄n

∫ Rap

0
A(r)rdr (4.19)

starting from R0 = 0. As in the equi-amplitude case, after the polar coordi-
nate ρn are found, Eq. (4.2) is applied to determine the angular coordinate.

Note that the application of this algorithm requires the a priori knowl-
edge of not only the number of sub-arrays but also of the number of elements
in each sub-array. From this point of view, it introduces additional com-
plications when compared with the equi-amplitude placement algorithms.
Nonetheless, the advantages following from the use of the technologically
more convenient equi-power distribution largely compensate for this draw-
back. Moreover, as it will be shown in Paragraph 4.4.4, an efficient imple-
mentation of the sunflower placement calls upon the use of a reduced number
of sub-array types (usually 3 or 4). Consequently, the optimization of the
total number of sub-arrays and the relative ratio between the different types
can be easily implemented.

4.4 Numerical validation of the technique

Several array configurations, corresponding to the four variants catalogued in
Paragraph 4.3, will now be examined by assessing their performance against
the stringent requirements in Appendix A. The design will constantly strive
towards reducing the number of needed controls. In all the examples the
arrays will work in circular polarization and will employ the basic patch
radiator described in Appendix F. Sub-arrays composed of these patches
will not take into consideration the effects of mutual coupling.
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Figure 4.11: Example of Voronoi space subdivision [60]. Lines – the contours
of the Voronoi cells; dots – enclosed phase centers.

4.4.1 Completely filled array - equi-amplitude

The idea consists of using the advantages coming from both a uniform tiling,
such as a simple element placing, and the ones coming from non-uniform
arrays, as the possibility to control SLL without amplitude taper and having
no GL for spacing greater than λ between the sub-arrays. The array is
composed of several square patches deployed on a regular triangular lattice 1.
Their field has been calculated firstly by implementing a classical analytical
formulation [84] in Matlab and then it has been simulated designing the
structure with the CST (Computer Simulation Technology) software [88].
Note that all examples cited in this section are based on the use of the square
patch radiation patterns that were evaluated by means of the commercial
software. Additional details on the design of the patch can be found in
Appendix F.

The array is then divided into sub-arrays according to the sunflower
law, with the position of the phase centers of the sub-arrays being derived
with the formulation presented in Section 4.3.1.

Since an equi-amplitude feeding is assumed, Eqs. (4.9) and (4.2) can
be straightforwardly applied. Around each phase center a Voronoi cell [60] is
drawn (see Fig. 4.11), and all patches inside this cell are grouped into a sub-
array. Note that the Voronoi surface division in Fig. 4.11, where each Voronoi
cell is formed by grouping all points that are closer to the relevant phase

1The triangular lattice has been chosen as it guarantees better performances in terms
of SLL and of elements packing (see Paragraph 2.3 and Appendix B).
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Figure 4.12: Positions of 200 sub-arrays in the 54λ aperture superimposed
to the position of the elementary radiators. Different colours are used to
distinguish the several sub-arrays.

Figure 4.13: Amplitude and density taper for the non-uniform array config-
uration in Fig. 4.12. Thick black line – reference amplitude taper; alternate
grey rectangles – normalized density taper.

center than to any other phase center, provides an optimum subdivision of
the available real estate. In order to compute the array radiation pattern,
the pattern of each sub-array is evaluated separately and then included in
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the aggregate value by accounting for the phase term given by the position
of the sub-array phase center in Eq. (2.16).

Since the Voronoi cell shapes are not too far from circular ones, the re-
sulting sub-array patterns are rotationally symmetric. This is an important
property when the beam is scanned. With this method the complete surface
available is used while, at the same time, a very small number of controls
(one for each sub-array) is needed.

Figure 4.14: Pattern of the completely filled array in Fig. 4.12 for the beam
pointed at boresight for two φ cuts. φ = 0◦ – continuous line; φ = 90◦ –
dotted line.

The concept is now illustrated by discussing the case of the antenna
shown in Fig. 4.12. It consists of 14647 square patches that are deployed
on a uniform triangular lattice, the aperture having a circular shape of ra-
dius 54λ. The sub-array positions for N = 200 have been derived using
Eqs. (4.9) and (4.2), following a Taylor taper [69] with SLL = 31 dB and
n̄=3 (see Appendix E). Note thatdifferent colours were used in the figure
for distinguishing the sub-arrays, .

The sub-arrays correspond, in this case, to the Voronoi cells, possibly
clipped by the aperture contour in the case of the cells at the periphery.
The good agreement between the chosen reference amplitude taper and the
achieved density taper is demonstrated in Fig. 4.13. The radiation pattern of
the synthesized array is shown in Fig. 4.14. The design completely satisfies
the requirements for boresight, maintaining a SLL under 19 dBi in the area
of interest. Even when the beam is pointed at Europe’s edges (see Fig. 4.16
and 4.15) the pattern remains compliant with the specifications coming from
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Figure 4.15: Pattern of the completely filled array in Fig. 4.12 for the beam
pointed at Europe’s edge.

Figure 4.16: Contour plot pattern of the completely filled array in Fig. 4.12
for the beam pointed at Europe’s edges. The regions enclosed by the black
circles are the ones relevant to the interfering-beams using the same fre-
quency. Red line – contour of the regions with directivity above 43.8dBi;
blue line – contour of the regions with directivity above 20dBi.
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[6]. From that figure it is evident that the proposed architecture satisfies the
requirements:

• the directivity above the level required at the EOC, corresponding to
the area enclosed by the red curve, overlaps the area to be illuminated.

• all regions pertaining to the interfering beams fall outside the region
where the directivity exceeds the 20dBi level, corresponding to the
areas enclosed by blue curves.

4.4.2 Non-completely filled array - equi-amplitude

Figure 4.17: Example of Voronoi space tessellation. Lines – the contours
of the Voronoi cells; dots – enclosed phase centers; dotted lines – circles
inscribed in the Voronoi cells.

The configuration presented previously suffers from various implemen-
tation problems, one of them being the irregular shapes of the sub-arrays. In
order to guarantee rotationally symmetric patterns, each sub-array should
be as close as possible to a circle. As it turns out, generating non-overlapping
circles that cover optimally a given (circular) area, can be easily achieved by
resorting to a convenient property of the Voronoi tessellation [60], namely
that all cells are convex and thus always allow for selecting inscribed circles.
Consequently, after generating the Voronoi tessellation as in Paragraph 4.4.1,
the relevant inscribed circles are drawn; the result of this operation is shown
in Fig. 4.17. The next step is to group together the uniform array patches
that are ‘inside’ any given circle (according to a predefined incidence cri-
terion), while all other patches are discarded. This procedure ensures that
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Figure 4.18: Positions of the 200 sub-arrays in the 54λ aperture super-
imposed to the position of the elementary radiators. Different colours are
used to distinguish the several sub-arrays.

all sub-arrays have an (as-close-as-possible) circular shape except for some
sub-arrays at the periphery. The same aperture dimension as in the previ-
ous example has been considered with a Taylor reference amplitude taper
characterized by an SLL = −30dB and n̄ = 3 (see Appendix E).

The concept is now illustrated by discussing the case of the antenna
shown in Fig. 4.18. Note that, as in the previous example, different colours
were used for indicating distinct sub-arrays. They correspond, in this case, to
the largest circles that could be enclosed in the Voronoi cells, possibly clipped
by the aperture contour in the case of the cells at the periphery. The number
of patches in this case amounts to 9435, that represents approximately 64%
of the total number used in the array of Fig. 4.12. As expected, this reduction
has an impact on the array pattern (see Figs.4.19). The main beam level
drops by about 2 dB when compared with the one in Fig. 4.20. However,
even though the number of patches used has been drastically reduced, the
total array performance is still satisfying the requirements, as it can be
appreciated from Figs. 4.19 and 4.21.

This type of configuration has a similar problem as the previously dis-
cussed one, namely since all sub-arrays are different, it is difficult to imple-
ment and to test the complete array in a modular fashion procedure.
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Figure 4.19: Pattern of the not-completely filled array in Fig. 4.18 for the
beam pointed at boresight for two φ cuts. φ = 0◦ – continuous line; φ = 90◦

– dotted line.

Figure 4.20: Pattern of the not-completely filled array in Fig. 4.18 for the
beam pointed at Europe’s edge.

4.4.3 Array of hexagonal sub-arrays - equi-amplitude

Although the configurations discussed thus far have an optimal performance
in the field of view (FOV), they both are impeded upon by the irregularity
of the sub-array shapes,this making their implementation difficult. From an
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Figure 4.21: Contour pattern of the not-completely filled array in Fig. 4.18
for the beam pointed at Europe’s edges. The regions enclosed by the black
circles are the ones relevant to the interfering-beams using the same fre-
quency. Red line – contour of the regions with directivity above 43.8dBi;
blue line – contour of the regions with directivity above 20dBi.

industrial point of view, it is much more convenient to resort to a modular
approach in which the amount of sub-array shapes is strongly reduced (down
to 3 or 4). Several such configurations have been experimented with. In all
cases the modules employed patch type elementary radiators deployed on
uniform lattices. As the triangular lattice guarantees better performances
in terms of SLL and of packing (see Paragraph 2.3 and Appendix B), it has
been preferred to the rectangular one. Furthermore, it was strived towards
ensuring a reduced number of elements per sub-array in order to be able
to design the small modules that are needed in the dense central area of
the sunflower arrays. With these considerations, the hexagonal modules
provided the best approximation of the circular shape.

After selecting the limited number of modules, the placement strategy
followed the same approach as in Paragraph 4.4.1. The aperture is initially
subdivided according to the Voronoi tessellation and then the module that
fits best is accommodated in each cell. In a few cases there were occurrences
of sub-arrays that overlapped, a situation that was easily remedied by slightly
shifting the relevant sub-arrays.

The concept is now illustrated by discussing the antenna shown in
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Figure 4.22: Positions of 250 hexagonal, equi-amplitude sub-arrays. Differ-
ent colours are used to distinguish the several sub-arrays: blue – sub-arrays
composed of 19 patches; red – sub-arrays composed of 37 patches; green –
sub-arrays composed of 61 patches; light blue – sub-arrays composed of 91
patches.

Fig. 4.22. Four different kind of hexagons were chosen; in all of them the
elementary radiators are deployed on a triangular lattice in rings around a
central element. The following type of sub-arrays were used:

• 90 sub-arrays composed of 19 patches (two rings around the central
element);

• 80 sub-arrays composed of 37 patches (three rings around the central
element);

• 50 sub-arrays composed of 61 patches (four rings around the central
element);

• 30 sub-arrays composed of 91 patches (five rings around the central
element),

the total number of patches ammounting to 10450. This configuration repli-
cates the performances of a 55 λ radius aperture, on which a Taylor taper
law with SLL = 33 dB and n̄=3 has been applied on the array element
excitations (see Appendix E).
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Figure 4.23: Pattern of the hexagonal sub-arrays configuration in Fig. 4.22
for the beam pointed at boresight for two φ cuts. φ = 0◦ – continuous line;
φ = 90◦ – dotted line.

Figure 4.24: Pattern of the hexagonal sub-arrays configuration in Fig. 4.22
for the beam pointed at Europe’s edge.

Note that, also in this case, different colours were used for indicating
distinct sub-arrays corresponding to the largest hexagonal sub-arrays that
could be enclosed in the relevant Voronoi cells.

As it is possible to notice from Figs. 4.23 and 4.24, this type of configu-
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Figure 4.25: Contour pattern of the hexagonal sub-arrays configuration in
Fig. 4.22 for the beam pointed at Europe’s edges. The regions enclosed by
the black circles are the ones relevant to the interfering-beams using the
same frequency. Red line – contour of the regions with directivity above
43.8dBi; blue line – contour of the regions with directivity above 20dBi.

ration is performing excellently both when the beam is pointing at boresight
and when it is scanned. In this last case, it is possible to note from Fig. 4.25
how the regions where the directivity is higher than the 20 dBi level, im-
posed by the requirement not to be exceeded in the interfering beam areas,
are separeted from the interfering areas enclosed by the black circles. From
technological point of view, this option offers the possibility to implement
and test just 4 sub-array types and permits satisfying the requirements with
a reduced number of controls (N=250). The main drawback of all the config-
urations presented thus far is that guaranteeing the same level of amplitude
to sub-arrays composed of a different number of radiators is difficult to imple-
ment without introducing different kinds of amplifiers at array level. This is
not desirable from an implementation point of view for which using identical
amplifiers that operate at the same, optimized level is to be preferred.

4.4.4 Array of hexagonal sub-arrays - equi-power

In order to overcome the technological difficulties coming from the equi-
amplitude choice, an array with equi-power sub-array feeding is here pro-
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Figure 4.26: Positions of the 250 hexagonal, equi-power sub-arrays. Different
colours are used to distinguish the several sub-arrays: blue – sub-arrays
composed of 19 patches; red – sub-arrays composed of 37 patches; green –
sub-arrays composed of 61 patches.

posed. In the following example only three sub-array configurations were
used in the array implementation. In this case the sub-array phase center
positions have been found using Eqs. (4.18) and (4.2) and choosing from the
beginning the number and kinds of sub-arrays to be employed in the design.
Subsequentially, as in the previous examples, the phase center positions are
used to draw the pertaining Voronoi cells. In each cell, a hexagon, whose
dimensions and properties have been defined before finding the phase center
position, is placed. In case of overlapping between hexagons, the sub-array
phase centers have been slightly moved.

The concept is now illustrated by discussing the case of the antenna
shown in Fig. 4.26. In it, the first type of sub-array consists of 7 patches
arranged on a triangular lattice and in an hexagonal shape; the other types
have been obtained by adding, still on a triangular lattice, one and two
rings more to the first configuration. The total number of controls used
equals N = 250 and the relevant phase center positions, computed with the
formulation introduced in Paragraph 4.3.2, are the centers of the hexagons
in Fig. 4.26. Note that, also in this case different colours were used for
indicating distinct sub-arrays that correspond, in this case, to the a priori
chosen hexagonal sub-arrays. As already mentioned, the hexagon dimensions
are chosen independently of the pertaining Voronoi cell; for this reason some
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Figure 4.27: Amplitude and density taper for the non-uniform array config-
uration in Fig. 4.26. Thick black line – reference amplitude taper; alternate
grey rectangles – normalized density taper.

overlapping between different sub-array may occurr and thus the hexagons
are not always enclosed in the Voronoi cells.

Even in this case the comparison between the reference amplitude ta-
per (here chosen to be a Taylor distribution with SLL = 31 dB, n̄ = 10),
reported in Fig. 4.27, shows that the presented technique is able to match
the amplitude taper assigned. According to the formulation developed for
the equi-power case and after dividing the available aperture in equi-pollent
annular rings, not only the number of elements belonging to each annular
ring should be taken into account but also the relative amplitude weight, ac-
cording to Eq. (4.13). It is important to notice that a good match between
amplitude and density taper can be achieved even when the reference am-
plitude distribution is not monotonically decreasing. Figure 4.28 represents
the radiation pattern in dBi for the beam pointing at boresight for two φ
cuts, φ = 0◦ and φ = 90◦ in continuous and dotted line, respectively.

Figure 4.28 shows the radiation pattern of the synthesized array. In the
central region, up to about 5◦ the directivity pattern can be considered al-
most rotationally symmetric; this is due, as in the previously analysed cases,
to the particular phase center positioning in the sunflower configuration. We
note that for boresight the SLL are respecting the requirements with a large
margin; when the beam is pointed at Europe’s edges (see Figs. 4.29 and 4.30)
the area where the SLL is under the imposed level, even if still satisfying the
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Figure 4.28: Pattern of the hexagonal sub-arrays configuration in Fig. 4.26
for the beam pointed at boresight for two φ cuts. φ = 0◦ – continuous line;
φ = 90◦ – dotted line.

Figure 4.29: Pattern of the hexagonal sub-arrays configuration in Fig. 4.26
for the beam pointed at Europe’s edge.

constraints, is quite limited.

We remind that, from a technological point of view, this configuration is
the easiest to be implemented among the variants examined in this chapter.
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Figure 4.30: Contour pattern of the hexagonal sub-arrays configuration in
Fig. 4.26 for the beam pointed at Europe’s edges. The regions enclosed by
the black circles are the ones relevant to the interfering-beams using the
same frequency. Red line – contour of the regions with directivity above
43.8dBi; blue line – contour of the regions with directivity above 20dBi.

4.5 Concluding considerations

In this chapter several innovative concepts were introduced:

• The possibility to shape the pattern resorting to a non-uniform place-
ment of the array elements has been demonstrated.

• A normalized density taper has been defined. This parameter has been
shown to allow mapping a reference amplitude taper on a synthesized
density taper.

• An analytical law for the placement of identical equi-amplitude ele-
ments with a density taper matching a reference amplitude taper, has
been developed. The directivity pattern of the proposed synthesized
array is in good agreement with the one achievable by imposing the
reference amplitude taper on a uniformly spaced array.

• An analytical law for the placement of identical equi-power sub-arrays,
with a density taper matching a reference amplitude taper, has been
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developed. The directivity pattern of the proposed synthesized array
is in good agreement with the one achievable by imposing the reference
amplitude taper on a uniformly spaced array.

• Both the innovative placement techniques mentioned before have been
extended to the case of differently sized sub-arrays, resulting in the
possibility to synthesize arrays with an improved aperture coverage
efficiency.

• Several possible configurations, based on the concepts presented in
this chapter, have been simulated and their pattern behaviour and
technological implementation discussed at length.



Chapter 5

Physical validation of the
‘sunflower’ placement
strategy

The previous chapter discussed in detail an innovative synthesis technique,
the so-called ‘sunflower’ placement method. Due to its versatility, the appli-
cability of the method was extended by allowing the use of a small number of
sub-array types, a procedure that immediately yielded a significant reduction
in the needed controls.

This effective array antenna synthesis method is now validated by
means of a combination of measurements and off-line processing, allowing
the simulation of very large arrays of the kind that is required by the de-
manding application defined in Appendix A. To this end, a specialized mod-
ule was manufactured based on a high performance design of Thales Alenia
Space and sub-arrays consisting of 1, 2, 3 or 4 such modules were assembled
and measured. The results of these sub-array measurements will be firstly
discussed in detail and then post-processed for simulating the large array
designed with a sunflower law. The synthesized array performance will be
evaluated for a number of relevant situations, thus demonstrating the suit-
ability of the proposed array configuration for the mission that is aimed at.
The performances of such an array are finally compared with a reference
uniformly spaced array configuration. The chapter will be completed by
concluding remarks.
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5.1 Experimental setup

5.1.1 The choice for the sub-array configuration

The analysis in Paragraph 4.4.4 has clearly demonstrated the superior perfor-
mances that are obtained by employing an even reduced number of sub-array
types (i.e. 3 or 4) in the sunflower architecture. In view of a proper filling
of the convex Voronoi cells, the sub-arrays were taken to have a hexagonal
shape that makes use in an optimal manner of the convenient triangular
lattice properties (see Appendix B). Based on this observation, the first
choice for the physical implementation of the sunflower would have been
the use of custom designed hexagonal sub-arrays of the type employed in
Fig. 4.26. Nevertheless, the design and implementation of such specialized
devices would have required a significant design and experimentation time
while adding little conceptual novelty to this investigation. From this point
of view, the use of off-the-shelf devices was deemed a much more effective
choice. In view of the specific mission requirements (see Appendix A), a clear
preference was given to array antennas providing excellent impedance match-
ing properties in combination with circular polarization operation. However,
an analysis of the market has shown that such modules are not easily avail-
able. The next best option was then to replicate a verified design that pro-
vided the needed functionality without requiring excessive production costs.
This option turned out to be feasible, as hereafter described.

Discussions with the project partners at ESA-ESTEC and Thales Ale-
nia Space have put forward the availability of a high performance circu-
larly polarized 4 × 4 patches module in the Thales Alenia Space portfo-
lio, the documentation of which the company was willing to hand over to
TU Delft for manufacturing and testing. When compared with the initial
placement experiments reported in Paragraph 4.4.4, the relevant module de-
viated in the sense that it had a quadrilateral, as opposed to hexagonal,
shape. This required small adjustments of the array architecture that could
be easily carried out due to the demonstrated versatility of the sunflower
placement strategy. The quadrilateral shape, in turn, offered interesting op-
portunities, such as the assembling of sub-arrays with shapes better suited
to beam-scanning over the rectangular area that encloses Europe (see Para-
graph 5.2.2). Another deviation concerned the module’s operational band-
width that was centred around 7.5 GHz, significantly lower than the mission
requirements in Table A.1. However, this operational bandwidth fitted opti-
mally the characteristics of the IRCTR measurement facility – DUCAT (see
Paragraph 5.1.4) – that is tuned to the X-band.
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Figure 5.1: The structure of the manufactured tile. (a) Upper aluminum
flange with circular apertures; (b) upper PCB layer with parasitic patches;
(c) central aluminium layer with circular cavities and the upper part of the
stripline cavities (obscured at the lower side of the plate); (d) lower PCB
layer with active patches and routing stripline traces; (e) lower aluminium
base with the back-side of the circular patches and the lower part of the
stripline cavities.
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In the followings, the manufactured basic tile will be firstly introduced.
A brief description will be subsequentially given to the measurement panel
employed for assembling the various sub-array variants. The measurements
of the different sub-array configurations will be discussed and finally these
results will be combined to compute the total array radiation pattern.

5.1.2 Manufactured basic sub-array – the tile

The basic tile (see Fig.5.1) was designed and firstly manufactured in Thales
Alenia Space. By using the provided documentation it was replicated in four
copies in the workshop of the Delft University of Technology, with parts
of them being outsourced to CIRE in France. The tile consists of milled
aluminium plates and etched copper plated microwave laminates that are
stacked and fastened together. The elements comprised by the tile and their
specific role are now presented, grouped by their function, by starting from
the lower radiating layer (d) and the upper one (b) and ending with the
aluminium layers (e), (c) and (a).

On the lower PCB layer the radiating patches and their feeding lines
have been etched from a thin copper plated microwave laminate, as shown
in level (d) in Fig. 5.1. The feeding of the active patches in the layer (d)
is achieved by means of striplines that are etched on the same level. The
metallic enclosures needed for creating the stripline have been milled from
the aluminium panel above and below. The feeding signals are distributed
via a fixed power distribution network that branches out from a single feeding
connector (see Fig. 5.1). The distribution network was optimised at TAS for
ensuring the extremely uniform amplitude and phase shifts that are needed
by the individual radiators. Nevertheless, the fact that the tile has one single
access port does not allow the measurement of individual elements and thus,
such effects as the inter-element coupling could not be quantified. The upper
PCB layer, level (b), accommodates 16 parasitic patches re-radiating the field
received from the patches in the lower PCB. The particular relative rotation
of the patches in the layers (b) and (d) together with a proper phase shift
between the radiators, guarantees an almost perfect circular polarization in
the main beam region.

The other three levels (a), (c), and (e) are realized in aluminium. In
the lowest level ((e) in Fig. 5.1) part of the metal has been removed in
order to create cavities around the patches at level (d). In the same way
also the middle level (c) has been machined on the rear side (not visible in
the figure) in order not to short circuit the feeding lines of level (d). The
thick metal layer (level (c) in Fig. 5.1) creates perfectly round walls around
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Figure 5.2: Completely assembled tile. The 16 parasitic patches are visible.

the patches ensuring that the patches in level (b) are excited via cylindrical
circular waveguide modes. Finally, the last metal layer permits fastening
the whole structure together, guaranteeing the rigidity and flatness of the
structure and, in particular, of the radiating level (b) that would otherwise
bend resulting in a distorted radiated field. Moreover, this final metallic
flange suppresses the surface currents propagating at the free-space interface
with the dielectric. Despite the fact that the layers (a), (c) and (e) are
fabricated from aluminium, their largely hollow structure implies that their
weight is quite low. Nevertheless, the metallic structure ensures structural
rigidity that is extremely favourable for guaranteeing a stable, repeatable
radiation performance. The completely assembled tile, shown in Fig. 5.2, is
thus a robust and light structure.

5.1.3 The mounting panel for measurements

Two circular panels were designed in order to measure the radiation patterns
of the different sub-arrays (see Figs. 5.3 and 5.4). The smaller one consists of
a 8mm thick circular, plastic panel with a diameter of 200 mm. The second
panel consists of a 15 mm thick plastic disk, with a diameter of about 600 mm
and several holes around the perimeter in positions such that a measurement
of the pattern every φ = 15◦ becomes possible.

The pattern of small circular holes in the central area of the panel
allow mounting the tiles in various positions. The larger holes are meant
for providing the possibility to connect the feeding coaxial cables to the
tile connectors. Their shape was chosen to allow maximum freedom for tile
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Figure 5.3: Small panel for the measurement of the single tile.

Figure 5.4: The front side of the larger measurement panel

placement, while ensuring the needed structural rigidity.

Whenever it was not possible to obtain a symmetrical mounting (with
respect to the panel centre) of the sub-array to be measured, the position
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of the mounting column along the x and y axis was adjusted such hat to
minimize the placement error.

5.1.4 Measurement setup

IRCTR is endowed with an anechoic chamber facility of moderate size,
3m× 3m× 6m, (see Fig. 5.5) called Delft University Chamber for Antenna
Tests (DUCAT). The self-made design was built by the faculty workshop
in 1979 and was initially used for far-field off-line measurements of anten-
nas that are small relative to the wavelength. Since 1992, the laboratory has
been developing near-field antenna measurements for antennas that are large
relative to the wavelength in DUCAT. Before the absorbers were placed, the
entire chamber was covered with copper plates of 0.4 mm thickness thus
forming a Faraday cage. There are three 30cm-deep pits in the floor, which
are connected by ducts. In the pits, the far-field positioners and a near-field
planar scanner are placed in such ways that their main bodies are below
the surface. The distance between the two positioners is around 3.5 m and
the distance between one of these and the near-field planar scanner is maxi-
mally 1.5 m. To maintain a completely shielded chamber, the doors are of a
special design. They are not suspended on hinges, but pulled by pneumatic
cylinders. The shielding of the chamber is for frequencies above 2 GHz up
to 18 GHz and it is at least 120 dB all around. All walls are covered with
pyramidically shaped absorbers. It is found that the walls have a reflection
coefficient of less than -36 dB.

The DUCAT measurement system consists of time domain and fre-
quency domain equipments. The frequency domain equipment allows measu-
rements up to 50 GHz and includes the following components:

• PC for controlling the equipment and executing automated measu-
rements controlling the antenna positioners.

• E8364B PNA Network Analyzer working from 10 MHz to 50 GHz with
104 dB of dynamic range, smaller than 0.006 dB trace noise and with
a measurement speed smaller than 26 μs/point for 32 channels and
16,001 points.

• HP 8341 B synthesized sweeper (RF source); this accurate synthesized
stepped sweeper provides 10 dBm of power in the frequency band from
10 MHz to 20 GHz.

• Standard Gain Horns at different frequency bands for the determina-
tion of the absolute gain of the antenna under the tests.
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Figure 5.5: Set-up in the anechoic chamber for the sub-array measurements.
On the left the measuring column with the small panel and one sub-array;
on the right a standard horn.

5.2 Measurement results

This section discusses the measurement of the principal antenna parameters
of the employed sub-arrays. Initially the single tile, constituting the basic
brick in all sub-array types (see Paragraph 5.1.2), will be used to measure
the scattering parameters and the polarization purity. The radiation pattern
characteristics of the sub-array configurations will then be discussed.

5.2.1 Measurement of the tile parameters

In this paragraph the measurement of the scattering parameters and the
polarization purity of the single tile sub-array are reported.

A first experiment concerned the assessment of the matching properties
of the manufactured tiles and the coupling between two closely packed (in
fact, touching) tiles over a relatively broad frequency range around the design
frequency of 7.5 GHz. These parameters were measured at the corporate
feeding ports of the tiles, yielding a two port system for which the standard
S11 and S12 parameters defined in Paragraph 2.1.3 were accounted for. The
measured results are reported in Fig. 5.6. The S11 behaviour evidences
an operational bandwidth stretching between 6.8 GHz and 7.9 GHz for a
(very demanding) S11 < −20dB condition. As for the coupling, measured
with both the tile connectors in position down (see Fig. 5.8), its values
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Figure 5.6: S11 and S12 parameter of the assembled tile measured in a
frequency range around the operational one.

are below −30dB in the operational bandwidth and under −50dB at the
design frequency. These low values can be explained by considering the
distance between the tiles (minimum of 2.8λ) and the directive pattern of
the tile, as it will be shown in Paragraph 5.2.2. This experiment is be
supplemented with two repeatability studies. To begin with, recall that four
tiles were manufactured. It is then necessary to assess the spreading of the
reflection coefficients pertaining to the four tiles, these results being collected
in Fig. 5.7. The figure dewmonstrates that the replicated tiles behaviour is
in good agreement with the one of the original tile, 1 even though the level
of the four S11 curves is slightly worse than the one of the reference case
and the curves are marginaly moved toward lower frequency. These two
effects have been caused by the substitution of the not anymore available
PCB material Arlon HI3003Q (εr = 3.9 tickness = 0.1397 mm) used in the
reference tile with the Arlon 25FR one (εr = 3.58 tickness = 0.1524 mm).

The tile in Fig 5.1 is, in principle, symmetric. One simple way of
checking the physical symmetry of the manufactured tile is by measuring
the coupling between two neighbouring tiles for their 4 possible relative
positions obtained by keeping one fixed (connector down in Fig. 5.8) and
rotating the other by 90◦. The relevant measurement results are shown in

1Measurements of the reference tile can not be distributed due to intellectual property
issues.
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Figure 5.7: S11 parameter for the 4 tiles.

Fig. 5.9. Taken the preferred position as the one in which the connector is

Figure 5.8: Four possible relative positions of the tile (with the connector
Down, Left, Up and Right, respectively).

at its lower possible position, the four cases considered have been denoted
in the legend as DD corresponding to the case of having both connectors
in position down, DL for the second connector placed on the left, DR for
the second connector placed on the right side and finally DU for the second
connector placed on the top side of the sub-array tile. The four curves in the
figure are quite similar, especially in the considered interval of operational
frequencies.

The second experiment comes from the need to know the inter-tile cou-
pling for variable spacing, a characteristic that is required by the sub-arrays
in the ‘sunflower’ architecture being located at largely variable spacing. The
coupling was measured for the ‘preferred’ tile relative orientation at 3 fre-
quencies in the operational bandwidth, the results being shown in Fig. 5.10.
As expected and demonstrated by the figure, the coupling between the two
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Figure 5.9: S12 parameter in the cases of having the two tiles in the possible
four different relative orientations.

Figure 5.10: S12 for the central frequency 7.5 GHz – red curve, lowest 7GHz
– blue curve, highest 8GHz – black curve, as function of the distance between
two tiles.

identical tiles diminishes by increasing the relative distance between the ra-
diator centres.

The third experiment concerned the polarization purity of the field
radiated by the tile for two elevation angles θ = 0◦ (boresight) and θ =
4◦ corresponding to the maximum scanning angle that is of relevance for
European geostationary satellite applications.
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Figure 5.11: Axial ratio of the two field components for θ = 0◦ – continuous
line, and θ = 4◦ – dotted line.

The polarization purity is examined by computing the axial ratio [2,
(p. 67)] with the formula

AR(θ, φ) =
|ĀO(θ, φ)|
|B̄O(θ, φ)| (5.1)

where ĀO and B̄O are the vectors identifying the polarization ellipse in
Fig. 2.1, namely

|ĀO(θ, φ)|=
{

1
2
[|Eθ(θ, φ)|2 + |Eφ(θ, φ)|2 +

[|Eθ(θ, φ)|4+

|Eφ(θ, φ)|4 + 2|Eθ(θ, φ)|2|Eφ(θ, φ)|2 cos(2Δ))
] 1

2

]} 1
2

(5.2)

and

|B̄O(θ, φ)|=
{

1
2
[|Eθ(θ, φ)|2 + |Eφ(θ, φ)|2 − [|Eθ(θ, φ)|4+

|Eφ(θ, φ)|4 + 2|Eθ(θ, φ)|2|Eφ(θ, φ)|2 cos(2Δ))
] 1

2

]} 1
2

(5.3)
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From these expressions it can be easily seen that the axial ratio amount
to 1 for the aimed at right hand circular polarization. Even though some lit-
tle disalignement errors are present, the measured results, shown in Fig. 5.11
are in good agreement with the expected values.

5.2.2 Radiation pattern measurement results

The sub-division of a large planar array into a number of sub-arrays is an
interesting topic from both theoretical and technological point of view. As
shown in Chapter 4, the problem can be addressed in different ways, result-
ing in a wide spread of possible solutions. Note that, for industrial reasons,
one should keep the number of different sub-arrays as low as possible. As
concerns the size, sub-arrays that are large with respect to wavelength are
preferred in order to reduce the number of active chains. Conversely, upper
bounds of the sub-array dimensions also apply. One such limit follows from
the FOV requirements since increasing the sub-array dimensions beyond a
certain limit will result in a main beam that is too narrow for enabling the
needed array beam scanning (see [11] for the correlation between the array
size and main beam). Another upper bound follows from the observation
that the sub-array dimensions determine the minimum inter-element spac-
ing and may also influence the maximum inter-element spacing, the values
of this spacing yielding the spatial extent of the region where high lobes,
corresponding to GL in the case of uniform lattices, will appear.

The 4 chosen sub-array configurations and their radiation pattern be-
haviour are hereafter presented in detail.

Sub-array A

The first case concerns a configuration composed of only one tile (see Fig. 5.12).
The small panel has been used to measure the radiation pattern in the ane-
choic chamber because of its more convenient dimensions and for allowing
the possibility of a perfect alignment between the transmitting horn and
the receiving tile. The measured pattern, shown in Fig. 5.13 validates the
expected symmetry along φ = 0◦ and φ = 90◦, as easily noticeable from
the contour plot. The main beam, covering the FOV, is quite large and flat
in the region of interest guaranteeing an almost constant directivity for the
complete area in the FOV. However, this value is quite reduced, reaching at
boresight a maximum of 19.6 dB.



94 Physical validation of the ‘sunflower’ placement strategy

Figure 5.12: Sub-array configuration A

Figure 5.13: Three-dimensional view and contour plot of the directivity of
sub-array A.

Sub-array B

The second case concerns a configuration composed of two tiles (see Fig. 5.14).
The large panel has been used to measure the radiation pattern in the ane-
choic chamber as this configuration could not be accommodated on the small
panel.
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Figure 5.14: Sub-array configuration B

Figure 5.15: Three-dimensional view and contour plot of the directivity of
sub-array B.

The measured pattern shown in Fig. 5.15 evidences a main beam en-
longed along φ = 0◦, a natural consequence of the configuration’s dimensions,
since the vertical side is twice the horizontal one. In this case, the maximum
directivity improves, when compared to the configuration with one tile only,
by about 3 dB, reaching a maximum value of about 22.6 dB at boresight.
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Sub-array C

Figure 5.16: Sub-array configuration C

Figure 5.17: Three-dimensional view and contour plot of the directivity of
sub-array C.

The third case concerns a configuration composed of three tiles (see
Fig. 5.16). The large panel has been used to measure the radiation pattern
in the anechoic chamber and, due to the sub-array not being symmetric, the
measuring column position has been adjusted for each φ cut measurement
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in order to minimize the allignement error. The measured pattern shown in
Fig. 5.17 demonstrates a more circular main beam when compared with the
previous case. The maximum directivity reaches in this case a maximum
value of about 24.5 dB.

Sub-array D

The last presented case concerns a configuration composed of four tiles (see
Fig. 5.18). The large panel has been used to measure the radiation pattern in
the anechoic chamber because of the large dimensions of the configuration.
No disalignement error was introduced in this case since the sub-array centre
coincided with the panel’s centre.

The measured pattern in Fig. 5.19 shows a quite rotationally symmetric
main beam when compared with sub-arrays B and C. The maximum direc-
tivity is strongly increased, reaching a maximum value of about 25.5 dB at
boresight. Nevertheless, due to the sub-array dimensions, the directivity
abruptly drops around 5◦.

Figure 5.18: Sub-array configuration D

As anticipated at the beginning of this section, the advantages of each
sub-array configuration become clear considering Fig. 5.20. When the an-
tenna beam has to be scanned over the desired coverage it is important to
choose carefully the sub-arrays to be employed in the array antenna, basing
the choice not only on the value of the maximum directivity but also on
that of the directivity at the end of coverage. In order to stress the latter
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Figure 5.19: Three-dimensional view and contour plot of the directivity of
sub-array D.

Figure 5.20: Pattern comparison between the several sub-array presented.
Blue lines – one tile sub-array, red lines – two tiles sub-array, green lines
– three tiles sub-array, cyan lines – four tiles sub-array. Continuous line –
φ = 0◦, dotted line – φ = 90◦.

observation, with reference to the pattern multiplication scheme quantified
in Eq. (2.17), the array factor is multiplied by the radiation intensity at each
direction. In the case of large sub-arrays, the rapid fall off of the correspond-
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ing radiation patterns in Fig. 5.19 will yield a similarly reduced maximum
directivity when the beam is scanned towards the end of the coverage. It is
essential to avoid the use of sub-arrays characterized by a large directivity
variation over the complete FOV, the more so when, as in the case under
study, there are stringent SLL requirements to be satisfied.

After these considerations, it can be concluded that sub-arrays of type
D are, due to their dimensions, not suited for the application addressed in
this work. The difference between the maximum directivity and the one at
the FOV border shown in Fig. 5.20 is considerable. For this reason, only the
sub-arrays A, B and C will be employed in the final configuration presented
hereafter.

5.3 Sunflower final results

The most promising array configurations developed by means of the robust
Sunflower placement strategy described in Paragraph 4.4.4 were combined
with the sub-arrays studied in the previous sections for yielding a high perfor-
mance (virtual) Sunflower array demonstrator that properly addresses the
stringent requirements enumerated in Appendix A. In order to minimize
costs, while demonstrating full functionality, the measured sub-array radia-
tion patterns were used, as anticipated, in an off-line pattern multiplication
scheme [2] for evaluating the radiation pattern and scanning capabilities of
an array having the sub-arrays placed according to the Sunflower algorithm.
Since the minimum distance between the sub-arrays in the considered con-
figuration is about 3λ, resulting in a reduced sub-array mutual coupling, the
total array pattern computed as the superposition of the sub-array patterns
was considered a good approximation of the real array pattern.

This analysis now proceeds by describing the specific choices made for
assembling the demonstrator.

5.3.1 Design choices

Several possible new configurations, taking into account the particular char-
acteristics of the manufactured sub-arrays, have been studied. Among them,
one has been selected as a good compromise between a reduced number of
active chains and performance, and it is hereafter discussed in detail.

The configuration of choice comprises sub-arrays of types A, B and C,
only (see Fig. 5.21). By using the three types of sub-arrays shown in Fig. 5.21
it has been possible to better exploit the available antenna aperture with a
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Figure 5.21: The proposed Sunflower array demonstrator. The three types
of sub-arrays receive equal power

reduced number of active chains, and, at the same time, keep the complexity
of the configuration low by using the same basic tile for assembling the
three types of sub-arrays. The circular aperture of radius Rap = 53λ has
been filled with 138 radiators of type A, 69 of type B and 125 of type C,
for a total number of active chains equal to 332. The positions of these
sub-arrays have been found, as already mentioned, with the sunflower law
presented in Paragraph 4.3.3, considering a Taylor reference amplitude taper
with SLL=30dB and n̄ = 3 (see Appendix E).

5.3.2 Demonstrator performances

In order to check the chosen configuration performances against the specified
requirements (see Appendix A), the radiation pattern was computed for the
beam pointing at boresight and at Europe’s edges.

The results achieved with the presented configuration are shown in
Figs. 5.22 and 5.23. In the first one it is possible to appreciate how the
taper applied to the sub-array positions can shape the pattern, reducing in
a significant way the SLL in the desired field of view.

Two φ cuts have been plotted in Fig. 5.22 for the beam pointing at
boresight, namely for φ = 0◦ and φ=90◦. The radiation pattern result-
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ing from the sunflower configuration can be considered almost rotationally
symmetric over Europe (θ ∈ [−4◦, 4◦]).

Figure 5.22: Radiation pattern at boresight for the achieved configuration
in two φ cuts, φ = 0◦ – continuous line and φ = 90◦ – dotted line.

Figure 5.23 represents the array radiation pattern when the beam is
pointing at Europe’s edge. Thanks to the colour choice, with a threshold at
the 20 dBi level, it is possible to notice that the SLL is not exceeding the
requested level but remains under 19 dBi. In both cases, when the beam is
pointing at boresight and when it points at the edges of Europe, the results
achieved are satisfying the demanding requirements given in Table A.1.

In order to appreciate the advantages in terms of GL avoidance and
reduction of the number of controls arising from the use of non-uniform
arrays, a comparison between the proposed configuration and two classical
array solutions (case 1 and case 2) is hereafter presented.

Comparison with uniform array case 1

In the first case the simple square tile (sub-array A in Paragraph 5.2.2) has
been chosen as a radiator for the uniform configuration. An inter-element
spacing equal to 3.3 λ was set in order to ensure an almost complete filling
of the available aperture and, at the same time, a perfect fitting of the
tiles in a triangular lattice (see Fig. 5.24). With this choice, using a 53λ
radius aperture as in the sunflower array case, 931 sub-arrays are employed.
The GL, for the considered configuration, occur outside the desired FOV
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Figure 5.23: Pattern for the discussed array configuration when the beam is
pointing at the Europe’s edge.

Figure 5.24: Position of the tiles in the reference array case 1.

(see Eqs. (2.26) and (2.27)). The same Taylor amplitude taper used as a
reference for the non-uniform array design has been applied in the uniform
array.

The patterns corresponding to the uniform and non-uniform arrays
are shown in Fig. 5.25 All φ cut plots were superimposed for providing an
indication of the overall array performances. It is interesting to notice that,
while the two pattern behaviours are remarkably similar within the FOV,
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Figure 5.25: Directivity pattern for all the φ cuts for the beam pointing at
boresight. Red – sunflower array; blue – uniform array case 1.

outside the Earth the pattern of the uniform array decreases until the GL
appears around θ = 20◦ and the non-uniform array pattern rises with higher
SLL with respect to the uniform configuration but without any GL. This
becomes even clearer in Fig. 5.26, where the directivity patterns of the two
arrays are plotted for the beam pointed at the Europe’s edges.

The requirements and the results achieved with the amplitude-taper,
uniform triangular lattice and with the proposed non-uniform array con-
figuration are summarized in Table 5.1. It is evident how, by employing a
non-uniform configuration, it is possible to obtain comparable or even better
performance when compared to the uniform lattice case.

For example, it can be noted in Table 5.1 that while the non-uniform

Figure 5.26: Directivity pattern for all the φ cuts for the beam pointing at
Europe edges. Red – sunflower array; blue – uniform array case 1.
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Table 5.1: Mission requirements and achieved results

Required Sparse Periodic
SLL over Europe <20 dBi 20.65 dBi 18.85 dBi
SLL over Earth < 25 dBi 22.7 dBi 18.85 dBi
SLL over visible space <30 dBi 22.7 dBi 36.47 dBi
EOC directivity 43.8 dBi 43.73 dBi 45.05 dBi
Number of sub-arrays 332 931

configuration is able to satisfy the stringent requirements over the complete
visible space, the uniform array can not prevent the arising of grating lobes.
These GL, even though reduced by the element factor, are still visible (see
Fig. 5.26) and their values rendered this configuration not able to satisfy the
imposed SLL specifications over the complete visible space. Moreover, with
the proposed configuration it is possible to drastically reduce the number of
active chains employed, resulting in a lighter and less expensive configura-
tion.

Comparison with uniform array case 2

This procedure would result in a loss of directivity and has been discarded. A
meaningful comparison would consist in using larger inter sub-array spacings
and larger sub-arrays.

Unfortunately, the available, measured sub-arrays were not suited for

Figure 5.27: Position of the tiles in the reference array case 2.
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Figure 5.28: Directivity pattern for all the φ cuts for the beam pointing at
boresight. Red – sunflower array; blue – uniform array case 2.

the comparison, being or too small (sub-array A) or too large (sub-array D).
For the sake of completeness a new sub-array, composed of 30 elementary
patches (similar to the basic ones described in Appendix F), arranged in 6
rows and 5 columns on a rectangular lattice, has been simulated with MAT-
LAB. In this case no inter-element coupling and losses were taken into ac-
count and the radiated field is simply the superposition of the 30 elementary
patch fields. Figure 5.27 shows how the new sub-arrays have been arranged
on a triangular lattice, completely filling the 53λ radius available aperture.
As expected, by increasing the sub-array distance GL arise closer to the
main beam, when compared to the previous reference case (see Figs. 5.28
and 5.29). In this case, since the aperture is fully populated, it is possible
to note an increment in the directivity, and, since larger sub-arrays have

Figure 5.29: Directivity pattern for all the φ cuts for the beam pointing at
Europe edges. Red – sunflower array; blue – uniform array case 2.
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Table 5.2: Mission Requirements and Achieved Results

Required Sparse Periodic
SLL over Europe <20 dBi 20.65 dBi 19.6 dBi
SLL over Earth < 25 dBi 22.7 dBi 119.6 dBi
SLL over visible space <30 dBi 22.7 dBi 32.5 dBi
EOC directivity 43.8 dBi 43.73 dBi 45.8 dBi
Number of sub-arrays 332 601

been used, a reduction of the number of needed controls (see Table 5.2). At
this point, with the inter-element spacing being dictated by the need to keep
GL outside the FOV, no other possibility to further reduce the number of
controls for the given aperture exists.

5.3.3 Concluding considerations

In this chapter the innovative ‘sunflower’ positioning algorithm was validated
by means of a combination of measurements and off-line processing. In
this way it was possible to simulate the very large array needed for the
application defined in Appendix A. Four sub-arrays composed of 1, 2, 3 or 4
basic modules (whose design was taken over from TAS) were assembled and
measured. These results were then post-processed for simulating the large
array, designed with a sunflower law. The synthesized array performance
has been evaluated for several beam pointing positions, thus demonstrating
the suitability of the proposed array configuration for the mission that is
aimed at. Finally the performances of such an array have been compared
with a reference uniformly spaced array configuration and the advantage of
using the sunflower array are enlightened.

Several major considerations can be summarized from this chapter:

• The reduction of the needed active chains achievable by employing
non-uniformly spaced arrays has been demonstrated.

• The feasibility of the sunflower array implementation with (off the
shelf) sub-arrays has been proved.

• The possibility of a complete avoiding of the occurrence of GL with
the proposed configuration has been confirmed.
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Conclusions

6.1 General conclusions and major result

In the field of satellite communication saving space on board, reducing costs
and improving antenna performances are difficult tasks lately becoming of
great importance. For this reason realizing a non-uniform direct radiating
array (DRA) able to satisfy stringent requirements with a reduced number
of active chains, all employing amplifiers working at the same point, has
been considered by the author a challenging task to be addressed in this
PhD work.

The aim of this investigation was to identify several array configura-
tions characterized by a reduced complexity and cost with respect to con-
ventional arrays or to reflector configurations. Moreover these arrays must
satisfy stringent requirements of a communication mission from GEOstation-
ary satellite, such as the ones catalogued in Appendix A. In particular, the
work focused on transmit, planar, DRA with non-uniform element placement
and a reduced number of controls. In order to limit the price and to dimin-
ish the losses on board of the satellite, the design minimized the number
of amplifiers. Moreover all amplifiers driving the non-uniform configuration
were taken to be identical and to operate at the same, optimised operational
point. In this way, the system efficiency can be maximized, when compared
to the case in which an amplitude taperis applied, by reducing the wasted
power that would be transformed into heat and create additional problems
related to the heat dissipation.

This dissertation started with the discussion of the pattern character-
istics of uniform array. Since with a regularly spaced array it is impossible
to shape the pattern without making use of amplitude taper, non-uniform
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arrays have been introduced and their pattern behaviour discussed at length.
Non-uniform arrays were proven to be able to shape the pattern according
to imposed requirements and, at the same time, avoid the occurrence of GL.
Several innovative techniques to design this particular class of arrays were
proposed and compared.

Among them the sunflower positioning technique was chosen as the
best one to deterministically design non-uniform planar arrays with really
low SLL and a good rotational symmetry of the radiation pattern. This
simple technique is based on the application of two separate laws for finding
the radial and angular element positions. The first one comes directly from
the relation established in the thesis between the amplitude taper and the
density taper. Regarding the angular positioning law, the concept of optimal
angular spreading, inherited from the natural world, has been applied to the
sunflower array antenna in order to guarantee the sparsity of the element
positions both in the radial and angular coordinates. This innovative tech-
nique was proven able to succesfully replicate all the amplitude taper laws
considered in Chapter 4.

Then the sunflower synthesis technique has been generalized for em-
ploying in the same array differently sized sub-arrays. The two options of
having equal amplitude feeding or equal power feeding for the different ra-
diators were considered. In the first case the planar aperture was divided
by means of a Voronoi tessellation associated with the sunflower position-
ing law and the cells were filled with the best fitting sub-arrays. For this
purpose several sub-array kinds and shapes were considered, from the best
fitting circular apertures to a limited number of more technologically easy
to be implemented shapes. In the second case, the sub-array shape and
kind can influence the positioning. This second approach was chosen for
its easier technological implementation and used to design a large planar
array able to satisfy the satellite mission requirements (see Appendix A).
In order to physically validate the positioning principle of the sunflower ar-
ray antenna, a demonstrator at a scaled frequency was manufactured and
measured. More in detail, 4 different sub-arrays were assembled and their
radiation patterns were superimposed in order to compute the total array
radiated pattern. The measured and simulated results are in good agree-
ment and have demonstrated the effectiveness of the approach. The final
results confirmed the possibility to achieve with the sunflower array antenna
a strong reduction of the number of controls while satyisfing the stringent
requirement in Appendix A and completely avoiding the GL occurence.
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6.2 Novelty aspects

• Sunflower antenna: a new array antenna configuration with excellent
pattern behaviour, recognized as a household name in the international
antenna engineering community. This antenna results to be more ver-
satile than others in the literature [4] as it renders possible the control
of the SLL.

• Reduced number of controls: When compared to a classic array antenna
with similar pattern behavior, the sunflower array antenna makes use
of a strongly reduced number of controls. In the examples considered
in Chapter 5, the number of active chains employed was 50% and 30%
of the ones of two uniform reference arrays.

• Taper function: The beam shaping that up to now was mainly achieved
only by imposing an amplitude taper on the array excitations, has been
replicated by resorting to other array parameters. It has been proved
that element positions, amplitudes, phases and type of elements can
equally contribute to the beam shaping.

• A truly non-uniform array : The sunflower analytical technique for
designing an array with completely non-regular element locations has
been successfully developed and validated both numerically and by
physical experiments. The spacing between the elements has been
proved to be truly non-uniform differentiating this technique from the
array thinning techniques.

• Simple one dimensional law to mimic an amplitude taper : The par-
ticular placement of the elements in a planar array has been provided
according to two simple independent equations, one for the distances
of the elements from the centre and one for their location angles. In
this work, it has been proved possible to obtain in an analytical way
the positions of the elements in an array antenna that is able to satisfy
stringent requirements by mimicking a reference amplitude taper.

• Possibility to rigorously take into account differently sized radiators:
The chosen synthesis technique has been generalized in order to take
into account the case of employing in the same array differently sized
sub-arrays, all fed with the same input power. In this way, a better use
of the available antenna aperture has been achieved and a reduction
of the number of active chains has been obtained.

• Synthesis techniques: Several other analytical (Null-matching, Pertur-
bative, Auxiliary Array Factor) and non-analytical (GA) techniques
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for the non-uniform antenna array synthesis have been developed (see
Chapter 3 and Appendix C) and have been proved able to successfully
solve some particular satellite communication problems.

• Hybrid synthesis technique: the new AAF analytical technique (elab-
orated upon in Appendix C) has been demonstrated to be able to
combine in a rigorous way amplitude, phase and space tapers in order
to replicate patterns with particularly stringent constraints even by
accounting for minimum inter-element spacing.

• Natural laws: The concept of optimal angular spreading was taken
from the natural world and applied to the sunflower array antenna in
order to guarantee the sparsity of the element positions in the angular
coordinates. This resulted in an array whose pattern is able to satisfy
the requirements in all the φ cuts.

• Feasibility : The sub-arrays for the real demonstrator have been im-
plemented, certifying the feasibility of a ‘low cost’ non-uniform array
realized with (mainly) ‘off-the-shelf’ technology. The behaviour of the
proposed sub-arrays has been simulated and measured (Chapter 5).

• Array formulas: A collection of formulas relating the array element
positions and excitations with the array radiation pattern character-
istics, has been created and some new representations of the pattern
relevant to the uniformly spaced array were added(see Chapters 2, 4,
Appendix B).

6.3 Future work

The innovative work proposed in this dissertation created the basis for sev-
eral interesting extensions and opened the way to the possible application of
the sunflower array antenna in different areas.

An algorithm to check and avoid overlap between the sub-arrays has
been successfully finalized. This takes into account the cases of employing
sub-arrays of square or hexagonal shape and could be eventually extended in
order to consider more sub-array shapes. In this way the complete algorithm
sequence could be rendered automatic.

Sub-array shapes other than the ones considered in this dissertation
could be considered in order to ensure a better fitting in the Voronoi cells.
For example, instead of starting from grouping the tiles, the sub-arrays could
be created starting from single patches. From an industrial point of view,
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such an approach could result in a sizeable reduction of the number of active
chains and in the avoidance of sub-array overlapping.

The Auxiliary Array Function (AAF) technique has been proved really
efficient for the design of linear arrays where it is important to replicate a
specified pattern. A possible future extension to the planar case could be
considered in order to apply the technique to a wider class of problems.

The developed sunflower positioning law could be employed in areas
other than satellite communication, as for example for radar surveillance
applications.



112 Conclusions



Bibliography

[1] P. Atela, C. Gole, S. Hotton, “A Dynamical System for Plant Pattern
Formation: Rigorous Analysis,” in Journal of Nonlinear Science, vol. 12,
Is. 6, pp. 641–676, Oct., 2002.

[2] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed., New York:
John Wiley & Sons Inc., 2005.

[3] M.G. Bray, D. H. Werner, D. W. Boeringer, D. W. Machuga, “Optimiza-
tion of thinned aperiodic linear phased arrays using genetic algorithms to
reduce grating lobes during scanning,” in IEEE Trans. Antennas Propag.,
vol. 50, Is. 12, pp. 1732–1742, Dec. 2002.

[4] D. W. Boeringer, “Phased array including a logarithmic spiral lattice
of uniformly spaced radiating and receiving elements,” U.S. Patent No.
6433745 B1, Silver Spring, MD, US, 13 Apr. 2002.

[5] G. Caille, Y. Cailloce, C. Guiraud, D. Auroux, T. Touya, M. Mas-
mousdi, “Large Multibeam Array Antennas with Reduced Number of
Active Chains,” in EuCAP 2007, pp. 1–7, Edinburgh,11–16 Nov.2007.

[6] Y. Cailloce, G. Caille, I. Albert, J.M. Lopez, “A Ka-band direct radiating
array providing multiple beams for a satellite multimedia mission,” in
IEEE Proc. Phased Array Sys. and Tech., 2000, pp. 403–406, 21-25 May
2000.

[7] S. I. K. Castiglioni, G. Toso, C. Mangenot, “Multi-beam antenna based
on a single aperture using overlapped feeds,” in JINA 2004, Nice,
Nov. 2004.

[8] H. Chane, M. Frossard, R. Barbaste, P. Bosshard, T. Girard, P. Lepeltier,
I. Albert, J. Sombrin, C. Mangenot, “Recent developments in feed array
for Ka-band FAFR antenna,” in EuCAP 2006, Nice, 6–10 Nov. 2006.



114 BIBLIOGRAPHY

[9] R. Chantalat, P. Dumon, B. Jecko, M. Thevenot, T. Monediere, “Inter-
laced feeds design for a multibeam reflector antenna using a 1-D dielectric
PBG resonator,” in IEEE AP-S2003, The Ohio State University Colum-
bus, Ohio, 22-27 June 2003.

[10] K. Chen, X. Yun, Z. He, and C. Han, “Synthesis of sparse planar arrays
using modified real genetic algorithm,” in IEEE Trans on Antennas and
Propagation, vol. 55, pp. 1067–1073, Apr. 2007.

[11] C. I. Coman, I. E. Lager, and L.P. Ligthart, “Design considerations in
sparse array antennas,” in Proc. 3 rd European Radar Conference – Eu-
RAD, pp. 72–75, Manchester, UK, Sep. 2006.

[12] H. S. M. Coxeter, Regular polytopes, 3rd ed. New York: Dover Publica-
tions, Inc., 1973.

[13] D. J. Daniels, Ground penetrating radar, 2nd ed. The Institution of
Engineering and Technology, London, 2004.

[14] C. L. Dolph, “A current distribution for broadside arrays which opti-
mizes the relationship between beamwidth and sidelobe level,” in Proc.
of the IRE, vol. 34, No. 6, pp. 335–348, Jun. 1946.

[15] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, Singapore:
World Scientific Publishing Co., Pte., Ltd., 1997.

[16] R. S. Elliott, “The Theory of Antenna Arrays, Ch. 1, Vol. 2 in Mi-
crowave Scanning Antennas, R. C. Hansen, (ed.), New York: Academic
Press, 1966, p. 44–45.

[17] R. S. Elliott, Antenna theory and design, Englewood Cliffs, Prentice-
Hall, 1981.

[18] J.O. Erstad, S. Holm, “An Approach to Design of Sparse Array Sys-
tems,” in Proc. 1994 IEE Symp. Ultrasonic, Cannes, France.

[19] L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial Intelligence through
Simulated Evolution, Wiley, New York, 1966.

[20] D. E. Golberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, Reading, 1989.

[21] P. W. Hannan, ” The element-gain paradox for a phased array antenna,”
IEEE Trans. Antennas Propag., vol. 12, Is. 4, pp. 423–433.

[22] R. C. Hansen, Phased Array Antennas, New York: John Wiley and
Sons, Inc., 1998.



BIBLIOGRAPHY 115

[23] R. Harrington, “Sidelobe reduction by nonuniform element spacing,”
IEEE Trans. Antennas Propag., vol.9, pp. 187–192, Mar. 1961.

[24] R. L. Haupt, “Unit circle representation of aperiodic arrays,” IEEE
Trans. Antennas Propag., vol. 43, pp. 1152–1155, Oct. 1995.

[25] R.L. Haupt, “Thinned Arrays Using Genetic Algorithms,” in IEEE
Trans. Antennas Propagat., vol. 41, no. 2, Feb. 1993, pp. 993–999.

[26] R.L. Haupt, J.J. Menozzi, C.J McCormack, “Thinned arrays using ge-
netic algorithms,” in AP-Symposium 1993, vol. II, pp. 712–715, Jun
28-Jul.2 1993 .

[27] F. Hodjat, S. Hovanessian, “Nonuniformly spaced linear and planar ar-
ray antennas for sidelobe reduction,” in IEEE Trans. Antennas Propag.,
vol. 26, pp. 198–204, Mar. 1978.

[28] J. Holland, Adaptation in Natural and Artificial Systems, Michigan
Press, 1975.

[29] J.O. Erstad, S. Holm, “An approach to the design of sparse array sys-
tem,” in IEEE Proc. Ultrasonics Symp. 1994, vol. 3, pp. 1507–1510, 4
Nov. 1994.

[30] A. Ishimaru, “Theory of Unequally-Spaced Arrays,” in IEEE Trans. An-
tennas Propag., vol. 10, Is. 6, pp. 691–702, Nov. 1962.

[31] A. Ishimaru, Y. S. Chen, “Thinning and broadbanding antenna arrays
by unequal spacings,” in IEEE Trans. Antennas Propag., vol. 13, pp. 34–
42, Jan. 1965.

[32] T. Ismail, M. Dawoud, “Null steering in phased arrays by controlling
the element positions,” in IEEE Trans. Antennas Propagat., vol. Ap-39,
pp. 1561–1566, Nov. 1991.

[33] M. V. Ivashina, M. N. Kehn, P. Kildal, R. Maaskant, ”Decoupling
efficiency of a wideband vivaldi focal plane array feeding a reflector an-
tenna,” in IEEE Trans. Antennas Propag., vol. 57, Is. 2, pp. 373–382.

[34] H. Schjaer-Jacobsen, K. Madsen “Synthesis of Nonunifonnly Spaced
Arrays Using a General Nonlinear Minimax Optimization Method,” in
IEEE Trans. Antennas Propag., vol. 24, Is. 4, pp. 501–506, Jul. 1976.

[35] E. Jahnke, F. Emde, F. Losch, Tables of Higher Functions, McGraw-Hill
Book Company, Inc., New York, N. Y., p. 251, 1960.



116 BIBLIOGRAPHY

[36] A. J. Jerri, “The Shannon sampling theorem-Its various extensions and
applications: A tutorial review,” in Proc. IEEE, vol. 65, n. 11, pp. 1565–
1596, Nov. 1977.

[37] G. P. Junker, S. S. Kuo, C.H. Chen “Genetic Algorithm Optimiza-
tion of Antenna Arrays with Variable Interelement Spacings,” in IEEE
Trans. Antennas Propag., vol. 24, Is. 4, pp. 501–506, Jul. 1976.

[38] W. K. Kahn, “Element efficiency: a unifying concept for array anten-
nas,” in IEEE Antennas Propag. Magazine, vol. 49, n. 4, pp. 48–56,
Aug. 2007.

[39] M. N. Kehn, M. V. Ivashina, P. Kildal, R. Maaskant, ”Definition of
unifying decoupling efficiency of different array antennas: Case study of
dense focal plane array feed for parabolic reflector,” in Int. J. Electron.
Commun. (AEU), 2009, 10.1016/j.aeue. 2009.02.011.

[40] J. Kennedy, R. Eberhart, “Particle swarm optimization”, in IEEE conf.
Neural Networks 1995, vol. 4, pp. 1942–1948, Dec. 1995.

[41] B. P. Kumar, G. R. Branner “Design of Unequally Spaced Arrays for
Performance Improvement,” IEEE Trans. Antennas Propag., vol. 47, Is.
3, pp. 511–523, Mar. 1999.

[42] S. S. Kuo, G.P. Junker, T.K. Wu, C.H. Chen “A density taper tech-
nique for low side lobe applications of hex array antennas,” in IEEE
Proc. Phased Array Sys. and Tech., 2000, pp. 493–496, 21-25 May 2000.

[43] V. K. Lakshmeesha, V. V. Srinivasan, V. Venkatesh, S. Pal, “C-Band
Microstrip Planar Array for Spaceborne Microwave Remote Sensing,” in
21st EUMA conference 1991, pp. 763–768, 9–12 Sep. 1991.

[44] A. Lasserre, P. Lepeltier, C. Mangenot, M. Dejus, “Antennes bord pour
application multimedia en bande Ka,” in JINA 2004: 13th international
symposium on antennas, 8–10 No. 2004.

[45] L. P. Ligthart, ”A New Numerical Approach to Planar Phased Arrays,”,
in 5th EuMC, Hamburg, Germany, 1975.

[46] Y. Lo, “A spacing weighted antenna array,” in IRE Int. Convention
Record, vol. 10, Part 1, pp. 191–195, March 1962.

[47] Y. T. Lo, S.W. Lee “A study of space-tapered arrays,” IEEE Trans. An-
tennas Propag. vol. 14, Is.1, pp. 22–30, Jan. 1966.



BIBLIOGRAPHY 117

[48] N. Llombart, A. Neto, G. Gerini, M. Bonnedal, P. De Maagt, “Impact
of Mutual Coupling in Leaky Wave Enhanced Imaging Arrays,” in IEEE
Trans. Antennas Propag, vol. 56, No. 4, April 2008.

[49] N. Llombart, A. Neto, G. Gerini, M. Bonnedal, P. De Maagt, “Leaky
wave enhanced feeds arrays for the Improvement of the Edge of Cover-
age Gain in Multi beam Antennas,” in IEEE Trans. Antennas Propag,
vol. 56, No. 5, May 2008.

[50] R. J. Mailloux, Electronically Scanned Array, Morgan and Claypool
Pub., 2007.

[51] R. J. Mailloux, Phased Array Antenna Handbook, Artech House,
Boston, 2005.

[52] R. J. Mailloux, “On the use of metallized cavities in printed slot ar-
rays with dielectric substrates,” in IEEE Trans. Antennas and Propagat.,
vol. AP-35, n. 5, May 1987, pp. 477-487.

[53] R. J. Mailloux, S. G. Santarelli, T. M. Roberts, D. Luu, “Irregular
Polyomino-Shaped Subarrays for Space-Based Active Arrays,’ in In-
ternational Journal of Antenna and Propagat., vol. 2009, ID 956524,
doi:10.1155/2009/956524.

[54] A. L. Maffett, “Array factors with nonuniform spacing parameter,” IRE
Trans. Antennas Propag., vol. 10, pp. 131–136, Mar. 1962.

[55] C. Mangenot, P. Lepeltier, J.L. Cazaux, J. Maurel, “Ka-band fed ar-
ray focal reflector receive antenna design and development using MEMS
switches,” JINA Conference 2002, Vol. II, pp. 337–345, Nov. 12–14 2002.

[56] C. Mangenot, G. Toso, M.C. Viganó, A.G. Roederer, “Non-periodic
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[80] M.C. Viganó, G. Toso, S. Selleri, C. Mangenot, P. Angeletti, G. Pelosi,
“Direct Radiating Arrays for satellite application thinned with Genetic
Algorithm,” in 29th ESA Antenna Workshop on Multiple Beams and
Reconfigurable Antennas, Apr. 18–20 2007.

[81] M.C. Viganó, M. Simeoni, I.E. Lager, “Radiation properties of array an-
tennas deployed on hexagonal lattices,” in 30th ESA Antenna Workshop,
Noordwijk, The Netherlands, May 27-30 2008.
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Appendix A

Mission requirements

In this appendix the requirements for the antenna under study in this investi-
gation, generating a multi-beam coverage from a geostationary satellite, are
presented. Most of this technical data relates to the mission ESA - Domino
II and the Thales Alenia Space experience in this field [6, 8, 44, 55]. Aim
of the satellite payload is to guarantee the link between a set of terminals
and gateways in the field of view of the satellite. The payload, following
the DVB-RCS standard for the uplink and the DVB-S for the downlink [86],
connects the gateways to the relevant user beams and the different users
between themselves.

Figure A.1: Scheme of the frequency re-use for the considered application
(4 sub-bands indicated by their number 1, 2, 3, and 4).
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The frequency band selected for the application is Ka, as the C and
Ku, traditionally used for satellite communications, are almost saturated.
For this reason the antennas analysed in this investigation are designed to
work between 19-20 GHz in transmission (from satellite to Earth) and from
29 to 35 GHz in uplink (from Earth to satellite).

This frequency bandwidth has been divided into 4 sub-bands in order
to adopt the well-known 1:4 frequency reuse scheme, as shown in Fig. A.1.
In this way it is possible to illuminate all Europe at the same time with spot
beams of reduced dimensions (see Table A.1). This results in an increment
of the system capacity, at the expense of more stringent requirements to be
satisfied in terms of inter-beam isolation.

The classical sub-division of the complete Europe into 64 overlapping
beams, based on the frequency re-use scheme discussed, is presented in
Fig. A.2.
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Figure A.2: European multibeam coverage in a 1:4 frequency re-use scheme
viewed from a geostationary satellite. The red circles represent the spot to
be illuminated; their distances and dimensions are listed in Table A.1.

In this PhD investigation the attention has been focused on Direct
Radiating Array for transmitting the signal from the satellite to the user
on Earth. In order to use in reception an antenna of reduced dimensions
and power, it is usually requested from the TX antenna a high EIRP (as
anticipated in Chapter 1). This requirement is represented by the Edge Of
Coverage (EOC) value in Table A.1, i.e. the minimum allowed value for
the directivity inside the spot beam. For a visual explanation of the EOC
quantity reported in Table A.1 and widely used in this investigation, refer
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to Fig. A.3. In the same figure, the concept of C/I, has been sketched. Two
definitions of the C/I are available in the literature:

• the C/I single entry that expresses the ratio between the level of
the carrier signal at the EOC and the interfering signal at the same
frequency coming just from one of the multiple beams adopting the
same frequency.

• The aggregate C/I indicates instead the ratio between the carrier signal
level and the level of the cumulative interfering signal, taking into ac-
count all contributions of the several beams using the same frequency.

In this work the C/I parameter has been converted into an appropriate SLL,
as noted in Table A.1.

Figure A.3: Definition of EOC and C/I.

From a Geostationary (GEO) satellite, the visible part of Earth can be
covered by an angle ≈ 17◦. For this reason, in order to illuminate a limited
portion of the Earth, as for example it happens when only Europe or CONUS
coverage are needed, the antenna FOV can be further reduced. Hence, the
typical choice of inter-element distance equal to λ/2 can be substituted by
a solution characterized by a larger inter-element spacing.

For the analysed ESA mission Domino II [6], the multi-beam coverage
is limited to Europe and, since this region is approximately enclosed by a
rectangle of sides 8◦ and 4◦, only θ ∈ (−4◦, 4◦) is considered. Therefore,
the main objective in the antenna design is to shape the pattern in this
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Table A.1: Mission Requirements
Number of spots 64
Spot diameter 0.65◦

Inter-spot distance 0.56◦

Rx band 29.5 − 30.0GHz
Tx band 19.7 − 20.2GHz

Frequency reuse 1:4
EOC gain 43.8dBi

SLL1 over the interfering areas 20dBi
SLL2 over the Earth 25dBi

SLL3 over the whole visible space 30dBi

limited angular region and avoiding, at the same time, GL occurrence over
the complete Earth (see the values of SLL1 and SLL2 in Table A.1). In
order to satisfy this last constraint, a maximum inter-element spacing equal
to 4 λ, in case of a uniform triangular lattice, is allowed. In this way, the
first main lobe replicas (GL) occur at θ = 30◦ for φ = 0◦ and θ = 16.77◦ for
φ = 90◦, according to Eqs. (2.26) and (2.27).



Appendix B

Side lobe level and Grating
lobe level in uniform lattice
arrays

In this appendix, a collection of useful properties of the patterns relevant to
uniform lattice arrays, are provided. Rectangular, triangular and hexagonal
lattice arrays will be hereafter presented and discussed. Firstly some general
explanation about the Grating Lobes will be given in the Paragraph B.1,
then the pattern characteristics in terms of SLL and GLL will be presented
for each of the mentioned regular lattice array configurations.

B.1 Grating Lobes

In an array antenna several elements radiate at the same time resulting in
a phased summation of the waves coming from the different radiators. This
summation can be destructive in some directions and constructive in other
ones. If the inter-element spacing in the array is constant, then the pattern is
periodic and several lobes as high as the main beam will appear at locations
that depend on the lattice geometry. These high energy lobes, created in
directions other than the main lobe one, are denoted as grating lobes. Having
the same height of the main lobe, the GL can not be distinguished from the
main beam, generating, in this way, interferences and energy losses. For
these reasons the GL occurrence has to be avoided.

In order to have a better understanding of the GL appearance and po-
sitions, it is convenient to introduce the so called sine plane or kx−ky plane
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[77] where kx = sin(θ) cos(φ) and ky = sin(θ) sin(φ). As easily recognizable
from the kx and ky definitions, this representation gives a proper handle to
describe the bidimensional, discrete Fourier transform of the current distri-
bution. In general, with this representation it is possible to have a clear
understanding of the pattern behaviour through its contour plot, not only in
the two main planes but in all the directions, even when the beam is pointed
away from boresight. The visible region is, in this case, limited to a unit
circle: the points inside this disk correspond to angular regions in the visible
space, while the ones outside correspond to the invisible space. By increas-
ing the frequency or the inter-element spacing the pattern diagram on the
kx − ky plane keeps the same behaviour but shrinks, resulting in including
more and more pattern inside the visible space area.

Figure B.1: Main lobe and Grating lobe positions in the kx and ky plane.

When the main beam is pointed in a direction different than boresight,
the full diagram, except for the unitary circle, rigidly moves in the direction
where the beam points. In this way, it may happen that the unit circle
encloses GL that were not appearing in the visible space before; this is, for
example, the case when the inter-element spacing λ/2 ≤ d ≤ λ and a beam
scan up to 90◦ is considered.

With this representation choice the GL appear at positions related to
the inverse of the inter-element distances; the larger the spacing along a
certain φ cut, the closer to the main lobe the GL will occur along that φ
cut. This can be easily understood by considering θGL = sin−1

(
λ/d̄φ

)
(see
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Eq. (B.3)) where d̄φ is the constant spacing of the element projection along
a certain φ cut.

In order to completely avoid the onset of GL the inter-element distance
has to be chosen non-periodic. In this last case, the GL will not appear in the
way described before, being the spacing between the samples non-periodic.

B.2 Rectangular lattice array antennas

y

xz
dsquare

Figure B.2: Square grid array.

In theory, according to [12], just three different uniform lattices are
able to subdivide a plane into regular uniform polygons: square, triangular
and hexagonal lattices. As the regular square lattice can be regarded as a
particular case of the rectangular one for dx = dy = dsquare (see Fig. B.2),
this section will focus on this more general category of array configurations.

Rectangular arrays with rectangular lattices can be seen, as already
mentioned in Paragraph 2.3.1, as a linear series of one-dimensional arrays
along theOx or Oy axes (see Fig. B.3). For this reason, in the case of uniform
element excitations, the SLL for the φ directions φ = 0◦ and φ = 90◦ is the
same as for a linear uniform array, namely about 13 dB under the maximum
value [51]. Along all other φ directions the SLL is lower, [78]. This can be
explained easily by writing the Array Factor AF of the planar array with
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elements placed on a rectangular grid as

AF (θ, φ) = I0

L−1∑
l=0

exp
[
jk
(
ld̃x sin(θ) cos(φ)

)]
M−1∑
m=0

exp
[
jk
(
md̃y sin(θ) sin(φ)

)]
(B.1)

Figure B.3: Planar array as the series of M linear arrays parallel to the x
axis.

In this case the excitations have been considered constant with value I0,
but the formula can be used essentially in the same way for an array whose
excitations are simply the product of independent amplitude distributions
along the two main axes, Ilm = IlIm

AF (θ, φ) =
L−1∑
l=0

Il exp
[
jk
(
ld̃x sin(θ) cos(φ)

)]
M−1∑
m=0

Im exp
[
jk
(
md̃y sin(θ) sin(φ)

)
(B.2)

From Eq. (B.2) it is clear how the SLL along the x and y axes will obey to
the eventually imposed amplitude taper laws, respectively Il and Im. Along
any other generic φ cuts φ̃ the AF will be given by the product of the two
AFs corresponding to the two linear (perpendicular) arrays along the main
axes x and y in the particular direction φ̃. From this we can conclude that,
on a rectangular grid array, the highest SLL occurs for φ = 0◦ or φ = 90◦. In
the specific case of uniform illumination and rectangular aperture this SLL
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is equal to -13 dB, while in the case of circular aperture the SLL is equal to
−17 dB [51].

Figure B.4: Element placing on a rectangular grid and corresponding GL
positions in the kx − ky plane.

In the case of a square spacing d, grating lobes appear at

θGLsquare = sin−1

(
λ

d

)
. (B.3)

When the inter-element distance is different along the Ox and Oy axis,
Eq. (B.3) can still be used substituting to d, dx or dy.

The same results can be achieved by regarding the rectangular lattice
as a particular case of the rhomboidal one, that is the one created by two
axes with a generic angle γ between them. In this case, taken the direction of
the first axis as φ1 and the direction of the second axis as φ2 , and distances
between the elements on the first axis as d1 and on the second one as d2, it
can be easily demonstrated that GL will occur on planes φ = φ1+s1(90◦−γ)
with s1 = 1, 2, ... at an angular distance θGL1 related to

d̃1 sin(γ)
λ

=
p1

sin(θ0) cos(φ0) − sin(θGL1)
p1 = ±1,±2, ... (B.4)

and on planes φ = φ2 + s2(90◦ − γ) with s2 = 1, 2, ...at an angular distance
θGL2 related to:

d̃2 sin(γ)
λ

=
p2

sin(θ0) cos(φ0) − sin(θGL2)
p2 = ±1,±2, ... (B.5)

This notation can be easily applied to triangular lattices as well.
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B.3 Triangular lattice array antennas

This lattice (in which the distance between the element is taken to be dt)
can be seen as the superposition of two identical rectangular lattices with
element distance along the Ox axis dx =

√
3dt and along the Oy axis dy = dt.

One of the two rectangular, identical lattices is shifted, when compared to
the other one, over δx =

√
3/2dt along the Ox axis and over δy = dt/2 along

the Oy axis. The array pattern can be easily computed, in case of uniform
illumination, as the sum of the patterns of the two rectangular grid arrays

Figure B.5: Triangular grid array.

AF (θ, φ) = I0

L1∑
l1=0

M1∑
m1=0

exp
{
jk
[
l1d̃x sin(θ) cos(φ) + m1d̃y sin(θ) sin(φ)

]}

+
L2∑
l2=0

M2∑
m2=0

exp
{

jk
[
(l2d̃x + δx) sin(θ) cos(φ) + (m2d̃y + δy) sin(θ) sin(φ)

]}
.

(B.6)

Even with this lattice configuration, in the specific case of uniform illumi-
nation and rectangular apertures (see Fig. B.6) the SLL is equal to −13 dB,
while in the case of circular apertures the SLL is equal to −17 dB [51]. As
it may be observed in Fig. B.7, this SLL property, already mentioned in
the previous section, does not depend on the kind of lattice chosen, but, as
long as the lattice is uniform, on the aperture shape only. In the examples
considered a rectangular aperture has been populated by isotropic radiators



Triangular lattice array antennas 131

deployed on a regular triangular lattice. As it appears from Fig. B.7, along
the two main φ cuts, φ = 0◦ and φ = 90◦, the radiation pattern behaves in
a similar way in terms of SLL.

Figure B.6: Element placing on a rectangular aperture, the radiators are
deployed on a triangular grid.

Figure B.7: Pattern of the configuration in Fig. B.6. Continuous line –
φ = 0◦; dotted line – φ = 90◦.

As previously mentioned, when uniform lattices are adopted, the po-
sition of the GL is related to the inverse of the inter-element spacing. In
this case, the lattice does not change if a rotation around φ of 60◦ is ap-
plied; moreover a constant spacing between the elements can be found by
projecting the radiators’ position along φ = 0◦, 30◦, 60◦, ... .
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Figure B.8: Element placing on a triangular grid and corresponding GL
positions in the kx − ky plane.

For these reasons, the positions of the GL are determined by

d̃t sin(60◦)
λ

=
p1

sin(θ0) cos(φ0) − sin(θGL φ=0◦)
p1 = ±1,±2, ... (B.7)

d̃t cos(60◦)
λ

=
p2

sin(θ0) sin(φ0) − sin(θGLφ=30◦)
p2 = ±1,±2, ... (B.8)

where (θ0, φ0) is the direction where the beam is pointing (see [51] p. 184).

The same results can be achieved, as already mentioned in the previous
section, by making use of Eqs. (B.4) and (B.5).

B.4 Hexagonal lattice array antennas

Hexagonal lattice arrays are another possible configuration for the complete
regular tessellation of the available space. This kind of lattice has not been
used frequently in the past because of the shape of the polygon associated to
the lattice. In fact, triangular polygons are not easy to be filled by common
radiators without significant space losses. If a triangular element is employed
in the array, this particular lattice becomes interesting and to has several
advantages, as for example a larger available area per polygon, if compared
with the rectangular and triangular lattices characterized by the same inter-
element distance, potentially increasing the individual antenna gain [66].
As the hexagonal lattice has not been extensively used, the formulation
regarding this kind of configuration is not documented in the literature. For
this reason the general expression of the radiated field is reported here as
well as some details about the GL onset in this type of array antennas.
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Figure B.9: Example of space sub-division thanks to an hexagonal lattice.

The radiated field can be written for this particular lattice as

E(θ, φ) = f̃(θ, φ)
L−1∑
l=0

M−1∑
m=0

Ilm exp
{
jk
[
(mod(m, 2) + 4l) d̃x sin(θ) cos(φ)+

+ md̃y sin(θ) sin(φ)
]}

(B.9)

where the operator mod(q, w) gives the reminder of the division q/w and
the element identified by the indexes (l,m) is the (l + 1)th radiator along
the (m+ 1)th column parallel to the Ox axis. The constant spacings dx and
dy, depicted also in Fig. B.10, are related to the inter-element spacing dh in
such a way that dx = dh/2 and dy =

√
(3)/2dh.

The grating lobe positions can be computed for the x axis by consider-
ing the element location projections on the y axis as an array of sub-arrays
composed of 2 elements only (see Fig. B.11). As the pattern of the total
array would be the multiplication of the pattern of the array and that of the
sub-array, grating lobes occur only when both the array and the sub-array
patterns exhibit a maximum at the same θ angle. While the sub-array with
element distance dh/2 has its own maximum at θmax sub = sin−1

(
λ

dh/2

)
, the

inter sub-array distance 3dh/2 would cause 3 times more frequent (in the
sin(θ) domain) maximum peaks. Summarizing, GL appear at

θGLhex = sin−1

(
λm

d/2

)
for φ = k60◦ andm = 1, 2... and k = 1, 2, 3...

(B.10)

Their positions are represented by the black dots in Fig. B.12 in the
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Figure B.10: Side view of the discussed hexagonal lattice array.

kx = sin(θ) cos(φ) -ky = sin(θ) sin(φ) space. At

θHLhex = sin−1

(
λn

3d/2

)
for φ = k60◦ andn �= 3, 6, 9... and k = 1, 2, 3...

(B.11)
appear high lobes (HL) (represented by grey dots in Fig. B.12), that are the
result of the product of the array factor grating lobes and a value of the sub-
array factor different from zero or from maximum. At φ = k60◦ and for n
multiples of 3, case considered in Eq. (B.10), GL will occur both at sub-array
and array level resulting in GL for the total array configuration. Along the
Oy axis, as it occurs also in the already presented triangular lattice case, the
element position projections fall every d

√
3/2 (see Fig. B.11). This results

in GL appearing at

θGLhex = sin−1

(
λ

d
√

3/2

)
for φ = 30◦ + k60◦ k = 1, 2, 3... (B.12)

In Fig. B.12 a visual sketch of the HL and Gl is given; the unitary circle
corresponding to the visible region has been plotted as a reference.
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Figure B.11: Element positions and their projections on the coordinate axes.

Figure B.12: Grating lobes positions in kxky plane.
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Appendix C

Design and optimization
techniques

This chapter elaborates on the mathematical details of the different design
non-uniform array synthesis techniques that were introduced in Chapter 3.

C.1 Stochastic approaches

Recently, global optimisation algorithms such as Simulated Annealing (SA),
Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) have become
more and more popular in every research field, the array antenna optimisa-
tion included. In view of its wide use in antenna engineering, this section
will mainly focus on the discussion of GA techniques.

C.1.1 Simulated Annealing

As in most of the stochastic optimisation methods, the idea of SA comes from
the natural world: liquid water becomes ice, heals, through a cristallization
process in which the system is in every moment almost in a situation of
thermo-dynamic equilibrium. A system state is chosen to be the next one if
its energetic level is less then the one of the previous ice crystal configuration.
In an analogous way, the algorithm selects a new antenna configuration if
the value of the cost function is less than the one characterizing the previous
configuration [5, 75].
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C.1.2 Particle Swarm Optimization

PSO is an optimization technique developed for the first time in 1995 [40].
It is a method quite similar to GA but based on the information sharing
in a group of animals. The animal population, in this case, collaborate in
order to find the best solution by sharing the info about their personal best
location found and the global one of the swarm [62].

C.1.3 Genetic Algorithms

GA are related to a mathematical model based on the natural selection
and reproduction principles. This kind of computation models were known
already in the Sixties [19], but it was in 1975 with Holland’s book [28] that
they were used for the first time not for solving a specific problem but as a
tool to optimize a generic class of problems. The aim of Holland’s method
is to evolve an initial random population according to laws belonging to the
natural world in order to find the global optimum. As in biology it is well
known that some genetic sequences are better than other, i.e. with higher
probability of survival and reproduction, in the same way some individuals
of a population are considered better in terms of a fitness function, compared
to others.

Before describing the principal characteristics and the operations in-
volved by GA, it is useful to introduce and explain some terminology directly
imported from the vocabulary of biology.

• Chromosome: It represents a possible solution of the problem, assim-
ilated to an element of the population. It is usually coded by means
of transforming the relevant information into a string of bits. In the
case of an array whose elements just have two possible states (on or
off), it represents a particular binary configuration of the array element
alimentations.

• Population: It is a set of chromosomes, hence a set of possible solutions.
The population will change and ”improve” at each generation.

• Gene: It is one bit or a small set of adjacent bits that code the single
variables in the chromosome. In an array whose excitations are just
ones or zeros, they correspond to the amplitudes of the different radi-
ators, being zero for the switched off elements, and one for the active
ones.
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• Generation: Each iteration of the algorithm is called generation; during
this process the chromosomes of the population evolve.

• Parents: Some chromosome, among the best ones according to a fitness
function, are chosen at each generation to mate and create in this way
new chromosomes, usually called children.

• Cross-over: It is the mating action used by parents to combine their
genes and create new chromosomes.

• Mutation: As it happens in the real world, a gene can, with a low
probability, change without apparent reasons. In the case considered
hereafter this would lead to a simple inversion between one and zero
or vice versa. More in general, the gene changes in a different one.

• Elitism: A procedure to prevent the lost of the best individuals of a
generation, an effect that is statistically possible due to cross-over and
mutation. With this procedure the best individuals of each generation
are compared with the best ones of the previous generation. If the
old ones are better than the worst individuals of the new generation,
the new ones are deleted and the best ones of the old generation are
preserved in the new generation. If elitism is adopted, the cost function
value will monotonically decrease (or increase) at every generation.

Several versions of the GA exist, but most of them contain some com-
mon basic steps. These fundamental steps are listed in Fig. C.1.3. The first
step of the algorithm, even before the initializations of the population, is
the coding. A proper choice of the code will render the algorithm faster and
more efficient. Usually a binary code is chosen, but this is not a rule. If the
parameter to be coded is not discrete, then the choice of a proper number of
bits to represent the parameters is really important for preventing significant
quantization errors. In the case for which this GA was designed the antenna
feeding can only assume two values, zero or one and, for this reason, the
binary code has been chosen.

The most important step in the algorithm shown in Fig. C.1.3 is the
definition of a cost function, a law that gives the possibility to determine the
suitability of a particular configuration. From a genetic point of view, this
value expresses the capability of a certain individual of the generation to
survive and procreate. From an antenna-point of view it expresses how well
a particular configuration satisfies the imposed requirements. It is obvious
that, as the choice of the cost function will strongly affect the results, this
step of the algorithm is of particular importance. In the case of the GA
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Figure C.1: Flow Chart scheme of the Genetic Algorithm

under study, the cost function was expressed as

fcost = a1f1 + a2f2 + a3f3 + a4f4 (C.1)
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in which f1 evaluates the difference between the effectively obtained and the
prescribed directivity at the EOCDEOC, i.e. 43.8 dBi; f2 and f3 measure the
exceeding of the SLL D20 with respect to the prescribed SLL for Dmax − 20
in the close interfering and the far beams, respectively; and f4 takes into
account the total number of elements switched on Non over the possible
total number of elements deployed on the aperture Ntot.

f1 = b43.8−DEOC
1 (C.2)

f2 = b
D20−(Dmax−20)
2 (C.3)

f3 = b
D20−(Dmax−20)
3 (C.4)

f4 = b
Non/Ntot

4 (C.5)

The weighting coefficients a1, a2 a3 a4 and b1, b2 b3 b4 are empirically
selected for ensuring a good compromise between the four assessed features.
By changing them it is possible to modify the cost function and, in this way,
achieve different array configurations.

C.2 Null matching procedure

The aim of this synthesis technique is to design a non-uniform array in such
a way that its nulls occur at prescribed angles. Firstly, the technique has
been applied to replicate a reference linear Dolph-Chebyschev array pattern
[14]; then it has been extended to the planar case. As known, the array
factor for a symmetric linear array composed of an even number of element,
may be expressed in a series of cosine terms

AF (θ) = 2
N/2∑
k=1

ak cos
[
2π
λ
xk sin (θ)

]
(C.6)

where ak and xk represent the excitation of the k-th pair of elements and its
coordinate, respectively. In the case of using an odd number of radiators in
the array it is possible to apply the same procedure by expressing the array
factor as

AF (θ) = 1 + 2
(N−1)/2∑
k=1

ak cos
[
2π
λ
xk sin (θ)

]
. (C.7)



142 Design and optimization techniques

For a Dolph-Chebyschev array the null positions are

θp = 2cos−1

{
cos [π/2(2p − 1)/(N − 1)]

cosh
[
cosh−1(SLL)(N − 1)

]} p = 1, 2...N − 1 (C.8)

where SLL represents the sidelobe level. Imposing the array factor of the
unknown, equally-fed, non-uniform array equal to zero at the positions of
the nulls of the pattern of the Dolph-Chebyshev array, one obtains

2
N/2∑
k=1

cos
[
2π
xk
λ

sin (θ)
]

= 2
N/2∑
k=1

ck cos
[
π

(
2k − 1

2

)
sin (θp)

]
p = 1, 2...N − 1

(C.9)

Solving (C.9) amounts to deriving the locations xk of the non-uniformly
spaced array elements. The mathematical problem may turn out to be ill-
posed and the system of real transcendental equations represented by (C.9)
may not admit real solutions.

For this reason, the exact solution of (C.9) is replaced by a minimization
problem aiming at determining the best approximation of the exact solution,
this minimization problem being more robust and numerically stable. The
target optimization function is taken to be the maximum deviation (in terms
of the absolute value) of the sparse array pattern from the zero-crossing
condition at the angular positions corresponding to the nulls of the target
Dolph-Chebyshev array. This cost function is minimized with a vectorial
min-max optimization defined by the expression

min[x1,...,xM/2]maxp

∣∣∣∣∣∣
N/2∑
k=1

cos
[
2π
xk
λ

sin (θp)
]∣∣∣∣∣∣ (C.10)

This technique is particularly useful when the synthesis aims at design-
ing a linear array with deep nulls in the pattern or specific values at given
angular locations.

C.3 Perturbative technique

Another interesting category of synthesis techniques is the pertubative one.
In general, under this category are grouped methods that, starting from a
given configuration, slowly arrives to an optimal one by varying the element
positions in the array with small increments at each step.
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The method hereby presented has been developed for linear non-uniform
arrays and it has been mostly used by the author in conjunction with the
null-matching technique. Starting from the positions found with the previ-
ously described algorithm it was possible to find, in a fast and accurate way,
the best solution that is close to the initial one. This synthesis algorithm
can also be used alone, starting from a uniform configuration. However, in
this case larger computational times or a reduced accuracy has to be con-
sidered, and more care should be placed at the imposed objective values of
the pattern.

By making use of Eqs. (C.6) and (C.7), a square matrix can be written
by imposing the value of the AF to be equal to some assigned values at N/2
particular θ angles.

2
N/2∑
n=1

cos
[
2π
λ
dn sin(θt)

]
= 2

N/2∑
n=1

cos(Xn,t) = Wt, for t = 1, . . . , N/2,

(C.11)
Then, considering that

cos(γ) = cos(α) − sin(α)(γ − α) forγ → α (C.12)

every term of the matrix cos(Xn,t) can be expressed as

cos(Xn,t) = cos(αn,t) − sin(αn,t)(Xn,t − αn,t) (C.13)

where

Xn,t − αn,t =
2π
λ

sin(θt)(dn − dn,ITER) =
2π
λ

sin(θt)Δn. (C.14)

The proposed synthesis techniques finds in an iterative fashion the po-
sition dn from the one at the previous step dn,ITER by inverting the discussed
matrix. At each step it has to be ensured that Δn is a small value. In case
it is not, in order to apply rigorously the method, the terms Wt have to be
chosen not too different from the values of the pattern at the given angle θt
of the configuration at the previous step. These values Wt can be modified
during the routine.

C.4 Array synthesis using the Auxiliary Array Func-
tion

In this section, emphasis is put on another analytical design technique aimed
at the synthesis of a linear array having a prescribed array factor.
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C.4.1 Auxiliary Array Function

Let us first consider the array factor of a antenna consisting of Na radiators
deployed over a line

AF (ϑ) =
Na∑
n=1

Āne
j(k0x̄n sinϑ+ᾱn), (C.15)

with k0 denoting the propagation constant in free space, and Īn = Āne
jᾱn

the excitation coefficient (amplitude and phase) of the n−th antenna located
at x = x̄n. As it can be readily inferred, the expression in (C.15) may be
regarded as the Riemann sum approximating the integral auxiliary array
function defined as

FA (ϑ) =

qmax∫
0

A (q) ej[2πξ(q) sinϑ+α(q)]dq (C.16)

where ξ (q), A (q), α (q) are the continuous normalized positioning, amplitude
and phase functions, respectively, generalizing the discrete quantities x̄n, Ān,
ᾱn appearing in (C.15). Similarly, q is the continuous version of the index n
relevant to antenna elements forming the array, ranging from 0 to a suitable
maximum value qmax. After setting for shortness ψ = 2π sinϑ, the auxiliary
array function is re-written as

FA (ψ) =
M∑
m=1

FAm (ψ) , (C.17)

with

FAm (ψ) =

qm∫
qm−1

Am (q) ej[ψξm(q)+αm(q)]dq (C.18)

being the contribution relevant to the m−th interval [qm−1, qm]. In each of
the M intervals the continuous normalized positioning, amplitude and phase
functions are assumed to be linearized according to the following expressions⎡⎣ ξm (q)

Am (q)
αm (q)

⎤⎦ =

⎡⎣ ξ̂m−1

Âm−1

α̂m−1

⎤⎦+
q − qm−1

Δq

⎡⎢⎣ Δ̂ξm
Δ̂Am
Δ̂αm

⎤⎥⎦ (C.19)

where β̂m = β (qm), Δ̂βm = β̂m − β̂m−1 for β = ξ,A, α, and Δq = qm −
qm−1 = qmax/M . As it can be easily inferred, the larger the number M of
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Figure C.2: Piecewise linear approximation of the normalized positioning
ξ (q) and phase α (q) functions. The same discretization procedure is applied
to the amplitude function A (q), not shown here for sake of clearness.

intervals dividing the domain [0, qmax], the better will be the accuracy of the
described discretization procedure on the positioning, amplitude and phase
functions.

It is straightforward to show that, under the considered assumptions,
the general term FAm (ψ) can be evaluated in a closed form as follows

FAm (ψ) =
Δq(

ψΔ̂ξm + Δ̂αm
)2

[
ej(ψξ̂m+αm)

{[
1+

− j
(
ψΔ̂ξm + Δ̂αm

) ]
Âm − Âm−1

}
+

− ej(ψξ̂m−1+αm−1)
{
Âm −

[
1 + j

(
ψΔ̂ξm+

+ Δ̂αm
) ]
Âm−1

}]
. (C.20)

To derive a fully analytical formulation, aimed at mimicking the objective
array factor mask FO (ψ), it is convenient to carry out the synthesis proce-
dure directly in the Fourier transform domain F {·}. By making judicious
use of the shift property of the operator F {·}, one can readily obtain

F̃Am (H) = F {FAm (ψ)} =

+∞∫
−∞

FAm (ψ) ejψHdψ =

=
∣∣∣F̃Am (H)

∣∣∣ ej arg{F̃Am(H)} (C.21)
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where ∣∣∣F̃Am (H)
∣∣∣ =2πΔq

Âm−1

(
H + ξ̂m

)
− Âm

(
H + ξ̂m−1

)
Δ̂ξ

2

m

·

·P
Δ̂ξm

(
H + ξ̂m− 1

2

)
(C.22)

arg
{
F̃Am (H)

}
=

[
α̂m−1 − Δ̂αm

Δ̂ξm

(
H + ξ̂m−1

)]
· P

Δ̂ξm

(
H + ξ̂m− 1

2

)
(C.23)

PΔ (H) denoting the pulse distribution having the width Δ and centered
at the origin H = 0. It is worth noting that, by virtue of the proper
piece-wise linearization of the continuous normalized positioning, amplitude
and phase functions, each term FAm (ψ) is Fourier-transformed into a func-
tion with compact support centered at H = −ξ̂m− 1

2
= −

(
ξ̂m−1 + ξ̂m

)
/2 =

−
(
ξ̂m−1 + Δ̂ξm/2

)
and having the width Δ̂ξm. By observing that the sup-

ports of the modulated pulse functions F̃Am (H) are not overlapping, it is
evident that the following equality holds true∣∣∣F̃A (H)

∣∣∣ =

∣∣∣∣∣
M∑
m=1

F̃Am (H)

∣∣∣∣∣ =
M∑
m=1

∣∣∣F̃Am (H)
∣∣∣ . (C.24)

A similar property is featured by the argument arg
{
F̃A (H)

}
of the Fourier-

transformed auxiliary function. Thanks to this, as it will be shown in the
next paragraph, the proposed array synthesis technique turns to be rigorous
and straightforward without resorting to any optimization procedure.

C.4.2 Evaluation of the Array Tapering Functions

The array synthesis is carried out by enforcing F̃A (H) = F̃O (H) or, equiv-
alently, F̃Am (H) = F̃O (H) in each interval H ∈

[
−ξ̂m,−ξ̂m−1

]
with m =

1, 2, . . . ,M . This implies that

ξ̂m∫
ξ̂m−1

∣∣∣F̃O (−H)
∣∣∣ dH =

ξ̂m∫
ξ̂m−1

∣∣∣F̃Am (−H)
∣∣∣ dH =

= 2π

qm∫
qm−1

Am (q) dq = πΔq
(
Âm−1 + Âm

)
(C.25)
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where the continuous amplitude function A (q) is assumed to be greater
than or equal to a given threshold Amin ≥ 0. Besides, to address a possible
physical constraint regarding the minimal inter-element spacing dmin, an
additional condition is to be imposed on the first derivative of the normalized
positioning function ξ (q), namely

ξ′ (q) ≥ ξ′min =
Na

qmax

dmin

λ0
(C.26)

with λ0 = 2π/k0 being the free-space wavelength. As it can be noticed,
the array synthesis relies on the solution of the Eq. (C.25), involving the
unknown quantities ξ̂m and Âm in a sequential way, starting from the given
values ξ̂0 and Â0 = Aref ≥ Amin. In order to meet the afore-mentioned re-
quirement, the following parameter depending on the assigned mask F̃O (H)
and the minimal normalized inter-spacing Δ̂ξmin = ξ′minΔq is evaluated for
each index m

Lm =

Δ̂ξmin∫
0

∣∣∣F̃O (−H − ξ̂m−1

)∣∣∣ dH. (C.27)

In the case when Lm is larger than the amplitude-related threshold, the
spacing Δ̂ξm is taken to be exactly Δ̂ξmin and a suitable amplitude tapering
has to be enforced in such a way that Eq. (C.25) is satisfied. That is the
case for

Âm = −Âm−1 +
1

πΔq
Lm. (C.28)

If Lm < πΔq
(
Âm−1 + Âmin

)
the amplitude coefficient Âm can be taken

equal to the reference value Aref , and the normalized position ξ̂m is derived
by solving the following equation

ξ̂m∫
ξ̂m−1

∣∣∣F̃O (−H)
∣∣∣ dH = πΔq

(
Âm−1 +Aref

)
. (C.29)

In this case, the spacing Δ̂ξm turns out to be larger than Δ̂ξmin, resulting
in a mask-driven sparseness of the array. The solution of Eq. (C.29) can be
obtained using any analytical or numerical method. As it can be noticed,
the balanced combination between amplitude and positioning tapering is
strongly affected by the requirement on the minimal inter-spacing dmin, as
well as on the required number Na of antenna elements.

Once the piecewise linear approximation of the positioning distribu-
tion is derived, the phase quantities α̂m can be easily evaluated by en-
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forcing arg
{
F̃A (H)

}
= arg

{
F̃O (H)

}
or, equivalently, arg

{
F̃Am (H)

}
=

arg
{
F̃O (H)

}
in each node H = −ξ̂m, thus obtaining via Eq. (C.23)

α̂m = arg
{
F̃O

(
−ξ̂m

)}
, for m = 1, 2, . . . ,M (C.30)

Let us now focus on the selection of the parameter ξ̂0. To this end,
a suitable energy criterion can be conveniently adopted by determining the
value Ξ̂0 > 0 satisfying

Ξ̂0∫
−Ξ̂0

∣∣∣F̃O (H)
∣∣∣2 dH = κ

+∞∫
−∞

∣∣∣F̃O (H)
∣∣∣2 dH (C.31)

with κ < 1 being a given threshold affecting the accuracy of the proposed
synthesis procedure. Besides, in case the maximum array aperture is re-
quested to be Dmax, the mentioned parameter can then be taken as

ξ̂0 = min
{

Ξ̂0,
Dmax

2

}
. (C.32)

If no requirements on the maximum array size are provided, ξ̂0 can be readily
selected as Ξ̂0.

Finally, the quantities x̄n and Ān, ᾱn appearing in the expression of
the array factor in (C.15) can be computed in a straightforward manner
by uniformly sampling the relevant normalized positioning, amplitude and
phase functions respectively in the points

Qn =
(
n− 1

2

)
qmax

Na
, (C.33)

with n = 1, 2, . . . , Na.

It is pointed out that the proposed technique features an excellent
versatility in handling array design problems with given constraints on both
the maximum aperture dimension and the minimum inter-element spacing
with no need for any optimization procedure.



Appendix D

Spirals: Fermat and
Fibonacci spirals

Spirals are one of the most common regular shapes in nature: from the
snail shell, to the sunflower seed placement (see Fig. D.1), to the Milky way
arms. Different kinds of spirals are known in the literature. Using a spiral
placement for the elements of a planar array guarantees a good spreading of
the energy associated to the side and grating lobes. Furthermore, a spiral
lattice permits obtaining a quite uniform filling of a given aperture compared
to other planar lattices like the ones organized in rings.

A well known spiral is the Fermat spiral (Fig. D.2) which has the
property of enclosing equal areas within every turn. Its equation can be
expressed in polar coordinates as:

ρ = a
√
φ′ (D.1)

where ρ is the distance from the spiral center, and φ′ is the angle that
identifies the point position with respect to the x axis; the parameter a
controls the distance between the spiral turns.

This spiral is quite often found in nature. In particular, there are
leafs and seeds whose positions can be obtained by sampling a Fermat spiral
equation, i.e.

ρ =
√
nb (D.2)

φ′ =
2πn
c

(D.3)

and when it is important having a uniform subdivision of the space the
parameters b and c are closely related to the Golden Ratio , also known as
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Figure D.1: Picture of a sunflower; the placement of the seeds in the central
part is according to the discussed Fermat spirals.

ρ

x

y

φ′

Figure D.2: The Fermat spiral and its associated coordinate system.

Fibonacci number since it represents the solution of the Fibonacci quadratic
equation. For instance, the leaves around the stem use this positioning to
share in an optimal way the space and the light [1].
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The Fibonacci sequence is known since 1202 A.D. thanks to Leonardo
son of Bonaccio from Pisa and his book Liber Abaci. This sequence has
been widely analyzed and applied in different fields: from the description
of particular plants to computer science, from crystallography to electrical
engineering. By solving the Fibonacci quadratic equation [15]:

β2An = βAn +An (D.4)

the following two roots are obtained

β1 =
√

5 + 1
2

= τ (D.5)

β2 =
1 −√

5
2

= −1
τ
. (D.6)

In most of the applications the first value has been used, but to characterize
the spiral both of them are usable. The divergence angle, also referred to as
the golden angle, is defined as

golden angle =
360◦

β2
1

= 360◦ − 360◦

β2
2

. (D.7)

Because this value is irrational, it is impossible to have two or more elements
in the spiral array characterized by the same φ angle. The element packing
result to be efficient. Interesting Fermat spirals could be also the ones with
other irrational coefficients like

√
2. In the patent [4] β1 is used for the

element disposition along the spiral according to the formulation presented
in Eqs. (4.1) and (4.2). As it can be easily noticed, the positions of the
elements in the sunflower array depend only on n via a trivial equation.

The second type of spirals employed in this study is the Fibonacci one,
namely a particular kind of logarithmic spiral, where the ratio between radii
evaluated at each 90◦ degrees is related to the golden ratio number. It is
interesting to note that in a sunflower array configuration, when the elements
are placed on a Fermat spiral at every β1 degrees, the elements form a set of
clockwise and one of anti-clockwise Fibonacci spirals (see Figs. D.3 and D.4).
The numbers of spirals belonging to the two sets are two consecutive terms of
the Fibonacci series as it can be appreciated by counting the clockwise spirals
in Fig. D.3 and the anticlockwise ones in Fig. D.4, 5 and 8, respectively.
Another particular characteristic of this configuration is that the number of
spirals in each set is exactly related to which of the Fermat spiral element
have to be connected to create the set of Fibonacci spiral. As example, it is
possible to note how the first of the 5 spirals in the first set in Fig. D.3, is
created by connecting the elements with numbers 1, 6, 11, 16 and 21, whose
relative difference is again 5.
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Figure D.3: Clockwise Fibonacci spirals.

Figure D.4: Anti-clockwise Fibonacci spirals.



Appendix E

Taylor amplitude distribution

This appendix discusses briefly the well known Taylor amplitude taper law
that was extensively used in this dissertation as reference distribution. By
imposing weights on the element excitations according to the Taylor dis-
tribution, it is possible to shape the radiation pattern of a linear, uniform
array and obtain a predefined SLL. The Taylor synthesis technique starts
from considering the position of the nulls in the array radiation pattern. In
order to achieve a lower SLL, the first n̄ − 1 zeros in the sin(θ) domain,
hereafter indicated as zn, n = 1, . . . , n̄− 1, are substituted by the first n̄− 1
zeros of the Chebyschev polynomial and, in this way, moved away from the
main lobe. This results in a lower level of the side lobes and in an increment
of the main beam width. The number n̄ controls how many of the side lobes
are modified by the synthesis.

The use of the Taylor tapering starts by imposing the required SLL
that is then employed for evaluating the parameter

B = 1/π cosh−1
[
10SLLdB/20

]
(E.1)

where SLLdB denotes the SLL expressed in dB. The positions of the new
nulls then follow as

zn =
n̄
√
B2 + (n− 0.5)2√
B2 + (n̄− 0.5)2

for n = 1, 2, .., n̄ − 1 (E.2)

and the corresponding array AF [51] reads

AF(z,B, n̄) =
sin(πz)
πz

n̄−1∏
n=1

1 − z2/z2
n

1 − z2/n2
. (E.3)
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Figure E.1: Array factor of an array with uniform amplitude distribution –
red line, Taylor distribution (n̄=6, SLL=20) – blue line.

For understanding the effect of the Taylor tapering, Fig. E.1 presents
a comparison between the normalized array factors of two uniformly spaced
arrays, one with uniform illumination (red line) and the other with a Taylor
tapered one (blue line), the amplitude tapering being evaluated considering
SLLdB = 20dB and n̄ = 6. The plot clearly evidences the shifting of the
nulls, the reduction of the maximum SLL and the modification of the beam
width in the case of the amplitude tapered array.

Figure E.2 illustrates the effect of the choice for the SLLdB and n̄
parameters on the Taylor amplitude tapering. Two cases are examined,
starting from a reference taper calculated for n̄=6 and SLLdB = 20dB (the
red curve in Fig. E.2). Firstly, by keeping the SLLdB constant, increasing
the number of modified nulls n̄ − 1 results in an amplitude distribution
that is no longer monotonically decreasing when moving from the center,
the amplituded increasing towards the aperture edges as suggested by the
green arrow in Fig. E.2. If the distribution is then replicated by means
of a non-uniform array, the element density toward the edges will increase
accordingly. Secondly, by maintaining n̄ fixed, increasing the desired SLLdB

results in an increasingly steep amplitude variation, indicated by the cyan
arrow in Fig. E.2. This corresponds to a larger variation in the amplitude
values range and, when the distribution is used as a reference for achieving
the locations of an equivalent non-uniform array, it results into a larger
difference between the minimum and the maximum inter-element spacing.

It is now clear that a proper choice of the two parameters is fundamen-
tal for the design of an easily implementable array.
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Figure E.2: Taylor amplitude distribution for different SLL and n̄.

This technique has been extended by Taylor [69] to the case of a planar
circular array by considering the new null positions as

zn =
μn̄
√
B2 + (n− 0.5)2√
B2 + (n̄− 0.5)2

(E.4)

where μn̄ are the natural nulls of the J1(πz)/(πz) function. In this case the
total array factor can be expressed as [51]

AF(z,B, n̄) = 2
J1(πz)
πz

n̄−1∏
n=1

1 − z2/z2
n

1 − z2/μ2
n̄

. (E.5)

A study of the behaviour of the aperture amplitude distribution could
be conducted in this case as done before for the linear distribution case and
it would lead to the same conclusions.
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Appendix F

Patch design

Hereafter the elementary radiator used for the simulation of the configura-
tions presented in Paragraph 4.4 will be shortly introduced and discussed.
All the results presented have been obtained with the commercial software
CST (Computer Simulation Technology) [88].

F.1 Radiator design

In view of a possible sub-array implementation, in which the feeding line is
deployed on a different layer with respect to the several radiators, the feeding
architecture for the presented antenna has been selected to be a suspended
stripline.

The radiator, working in a frequency band centered at 10 GHz, will
provide a right hand circular polarization.

The radiator consists of a metal square with side length 5.9mm with
two of the opposite edges being cut, as shown in Fig. F.1, in order to create
the proper phase shift between the field components and, consequently, to
obtain the desired polarization. A Roger RO4003 high frequency circuit
material with a thickness of 1.524mm and a dielectric constant εr = 3.66 is
used as substrate.

Figure F.2 shows the S11 parameter in the frequency band of interest.
It is possible to notice that the presented radiator is well matched in a
bandwidth of about 0.75 GHz.

The radiating patch is enclosed in a cavity created by several metal
pins. In this way the coupling between two neighbouring elements can be
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Figure F.1: Perspective view of the patch antenna.

reduced and, at the same time, it is possible to reduce the patch dimen-
sion. Thanks to the cavity, the substrate choice and to the selected feeding
structure, the lenght of the patch side could be reduced up to about λ0/5.
As a result, the presented patch could be efficiently included in an array
environment with stringent space requirements where the elements need to
be closely packed together.

Figure F.2: S11 parameter of the proposed antenna.

The axial ratio between the two field components and their phase dif-
ference are shown in Fig. F.3. The plot demonstrate that, in the FOV, the
radiation replicates with good accuracy the circular polarization that was
aimed at.

Finally the patch directivity is shown in Fig. F.4. It is characterized by
a maximum of 7.4 dBi and by a almost flat behavior of the directivity values
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Figure F.3: Axial ratio of the proposed patch antenna for θ = 0◦ – continuous
line , θ = 4◦ – dotted line.

in the first theta degrees, corresponding in Paragraph 4.4 to the considered
FOV.

Figure F.4: Directivity pattern of the square patch in Fig. F.1.
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Summary

Saving space on board, reducing costs and improving the antenna perfor-
mances are tasks of outmost importance in the field of satellite communica-
tion. In this work it is shown how a non-uniformly spaced, direct radiating
array designed according to the so called ‘sunflower ’ law is able to satisfy
stringent requirements with a reduced number of active chains, all employing
amplifiers working at the same, optimised, operation point.

The aim of this PhD thesis is to identify several array configurations
characterized by a reduced complexity and cost when compared with con-
ventional arrays or to reflector configurations. These arrays must satisfy
stringent requirements of a GEOstationary satellite communication mission,
especially in terms of a minimum directivity to be guaranteed in several spot
beam areas and sidelobe levels to be kept below an assigned value.

The dissertation starts with the discussion of the pattern characteristics
of regularly spaced array. Since regularly spaced arrays do not allow pattern
shaping without making use of an amplitude distribution, non-uniformly
spaced arrays are introduced and their pattern behaviour is discussed at
length. These arrays are proven to offer the freedom for shaping the pattern
according to the imposed requirements and, at the same time, avoid the
occurrence of grating lobes. Several innovative techniques for designing this
particular class of arrays are proposed and compared.

Among them, the sunflower positioning technique is chosen as the best
candidate to deterministically design non-uniform planar arrays with really
low sidelobe levels and a good rotational symmetry of the radiation patterns.
This simple technique is based on the application of two separate laws for
finding the radial and angular element positions. The first one comes directly
from the relation established in the thesis between the amplitude distribu-
tion law and the density distribution one. Regarding the angular positioning
law, the concept of optimal angular spreading, inherited from the natural
world, is applied to the sunflower array antenna in order to guarantee the
sparsity of the element positions both in the radial and angular coordinates.
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This angular sparsity is achieved by ensuring that each element of the array
is placed at a different angular position. The sunflower synthesis technique
is then generalized for employing differently sized sub-arrays in the same
aperture. Two different options are presented, in which the sub-arrays com-
posing the sunflower array have the same amplitude or the same power.
In the first one, the planar aperture is divided into convex cells associated
with the spatial locations obtained by means of the sunflower positioning.
These cells are then filled with the best fitting (regular) sub-arrays. In this
sense, several shapes are experimented with, ranging from circular ones to
some that present clear technological advantages. In the latter case, the
selected sub-arrays may induce a slight alteration of the rigorous sunflower
placement. However, the easier technological implementation makes them
the preferred choice for the design of the large planar array that is able to
satisfy the satellite mission requirements.

In order to physically validate the positioning principle of the sunflower
array antenna, a demonstrator at a scaled frequency has been manufactured
and measured. Four different sub-arrays are assembled starting from a stan-
dard 4x4 square, circularly polarized tile, and their radiation patterns are
superimposed in order to compute the total array radiated pattern. Measu-
rements and simulated results are shown to be in very good agreement.

The dissertation attests the sunflower placement technique as an in-
novative, successful, deterministic method for designing large arrays. This
technique can be complemented with a modular sub-array design, the com-
bination of the two yielding an effective instrument for implementing highly
demanding antennas, such as those required by satellite communication ap-
plications.



Samenvatting

Ruimtebesparing aan boord, kostenverlaging en antenne prestatieverbeter-
ing zijn de meest belangrijke taken in satelliet communicatie. In dit werk
wordt getoond hoe een direct-stralende apertuur bestaande uit een niet-
uniform verdeeld antenne stelsel en ontworpen naar het zogenaamde ‘Zon-
nebloem’ model, het mogelijk maakt aan strenge voorwaarden te voldoen
waarbij het aantal actieve structuren beperkt blijft en alle gebruikte ver-
sterkers zijn ingesteld op het zelfde geoptimaliseerde werkingspunt. Het
doel van dit proefschrift is om verschillende array configuraties, gekenmerkt
door gereduceerde complexiteit en beperking in kosten, te onderscheiden
en te vergelijken met conventionele arrays of met reflector configuraties.
De array configuraties moeten aan de strenge voorwaarden van een GEO-
stationaire Satelliet communicatiemissie voldoen, met name de minimale
bundelende werking (directiviteit) in de verschillende nauwe antenne bundels
(spot beams) moet worden gegarandeerd en de maximale waarden van de zi-
jlussen moeten aan vooraf gestelde eisen voldoen. De dissertatie begint met
de bespreking van stralingsdiagram kenmerken van een uniforme array. Om-
dat deze arrays geen diagram modellering toestaan zonder gebruik te maken
van een amplitude verdeling, worden niet-uniforme arrays gentroduceerd en
hun diagram gedrag uitvoerig bediscussieerd. Deze arrays hebben bewezen
een extra vrijheidsgraad te geven om het diagram te modelleren volgens de
opgelegde voorwaarden en tegelijkertijd ongewenste bundels (zogenaamde
grating lobes) te voorkomen. Verschillende innovatieve technieken voor het
ontwerp van deze specifieke groep arrays worden voorgesteld en besproken.
Zo is de techniek waarbij antenne elementen worden geplaatst conform het
‘Zonnebloem’ model verkozen als het beste concept om op deterministische
wijze niet-uniforme, vlakke arrays te ontwerpen die stralingsdiagrammen
hebben met lage zijlussen en goede rotatiesymmetrie. Deze eenvoudige tech-
niek is gebaseerd op de toepassing van twee verschillende wetten voor het
vinden van de radiale en hoek element posities. De eerste komt direct uit
de relatie, ontwikkeld in the thesis, tussen de wet die de amplitude verdel-
ing beschrijft en de wet voor de dichtheidsverdeling. Met betrekking tot de
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wetmatigheid van de hoek positionering wordt het concept van maximale
hoekspreiding, zoals die ook voortkomt in de natuur, toegepast op de ‘Zon-
nebloem array’ antenne om zorg te dragen voor de schaarste van element
posities in zowel de radiale als hoek cordinaten. Deze hoek schaarste wordt
bereikt door te verzekeren dat ieder element van de array wordt geplaatst op
een verschillende hoekpositie. De ‘Zonnebloem synthese’ techniek wordt dan
gegeneraliseerd door het opstellen van in grootte verschillende sub-arrays in
dezelfde apertuur. Twee verschillende oplossingen worden gepresenteerd,
waarin de sub-arrays, die de uiteindelijke ‘Zonnebloem array’ bepalen, of
dezelfde amplitude of hetzelfde vermogen hebben. In de eerste situatie is de
vlakke apertuur verdeeld in convexe cellen geassocieerd met de ruimtelijke
locaties, welke zijn verkregen door middel van de ‘Zonnebloem’ positioner-
ing. Deze cellen worden vervolgens gevuld met de best passende reguliere
sub arrays. Op deze wijze kan met verschillende vormen worden gexperi-
menteerd, varirend van circulair tot vormen die technologische voordelen
hebben. In de tweede situatie kunnen de geselecteerde sub-arrays leiden tot
een kleine wijziging van de strikte ‘Zonnebloem’ plaatsing. Echter de een-
voudige technologische implementatie zorgt ervoor dat de tweede situtatie de
voorkeur heeft voor het ontwerp van een grote, vlakke array die het mogelijk
maakt aan alle voorwaarden te voldoen die een satelliet missie vereist. Om
daadwerkelijk fysiek het positionering principe van de ‘Zonnebloem array’ te
valideren is een demonstratiemodel op een geschaalde frequentie vervaardigd
en gemeten. Vier verschillende sub-arrays zijn geassembleerd beginnend bij
een standaard, circulair gepolariseerde 4x4 vierkante tegel. De stralingsdia-
grammen van de sub-arrays worden gebruikt om het totale stralingsdiagram
te kunnen berekenen. Metingen en gesimuleerde resultaten worden getoond
en zijn in goede overeenstemming met elkaar. Het proefschrift getuigt ervan
dat de ‘Zonnebloem’ plaatsingstechniek een innovatieve, succesvolle, deter-
ministische methode is voor het ontwerpen van grote arrays. Deze techniek
kan worden gecompleteerd met een modulair sub-array ontwerp. De combi-
natie van deze twee leveren een effectief instrument voor de implementatie
van antennes die moeten voldoen aan strikte voorwaarden, zoals gesteld bij
satelliet communicatie applicaties.
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3. G. Toso, M. C. Viganó, P.Angeletti, “Null-Matching for the design of
linear aperiodic arrays,” in IEEE Antennas and Propagation Sympo-
sium pp. 3165–3168, Honolulu Hawai USA, Jun. 10–15, 2007.
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12. M. C. Viganó, D. Caratelli, “Analytical Synthesis Technique for Uni-
form Amplitude Linear Sparse Array”, in IEEE Antennas Propagation
Symposium 2010, Toronto, 11-17 July 2010.
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1. M. C. Viganó, G. Toso, S. Selleri, C. Mangenot, P.Angeletti, G. Pelosi,
“Direct Radiating Arrays for satellite application thinned with Genetic
Algorithm,” in 29th ESA Antenna Workshop on Multiple Beams and
Reconfigurable Antennas, Noordwijk, The Netherlands, Apr. 18–20,
2007.
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