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1. Basically, regular systems (the Salamon-Weiss class) are representable by

{ i(t) = Az(t) + Bu(t), z(0)=1zo€ X
y(t) = Cx(t) + Duft)

with A, B, C possibly unbounded operators and D bounded. If a certain condition,
similar to zg € W for Pritchard-Salamon systems, implying the smoothness of the
output function, would be available for regular systems, along with a result on the
spectral decomposition of the operator A, then most of the results presented in this
thesis would lead to a beautiful generalization.

. The impulse response of a Pritchard-Salamon system with an infinite-dimensional

space of inputs is a tempered L£(I{,Y)-valued distribution with support in [0, c0).
Furthermore, if dim{f;) = oo, it is generally not possible to make sense of CS(-)B
as a function. In particular, expressions as CS(-)B and [; CS(t — 7)Bu(r) cannot be
interpreted in the usual sense for arbitrary u € LP°(0,00;U). Even in the bounded
case W = V, when CS(t)B is well-defined as a function, it might not be strongly
measurable. This fact implies that it is not locally integrable with respect to the
uniform norm topology. We claim here that the H2-optimal control problem for
infinite-dimensional systems with infinite-dimensional disturbance-input space is a
very interesting and delicate problem.

3. Let (S("), B, C, D) be a Pritchard-Salamon system with respect to W < V and as-

sume that ro € W. Then the time-discretized Pritchard-Salamon system L(®,T', A, ©)
is well defined. Even if in general

B¢ LU W)NLU,V),
its time-discretized counterpart satisfies
I'e CUWYN LU, V).

Since the operators defining £(®,T', A, ®) satisfy & € LW), T' € L(U,W), A €
LW,Y) and © € L(U,}), it follows that the digital control of Pritchard-Salamon



systems is an easy problem, since the unboundedness has vanished away. This is only
apparently. If one takes into account that

(a) digital control implies that the admissible set of controls is the class of piece-wise
constant functions, which is a dense subset of Ly(0, co;U),

(b) a Co-semigroup perturbed by a digital feedback is no longer a Co-semigroup,

(c) any digital control problem associated with the Pritchard-Salamon system has
to be well-posed on both spaces W and V,

d) from the mathematical point of view, a solution to a well-posed digital control
p g
problem for Pritchard-Salamon systems has to imply stability on both spaces

W and V,

it follows that the digital control of Pritchard-Salamon systems is not easier than the
control problem posed in continuous-time.

4. The number of elementary particles in the known universe is approximately 10%° and
it represents the biggest and for sure the most complex system known at this moment.
However, an extremely inventive species living on a small planet, lost somewhere on
the Milky Way, is using infinite dimensional systems for a better modeling of their
local environment.

5. There are people born to be researchers. Their intellectual curiosity pushes them
digging deeper and deeper towards solving difficult problems. Their attitude with
respect to the surrounding world resembles, somehow, the attitude of an actor on the
stage who lives totally for the show. For this kind of people the show always goes on
and on without stopping.

There are people who become researchers because they have been educated to do
so. They might have done, probably even better, any other job demanding a certain
level of intelligence and capacity. It is not surprising if one day those people would
give up their research preoccupations and start something else, without even having
the feeling of being loosers.

If
(a) we admire the genius of the first ones by wishing, secretly, to be part of their
exclusive club,

(b) if we envy them sometimes when they make gigantic steps while reaching certain
conclusions that strike everybody and which proves, finally, to be a big novelty,

(c) if we find ourselves everyday more than we would like to admit on the side of
the second ones,



10.

11.

it means, at least, that we grew up sufficiently to understand that there must be a
third way and it is worthwhile to do something about going that way.

When the robust control technique fails to meet the objectives of a control system
designer, there are two left over possibilities. Either to do adaptive control or to give
it up. Neither the first one nor the second one brings tremendous satisfaction since
the behavior of adaptive control systems resembles somehow Chaikowsky’s “Swans
Lake” performed by elephants.

It is better to be rich, healthy, smart and handsome rather than being poor, sick,
stupid and ugly.

One specific feature of the last century’s capitalist society was the wild exploitation
of man by man. In this century’s socialist society it is the other way around.

Big scientists have names of theorems and lemmas. Sometimes they have names of
streets and boulevards. Even in the latter case, the size of the street is not directly
proportional to how big the scientist was.

It is amazing that in a country like Holland, geographically situated below the see
level, where it rains more than 75% of the days in a year, peolple are still economizing
on the tap water.

If we would spend each day only 5 seconds thinking profoundly about death, then
we would enjoy the rest of 86395 seconds of the day much more and, probably, we
would be more happy.
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Chapter 1

Introduction

The computer control approach has become an every-day reality for more than a decade.
With the advent and proliferation of microcomputers, the role played by digital control
design techniques has become increasingly more important. In many industrial settings
the designer has to control physical entities such as temperature, fluid flow, and an appro-
priate modeling often leeds to distributed parameter systems, systems which are defined
on Hilbert spaces. It has become necessary, therefore, to develop extensions of many
of the “classical” digital control strategies for finite-dimensional systems to an infinite-
dimensional setting. A generalization to infinite-dimensional systems with bounded op-
erators of the finite-dimensional results on the digital LQ-optimal control problem has
been done more than 20 years ago by Lee, Chow and Barr [60]. But since then various
finite-dimensional control problems have been addressed and solved and, as it is normal,
various approaches and theories to and about those control problems have been taken and
constructed. We refer here to the H?-optimal control problem when considered in the
deterministic case, LQG-optimal control problem when considered in stochastic sense, and
H* suboptimal control problems. In this thesis we consider the aforementioned problems
in the infinite-dimensional setting and our approach to control is a digital one. From the
rather wide variety of control theories that have emerged up to this time, we shall focus
our attention upon two of them.

(7) The first one is the Hyland-Bernstein control theory. This theory gives the set of
necessary conditions for the existence of the LQG-optimal finite-dimensional fixed-
order compensator for an infinite-dimensional plant, in the continuous-time case and
finite-dimensional but higher-order plant in the discrete-time case. The main fea-
ture of this theory is that of expressing the set of first-order necessary conditions for
the solution of the finite-dimensional fixed-order compensation problem via a system
of four coupled operator/matrix equations, two modified Riccati equations and two
modified Lyapunov equations, coupled by an oblique projection operator/matrix
which is born naturally from the optimality constraints to the design process. The
oblique coupling operator/matrix is a projector having the rank equal precisely to

7



8 Chapter . Introduction

the order of the compensator. The separation principle breaks down and only in the
full-order case, the oblique projection operator/matrix becomes the identity opera-
tor/matrix and the two modified Riccati and the two modified Lyapunov equations
drop out and the set of four equations simplify to the standard pair of Riccati and
Lyapunov equations.

(#i) The second control theory serving our main purpose announced in this introduction
is the so called Popov theory. Let us begin by explaining the reader why we have
made this option, why a discrete Popov theory approach to the digital control of DP
systems is a valuable one. There are two main reasons.

(a) Among different results emerging from Popov’s positiveness theory [69], a the-
ory with origins in the work of Kalman [55] and Yakubovitch [89], the one that
establishes the connections between the properties of a quadratic cost functional
and the existence of a stabilizing solution to a certain Riccati equation is prob-
ably most relevant. This is especially true since there are, probably, few control
theory concepts that have been more extensively studied than Riccati equations.
For more than three decades, their application to stability, LQ-optimal control
and more recently H*-optimal control and H*-optimal control, has set a strong
basis to the development of a huge control theory literature.

(b) The second motivation for our option for the discrete Popov theory approach is
the possibility to replace the positivity condition of the Popov function with a
more general one, given by the invertibility of a certain Toeplitz-like operator.
The reader is referred to the original work of lonescu and Weiss [50] and its
extensions [45]. This new direction has proved to be reach enough to incorporate
game-theoretic situations (see [21]) and to permit one to write down the solution
to the H* control problem.

Classical optimal control theory of distributed parameter systems assumes boundedness
of control and observation operators. However, most of the interesting infinite-dimensional
control systems encountered in practice arise in a different way. The next example fully
supports this statement.

Example 1.1 The temperature distribution of a unit length heated rod with point heat
control and point temperature measurement is described by the following PDE model

dz2(z,t) 0?2(z,t)

5 = a2 + bz (2)u(t), 2(x,0) = zp(x) (L.1)

0z(z,t 0z(z,t
%hz:o) = 2(; )|(z:]) =0 (1.2)
y(t) = z(z,t), (1.3)

where z(z,t) is the temperature distribution, = € [0,1] the distance alongi the rod, u(t)
the control and y(t) the observation. In this example the observation operator which is




the temperature measurement at a point z;, formally defined by
Cz = z(xy,-),

is unbounded on the state space X' = L;[0, 1]; it is not defined on all of L,[0, 1]. Since we
have modeled the control operator in terms of the delta distribution at z4 it is clear that
the control mapping is not a bounded one either and the control system from the Example
1.1 has unbounded control and observation operators. 0

Let us now explain why the digital control of systems with unboundedness is a difficult
and interesting problem. There are three common ways to design a digital control system.

(i) The first one is to do a continuous-time design followed by a digital implementation,
i.e. the time discretized controller is connected via A/D and D/A devices to the
original continuous-time plant. Besides the general disadvantage represented by the
fact that in such a design process, the sampling frequency is not a designable pa-
rameter, in the case of infinite-dimensional systems with unboundedness there exists
another particular disadvantage, which makes this method unapplicable. This state-
ment will be made more clear in the next paragraph. Van Keulen {80] gave a complete
generalization for the Pritchard-Salamon class of infinite-dimensional systems [70]
of the early Doyle et al. results on H*-optimal control [37]. Besides the full general-
ization of the above mentioned results, he showed that the controller minimizing the
H*-norm of the closed-loop system, regarded on its turn as a system, falls also in
the Pritchard-Salamon class. Hence the digital implementation of such a controller
implies the discretization of a Pritchard-Salamon system, a fact which, as shown in
Barb, de Koning and Weiss [15], is not always possible unless certain restrictions on
the initial state are imposed to guarantee a smooth output function.

(i

—~—

The second way is to discretize the plant and to do a discrete-time design. This
method is also not the best one could hope for; besides the obvious disadvantage of
ignoring intersampling behavior, it presents the same drawback as the first mentioned
method, that of having to discretize a Pritchard-Salamon system.

(ii1) The third way is to do direct digital design, treating the control system as a sampled-
data system. Since sampled-data systems are time-varying systems (actually continuous-
time T-periodically systems), it is rather obvious that the design process will be more
complicated than in the time-invariant case.

With respect to the direct digital design approach, let us notice that there are several
sources of difficulties one has to overcome in the design process, such as

¢ The structural constraint on the controller HXk S, where H and S are the zero-order
hold and sampler, and X being the discrete-time controller.
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o The fact that the controller HES is not time-invariant despite the fact that Yk is.

o The hybrid nature of the overall control system; the state of the plant evolves in
continuous-time, while the controller state in discrete-time and hence, they are not
defined over the same time set.

One trend to approach the direct digital design is given by the general framework for
periodic continuous-time systems as proposed by Bamieh and Pearson in {18]. The main
tool used in this framework is the so-called lifting technique. ! Essentially, lifting means
to represent a linear time-varying (periodic) continuous-time system by a linear time-
invariant discrete-time one such that the periodicity of the first one is reflected in the shift
invariance of the second one. Working in such a framework as the one proposed in [18],
one can reduce the digital control problem to an equivalent discrete-time control problem
for its lifted counterpart, in the sense that a solution to the latter one is also a solution
to the former one. The reader is referred for comprehensive treatment of this subject to
Chapter 5 and to Chapter 6 of this thesis. We adopt in this thesis the above described
framework. Unlike Tadmor who gives the solution to the H™ sampled-data control in
continuous-time in terms of three Riccati equations (see [78]), we deal with a discrete-time
control problem on abstract Hilbert spaces, and hence we shall give the solution in terms
of discrete time Riccati equations. The price we pay, specific to lifting, is that we have
to work with signals taking values in function spaces (if the original signal is an R-valued
function, then its lifted counterpart is in L(0,T; R), see for more details on lifting [18]).
For such a discrete-time control problem, both discrete theories developed in this thesis,
the discrete Hyland-Bernstein control theory and the discrete Popov theory, seem to be
ideal tools which enables us to write down the solution to the H* digital control problem
and the fixed-order digital LQG control problem.

1.1 Three basic control problems

In the first part of this introductory chapter we have chosen the control theories we shall
focus on in this thesis. We have mentioned the main control problems addressed in the
literature which will be considered in this thesis. Let us now be more precise about this by
formulating them mathematically. Suppose we have an infinite-dimensional plant E¢ (two
inputs and two outputs) as shown in Figure 1.1 and a controller Sk as in Figure 1.2.

We interconnect the controller and the plant

{ v(-) = ya(")
() = ul’)

and we obtain the closed-loop structure depicted in Figure 1.3

!The idea of lifting a continuous-time T-periodic system to a discrete-time one was independently
developed by Francis and Tannenbaum [19] and a similar idea was announced in the “early” 1990-CDC
paper of Yamamoto [92].
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Y %
ll2 % yz

Figure 1.1: The generalized plant

178

Figure 1.2: The controller

In our setup u; 1s the disturbance input, y; the controlled output, u, the control input
and y; the measured output. The problem we want to solve is that of finding a controller
Yk which “stabilizes” the plant X and which makes the influence of the disturbance input
on the controlled output to be minimal in some sense. Let us be more precise about those
two concepts introduced above. Let

>

(o) (1) {i‘(” . teR (1.4)

z(t+1) ., teN

denote either the differential operator in continuous-time or the advance unit shift operator
in the discrete-time case. We shall assume that we have a state space description of the

u; Y

%

X

Figure 1.3: The closed loop configuration
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plant

yl(t) = C]I(t) + Dnﬂg(i) (15)

{ (oz)(t) = Az(t) + Biui(t) + Baua(t)
La
ya(t) = Caz(t) + Doy (t)

and of the controller
o { (200) = Acelt) + Buyn(t) »
K| walt) = Ceae(t) + Dan(t) '

where A € L(X), B, € L(Uh,X), B, € L(U:, X), Cy € L(X, W), C; € L(X,I,), Dz €
LUz, 1), Dy € L(U, D7), Ac € L(K), Be € L(W,K), Ce € L(K,Uy) and D, € L(Y2,Us)
are linear time-invariant operators on the real separable Hilbert spaces X, Uy, Uz, Yy, Vs
and X, respectively.

We shall say that Yk stabilizes £ if the linear system from u; to y; is exponentially
stable if the continuous-time situation is considered and power stable in the discrete-time
case. This means that the closed-loop system dynamics is governed by a resultant A-
operator

An = ( A+ ByD.C; B,C. ) (17)

B.C, Ac

which is exponentially stable for the case t € R or power stable for t € N.

The influence of the disturbance input on the controlled output can be estimated in
several ways. Depending upon which one we choose, we deal with different control prob-
lems. Three basic contro} problems, matching the control set-up depicted in Figure 1.3 are
introduced in the next subsections.

1.1.1 The H* control problem

Let (¢ and K denote the transfer functions of ¢ and Xk, respectively and consider the
partition on G induced by its two input/two output structure.

K1 Gy Ghe Uy
= . 1.
(yz) (Gzl Gzz)(uz) 48
Let the controller be given by
Ug = Kyz. (19)

For such a control structure as the one depicted in Figure 1.1, the transfer function from
the disturbance input to the controlled output, Gy,,,, is defined as the linear fractional
transformation of the plant and the controller

Gy 2 Gy 4Gk (I — G K)' Gy. (1.10)
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Since the controller achieves exponential stability of the closed loop system, it follows that
Gy u; belongs to the Hardy space H™ (L(Uy, 1)), the space of L(U;, V1)-valued functions
which are bounded and analytic in the right half plane

C; = {s € C|Re(s) > 0},
if t € R or outside the open unit disc
Ur(0) = {z € Cl|z| < 1},

ift € N.
An appropriate measure of the influence of u; on y; is the H*®-norm of Gy, ., defined

by

Gyyu, (¢ , teR
Gy & { SUPge(s)>0 Gy, 1(9)115(14,,3;1), (1.11)

SUP||z(>1 Hnyul (Z)“qul,yx) , teN
Consequently, the H*-optimal control problem can be formulated as

Exsi?bli]i]izing ”Gy1u1 ”OO ) (112)
Notice that (1.12) is equivalent to the disturbance attenuation problem since the H>-norm
of G4, is precisely equal to the norm of the bounded linear map from uy(-) € Ly(0, co;Uy)
to y1{-) € L2(0, 00; V1) defined for zero initial conditions.

When we have access to the system state, i.e. Cy = I, Dy; = 0 we deal with the
state-feedback H*°optimal control problem. When the system state is not available in
the controller design process we shall use the term output-feedback H>-optimal control
problem. In both cases we shall focus on the so called suboptimal H*> control problem

G llos < 7 (1.13)
where v > 0 is a prespecified bound. Without loosing generality, we shall assume that
v =1.

This can be done by an appropriate scaling of the operators involved in the expressions
of the transfer functions G;,7,7 = 1,2 (see [46], pp. 178). As it is well known from the
literature, the solution to the H* control problem represents the input of the y-iterations
procedure which gives, in the limiting case, the exact solution to the H*-optimal control
problem. Since we shall not be concerned with the optimal case, we shall refer to the
suboptimal case simply as to the H*-optimal control problem.

In this thesis we shall give a digital solution to the H* control problem for the Pritchard-
Salamon class of infinite-dimensional systems with unbounded input and output operators.
The solution to the digital control problem is obtained by applying the discrete Popov
theory to the equivalent discrete-time system obtained by lifting the hybrid T-periodically
Pritchard-Salamon digital control system.
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1.1.2 The H? control problem

Let us consider the plant X given by (1.5) and controller Xk satisfying (1.6) in closed-loop
connection as depicted in Figure 1.3. We want to determine a stabilizing controller Yk
which minimizes the H2-norm of the linear system from wu; to y; defined by
. a L [37 trace (Gy,u,(e’“’)G;lu](e"")) dw, teN
”Gyﬂu "2 = . (1.14)
& [ trace Gy, (0)Gypo, () dw, tER

where G,,.,(-) is the transfer function of the closed-loop system. Hence, the H? control
problem can be formulated as
. 2
seotin  NGuruillz - (1.15)
In this thesis we shall give a solution to the discrete-time HZ-optimal control problem in
the case when the controller is assumed to be of a fixed finite order. This means that the
Hilbert space X is now a finite-dimensional Euclidean space

K =R",

with n € N a fixed integer. Such a development represents the theoretical basis for ob-
taining the solution to the fixed finite-order digital control problem of infinite-dimensional
systems with unbounded input and bounded output operators. A Hyland-Bernstein theory
based approach led us to give a set of necessary conditions for the existence of the solution.
State-space formulae are given in terms of two modified Riccati equations coupled with
two modified Lyapunov equations via an oblique projection operator shown to have the
same rank as the dimension of the controller state space.

1.1.3 The LQG control problem

The Linear Quadratic Gaussian control problem represents the stochastic counterpart of
the H? control problem. Consider the plant ¥g given by (1.5) and controller g satis-
fying (1.6) in closed-loop connection as depicted in Figure 1.3. Let us assume that the
disturbance input u, is a standard Gaussian white noise (the concept of white noise will
be defined in one of the next chapters in the spirit of the work of Balakrishnan [3]). We
want to determine a stabilizing controller Xk such that the following LQG quadratic cost
function is minimized over the class of stabilizing controllers

[ Ime— dE (G0 (0)5) . e R
J(Eck) = , (1.16)
limk———voo %]E ( f:_t)l <y1(2)7 yl(i)>yl) , teN
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where E () denotes the expectation operator. Thus the Linear Quadratic Gaussian control
problem is stated as
min  J{¥gk)- (1.17)

Yystabilizing

As in the previous subsection, the Hilbert space X is now an Euclidean space
K‘ - RTL’

where n a fixed integer.

In this thesis we shall give a digital solution to the fixed-order LQG control problem
for the Pritchard-Salamon class of infinite-dimensional systems with unbounded input and
output operators. A Hyland-Bernstein approach led us to give a set of necessary conditions
for the existence of the solution. State-space formulae are given in terms of two modified
Riccati equations coupled with two modified Lyapunov equations via an oblique projection
operator shown to have the same rank as the dimension of the controller state space. The
solution to the digital control problem is given in terms of the solvability of two algebraic
Riccati equations associated with the equivalent discrete-time system obtained by lifting
the T-periodically Pritchard-Salamon digital control system.

1.2 The standard digital control problem

We have formulated the H*® control problem, the H?-optimal control problem and its
stochastic counterpart, the LQG-optimal control problem, both in continuous-time as well
as in discrete-time. The ultimate goal is to obtain a digital solution to the aforementioned
control problems considered in continuous-time. Therefore we shall restrict ourselves to
controllers of the form as depicted in Figure 1.4, where A/D and D/A represent the
‘analog-to-discrete’ and ‘discrete-to-analog’ devices, assumed to be synchronized in time
and with a given sampling period T > 0.

% b $ b U

— AD e DA [

Figure 1.4: The digital controller

The designable element is now £k, the discrete-time controller and the closed-loop
system is as in Figure 1.5

Here S and H denote the sampler and the zero-order hold operators, respectively, which
will be rigorously introduced later on.

A few remarks should be made from the very beginning about the set-up depicted in
Figure 1.5.
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u, Yi

ﬁz zi( — 372

Figure 1.5: The Standard Digital Control Configuration (SDCC)

(i) We deal with a hybrid (closed-loop) system since the state of the plant L evolves
in continuous-time and the state of the controller Lk in discrete-time, respectively.

(i) The closed-loop system from u; to y; is time-invariant no longer due to the periodic
characteristic of the A/D and D/A devices. Therefore, the transfer function of the

linear system from u,; to y;.

(#7) Certain assumptions should be clearly made on the initial data. For example, we
cannot allow a direct feedthrough from the disturbance input to the controlled output.
This is especially true since when giving a mathematical model of the A/D device,
we deal with the sample operator which is not well defined on L,(0, co; ), the space
of the disturbance input.

The main technique we use to overcome those difficulties is the lifting technique. The
idea of lifting is to break up a signal defined on the real line into the sequence of signals
given by the restriction of the original continuous-time one to time intervals of the form
[¥T,(k + 1)T) where T' > 0 is the fixed sampling step and k is in the set of integers.
Such a lifting technique applied to the hybrid control system leeds to a discrete-time
representation for which, the original digital control problem is converted into a discrete-
time control problem. We show that a solution to the latter one is also a solution to the

former one.
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1.3 Structure of this thesis

The structure of the thesis is the following.

Since the infinite-dimensional systems considered in this thesis present unboundedness
in control and/or observation, it is of crucial importance to begin with defining the type
of unboundedness which is considered. This is done in Chapter 2 where we introduce
the Pritchard-Salamon class as well as the concept of Pritchard-Salamon-Popov triples
- in the spirit of [70, 87]. Also in Chapter 2 we formulate in its full generality the digital
optimal control problem for Pritchard-Salamon-Popov triples. This problem is shown to
be sufficiently general to include as particular cases the digital LQ-optimal control problem
for Pritchard-Salamon systems and the digital H* control problem. Not willing that the
unfamiliar reader remains only with an abstract picture, we end Chapter 2 with a special
section where several examples of systems that fall in the Pritchard-Salamon class are
discussed.

Chapter 3 is devoted to the so-called discrete Popov theory. The main result relates the
existence of a stabilizing solution to the discrete-time Riccati equation on a real separable
Hilbert space to the invertibility of a certain Toeplitz operator associated with the discrete
Popov triple, the basic object this theory operates upon. Several applications of this
discrete-time Riccati equation theory are presented, such as

(i) Discrete-time LQ optimal control,
(é¢) Discrete-time H™ control.

For a more extended and complete treatment of these subjects the reader is referred to the
book [46].

Chapter 4 represents one of the main theoretical contributions of this thesis. We give
here the complete generalization of the so-called Hyland-Bernstein control theory for the
case of infinite-dimensional discrete-time systems. The theory is built in the deterministic
case, when the quadratic cost function to be minimized is given by the H? norm of the
transfer function associated with the linear closed-loop system Gy, as defined in sub-
section 1.1. Nevertheless, the same result can be applied in a stochastic framework with
minor modification of the proofs as shown in [6, 14]. The developments from Chapter 4
represent the theoretical support for writing down the digital solution to the fixed-order
compensation problem, optimal with respect to a quadratic cost function, as it was formu-
lated in subsection 1.1.2 and subsection 1.1.3, respectively. The basic references are the
papers of Barb and De Koning [6, 14, 7, 8].

Chapter 5 is entirely devoted to the digital stability of Pritchard-Salamon systems.
The main result on exponential stability of Pritchard-Salamon systems under digital state-
feedback and various consequences of this result are given in section 5.1. Since the Popov
theory requires exponential stability of the system, we give a digital solution to the so-
called prestabilization problem, both optimal with respect to a minimum-energy type cost
function associated with the antistable subsystem, as well as suboptimal. Another thing
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we accomplish in this chapter is the full generalization to Pritchard-Salamon systems of
the finite-dimensional results on so-called hybrid stability from [29]. Two subsections are
devoted to the lifting technique. The results on lifting outlined here represent the minimum
requirement the reader should fulfil in order to understand in which way this digital control
tool operates and how to apply such a technique to reduce the digital control problem into
an equivalent discrete-time one.

In Chapter 6 we give the main digital control results of this thesis. Qur attention is
focused on the following control problems for systems in the Pritchard-Salamon class

(?) Digital LQ optimal control problem,
(i¢) Digital H* control problem,
(#22) Digital fixed-order LQG-optimal compensation problem.

We show how these digital control problems can be converted into equivalent discrete-
time control problems. The main results are given by applying the discrete Popov theory
and the discrete Hyland-Bernstein control theory results proved in Chapter 3 and Chapter
4.

Chapter 7 represents the application part of this thesis. We begin with a case study
section where the result on the equivalent discrete-time LQ-optimal control problem of
Chapter 6, namely Lemma 6.1 is applied to two examples. The first one is the general
parabolic system presented in Example 2.21. The second one is a general hyperbolic
system that belongs to the Pritchard-Salamon class.

Special attention is paid to reduced-order time-discretized systems. For the sake of
simplicity most of the results are presented for finite-dimensional (high-order) systems, but
we highlight the difficulties occurring while one is trying to extend those results to infinite
dimensional systems. An “approximately” balanced realization of linear finite-dimensional
systems is proposed here and an immediate application is to the model reduction problem
for time-discretized systems. Our main references are the original papers of Barb and Weiss
[4, 5, 16, 17]. In Chapter 9 we reach the conclusions of this thesis and we point out the
main investigation directions and interesting open problems that arose during this study.

Some technical details and proofs and a list with symbols used throughout this thesis
has been deferred to an appendix A.



Chapter 2

Motivation. Systems with
unboundedness. Examples.

The aim of this chapter is to present to the reader the difficulties arising when solving the
digital control problem for systems with certain unboundedness in control and observation.
We consider first the digital control problem for linear time-invariant infinite-dimensional
systems with bounded input operators.

Definition 2.1 Let X and U be real separable Hilbert spaces. A triple of the form

, Q L )
E(S(~),B,M: ( L R) :M).

with S(-) a strongly continuous semigroup of bounded operators on X, B € LU, X), @ =
Qe LX), L € L(X,U) and R= R* € L(U) is called a Popov triple on (X,U).

We associated with the Popov triple £(5(:), B, M) the following objects
(¢) The initial value problem
&(t) = Az(t) + Bu(t), z(0) =xz9€ X, (2.1)

where A is the infinitesimal generator of the strongly continuous semigroup of bounded
operators S{-) on X

(¢} The quadratic index

Js (zo,u()) 2 /:’(( i{ é) ( i% > , ( ;’ZEE% )),txudi, (2.2)

where z(-) is the mild solution to the initial value problem (2.1)

19
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(#¢) The class of admissible control functions

U, & {u(‘) € Ly(0, cosU)|2(t) = S(t)zo + /Ot S(t — 7)Bu(r)dr € L2(07oo;x)},
(2.3)

where U is the space of control.

Remark 2.2 Proposition 3.10 from [87] gives the set of necessary and sufficient conditions
for which U3, is not void. To be more precise, it is shown that u(-) € UZS  if and only if

“adm

there exists a stabilizing feedback operator F € L{(X,U) and v(-) € Ly(0, 00;U) such that

u(-) = Fe(-)+ ().

Let
S(0,00: Z) £ {z(k) € 2,k > 0}

v and

PCr(0,00; Z) £ {z € Z|2(t) = 2(k), kT < t < (k+ 1)T, k > 0}

denote the spaces of Z-valued sequences and Z-valued piece-wise constant functions, re-
spectively. Let

C(0,00; Z) S {z € Z]z(t) is continuous w.r.t. t}

be the space of continuous Z-valued functions. Define the sample and zero-order hold
operators of period T by

S : ((0,00;Z) — &§(0,00; Z)

Sz {z(0),-- -, z(k) = 2(kT), -}

H : §(0.00:2) — PCr(0,00; Z)
Zstep = H »

2

H

z (2.4)

D>
I3 ]
—_
o
ot
—

such that
Zgep(t) = z(k), kT <t <(k+1)T,k>0.

Remark 2.3 The space of piece-wise constant functions
PCr(0,00; Z) = HS(0,00; Z) C Lo(0, 00; Z),

is dense in the space of square integrable Z-valued functions. We also have the natural
relation

C(0,00; 2) C PCr(0, 00; Z).
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Definition 2.4 (digital exponential stabilizability and digital exponential stabilizing con-
trol)

(2) Let @ = u(0),u(l), -, u(k), - denote a sequence in S(0,00;U). A piece-wise con-
stant control function

ustep(t) = (H?:L)(t),

is called a digital exponential stabilizing control for the initial value problem (2.1)
if, for u(*) = ustep(+), the solution to (2.1) decays exponentially to zero as t tends to
infinity, t.e.

IM > 1,a>0 st |la(t)]y < Me *||zo|lx- (2.6)

(¢6) A pair (S(-), B) is called digital exponentially stabilizable if there exists a digital
control law in feedback form, i.e. if there ezists a feedback operator F € L(X,U)
such that for the control function of the form

Ugep(t) = Fx(k), kT <t<(k+ 1T

the solution to the initial value problem decays exponentially to zero as t tends to
infinity.

Then the digital optimal control problem for infinite-dimensional systems with bounded
input and bounded output operators can be formulated as

min Jz (%o, Useep()) - (2.7)

ueUS NPCr(0.004)

As is well known (see Lee, Chow and Barr [60], Hager and Horowitz [43] or the recent
paper of Rosen and Wang [73]), under certain circumstances the solution to this problem
can be expressed in the state-feedback form, i.e. there exists a feedback gain operator
F € L{X,U) such that for all zg € X

ugiep(+) = Fa (-, 20, ugiip ()

step step
or expressed alternatively,
usho(t) = (HF#) = Fa(k), kT <t<(k+1)T, k>0,

where ugfa,(-) is the input for which the minimum in (2.7) is attained and, in addition, it

is an exponentially stabilizing control law.
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2.1 Pritchard-Salamon systems

As it is well known, most of the interesting infinite-dimensional control systems encoun-
tered in practice do not fall in the framework of systems with bounded input and output
operators. For systems formally described by

z(t) = Axz(t)+ Bu(t), z(0) = =z, (2.8)
y(t) = Cz(t)+ Du(), (2.9)

the unboundedness of the B and the C-operators is usually considered in the sense of
admissibility. One special class of infinite-dimensional systems with unbounded B and
C-operators has recently captured the attention of specialists due to its nice structural
properties especially related to the linear quadratic control problem. It is the so called
Pritchard-Salamon class of systems (see Pritchard and Salamon [70]).

Definition 2.5 (admissible input and output operators) Let W, X', V, U, Y be real sepa-
rable Hilbert spaces and suppose that

WX oV,

Let SY(-) be Co-semigroup with the infinitesimal generator AV on V which restricts to a
Co-semigroups S*(-) and SW(-) with infinitesimal generator AY and AY on X and W,
respectively.

(i) An operator B € L(U,V) is called an admissible input operator for S(-) with respect
to (W, V), if there exists some t > 0 and ¢ > 0 such that

/Ut S(t = 7)Bu(r)dr € W (2.10)

and

M S(t — 7)Bu(r)dr

w < ellu()lzao.ean (2.11)

for all u(-) € La(0,00U4).

(%) An operator C € L(W,)) is called an admissible output operator for S(-) with
respect to (W, V), if there exists some t > 0 and ¢ > 0 such that such that

ICSC)zll Ly < cllzllv (2.12)

forallz eW.
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Remark 2.6 The admissibility of C' tmplies that the linear map from W to L(0,00;)),
denoted by x — CS(-)z has a unique bounded extension from V to L1(0,00;)). We shall
denote it for every x € V by z — CS(-)z.

Definition 2.7 (Pritchard-Salamon systems)

Let B € L(U,V) and C € LIW,)) be admissible input and output operators for SY(-)
with respect to (W, V) and suppose that D € L(U,Y). Then the linear infinite-dimensional
system given by

o(t) = Sv(t)xo—k/otSv(t-T)Bu(‘r)d‘r (2.13)

y(°)

I

m(-)zoJrc/O' S(- — 7)Bu(r)dr + Du(-), (2.14)

where o € V and u € L12°°(0, oo;U) is called a Pritchard-Salamon system and is denoted

by £(S(-), B,C, D). If in addition
D(AY) - W (2.15)

then we call the system a smooth Pritchard-Salamon system.

Remark 2.8 (Properties of Pritchard-Salamon systems)

Hypotheses (2.10) and (2.11) implies that for every xo € W and every u(-) € L,(0,t;U)
formula (2.13) defines a continuous function z(-) on the interval (0,t) with velues in W.
The output function can be defined by

y(t) = CS(1)ro+C "S(t - 1) Bu(r)dr (2.16)

and it is a continuous function on the interval (0,t) with values in Y

If 2o € V, then x(') is only a continuous function with values in V and (2.16) does not
make sense directly. But if hypothesis (2.12) is satisfied, then the right-hand side of (2.16)
is a well-defined Ly-function with values in Y.

Remark 2.9 The motivation why admissible input and output operators are suitable can-
didates for possible unbounded control and observation operators has been given in Salamon
[75, 76] and G. Weiss [82, 84, 85] in connection with the well-posedness of abstract linear
control systems, abstract linear observation systems on Banach spaces and regular linear
systems on Hilbert spaces, respectively. Intuitively, even when unboundedness of B is al-
lowed as above, we would like that the solution to the state differential equation (2.8) to
have sense. Due to unboundedness,

[: S(t — r)Bu(r)dr
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is basically a function with values in the large space V but if admissibility of B is assumed
then it restricts its values to W. On the other hand, the observability map z — CS(-)z
is well defined only on the smaller space W. Its action on the state space X' is considered
only for its continuous extension.

One can notice that the restricted controllability and extended observability mappings
are acting also on X. Their common action on X is referred as the overlap of control and
observation. It represents a intrinsic feature of systems with unboundedness and it is a
direct consequence of the admissibility of the B and C operators.

Remark 2.10 Notice that in Definition 2.7 admissibility of B and C has been considered
with respect to (W,V) and the X -space satisfying W — X — V has played no role so
far. Its only purpose is to define a dual systems (see Definition A.8 from Appendiz A.2).
However, if B and C are admissible control and observation operators with respect to
(W.V) then B and C are also admissible control and observation operators with respect
to (X,V) and (W, X), respectively. There are certain applications where B and C are
such that the admissibility with respect to (W,V) is not satisfied, despite the fact that
admissibility condition of B and C with respect to (X,V) and (W,X), respectively, is
fulfield. Figure 2.1 shows the overlap of the control and observation mappings with respect
to the state space X.

W X \Y

D
U Y

Figure 2.1: The overlap of the control and observation mappings

2.2 Pritchard-Salamon-Popov triples

We shall formulate firstly the digital control problem for Pritchard-Salamon systems in its
full generality in the same spirit as we did in the bounded case at the beginning of this
chapter and, after that, we shall explain why the problem is difficult and interesting and
what can be done to surmount those difficulties.
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The Popov triple and the associated concepts have been generalized for Pritchard-
Salamon systems in M. Weiss [87]. We report here the following

Definition 2.11 Let W, V and U be real separable Hilbert spaces and suppose that W is
contained in V with continuous dense injection (W — V). Let SY(-) be a Co-semigroup
with the infinitesimal generator AY on V which restricts to a Cy-semigroup SYW(-) with
infinitesimal generator A", on W. Let B € L(U,V) be an admissible input operator for
SY(+) with respect to (W, V). Let Q@ = Q* € L(W) be an admissible weighting operator
for SY(-) with respect to (W,V), i.e. Q is an admissible output operator and there exists
M > 0 and t such that for every z,y € W

[ @™ (7). ™ )wldr < Mizlvllv]. (217)

Then a triple of the form
W (@ Ly
z (5 (), B,M = ( I R ) =M > , (2.18)

with L bounded in such a way that L* € L(W,U) is an admissible output operator for SV(-)
with respect to (W, V) and R = R* € L(U) is called a Pritchard-Salamon-Popov triple on
(W — V. U). We shall call M defined in (2.18) the Popov index.

In Figure 2.2 we have represented the mappings generated by a Pritchard-Salamon-

Popov triple
Q Q W 1%
L

RQU

Figure 2.2: The mappings generated by a Pritchard-Salamon-Popov triple

Similar to the definition of Pritchard-Salamon systems, a Pritchard-Salamon-Popov
triple on (W — V,U) is called smooth if condition (2.15) is satisfied and it shall be called
regular if the operator R is boundedly invertible.

Definition 2.12 Let £(S(-), B,C, D) be a Pritchard-Salamon system.
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(¢) The pair (S(-), B) is called admissible (boundedly) stabilizable if there exists an
admissible output operator F' € L(W,U) (an operator F € L(V,U)) such that the
perturbed C°-semigroup Sr(-), generated by AY + BF, is exponentially stable on W
and V.

(i¢) The pair (C,S(-)) is called admissible (boundedly) detectable if there exists an ad-
missible input operator H € L(Y,V) (an input operator H € L{Y,W)) such that the
perturbed C®-semigroup Sy(-), generated by AY + HC, is exponentially stable on W
and V.

The following result [33] gives the relationship between the two concepts of stabilizability
quoted above

Proposition 2.18 The following hold
(¢) The pair (S(-), B) is admissibly stabilizable if and only if is boundedly stabilizable.

(i) The pair (C,S(-)) is admissibly detectable if and only if is boundedly detectable

Let us assume that (SY(-), B) is admissibly (boundedly) stabilizable. As in the bounded
case we shall associate with the Pritchard-Salamon-Popov triple an initial value problem
and a quadratic index. The first one is easy to define. It is given by

i(t) = A¥z(t) + Bu(t), z(0) =20, zo€ V. (2.19)
The set of admissible control functions is now
14
o 2 {u(-) € La(0, 00;U)|2(t) = S”(t)zo +/0 S¥(t — 7)Bu(r)dr € Lg(O,oo;V)}(2.20)

Notice that if (SY(-), B) is admissibly stabilizable, then UZ3 # {#}. Hence, for any
To € W there exists u(-) € UJ3,, such that the state function z(-) is a square integrable
W-valued function and then the (infinite-time horizon) quadratic index associated with the

Pritchard-Salamon-Popov triple £(S(+), B, M) is well defined by the quadratic functional

Js (20, u(-)) é/ow(( ch* IL% ) ( zg; ) , ( zg:g ))wxudt, (2.21)

where z(-) is the mild solution to the initial value problem (2.19). Martin Weiss showed in
[87] that Jg (2o, u(-)) defined by (2.21) can be extended to a bounded quadratic functional
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for zo € V and u(-) € U2 . This was done as follows: define for a Pritchard-Salamon-

Popov triple £(5(-), B, M) the following operators
®F o Z s Ly(0,00; 2), (@%2) (1) = SE(t)z (2.22)
¢
U Ly(0,00;U) — L2(0,00; W), (Vu)(¢) :/0 S¥(t — 7)Bu(r)dr, (2.23)

where Z is either W or V. Notice that ®" = Y|,y and the mild solution to the initial
value problem (2.19) is

z(-) = ®Yaxo + Vu(-).

In this case, for any zo € W and u(-) € UJ,.,, the quadratic index (2.21) admits an
equivalent operator expression given by

Jx (zo,u(-)) £ (( z‘i 77'; ) ( u“”(?) )( :((-)) ))WxLz(ovwm, (2.24)
where
Po : W—W , Po 2 ((I)W)*Q(DW:PS
P W —s Ly(0,00;U) L P2 (UQ+ LYW . (2:25)
a

R ¢ Ly(0,00;U) —> Ly(0,00;U) . R R+ LU+ UL + ¥ Q¥

Now, for any z¢ € V the quadratic index is defined as

P P
a0 2 7 R ) () (5 Pvetsoman (2.26)
where
P V—V Pox 2 P
o e e (2.27)
P V— Ly0,00;) , P = L*V 4 UrQoW

and where P is defined by the extended sesquilinear form
(Pe,y)y 2 (Pz,y)w = / (QS™ (t)z, SW(t)y)wdt, Y,y € W. (2.28)
0

Here L*®W and Q&YW denote the bounded extensions to V of the operators L*®" and
Q®", extensions which exists due to the fact that L* is an admissible output operator and
@ is and admissible weighting operator, respectively.
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2.3 Digital feedback control law

Definition 2.14 Let S(-) be a Cy-semigroup on W — V, B € L(U,V) be an admissble

input operator and consider the initial value problem on W
i(t) = Az(t) + Bu(t), zo € W, (2.29)

where AW is the infinitesimal generator of SW(-). Let F € L(V,U) be a feedback operator
and let = {z(0),z(1),---,z(k), - -,} be the sampled state function.

(i) A piece-wise constant control function of the form
ustep(:) = (HFZ)(t) = Fz(k)
is called a digital feedback control law for the pair (S(-), B).

(i) If the solution to the initial value problem (2.29) under the digital feedback control
law decays exponentially to zero ast tends to infinity, i.c.

IMy > 1aw > 0 s.t. [[2(t)[lw < Mwe™ ™ |[zoflyy » (2.30)

then the digital feedback control law is called an exponentially stabilizing digital feed-
back.

We can formulate the digital optimal control problem for infinite-dimensional systems
with unbounded input and unbounded output operators that belong to the Pritchard-
Salamon class as follows: determine an exponentially stabilizing digital feedback u € U, N
PCr(0, 00;U) minimizing the quadratic index Jg (2o, Ustep(-))

in Jx (20, Ustep(*)) (2.31)

m
weUZD NPCr(0,00)

where Jg (2, ustep(+)) is defined by

I (2o, u(-)) 2 (( ;ﬁg 77; ) ( UI(?) ), ( f(o) ))WXLz(O,oo;U)v To EW.

The above formulation of the digital optimal control problem for Pritchard-Salamon sys-
tems shows clearly our intention to restrict to the case

zo €W (2.32)

and, anticipating a little bit, to be basically concerned only with stabilization on W. Our
choice is motivated by the following
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Minimum energy control problem The main digital control results we shall prove in
this thesis would be, consequently, meaningless if there would not exist at least one practical
control problem, whith the feedback generated by sampling the output rather than the
state, and which can be formulated as (2.31). Fortunately, the following minimum-energy
problem which has been addressed and solved in [13] is a sufficiently strong motivation for
our developments. Consider the Pritchard-Salamon system £ (S’v(-), B.C, D) described by
the system of equations (2.8), (2.9) subject to the initial condition z(0) = zo € X where
X is either W or V. Associated with ¥ (S'V(-), B,C, 0) is the following minimum-energy
cost function

Ty (o) 2 [T (MO + () de (2:33)

Interpreting (2.8) as the initial value problem and noticing that (2.33) is the quadratic
functional (2.21) for

Q=cC
L=0 (2.34)
R=1

then the control problem (2.31) is well posed in continuous-time if certain adequate as-
sumptions of admissible stabilizability /detectability are made. We would like to determine
a piece-wise constant control function which is generated from the sampled version of the
output, rather than from the discretized state function and to formulate properly the dig-
ital control problem. Recall that (see Remark 2.8) if o € W then y(t) is continuous
with respect to time and if zo € V then the output function has an interpretation only in
L;-sense given by the following expression

y(-) = O (o + 0/0 SY(- — 1) Bu(r)dr. (2.35)

In the first case the sampled version of the output function j = Sy is well defined while in
the second case it is not. Hence, when X = W the minimum-energy problem formulated
above admits a digital output-measurement solution. In the second case, when X =V,
a Popov theory based result might also be developed to obtain a digital exponentially
stabilizing state-feedback solution, but such a construction, involving many mathematical
subtleties specific when one works on V, is beyond the main goal of this thesis. It represents
a promising direction for future research.
This example extends generalizes the following remarks

Remark 2.15 (i) An engincering approach to the control problem of Pritchard-Salamon
systems, i.e. a digital control based on the sampled of the output function is possible
only under the assumption (2.32).
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(é2) Notice that finding a solution to the digital state-feedback control problem has, in
the case of systems with unboundedness, more a theoretical impact than a practical
one. This is especially true since the time-discretized state function is obtained by
sampling a V-valued function, i.e. a function usually living in a Sobolev space. Thus,
the time-discretized state function has to be interpreted as “data generated by a
similar mechanism to practical sampling” rather than the periodical measurement of
a physical entity.

Remark 2.16 The first difficulty that arose in the digital control of Pritchard-Salamon
systems due to the way the sample operator is defined, i.e. it is represented as an operator
giving the pointwise value of a function. In [78] it is shown that it can be represented
by a finite-rank bounded integral operator with Li-kernel. The motivation behind such a
representation relies upon the fact that the sampling process can be viewed as being done
via short-time-window/wide-frequency-band filtering.

The second difficulty that arises in the digital control of Pritchard-Salamon systems is
due to the intrinsic structure of those systems. To be more clear, one feature of Pritchard-
Salamon systems is that stability on W(V) does not necessarily imply stability on V(W)
(see Example 2.1 from [33]). In [13, 15] the digital solution to the minimum-energy prob-
lem (2.33)-was obtained in terms of the solution to the so-called equivalent discrete-time
minimum-energy problem. Among different results proved therein, it is shown that the
same awkward feature is transferred to the equivalent discrete-time system, i.e. the power
stability of the discretized semigroup on W(V) does not necessarily imply power stability
on V(W). Thus, the digital exponential stability was considered with respect to the smaller
space W. In this thesis we adopt the same line as we did in [13, 15], i.e. we assume (2.32).
The difference with respect to the developments from [13, 15] is that here, we construct
a Popov theory based solution to the problem. Anticipating some facts, we shall be con-
cerned only with stabilizability under digital feedback on the smaller state space W. This
is especially true since we shall prove in one of the next chapters that an exponentially sta-
ble Pritchard-Salamon system with zo € W has a sampled state function # which belongs
also to W. The problem of stabilizing by digital state feedback simultaneously on W and
V spaces, is left as one of the future research direction open by this thesis.

Finally, it is worth mentioning that the assumption made on @ € £L{W), that of being
an admissible weighting operator, offers us the flexibility to give a digital solution to the
so-called nonstandard LQ-optimal control problems [80, 87], where

Q=Cr0 - CrC,

where Cy € L(W, 1), C2 € L(W,));) are admissible output operators (), }, are arbitrary
real separable Hilbert spaces).



2.4. Fzamples of Pritchard-Salamon systems 3t

2.4 Examples of Pritchard-Salamon systems

In the previous chapter we gave an example of a distributed parameter system with
unbounded input and output operators. In this chapter we have introduced a class of
infinite-dimensional systems with certain unboundedness in control and observation, the
Pritchard-Salamon class. Let us treat here some examples of systems that fall in this class.
We proceed by giving two examples of infinite-dimensional systems that are modeled using
either bounded or unbounded input and output operators, depending on the particular
control and observation that is used. The first example is a parabolic partial differential
equation with either distributed or boundary control, while the second example is a delay
differential equation (see [70]).
#(t) = Az(t)+ Bu(t), z(0) == o
EG{ y(t) = Ca(t)+ Du(t). (2.36)

Here, the state 2(-), the control u(-) and the observation y(-) are all functions of time with
values in certain Hilbert spaces. Furthermore, A is the infinitesimal generator of a Co-
semigroup, B is the (possibly unbounded) input operator, C' is the {possibly unbounded)
output operator and D is the feedthrough operator. The system Y is usually represented
by the mild solution to the differential equation (2.36):

o x(t)
¢ { y(t)
where S(-) is the Co-semigroup generated by A (the reader is referred to [68] for more on
the concept of mild solutions).

S(t)xo + f§ S(t — s)Bu(s)ds
Cx(t) + Du(t),

I

(2.37)

Example 2.17 (A parabolic PDE. The bounded case)
The temperature distribution in a heated rod is described by

0 e = L2 ey bty 150 0 1
5;(6,‘)—:0?? )+ b(&)u(t), t> <€ <,
00 =0, G011 =0 t>0, ,
y(t) = [y e§)=(&, t)dé t >0,

2(£,0) = 20(¢) 0<é<l

where b(-) and ¢(-) are elements of Ly(0,1). Here z(¢, £) represents the temperature profile
at time ¢, b(£)u(t) represents the addition of heat along the rod and y(t) is some averaged
measurement of the temperature. Choosing the state space X = L,(0,1) with the state
function

2(t)=z(t,6), t>00<£&< 1,
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the PDE can be modeled as

S(t)xo + Jy S(t — s)Bu(s)ds
Cz(t).

——
< 8
—~—
R
— =
[

Here S(-) is a Cy-semigroup on X with infinitesimal generator A, the input operator B
and the output operator C are defined by

D(A) = {z€X|x, % are absolutely continuous, j,%; € X and %z-([)) = ;—:(l) = 0},
_ dz
T
Bu = b()u,
Ce = <c),z()>r.
Furthermore, the initial condition zo € X is given by z¢(§) = z(£,0). It is easy to

see that both the input and the output operator are linear and bounded: B € L(R,X)
and C € L(X,R). Notice that for smooth input functions u(-) and for initial conditions
zg € D(A), the state function z(-) is differentiable (with respect of the topology of X').

Example 2.18 (A delay differential equation. The bounded case)
Consider the delay differential equation

{i(t) = Apz(t) + Apz(t — 2) + Bru(t),
y(t) = Ciz(t),

where 2(¢) € R",u(t) € R",y(t) € R?, Ap, A € R™", By € R™™ and Cr € RP*"*. This
delay differential equation is a very simple example of a retarded functional differential
equation and we shall show how it can be modeled as a system of the form (2.37). Define
the product Hilbert space M, = R™ x Ly(—2,0 ; R") (with the obvious inner product). For
every initial condition zp = (10, ¢o) € M, there exists a unique solution of (2.38) satisfying

(2.38)

ltillglz(t) =no, 2(7)=¢o(7); —2<7 <0
In order to give the state of the system we define the solution segment
z(r)=z(t+71); —-2Z7<0;
(the past of z(-) up to 2 time units). Choosing the state space ¥ = M, with state function
z(t) = (2(t), z) € My,

it follows that the system (2.38) can be reformulated as a system of the form (2.37), where
S(+) is a Co-semigroup on the Hilbert space X, the input and output operators are given

by

Bu (Bru,0) for u € R™
Cr = Cm for z=(n,¢)e X
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and the feedthrough operator is given by D = 0. Hence, B € L(R™, X') and C € L(X,RP):
the input and output operators are bounded.

We have seen that the systems of Examples 2.17,2.18 can be modeled as semigroup control
systems of the form (2.37), with bounded input and output operators. This class of
systems has nice system theoretic properties and allows for extensions of important finite-
dimensional control ideas (see [35] and references therein). Furthermore, many partial
differential equations can be modeled in this framework, as well as many delay equations.
However, some infinite-dimensional systems are most naturally modeled using unbounded
input and output operators. This unboundedness is usually a consequence of point or
boundary control and observation. Delay equations with delays in the inputs or cutputs
lead to unbounded control and observation operators as well. Let us modify Examples
2.17 and 2.18 in such a way that those modeling features are captured in the new set-up.
We shall consider the parabolic PDE of example 2.17 with boundary control, rather than
distributed control and we show what happens to the delay equation of Example 2.17 if
the output y(-) depends on the past z(-), rather than on z(#).

Example 2.19 (A parabolic PDE. The unbounded case)
The temperature distribution of a heated rod with boundary heat control may be described
by

(6 t) = gfz(ft) t>0 0<é<l,
(‘) dz
05(0 1) = u(t), df(l ty=0 >0,
y(t) —fo c(£)z(&.t)dE t> 0,
2(£,0) = z(¢) 0<é<1

where ¢(-) € L,(0,1) (as before, the output y(¢) is some averaged measurement of the
temperature). Formally, the PDE may be expressed as

0z 9%z
E(ﬁ’ t) = 3—62(57'5) — bou(t),

where & denotes the Dirac delta impulse at £ = 0 (actually, this can be done in a rigorous
way, using distribution theory, see Salamon [75]). In fact, choosing the state space X' =
L»(0,1) with state function

z(t) =2(8,8), t>00<&<1

as in Example 2.17, this equation can formally be modeled as a system of the form (2.37)
with the same Co-semigroup S(-), the same (bounded) output operator C and with B given
by Bu = —§yu. The difference with Example 2.17 is that now b(-) is not an L,-function,
but a distribution. Hence B ¢ L(R,X): we say that the input operator is unbounded.
In the next chapter we shall see how one can interpret now the system equations (2.37)
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in a rigorous manner. The technique used is to introduce another Hilbert space V that
contains X and is such that B € £L(U,V). Furthermore, B and C satisfy the admissibility
requirements which should be used in the interpretation of (2.37).

Example 2.20 (A delay differential equation. The unbounded case)
Consider the delay equation

{ £(t)
y(t)
where z(t) € R*,u(t) € R™,y(t) € R? and the matrices Apn, Ap, By and C; are as in

Example 2.18, with a notable difference with respect to Example 2.18, that of having a
delay in the output equation for y(t). The state equation can still be given by

Aﬂz(t) + Amz(t - 2) + Bfu(t),

Gt 1), (2.39)

2(8) = S(t)z0 + /Ot S(t — s)Bu(s)ds,

where S5(-) is the same Cy-semigroup on the same state space X' = Mz = R"x L5(-2,0; R"),
B € L(R™, X) is the same (bounded) input operator and g is the same initial condition
as in Example 2.18. Defining < 6,4 >= ¢(z) for ¢ € C(—2,0 ;R™), we can express the
delayed output equation for y as in formula

y(t) = Ca(t),
where C is given by
Cx=Cs < b_q,¢ >= Csp(=1) for =z =(n,9).

It follows that C ¢ L£(X,R?), because an element of Ly(—2,0 ;R™) does not have any con-
tinuity properties in general: C is unbounded with respect to X'. Due to an ‘admissibility’
property of B, the second component of z(t) is an element of C(—2,0;R") for all ¢ > 0 if
the initial condition is smooth. Furthermore, C satisfies another ‘admissibility’ property
so that this can somehow be extended to initial conditions in X = M; and formula (2.37)
makes sense.

It is worthwhile, finally, to note that one of the simplest delay systems, namely the
system represented by the transfer function

e"Cf(SI — Af)-l B,

where Ag, By and C are matrices of appropriate dimensions, can be described in the above
formulation (take An = Af and A, = 0 in formula (2.39)).

Next, we show how the systems of Examples 2.19 and 2.20 can both be formulated as
Pritchard-Salamon systems. The delicate problem is to find the right choices for W and
V, so that the input and output operators satisfy the admissibility conditions.
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Example 2.21 (Continuation of Example 2.19)

In order to formulate the parabolic PDE with boundary control of Example 2.19 as a
Pritchard-Salamon system, we first consider a more general type of parabolic system. Let
A be a self-adjoint operator on a separable Hilbert space X’ and suppose that it has compact
resolvent and that its spectrum consists of strictly decreasing real eigenvalues A, ;n € N
with eigenvectors ¢, € X, ||¢.]lx = 1. In this case {¢, ;n € N} forms an orthonormal
basis of X so that for all z € X,

oo o0
D <z,¢,>%< 00 and T= <T,4, >x b
n=0 n=0

A can be represented as

D(A) = {z€X | X2, <z, >5< 00}
(2.40)
Az = Zzozg An <z, ¢n >x ¢n
and the Cy-semigroup S(-) generated by A is given by
S(t)z = E exp(Ant) < z, ¢, >x bu. (2.41)

n=0

Now let 3, and v, be positive sequences satisfying 0 < 3, < 1 < v, < oo and suppose
that W and V are determined by

n=0

Vi={ze X |3 8 <z,¢, >4< o0},

n=0
with the obvious inner products. Here we assume that X is identified with its dual, so that
V* C X = X* C V. This means that V can be represented as a space of sequences

V={ceR"|Y B.z < oo}
n=0

and the injection X C V is given by identifying z € X with the sequence {< z,4, >»
;n € N}, Finally, let B € £L(R,V) and C € L(W,R) be given by

Bu={bu;n€N} and Cz=Y cn <2, bu>r,

n=0

where the sequences {b, ;n € N} and {c, ;n € N} are such that

> BubE < oo and >yt < oo (2.42)
n=0

n=0
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It is not difficult to show that B and C are admissible with respect to (W, V) if

2

7"111
Z ™ < oo and Z ﬂnl)‘ l (2.43)

n=np n=ng

where ng = 14+max{n € N| A, > 0}. Furthermore, given sequences b,,c,, A, € R such
that A, is strictly decreasing and A, | —oo, there exist sequences 3,7, such that the
inequalities (2.42)-(2.43) are satisfied if and only if
b‘n n
< o (2.44)
Anl

=S
n=ng | n

(see {70, Lemma 4.4]). This last result particularly shows that B and C cannot be ‘too
unbounded’ with respect to X. Furthermore, it shows that B can be ‘more unbounded’ as
long as C is ‘less unbounded’ and vice versa. We mention that the condition D(AY) — W
is satisfied, provided that +,, 8, are chosen appropriately.

Finally, we can formulate the parabolic PDE with boundary control of Example 2.19 as
a Pritchard-Salamon system. Choosing X' = L,(0, 1) it follows that A is indeed self-adjoint,
that it has compact resolvent and that it is of the form (2.40), where Ap =0 ;¢¢ = 1 and
A = —n?7? ; $,(€) = V2cos(nmé) for n > 1. Recall that the input and output operators
were given by

b=

Co= [ d)a(e)dt, o) e X,

and
Bu = —éu.

Hence we get ¢, =< ¢(-), ¢n >x ;n € Nand by = —1 ; b, = —/2 for n > 1 and condition
(2.44) is satisfied if and only if

lenl ¢ o, (2.45)

n

M3

n=1

Since ¢(-) € X, we have %, ¢ < co and so condition (2.45) is satisfied. In fact, we can
choose the sequences 7, and 8, by 9, = 1 and 8, = n™2, n > 1. This corresponds to the
choice W = X and V' = Wh2(0,1) (the Sobolev space of absolute continuous functions
in Ly(0,1) whose derivative is in L;(0,1)). Hence, we have modeled Example 2.19 as a
Pritchard-Salamon system.

Finally, we note that we could allow for more unboundedness of the operator (', because
¢, is only required to satisfy (2.45). However, C' cannot be taken to represent a point
observation, because this would correspond to ¢, = V2, n > 1 and then condition (2.45)

would be violated.

Example 2.22 (Continuation of Example 2.20)
In order to model the delay differential equation of Example 2.20 as a Pritchard-Salamon



2.4. FEzamples of Pritchard-Salamon systems 37

system, we first introduce a much more general functional differential equation (cf. [70]),
so that the system of Example 2.20 will be merely a special case (in fact, here we consider
a system of the neutral type, rather than of the retarded type). Consider the system given
by

d
y (z(t) — Mz) = Lz + Boul(t),

t (2.46)
y<t) Cozt,
where z(t) € R",u(t) € R™,y(¢) € R? and z, is the solution segment defined by

Il

alr)=z(t+7); —-h<7<0; R>0.

We have By € R™™ and L, M, Cy are bounded linear functionals from C(—h,0 ;R™) into
R™ and R? respectively. It is easy to see that the delay differential equation of Example
2.20 can be reformulated as in (2.46), using

B = 2
M =0

L = Ain <8, >+Ap < b_o,->
By = B

Co = Cir<éy, >,

where < &5, ¢ >= ¢(z) for ¢ € C(—1,0; R").

Under some conditions (see [70, Example 4.1]), the system given by (2.46) has a unique
solution z(t); t > —h, for every input u(-) € L¥°(0,00;R™) and every initial condition
satisfying

ltilr(r)l(z(t) —Mz)=mne, 2z(r)=¢o(r); —h<7<0,

where 2o = (7o, d0) € My = R™ x Lo(—h,0;R"). Moreover, the evolution of the state
z(t) = (2(8) = Mz, 2) € M,
of the system can be described by
t
() = S(t)zo + / S(t — s)Bu(s)ds,
0

where B € L(R™, M;) maps u € R™ into the pair Bu = (Bou,0) and S(t) € L{M,) is the
Co-semigroup generated by the operator A given by

D(A) = {z=(n,¢)€ My | € W'y =4(0) — Mg},

Az (Lo, ).
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Here W' denotes the Sobolev space W'%(—h,0 ; R™) of absolute continuous functions in
Ly(—h,0 ;R"™) whose derivative is in Lo(—h,0 ;R*). Now D(A) can be considered as a
Hilbert space by choosing the inner product

< (77>¢)7 (77765) >p(a)=< @b, QS >wiz

and it follows that S(-) restricts to a Co-semigroup on D{A). The output y(t) = Coz of
the system may formally be described by

y(t)=Cz(t) = C(2(t) — Mz, 2),
where the output operator C is given by
C: D(A) - va Cz= C(nv ¢) = CO¢

We recall that by assumption Cp is a bounded linear map from C(—A,0 ; R") to R” so that
C € L(D(A),R?) but in general C ¢ L£(M,,R?). This last situation of course occurs in
Example 2.20, because there Co = C; < 6_1, >, which is not bounded on Ly(~2,0 ; R").

Using the fact that S(-) restricts to a Co-semigroup on D(A), a natural choice for W and
Vis W= D(A) and V = M,, because then C € L{W,R?) and B € L(R™,V) and we can
choose U = R™ and Y = RP. In {70] it is explained that now B and C are both admissible’
so that the neutral functional differential equation of Example 2.20 can indeed be modeled
as a Pritchard-Salamon system. Finally, we note that condition (2.15) is trivially satisfied
because of W = D(A), and hence, we have a smooth Pritchard-Salamon system.

Remark 2.23 We have seen two ezamples of infinite-dimensional systems with unbounded
input and output operators which can be formulated as Pritchard-Salamon systems: a class
of parabolic PDE'’s with Neumann boundary control in Ezample 2.21 and the class of neutral
functional differential equations of Ezample 2.22. In [70] the authors show that also certain
hyperbolic PDE’s can be modeled as Pritchard-Salamon systems. However, these systems
are in general only exponentially stabilizable if there is some internal damping. Furthermore
it should be noted that Dirichlet boundary control usually leads to input operators that are
‘too unbounded’ for the Pritchard-Salamon framework.
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Discrete-time control theory
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Chapter 3

Discrete-time Popov theory

Originally developed by Ionescu and Weiss [50] for finite-dimensional continuos and discrete-
time systems, the main results on discrete Popov theory have received a complete gener-
alization for the case of time-varying discrete-time systems on Hilbert spaces in (45, 46].
Among different results of Popov theory, the one giving the link between a quadratic
cost functional and the solution to the so-called Kalman-Szego-Popov-Yakubovitch sys-
tem, strongly related to Riccati equation theory, is, in our opinion, the most relevant. The
central result proved in [50, 45] was an equivalent condition to the the Popov positivity
condition expressed in terms of the invertibility of a certain Toeplitz-like operator. Imme-
diate applications, probably the most important ones, were to write down the solution to
the discrete-time LQ-optimal and H> control problems. In this chapter we give the main
results on discrete Popov theory from [45, 46, 50).

3.1 Discrete-time Popov triples. Basic concepts.

We shall begin this section by outlining some basic definitions that are needed for the
further developments.

Definition 3.1 (discrete semigroup)

(1) A discrete semigroup on X is an operator valued function A : N — L(X), which
satisfies

(a) AO = ]X;
(b) A = A'AI Vi, j € N.
(i) If px £ limgo, 1 log || A*

(1) A discrete semigroup A € L(X) is called power stable if there exist M,, > 0 and
0 < py <1 such that

x < oo then py is called the discrete growth bound of A.

A% < Mply, VE20.

41
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(iv) If in particular | A*||x < 1, Vk > 0 then the discrete semigroup is called a contraction
discrete semigroup.

Definition 3.2 (coercive operator)
A self-adjoint operator T = T* € L(X') is called coercive and we denote this by T > 0 if
there exists 6 > 0 such that

(Tz,z) > 8z|?

for all z € D(T).

Let X(A, B,C, D) be an infinite-dimensional discrete-time system satisfying the set of
equations

(oz)(k) = Az(k) + Bu(k)
E{ y(k) = Cz(k) + Du(k) (3.1)

with the discrete-time semigroup 4 € L£(X) assumed power stable, B € L(U,X), C €
L(X,Y) and D € L(U,D). '

Definition 3.3 (Lyapunov transformation. Lyapunov similarity.)

(i) A bounded operator for which the inverse ezists and is also bounded is called a Lya-
punov transformation.

() Two bounded operators Ay and Ay are called Lyapunov similar if there exists a Lya-
punov transformation T such that

A2 = TA]T—I.

(é) Two infinite-dimensional discrete-time systems on X, L1( A1, By, C1, D1) and £5(Asz, Bz, Ca, D,
D), satisfying the set of equations (3.1) are called Lyapunov similar if there exists
a Lyapunov transformation such that

Ay = TAT™, (3.2)
B, = TB, (3.3)
Cy, = T (3.4)

(3.5)

We shall denote the Lyapunov similarity of two systems by

21 ~r 22.
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Definition 3.4 (controllable and observable system)

Let X(A, B,C, D) be an infinite-dimensional discrete-time system satisfying the set of equa-
tions (3.1) with the discrete-time semigroup A € L(X') assumed power stable, B € L{U, X),
CeLlL(X,Y)and De L(U,D).

(1) The pair (A, B) is called controllable if the controllability gramian P = P* € L(X)
defined by

= i A'BB*(A™Y (3.6)

i=0
is coercive.

(2¢) The pair (C, A) is called observable if the observability gramian Q@ = @Q* € L(X)
defined by
QES (A CrCA (3.7)

=0

s coercive.

Definition 3.5 (power stabilizable and power detectable system)

Let X(A,B,C, D) be an infinite-dimensional discrete-time system satisfying the set of
equations (8.1) with the discrete-time semigroup A € L(X) assumed power stable, B €
LU, X), CeL(X,Y) and D € LU, D).

(¢) The pair (A, B) is called power stabilizable on X if there exists F € L(X,U) such
that the discrete-time perturbed semigroup A+ BF is power stable on X.

(i) The pair (C, A) is called power detectable X if there exists H € L(Y,X) such that
the discrete-time perturbed semigroup A + HC is power stable on X

Definition 3.6 (inner system)

Let ¥(A, B,C, D) be an infinite-dimensional discrete-time system satisfying the set of equa-
tions (3.1) and let T € L(€(0, 00;U )}, £5(0, 00; V) be its input/output operator. The system
(A, B,C, D) is called inner if T°T = 1.
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Definition 3.7 (discrete-time Popov triple)
Let X and U be real separable Hilbert spaces. A triple of the form

Q@ Ly .
E(A,B,M:(L, R)_M>,

with A € L(X) a discrete-time power stable semigroup on X, B € LU, X), Q@ = Q* €
L(X), L e LU, X) and R= R* € L(U) is called a discrete Popov triple on (X,U).

We associate to the discrete Popov triple (A, B, M) the following objects
(7) The initial value problem
z(k+ 1) = Az(k) 4+ Bu(k), z(0) =z € X, (3.8)
where A € L(X), B e L(U,X).

(i7) The quadratic index

-2 () oo
(#é1) The class of admissible control sequences
2t 2 {00 € 60,00 (h) = At + T AUt € 0,000} (210

Remark 3.8 Since A has been assumed to be power stable on X, then
Uz, = £(0,00;U)
for every zo € X,

Let us define the following operators

D X — £3(0,00; X),(0z)(k) = AFz, (3.11)
U o £y(0,00;U) — £(0,00; X), (Bu(-)) (k) = kf A1 Bug(i). (3.12)

=0

Then, for every (zo,u(-)) € X x £3(0,00;U), the discrete-time initial value problem (3.8)
has a unique solution & € #3(0, co; X') given by

z(zg,u(-)) = Pzo + Yu(-). (3.13)
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Definition 3.9 (Discrete-time Riccati Equation. Stabilizing solution. Stabilizing feedback)
Let 5(A, B, M) be a discrete Popou triple on (X,U).

(i) The Riccati equation associated with ©(A, B, M) is defined to be the equation in the
unknown X = X* € L(X)

A"XA—X—(A"XB+L)(R+ B XB)"\(L" + B'XA) + Q = 0. (3.14)

(44) An operator X = X* € L(X) satisfying (3.14), for which R+ B*X B has a bounded
inverse and for which A+ BF is power stable on X with the operator F € L(X,U),
defined by

F2 _(R+B*XB)™Y(L" + B'X A), (3.15)

is called a stabilizing solution to the Discrete-Time Riccati Fquation (3.14) and the
feedback operator F' € L{(X,U) defined by (3.15) is called a stabilizing feedback.

Remark 3.10 If R+ B*X B has a bounded inverse, then a straightforward computation
shows that the Discrete-Time Riccati Fquation (3.14) is equivalent with the following so-
called Kalman-Szego-Popov- Yakubovitch (KSPY) system

V'V =R+ BXB
(KSPY){ W*V =L+ A"XB . (3.16)
W'W =Q+AXA-X

Furthermore, the discrete-time Riccali equation (3.14) has a self-adjoint stabilizing solution
X = X* > 0 if and only if the KSPY system (3.16) has a solution (V,W,X) with V
boundedly invertible, X = X* > 0 and A+ BV™'W power stable. We shall use the KSPY
system instead of the Riccali equation when we write down the solution to the discrete-
time H> control problem since it is a more convenient manner of expressing the stabilizing
feedback operator. The reader is referred for more details to Chapter 3 of [46].

The discrete quadratic functional admits an equivalent representation (see for details {45])

0 Po P
J(xo,u) = << z() ) , ( PE R ) ( z(()) ))xxz;(o,oo;u), (317)
where
Po :+ X — X, Ppo=0"Q9, (3.18)
P X 6(0,00,U), P=(VQ+ L)d", (3.19)

R £(0,00;U) — £(0,00;U), R=R+ L*V +V*L + U*QVU. (3.20)

The main discrete Popov theory result of this chapter represents the time-invariant coun-
terpart of Theorem 1 from [45]
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Theorem 3.11 Let X(A, B, M) be a Popov triple on (X,U). Then the following assertions
are equivalent

(i) R > 0.

(¢i) The discrete-time Riccati equation (3.14) has a stabilizing solution X such that R +
B*X B > 0 and the solution admits the following representation

X =Py—PR'P~ (3.21)

(%) The following Kalman-Szego-Popov- Yakubovitch system

V'V =R+BXB
(KSPY)! WV =L+ AXB (3.22)
WW =Q+AXA-X

has a stabilizing solution (X,V.W) with X = X*, V boundedly invertible and for
which A — BV™YW is power stable. Furthermore, the stabilizing feedback operator is
given by F = —V~1W.

(iv) The quadratic indez (3.9) can be expressed as
J(zo,u(-)) = ||V + Wl + (2o, Xzo) (3.23)
and it attains its minimum for the stabilizing state-feedback law
u=Fr=-V1W

and this equals (2o, Xzo)x.

For the proof of the above result the reader is referred to [46].

3.2 The discrete-time LQ-optimal control problem

An immediate consequence of Theorem 3.11 is the result on the solution to the optimal
(linear quadratic) control problem associated with the discrete Popov triple £(A4, B, M)

Theorem 3.12 Let ¥ (A, B,M = ( %* }Ié ) = M* | with A assumed power stable on X,

Be LU, X), Q=0 € LX), L€ L(X,U)and R= R € L{U) be a discrete Popov
triple on (X', U) and let UZ3 be the class of admissible control sequences defined by (3.10)
and

R : £5(0,00;U) — £,(0,00;U), R=R+ LU + V"L + T*QV
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is strictly positive. Then

. oA x(k) @ L < z(k) )
min  Je(ze,u(-)) = min O I . § 3.24

ity Pt = s, Z;f( u(k) ) ( L* R ) (k) Jloen 32
exists and equals (Xwzg, o) where X is a stabilizing solution to the discrete-time Riccati
equation (3.14). The minimum is attained for the input satisfying

u(:) = Fa(eo, u(-)),
with F the power stabilizing feedback operator given by (3.15).

Remark 3.13 Formula (3.21) is another strong motivation for the Popov approach to the
digital control of infinite-dimensional systems we took in this paper. It enables one to
compute the stabilizing solution to the Riccati equation (8.14), and in this way, the digital
exponential stabilizing feedback operator we are looking for. In the application part of this
thesis , where an example of a parabolic system which belongs to the Pritchard-Salamon
class of systems is considered, we show that computing the inverse of a real azis valued
operator enables us to write down the solution to the associated digital optimal control
problem.

3.3 The discrete-time H*™ control problem

The discrete-time H™ control problem has been addressed and solved in the finite-dimensional
case by several authors (Stoorvogel [77], Iglesias [49] and Ionescu and Weiss [51]). Its ex-
tension to the general case of infinite-dimensional discrete-time systems has been recently
made by lonescu and Halanay [46] where the discrete Popov theory has proved to be an
adequate tool for obtaining a state-space solution to the problem. In this section we are con-
cerned with the discrete-time H> control problem in its most general form. Let us make
this statement more clear. The basic model considered here is the infinite-dimensional

discrete-time system
(a0 (G)(50 %))

satisfying the set of equations
{ (ox)(k) = Az(k) + Biui(k) + Byua(k)
Xa

y1(k) = Crz(k) + Dyyuq (k) + Dijus(k) (3.25)
y2(k) = Cz.r(k) + D21u1(k)

for k € N, where A S E(X) B] € E(Z/{],/F), B2 € E(HQ,X_), 01 € ,C(;v,y]), Dll S
L(U, V1), Dia € L{U2, Y1), D2 € L(Uy,Ds). We consider Uy, Uy, Vi and Y, to be the real
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separable Hilbert spaces of the disturbance input (ui(k) € Uy), control input (uz(k) € Uy),
controlled output (yi(k) € V,) and measured output (y2(k) € )b}, respectively. Here X
is the real separable Hilbert state space (z(t) € X). Unlike in [77] or [51], no structural
constraints of the form

D;2Dlg >0, (326)
DuD3 >0 (3.27)

are necessarily made on the plant. This general framework permits us to consider the
limiting case
D21 - 01

which is referred as to the singular discrete-time H™ control problem. The importance
of having available a solution to the singular discrete-time H* control problem becomes
evident in section 6.3 where we apply the discrete-time H™ control theory results of this
section in order to obtain a solution to the digital H* control problem. The only major
assumption we make on the infinite-dimensional discrete-time system is

A is power stable on X.

This is a requirement specific to the discrete-time Popov theory and details on how it can
be removed are discussed later on in this thesis.
Associated with the system (3.25) is the controller defined by the following dlscrete-tlme
system
(ozc)(t) = Acze(t) + Beya(t) .
3.
EK{ ws(t) = Cozelt) + Dea(t), 2c(0) € K (3:28)

where K is the real separable Hilbert controller state space (z.(t) € K) and A, B., C. and
D. are operators bounded on appropriate subspaces.
The resultant closed-loop system is given by

| (ozr)(t) = Arzr(t) + Bru(t)
o { n(t) = CRzR(t)RJr Drwuy(t) (3.29)

where
T
IR = .
A = A+ B,D.C, B,C.
R= B.C, Ae
B — By + By D Dy,
R= BcD21
O = Ci+ D12 D.Cy
" DixC
Dy = Dy + Dy DDy
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The augmented state space XAgr = X @ K is a real, separable Hilbert space under the inner
product
(zr, Tr)ap = {2, 2)x + (Zcr Tc)k

The system (3.25) can be written in an input-output fashion as

) _ Tu T Uy
Y2 Ty Tn uy )’

where T;; € L(£(0, c0;U;),£2(0, 00; ;) are the input/output operators from u, to y;, 7,7 =
1,2. U T¢ is the input/output operator associated to the controller then the closed-loop
input/output operator is expressed as the linear fractional transformation of the system

(3.25) and the controller (3.28)
Ty 2 F(T,T.) =Ty + ThaTo(I — TooT) Ty (3.30)

The discrete-time H* control problem consists in finding a controller (3.28) for the system
(3.25) such that

Stability: The closed-loop system (3.29) is internally stable i.e. Ag is power stable on
AR.

Attenuation: The closed-loop input/output operator is a contraction operator

1Tyl < 1.

Remark 3.14 The closed-loop interconnection of a system Lg defined (3.25) and the con-
troller £ defined by (3.28) will be denoted in this chapter by Egk. Its input/output op-
erator is the linear fractional transformation of the input/output operators of the system
and the controller.

Remark 3.15 The discrete-time H™ control problem will be referved as the state-feedback
discrete-time H™ control problem when

C, = I, (3.31)
Dy = 0 (3.32)

and as the singular discrete-time H* control problem when

Dy =0. (3.33)

The first basic results for the development of this section are given by the following
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Theorem 3.16 Let Ti, € L(£5(0, 00;U;),£2(0, 005 %)) and Toy € L{£5(0, 00;Us), £2(0, 005 1))
be the input/output operator from u; to yy and from uz to y;, respectively. Assume that
15,12 > 0, (3.34)
TuTy > 0. (3.35)
If £k defined by (3.28) is a solution to the discrete-time H™ control problem then the
following Kalman-Szego-Popov- Yakubovitch systems
V*JV =R+ B*XB
KSPY1: W*JV =L+ A*XB , (3.36)
W*JW =Q+ A XA-X
V-JV =R+ cCYC"
KSPY?: W+JV = L+ AvC* ) (3.37)
W JW =Q + AYA" - Y

associated to the following Popov triples

(4 (B By ) M=), (3.38)
So(an(¢r ¢ ) M=), (3.39)
with
a Q L CiCn ( CiDy CiDy )
M= (L* R) - D}, Cy DDy — I, D Dy C (3.40)
D1,Cy D3}, Dny D3, Dy
a8 (Q L B B;y ( B.Dy BuD; )
M = ( i~ R) = Dy By DuDy — Iy, DuDsy ) (3.41)
D, By Dy DY, Dy D3,

have stabilizing solutions (X, V, W) and (Y, v, W), respectively, where J = ( ~ I )
U

7 _ _I]ﬁ
and J = < I, )

Furthermore, X >0, Y >0, V and V have bounded inverses of the form

Vi 0 Wi
- , = , 3.42
v ( Vio Vi ) W ( W, ) (3.42)
o Vll ‘712 7 W]
oo () e (1) b

and A — BV-'W and A — WV-1C are power stable on X, for B = ( B, B, ) and

C:(g)
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The proof of Theorem 3.16 is essentially based on the following

Lemma 3.17 (Lemma 3.1, pp. 97 of [46])

Let (A, B,C, D) be an infinite-dimensional discrete-time system satisfying the set of
equations (3.1). Let T € L(£(0,00;U), £(0,00;Y)) be its input/output operator. Consider
the following discrete-time Popov triple

¢ C*D .
E(A,B,:W:(DC* DXD>:A/I)A (3.44)
Then
R=TT, (3.45)

where R is the operator defined by (3.20) associated with the discrete-time Popov triple
(3.44).

Proof Recall that the solution to the initial value problem
(oz)(k) = Az(k) + Bu(k),z(0) = zo € X

1s given by
k-1
z(k) = AFzo + Z A1 Bu(i) = @z + Vu,
i=0
where @ and W are the operators define by (3.11) and (3.12), respectively. Then the output
function satisfies

k-1
y(k) = CA*zo + C S AU Bu(i) + Du = COzo + CWu + Du. (3.46)

1=0
For zero initial value, i.e. o = 0, the input/output operator is defined by
T : £3(0,00;U) — £3(0,00;)), y=Tu.
A simple inspection of (3.46) shows actually that 7' can be expressed in the following way
Tu = CWu + Du. (3.47)
A straightforward computation gives
T*Tw = D*Du* + DC*Wu + 9*C*Du + U*C*CVu, (3.48)

where

U™ (0,00, X) — £(0,00;U), Vz)(k)= 3 B (A)™* ' 2(a),
t=k+1
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which is precisely the operator R defined by (3.20) associated with the discrete-time Popov
triple (3.44).

L]

Proof( of Theorem 3.16 )

Apply Lemma 3.17 to T};T1, and 75Ty, respectively. It follows that they are equal
with the R-operators associated with the discrete-time Popov triples (3.38) and (3.39),
respectively. Apply now Theorem (3.11). It follows that the corresponding Kalman-Szego-
Popov-Yakubovitch systems have stabilizing solutions such that A — BV~!W and A —
WV-1C are power stable on X. For the proof of the fact that V and V have upper-block
and lower-block triangular forms the reader is referred for technical details to Section 5 of
[486].

]

Remark 3.18 The result given by Theorem 8.16 represents the set of necessary conditions
for the ezistence of the solution to the discrete-time H™ control problem.

In the sequel of this section shal be concerned with the set of sufficient conditions for the
existence of the solution to the discrete-time > control problem. We shall consider two
modified systems that we obtain by the following change of variables

Uy 2 Viiur + Wiz, (3.49)
Varur + Vopuy + Woz, (3.50)

e 1

with Vi1, Wy, Va1, Voo and W, as in (3.42).

Remark 3.19 The above change of variables is a natural step and it is suggested by the
form (3.23) of the quadratic cost function in Theorem 3.11.

Substitute

ur = Vi — Viy' Wiz
into (3.25) and replace y; by §; (notice that Vj; has a bounded inverse since V has a
bounded inverse). We obtain the following modified system associated with (3.25)

(oz)(k) = Aoz(k) + Borii (k) + Boua(k)
Zo§ #1(k) = Corz(k) + Dontn(k) + Doraua(k) (3.51)
y2(k) = Cozx(k) + Dozt (k)

where

Ao = A— ByV7'W, (3.52)
Boy = BV, (3.53)
BOZ = Bz, (3.54)
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Co1 = Wo— Vo Vi'Wy, (3.55)
Coz = Co— DnVi'Wy, (3.56)
Don = Vzlvﬁl, (3.57)
Doz = Vp, (3.58)
Doy = DaVi (3.59)

The key of the above change of variables is the following two results

Proposition 3.20 (Proposition 5.1 pp. 161 and Proposition 6.1, pp 166 of [46])

(i) The quadratic indez corresponding to the discrete-time Popou triple (8.38) associated
with (3.25) can be expressed as

J(@o,u(-)) = —llwllz + s llz- (3.60)

(i) Assume that
T1*2T12 > 07
where Thy € L(£5(0, 00;Uy),€5(0,00;)s)) is the input/output operator from uy to y.
If the change of variables (3.49) and (3.50) is performed, then

lallz + llyal3 = a3 + llg:i3- (3.61)

Theorem 3.21 (Theorem 2.3 pp. 150 of [{6])
Let Tz € L{£,(0,00;Uy),£2(0,00;),)) and Ty € L(£2(0, 00;Us), €2(0, 00; 1)) be the in-
put/output operator from u; to y; and from uy to yy, respectively. Assume that

Ty, Tz > 0, (3.62)
T Ty > 0. (3.63)

If Xk defined by (3.28) is a solution to the discrete-time H™ control problem for the system
Eg defined by (3.25), then the Kalman-Szego-Popov- Yakubovitch system (3.37) written for
the modified system Yo define by (3.51) has a stabilizing solution denoted (Yo, VO,WO)
with Yo > 0.

Remark 3.22 Equality (3.61) and the results of Proposition 3.20 suggests that Sx defined
by (3.28) represents a solution to the discrete-time H™® control problem for the system Tg
defined by (3.25) if and only 1f it is a solution for the modified system Lo define by (8.51),
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We have seen until now that the existence of a solution to the discrete-time H* con-
trol problem implies the existence of stabilizing solutions to two Kalman-Szego-Popov-
Yakubovitch systems defined by (3.36) and (3.37), respectively. This fact implies the
existence of stabilizing solutions to the first Kalman-Szego-Popov-Yakubovitch system
considered above, namely the one defined by (3.36) and to another Kalman-Szego-Popov-
Yakubovitch system defined by (3.37) associated with the modified counterpart of the
original infinite-dimensional discrete-time system. In [46] it is shown that those conditions
are also sufficient as it is stated in the following

Theorem 3.23 (Theorem 8.1, pp. 178 of [46])
Consider the infinite-dimensional discrete-time system

(atm 2.(8): (5 %))

and assume that the Kalman-Szego-Popov- Yakubovitch system (8.36) written for g defined
by (3.25) and the Kalman-Szego-Popov-Yakubouvitch system (3.37) written for the outer
system Lo defined by (3.51) have stabilizing solutions. Then there ezists a solution to the
discrete-time H™ control problem.

We shall outline in the sequel of this section the main steps on which the effective con-
struction of the solution to the discrete-time H* control problem is based upon. Consider
again the change of variables (3.49) and (3.50) but this time in connection with the infinite-
dimensional system which expresses the transition

(u1,51) = (1, 8). (3.64)
A straightforward computation shows that the above mentioned system is given by

(a.z‘)(k) = Alz(k) + Bnﬁ](k') + Bm]]1(k)
L1 yi(k) = Cnz(k) 4+ Dt (k) + Du2in(k) (3.65)
t1(k) = Crz(k) + Dty (k)

Dna = DpViy',
DI21 = VII-

where

A = A BVE'W,, (3.66)

Bn = By— BVy'Vy, (3.67)

B, = BVy', (3.68)

Cn = C,— DpVy'W,, (3.69)

Cr = Wi, (3.70)

Dy = Dy — D12V2;1V21, (3.71)

(3.72)

(3.73)
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The system ¥y defined by (3.65) is of a special type, and its structure is the cornerstone of
the set of sufficient conditions for the existence of the solution to the H* control problem.

Proposition 3.24 ( Proposition 7.1 pp. 174 of [{6])
Let us consider Ty defined by (3.65) and L1 defined by (3.65) and consider their closed-loop
connection Xyjo. Then Lio and X are Lyapunov similar

L0~ Zg
modulo a power stable uncontrollable part.

Proof The closed-loop connection of ¥j and Yo is depicted in Figure 3.1

U M

Y2 u2
Figure 3.1: The connection of ¥ and Yo

The state space realization of the resultant system from

()= ()

is given by
wo = (P3R5 WThR). 619
Bio = (gj gz>, (3.75)
co = (Cpn it o heR) 379
Do = (g; giz) (3.77)



56 Chapter 3. Discrete-time Popov theory

F
the Kalman-Szego-Popov-Yakubovitch system defined by (3.36). Considered the following
Lyapunov transformation

. Az Na Iy 0 T
Tiog: XX — XX, T(fl')—(’“]x ]y)(l‘) (3.78)

The state-space realization of the system Xjo transformed via (3.78) is given by

with F' = B ) the power stabilizing feedback operator defined by 3.15) associated with

i a_ [ A —BFy
Ao = TART ' = ( 0 A+BF |’ (3.79)
B _ [ B B,
Bio = TBip= ( 0 0 ) ) (3.80)
5 C — D1 F
_ el 1 1241
CIO - CIO - ( 02 02 + D21F1 )7 (381)
Dioc = Do, (3.82)
A simple inspection of (3.79), (3.80), (3.81) and (3.82) leads to the conclusion.
A second property of the system (3.65) is given by the following
Proposition 3.25 ( Proposition 7.2 pp. 175 of [46])
The system i defined by (3.65) is inner
Proof Follows by direct computation.
=

For the inner system (3.65), Proposition 4 pp. 174 of [46] shows that the following
controller

& | oxze=Acr. + Beily
EK B { gl = Ccmc + Dcﬂl (383)

achieves the attenuation property
Tpuy <1

under the assumptions
Sc A, is power stable on K,

Ac T, < 1 where T, is the bounded input/output operator defined by (3.83).



3.3. The discrete-time H™ control problem 57

Proposition 3.24 shows that the closed-loop connection of ¥; defined by (3.65) and ¥o
defined by (3.51) (denoted ¥jo) is Lyapunov similar to the original system g defined by
(3.25) modulo a power stable uncontrollable part

Yo ~ 2g.

Hence, if Xk achieves attenuation and power stability for £, the corresponding closed-
loop system fulfils assumptions S¢ and Ac from above. This implies furthermore that the
closed-loop connection of ¥x and Yo (denoted Yok) connected in closed-loop with the
inner system X (denoted Yok ) is Lyapunov similar with the direct closed-loop connection
of Eg and Ex (denoted L.gx) modulo a power stable controllable part

Yok ~ Lgk-

In Figure 3.2 we have depicted the two equivalent systems configuration in the sense given
by the definition of Lyapunov similarity

! b i N
Y, a
T 1| 1
T
o)
y2 u2
TC

Figure 3.2: Two equivalent system configuration

At the end of this chapter a few final remarks

Remark 3.26 (i) The inner systems have been considered in the H* control theory
together with the so called outer systems. Basically, a stable system is called outer is
its inverse exists and is also stable. If T is the input/output operator of an arbitrary
discrete-time system with power stable discrete semigroup, one can show that if

T°T >0,



58

(i)

(iid)
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then there exists an inner system with input/output operator Ty and an outer system
with input/output operator To such that

T =TiTo. (3.84)
Relation (3.84) called the ineer-outer factorization.

The system To defined by (3.51) has properties similar with an outer system in the
sense that while the inner-outer factorization (3.84) involves the cascade connection
of two systems, denoted by an abusive but suggestive notation,

Y¢ = ¥iXo,

the “factorization”
Yg ~ Yo

involves the closed-loop connection of the two systems. While the first one operates
on the product of the input output oerators, the second one operates on their linear
fractional transformation.

If certain assumptions are made on the initial system X, the solution to the discrete-
time H* control problem can be effectively constructed in terms of the stabilizing
solution to te KSPY system (3.37) associated with $o. For details the reader is
referred to Chapter 4, Section 8 of [46].



Chapter 4

Discrete-time Hyland-Bernstein
theory

4.1 Introduction

Standard engineering practice shows that reduced-order controllers are preferred over high-
order ones. Various issues support this statement. It is sufficient to mention that a low-
order controller would be much easier to implement and much easier to be debugged than
a high-order one. If for finite-dimensional models the demand of a low-order control is
actually a matter of choice, specific to the particular control problem one has to solve,
in the case of infinite-dimensional models resulting from dynamics governed by partial
differential equations and/or delay equations, this demand becomes a vital one. This is
especially true since most of the “classical” finite-dimensional control issues have also been
addressed for the infinite-dimensional case. This implies that the controller has the same
dimension as the model (infinite-dimensional) and hence, will be unimplementable.

The demand of designing a finite-dimensional controller for an infinite-dimensional sys-
tem can be fulfilled in several ways. One choice is to design a controller for a certain finite-
dimensional approximation of the infinite-dimensional original plant. The most significant
effort that has been made for obtaining finite-dimensional approximation schemes is rep-
resented by the work of Glover et al. [38] where the solution to the optimal Hankel-norm
approximation of infinite-dimensional systems with error bounds is given. The characteris-
tics of such an approximation method is that it guarantees optimality only in the limit, as
the order of the reduced-order controller tends to infinity. As it was pointed out in Bernstein
and Hyland [23] there is no reason to consider a controller for a particular approximation of
the model as being optimal over the class of reduced-order controllers. Another approach
is to perform a controller-order reduction. The main ideas of the “closed-loop” reduction
strategies, clearly presented for the finite-dimensional case in Anderson and Liu [1] can be
carried out for the infinite-dimensional case as well. The third approach is to directly design
a fixed-order controller, optimal with respect to a given performance index. We refer to

59
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the work Bernstein and Hyland [23] which is the most relevant one in the continuous-time
case. The direct approach that enables the designer to avoid both model and controller
reduction is to consider the controller as having a fixed, specified structure and a given
fixed-order. Thus, the controller parameters are determined by solving a certain optimiza-
tion problem subject to an associated performance index. In Bernstein and Hyland [23]
the authors showed that the set of first-order necessary conditions for the quadratically
optimal continuous-time fixed-order dynamic compensation of infinite-dimensional systems
with bounded input and output operators can be transformed into a system of four coupled
matrix equations, two modified Riccati equations and two modified Lyapunov equations.

These equations are coupled by an idempotent operator which arises naturally from the
optimality constraint to the design process. Exploiting the optimal projection they also
gave a generalization of the classical LQG theory in the sense that the coupled Riccati
equations preserve the form of the Riccati equations involved in the LQG synthesis, the
separation principle breaks down and, only in the full-order case, the oblique projection
operator becomes the identity operator and the four coupled Riccati and Lyapunov equa-
tions are “decoupled”. Thus, the two modified Riccati equations reduce to the standard
pair of Riccati equations and the two modified Lyapunov equations express the fact that
the compensator was assumed to be minimal and strictly proper.

The developments for the discrete-time setting have been carried out in Bernstein et
al. [22] where the plant was assumed to be finite-dimensional, the order of the controller
strictly lower than the order of the plant. As in the continuous-time case the optimal
low-order compensator state space matrices are expressed in terms of the solutions of four
discrete-time coupled equations, i.e. two modified Riccati equations and two modified
Lyapunov equations. A characteristic feature of the discrete-time setting is the possibility
to have static feedthrough operator in both the estimator and the controller designs. The
results based on the optimal projection equations for the discrete-time case were extended
in Bernstein and Haddad [24] for systems with multiplicative white noise.

Starting with the work of Youla [93] the classical LQG control problem has been ad-
dressed from a frequency-domain (deterministic) point of view within the H? approach.
The complete solution to the continuous-time H?-optimal control problem was given by
Doyle et al. [37]. In the discrete-time setting a representative work is that of lonescu and
Weiss [52] where the generalization to the time-varying case was derived. In this paper we
are concerned with the fixed-order control of infinite-dimensional discrete-time systems.
The starting point is the set of necessary conditions for optimal fixed-order dynamic com-
pensation of infinite-dimensional continuous-time systems as developed in Bernstein and
Hyland [23] and their discrete-time finite-dimensional corresponding results from Bernstein
et al. [22]. One central problem we solve here is the extension of the main results from
[22] in the case of discrete-time infinite-dimensional systems.
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4.2 Definition and useful results

In this section we introduce the notation specific to this chapter along with basic definitions
and results for use in later sections.

Definition 4.1 Let A € L{X,Y). Then its image or range is defined as
Im(A) "2 R(A) £ AX = {Az|z € X}.

If, in particular, Im(A) is a finite-dimensional space, then A is called finite rank operator

and its rank is defined by
rank(A) = dim (Im(A)).

Definition 4.2 (projection operator)

(i) An operator T € L(X) is called a projection operator if 72 = 7. If in addition 7 = 7*
then it is called a orthogonal projection.

(i7) An operator 1 € L(X,R") is called an oblique projection operator if 7° = 7, but

TF#E T

Definition 4.3 (non-negative definite, positive definite and semi-simple matrices)
Let A e R™™.

(i) We shall say that A is non-negative definite if A is symmetric and zTAz > 0,
Vz e R™

(it) We shall say that A is positive definite if A is symmetric and zTAz > 0, Vz €
R", z#0

(i1i) We shall say that A is semisimple (see [72], pp. 13) or nondefective (see [64] pp.
875) if A has n linear independent eigenvectors, i.e. A has a diagonal Jordan form
over the complex field. We shall say that A is real semisimple if A is semisimple with
real eigenvalues. We shall say that A is positive semisimple if A is semisimple with
positive eigenvalues. We shall say that A is negative semisimple if A is semisimple
with negative eigenvalues.

Remark 4.4 Notice that A € R™™" is real (respectively non-negative, positive) semisimple
if and only if there exists invertible S € R™™ such that SAS™' is diagonal (respectively
non-negative diagonal, positive diagonal).
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A similar definition can be given for the case of bounded operators

Definition 4.5 (semisimple, real semisimple and non-negative semisimple operators)

An operator A € L(X) is called semisimple (real semisimple, non-negative semisimple) if
there ezists a boundedly invertible T € L(X) such that B 2 TAT-' is normal (self-adjoint,
non-negative definite) (see Definition A.3 for the definition of normal, self-adjoint and
non-negative definite operators).

Definition 4.6 (nuclear operator)

Let A € L{X,)) be a compact operator and let {Ag > Ay = --- > A, = -} be the at most
countable sequence of eigenvalues of(AA*)% with appropriate multiplicity. The operator A
is called nuclear if

[Alln 2 3 M < 0. (4.1)
k=0
We shall denote by
NX,Y) 2 {A: X — Y| |Alx < o) (4.2)

the set of nuclear operators. It is a Banach space equiped with the norm (4.1) (see Theorem
4.1 pp. 105 of [42]).

Proposition 4.7 (norm properties of nuclear operators) If A € N(X,Y) and B € L(Y, Z)
then BAe N(X,Z) and

IBAlln < || Bl z]| Alln- (43)

For the proof the reader is referred to the proof of Theorem 4.2 pp.106 [42].
Proposition 4.8 ( Lemma 2.6 [23])
(¢) Let P and Q be two positive definite matrices. Then P(Q is positive semuisimple.

(it) Let P and Q be two non-negative definite matrices. Then PQ is non-negative semisim-
ple.
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4.3 The fixed-order {’-optimal discrete-time compen-
sation problem

In this section we are concerned with giving the set of necessary conditions for the existence
of a fixed finite-order stabilizing compensator for an infinite-dimensional discrete-time sys-
tem.

4.3.1 The main control result

Let g (A, B1, By, C1, Cy, D1a, D21) denote the linear infinite-dimensional discrete-time sys-

tem
ok + 1) = Az(k) + Byus(k) + Boua(k)
o8 { (k) = Cra(k) + Diyug(k) : (4.4)
y2(k) = Cox(k) + Dyyuq (k)

where A € L(X), By € L(Uy,X), By € L(U, X), C; € L(X, D), Ca € L(X,I,), Dy €
LU, 1) and Doy € L(Uh, Ys). Here (), ua(+), ua(-), y1(+) and ya(-) stand for the state,
disturbance input, control input, controlled output and measured output. We assume that
X, Uy, Uy, Y4 and )% are real separable Hilbert spaces.

Let X3 (F, K, L) denote the n-dimensional controller

o | €k +1) = FE(k) + Ky(k)
E{ u(k) = LK) B (45)

where n, the controller state-space dimension is fixed, £ € R", and with F € R™ ",
K e £(),,R") and L € L(R",Us).
The closed-loop system from u; to y;, denoted Ty, is described by

sin { zr(k + 1) = Arzr(k) + Bruy (k)

GX\ (k) = Crer(k) ; (4.6)

with Ap € L(AR), Br € L(Uh,AR) and Cr € L(Y, AR) are defined by

A A BL A By A
AR—(KCZ F), BR-(KDQI>, Cr2(C1 Dul).

Definition 4.9 The closed-loop linear infinite-dimensional discrete-time system from u,
to yy is called internally stable if Ar is power-stable on AR 2 X o R

The control problem we address is the following: find a controller L% (F, K, L) defined by
(4.5) such that the following conditions are fulfilled
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Stability The linear infinite-dimenstonal discrete-time system from u; to y; is internally
stable.

Optimality The following quadratic cost function is minimized
Gy l3e = & 157 trace (Gyyu, (€™)G5, ., (7)) dov
A when the deterministic case is considered
J(Eik) = . _ . . , (4.7
limg o0 1B X520 (41(5), 1 (8)) 3,
when the stochastic case is considered

where Gy, ., (+) is the transfer function of the closed-loop system.

We shall refer to

E,’zsglgixl}zingj(ETéK) (48)
with 7 (2%) given by (4.7) as the finite-dimensional fixed-order H*-optimal control prob-
lem for the discrete-time infinite-dimensional system (4.4) when considered in the deter-
ministic sense and to the the finite-dimensional fixed-order LQG-optimal control problem
for the discrete-time infinite-dimensional system (4.4) when considered in the stochastic
sense. When the stochastic or the deterministic context is irrelevant we shall refer to
it as the finite-dimensional fixed-order £*-optimal control problem for the discrete-time
infinite-dimensional system (4.4).

We shall focus on the following class of admissible controllers

A, = {(F,K, L)|Agr is power-stable, (F, K, L) is minimal},

where (F, K, L) is a realization of ©%. This guarantees that the cost functions (4.7) is
finite, independent of the initial conditions and independent of the internal realization of
the controller. Before stating the main result of this section we do two things: firstly, we
give the structural constraints we make on the original data. Secondly, we report from
Bernstein and Hyland [23] a cornerstone result (Lemma 4.13) which enables us to prove
that the two modified Riccati equations are coupled with two modified Lyapunov equations
via an oblique projection operator having precisely the rank equal with the controller state
space dimension. Let us define the controllability and observability gramians of the closed
loop system

Pn = Y ARBrBR(AR), (4.9)
k=0

Qr = ) (AR)CRCrAx (4.10)
k=0

and partition them according to the state space decomposition XYg = X @ R"
P Py G Gz
Pr = Or=| % .
. ( A R N X

The following proposition holds
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Proposition 4.10 Let X%y defined by (4.6) be the internally stable closed-loop system
obtained by interconnecting g with L. Assume that (F, K, L) is a minimal realization of
Ek. Then P, > 0 and Qg > 0, where Py and Q, are the lower right corners of the partition
of Pr and Qg defined above.

Proof Since X} achieves internal stability it follows that the discrete-time semigroup
A € L(AR) is power stable on Ar. It follows by Theorem 5.2 and Theorem 5.5 from
Chapter 1 of [46] that Pr and Qg are the unique positive definite solutions to the following
Lyapunov equations
ARPRA;St — Pr+ BRBQ =0, (4.11)
ARQrAR — Qr + CRCr = 0. (4.12)
We shall prove only that P, > 0 since the proof of @, > 0 is similar. The Lyapunov

equation (4.11) can be written with respect to the partition of Py as a system of four
equations. The one corresponding to P has the following form

FPRF ~ P+ KCoPC K™+ FPLCIK* + KCy P F* + KDy Dy K* = 0. (4.13)
If P} denotes the Moore-Penrose or Drazin generalized inverse of P, a simple computation
shows that (4.13) can be written in the following equivalent form
(F+ KCoPuP) Py (F + KCyPoP]) — Py +
+ K (Cy(Py = PuP]P},)C; + D Dy, ) K* = 0. (4.14)
Denote by
W, £ Co(Py — P PIP)Cs + DDy

Notice that it is sufficient to prove that W, > 0. If this would be the case, then the
minimality of the realization (F, K, L) of £} implies the fact that (F, K) is controllable,
which at its turn implies the controllability of

1
(F + KCy Py P}, KW7).

Applying a Lyapunov argument the conclusion P, > 0 follows immediately. In order to
show that W, > 0, let us notice first that Pg > 0 implies A, > 0, P, > 0 and PI;)P;!PI"2 >0.
We infer that if Pr > 0 then also P > 0, where P denoted its Drazin inverse. Exploiting
the following identity written for P}

o PoPa) A ~AP,P]
R P, P *PJP1*2A Pl + PIPRAPLPL )

with A £ (P — P,y P} Py;) the conclusion Piy — Py P Pr, > 0 follows.
=
Since P, > 0 is a n xn matrix, then P = P51 and the following corollary of Proposition
4.10 holds
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Corollary 4.11

P~ PLPP, > 0, (4.15)
Q1 — Q12Q3'Q7, > 0. (4.16)

~o
> 1o

The following assumptions are made on the plant
A1l: B; B! is nuclear,

A2: Cy(C is nuclear,

A3: Dy Dj, + C2QC; is boundedly invertible,

A4: Di,Dy; + B;PB, is boundedly invertible.

Remark 4.12 If we consider the finite-dimensional fized-order £;-optimal control problem
in the stochastic setting, then ByB; represents the covariance operator of the U-valued
random variable uy € Lo(S2, p,Uy), where (2, p,Uy) represents a complete probability space
(see Chapter 5 in [34]). The covariance of u, defined by

Cov(u1) 2 E((uy — E(uy)) o (w1 — E(uw1)),

where z oy € L(Uy) is defined for all z,y € Uy by (z 0 y)2 2 z(y, z), z € Uy is symmetric,
positive definite and nuclear. It is therefore natural to assume [A1] and its “dual” coun-
terpart [A2].

Lemma 4.13 Suppose Q, P € L(X) have finite rank and are non-negative definite. Then
QP is non-negative semisimple. Furthermore, if rank(QP) = n then there exist G, A €
L(X,R") and a positive semi-simple M € R™" such that

QP G*MA, (4.17)
AG* = ILixn. (4.18)

Il

Proof Applying Theorem 2.1 pp. 240 from [41] one can conclude that there exists a
finite-dimensional subspace M C X such that

QMcCM, OM* =0, PMcM, PM*=q, (4.19)
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where M*, the orthogonal complement of M is closed in X. Hence, there exists an
orthonormal basis for X with respect to which @ and P have the infinite-matrix represen-

tation
s Q0 s (P o
Q"_(Ol D)q P—‘(Ol 0>7 (4‘20)

where Q) € R™, 1?1 € R™" with r 2 dim M. By Proposition 4.8 there exist invertible
¥ € R™" such that A = U7, P, ¥ is non-negative semisimple. Then we have

QP:((\)P 13)((1)\ g)((\)p_l 12) (4.21)

which shows that QP is non-negative semisimple. If, furthermore, rank(lel) = n then it

A0 ) where A € R**" is positive diagonal.

is clear that ¥ can be chosen such that A = ( 00

Hence, we have

Qﬁ:(}f Ii)(o(ém))A((lm 0) 0)(51’_1 ,2) (4.22)

which shows that (4.17) and (4.18) are satisfied with

G:((STO)O)(S’T [0), (4.23)
M = S7'AS, (4.24)

((s 0) o)((‘)["1 [£> (1.25)

T

[l

for all invertible S € R™ ",

The main result of this chapter is represented by the following

Theorem 4.14 Let S (F, K, L) be a solution to the fized finite-order H?*-optimal discrete-
time control problem for Lg(A, Bi, By, C1, Ca, D1a, Da1). Then there exists Q >0, P >0
and Q and P such that F, K and L are given by

F=AF°G" [ L°=R5;P: Ge = AQCS

< Y Pr = B;PA

K = AK® K° —QEVzE ' Vag = GoQC; 4 DDt
L= L°G* Foe=A— ]"002 _ BQLO 2E — L2 2 2179,

Rog = B3P By + Di; Dy
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for some (G, M, A)-factorization of QP, and such that if v = G*A, the following conditions
are satisfied:

rank(Q) = rank(P) = rank(QP) = n, (4.26)

Q=AQA™ + Vi — QuViE Qi + 71 (A= BL)Q(A — B; L) + QuVag' Q5 71, (

P=A"PA + By — PiRzA P + 71 (A= K°Co)"P(A — K°Cy) + PyRyd Ps) 71, (4.28)
Q= ((A- BL)Q(A - B, L) + QuVip' Q5) 77, (4.29)
P ((A— K°Cy)"P(A — K°Cy) + PiRy Pe) (4.30)

4.27)

where 1, = Iy — 7.

4.3.2 A few remarks on Theorem 4.14

Before proceeding to prove the main result, Theorem 4.14, let us discuss first a few addi-
tional features of it.

Proposition 4.15 The following hold
(i) Let Sx(F, K,L) € Ay. If S € R™™ is invertible, then SE(SFS5™',SK,LS™") € Ay

and

J (S (F, K, L)) = J (Sex(SFS™', SK,LS™)). (4.31)

(i) If S € R™™™ is invertible then

G 2 s7Tg, (4.32)

A 2 S, (4.33)

M & SMS, (4.34)
satisfy

QP = G*MA, (4.35)

AG* = ILiyn. (4.36)

For the proof the reader is referred to [23].

Remark 4.16 The following facts deserve to be highlighted
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(7) In view of Proposition 4.15, one can notice that Theorem 4.14 applies also to
TR(SFS™ SK,LS™).

Indeed, this is the case since the (G, M, A)-factorization of Qi’ s not unique. More-
over, all these factorizations are related by a nonsingular transformation in R™ ",

(i) Notice that 7 is invariant over the class of factorizations.

(#4) In general, T is an oblique projection operator and not an orthogonal projection
operator since there is no requirement that v should be self-adjoint.

Let P,Q € L(X) have finite rank, say n. The next result shows that QP and 7 can be
simultaneously diagonalized by a nonsingular transformation

Proposition 4.17 (Hyland and Bernstein [25])
There erists invertible & € L(X) such that

As O - As O
-1 Q —% — * P
i (0 O><I> , P CI>(0 0)@,

-1 A 0 . -1 Inxn 0
® (00 e, r=07"{ ),

where A, Ap € R™™ are positive diagonal and AgAp = A where A = diag {A1, Ay, <+, An},
AL 2> Ay 2 - > X, > 0 are the eigenvalues of M.

o
{

>
!

Q

For the proof of the above result the reader is referred to [23]. An immediate consequence
is given by the following

Corollary 4.18 The following equalities hold

Q = rQ, (4.37)
P = Pr (4.38)

Remark 4.19 The following items deserve highlighting

(i) To obtain a geometrical interpretation of the optimal projection equations we intro-
duce as in [23] the so-called quasi full-order state estimator

i()EGra()ex (4.39)
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so that
ra() = (), (4.40)
z() = Az(). (4.41)

The state equation with the estimation based on the measured output can be written
in the following form

2(k+1) = Az(k)+ Bi(D;, D) B Pri(k) + Byuy(k), (4.42)
d(k+1) = 7(A+ Bi(D},Di) " BiP + QC3(Dn Dy,) ' Co)ri(k) +
+ TQCz(Dleal)-l(Cz-'l?(k‘) + Dglul(k’)). (443)

From (4.42) and ({.43) one can easily see that the geometric structure of the quasi
full-order compensator (4.43) is entirely determined by the projection operator .
Particularly, if the control input uy(k) determined by ({.43) are contained in Im(r)
and sensor inputs TQC(Da1 D) y2(k) are annihilated unless they are contained in
Im(7*). Consequently,

o Im(7) is the compensator control space,

o Im(7*) is the compensator observation space.

Since T is not necessarily orthogonal, those spaces might be different in general.

At the end of this section we give an explicit formula for the projection operator 7 in terms
of P and Q. Since QP is a finite-rank operator, its Drazin inverse denoted (QP)D exists
(see Theorem 6, pp. 108 from [59]) and since
(QP)? = G*M?A,
it follows that o .
rank ((QP)z) = rank(QP)

and the so-called index of (QP) is equal t ol (see [59, 28]) . It follows that the Drazin
inverse is the group inverse, denoted by (QP)* (see [28], pp. 124). Then the following
holds

Proposition 4.20 (Hyland and Bernstein [23])
The optimal projection 7 is given by

= QP(QPY*. (4.44)
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4.3.3 Proof of Theorem 4.14

In order to prove the main result we shall prove some lemmas that would enable us to
calculate the Fréchet derivatives of the cost function J(Xq, %) with respect to the com-
pensator parameters F', K and L. Thus, the set of first-order necessary conditions for the
existence of a solution to the discrete-time compensation problem are obtained by setting
to zero these derivatives. We proceed by generalizing a result regarding the H2-norm of
finite-dimensional discrete-time systems to infinite-dimensional discrete-time systems.

Lemma 4.21 Let £(A, B,C)

z(k+1) Az(k) + Bul(k), (4.45)
y(k) = Cuz(k) (4.46)

i

be an infinite-dimensional discrete-time system with the discrete-time semigroup A € L(X)
assumed power-stable, B € L(R™ X), C € L(X,RF). Then if G denotes the transfer
function of (A, B, C) the following norm relation holds

Gli3. = trace (CPC™) = trace (B*QB), (4.47)

with P and Q the controllability and observability gramians of the system (A, B,C).
Furthermore, if

v £ BB, (4.48)
R £ ccC, (4.49)

then
|G| = trace (RP) = trace (QV). (4.50)

Proof Let {h(k)}i>o € R™”, h(k) = CA*B be the impulse response of the system
Y(A, B,C). By Parseval’s theorem (see Openheim [67], pp. 326) we get

1 /02“ trace G(e)G*(e)df = i trace (A(k)h(k)") =

2r et

1G5

I

= ) trace (CA*BB*(A*)*C*) = trace (}_ CA*BB*(A*)fC™) =
k=1 k=1

= trace (C[‘;i A*BB*(AM)¥]C*) = trace (CPC™). (4.51)

k=1
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The second part of (4.47) follows from the fact that

itraee (h(E)A(Kk)") = i trace (h(k)*h(k)).

k=1 k=1
Since CPC* € R™*? it follows that rank{C*C' P) = p. It follows without difficulty that

trace(C PC™) = trace(C~C P) = trace( RP).

The proof is complete if we show that trace(QV) is actually finite. This holds since
@ € £(X) and V € M(X) and by Lemma 4.7

[RP|In < [|Pllenll BN < oo

| |
Let us introduce the following notation
& . _ [ BiB} 0y _(W 0 ‘
Vr = BrBj = ( 0 KDy Dy K- ) = < 0 KV,K* ) , (4.52)
A e | CICh 0\ [ R 0
Rr = CrCr = ( 0 L D1,Di,L ) - ( 0 L*RL ) ' (4.53)

Remark 4.22 Since By By and C;C; have been assumed to be nuclear operators it follows
that V; € N(X) and Ry € N(X) which implies that Vg € N(Xr) and Ry € N(AR).

Remark 4.23 [n the stochastic case a similar result to the one proved in Lemma {.47 can
be also derived. Notice first that the stochastic LQG cost function can be expressed as

T(Sa) = Jim_ E(Ruzn(k), zn(k) (4.54)
In [6] it was proved that if

Qr(k) = E((zr(k) — Exg(k))(zr(k) — Ez(k))"). (4.55)
then there exists a operator Qg such that
i Q(k) = Qn (4.56)
and furthermore,

J(X%k) = trace (QrRR). (4.57)
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Let us give some notation useful for computing the Fréchet derivatives of the cost
function with respect to F', K and L. For any F' € R™", K’ € L(R",Uy) and L' €

L(Y,,R") define

bp=F - F

k=K - K . (4.58)
=L -1

and [|(ér. 6, 6Ll = ||6|| + |6k + ||6L]l- Let AR, Vi and Ry denote Ag. Vi and Rg with
the triple of operators (F, i, L) replaced by (F', K, L)

o A Bl
= ke, P

v 0
R™U 0 K'V(K')
. [ R 0
RR - ( 0 LIR2<LI]* ‘

and define

:AIR‘AR=< 0 Bzd\:

Sy = Vi — V= © 0
Ve TR TR T ) 6k Vab + S VaK T + KVy65

0 0
_ A —_—
Org = Rp — Rr = ( 0 87 RabL + 8 RoL + L™ Ry61 )

The following Lemma represents a collection of results from [23] that enables one to com-
pute the Fréchet derivatives of the cost function with respect to the compensator parame-
ters,

Py, P QR @
of Pr and Qr over Ar. Let also Qf and Pf denote Qr and Pr with the triple of operators
(F. K, L) replaced by (F', K', L"). Define ég, = Qh — Qr, & = Py — Pg and introduce

Lemma 4.24 Let Pr = ( P P ) , Qr= ( @ Qn ) be the matriz decomposition

B = {Ex(F.K.L)|Ar is power-stable }.
Then

(i) B is an open set and furthermore there exists a positive constant, v, and an open
netghborhood of (F, K, L), N C B, such that

16zl < ¥II(&r, 6k, 6L)]] (4.59)
[6pell < ¥il(ép. i, 6L (4.60)

for all S (F',K', I/ € N.
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(%) Q2 and P, are positive definite.
(ii) Ay is an open set.
(év) Let
65(8¢ .6k, 81) £ T (Z6. ) — T (S, )
for any Sy (F', K’ L') € B. Then
61(6r, bx, 1) = F(85(6F, 8k, 6L) + O(||(8s(SF, bk, 81)]]).
where
F:RP" x RV™ x R — R, F = F(;(ér, 0k, 6L)) (4.61)
is a bounded linear functional defined by
F(85(6r, bk, L)) = 2trace[ PGz + PaQ26r + (VoK™ Py + C(Qr2 P2 + Q1 P12))ok +
+ Q:L"Ry + (Q2Pf, + Q1 Pi2)oLl, (4.62)
such that
I1(8F, 6k, 6L) 11~ O([|(6a(6p, &k, éL) ) = 0. (4.63)

im
(8r.6k.6L)—0

For details about the proof the reader is referred to [23]

Let (F, K, L) € A, be as it is given by the main result and consider é;(ér, 0k, 1) for an
arbitrary (F', K, L'} € A,. Since F defined by (4.61) is a bounded linear functional and
A, is an open set, the limit relation (4.63) shows that F is precisely the Fréchet derivative
of the cost function with respect to (F, K, L). Since A, is open, then the optimality implies

F(6p,8x,6.) =0, V(F, K, L)€ A, (4.64)

Clearly, the first-order conditions for the minimality of the cost criterion are equivalent
with the following set of relations

85(6p) = 63(6r,0,0) = 0,
51((5}\) = 6;(0, 61\’7 0) =0,
63(6) = 65(0,0,61) = 0.
A straightforward computation gives
5J((SF) = trace (PRARQR(SZR + PR‘SARQRA*R + PR&ARQR&:&R) + G(H(SpH) (465)
6J(6K) = trace (PRARQR(S;R + PR‘SARQRA*R + PR&ARQR(SZR + PRévR) + 0(”5}\[14)66)
63(6L) = trace(PRARGRSY, + PrOa, OrAR + PrOa @R, + OrOR,) + O([|6L[(%.67)
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Exploiting the matrix decomposition of Pr and Qg over Xg we obtain

8(8p) = 2trace [(Q1,A"Piy + QLT B3Py + Q1 Ci KT Py + Q. FTPy)br +
PadrQ8E] + 0(|Ie ), (4.68)
61(8k) = 2trace {[Co(@QiA+ Q2L By) Py + Co(QiC3 KT + QuuFT) Py +
+Vo KT Pl + [RCaQiC5 + P Va16k6KY + 0()|éxl)). (4.69)
63(6) = 2trace {{Q2LT Ry + Q5,A"PiBy + Q:LT B} P, B, +
+Q5,C KT Py By + Qo FT P Byl6L + RabL8LY + 0(Jl6L ). (4.70)

and by the vanishing the expressions that stand as coefficients for &, in (4.68). (4.69) and
(4.70) we obtain

0 = QLA P+ QLT B3P+ Q1,C5 KT P + Qo FT Py, (4.71)
= (A + C"2Q1-2LTB;P12 + C‘thC;I\’TPz + CoQaFT Py +
+ VKTP,, (4.72)
0 = QuL"Ry+ Q,A™PiBy + QL™ B3P By +
+ QLCSKTPLBy + QuFTPyBy, (4.73)

Clearly, (4.71), (4.72) and (4.73) represent a system of three implicit necessary conditions
defining the solution to the fixed finite-order H2-optimal discrete-time control problem. In
the remaining of this section we show that they can be written in a more tractable, explicit
form as presented in the main result. For this define firstly a new set of variables

Q1 - Q = Q1,07 Qrz, (4.74)
P] -P= PI‘ZPQ_] P;-zw, (475)

~
e lie

where P and @) are defined by (4.15) and (4.16), respectively. By Proposition 4.10 Q and
P are non-negative definite and furthermore have finite rank (since @12 and P, have finite
rank) and @, P, @ and P are also non-negative definite. The following results hold

Lemma 4.25 The fized finite-order compensator is given by

F = AF°Gr, (4.76)
K = AK°, (4.77)
L = L°G~, (4.78)
where
L° = (B}PB;+ R;)"'B;PA, (4.79)
K° = AQC;(CL,QC5 + Vi) !, (4.80)

Fo = A—K°Cy— B,L° (4.81)
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and
G = Q7'Qi; € L(X,RY), (4.82)
M = Q,P, € R™", (4.83)
A = P'Ph € L(XRY). (4.84)

Proof From (4.71) and (4.73) we obtain

L {B;[Py — Pia Py P] By + Be} 7' B3[Py ~ PisPy ' Pl AQ2Q3 !
= L°Q1Q;' = L°G™. (4.85)

H

From (4.71) and (4.72) we get

K = PyPLAQ: - Q@' Q1C5{CalQr — QuaQ7 ' Q1)C5 + Va} !
Py'PLK® = AK®. (4.86)

From (4.71) we obtain

Fo= PPRL{A - AlQ1 — QuQ3 ' Q]Ci{Ca@r — QuuQy ' QLIC" + Va1 +
+By{ B3[Py — PPy PR By + Ry} 7' B3[Py — PPy Pl AYQ12Q3
= A—-K°C,— B,L° = AF°G™. (4.87)
[ |

Lemma 4.26 The triple (G, M, A) defined by (4.82),(4.83) and ({.84) represents a (G, M, A)-
factorization of QP = Q12Q7' Q5 PPy Py,

A Py
P, P

Proof Let 7 = G*A € L{X) and bring the partition of Pg and Qr as Pr = (

and QR N (QQI: QQ12> with PhQ] € L:(X)7 lex P)Z € ‘C(an‘xl): Q27P2 € Rnxn,

Py, (Qh, P2, Q2 non-negative definite and let us write the two Lyapunov equations satisfied
by Pg and (Jr with respect to its components

0 = Qi—AQA™ — AQ,LTB; — B,LQ},A" — B,LQ,L" B} — W}, (4.88)
0 = Qu-—AQC;KT — AQuF™ — B,LQ3,C3 KT — ByLQ,FT, (4.89)
0 = Q- KCyQiC3 K" — KCyQuoFT — FQL,CiKT —
— FQ.FT — KV,KT, (4.90)
= P —A"PLA— A"PuKC, — C;KTPLA — C;KTP,KC, — Ry, (4.91)
= Py— A"PB;L — A"P,F — C;KTP,By,L — C3 KT Py F, (4.92)

= P,—L"B;PiB,L — L" B} P\, F — FTP Byl — FT PP — LTR,L,  (4.93)
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A straightforward computation leads to @, = AQ;y, P, = —G P, which implies P,Q; =
—Pr,@12 and furthermore

AG" = Py'PRQuQ;" = I, (4.94)

7’ Qu2Q7" Py P QuaQ7 Py Py
QuQy" Py Py,

T

PMA = Q,2Q51Q2P2P;1P1*2 =QP. (4.96)
Notice that if F; € L(X,Y) and F; € £(Y, £) then
rank (F1£3) < min{rank (F}),rank (Fy)}.
Furthermore, if dim (Y) = p < oo, then
rank (£1) + rank (F3) — p < rank (F1F3) < min{rank (£),rank (Fy)} < rank (F).

We conclude that rank (G) = n, rank (A) = n, rank (Qi2) = n, rank (P3) = n, fact
which assures rank (Q) =n, rank (P)=n, rank (QP) = n and the proof is complete.
| |
Let us introduce the following notation

Qe = AQC;

Pe = B;PA

Vie = CRQC5 + V)
R = B;PBz + R,.

Notice that Vg and Ryg are boundedly invertible (by assumptions A3 and A4, respec-
tively). Write now the components of Qg and Py in terms of @, P, Q, P, G and A as
follows

1 = Q@+ Qy Q12 = QA™, Q2 = AQAA', (4.97)
Pl = P+P P12:PG‘, P2=GPG*. (498)

Substituting now the components into (4.88) ... (4.93) we get
= AQA™+ (A= BL°)Q(A— B L) + Vi — Q - Q, (4.99)
{QeViE' Q5 — Q + (A = BoL)Q(A — BoLo)}AT, (
MQeVig' Qp = @+ (A = BL°)Q(A ~ By L)}, (
A"PA+ (A~ K°Co)"P(A~K°Co) + Ry — P— P, (4.102)
(
(

I

Il

= {PiR;aPe— P+ (A— K°Cy)"P(A — K°C)\ G,
= G{P3RzEPr— P+ (A— K°C))"P(A— K°C,)}G.

o o o o oo
I
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Define the auxiliary operators

Q@ = (A—B:L°)Q(A— BoL°) + QeVig' Qh € L(X). (4.105)
P = (A-K°C))"P(A— K°Cy) + PRy Pg € L(X). (4.106)
71 = Iy—71€L(X). (4.107)

The following manipulation shows that

(¢) From (4.99)+G~A(4.100)G-(4.100)G-G*(4.100)* = 0 we get

Q~AQA" -V + QeVpg'Qp — 7.Q71 = 0. (4.108)
(ii) From (4.102)+A"G(4.103)A- (4.103)A — A*(4.103)* = 0 we have
P— APA— Ry + PiRjzEPg — 7 Pr. = 0. (4.109)
(#i1) From G*A(4.100)G-(4.100)G-G*(4.100)* = 0 we obtain
Q = (A— ByL°)rQ7*(A — B,L°)" + QeVis Q5. (4.110)
(év) From A*G(4.103)G-(4.103)A — A*(4.103)* = 0 we derive
P =(A—-K°Cy)"r*Pr(A— K°C,) + PiRyp Pe. (4.111)

Exploiting the fact that Q = rQr* and P = r*Pr it is a routine to show that (4.108),
(4.109), (4.110) and (4.111) collapses to (4.27), (4.28), (4.29) and (4.30), respectively. No-
tice that (4.108), (4.109), (4.110), (4.111) represent, actually, an equivalent way of writing
the two modified Riccati equations coupled with the two modified Lyapunov equations via
the idempotent operator 7 and the proof of Theorem 4.14 is now complete.

Remark 4.27 The expression D},D1y+ B; P B, plays in the modified discrete-time Riccati
equation ({.28) the same role as the operator R+ B*X B plays in the discrete-time classical
Riccati equation (3.14). If in the latter case, the invertibility of R+ B*X B can be achieved
under certain assumptions (see Chapter 3), the invertibility of D}, D12 + B; P B, had to be
assumed in order to obtain the modified discrete-time Riccati equation (4.28).

4.4 The full-order case

In this section we shall focus on the so-called full-order case. This case is characterized
bythe fact that the plant and the controller have the same order, either both are infinite-
dimensional, or both are finite-dimensional. We shall derive the expression of the H2-
optimal controller in the discrete-tieme case as a direct consequence of the main result
proved in the previous subsection. We shall also discuss the continuous-time infinite-
dimensional H?-optimal control problem under the assumption that the disturbance input
and controlled output spaces are infinite-dimensional pointing out the main mathematical
difficulties one has to overcome.



4.4. The full-order case 79

4.4.1 The discrete-time #*-optimal control problem

Let us consider the limiting case when the order of the compensator and the order of the
plant are equal, and more precisely, they are both infinite-dimensional systems. In this
limit case 7 becomes the identity operator and hence, 7, = 0. The two modified Riccati
equations (4.28) and (4.27) are decoupled

Q = AQA"+ BB} — AQC(C2QC; + Dy D)~ CLQ A", (4.112)
P = A*PA+C;Cy— APBy(B;PBy + D:,Dy,) ' BiPA (4.113)

and furthermore, the compensator, ¥ (F>°, K>, L>), which is now infinite-dimensional is
given by

F* = A-AQCI(CyQC5 + Dy D3,)7'Cy —

By(B;PBy + Dy, D13) ' B3 PA, (4.114)
K* = AQC;C,QC; + Dn Dyy) 7, (4.115)
L® = (B;PB,+ D}yDy,) ' BjPA. (4.116)

Notice that L@F(F>™, K, L) as defined by (4.114), (4.116) and (4.115) represents the
infinite-dimensional generalization of the classical finite-dimensional H2-optimal controller.
If both the plant and the controller are assumed to have the same finite order then the
two modified Lyapunov equations (4.30) and (4.29) are decoupled and put into evidence
the minimality of the controller.

4.4.2 The continuous-time #*-optimal control problem

At the end of this chapter let us consider the continuous-time counterpart of the full-order
case discrete-time H?-optimal control problem, namely, the continuous-time H2-optimal
control problem. We shall assume that the space of disturbance input and the space of
controlled output are infinite-dimensional

dim(U) 00,
dim()h) = oo.

To be more clear, the problem addressed is the following; being given a smooth Pritchard-

Salamon system g (5()( By B, ) , ( g‘ ) , ( DOH DO” )) with respect to W — V
2

find a continuous-time controller T (K, L, M, N) such that the H*norm of the transfer

function of the linear continuous-time closed-loop system from u;(+) to y;(-) is minimized

over the class of stabilizing controllers, i.e.

min “Gy1u1 ”'H2'

Tk stabilizing
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In the concluding chapter of [80], van Keulen suggests that the solution to the H2-optimal
continuous-time control problem for Pritchard-Salamon systems can be obtained using the
same technique that was used for the H*-control problem. Technically speaking, by letting
4 to tend to infinity, one obtains without doubts the generalization for Pritchard-Salamon
systems of the expressions of the filtering and control Riccati equations associated with
the continuous-time H-optimal control problem in finite dimensions as well as the corre-
sponding H2-optimal controller. It is obvious that if dim{l4;) < oo such a manipulation
is done correctly and we recover the solution to the H?-optimal control problem from the
solution to the H™ control problem. Let us see if this can be done when dim({lf) = co.
In Section 2 of [33] it is shown that the impulse response of a Pritchard-Salamon system
with infinite-dimensional space of inputs is a tempered £{If, V)-valued distribution with
support in [0, 00). Furthermore, if dim(l4;) = oo it is generally not possible to make sens of
CS(-)B as a function. In particular, expressions as C'S(:)B and f; C'S(t — 7) Bu(r) cannot
be interpreted in the usual sense for arbitrary u € L¥°(0, oo;f). Even in the bounded case
W =V, when CS(t)B is well-defined as a function, it might not be strongly measurable
fact which implies it is not locally integrable with respect to the uniform norm topology. It
follows that the H2-optimal control problem for infinite-dimensional systems with infinite-
dimensional disturbance-input space is a very delicate problem which is open for future
research. This represents the main motivation of our option for its stochastic counter-
part when we consider in Section 6.5 the fixed-order digital control of Pritchard-Salamon
systems, optimally with a LQG quadratic cost function rather than a H? quadratic cost
function.
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Chapter 5

Digital stability

In the previous chapter we stated some results (e.g. Theorem 3.11 and Theorem 3.12) under
the assumption that the A-operator of the discrete Popov triple £(A, B, M) is power stable
on X. However, for most of the examples encountered in practice the contrary holds. It is
therefore necessary to cope with the situation when the discrete-time semigroup A is not
power stable on X. This can be done within the Popov theory framework on the basis of
what we shall call here feedback invariance. Let us introduce and explain this concept.
Consider first a discrete-time Popov triple £(A, B, M) where the discrete-time semigroup
A is no longer assumed to be power-stable on &', It follows that the class of admissible
control sequences associated with (A, B, M), U, is no longer the whole ¢,(0, co; ).
It could be empty for some pairs (zo,u()}, but if the pair (A, B) is assumed to be power
stabilizable, then U5 # 8. This fact is assured by Proposition 1.1, pp. 72 [46].

adm

Definition 5.1 (equivalent Popov triples, Definition 1.7, pp. 75 [46])

Let L4( Ay, By, My) and 3( Az, By, M3) be two discrete-time Popov triples on (X, U). We
shall say that they are equivalent if there exists F € L(X,U) and X = X* € L(X) such
that

Ay, = A1+ BiF,

B, = By,

Qr = Qi+ LiF+F L+ FRF+AXA-X,
Ly = Li+F'Ry+ A, X By,

Ry, = R+ BiXB.

—~ e~ o~
[ I R N

If X =0 they are called F-equivalent.
Related to Definition 5.1 we have the following result

Proposition 5.2 (Proposition 1.8 pp. 75, [46]) Let (A, By, M1) and Sy( Az, By, My)
be two equivalent Popov triples on (X,U). Then if for each xo € X the class of admissible

83
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control sequences is such that U} # 0, then the following holds
‘]El (107 u) = JEQ(QJ(),'&) + <l‘0, X-To),\_’., (5'6)

with

Remark 5.3 Proposition 5.2 hides a very important property of F-equivalent discrete-time
Popov triples, namely that the solutions to the discrete-time Ricati equations (when they
exists) associated with two F-equivalent discrete-time Popov triples coincide. Furthermore,
Definition 5.1 gives the transformation formulae to obtain a stable F-equivalent of an
arbitrary discrete-time Popov triple.

The situation looks very similar in the continuous-time case. In [87], Martin Weiss gave a
Popov function based solution to the (continuous) LQ control problem associated with a
Pritchard-Salamon-Popov triple with Co-semigroup assumed to be exponentially stable on
W and V. To generalize his result, this assumption was relaxed to admissible (bounded)
stabilizability of the pair (S¥(-), B). In the new framework he proved that under an
admissible (bounded) stabilizing feedback F, the Pritchard-Salamon-Popov triple becomes
a new Pritchard-Salamon-Popov triple with respect to (W < V, ) defined by

+ N*F+ F*N + F*RF N*+ F*R .
by (SEF(-),B,MF = ( ij+ RF R ) = MF>, (5.8)

with S¥i(+) the perturbed Cy-semigroup generated by AY+ BF'. Furthermore, it has the re-
markable property that the solutions to the Riccati equations associated with £(SY(-), B, M)
and Tp(SKe(-), B, Mp), respectively, coincide and the new stabilizing optimal feedback is
obtained from the old one by subtracting F. Such a feedback transformation permits,
hence, to extend the results to Pritchard-Salamon-Popov triples with admissible (bounded)

stabilizable pair (S¥(-), B).

Remark 5.4 A feedback transformation of the form (5.7) achieves only power stability of
the discrete-time semigroup A, exponential stability of the strongly continuous semigroup
S(-), respectively, when the continuous-time case is considered. Therefore we shall call it
discrete-time prestabilization and continuous-time prestabilization, respectively.

In this chapter we shall be concerned with the digital counterpart result of the above
prestabilization feedback transformations. We show that a certain digital control law,
generated by an adequately chosen feedback operator, achieves digital exponential stability
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for the Pritchard-Salamon-Popov triple. We shall call this digital prestabilization. As we
have announced in an earlier section of this thesis, we shall restrict to the case

IUEW.

This is a sufficient condition for having a continuous output function of the Pritchard-
Salamon system S(S(-), B, C, D). In this case, the sampled version of the output function
is well defined and hence, the digital control problem associated with the standard digital
control configuration depicted in Figure 1.5 can be properly formulated. As we have seen
earier in this thesis, the control function considered for the digital control problem is of
the form

u(-) € PCr{0. oo ) N U (5.9)

Since we have imposed that the initial value belongs to the smaller space W, we would like
to characterize the solution to the initial value problem

t(t) = Az(t) + Bu(t), z(0)=zo€ W (5.10)

firstly when the control is an arbitrary L,-function and then when it satisfies the restriction
(5.9). For the first case the following result was proved in [80].

Proposition 5.5 Let X(S(-), B,C, D) be a Pritchard-Salamon system and suppose that
S(-) is exponentially stable on W and V. Consider

z(t) = S(t)zo + /Ot S(t — 7)Bu(r)dr

and suppose that u(-) € Ly(0,00;U). Then for zo € V we have z(-) € Ly(0,00; V) and for
g € W we have z(-) € Ly(0, 00; W).

Since PC1(0,00:U) C L1(0,00;U), one can conclude immediately that if o € W and S(.)
is exponentially stable on W, then the state function satisfies

z(-) € Ly(0,00: W) NC(0, 00; W).

An immediate consequence of the above result is to show that the sampled of the state
function is a W-valued square summable sequence.

Corollary 5.6 Let X(S(-), B,C, D) be a Pritchard-Selamon system and suppose that S(-)
is ezponentially stable on W. Assume that the control function satisfies (5.9) and let & =
{x(0),z(1), -, x(k), -, } be the sampled state function. If 9 € W then 7 € £,(0, oo; W)
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Proof Since
PCr(0,00;U) C Ly(0, 00;U),

then the state function satisfying
¢
2(t) = S+ [ S¥(t—r)Bulr)dr =
0

— SVt - kT)e(k) + /k ; SY(t — 7)Bu(k)dr =

= kT
= St - kT)a(k) +f SY(t — kT — 7)Bu(k)dr (5.11)
0
belongs also to L2(0, co; W) N C(0, 00; W). But
S (L2(0, 00; W) N C(0, 00; W)) = £5(0, 00; W).

This fact implies the conclusion.

|
Notice that (5.11) can be written at the sampling instants in the following way
T
2(k+ 1) = S¥(T)zo +/0 SY(T — 7)Budr. (5.12)
Similarly, the output function at the sampling instants satisfies
y(k) = Az(k) + Ou(k), (5.13)
where the operators in (5.12) and (5.13) are defined by
&W-—W, & £ SW(T)z, VzeW, (5.14)
T
r:U—w, Tu & / SY(r)Budr, Vuel, (5.15)
0
A:W—)Y Az £ Cq (5.16)
©:U—Y Ou £ Du (5.17)

where T is the sampling period.
Definition 5.7 We shall call 5(®,T, A, @) defined by (5.14), (5.15), (5.16) and (5.17)

the time-discretized Pritchard-Salamon system

Remark 5.8 If we replace W with V in Corollary 5.6 then the results still hold with minor
modifications of the proof and, furthermore, it is possible to write down a discretized state
equation of the form (5.12) with the ® and I' operators defined this time by

®:V—V, & 2 SV(T)a, Vz eV, (5.18)

T
r:U—V, Tu / SY(r)Budr, Vuel. (5.19)
8]
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However, since for zq € V the output function does not make sense pointwise, it is im-
possible to write down the difference equation corresponding to (5.13) and hence, the time-
discretized Pritchard-Salamon system would not be well defined.

5.1 Digital exponential stability

In this section we give a characterization of the exponential stabilizability of Pritchard-
Salamon systems under the assumption that the feedback control law is a digital one.

We have introduced the Pritchard-Salamon class of systems and for systems belong-
ing to this class we have introduced the definition of exponential stability along with the
definition of admissble (bounded) stabilizability. We have seen that if zo € W, then
the time-discretized Pritchard-Salamon system is well defined. We would like to char-
acterize its power stability/power stabilizability properties in terms of the exponential
stability /admissble (bounded) stabilizability of the original Pritchard-Salamon system.

Remark 5.9 Since our approach to the optimal control problem is a digital one we shall
assume that the space of inputs and of outputs are finite-dimensional, i.c. we have finitely
many sensors and actuators

U = R™ (5.20)
y = R (5.21)

The basic result on digital exponential stability is proved in the following

Theorem 5.10 Let S(-) be a Co-semigroup on W < V and let B € LU, V) be an admis-
sible input operator. Then the following statements hold

(1) If the continuous-time Co-semigroup S™(-) is ezponentially stable on W then ® de-
fined by (5.14) is a power stable discrete-time semigroup on W.

(i4) The operator T defined by (5.15) satisfies

T e L{U,W)NLU.V). (5.22)

(#1) Assume that (S(-), B) is exponentially stabilizable on W and assume also that Y =
R™, m > 1. Then there exists a sufficiently small sampling period T, such that for
every T' < Tg the pair (®,T') defined by (5.14) and (5.15) is power stabilizable on W.
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(iv) If a certain discrete-time feedback control law
u(k) = Fz(k), FeL(W,U) (5.23)
makes the discrete-time semigroup (® + I'F') to be power stable on W, then
Useep(t) = Fz(k), kT <t < (k+ 1)T (5.24)

is a digital exponentially stabiling feedback control law.

Proof

(i) Since S is exponentially stable on W, then there exist My, > | and wy < 0 such
that

1S¥ ()] < Mwew',t > 0.
Write now the exponentially stability condition for ¢ = £7T'. It follows that
ISV(T)H = IS (RT)]| < Mwe* T = Mywpw(T)*, k 2 0,

where pw(T) = e“wT. Since wyy < 0 then pw(T) € (0,1) for VT > 0 and hence,
SW(T) is power stable on W and the conclusion follows since by definition & =

SW(T).

(é) Let us write the condition for the input operator B € L{U, V) to be admissible with
respect to W < V on the time-interval {0,T),k > 0. This means that the following
controllability map BT : Ly(0,T;U) — V, defined by

T
BTy = / SY(T = 7)Bu(r)dr, (5.25)
0
is bounded, BT € £(Ly(0,T;U), W), i.e. there exists a > 0 such that

1B ullw < ellu(-)l|z.0720)- (5.26)

Let u € Ly(0,T;U) be a constant function on [0,7] denoted by v. Since (5.26) holds
also for such a control function it follows that

1B v|w

il

T
H/ SY(T — 7)Buvdr||w = ( by definition of T')
0
ITollw < oT||vllu (5.27)

I

fact which implies that T’ € £L(U, W). Exploiting now the fact that W — V we get
that I' € £{U, V) which yields the result.
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By Lemma 3.5 from [30], if B has finite rank then (5"(.), B) is exponentially stabi-
lizable on W by a feedback operator F' € £(V,U) if and only if AW has finitely many
eigenvalues of finite multiplicity in

C, = {s € C[Re(s) > 0}

and with respect to the spectral decomposition

wa-((% 21 (2) e

where AY contains all the unstable eigenvalues of A", the following holds

(a) (AKV, B+) is controllable.

b) AY generates an exponentially stable C%semigroup S¥(-) on W .
g 3 group

The pair (®,T) defined by (5.14) and (5.15) with the discretization performed on
the decomposition (5.28) satisfies

_({ svm 0 lo SP(r)drBy \\ _ ([ @ 0 r
(2.1) = (( "o s ) ( i B(ryir . )) - (( 0 @ ) <r— )>

Since SY(¢) is an exponentially stable Co-semigroup on W, then &~ is power-stable
on W. This 1s obtained by applying the result proved at the first item of this
lemma. We claim here that if (®*,I'") is power-stabilizable then (®,T") is also
power-stabilizable on W. Let us proove this assertion. Notice first that since the
pair (Af,B+) is assumed to be controllable then there exists a sampling step Tj

such that for every T' < To, the pair (®*+,T't), the time-discretized of { AY, B+), is
also controllable. This is a classical finite-dimensional result and for its proof the
reader is referred to [48, 20]. But a controllable finite-dimensional system is also
power stabilizable (see [69]). Hence, if n is the dimension of the antistable subspace
in the decomposition (5.28), then there exists F* € L(R®,U) such that & + T+ F+
is power stable on R". Let now F € L£L(V,U) be given by

FE(Ft 0).

The perturbed semigroup decomposed with respect to the partition (5.28) is given

by

= A = ®t+T+tFt 0
= = 7.2
=@ +TF (I“F+ & | (5.29)
We claim that the operator defined by (5.29) is a discrete-time semigroup on W.

Furthermore, since ®* 4+ T't F'+ and @~ are power stable on R” and W~, where W~
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represents the stable subspace of W, then ® is power stable on W. By mathematical
induction one can easy show that

3 ( (8* + TPy 0

&= [-FH@+ 4 THFH) ! + @ (D F+)! (@) ) VieN. (530

A simple inspection of (5.30) shows that ®° = Iy and a straightforward computation
shows that N -
&t = @'®’, Vi,jeN

Hence, ® verifies the axiomes of a discrete-time semigroup as given in Definition 3.1.
It is also power stable on W since

(1B < Ormax(®* + THFH) + || + [T FF|| < Mp*, (5.31)

for some appropriately chosen M > 0 and 0 < p < 1.

(iv) Let FF € L(W,U) such that & + I'F is a power stable on W and let u(t) =

Fz(k),kT <t < (k+ 1)T. Then the solution to the initial value problem (5.10)
becomes for arbitrary zo € W

2(t) = Sw(t):co-l—]:Sv(t—T)BFx(k)dT:

I

SW(t — KT)a(k) + /k; $V(t — r)BFa(k)dr

SW(t = kT)e(k) + /UHT SV(t — kT — 1)BFz(k)dr

t—kT
= (SM(t—kT)+ / SY(t — kT — 7)BF)e(k)dr. (5.32)
0
It follows that
lz(t)lw = uSW(t — kT)z(k) +/ V(t — kT — 7)BFz(k)dr| <
w
< |87 - kT)e(h), N/ V(t — kT — 7)BFa(k)dr| <
w
< Wit —k
S HS T)\lqw) lz(k)llyy +
t—kT
+ su / SY(t — kT — 7)BFz(k)dr (5.33)
kT<t<(k4+1)T ||/0 w

Let us notice that the first term in the right-hand side of (5.33) satisfies

SR lelhy < sup M D (k) <

kT<t< k+1 £w) kT<t<(k+1)T
< Mwllz(B)lw < Mg lollw. (5.34)
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where py is the spectral radius of ® + I'F on W (see [32] Lemma 2.1 (b)).

Let us consider the second term from the right-hand side of (5.33). First of all let us
notice that since B € L(U,V) is an admissible input operator

/Ot_kT |$¥(t ~ kT — 1) BFa(h)|  dr <

/ot'” |5V = kT = 1), IBF(k)fvdr <

£W) l

IA

t—kT

| BFz(k)||y / Myevt=KT=1 gy <
4]

My

wy

AN

IBFz(k)|ly (1 — ev=D) < oo, (5.35)

It follows that

t—kT t—kT t—kT

/ SY(t ~ kT — T)BFx(k)\ < / / SY(t — kT — 7)BFz(k)dr| <
0 w 0 0 w

My wy(t—kT) My wy(t—kT)

== BFa(k)lly (1 = e D) < 2Bl el Fr(k)lu (1 - e+D) <

wy wy

M !

o IBlleenll Fllcovzn (1= D) [a(k)llw- (5.36)

Hence, the supremum over ¢ € [kT, (k+ 1)T') of the second term from the right-hand
side of (5.33) satisfies

< Nwolyllaolw,  (537)
w

sup
RT<t<(k+1)T

t—kT
/ SY(t — kT — r)BFz(k)dr
(4]

for
2t wy(T)
Ny = E”B”L(u,mHF”qw_u) (1 Wy ) _

From (5.34) and (5.37) we get that

le(llw < (Mw + Nw) piyllzollw, (5.38)

which shows that {z(¢)||w is bounded by a sequence converging to zero, fact which
yields the assertion.

Remark 5.11  (¢) The claims we made in the items (i) and (iii) of Theorem 5.10 can be
extended in the sense that it is possible to prove power stability and power stabilizabil-
ity on the both spaces W and V with minor modifications of the proof and assuming
that (S(:), B) is admissibly stabilizable.
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(1) The result of item (ii) holds also for infinite-dimensional input space U.

(iii) The situation is very much different in what concernes the last item of Theorem 5.10.
If for the case x(-) € W considered in Theorem 5.10 we allow that F' is bounded from
W to U, then when considering the case () € V, the operator F has compulsory to be
bounded from V toU. This is especially true since F € L(V,U) implies F € LIW,U)
(the reverse does not hold) and for feedback operators bounded from W to U, but are
unbounded from V to U, we cannot obtain a bound for ||z(t)|lv in terms of ||z(k)|lw.

Remark 5.12 In Figure 2.1 we have represented the overlap of the control and observation
mappings with respect to the W-space for a Pritchard-Salamon system o(S8Y(), B,C, D).
The mapping representation associated with the time-discretized Pritchard-Salamon system
is given in Figure 5.1. It is easy to see that sampling has a beneficial smoothing effect on
the original system, all operators are now bounded with respect to the smaller state space
W. If for original Pritchard-Salamon system, due to the unboundedness of B, in general

B¢ LU,W)NLU,V),

notice that for the time-discretized Pritchard-Salamon system L(®,T', A, ®) the relation
corresponding to the above one is assured by the second item proved in Theorem 5.10, i.e.

T e LU W)N LU, V).

W—_——X—"V

r A

U © Y

Figure 5.1: The mapping representation of the time-discretized Pritchard-Salamon system
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5.2 Digital optimal prestabilization

We are able now to focus on the main goal of this chapter - removing the stability assump-
tion on the dynamics operator required by the Popov theory results proved in chapter 3.
This will be done by digital prestabilization. The idea is the following: assume that we
have a pair (S"(-), B) which is exponentially stabilizable on W and B is a finite rank op-
erator. Then the spectral decomposition (5.28) holds. We want to find a digital feedback
operator such that “the unstable poles are removed with minimum effort”. To be more
precise, we want to determine a piece-wise constant function

Ustep(t) = Fra(k), kT <t< (k+1)T (5.39)

which provides digital exponential stability for the Pritchard-Salamon-Popov triple £(SY(-), B, M)
and such that the following quadratic index associated with the antistable part of (S¥(-), B)
is minimized
s s 2@ LY (0,
Js (330 > t( )) *‘/0 (( (L*) Rt w(t) |\ (@) 'R «R™dt (5.40)

Here 2%(-) € R™ represents the state vector components corresponding to the antistable
part assumed to be n-dimensional. We also assume that the following finite-dimensional
Popov index

M+ — Q+ L+ _ (M+)* I= £(Rn @Rm)

Wl )=
is positive semidefinite and that (A}, Bt) is exponentially stabilizable and (v/QF, A}y) is
exponentially detectable, where

et(t) = Afet(t) + Btu(t), z¥(0) =z € R®

is the initial value problem associated with the antistable part of the original Pritchard-
Salamon-Popov triple.

We shall call this the digital optimal prestabilization problem associated with the
Pritchard-Salamon-Popov triple ©(SV(-), B, M).

The solution to this problem is obtained as follows

1. Assume that the digital prestabilization feedback has the following structure with
respect to the spectral decomposition (5.28)

Fr=(Fr0), (5.41)

where FF is such that ®* + I't £} has all eigenvalues in the open unit disk. Such a
feedback provides power stability of the perturbed discrete-time semigroup ® +T'F+,
where @ and I are defined by (5.14) and (5.15), respectively. This statement is
motivated by the assertion (iil) of Theorem 5.10. Then a digital control las defined
by (5.39) is a digital exponentially stabilizing one. This statement is supported by
the fact proved in assertion (iii) of Theorem 5.10,
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2. Assume now that F;} is the power stabilizing feedback defined by the solution to the

following discrete-time control problem

stk + 1) = ®* 2 (k) + Tru(k), «H(0) = 2f. (5.42)

. =2 zt(k + LE t(k
v Z(< iy ) ( Gy R ) ( ) >>R”xR”“- (548

Z+ k_
u(k)eUg, k=0

where the class of admissible control sequences is define by

UL 2 {u() € £(0, 00 R™)lz¥(-) € £(0,00: R} (5.44)
with z7(-) the solution to the initial value problem (5.42) and where

T . ‘

Qi = [ (SH(n) Q*Sirr, (5.45)
T -

It = / (Si(m) (L + QFT*(r)dr. (5.46)
0
T *

Rt = RY + (2(L%) + (T TH(r)) d 5.47

b= [ (R + (M) Q) ) dr (5.47)

and T'*(t) & fo St (m)B*dr. Interpreting such a stabilization strategy in terms of the
minimal energy problem, the stabilization is performed with the less effort (energy
of the control signal) possible.

. The latter problem (5.42)-(5.43) is a classical finite-dimensional digital control prob-

lem (see [48]). Since (A}, B) and (/QF, Aj;) have been assumed exponentially sta-
bilizable and exponentially detectable, then there exists a sufficiently small sampling

step Ty such that for all T < Ty the pairs (21, T'*) and ( QFf - Lt (R}L)_] L, @*)

are power stabilizable and power detectable, respectively. The optimal stabilizing
feedback matrix is given by

FFE—(Rt + () X097 (1) + (T1) xver), (5.48)

where X+ = (X*)* € R™" is the unique positive definite stabilizing solution to the
following algebraic Riccati equation

P XY - XT (@ XTI+ L) RF+DXTTH) (LI 4T X8+ QF = 0.

(5.49)
For a digital prestabilizing feedback of the form (5.41) with /2% given by (5.48), the
quadratic cost function (5.43) is minimized, its minimal value is (x$, X ") and this
is, actually, the best achievable performance for the digital control problem associated
with the antistable part of the Pritchard-Salamou-Popov triple ©(SY(-), B, M). For
the proof of the results stated above the reader is referred to [48].
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5.2.1 Digital sub-optimal prestabilization

A sub-optimal alternative solution to the digital optimal prestabilization problem is ob-
tained by applying the early results of Halanay and Rasvan [48]. The idea is that the
optimal stabilizing solution to the discrete-time Riccati equation (5.49) enjoys some nice
asymptotic properties, i.e. if regarded as a function of the sampling step T, it can be
expressed as

XHT)= XY + VT + 9(T?), (5.50)
where 0(T) is the symbol of Landau having the property that

and where Xj is the unique stabilizing solution to the continuous-time Riccati equa-
tion (under corresponding assumptions of stabilizability of (A}, B*) and detectability of

(VQF, A%))
AVRE 4 XA+ (LY + B XY (RY) T (L + BEX) 4+ Q@ =0 (5.51)

and Y is some appropriate chosen positive definite matrix (see [48] for details). The degree
of suboptimality of the digital prestabilizing feedback £+ = ( EX o0 ) with F* satisfying
(3.15) is of the order of T2, Notice that the following operator

Fre(Froo), (5.52)

with £+ 2 (R*)™" (L™ + B**X) represents a suitable candidate to continuous-time
prestabilization of the Pritchard-Salamon-Popov triple since it satisfies the boundedness
condition F* € L(V,R?).

The following remark proves its importance in the case when the Co-semigroup S(-) is
diagonal

Remark 5.13 By Theorem 5.10 a digital state-feedback of the form

Fra(k), kT <t<(k+1)T, k>0 (optimality) ,

t) = - 5.
step(t) { Fra(k), kT <t<(k+1)T, k>0 (suboptimality) . (5.53)

provides digital ezponential stability of the Pritchard-Salamon-Popov triple £(S(-), B, M).
This fact implies that the dynamics operator of the time-discretized initial value problem
(2.19) has the following form
+ + it
o ( ?—ﬁtr r q,f) ) (optimality)

( 4+ T+ 0

(5.54)
-t &~ ) (suboptimality)
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J D) such that J € R™™ is invertible. Then the operator J is

0 L
J7' 0
0 I ) Consequently,

Let now J = <

boundedly invertible and J' = (

-1
( J(_@f +IHET) 9 ) (optimality)}
gag =y NTE @ (5.55)
J(®@Y+THFH)JY 0 : L '
( i+ &- ) (suboptimality) .
If J is the nonsingular matriz which brings ®% + F+_I:—'+ to Jordan canonical form, we con-
clude the following: if S¥(-) is a diagonal semigroup, by digital prestabilization it becomes
quasi-diagonal, i.e. with an infinite-dimensional diagonal part and a Jordan canonical
finite-dimensional one. However, since the eigenvalues of J(®% + TTE+)J~1 depend an-
alytic on the matriz coefficients, we infer that there exists a perturbation of the stabilizing
solution X*(€) to the discrete-time Riccati equation (5.49) such that under the feedback
F*(e¢) the dynamics operator of the time-discretized initial value problem (2.19) remains
power stable and it can be diagonalized without incurring to much loss of performance, t.e.
for small € > 0 we have

Jz(.rg, u()) ~ J}:(:L'g, u()? 6)'

A similar fact can be obtained by performing a continuous-time prestabilization via F*(e)
generated by X*’(e), an arbitrary small perturbation of the solution to the continuous time
Riccati equation (5.51) followed by discretization. Hence, in the example treated in chapter
7, section 7.1.1, we shall assume that the Cy-semigroup is diagonal and exponentially stable

on W.

Let us consider now the cost function (5.40) for a particular choice of the penalty matrices
as they appear in the minimum energy problem, i.e.

Q+ — C+(C‘+)"‘ Lt =0and Rt = ]mxm-

Since discretization preserves the values of the C' and D matrices it is tempting to perform
a digital prestabilization optimally with respect to the cost function associated with the
minimum energy problem for the time-discretized system. Let us see what happens in this
case. The following propesition holds [10]

Proposition 5.14 Let (AT, BY,Ct) € RY" x R™™ x R”™ and let (87, T, AT) €
R™*™ x R™ ™ x RP*™ be its time-discretized counterpart. If (A, BY, C%) is stabilizable and
detectable then there exists a sampling step Ty such that for every T' < Tj the discrete-time
Riccati equation written for (8T Tt A')

dt*x+tdt - Xt — @+*X+F+(1+

mxm

FTHXITHITH X Y AT A =0 (5.56)
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has a stabilizing solution X} which satisfies
im TXF = X7, .5
Jim TXF = X; (557)
with X¥ the unique positive definite solution to the continuous-time Riccati equation

AP Xt 4 XTAY £ XTBTBT X 4 0Ot =0, (5.58)

Proof Let X be the unique positive definite solution to the continuous-time Riccati
equation (5.58) and let F.* be the optimal feedback. The existence of X7 is assured by
the stabilizability and detectability of (A+, B+, C*). Using a Taylor series expansion one
can easily prove the existence of a sampling step Tp such that for every 7 < Tj the triple
(®*,TF, A1) is power stabilizable and power detectable. This fact implies the existence of
a stabilizing solution XJ. Let F be the optimal feedback. Notice that the discrete-time
Riccati equation (5.56) admits an equivalent representation in the form of the following
system

= ®TXY®Y — XF — F*(Luxm + TP XTIV 4 ATA,
0 = THXH®Y 4 (Ixm + THXHDH FF

Consider the following functions

Fi : (=00,0)U(0,00) x RE™ x R™*" — RE*™,
‘FZ . (—'O0,0) U (0, OO) X Rgxn X Rmxn —_ Rmxn"
fB . R X Rgxn X Rmxn _ R'ﬂsﬂ(n % Rmxn.

defined by

§+* - In n~ +l¢+ — dnuxn e nxn X+ (+ - nxn
ﬂ(T,X*,F*):( x));( ) | (2 ;x) +J\(nI:TIX)_

[m m AP & A
— F+* (1+ X '*‘1711 X F )F++C+*CY+, (559)

T X+®+ 4 (] 4 ImxmtTH XTI oy

FoT, X+, FY) ( T . ) ; (5.60)
+ +
FUT, X+, F) oy

Fo(T, X T, FH)
At x+ + Xt At + X+B+B+*X+ + Saniohs » (5'61)
BYX* 4+ F+ ) I'=0

F(T, X+, FY)
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where RE*" is the space of symmetfic n X n matrices. Notice that if X} 2 TXJ then
AT XFFH = 0,
FAT, XF, FP) = 0,
F(T, X}, Ff) = 0.
Notice also that F3(T, X+, F*) is continuous with respect to T in the origin and, further-
more, it is analytical as well. Clearly, it is differentiable with respect to X* and F'*. Notice
that F3(0, X}, FF) = 0 by definition of F;. Let us show that the differential of F; with

respect to X+ and F* is nonsingular in (0, X[, F}). For this consider arbitrary matrices
M € RY™ and N € R™" and an arbitrary € > 0. Then
s y

AY*"M + MA* — N*FF — F*N ) N

I

Fa(0,XF +eM+ Fr +eN) = FH0, X FY)+e (

BY*M + N
+ ez(aNN*>.  (562)
Hence,
0F3(0, X+, F) _ (F(0, X+ eM + FX 4+ eN) — Fa(0, XF, FH))
T2l e JAMN) = lim < c et )
X+, F+) Ay ;
AYM + MA* — N*FH — FHN

In order to show that the linear map defined by (5.63) is nonsingular, it is sufficient to
show that it is injective. Let us assume that (M = M™, N) is in its kernel. Then

AV M 4+ MA™ — N*FY — FH*N =0, (5.64)
B™M+ N =0 (5.65)

and it follows that
(A* + B*FYYM + M(A* + BTFf) =0. (5.66)

As (A* 4+ BY FF) is stable, by a Lyapunov function argument we conclude that the unique
solution to (5.66) is M = 0. This fact implies N = 0 which means that the kernel is
null and hence we have the injectivity of the mapping (5.63). Applying now the Implicit
Function Theorem we get that there exist analytic functions

X} I -— R, (5.67)
Ff . T —R™", (5.68)
where 7 is a neighbourhood of the origin, and such that
XH0) = X7, (5.69)
FH o) = F, (5.70)
Fo(T, XH(T), Ff(T)) = 0, (5.71)
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for every T' € Z. The latter relation implies that T X} (T) is a solution to the discrete-time
Riccati equation (5.56) and Fj} approaches F* as T approaches 0. It follows that

. dY 4 THRf — 1
lim
T—0 T
We conclude that for a sufficiently small sampling step, say 7o, the eigenvalues of ®+ +

't £} are in the open unit disc and XJ(7T) is nothing else than the stabilizing solution to
{5.56) for which

nXn — A+ + B+FC+-'

lim (TX{(T)) = X} (0) =

obviously holds and the proof is complete.

[

An immediate consequence of Proposition 5.14 is represented by the following fact: let
Ji(eg u() = (Xl 25), (5.72)

ng(% () = (X{zg, ), (5.73)

T dul) = (XEad.ed), (5.74)

denote the the optimal values of the cost functions associated with the continuous time
LQ-optimal control problem, the digital LQ-optimal control problem and the digital LQ-
suboptimal control problem from Proposition 5.14, all considered for the antistable part
(A*,B*,C*). On the basis of the asymptotic properties of the solutions to the discrete-
time Riccati equations (5.49) and (5.56) we can represent graphically the dependence on
the sampling step of (5.73) and (5.74). This is depicted in Figure 5.2

1d
+
JE(XO u(.))

12?+ @)
' 2 XO,U .
JE(X(; ()

T T
Figure 5.2: The sampling step dependence of the suboptimal values of the cost functions

The two graphs (T, J (8, u(-) = (X2, 23)) and (T, J&(xf () = (Xhot,at))
have a cross point 7# which is computable in terms of the optimal value of the continuous
time cost function by

a S(ad, ul- % N
Tt o)+ THIad ) e BESHD e o)) = (Pat o), (575)
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with Y defined via (5.50). If the sampling step is of the value of T# then the loss of
optimality of digital prestabilization based on the solution to the Riccati equation (5.56)
is very small. This approach presents the advantage of a simpler form of the discrete-
time Riccati equation (5.56). If the sampling step does not belong to a sufficient small
neighbourhood of T# then the Joss of optimality becomes significant.

5.2.2 Infinite-dimensional considerations on asymptotic prop-
erties to digital Riccati equations

Let us end this section by analyzing the infinite-dimensional counterpart of the results on
asymptotic properties with respect to sampling of the solutions to digital Riccati equations
as presented in the previous section. Assume that one wants to write a similar expansion
to (5.50) for the solution to the discrete-time Riccati equation written for the infinite
dimensional discrete-time system (®,T,A,®). In [73], Rosen and Wang have proved
for the class of distributed parameter systems with bounded time-varying operators that
the solutions to the discrete-time Riccati equation associated with the digital LQ-optimal
control problem converge strongly to the solutions of the continuous time LQ-optimal
control problem. Even if an extension of those results to systems with unboundedness
would be neither trivial nor uninteresting, we shall not be concerned with developing such
an extension in this thesis. Instead of that let us focus our attention on the expansion (5.50)
for the solution to infinite-dimensional case. In the finite-dimensional case, the central role
in proving asymptotic properties of those solutions was played by the analyticity of those
solutions with respect to the sampling step in a certain neighbourhood of the origin. This
fact obviously do not hold in general for infinite dimensional systems since the strongly
continuous semigroup SY(-) is unbounded for negative values of the time. It remains an
open question under which minimal assumption made on the system those results can be
extended in infinite dimensions. We conjecture that they hold for analytic semigroups,
but such a result is not of practical importance since most of the infinite-dimensional
systems does not occur in this way. Another tricky aspect is that, technically speaking, for
infinite dimensional systems with group instead of semigroup, we are able to write down a
construction and, eventually, to use a Implicit Function Theorem argument for extending
the results, but, unfortunately, for this class of systems, stabilizability is available only in
the strong sense, and, hence, there are no Riccati equations involved in this theory.

5.3 Hybrid stability for Pritchard-Salamon systems

The main goal of this section is to introduce the reader the concept of hybrid stability.
Several properties of hybrid stable Pritchard-Salamon systems will be explored. Since the
hybrid stability is basically a stability of input/output type, we shall proceed the develop-
ments of this section by a subsection in which we collect several results on input/output
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stability.

5.3.1 Input/output stability

Let £q(S5(:), B,C, D) be a Pritchard-Salamon system as introduces in Definition 2.7 and
let Xg(A, B,C, D) denote infinite-dimensional discrete-time system defined by (3.1). Let
G denote the input/output operator

G : LYe(0,00;U) — L¥°(0,00; ), ( C/ — 7)Bu(r)dr + Du(-) (5.76)

if the Pritchard-Salamon system is considered and, alternatively,

G+ £3(0,00;U) — £5(0,00; V), (Gu)(- ZCA ~1Bu(i) + Dul(-) (5.77)
i=0
when Y¢(A, B,C, D) is considered. We shall call £5(S(-), B,C, D) and £¢(A, B,C, D)
realizations of (5.76) and (5.77), respectively.
We consider the input/output maps as unbounded maps defined by

G : D(G) C La(0,00;U) — Ly(0,00: Y) (5.78)
and
G : D(G) C £a(0,00;U) — £3(0, 00; ), (5.79)
where
D(G) 2 {u(-) € Ly(0, 00:U)|(Gu)(") € La(0, 003 )} (5.80)
and
D(G) £ {u(-) € £2(0, 00;U)|(Gu)(-) € 2(0, 00, V)} (5.81)

respectively.

Definition 5.15 (input/output stability)
The Pritchard-Salamon system Tg(S(-), B.C, D) and the infinite-dimensional discrete-
time system Xg(A, B,C, D) are called input/output stable if

D(G) = Ly(0, 003 )

for Bg(S{), B,C, D) and
D(G) = £:{0, 00;U)

for (A, B,C, D).
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The following results reported from [80] and (62] give the equivalence between input/output
stability and exponential (power) stability for £¢(S(-), B,C, D) ( £s(4, B,C, D))

Lemma 5.16 (Lemma 2.23 [80])

Let ©a(S(-), B,C, D) be a Pritchard-Salamon system such that (S(-), B) and (C, S(-)) are
admissibly stabilizable and admissibly detectable. Then the system is input/output stable if
and only if S(-) is exponentially stable on W and V.

Lemma 5.17 (Theorem 2 [62])
Let £¢(A, B,C, D) be an infinite-dimensional discrete-time system such that (A, B) and
(C, A) are power stabilizable and power detectable. Then the system is input/output stable
if and only if A is power stable.

Let us consider now the following Pritchard-Salamon system

) (5(.),( B, B, )( g: )( gz DO” )) (5.82)

with respect to W < V and the following infinite-dimensional discrete-time system

E(A,(& Bﬁ(%)(ﬁli %“ )) (5.83)

on X for which the following state-space description is defined

(oz)(t) = Az(¢) + Biui(t) + Baua(?)
Ya{ n(t) = Ciz(t) + Diquy(t) , (5.84)
y2(t) = Cox(t) + Dayuq(t)

A | ox(t) , te€R
Tl z(t+1) , teN
time or the advance unit shift operator in the discrete-time case.

If o = 0 then either (5.82) or (5.83) can be expressed in input/output fashion as

(10)- (& &) (u0). .

Gu = L¥(0,00;Uy) = L5°(0, 00; M),
(Gnu)() = C]/DSV(-—T)Blul(T)dT—FDnul(-), (5.86)
G+ L0, 00;Uy) > LX(0, 005 )1),

where (oz)(t) denote either the differential operator in continuous-

where
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(Grawa)() = G /0}9"(- — 7) Byus(7)dr + Digus(-), (5.87)
Gn © Lye(0,00:U;) — L¥(0, 005 W),

(Gaw)(") = 02]0' SY(- = 1) Byuy(7)dr + Dayus(-), (5.88)
Gu : LY(0,00;Us) = L0, 00; %),

(Guuw)() = G /0 SY(- — 7) Byus()dr, (5.89)

if the Pritchard-Salamon system (5.82) is considered, or

G £5(0, 00;Uy ) > £5(0, 00: Y1),

(Gryun)(-) iclA--f—IB,ul(i) + Dyuy(), (5.90)
Cra : 02(0,00:8) o £3(0, 00, 1),

(Graua)() ZCIA 1 Baug (i) + Digug(-), (5.91)
Gn e?()o 00;Uy) - £5(0, 003 ),

(Cuu)() = S CoA= 1 Brus(i) + Darn(), (5.92)
G © 00, 00ilhs) = £5(0, 00: V),

(o)) = 5 CoA= Byuni), (5.93)

i=0

if the infinite-dimensional discrete-time system (5.83) is considered.

Consider now the controllers, X (S.(+), Be, Ce, D.) which is a Pritchard-Salamon system
with respect to W, < V_ and the discrete-time infinite-dimensional system Yk (A, B., C., D)
on X, satisfying the set of equations

« { (ozc)(t) = Aczc(t) + Beya(t)
us(t) = Ceze(t) + Deyal(t)

and assume that they are connected in closed loop with (5.82) and (5.83), respectively.
For z(0) = 0, Xx(Sc(-), Be, Ce, D) and Lk (A, B, C., D.) are represented in an input
output fashion as

(5.94)

Ge: L¥9(0,00; V) — L0, 00;), ( (Gey2)(+) / = 7)Beya(7) + Doya(-)(5.95)

for the Pritchard-Salamon system T (S.(-), B., C., D.) and

)= 5 CoAT 7 Bunli) + D) (5.96)

=0

Ge : £5(0,00; V2) — £2(0, 00;Uy), (Goypa)(-
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for the discrete-time system Yk (Ac, Bc, Ce, De).
Associated with the control set-up depicted in Figure 1.3 is the following configuration,
we shall call the extended control loop configuration

v Us 2G

+
2 y, A+

Figure 5.3: The extended closed loop configuration

We consider two additional signals
CAS LZ(ano;u2)v w e LQ(O,OO;yz),

for the extended closed loop configuration associated with the Pritchard-Salamon system
(5.82), and
v E e2(07 oo;“?)a w e 82(0700;;))2)7

when the it is associated with (5.83). Consider the mapping

Uy hn
( ] ) — ( Uy ) (5.97)
w Y2

Ly (0,00;Uy U & V)

defined from

to

Ly (0,00, DUy @ W)

in the Pritchard-Salamon system case and its discrete-time counterpart defined from

£, (0, 00Uy DU B V2)
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to

(0,000 U, B V),

when the system (5.83) is considered.
From Figure 5.3 we derive the following set of equations

i = Guu+ Graug, (5.98)
y2 = Gnui+ Gruz +w, (5.99)
uy = Geys +v. (5100)
() ()
Then the equation relating | v and | ug | is
w Y2

1 ~G12 0 3] Gll 0 0 (73]
0 1 -G, uy | = 0 I 0 v . (5.101)
0 —ng 1 Y2 G21 0 [ w

We introduce here the following

Definition 5.18 (closed loop stability)
(1) We say that Lx(S(+), Be, Cc, D.) is a stabilizing controller for (5.82) if
I —G12 0
0 I —=Gc | :(L2(0,000 DU ® Ia) — (L2(0, 00,01 B U B V,)5.102)
0 —G’gz 1

is boundedly invertible.
(i1) We say that Tx(Ac, Be,Ce, De) 1s a stabilizing controller for (5.83) if
I -G, 0
0 I —Ge | 2 (62(0,00; 0 & Uy & W) — (£2(0,00; 01 S Uy © V2)(5.103)
0 -G22 1

is boundedly invertible.

Remark 5.19 The following hold

(7) Notice that a sufficient condition for (5.102) and (5.108) to be boundedly invertible
is that G, is boundedly invertible.
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(2)

(i)
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The motivation why Definition 5.18 is appropriate in the framework of input/output

stability given in this subsection is the following: assume that (5.102) and (5.103)

are boundedly invertible and assume that I — GG, is boundedly invertible. Define
F. 2 (1 - GnGo)™

Then the input/output operator associated with the extended closed loop configuration

is defined by
n U
Uy ) cyes ( v ) : (5.104)
Y2 w

A ( G + G12GF.Gy GoGFGaa + 1 GG Fe )
Ge = .

where

G F.Gn I+ G FGy G F.
FCG21 FcGZ‘Z Fc

One can notice immediately that the input output operator from uy(-) to yi(-) is
defined by

Gr 2 Gi1 + G1aGe(I — GpaGe) Gy (5.105)

Since the input/output operator G® is well defined and bounded, it follows that Gr
is also well defined and bounded from L2(0,00;U) to Ly(0,00;)), if the Pritchard-
Salamon system is considered and from £2(0, 00;U) to £3(0, 00; YY), if the discrete-time
system is considered. Notice hence, that the closed loop stability definition (5.18) is
general enough to imply the boundedness of Gg which represents the stability require-
ment of the H* control problem.

Let us notice finally that the time domain properties of input/output operators have
their frequency domain counterparts, since by Paley-Wiener theorem Ly-spaces and
H2-spaces are isomorphic under the Laplace transform (see Appendiz A for the def-
inition of the Hardy space M*(Z)). Hence, if the transfer function G is well de-
fined as the Laplace transform of G, then a system is called input/output stable if
G € H>(L(U,Y)) and furthermore

Gl L 0,000, L (0.00:0)) = G oo (22,3))- (5.106)

A particular set-up that we are finally considering in this section is the one depicted in
Figure 5.4
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v u

— O %

Figure 5.4: A particular a particular version of the extended closed loop configuration

Y2

(e ) 0)= (G 0)(0) 10

Such a structure, occurring while setting u; = 0 in the extended closed loop control con-
figuration in Figure 5.3 is called input/output stable if the operator

Then the equation relating ( Z} ) and ( 2 ) is

-y ,
, t La(0,00;Us @ V2) — L2(0, 00;Uy B s,
—Ggy I

for Pritchard-Salamon systems and
I -G, : .
: éz(() OO;HQ & yz) — fz(o, 0011/{2 & yz).
-Gy 1

for infinite-dimensional discrete-time systems are boundedly invertible. The following re-
sults holds

Lemma 5.20 Zk(S.(+), B.,Ce, D.) is a stabilizing controller for the Pritchard-Salamon
system (5.82) and Lk (A, Be, Ce, D.) is a stabilizing controller for the infinite-dimensional
discrete-time system (5.83) if Ex(Se(-), B, Cc, Do) and Yx(A, B., Cy, D.) are stabilizing
controllers for $g(S5(-), By, C2,0) and Ta(A, By, Cs, 0), respectively.
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Proof Let us consider for the simplicity of the proof only the case of Pritchard-Salamon
system. Since Tk(S.(+), Be. Ce, D.) stabilizes £¢(5(-), Bz, C2,0) it follows that

1 —Wc
( G ? ) : La(0, 003Uz & V) — La(0, 001Uy & V) (5.108)

is boundedly invertible. Then let us define the following partition on (5.102)

I =Gy O I -Gz 0
0 I -G.|= 0 1 -G, . (5.109)
0 —622 I 0 —Gzz 1
Since (5.108) is boundedly invertible it follows by direct computation and by exploiting
the special upper-block triangular structure of (5.109) that

_ I -G\
[ -Gy, 0\ I (—Gno)(_G 1)
0 I -G = 2 . (5.110)
rh

0 I —a. \™
0 -G .
e o) (Len 75)

Notice that it is sufficient to show that D(Gia) = L2(0, 00;Us) since this implies immedi-
atedly that the operator

-1
(~Gn 0) ( ’_G G; ) : Ly(0,00:Uy @ Vo) — La(0, 00Uy & D
22

is bounded. The fact that Yx(S.(), B, Ce, D.) stabilizes Xc(S(:), Bs, C3,0) implies that
the state function of Lg(S(+), Bz, C2,0) decays exponentially to zero as t tends to infinite.
But the state function of £g(S(+), Be, Cy, D12) is the same as the one of £¢(5(-), Bz, C2,0)
and hence, under controls from L3(0, 00;>) the output y;(-) is element if L2(0, oo; V) fact
which shows that D(G1z) = L4(0, 00;U;) which completes the proof.

[

5.3.2 Hybrid stability

The concept of hybrid stability was originally introduced for finite-dimensional systems in
[29]. In this section we shall extend it to Pritchard-Salamon systems. Let us consider the
smooth Pritchard-Salamon system

) (5(.),( B, B, )( gz )( DO“ DO” >> (5.111)

with respect to W < V and the discrete-time controller £k (Ac, B, Cc, D.) interconnected
in closed loop via a sampler and a zero-order holder as depicted in Figure 1.5.
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Remark 5.21 Notice that it is compulsory to have Dy = 0. Then, for zo € W the
solution to the measured output equation is given by

t
va(t) £ €28 ()0 + /0 CoS™(t — ) (Byua(7) + Baua(7)) dr.
Assuming that Dy # 0, it follows that the above holds only in L,-sense
1/2() é C)Sw().’lfo + ./0 CZSW( - T) (B]U](T) + BgUz(T))dT + Dglul(')

and hence, it cannot be sampled since the sampler is not well defined on L, spaces. Standard
engineering practice shows that if a low-pass filter is used prior to the sampler, then the
modified sampler operator - original sampler + filter is well defined on L,-spaces. However,
since we do not want to modify the definition of the sampler, we shall assume for well
posedness that Dy = 0.

Since for a chosen sampling period T', the operators S and H are fixed, we shall move them
around the loop and we include them into the plant obtaining the closed loop configuration
depicted in Figure 5.5. The system g, is the so called sampled-data system and §, = Sy,
is the discretized measured output. By an abuse of notation we shall denote the control
sequence representing the output of the controller by ;.

u; Y1
2‘Gsd
u2 ZK Y2

Figure 5.5: The modified digital control configuration

Let us consider

G .
o2 ( G G ) L D(G) C La(0, 005Uy & Us) —> La(0, 003 31 & D)
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as an unbounded map with

D(G) £ {( Z; ) € Ly(0, 005 B Uy)| (( g; g; ) ( Z; )) () € Ls(0, 000 )1 @yz)}~

It represents the input/output operator associated with the Pritchard-Salamon system

(5.111) and it maps
Yy [ .
Uz Y2

We consider the input/output operator associated with Xg_,

G [AY Gn G:H
4=\ SGyu SGpH |’

defined by
Gsa : D(Gsa) C L3(0, 00;Uy) @ £(0, 00;Uy) — La(0, 00; ) & €2(0, 00; V),

as an unbounded map with the domain given by

D(Gsa) 2 {( Z; > € L2(0, 00;U;) & £2(0, cold)|
(( ch;; SGG:;I%{ ) ( Z; )) () e Lz(o,oo;yl)eaez(o,oo;yz)}(s.u‘z)

()= (%)

Similarly to the way we defined the extended closed loop configuration in the previous
section, we shall two compatible exogenous signals v € £,(0,00;U;) and w € £2(0, 00; J%)
and add them to the closed-loop system. We obtain the extended digital control configu-

ration depicted in Figure 5.6.
Uy Y1
v — | g
w gz

Let us consider the mapping
from L, (0,00;Uy)} & £, (0,00; Ve @ Us)) to Ly (0,00; V1) & £2 (0, 00;Uz & V») described by
the following equation

1 —GnH 0 1 Gu 0 0 u
0 I ~-G. i, |=) 0 I 0 v |- (5.113)
0 —SngH I gg SGm 0 ] w

It maps
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u, ;/
2
v 52 Gsd
+ CP
+

+
ZK 2

o

Figure 5.6: The extended digital control configuration

Definition 5.22 (hybrid stability)
The digital control closed loop system S,k is called hybrid stable the following operator

I —-G;H ¢
( 0 I -G, ) v {(La{0, 00; Uy ) @ £2(0, 00; Yy B Us)) —
0 —SGH I
(L2(0, 00;U1) @ £2(0,00; Vs & Us)) (5.114)
18 boundedly invertible for a given sampling step T' > 0.

Definition 5.23 Let L defined by (5.111) be a smooth Pritchard-Salamon system with
respect to W — X — V. We shall say that it is hybrid stabilizable if there exists a
controller Yy such that the digital control system Lq,,k is hybrid stable.

Remark 5.24 The following hold

(i) Let T > 0 be such that (5.114) holds. Then a sufficient condition for the boundedly
invertibility of (5.114) is that SGyH is boundedly invertible.

(i) Assume that I — SGyHG, is boundedly invertible and let
F. 2 (I - SGyuHG,)™.
Then the input/output operator associated with the extended digital closed loop con-

figuration is defined by
(£)=(t)
iy | =G4 v |, (5.115)
Y2 w
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where
a Gll + Gl‘ZHGchSGzl GnHGcFCSGnH + 1 G]QHGCFC
G:d = G.F.SGn I +G.F.SGy,H G.F. |.
FCSG21 FCSG22H Fc

Elementary computation shows that for such a T > 0 chosen as above, then the digital
closed loop system input/output operator from ui(-) to y1{-) defined by

Gr, & G + G HG(I — SGpHG,) 'SGy (5.116)

is bounded from L,(0,00;Uy) to Ly(0,00;)4). The boundedness of Gr,, represents
the stability condition for the digital H*™ control problem. Notice hence, that the
definition of hybrid stability (5.22) is enough general to cover the stability requirement
from the digital H*® control problem that we shall address and solve in the nest
chapter.

(#i) Notice finally that the time domain properties of input/output operator Gr,, have no
frequency domain counterparts, since the digital control system Y,k is no longer
time invariant due to the periodic characteristic of the sampler.

5.3.3 Lifting the continuous-time system £(5(-), B,C, D)

In this section we give the main results on lifting a continuous-time T'-periodical system to
a discrete-time time-invariant one. The idea is to rearrange the original periodic system
such a way that its periodicity is reflected by shift invariance in the new set-up. Let us
begin with defining lifting for signals. The idea is to represent a continuous time signal by
a sequence with values in a function space. In Figure 5.7 we have represented schematically
the original continuous time signal and its lifed counterpart

Let us define first the lifting operator. Let Z be a Banach space and let L,(0, 00; Z)
be the space of square integrable Z-valued functions and #;(0,00; Z) the space of square
summable Z-valued sequences. Notice that L2(0, 0o; Z) and £2(0, 0o; Z) are Hilbert spaces
with respect to the norms induced by the inner products. Let T' > 0 be a fixed positive
constant. Let

Q1 120, 00, Z) — 8(0,00; L(0,T; £)), Q¢ = ¢, (5.117)

where §(0, 00; Z) is the space of Z-valued sequences, ¢ = {éo, Ciyeee, C(k), )= {é(k)}kzg
and f(k) notation Ck(:) = C(KT +-) € Ly(0,T;X). Tt is easy to show (see [18, 92] for
technical details of the proof) that Q is a linear bijective isometry from L<(0,00; Z) to
S(0,00; Ly(0,T; Z)). Notice also that if () is a piece-wise constant function, (() =
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t
A s R ' )
< /1\ 1 w
L J _J e D N N
0 Tg | TO | TO ! TO | Tg | T
0 1 2 3 4 5 t

Figure 5.7: Lifting a L2(0, co; Z) signal to a £,(0, 00; L2(0, T, Z)) sequence

¢(k), te[kT,(k+1)T), then { = {(o,(1,---, (k)" -} stands for the sampled of {(-) and
furthermore { = (.

Let us focus on state space formulae for lifted systems. Consider the continuous-time
system %(S5(-), B,C, D) on a real separable Hilbert space X' given by

#(t) = Az(t)+ Bu(), (5.118)
y(t) = Cz(t) + Du(t), (5.119)

~—

where S(-) is a strongly continuous semigroup generated by A. Let &/ and ) be the real
separable Hilbert spaces of the inputs and outputs respectively such that B € £(, X) and
C € L{X,Y), respectively. The state equation can be reformulated as

kT 47
2(kT + ) = S(r)2(kT) + /kT S(KT + 7 — ) Bu(y)dy
for <7 < T. For 7 = kT + @ equation (5.118) becomes

c(kT + 7) = S(r)2(kT) + /0 S(r — 6) Bu(kT + 6)do.
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Let u(kT +6) = ux(0). Then, at the sampling instants, the state equation (5.118) becomes

z(k+1) = S(t)(k)+ /OT S(r — 8) Buy(8)df. (5.120)

Let then
® X — X, &=5), (5.121)
' Ly(0,T;U) — X, fa(k)=/0T S(T — 7)Buy(7)dr. (5.122)

From (5.119) we finally obtain

(k) = CS(.)x(k)JrC/o" S(- = 7)Bux(r)dr) + Di(k) =

CS()z(k) + C/O' S(- = 7)Bug(r)dr + Da(k) =
Az(k) + ©i(k), (5.123)

where

A X — Ly(0,T,Y), Az(k)=CS()z(k), (5.124)
& : Ly(0.T;U) —> Ly(0,T,Y), Oifk)=C /0 'S(- = 7)Bu(k)(r)dr + Da(Kp.125)

Then the original system admits at the sampling instants the following representation

w(k+1) = ®ax(k)+Tak), (5.126)
i(k) = Az(k)+Oa(k), (5.127)

with @, ', A, © defined via (5.121), (5.122), (5.124), (5.125) and where z € §(0, 00; X),
it € £5(0,00: Ly(0,T;U)) and § € S(0, 00; L2(0,T; Y)), respectively.

Remark 5.25 The following issues deserve highlighting:

(i) Notice that the lifting operator (5.117) is defined on locally square integrable Z-valued
functions and ils values are sequences of square integrable Z-valued functions on
[0,T]. However, if we restrict to square integrable Z-valued functions then the lifted
signal ( is a square summable sequence of square integrable Z-valued functions on

[0, 7).

(i) Assume that in (5.118) the A-operator is the infinitesimal generator of a stable Co-
semigroup on X. Then for anyu € Ly(0, 00;U) the state is also square integrable, i.e.
x € Ly(0,00; X) fact which implies y € L2(0,00;)). Let i and g be the lifted of u and
y. It is a routine to show that i € £5(0,00; L2(0, T:U)) and § € €3(0, 005 L2(0,7; )))
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(#i) If we assume stability then the input oulput operator associated with the linear sys-
tem (5.118) and (5.119) is a well defined and bounded map from Ly(0,00;U) to
L3(0,00; Y). It is well known (see [18]) that the lifted G is then

G = QG € L(£5(0,00; La(0, T;U)), £2(0, 003 Lz(0, T; V))) (5.128)

and furthermore ||G|| = ||G].

5.3.4 Lifting the X (S(-), (B, B,), (C1,Cs)", (D1 D)3)) Pritchard- Sala-

mon system

The theory developed in subsection 5.3.3 is now applied to lifting the following smooth
Pritchard-Salamon system

st m(8).(% %)

with respect to W < V. Assume that 5(-) is exponential stable on W and consider
To € W

This fact implies that the measured output function is continuous with respect to the time
i. We assume that u; is a constant function on [k¥T(k +1)T'), Vk € N. Then the lifted
uy(-) is the same as its sampled @, and hence @, = @ € Ly(0, 00;Uy).

Let us apply the lifting technique developed in section 5.3.3. The state equation written
at the sampling instants becomes

2(k+1) = ®z(k) + Dyas(k) + Tyua(k), (5.129)

with
® : W-—W, &2, (5.130)
Ty o La(0,T:th) — W, flal(k)é/OTSV(T_T)BIuLk(T)dT, (5.131)

T
Fg : Z/{2 E— W, I‘QU2 é / Sv(T — T)Bz(T)dTU,g. (5132)
0
The equation for the controlled output is now

(k) = Az(k) + Oy (k) + Opaus(k), (5.133)
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W — Ly(0,T; ), (5.134)
Ly(0, T Uy) — La(0,T; 0h), (5.135)

C Uy — Ly(0,T; ), (5.136)
Ci57(), (5.137)
G [0 ' §Y(- — 1) Brayp(7)dr, (5.138)
G /0 " SY(. — 7) Byug(k)dr + Dugity(k). (5.139)

With this we have obtained the following discrete-time representation for the original

116
with
Ay
05
O 2P
defined by
A &
Buin(k) 2
é12u2(k) g
system
z(k+1)
(k)
ya(k)
where
iy
(]
z
i
Y2

Corollary 5.26 The operators
conditions

P €
Ih‘1 €
r, e«
Al €
A, €
G:')n €
Q. €

mmmmm

n

@z (k) + Ty (k) + Taug(k), (5.140)
Arz(k) + Onin (k) + Orauz(k), (5.141)
Aga(k), (5.142)

éz(O, o oH L2(0, T; Lll)),
e2(0) Oo;uz),

62(0, OOW),

22(07 o3 L2(07 003 yl))7
62(0, o0 yz)

(5.140) and (5.141) satisfy the following boundedness

LW),

L(L(0,T; ), W),

LUy, W),

L(W, Ly(0,T5 1)),

L(W7 y2)’

‘C(L2(0» T;ul)» L2(07 T; y]))»
E(le, Lz(o, T; yl))

Proof Notice first that the proof of the second item of Proposition 5.28 can be with minor
modifications adjusted such that we have Ty € £(L2(0,T;2h),W)). Applying the result
proved in the above mentioned item to the pair (S(-), B;) we also have the boundedness
T'; € £L(U;, W) which yields the result immediatedly by the definitions of A1, 6y, Oy,
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Remark 5.27 Notice that after lifting the compensator input and output spaces remain
unaltered, i.e. Y, and U,. The lifting operator has modified only the space to which the new
disturbance input, 4, and the new controlled output, §; belong. They are now Ly(0,T;U;)
and Ly(0,T;),), respectively. Notice also that only if finite-dimensionality of Uy and/or
Y was originally assumed then, for the new problem, this fact does no longer hold, the
new spaces becoming infinite-dimensional.

5.3.5 The relationship with power stability

Let us give first the main result on hybrid stabilizability of Pritchard-Salamon systems by
generalizing Theorem 1 from [29] for this class of systems.

Proposition 5.28 Consider the smooth Pritchard-Salamon system (5.111) and assume
that the following hold

(2) (S(-), Bz) is admissibly stabilizable,
(#2) (Cq, S(-)) is admissibly detectable,
(i) Uy = R™,

(iv) Yo = R™.

Then a digital controller £k(Sc(-), Be, Ce, D.) of sampling period T provides hybrid stability
for (5.111) if it provides power stability for the discrete-time system from uz — §z.

Proof Since (S(-), By) is admissibly stabilizable and (C4, S(-)) is admissibly detectable it
follows that there exists a sufficiently small sampling period Tp such that for any T' < T,
the time-discretized version of £g(S(+), Bz, C,0), denoted L (®, T3, A,,0) is power stabi-
lizable and power detectable on W. This is a consequence of the third item of Theorem 5.10.
Let T > 0 be such that the aforementioned implication holds and let Xk (Sc(+), Be, Ce, De)
be a stabilizing compensator for Lg(®, T, A;,0). Let G, denote the input/output opera-

tors associated with Xk (K, L, M, N) and let ( Gu G

be the input/output operator
G G ) put/output op

of (5.111). It follows that

I -G
(——SGnH 1 >:82(0’0032’{2693]2)_’ez(o,oo;bh@yz) (5.143)

is boundedly invertible. Then we define the following partition

I —GpH 0 I (—GrH 0)
[ )

0 I -G 0 I -G, . (5.144)
0 —SG22H I 0 —SG22H I
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Since (5.143) is boundedly invertible for the chosen T' > 0, it follows by direct computation
and by exploiting the special upper-block triangular structure of (5.144) that

I -Ge

-1
(1) —GIUH _% _ I (-GuH 0)(—SG22H 7
) 0 I -G\
0 -SGpH I

0 -SGH I
Notice that it is sufficient to show that

)Rl
(5.145)

D(Grz) 2 PC1(0, 005 Us)

since this implies immediatedly that the operator

I -G\
( -G2H 0 ) ( _SG,H I ) 1 €5(0,00;Uy B Vs) — £2(0,00;Us @ )2

is bounded. The fact that Tk (S.(*), B, Ce, D) stabilizes Xg(®, T, A,,0) implies that the
state function of Lg(®, T, A;,0), denoted Z, which is the sampled version of the state
function z(-) associated with the Pritchard-Salamon system L (S(-), By, Ca,0), satisfies

Jim_{la(k)lw < o5 lzolbw.

This fact implies that
lim [lz(t)llw < Mywelzollw.

Since Eg(S(+), B2, C2,0) and Xg(S(+), Bz, C1, D12) have common state function it follows
that for any entries from L3(0, co;U;) the controlled output y;(-) is element of L,(0, 00; M4 ).
Since PCr(0,00;Us,) is a dense subset of Ly(0,00;Uy) it follows that yi(:) is element of
L3(0, 00; Y1) also for entries from PCy(0, co;U;). But

PCT(O, oo;bb) = H[Q(O, OO;Z/{Q).

We conclude then that D(Gy2) 2 PCr(0,00;U;) and the proof is complete.
]

The digital control system, hybrid in nature, becomes after lifting a discrete-time one.
The resulting closed loop system is then

.TJRUC -+ 1) = QRZR(’C) + PRUR(k), (5.146)
yr(k) = Agzr(k)+ Orur(k), (5.147)
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(

®+I',D.C, T'2C,
B A, A ’

where

(5.148)

Agp = A1 + O12D.A, 05,C. ) )
Og = Oy,

It is rather straightforward that if Xg = W @ K stands for the augmented state space for
the resultant closed loop system then the following boundedness conditions are satisfied

®p € L(Xn),

FR S [,(Lz(O,T,Z/{l),XR) 5

AR € L( AR, L2(0,T;01),

Or € L(L2(0,T;U,), Ly(0,T; D).

(5.149)

The following proposition establishes the equivalence between the hybrid stability of Pritchard-
Salamon systems and the power stability of its lifted counterpart.

Proposition 5.29 Let us consider smooth Pritchard-Salamon system (5.111) such that
the hypothesis of Proposition 5.28 hold. Then the system (5.111) it is hybrid stabilizable if
and only if the lifted closed-loop system dynamics operator

o _ [ +T:NA; oM
R= LA, K

is power stable on Wp = W@ K.

Proof
‘Cif”:
Suppose that ®g is power stable on Wg. Then Xk is a stabilizing compensator for the

lifted system ) )
> («I-,( BT )( jt )( 60“ 60“’ )) (5.150)

which has the input output operator defined by

& Q0 Gu  G2H Qb oy _ [ aGu! QG:H
a0 SGxn SGzH 0 1)\ SGuQ' SGpH
(see [18] for technical details about lifting SG, GH and SGH operators). It follows that

Yk stabilizes the discrete-time system Yg(®,I;, A2, 0). This fat implies by Proposition
5.28 that the Pritchard-Salamon system (5.111) is hybrid stable.
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“only if”:
Let the Pritchard-Salamon system (5.111) be hybrid stable. It follows that the following

mapping
(2] (%)
v — | u,
w o
is well defined and bounded from

(L2(0, 00;Uy) @ (£2(0, 005Uy & V2))
to

(Lz(U, oc3 yl) @ (lz(O, oo; Uy @ y2)) :
This fact implies that the mapping

is well defined and bounded from

£, (0,00; Ly(0, T; Uy @ Up @ I%)
to

&5 (0,00; L2(0, T 1) @ U © V)

This follows from the fact that the lifting operator is an isometry of spaces. We conclude
that the discrete-time system (5.140) closed under output feedback via the controller (6.31)
is input/output stable. But Lemma 5.17 shows that a power stabilizable and power de-
tectable system the input/output stability and power-stability are equivalent. We conclude

that the closed loop system is internally stable, i.e. ®p is power stable on Wg.
a

Having available results on lifting a Pritchard-Salamon system, we conclude this section
by proving a result which shows that the lifting is endeed an appropriate tool for solving
the digital H> control problem. Clearly, the following holds

Proposition 5.30 Let
Ty, leoc(owoo;ul) - Llaoc(oaoo;y1)
be the input-output operator from uy to y; and let
Tiya, @ £2(0, 005 L2(0,T5Uy)) — £2(0, 005 L2(0,T5 1))
be the input-output operator from 1y to §,. Then

1Tl = 1Ty - (5-151)
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Proof Notice that the input-output operator from u; to y; can be expressed as a linear
fractional transformation of the hybrid generalized plant and the controller

_ Gu GiH s
T‘Jlul - F (( SG21 SG22H ) ’Gc> (0152)

and the input-output operator from %; to §; can be expressed as a linear fractional trans-
formation of the lifted hybrid generalized plant and the controller

_ QGHQ—I QGle
Tia, = .7:(( SGu 0! SGaH ),Gc). (5.153)

Exploiting the fact that the lifting operator preserves the norms we get

I Tsll = 1192 (Gir + Gr2HG(I — SG2HG)'SGay ) 071
G114+ G12HG (I — SGHG) 'S || = | Tya, |- (5.154)

It
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Chapter 6

The equivalent discrete-time control
problem

Taking into account the prestabilization results proved in the previous chapter we can
assume, without loss of generality that the Pritchard-Salamon-Popov triple £(SY(-), B, M)
has the Cp-semigroup exponentially stable on W. In this chapter we show how the digital
control problem can be converted into an equivalent discrete-time control problem.

6.1 The equivalent discrete-time LQ-control prob-
lem

The following results holds

Lemma 6.1 Let £(SY(-), B, M) be a smooth Pritchard-Salamon-Popov triple with respect
to (W — V,U). Assume that U = R™ and let g € W. Let 7 = {zo, 21, &) =
a(kT), -} be the sampled state function and let usep € Lo(0,00;U) be a piece-wise con-
stant control function ugep(t) = Hu(k), kT <t < (k+ 1)T. Then the smooth Pritchard-
Salamon-Popov triple [ SY(-),B,M = < LQZ 11% ) = M") defined by (2.18) and its as-

sociated initial value problem

#(t) = Az(t) + Bu(t), z(0)=z0€ W

admits, at sampling instants {0,--- kT,---}, a discrete-time representation via the equiv-

alent discrete-time Popov triple ¥ (@,I‘,MT = ( Cgf }LBT ) = qu) and the difference
T £71

equation

z(k + 1) = ®x(k) + Tu(k), z(0) =z W,

123
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where (®,T) are define by (5.14) and (5.15) and

Qr Lr x
My = =Mre LWalU),
T ( Ly Ry €L )

with Qr € L(W), Ly € LW, U) and Ry € L(U) defined by

@re.ohw 2 [ (@™ (W), SV Walwit, (6.1)
(Lya,upy = /(L*Sw(t)z u)wdt +

+ / Q8™ (V). ] SY(t — 7) Budr)wt, (6.2)
(Ryu,upy 2 T(Ru.uu+2/OT(L'/OtSv(t—T)Bud‘r,u)udt+

+ /OT(Q/O' S¥(t — 7)Budr, /ot SV(t — 1) BudrYdt. (6.3)

Proof Notice that for any ¢t € [kT, (k+ 1)T') the state function can be written as
2(t) = SW(t — kT m(k)+/ (¢ — 7) Bdru(k). (6.4)
From (6.4) and the expression of the quadratic index (2.2) we obtain

= [0 & £)(20)-(2

- /O°°(Qx(t),x(t))wdt+2/0°°(m(t),u(t))wdt+fu°°(Ru(t),u(t))udt. (6.5)

(A1) (A2) (43)

Let us evaluate the expressions (Al), (A2) and (A3) separately. Using (6.4) we obtain
(A1): /w@zm,z(z»wdt:

= Z / Q™ (1)a(k), 5™ (t)z ()it + (6.6)

+ 22/ (QSW(t)z(k),/tSv(t—T)Bu(k)dr)wdt+ (6.7)

n Z/ Q/ SY(t - 7)Bulk )dT/ V(t — 1) Bu(k)dr)wdt.  (6.8)
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In a similar way we obtain

(A2 [T, ub)w
3 /T L"SY (t)2(k), u(k) it + (6.9)
k=0 °
< 4T
SY(t — 7)Bu(k)dr)yd 6.10
+k=0/0 " [ 57 - r)Butkydr )i (6.10)
and
0o e T
(A3): /0 (Ru(t),u(mwdt:zj/o (Ru(k), u(k))wd. (6.11) -
k=0
From (6.6) we get
a [T ,
(Qua(k),a(k)w 2 [ (QS™(t)a(k), S™()a(k)wet. (6.12)

From (6.7) and (6.9) we get
(Lya(k),u(k)) 2 /()T(L*Sw(t)z(k),u(k))wdt+
+ /OT(QSW(t)z(k),/O"SV(t—T)Bu(k)dr)wdt. (6.13)
From (6.8), (6.10) and (6.11) we get
(Rru(k), u(k) 2 T(Ru(k), (k) +2 / / SY(t — 1) Bu(k)dr, w(k))udt +

/O /O SV(t - 1) Bu(k)dr,/o SY(t — 7)Bu(k)dr)ydt.  (6.14)

Il

+

Combine now (6.12), (6.13) and (6.14) to obtain

z(fcoyu(')) = i(( 283 ) s ( CLQ; é; ) ( zg:g >>lel (6.15)

k=0

and the proof is complete.
]
Since SY(-) was assumed to be exponentially stable on W it follows by Theorem 5.10
that @ is power-stable on W. Hence, we can state now the main digital control result of
this section
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2(5"(-),3,1\4: ( “ IL%) - M*)

be a Pritchard-Salamon-Popov triple on (W — V,U). Assume that Y = R™ and let
zo € W. Consider

Theorem 6.2 Let

Ryt 6(0,00;U) —> £,(0,00;U), Rt = Rp+ L3® + ¥ Ly + ¥ Qr¥, (6.16)

U : 0(0,00,U) — W, (wu)(k)éfi‘l@k-i*ru(i), (6.17)

=0
. Gt Lt )
with ®, T' and Mr = I R defined by (5.14), (5.15) and (6.1), (6.2) and (6.3),
T HAr
respectively. If Ry is well defined and bounded then the optimal digital control problem
admits a solution in the sense that

it et = iy S0 (% 8 (28 e

dm ustep (V€U 4, k=0

(Xzq, To)w

where X € L(W) is a stabilizing solution to the following discrete-time Riccati equation
XD - X — (@' XC+ Lr)(Br + T*XT) (L3 + T"X®) + Q1 = 0. (6.18)

The minimum is attained for inputs of the form

Ustep(t) = (R + T*XT) 7 (L3 + T*X®) 2(k), kT <t < (k+1)T. (6.19)

Remark 6.3 Notice that discretization has a “smoothing” effect on the discrete Popov
triple %(®,T, M1) as shown by the mapping representation in Figure 6.1

6.2 Comments on the case z; €V

From the very beginning of this thesis we have considered that the initial state z¢ belongs to
the smaller space W and we believe that we have succeeded to offer the reader a reasonable
motivation for such an option. From the mathematical point of view, a counterpart of
Lemma6.1, derived if 2y € V is assumed, would represent the most beautiful and interesting
part. This is especially true since working on the bigger space V one has to overcome certain
difficulties and to make use of specific techniques. For a comprehensive treatment of the
LQ-optimal control problem in the case zo € V the reader is referred to [33, 80, 87]. In this
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QTQW 1%
I

RTQ U LY

T

Figure 6.1: The mappings generated by the discrete Popov triple X(®,T', Mt)

section we use the technique developed in [33, 87] to extend the result proved in Lemma
6.1 to the case when the initial state belongs to the bigger state-space V.

Let us consider the Pritchard-Salamon-Popov triple (2.18). Associated with it are
the initial value problem (2.19), the class of admissible control function (2.20) and the
quadratic qost function (2.26). Recall that if zq € V, then the mild solution to (2.19)
1s a V-valued function which is continuous with respect to the time ¢. Furthermore, as
we have noticed earlier in Remark 5.8, the time-discretized state function is well defined
as a V-valued sequence and, at the sampling instants {0,7,---,kT ---} the initial value
problem {2.19) admits a discrete-time representation of the form

2k +1) = ®zx(k) + Tulk), z(0)==z0 €V,

but this time @ and I are defined by (5.18) and (5.19), respectively. Our goal is to derive
an equivalent discrete-time Pritchard-Salamon-Popov triple when zy € V. That means we
want to construct an operator

Wy = ( 0r (I%) > = MieLVau),
o R

with Qr € £(V), L% € L(V.U) and Ry € L(U) such that

)=S0 ) (5 O ) (G e o

where Jg(xg, u(+)) is the quadratic index defined by (2.26).
Since ) € L(W) is an admissible weighting operator, it follows that for any x,y € W.

HQrz. y)w| = < lzlivllylly- (6.21)

T )
| Qs e, ™0y

Since W — V, it follows by applying Theorem 1 from pp. 12 in [2] that the sesquilinear
form (6.21) can be extended to a bounded sesquilinear form on V. Let Qr = (@;)* € L(V)
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denote the self-adjoint operator associated with the extended sesquilinear form, i.e.

(Q@rz,v)w = (Qrz, y)v. (6.22)

In a similar way we construct the extension of L% € L(W,U) to V, denoted L} € L(V,U).
Notice first that the following hold

(i) Since L% € L(W,U)} is an admissible output operator for S(:) w.r.t. W — V, then
there exists a > 0 such that

, /0 LS (0, wwdt| < [l flvllul. (6.23)

This is true since the left-hand side of (6.23) defines a continuous bilinear mapping
from W U to R.

(#%) Since B € L(U,V) is an admissible input operator for S(-) w.r.t. W — V, then there
exists B > 0 such that

M / " V(¢ — 7)Budr <Al (6.24)
for t € [0,T). It follows that
‘/OT(QSW(t)z,/Ot SV(t - T)Budf)w’ < B llzlvlulle- (6.25)

From (6.23) and (6.25) it follows that

[{Lrz,u)w| = ]/(;T(L*Sw(t)x,u)wdt + (QSW(t)a:,/Ot SY(t — 7)Budr)w| <
/T<L*SW(t)x,u)wdtl + ‘/T(QSW(t)z,/’ SVt - T)Budr)wl <

0 0 0
< Allelivilelle, (6.26)

for some appropriately chosen v > 0. The last inequality implies that the bilinear form
{L%z,u)w has a continuous extension to a bilinear form on V. Let Ly € L(V,U) denote
the operator associated with this extended bilinear form, i.e.

(Lrz,w)w = (Liz, u)y.

[t remains to prove that Ry is well defined and bounded from ¥/ to . Exploiting the fact
that L* is an admissible output operator and B is an admissible input operator, it follows
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that
T t
{Rru,uly| < |T(Ru,u)u|+21/ (L‘/ SY(t — 7) Budr, u)ydt| +
(o] 0
+ /{)T(Q/Dtsv(t—r)Budr,/: SY(t — 7)Budr)ydt| <
< Mluliz, (6.27)

for some appropriately chosen M > 0.

An immediate fact which is implied by the construction of Q1 = (@;) € L(V) and
L5 € L(V,U) is the following
Proposition 6.4 The quadratic functional Jx(zq, u(-)) associated with the equivalent discrete-
time Pritchard-Salamon-Popov triple ¥ | ®,T', My = ( %;r IL%T ) = AMF}), with the Popov

T T

index Mt defined by (6.1), (6.2) and (6.3), has a unique bounded extension to a quadratic
functional for zq € V which can be effectively constructed. Furthermore,

tenn) = S 20 ) (G0 R ) () e =
)

- S (G E) (o

Let us also notice that

2(@,1‘,%‘: (? (L_Tlg ):M;EL(V@L{)>,
T T

with @ and I defined by (5.18) and (5.19) and Mt constructed as before is a well defined
discrete-time Popov triple on (V,U). Let us consider then the digital control problem
on V. By modifying appropriately the definition of the stabilizing digital control law,
i.e. Definition 2.14, by considering as set of admissible control functions the one defined
by (2.20) and finally by considering the quadratic cost function defined by the extended
quadratic functional (2.26), then the digital control problem on V is well-posed. This
is especially true since assuming stability of S(-) also on V, we can write down without
anu difficulty the counterpart of the digital control result from Theorem 6.2 for the case
z(+) € V. Notice that this time the solution X € L£(V) to the following digital Riccati
equation is involved in the expression of the digital stabilizing control law

' X® - X ~ (& XT + (L7) ) (Rr + T"XD) N(I5 + T X®) + Qr =0,  (6:29)
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with @ and T defined by (5.18) and (5.19). Furthermore, the minimum of the quadratic
cost functional is attained and its value is

min Ts (20, u(-)) = (X0, To)y-
“(‘)EU:dbmﬁPCT(oloo;u) E( 0y ()) ( 1) 0>V

If we regard z(-) € W as element of W, then the above minimum of the quadratic functional
is attained at (Xwo,zo)w. If we regard z(-) € W as element of V. then it is attained
attained at (X zo, zo)y. Hence, by exploiting the result of Proposition 6.4 we conclude that

(Xxﬂvxo)w = <Y.’L'0, .’L’(])V.
This fact implies that X = X~ € £(V) is the unique bounded extension for zo € V of
X =X*e LW).

6.3 The digital H*> control problem

Consider the continuous dense injection of spaces W < X < V and assume that there exist
two other real separable Hilbert spaces U, and V) and let By € L(Uy,V), By € L(Us, V),
Cy € LW, YD), Cy € LW, D), Dz € L(Uz,)1). We consider the smooth Pritchard-

Salamon system
‘ o Dn D
> (S(-),(Bx,Bz),( e )( 0 o ))

{ z(t) = S (t)eo + Jo S¥(t — 7)(Biwa(7) + Baua(7))dr

satisfying

1(t) = Crz(t) + Duyui(t) + Diaua(t) . (6.30)
ya(t) = Caz(t)
In our set-up z(-) € W is the state function, uy(-) € U; is the disturbance input uz(-) € Us

is the control input, y;(-) € M4 the controlled output and y2(-) € J% is the measured output.
The following assumptions are made on the Pritchard-Salamon system

A1l U, = R™ (we have m-actuators),

A2 Y, = R? (we have p-sensors),

A3 zo € W (the output measurement is a continuous )-valued function),
A4 (S('), By} is admissibly stabilizable,

A5 (Cy, S(+)) is admissibly detectable ,

A6 Dy =0,

AT Dj,D,; is coercive.
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Remark 6.5 Let us explain a little bit why the above mentioned assumptions have been
made

o [t is rather obvious that when we control a system digitally, then it is compulsory to
have finite many sensors and actuators. This represents the motivation why we have
made assumptions A1, A2,

o Assumption A3 guarantees that the output measurement function is continous in
time and hence it can be sampled.

o Assumptions A4 and A5 are necessary for giving a sufficient condition for the hybrid
stability of the digital control system

o Assumption A6 is made for simplicity. For details how this assumption can be re-
moved the reader is referred to section 5.4 of [80].

o The last assumption guarantees the well-posedness of the Pritchard-Salamon system.

If 2o = 0 then we can express the Pritchard-Salamon system in an input/output fashion
as defined by (5.85), (5.86), (5.87), (5.88) and (5.89), respectively. Let X be another real
separable Hilbert space and consider a controller X, (A., Bc, Ce, D..) of the form

(o€)(k) = Act(k) + Bow(k)
{ ((k) = Ct(k)+ Dewv(k) (6.31)

where A. € L(K), B, € L(R",K), C. € L(K,R™) and D. € R”™ and the initial state
of the controller, &, is given. If £ = 0 then (6.31) can be expressed in an input-output
fashion as

((k) = Genlk) (6.32)
where
Ge: £5(0,00,R?) — £y(0,00R™), Gen(k) 2 Y CeAiBen(k —i — 1) + Dan(k). (6.33)
=0

Since the output measurement is a R?-valued continuous function we can define its time-
discretized version as

We want to make sense of the following feedback connection
{ v="5yp, w()=H. (6.35)

Our goal is to design a controller (6.31) such that
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(¢) Attenuation: The input/output operator from u; to yi,
Ty + Le(0,0032) — LY(0, 00 M1), (6.36)
expressed as a linear fractional transformation of the hybrid generalized plant X,

Gll GIQH

SG. SGoH ) and the controller g, with
721 22

with input/output operator G = (

input/output operator G,

G Gi:H a \ - .
T =7 (( 8Gy SGuH ) ’G°) = G+ GoHG(] =~ SCRHG) SO (6.37)

is well defined and is a contraction

T () < 1. (6.38)

(i) Stability: The closed-loop system X ,G,, obtained by the feedback interconnection
of the hybrid generalized plant Gsq and the controller G is hybrid stable.

The following main conversion results hold (see [12, 9, 1, 2]}

C 0 0
system with respect to W — X — V satisfying

{ z(t) = S(B)zo + f3 S(t — THBiui(7) + Baug(7))dr
v

Theorem 6.6 Let ¥ (S(),( By B ) s ( o ) ) ( 0 Di )) be a stooth Pritchard-Salamon

y1(t) = Crz(t) + Diaua(t) . (6.39)
ya(t) = Caz(t), zo €W
Then a discrete-time controller = (K, L, M, N) satisfying
o = AL(k) + Ben(k),
E“'{ )L Gy s Dt (640
solves the digital H™ control problem if it is a solution to the discrete-time H*™ control
problem for the lifted discrete-time system (5.150) satisfying

{ z(k+1) = ®z(k) + I‘lul(k) + I‘zuz(k)

gi(k) = A1$(k) + G')llul(k) + @nuz(/ﬂ) ’ (6.41)
Y2k = Azl'(k) Zg € W

where
® 2 SD)lw,
Tvin(k) 2 [T SY(T — r)Byu (kT + 7)dr,
T, & (T $V(T — )Bydr,
A, 2 08V, (6.42)
A = Cs,
O (k) & C1f;SY(- — 7)Biuy (kT + 7)dr,
O, L 01 J;8V(- = 7)Bydr + Dy
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Proof Since the controller (6.31) is a solution to the discrete-time H* control prob-
lem written for the lifted system (5.150), it provides £ (K, L, M, N) provides power sta-
bilizability and power detectability for (@,Fz,Az) with on W. By Proposition 5.28
then (6.31) provides hybrid stability for the original Pritchard-Salamon system. The in-
put/output operator from i, to §; is a contraction operator from £5(0, co; Ly(0, T Uy )) to
£5(0, 00; Ly(0,T; J1)). It follows by Proposition 5.30 that the input output operator from
u; to y; is also a contraction operator from L,(0, 00;;) to L,(0, 00; V). We conclude that
(6.31) is then also a solution to the digital H* control problem.
]
Exploiting now the results on necessary and sufficient conditions for the existence of
the solution to the discrete-time H* control problem, stated and proved in Chapter 3, we
can formulate the Popov theory based solution to the digital H* control problem

Theorem 6.7 The following statements hold

(1) If the digital H™ control problem admits a solution then the Kalman-Szego-Popov-
Yakubovitch systems (3.36) and (3.87) associated with the following discrete-time
Popov triples

AIAI ( [\’{(':)11 A{(':)n )
X @’< I I ) ’ (’:’)1‘1[\1 éﬁéu -1 (:33’1(:312 , (6.43)
( O1,A, ) ( 0,61, 03,01, )
BE (B 0)
vie (A a5), ( Oul; ) ( 6,65, -1 0 ) . (644)
0 0 0

have stabilizing solutions.

(i) Consider the following discrete-time Popov triple

A LioTo (11O 0)
Z‘fO QOv ( AIO A;O ) il ( @1101’;‘0 ) < @1106){10 - [ O > (645)
0 0 0

corresponding to the modified system defined by (3.51) associated with the discrete-
time system (5.150). If the Kalman-Szego-Popov-Yakubovitch systems (3.36) and
(8.37) written for the discrete-time Popov triples (6.43) and (6.45) have stabilizing
solutions, then there exists a controller which is a solution to the digital H™® control
problem.
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6.4 Shortcomings of the method

In this section we focus on the shortcomings of the Popov theory based solution to the
H>-control problem as developed in the previous section. Recall that in Section 3.3 the
minimum set of assumptions made on the discrete-time system was

S A is power stable.
CO The infinite dimensional discrete-time system (3.25) satisfies

152 > 0, (6.46)
TuTy > 0. (6.47)

We call the proerties (6.46) and (6.47) as the 12-coercivity and the 21-coercivity of the
system (3.25). The above set of assumptions represented a guarantee that the discrete
filter and control H* Riccati equations, the Kalman-Szego-Popov-Yakubovitch systems,
respectively, admit stabilizing solutions. Notice that this case includes also the so-called
singular case when the R-operator is null. This is extremely important since the digital
H>™ control problem is a singular control problem (D = 0) and hence, the equivalent
discrete-time H™ control problem associated with the lifted system would be a singular
discrete-time H® control problem. Clearly, we would like to give a set of assumptions that,
when made on the original data, the smooth Pritchard-Salamon system

2(soumm (G ) (5 0))

would guarantee that S, D and CO hold for the lifted system

(e ()% %)

and hence, Theorem 6.7 is applicable. Let us notice that admissible or boundedly stabiliz-
ability and admissible or bounded detectability of (S(-), By, C3) and a sufficiently small
chosen sampling step, T > 0, assures that (®,T;, A;) is power stabilizable and power
detectable with respect to W — V. This is a natural constraint which is always made
when doing digital control. Let us focus now on the third item regarding 12-coercivity and

21-coercivity of the discrete-time system X <A,(Bl, Bz),( gl ) ,( Don D012 )) The
2

following statement is true
Proposition 6.8 Assume that

(i) DiyDyz is coercive.
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(i) (My2C1, A — ByD1,Cy) is power detectable, where DI, = (D3,D12)7' D5, and M, =
I — Dy, DY,

Then & (A,(B],Bg), ( gl ) , ( Don Don )) s 12-coercive.
/2

Proof The assumptions made in Proposition 6.8 are sufficient conditions for the existence
of the positive semidefinite stabilizing solution to the discrete time Riccati equation with

Q = Crcl, L = C;Dlh R = D’;2D12.

Let £, = —(R+ B;X B3) "' (B; XA + L") be the corresponding stabilizing feedback. Then
the discrete-time Riccati equation can be re-written as

AXA-X+Q=0, (6.48)

where A= A+ ByFyand Q = Q + FoL + L*Fy + F5RF,. Simple computation performed
on (6.48) implies o
R+ B.XB = 1},T12, (6.49)

where Ty; = Ci(o] — A)"'By 4 Dyy, C1 = Cy + D13 Fy. As R = D5, Dy2 > 0 and X >0 it
follows from (6.49) that 77,735 3> 0 which completes the proof.
]
Let us see now what assumptions shoud one make on the original Pritchard-Salamon
system such that 1. and 2. from Proposition 6.8 hold for the lifted system (5.150) From
the expression of @12 one can easy notice that if D7, D5 > 0 for the Pritchard-Salamon
system then this property also hods for its lifted counterpart, i.e. éuéu > 0. Some
straightforward computation shows that if (Cy,5(-)) is assumed admissible or boundedly
detectable then (M12A1, ® — ',01,A,) is power detectable, where ©1, = (07,0,,)7103,
and Mn =7 @12912 is power detectable. Unfortunately Proposition 6.8 does not apply
for the dual problem since Dy; = 0 and hence, D,y D}, is no longer coercive. The best we
can prove is the following

Proposition 6.9 Let ¥ | S(-), (B, B2), ( gl ( DOH Dom such that (S(-), By) is
2

ezactly controllable on [0,T) and C3C, > 0. Then the lifted system (5.150) is 21-coercive.

Proof Since (S(-), B;) is exactly controllable on [0,7] it follows that the controllability
gramian

T
ﬁéfsm&mymw (6.50)
4]

is coercive (see Theorem 4.1.7 from Curtain and Zwart [35]). But Pr = T, I“ and hence
we have that I‘1F* > 0. Let us prove that this implies 21-coercivity of the lifted system.
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Indeed, let K, be a stabilizing injection. Then the updated system is now power stable
and a realization for Tj, = T';(I — c®*) oA} is

z = ®"ozr+ A, (6.51)
n = INoz, (6.52)

with g € €3(0,00;RP), z € £,(0,00;V) and 5 € £2(0,00; L5(0,T;2)). Exploiting the
coercivity of the controllability gramian (6.50) as well as the fact that C;C; > 0 we get

(Tiozll. > é&illozl, (6.53)
Azl = &flul2, (6.54)

for some 6; > 0 and &, > 0. Hence from (6.51) we obtain by exploiting (6.53) and (6.54)
Sluly < NAsulE = llz — @ oz} < 2|l + 2| ¥ 0z|3<

. . 2014+ B3 emw o
< 21+ @)l < D oy (6.5
1
whfere from we obtain &[uli2 < ||n||3 for & = ﬁﬂ_’)—;' Thus || T5pll: > él|pljz fact
which shows that T5;7% > 0.
n

Let us give some comments on Proposition 6.9.

Remark 6.10 (i) In general it is hard to prove that a system is ezactly controllable and
large classes of partial differential and delay systems are not ezactly controllable, but
only approzimately controllable. In particular, when Uy is finite-dimensional, then
for any T > 0, the pair (S(-), B) is not ezactly controllable. Thus, checking the
exact controllability of (S(-), B1) is generally not a sensible way of checking whether
Ty Tuguy is coercive. However, it is well known [31, 38] that for certain classes of
linear, continuous-time, infinite-dimensional systems, an input normal realization of
the Hankel operator is ezxactly controllable and approzimately observable, i.e. if P
and Q are the controllability and observability gramians associated with the linear

systems, then

P = [I>0, (implies exact controllability), (6.56)
Q = X*>0, (implies only approzimately observability). (6.57)

This idea induced the following (possible) sufficient condition for the 21-coercivity of
the lifted system associated with the original Pritchard-Salamon system: in [65] it
is shown that transfer functions G(s) € L(C,L(U, D)), for which analytic functions
F(s) € L(C, LU, D)) exist such that (G+F)(s) is essentially bounded (i.e. extends to
a norm continuous function on the imaginary azis), admit parabalanced realizations,
i.e. realization for which

P=qQ.
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The result regarding this fact is proved for infinite-horizon and hence, it holds for fi-
nite horizon as well. The idea of the proof is based on applying a bilinear transforma-
tion, which preserves the controllability and observability gramians, to a parabalanced
realization of a transfer function of an infinite-dimensional discrete-time system for
which ezists an analytic function such that the sum is essentially bounded on the
unit circle. The reader is referred for more details to Ober and Montgomery-Smith
[65]. We believe that these result can be extended for input normal realizations of
discrete-time and continuous-time systems. Such an extension is far away of being
trivial. This subject is left open for a future investigation. If this is the case, we con-
jecture that an input normal realization of (®,T1, A1) on [0,T) (if it ezists) implies
21-coercivity of the lifted Pritchard-Salamon system.

(%) The coercivity of C3C; is, actually, not the worst test possible for the coercivity of
T35 T51. By an adequate choice of the measurement sensors this can be achieved for
large classes of systems.

(ti1) If we restrict to the finite-dimensional case then the exact controllability of (S(-), Br)
is nothing else than the trivial coercivity of T4} which, by a suitable choice of the
design configuration, can also be achieved.

6.5 The fixed-order digital LQG control problem

Consider now three Hilbert spaces with continuous dense injection W — X < V and as-
sume that there exist other real separable Hilbert spaces i1, and }; and let By € L(U;, V),
B2 c ;C(Z/{% V), C] € L:(W,yl), C‘) (S E(W, yz), D]] c C(Z/{l, yl), D12 € E(ZJ{Q, y]) Assume
also that

(Z) Z/(l = le, UZ = Rmz,
(ii) yl — Rm’ :))2 — Rm’
(4t¢) DiyDnz is coercive,
and consider the smooth Pritchard-Salamon system X (SV(~), ( B, B, ) ,Ch, Du) satis-
fying
z(t) = Az(t)+ Biu(t) + Boug(t)), zo €W (6.58)
yl(t) C’lx(t) + D12u2(t) (659)

and the discrete-time output measurement equation

ya(k) = Cyz(k) + Dyyus(k) (6.60)

{l
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We shall assume that the Co-semigroup S"(-) is exponentially stable on W.

In our set-up z(t) is the state, ui1(¢) € ¢ is the disturbance input assumed to be
standard Gaussian white noise of unit intensity, u(t) € Us is the control input, y1(t) € M
the regulated output and y;(k) € ), the sampled measured output corrupted by a discrete-
time Gaussian white noise of unit intensity, uz(k) € Us. We assume that the initial state
Zo € W is a random variable independent of the noise u;(-) and independent of the noise
The state equation in (6.38) is defined by the stochastic differential equation

dz(t) = Azx(t) + dB(t) + Baux(t)dt, z(0) =10 € W, (6.61)
where {3(¢);t > 0} is a Wiener process on W with variance operator B B, i.e.

E(5(t))
cov (dp,dp)

0 (6.62)
B, B;dt (6.63)

I

i

Notice that B, € L(Uy, W) was assumed an admissible input operator for S(-). This fact
implies that a solution to (6.61) of the form

z(t) = S™W(t)zo + /(: SY(t — 7)dB(7) + /Ot SY(t — 7)Byua(7)dr, (6.64)

assumed to exist, is well-posed on W. For necessary and sufficient conditions on the
existence of the solution (6.64) on W, the reader is referred to Section 5.3 from [34].
Let now R™" be the controller state space and suppose that we have a controller

Y(K, L, M) of the form

o | Ck+1) = AL(k) + Bov(k), i
R { (k) = CC(k), (6.65)

where ¢ € R®*" is the controller state, 7 € R” is what the controller input and £ € R™ is
the controller output. We want to interconnect the system and the discrete-time controller
via A/D and D/A devices and to perform a digital control.

Clearly, we want to make sense of the following feedback interconnection:

v =Sy,, u;=HE. (6.66)
Our goal is to design a controller ¥k (A, Be, C¢,0) meeting the following specifications

(i) Optimality: The influence of the disturbance input u; on the regulated output y; is
minimized in the sense that the following LQG quadratic cost function is minimized

JUK,L,M)=  min_lim 1E</0t<y,(r),y1(r)>d7>. (6.67)

Tk stabilizing t—00 {
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(éi) Stability: The linear system from w; to y; is hybrid stable in the sense given in
Definition 5.22.

In order to guarantee that (6.67) is independent on the internal realization of the controller
we shall focus on the following class of controllers

A = {Zk stabilizing |(Ae, B, C¢,0) is minimal }. (6.68)

6.5.1 The equivalent discrete-time fixed-order LQG control prob-
lem. Case I: zg € W

As in the case of the digital LQ-optimal control problem, we shall construct an equivalent
discrete-time LQG control problem. Let us notice first that

(yl(t)7 yl(t»yl = (C]I(t) + D12u2(t)’01$(t) + D12U2(t)>y1 _
<< g LR ) ( 12((?) ) ’ ( i((tt)) ))wqu (6.69)

where Q € L(W), L* € L(U,W) and R € L(U)

i

Q 2 co, (6.70)
L~ & C:Dy, (6.71)
R £ D5,Dyp. (6.72)

Notice that @) is an admissible weighting operator since C; € £(W, }}) is admissible output
operator for S(-), and from the same reason L* is also an admissible output opertor for

S(-). Then

1 ¢ .1 t (@ L z(t) z(t)
:Ime ?]E (/0 <y1(7')>y1(T))dT) = tirrgo -t—]E (/0 (( L R > ( wal?) ) ) ( wa(t) >>qu2).
Consider the Pritchard-Salamon-Popov triple
v (5(.),( By By ),M= ( ch LI; ) = M*) (6.73)

on (W = V,U; & U,) with the associated initial value problem (6.58) and the associated
quadratic cost function

ama) =t 32 (L1557 ) (o)) (ol o) 070
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Here u = ( Zl ) has to be in the following class of admissible controls
2

zo

adm

11>

{( ) (1) € PCr(0, 00;Us) ® La(Q, p;th) | z(t) = S () + /Ot SY(t — 7)dB(r)+

Uy

U2
t

b [ 80— Baun(r)dr € L(@,pW) (6.75)
0

where (€2, P, p) is a complete probability space. We want to give a discrete-time representa-
tion of the Pritchard-Salamon-Popov triple (6.73) at the sampling instants {0, - - -, kT, - -}
and to determine an equivalent expression for the quadratic cost function (6.74).

Notice firstly that for any ¢ € [kT, (k+1)T') the state function (6.64) can be written as

z(t)

l

SW(t)zo + /Ot SV(t — 7)dB(r) + /0' §¥(¢ — 7) Byus(r)dr =

]

St~ kT)a(k) + [ ; §¥(t = 7)) + | ; $V(t = 1) Byus(r)dr.
It follows that
z(k+1) = SY(T)x(k) + f:'m SY((k+ )T — 7)dB(r) + /OT SY(T — 7) Byuy(7)d£6.76)

Let v(:) € W denote the second term in (6.76). Using Lemma 5.28 from (34] one can
show immediately that it is a discrete-time Wiener process with self-adjoint non-negative
definite covariace operator Vr € L(V) defined by

v 2 /OT S¥(r) B, B; (8V(r)) " dr. (6.77)

Consider its restriction to W and by an abuse of notation denote it with the same symbol.
Since Vi is self-adjoint and non-negative definite and since #; and W are isomorphical
spaces, it follows that there exists TT € £(Uy, W) such that Vp = I'T(I'T)". Let u{(-) be a
discrete-time white noise of unit intensity. Then the following relation

v(k) = TTul(k) (6.78)

makes sense and we conclude that the state equation (6.58) defined by the stochastic
differential equation (6.61) admits at the sampling instant am equivalent representation
given by the following difference stochastic equation

z(k +1) = ®x(k) 4+ ITuf(k) + Taua(k), (6.79)

where

T
Taus 2 / SY(T — 7)Byudr.
0
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Following the procedure developed in the case of finite-dimensional systems in [57], we
shall express the cost function

o) = g g2 (L] 5 ) (50 ) (00 ) 020

in the form

o) = tim e (S P EE) () (20 Yoas) 6

where Qr, L} and Ry are defined by (6.1), (6.2) and (6.3), respectively and where ~; is
defined by

y=E " frace ( / "SV(r) BB (8¥(r) dTQ) dt. (6.82)

This is done as follows. Notice that z(z) depends only on the increments dj(r) for

€ [0,:7], while [f2* SV(iT 4 t — 7)dB(r) only depends on the increments dp(r) with

7 € [¢iT,iT + t]. Hence, z(¢) and [7t* SY(:T 4+t — 7)df(r) are independent. Since uz(7)

depends only on the sequence {y,(0),---,y2(2 — 1)} and v(z) and u3(k) are independent,

it follows that u,(i) and fi7 T SV(iT + ¢ 7)dB(7) are also independent. This fact implies

that if we use the expression of the state function (6.76) in the cost function J(zo,u(-))

defined above, we obtain null cross terms from the aforementioned terms. Basically, there

are only the terms from the expression of the equivalent discrete-time Popov triple for the
digital LQ-optimal control problem plus an extra term due to the expectation of

(@ [ 8%t =)dsr), [ $(t~r)dB(r)w

which, without difficulty, can be shown to be equal to (6.82).
Define now the modified cost function

T™(z0,u(-)) £ J(o,u(-)) — 7. (6.83)

Let us write down similar factorizations to the one defined for Vi, this time for the
operators involved in the expression of the discrete Popov index determined above. Since
D}, D12 was assumed coercive, it follows that Ry is boundedly invertible and hence, by
performing the change of variables

W (k) = Fra(k) = Ry’ Ly (k)

we get
e - _,(z (8 ) () (80 Yowes) -
> (

)
e S ) (20) (2 ). o
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where

Qr 2 Qr- LrR;'L (6.85)

Since Q% and RT are self-adjoint and non-negative definite operators and since Uj, Y, and
W are isomrphical spaces, it follows that there exists Ay € L(W, V1) and @13 € L(Us, D1)
such that

QF = (M) Ay, (6.86)
Ry = (On) 0 (6.87)
We define the following infinite-dimensional discrete-time system
z(k+1) = ®x(k)+TTul(k) + Taus(k), (6.88)
n(k) = Az(k) + Onus(k), (6.89)
yolk) = Cox(k)+ Daus(k). (6.90)

If, by an abuse of notation
s ud
u1=< ! ) ey &U;
us

stands for the augmented disturbance sequence, then the system defined by (6.88), (6.89)
and (6.90) can be re-written as

a(k + 1) = ®z(k) + Tiug (k) + Toua(k)
Taa 1§ yi(k) = Avz(k) + Oraup(k) s (6.91)
ya(k) = Agz(k) + Oy

with
r, £ (rf o), (6.92)
A, 2 0, (6.93)
@ = (0 Dn), (6.94)

We can formulate now the main control result of this section

Theorem 6.11 The fized-order digital LQG control problem for Pritchard-Salamon sys-
tems has a solution if and only if the finite-dimensional fized-order £2-optimal control prob-
lem for the discrete-time infinite-dimensional system (6.91) has a solution. Furthermore,
the compensator can be effectively constructed, i.e. there exists X,Y € LIW), X >0,
Y > 0, and finite rank operators X.Y € W such that A., B and C. are defined by

A = AAG” C° = Ry} Ps Qe = ‘I;Y A3

o o -1 Pe=T;X®
BCZABC BCIQE%E ) V“‘AYA*+® o N
Ce = C2G" A?=® — B2A;, — T2 2B = 220 2199

R‘)E = F;;YF; + @T2®12
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for some (G, M, A)-factorization of V X, and such that if T = G*A, the following conditions
are satisfied:

rank(X) = rank(Y) = rank(XY) = n,

Y o= ®Y® + Vi — QeVig'Qp + 71 (8 — D200V (® — 1:09) + QuVer' Q) 71,
X = ®X®+Qr— PRz Pe + 77 ((® ~ BAA) X(® — BA2) + PERzPe) 7,
Vo= 7((® -ToC)V(® - DoC2) + QeVi' Qk)
X = 7 ((® - B2A) X(® - B2Ao) + PR Pe)

where Ty = Iy — 7.

Remark 6.12 Notice that since {df(t);t > 0} was assumed to be a Wiener process on
W, then we had to assume compulsory that By B} is a nuclear operator (see Definition 5.2
from [34]). It follows that Vp defined by (6.77) is also nuclear. Hence 1T is nuclear and
the first two assumptions from Theorem 4.1 are fulfilled. In order to apply it suuccessfully
to the digital control problem, one has only to check for the bounded invertibility of Vag =
AYAS + 04,03, and Ryp = T3 XT, + ©F,0,.

6.5.2 The equivalent discrete-time fixed-order LQG control prob-
lem. Case Il: zy € V

In the previous subsection the fixed-order digital LQG control problem for Pritchard-
Salamon systems was addressed and solved for smooth Pritchard-Salamon systems with
initial state in the smaller space zo € W. As in the case of digital LQ-optimal control
problem, we can also consider the fixed-order digital LQG control problem on V. We
proceed as in section 6.2. Consider the modified quadratic cost functional (6.83). By
Proposition 6.4 has a unique bounded extension to a quadratic functional for z(-) € V
such that

et = g (S 25 ) () )o( ) e =

=0

o= (S Gy ) (560 () om0

I

with the Popov index

— [ Iy —
2 ( (_) R: > = (MT) € L(Val). (6.96)
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As in the previous section, we can write down factorizations for
—— A — T * -
Qr 2 0r - (I%) Rr L% (6.97)
as
o= (&) A (6.98)

and for Rt as defined by (6.87). It follows that the following infinite-dimensional system
on V is well posed

o(k + 1) = ®z(k) + Tyus (k) + Toug(k)
b2 { yi(k) = Arz(k) + O us(k) : (6.99)
y2(k) = Azz(k) + Oy

We can formulate the main Hyland-Bernstein control result of his section as

Theorem 6.13 The fized-order digital LQG control problem for Pritchard-Salamon sys-
tems on V has a solution if and only if the finite-dimensional fired-order ¢*-optimal control
problem for the discrete-time infinite-dimensional system (6.91) has a solution on V. Fur-
thermore, the compensator can be effectively constructed, i.c. there exists X,Y € L(V),
X >0,Y >0, and finite rank operators X, Y € V such that A., B. and C. are defined by

Ao = AAG* [ C°= R;2P: g: = 131;1;2
Bc = AB? s Bg = QE‘/Z‘El , ‘/ ~ 1{‘ YA* ° ®* ’
Ce=C3G* A? =& — B°A, —T,(? 28 = AV Ag + 05,0y,

R2E - F;XI‘Z + @’{2912

for some (G, M, A)-factorization of XY, and such that if T = G*A, the following conditions
are satisfied:

rank(f{) = rank(Y) = rank(X?) =n,

Y = ®Y® +Vr— QeVip'Qp + 71 (8 — D200V (® — T200)" + QeVir' Qk) 71
X = ®X®+Qr— PR +1] ((‘I’ — B2Ay) X(® — B2Ay) + Pi EéPE) L
Y o= (@ -T,0)7 (@ - ToCo) + QeVis' Qi) 7,

<>

= " ((® - B2A,)"X(® — B2A2) + PiRzi Pe) 7,

where 7, = Iy — 7.
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In the case of digital LQ-optimal control problem we have shown that the solutions to the
digital Riccati equation on W has a continuous extension to the solution of the digital
Riccati equation on V. Let us see what happens to the solutions to the modified Riccati
and modified Lyapunov equations on W and V. Apply Lemma 4.21 to the closed loop
system from u; to y; first on W and then on V. It follows that

J®(zo,u()) = trace (QrX; + CrO,01,0. Xa5) =
= trace (Q1X; +C10;,010.Xa;) . (6.100)

It follows that the functional
trace (QrX;): W — R

is finite and has a unique bounded extension to the functional on V
trace (ml) Y — R,

We conclude that X € £(V) represents the unique bounded extension to V of X; € L(W),
where X; and X, represent the 11- block in the decomposition of the closed loop controlla-
bility gramians on Wg 65 R™ and Vg @ R", respectively. Let X = g X1 X2 X1 € L(V)

denote the unique bounded extension to V of X 2 X, — X15Xo X5, € L(W). Then the
following holds

Proposition 6.14 X € L(V) is the unique bounded eztension to V of X € L(W) if and
only X3, X2 X12 € L(V) is the unique bounded extension to V of X7, X, X1, € L(W).

It remains an open question whether in general X € £(V) is indeed the unique bounded
extension to ¥ of X € L(W). This would imply that the condition in the above proposition
is generic for Pritchard-Salamon systems.
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Chapter 7

Implementation issues

As was mentioned in the introduction chapter, most of the interesting applications occur
with unboundedness of input and /or output operators. In this case study we shall focus
our attention on a class of Pritchard-Salamon systems of parabolic and hyperbolic type.

7.1 A case study

In this section we shall be concerned with two examples of infinite-dimensional Pritchard-
Salamon systems with a special property, namely they have a pure discrete spectrum.
Those systems are commonly referred to systems with diagonal semigroup.

7.1.1 Parabolic systems

Consider the general type of parabolic system as presented in Example 2.21. The time-
discretized Pritchard-Salamon system is then given by (®,T,A) with

e/\OT

[eo]

Pz = ze/\"T<$a¢n>W¢'n= h AT z, (71)

n=0

~
&
Il

T T
| 8¥ B = [ 50 & ({ba,n 2 0}, 4,)v6. =
0 [ —",

(o] e/\nT_ 1 6/\nT_1
Z ——({bnu,n > 0}7 ¢n>v¢n = {—X—bnu} =
" n>1

n=0 /\“

PnT -
—,\ﬂ“—lbn ) (7.2)
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Az = Cx:icn(x,dan):(u- Cn ), (7.3)

n=0

forallz € Wand u € R.
The impulse response of the time-discretized Pritchard-Salamon system Y(®,I'A,0)
is characterized by the following

Proposition 7.1 Assume that (2.44) holds. Then the (causal) impulse response associated
with $(®,T,A) belongs to £1(0,00; R).

Proof Let

o ckbke)\kNT (eAkT—l)

K(N) 2 AST =Y " (7.4)
k=0

define the impulse response associated with time-discretized Pritchard-Salamon system
2(®,I',A). Then its £;-norm is given by

I

> " =

14l o)

and the sequence of real neagtive eigenvalues
M < A< <A, <

is strictly decreasing. It follows that the right-hand side of (7.5) is finite and hence,

1l 0eiR) <
B

The parabolic system considered in this example presents the advantage of being char-
acterized by a diagonal Cy-semigroup. Taking into account the discussion made on presta-
bilization, we shall assume it exponentially stable on W. Since it is diagonal, it admits the
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following matrix representation

Ao

Yitye = - At z,z € X.

Notice that C*C has the following double infinite-dimensional matrix representation

CCr=| - ce - z, TEW. (7.6)
: i>1

Then the matrix representations for Qr = Qf € L(W), Lt € L(W,U) are given by

cic e(A'“\ T
Qr = L Glnkiciih) BN , (7.1)

Xy

3,721

— oo N(ENPIT_1)-(Ai4d,)eN T2,
Lt = | £, P e cic;b; . (7.8)

Let us calculate the expression of Rt € L(U).

T 00 oo (e(/\.+/\])‘r _ e/\,f _ e/\]T +1
Ry = T+/0 ZZ 5By b;bjcic;dr = by theorem of Fubini
£ A

0 oo (e(/\,'+/\_,)‘r —eNT M 1)

= T+ ZZ/O /\/\ bibjC;C]‘dT =
AT 1 NT g NT
435 (5 :

T
- bibje: 7.9
SN A A2 “) GG (7.9)

Having available the operators involved in the expression of Popov index of the equivalent
discrete-time Popov triple, we proceed to express the solution X € W to the digital
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Riccati equation (6.18). We make here use of the operatorial expression of the solution to
a discrete-time Riccati equation
X =Py —PR7'P,
with Py P and R defined by (3.18). We begin by calculating Py. The following holds
Lemma 7.2 The operator Py : W — W satisfies the following Lyapunov equation
®Py® — P+ Q1 = 0. (7.10)

Proof By direct computation.
]

Exploiting the diagonal form of the semigroup and using the expression of Qr it is a
routine to show that (see also [4, 16, 5])

. (A-;A )T
cicjlet T~
Po=1 .- _L_X_TL(MAJ)“_CMT) . (7.11)

i1
We calculate now the P-operator. We have
k-1 ‘
P =Y & 'IQr + L1¥", (7.12)
=0

or equivalently, exploiting the diagonal form of the semigroup and the expressions of Q
and Ly, we get

ATy

_ k—i-1)\T eri?-1 cicj
= T—- T Ll Loss(E )
P Z A Ni+X; +

+ o MNP 1) (a2 )N T ),
1=0 Aid (NidA,)

cicjb; coeeNT ) (7.13)

Let us calculate now the R-operator. Simple manipulations show that

k-1 [e] . oo .
R=Rr+3 Li® T+ 3 D (@) Ly + Y T (@) * Q8" (7.14)

i=0 i=k+41 iz=k+1
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If Py was, losely speaking, easy to calculate, in the case of P and R one has to handle
expression of higher complexity. It is, therefore, of paramount importance to be able to
approximate the solution in the form X = Py — PR™!P* rather then trying to compute it
analytically, even in such a simple case, as the one of diagonal semigroup is. One possible
way to approximate X is to determine a certain approximation of R~!. Since R has
a special structure, it is a discrete Toeplitz operator, we believe that a very promising
direction of research would be defined by: application of invertibility theory for Toeplitz
operators to approximate stabilizing solutions of Riccati equations.

7.1.2 Hyperbolic systems

Consider the infinite-dimensional continuous-time, time invariant system

X(t) = Az(t)+ Bu(t), (7.15)

yt) = Calt), (7.16)
where A is a self-adjoint operator on a Hilbert space X. Assume that 4 has a compact
resolvent operator and it has a set of simple, negative eigenvalues A, = —w? satisfying

wlzé‘a wn+1"wn267 n >0,

for some positive 6. Denote by {¢,}.50 the corresponding orthonormal set of eigenvectors.
Let us assume that we have two spaces

Wo = {z €| mlhal{z, ¢n)? < o0}, (7.17)
n=1
=1
Vi = {zeX|) ﬁ—(ac,qm2 < oo} (7.18)
n=1 ~n
Let {b.}n50 € R™ and {¢, }ns0 € R? are such that
o) 00 1
,Bn bn2<00, _'—_|Cn|2<00
n; 1l nz=:1’7n|/\n|| |

and the control and observation operators B € L(R™,V,) and C € L(Wy,R?) are given
by

By = i(bn,u)d)n, (7.19)
Cx = i%(x,d)n). (7.20)

Define V.C X by V = D((—A4)2) = {z € X| T2, [Au|{z, 6.)2 < oo} and identify X = X*.

n=1

This fact implies V € X C V* and A extends to A € £(V,V*). We want to transform
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(7.15) and (7.16) into a first order system. For this define X = V x X and provide the
inner product

(il:, y) = i[l’\ﬂl(zm ¢n)(y0s ¢n) + (3’31, ¢n)(yla¢n)]-

n=1

Then consider the operator A: D(A) C X — X

017
A= [A 0], D(A) = D(A) x V.
It is straightforward to prove that A is the generator of the Co-semigroup {S(t)}i>0 € L(X)
which is defined by

T2 [coswnt{zo, $n) + o sinwat{z1, $n)]bn

S(t)z = { . (7.21)

T2 wn sinw,t(zo, dn) + = cos wnt{Z1, Pn)]dn
n=1 wn

Introduce the spaces

W = {:C S Xl i_o:"/n“/\nl('rﬂy(pny + (x17¢n)2] < Oo}? (722)
Vo= {zexX| i Z}[w(xo, ) + (21,60} < 00}, (7.23)

and the operators B € L(R™,V) and C € L(W,RP) defined by

B =[0 B, C=[C 0]
In this way we have re-written (7.15), (7.16) into an equivalent Cauchy problem

#(t) = Az(t)+ Bu(t), (7.24)

y(t) = Cz(t). (7.25)
Identify ¥ = V x X = X*. Lemma 4.8 from [70] gives the sufficient conditions on
Vs Brs Auy by and ¢, such that B and C are admissible input and admissible output oper-
ators. Lemma 4.9 from [70] shows under which conditions W and V can be chosen in
such a way that X(®(-),B,C) is a Pritchard-Salamon system with respect to W — V.

We shall assume those conditions fulfilled and we proceed to calculate the time-discretized
Pritchard-Salamon system.

(1) Computation of @ = (T

Let 6 € W, 5 = (fo,fl). Then
rof:l [COS wnT(’fﬂa ¢n) + 'w]_" SinwnT<€la ¢n>]¢n
¢ =
Z:.():l [w" Sin wnT(fﬂv ¢n) + :,—1: cos wnT(’fla ¢n>]¢n
(7.26)
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(i) Computation of T'

Let u(-) € L2(0,7;R™). Then

T = | 5o LT Gniot (b, ul.)dre,

[ D wl—ﬂ fOT sin Wyt {0y, u(-)dr én }
1 o
oy o €08 Wt [i=T (b, u(-)dT @y,
[ - Ezozlnwl_gl sin wﬂtlgzg(bnv u(')‘i‘r¢n :|
Y -w%(coswnT ~ 1){(b,, u(-)dT¢n,
- [_z:;," L sin wn T {bn, u(-)dr }

2
Wy

(i2) Computation of A

AE=CE=[Y ealerdu) O], E= o 0] (7.27)

If in the case of the parabolic system considered in the previous section, we have taken
advantage of the diagonality of the strongly continuous semigroup SY(-), and we have
performed in a easy way the computation of the equivalent discrete-time Popov triple,
in the case of the hyperbolic system considered in this section such a computation is
considerable heavier to pe done due to the expressions of the @, I' and A operators.
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Chapter 8

Model reduction of distributed
parameter systems

8.1 Approaches to finite-order control of DPSs

There are three basic ways to design a finite-order controller for a infinite-dimensional
linear system. In Figure 8.1 we have depicted the principles of such a design process.

Infinite-dimensional J

Infinite-dimensional Infinite-dimension

system design ] controller
Model Direct design Controller
reduction reduction
Finite-dimensional 1 Fm‘tz’dfmensmal Finite-dimensional
system J esign controller

Figure 8.1: Basic principle of finite-order control design of DPS’s

The finite-order control design methods for infinite-dimensional systems are broadly
divided into two classes

(7) direct methods

(#) indirect methods

157
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If we constrain the control design process to be a digital one, then the diagram depicted
in Figure 8.1 becomes

Infinite-dimensional
digital design

Direct Controller
digital design reduction
(discrete-time)

Model
reduction
(continuous-time)

Finite-dimensional

digital design

Figure 8.2: Basic principle of finite-order digital control design of DPS’s

There are a few important ideas emerging from Figure 8.2.

(9)

If indirect digital design is performed, then it is compulsory to have adequate tools
and strategies developed for digital design, both in finite-dimensional and infinite-
dimensional settings. If in the finite-dimensional setting there are many contributions
to set-up strategies of digital control, in infinite-dimensional setting the literature
on digital control has not been so extensively developed. The Popov theory based
approach we took in this thesis offered us the right framework for writing down the
digital solutions to various modern control problems, such as L)-optimal control
problem, LQG control problem, H2-optimal control problem and H*-(sub)optimal
control problem.

If indirect digital design is performed, then besides the fact that adequate tools for
digital design are needed, there is also a need to have available model reduction and
controller reduction techniques. As suggested by the diagram we need to know how
to obtain

e finite-order continuous-time models from infinite-dimensional continuous-time
ones,

e finite-order discrete-time controllers from infinite-dimensional discrete-time ones.

Beside the above mentioned two items, there is another one, not of a less importance

analysis of time discretized infinite-dimensional systems.
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This statement is based upon the fact that these systems arise naturally in the digital

design process. Recall that

(¢) The solution to the digital LQ-optimal control problem for Pritchard-Salamon-Popov
triples was based on the solution to the discrete-time LQ-optimal control problem
written for the equivalent discrete-time Popov triple. In the case when we solve
the so-called minimum energy control problem then the time-discretized Pritchard-
Salamon system is the natural object we operate with.

(é¢i) The concept of time-discretized Pritchard-Salamon system plays a foundamental role

in the hybrid stability theory built in Section 5.3.

A delicate problem one has to cope with when designing a digital controller for a infinite-
dimensional continuous-time system is the implementation problem. One alternative to
the design process is given by the robust stability synthesis. The idea is to design a
digital stabilizing controller for a finite-dimensional approximation of the continuous-time
infinite-dimensional plant which stabilizes a whole family of linear systems which contains
the original infinite-dimensional model, rather than only the approximation. In order to do
this one needs to obtain a discrete-time, finite-dimensional approximation of a continuos-
time infinite-dimensional system. There are two basic ways to obtain such a model as it is

shown in Figure 8.3

discretization G
Ch) od
continuous discrete
model model
reduction reduction
OiN
G p T
N discretization GNd

Figure 8.3: Two ways to obtain a discrete-time approximation

We have denoted here

o G, the transfer function of the original continuous-time, infinite-dimensional system,

o ('wq the transfer function of the time-discretized infinite-dimensional system,

o G\ the N-dimensional approximation of G,

e Gng the time-discretized of the N-dimensional approximation of G,
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e (7gn the N-dimensional approximation of G.a.
Apparently, the two operations
(7) model reduction,
(#¢) discretization

do not intertwine. If this is the case, then discrete controllers designed for Gan and Gng
might be also very different and, which is the worst, might behave differently in close-loop
connection with the original plant. We are going to study the problem “how far are Gan
and Gng one from each other” in Section 8.2. For the sake of simplicity of proofs, we shall
assume that G is, actually, a high-order, but finite-dimensional system and we show that
there exist realizations of Gan and Gng coming close one to each other. This is done by
introducing the concept of “approximately balancing” and by proving certain convergence
results. The extension of those results to infinite-dimensional systems is not trivial at all.
At this stage we are able to perform such an extension only for systems with diagonal
semigroup. This is what we do in section 8.3.2 where we also point out the difficulties that
occur when one tries to extend those results to more general classes of infinite-dimensional
systems.

8.2 Reduced-order finite-dimensional discretized sys-
tems

A legitimate complaint directed toward dynamic systems modeling literature is whether
a high-order model can be replaced by a low-order model, without incurring too much
error. A wide variety of approaches to the model reduction problem have been proposed
over the years. Despite the serious efforts that have been made, the status of the problem
has changed only after the theories of balanced realizations and optimal Hankel-norm
approximations have been developed [40].

Beginning with the work of Moore [63], the balanced realization have been successfully
used for developing model reduction techniques. There has been a great deal of interest in
the last decade to devise computational algorithms for obtaining balanced realizations of
both continuous-time and discrete-time systems. After the classical algorithm of Laub [58],
a major improvement was brought by an algorithm proposed by Hammarling {44] who ob-
tains the controllability and observability gramians directly Cholesky factorized. Efficient
implementations of this method are available for both continuous-time and discrete-time
systems [81].

The difficulty to compute the gramians of sampled-data models for small sampling
periods arises from the ill-conditioning of the corresponding discrete-time Lyapunov equa-
tions. Under a certain limit for the sampling step, the numerically results are corrupted
by errors. Qur paper aims to circumvent this drawback by proposing an algorithm which



8.2. Reduced-order finite-dimensional discretized systems 161

provides an "approximately” balanced realization of the time-discretized system, obtained
directly from the balanced realization of its continuous-time counterpart. We show that
"close” to the exactly balanced realization when the sampling pe-
riod decreases to zero. As the “approximately” balancing technique is more accurate than
the true balancing method for “very small” sampling steps (i.e. much smaller than the
systems’s time constants), we believe that the method proposed in this paper, besides
its theoretical meaning, has certain importance even as a computational procedure for
balancing time-discretized systems.

this realization comes

8.2.1 Mathematical background

We shall consider linear time invariant finite-dimensional systems L¢(A, B, C, D) over the
Euclidean space
Cnxn % CnXm x Cpxn x Cpxm

and we shall assume that
(7) (A, B) is controllable,
(i) (C,A) is observable.

Let
5(t) £ At

be the exponentially (power) stable continuous-time (discrete-time) semigroup generated
by A on the Euclidean space R" and let

(oz)(t) Az(t) + Bu(t), z(0) = o,
y(t) = Cz(t)+ Du(t),

Il

be the state space representation of ¥g(A, B, C, D), where (cz)(-) defined by (1.4) denotes

either the differential operator if t € R or the advance unit shift operator if t € N. We

interpret z € C" as being the state vector, u € C™ the control and y € C? the measured

output. A minimal stable realization of ¢ (A, B, C, D) will be denoted by ( Ay, By, Cb, D).
The controllability and observability gramians defined by

P = /meA’BB*eA“dt,teR, (8.1)
0

P = Y A'BB' (A", teN, (8.2)
=0

Q = /weA'tC*Ce*‘tdt,teR, (8.3)
[¢]

Q = Y (A)C'CA teN, (8.4)

=0
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are the unique hermitian solutions of the following Lyapunov equations

AP+ PA"+ BB = 0,t€eR, (8.5)
APA*—P+BB* = 0,teN, (8.6)
A'Q+QA+C*C = 0,t€R, (8.7)
AQA-Q+C*C = 0,teN, (8.8)

where N and R stands for the set of positive integer numbers, real numbers, respectively.

Let £5(0,00;C") and L2(0,00; C") denote the space of sequences (functions) over the
complex Euclidean space C™ which are square summable (integrable) over the set of positive
integer (real) numbers. Let

] L>(0,00; C™) L2(0,00;C™) | . teR
b {z;(o,oo;cm) }_’{ (0, 00;C") } i { tEN } (8.9)
2 CS(t+ 7)Bu(r)dr,t e R

(Tu)(t) £ { A (8.10)
Y2, CA*B(t),t € N

be the Hankel operators in continuous-time and discrete-time, respectively. It is well known
[40] that

o(PQ) = o(TT™), (8.11)

where o(A) denotes the spectrum of A. Recall that being given a stable system ¥.a(A, B, C, D)
there exists a minimal stable realization (Ap, By, Ch, Dp) (called balanced) such that

P=Q =" =diag(oy > ... > o), (8.12)

where (0;)1<i<n are the Hankel singular values of the system.
A balanced realization can be obtained as following: Let P have a Cholesky factorization
P = §*S. Then SQ5* > 0 can be diagonalized as 0 < SQS5* = VEV* with VV* = V*V =

I and a balancing transformation is
T = (S*)'VVE. (8.13)

Assume that there exists 1 < p < n such that ¢, > 0p11 and let us consider the following
partition induced on the state space matrices

Ay Ag By ¥ 0
(A2] A22)7(32)s(cl C?)a( 022)1

¥ = diag(or > ... 2 0p)

where
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and

¥y = diag(opt1 > ... > 0y).
Then Ay, By, C1, D] and [Agg, By, Ca, D] are stable systems [6] in balanced form and the
first one represents the reduced order model obtained by truncating the balanced realization
of the original system. State-space matrices of the singular perturbation approximation of
balanced realizations of [A, B, C, D] are given by [61]

A = Ay + Ap(alyy, — A22)"1A21, (8.14)
B = Bj+ An(alyx, — As) "B, (8.15)
C = Cu+ Cylalyyy — Az) A, (8.16)
D D + Cyalxp — Azz) ' By, (8.17)
where
oo { L ifteN
0 ifteR

If Gy(s) is the transfer function of either (A, Bi,Ci, D) or (A, B,C,D) and G(s) =
D+ C(sI — A)7'B then the following error bound result is reported from [40]

|G — Gpllew < 2trace(Zy). (8.18)

8.2.2 An “approximately” balanced realization of time-discretized
systems.

As in infinite-dimensions, we introduce the class of time-discretized finite-dimensional sys-

tems

Definition 8.1 Let Xg(A, B,C, D) be a finite-dimensional continuous-time system. Then
we shall call Xg(®,T, A, ©) its time-discretized counterpart with sampling step T > 0 if it
is defined over the euclidean spaces

Crxm o Cnxm x CPX" % Cpxm

and it satisfies

z(k+1) = ®z(k)+ Tu(k), (8.19)
y(k) = Az(k)+ Ou(k), (8.20)
for
® 2 S(T), (8.21)
r 2 /OTS(T)BdT, (8.22)
A 2 (8.23)
® 2 p. (8.24)
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Remark 8.2 Notice that the Lyapunov equation (8.6) written for A = ® and B = T
becomes progressively ill-conditioned as the sampling step approaches zero. The sampled
controllability gramian Py regarded as a real function

Pi:Ry — R™™, Py = S &TT (&), (8.25)

i=0

becomes numerically singular and so will its Cholesky factor Sq. Then, urder a certain
limit of the sampling step SaQaS} cannot be anymore diagonalized as

0< SdeS; = degvd*,

with VyV} = Vi Vi = I and a balancing transformation for the time-discretized system

Ty = (5)"Vay/%a

cannot be computed since Sq becomes numerically uninvertible.

The next result shows the way the sampled controllability and observability gramians
behave for small steps.

Lemma 8.3 Let P, Q, Py and Qq be the controllability and observability gramians of the
continuous and time-discretized systems. Then the following relations are true

i

= P+ 6(T), (8.26)
T
TQa = Q+ -2—C*C + (7). (8.27)
Proof Denote by
® -1
Agq = 5

and notice that
lim Ad = A.
T—-——0

Let us consider the following function F : R x R™*" — R™*" given by,

TAXAg + A3X + XAqa+A*A, T #0,

]:(T’X)z{A*X+XA+C*C if T = 0.
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Notice that (0,Q) is a solution to F(7T, X) = 0 and

oF .
(G—X)(O’Q)X =A"X+ XA (8.28)
is an invertible operator with respect to X. Applying the Implicit Function Theorem it
follows that there exists a solution X (T') which is analytic in a certain neighbourhood of

the origin and X(0) = . Consequently, X(7') has an asymptotic expansion

X(T)=Q+ Td);(TT) +6(T). (8.29)

Applying the rule of differentiating implicit defined functions

IF dX oF
T + T ax = 0 (8.30)

and since % is invertible with respect to X, we obtain after a straightforward calculation
that

dX(T) _C*C
a2

(8.31)

It follows that
cC

X(T)=Q+T~

+0(T). (8.32)

Taking advantage that, in fact, F(T,T7@q4) = 0 is the discrete-time Lyapunov equation
(8.8) written for A = ® and C = A, and of the unicity of solution X(7T') in the appropriate
chosen neighbourhood of the origin, it follows that X(T) = T'Qq4 and relation (8.27) is
proved.

In order to prove that (8.26) also holds, denote first by By = g and let us then consider
the following function G : R x R™"® — R™" given by

G(r,x) = | TAX A+ AaX + X A3+ Babj, T #0,
)=\ AX + XA+ BB T =0.

In a very similar way we proved (8.27), we proceed by exploiting the fact that (0, P) is a
solution to G(T, X} = 0 and

8
(%) lop) X = AX + XA™, (8.33)

which is invertible with respect to X. Applying the Implicit Function Theorem in a
similar way as we did before, it follows that a solution X (7") which is analytic in a certain
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neighbourhood of the origin and X(0) = P. Consequently, X(T) has an asymptotic

expansion

dX(T)
dT

By some snnple computation we show that [T —o= 0 and then X(T) = P + (T').
Since g(T ) = 0 is the discrete-time Lya,punov equation written for A = ® and B =
T, and takmg advantage of the unicity of the solution X(T) in the appropriate choosen
nelghbourhood of the origin, it follows that X(7T') = —‘ and relation (8.26) is also proved.

X(T)=P+T +6(T). (8.34)

u
The following immediate consequence of the Lemma 8.3 is

Corollary 8.4 The sampled Hankel singular values recover their continuous-time coun-
terparts when the sampling step approaches zero

Jim B4 = £. (8.35)

Proof From (8.26) and (8.27) we derive that
T
PyQa = PQ + EPC*C +6(T), (8.36)
which implies that
Jim o(PaQa) = o(PQ), (8.37)

the latter relation being equivalent with (8.35).
"
From Lemma 8.3 we conclude that, for a sufficiently small sampling step, the sampled
controllability and observability gramians can be approximated as Py = TP and Qq = 9
In this way, instead of balancing Py and Qq, we shall balance their approximations. Thus
the “approximately” balancing approach consists in finding a similarity transformation
that would make T'P and —07& be equal with the same diagonal matrix. The following result
holds

Lemma 8.5 Let S be a balancing transformation for the continuous-time system La(A, B,C, D).
Then the following similarity transformation

2 S
Sd:ﬁ

makes TP and % be equal with the diagonal matriz of the Hankel singular values of the
continuous system.

(8.38)
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Proof Notice that if S is a balancing transformation for the continuous time system then

Sa = \% is a similarity transformation. From (8.38) it follows that
S.TPSy =SPS™ =% (8.39)
and
sif*%éd"‘ =5§7*QS5 = (8.40)
n

Lemma 8.5 suggests the way we construct the “approximately” balancing algorithm:
“Approximately” balancing
Step 1: Perform a continuous balancing
(A,B,C, D) — (Ap, By, Ch, Dy).
Step 2: Perform a continuous-to-discrete transformation
(Av, By, Cb, Dy) — (Aba, Bba, Coa, Dba).-

Step 3: Update the state space matrices as

Byq ¥— —

VT’
Cha — CpaV'T.

Indeed, if {Apa, Bbd, Chba, Dba) is a minimal stable “approximately” balanced realization of
the time-discretized system, then a straightforward calculation shows that its state space
matrices are given by

Apg = S®57, (8.41)
1

Bha = ——=5T, 8.42

bd 77T (8.42)

Coa = AS™WT, (8.43)

Dyy = O, (8.44)

Clearly, the above algorithm does not provide the balanced realization of the time-discretized
system. Nevertheless, the following result shows that, when the sampling period decreases
to zero (Apd, Bua, Cha, Dva) is a good approximation of the true balanced realization.
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Theorem 8.6 Let (Apd, Bud, Csa, Dba) be a stable minimal “approzimately” balanced real-
ization of the time-discretized system L (®,I', A, ®). If (Aab, Bab, Cap, Dav) s a minimal
balanced realization of it then

Tlirno Abd — Adb = Onxn- (845)
,Flino Boa— Bab = Onym, (8.46)
’Il-i—n}() de - Cdb = Opxna (8‘47)
Jim Dpa = Dab = Opxms (8.48)

where O;x; denotes the ¢ by j null matriz.
For proving Theorem 8.6 we need

Lemma 8.7 Let Sq and S be the balancing transformations of the time-discretized and
continuous-time systems. Then
S

Jim, 4= —= = Ouxe. (8.49)

Proof Let S3 and S be the Cholesky factors of the sampled and continuous controllability
gramians Py and P. Since (8.26) holds it follows by some simple computation that

S
VT

As S4 and S are invertible it is a routine to show that

. , s
Jim (S = 7 = O

Exploiting the sampled Hankel singular values recovery property we obtain

Jim \/SaVa = VEV = O, (8.52)

= S+ 6(VT). (8.50)

(8.51)

as V3 and V are both from the set of orthonormal mappings given by the Singular Value
Decomposition Theorem and the proof is complete.

]

Proof(of Theorem 8.6) It is a direct consequence of the above Lemma since the state

space matrices of the true balanced realization of the time-discretized system are satisfying

A = SdQSJl, (8.53)
By, = S4T, (8.54)
Cabh = ASdhl, (855)

Dy = ©. (8.56)
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Substract (8.41), (8.42), (8.43) and (8.44) from (8.53), (8.54), (8.55) and (8.56) we obtain
(8.45), (8.46) and (8.47) and the theorem is proved.
u

8.2.3 An “approximately” balancing based approach to the model
reduction problem for time-discretized systems

For continuous-time systems, Moore’s classical truncation of balanced realizations consist-
ing in the deletion of the most uncontrollable and unobservable part of the system (usually
called the “weak” subsystem), was shown to be always convenient since the reduced order
model obtained this way is internally stable, it is in balanced form and, furthermore, it re-
tains the Hankel singular values of the most controllable and observable part of the system
(usually called the “strong” subsystem).

This simple model reduction technique, usually known as the “weak” subsystem elimi-
nation, cannot be extended to the discrete-time systems case due to the fact that truncation
of balanced realizations of a discrete-time model is neither in balanced form nor preserves
the Hankel singular values of the “strong” subsystem.

In order to circumvent this disadvantage, a singular perturbational approximation of
balanced realizations was developed (see [61]). The main advantage over the classical
truncation of balanced realizations, besides the better approximation property at low fre-
quencies and the exact preservation of the DC gain, is that the reduced-order model is
internally balanced in both continuous-time and discrete-time cases.

Further we shall apply the singular perturbation model reduction scheme to the state
space matrices of the true balanced realization of the time-discretized system as well as to
its “approximately” balanced realization’s state space matrices. Let (Apak, Boak, Chax, Dbax)
be the realization of the k-order reduced-order model obtained as the singular perturbation
approximation of the “approximately” balanced realization and let (Agpk, Babk, Cabk, D)
be the corresponding k-ordered singular perturbation approximation of the true balanced
realization of time-discretized system. Then the following limit relations hold

Theorem 8.8
}ino Avak — Adbk = Okxk, (8.57)
Tli_r_ljo Brak — Bark = Okxm, (8.58)
Tlifllg Coak — Cabk = Opxk, (8.59)
Tlino Dok — Dok = Opxom, (8.60)
(8.61)

where 0;x; denotes the i by 7 null matriz.

The proof is an immediate consequence of Theorem 8.6.
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Remark 8.9 The type of convergence that Theorem 8.8 shows to hold for the two reduced-
order models is a strong one in the sense thal in the common Hy-norm, He,-norm or
Hankel-norm, the error system defined by

Ge(z) = Goax(z) — Gapk(2)

is satisfying
Jim [|Gellzot = 0.

It is well known [40, 39] that for the linear time invariant continuous-time systems an error
bound result as given by relation (8.18) holds. The next Lemma represent the discrete-time
version of Glover’s error bound result.

Lemma 8.10 Let F(z) and Fi(z) be the transfer functions of a discrete-time finite-dimensional
systems and of its subsystem obtained by singular perturbation approzimation. Then the
following error bound result holds

1F(z) — Fu(2)l <2 3 o (8.62)
i=k+1

Proof We shall consider the linear time invariant continuous-time system obtained from
the linear time invariant discrete-time system via the following bilinear mapping

1+s
1—s

(8.63)

Z

Let us notice that if A is stable in discrete-time (i.e. having all its eigenvalues in the open
unit disk), then A, is also stable in continuous-time and its transfer function is

G(s) = De + Co(sI — A) 7' B, (8.64)
where from [40] we have
Ac = (I+A)HA-T), (8.65)
B. = V2(I+ A)'B, (8.66)
. o= V201 + A7, (8.67)
D. = D—C(I+A)'B. (8.68)

An important property of the continuous-time equivalent system defined above is that the
controllability and observability gramians as well as the Hankel singular values of the two
systems will be the same (see [39, 40]). Furthermore we have

F(e”) = G(ytan g) (8.69)
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Hence, if Fi(2) = Dy + Cy(21 — A;)7! By is a k-order approximation of F(z) then

Guls) = Fi (1 o~ (8.70)

- S

represents a k-order approximation of the continuous-time equivalent system which will
satisfy

oi(F(2) — Fi(2))
F(e’e) - Fk(eje)

oi(G(s) — Gi(s)) (8.71)
G(ytan g) — Gi(ytan g) (8.72)

I

Hence, a solution to the discrete-time problem generates a solution to the equivalent
continuous-time problem in the sense that for both systems, the discrete-time one and
its continuous-time equivalent, the Hankel singular values of the error will be the same
as will the frequency responses. Notice also that the continuous-time equivalent system
obtained by the bilinear mapping z — (1 + s)/(1 — s) is in balanced form iff the original
discrete-time system was also in balanced form (see [40]). Applying now the L*-error
bound result as given by relation (8.18) we obtain that

1P() = F(2) oo = [IG() — Ga(8)]lo <2 3 o (8.73)

i=k+1

The following direct consequence of the above result is given by

Corollary 8.11 Let (Apax, Bodk, Cbdx, Dbdx) be the realization of the k-order reduced-order
model obtained as the singular perturbational approzimation of the “approzimately” bal-
anced realization and let (Aapk, Babk, Cabk, Dabk) be the corresponding k-ordered singular
perturbational approrimation of the true balanced realization of the time-discretized sys-
tem. Let Ghax(z), Gak(z) and Ga(z) be their corresponding transfer functions. Then the
following error bound result holds

2 i i, (8.74)

Jim Ga(2) = Goax(2)lloe <

- i=k+1

Tlii% HGd(z)—Gdbk(z)”oo S 2 Z ag;. (875)
i=k+1

At the end of this section a few remarks should be made on the “approximately”
balancing and its induced model reduction scheme presented above.
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Remark 8.12 [t is well known that (see [74]) before proceeding to design a controller meet-
ing certain robust performance specifications, a balancing step is recommended in advance
the design process. This fact is motivated by the improvement brought by balancing to some
of the system’s properties, i.e. minimizing the condition number with respect to pointwise
state control and zero input state observation (see [63]), etc.

In sampled-data control, when “on-line” computations of state space matrices are re-
quired, the “approzimately” balancing algorithm has an obvious advantage over the true
balancing one, especially when the sampling step is changed by the performance specifica-
tion restrictions. The discrete Lyapunov equations for time-discretized systems are replaced
with the corresponding pair of continuous equations which are solved only one time, at the
very first step of the design process. The sampled gramians which we want to balance are
replaced by their approzimations. Thus, each time the sampling step changes, instead of
solving the discrete Lyapunov equation we update the continuous-tume controllability and
observability gramians using

Py~ TP, (8.76)

Sl

Qa =~ (8.77)

Remark 8.13 The lower bounds for which the “approzimately” balancing algorithm still
works is influenced only by the way the continuous-to-discrete routine is implemented.
Avoiding to solve the discrete Lyapunov equations for the time-discretized system in the
case when the sampling step is much smaller than the minimum of the absolute values of
the system’s poles, we decrease the lower bound of the sampling step for which the true
balancing algorithm fails.

8.2.4 Example

Let us consider the following continuous time system having the state space matrices

—1.0000 —0.5000 —0.3333 —0.2500
A= —0.5000 —0.3333 —0.2500 -0.2000
T | —0.3333 —0.2500 —0.2000 —0.1667 |’

—0.2500 —0.2000 —0.1667 —0.1429

—_ 0 O O
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c=(100 0),

where the eigenvalues of the system are
o(A) = (—1.5002, —0.1691, —0.0067, —0.0001).
A balanced realization state space matrices are

—0.0001 -0.0004  0.0006 —0.0005
0.0004 -0.0047 0.0168 -—0.0124
0.0006 —0.0168 —0.1325 0.2306 |’
0.0005 —-0.0124 -0.2306 —1.5389

Ay =

0.1010
—0.2731
—0.4431 |’
~0.3632

By =

C’bz(0.00lO 0.2731 0.4431 —0.3632 ).

The controllability and observability gramians are equal to the diagonal matrix of the
Hankel singular values

¥ = (77.2412, 7.9392, 0.7408, 0.0429).

The most suitable candidate for a good approximation is the singular perturbational ap-
proximation having the McMillan degree k = 2

Further, we will focus on comparing the “approximately” balanced algorithm with the
true balancing one for the case when the sampling step is very small comparing to the
system’s modes. Thus, for A = l.e™!3, the state space matrices of the “approximately”
balanced and correct balanced realizations are

1.0000 0.0000  0.0000  0.0000
—0.0000 1.0000  0.0000 —0.0000
—0.0000 0.0000 1.0000 0.0000 }°
—0.0000 0.0000 -0.0000 1.0000

Apg =

—0.0319
—0.0864
—0.1401 |’
—0.1149

Bbd = 1.6_6

dezl.e—ﬁ(o.():ng —0.0864 0.1401 —0.1149),
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and

1.0000 0.0000  0.0000  ©0.0000
—0.0000 1.0000  0.0000 —0.0000
—0.0000 0.0000 1.0000 0.0000 |’
—0.0000 0.0000 —0.0000  1.0000

—0.0639

—0.0090

—0.1304 |’
0.1141

Cqp = le™® (-—0.0639 0.0090 0.1304 0.1141 ).

The “distance” between the two realizations, the balanced one and the ”approximately”
balanced is given by

Ay =

Bap = l.e~®

0 0.0012 0.0004 0.0014
—0.0015 0.0003 0.0345 0.0010
—0.0001 -0.0359 —0.0004 0.4628 |’
—0.0008  0.0025 —0.4613 0.0004

Apg — Ay = l.e 2

—0.0201
—0.5362
-0.0021 |°
—0.7262

%-%:wﬂmw—mm&mlwmﬂ.

If 2 < 1.e_13 the first algorithm fails due to the impossibility of computing the solutions of
the sampled Lyapunov equations. For such a small sampling step, the solutions are losing
their positivity. The “approximately” still can be computed even for smaller steps. The
smallest step for which the algorithm fails is influenced only by the precision of the machine
implementation of the continue-to-discrete procedure. An example of how far can we extend
the lower limit of the sampling step for which the “approximately” balancing algorithm
still works, let us consider the case when A = 1.e73%. Then the state space matrices of the
“approximately” balanced realization of the time-discretized system considered are

1.0000 0.0000  0.0000  0.0000
A = —0.0000 1.0000  0.0000 —0.0000
b4 =1 _0.0000 0.0000 1.0000  0.0000 |’

—0.0000 0.0000 -0.0000 1.0000

Bbd — Bdb = 1.6‘6

—-0.1010
—0.2731
—0.4431 }°
—0.3632

Bpqg = 1.e71%0
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de:1.e-15°(o.1010 —0.2731 0.4431 —0.3632).

Let (Avpas, Bbaz, Chaz, Dvaz) be the 2 x 2 singular perturbational approximation of the
“approximately” balanced realization of [Aq4, B4, Ca, Dg] with the state space matrices

Ao 1.0000 0.0000
b2 =\ _0.0000 1.0000 /°

. e f —0.1029
Boaz = 1.¢ ('0.0314 ’

Coaz = 1.e™® ( —0.1029 —0.0314 ),

Doaz = —1.3896,

and let (Aabz, Bavz, Cabz, Dawz) be the 2 x 2 singular perturbational approximation of the
true balanced realization of Lg(®,T', A, ®) with the state space matrices

A 1.0000 0.0000
462 = 1 _0.0000 1.0000 |’

Bus — 1.6_7( —0.9288 )

—0.0437

Cavy = 1.e™"( —0.9019 —0.2190 )

Dap2 = —1.2291.

The "error” between the above approximations of the time-discretized system is given by
the following measure

Apgz — Agpy = 1.e~14 < ~0.0111 —0.1216 )

—0.0368 —0.0777

o _r{ 0.1006
Braz = Baa = Le ( —0.3574 /"

Coaz — Cawy = 1™ ( 0.1276 0.0947 ) ,

Dbd2 — Dbd2 == 0.1604
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8.3 Balanced realizations of infinite-dimensional sys-
tems

In this section we extend the results from the previous section to a class of infinite dimen-
sional systems with diagonal semigroup. For the sake of simplicity we shall consider ouly
the SISO case,i.e. m=1and p=1.

The elegant results on balanced realizations obtained for finite-dimensional systems
aroused interest in the problem of the extension of the concept of balanced realization to
infinite-dimensional systems. In [38] it is shown that for nuclear systems, i.e systems with
finite-dimensional inputs and outputs whose impulse response satisfies

h(t) £ CS(8)B € Ly N Ly(0, 00; CP*™) (8.78)

and induces the nuclear Hankel operator, the balanced realization always exists and their
truncations converge to the original system in various topologies. Furthermore, explicit
Lo bounds on the transfer functions errors, L1 and L; bounds on the impulse response
errors and Hilbert-Schmidt and nuclear bounds on the Hankel operator errors can be
obtained. If in finite-dimensional case the transition between continuous-time and discrete-
time cases is straightforward, the situation in infinite-dimensional case is different. For
infinite-dimensional discrete-time systems with the impulse response satisfying

h(k) & CA*B € 4y, (8.79)

the balanced realization can be explicitly be given in terms of the singular values and
Schmidt pairs of the hankel operator. If the Hankel operator is Hilbert-Schmidt, trunca-
tions of balanced realization generate a sequence of finite-dimensional impulse responses
which converge in £, sense to the original one and the transfer functions converge point-
wise. If an extra nuclearity assumption is made on the Hankel operator then the transfer
functions converge in the L, norm as well.

Let us consider first the continuos-time case. Our object is represented by linear infinite-
dimensional systems defined by the following input-output map

y(t) = /0 " Bt — s)u(s)ds, (8.80)

where the outputs and the inputs are square integrable, i.e. y € Ly(0,00;C?) and u €
L4(0,00;C™), and the impulse response satisfies (8.78). Corresponding to (8.78) is the
Hankel operator

T2 Ly(0,00; C™) —> Ly(0,00;C7), (Tu)(t) é/ﬁ‘” h(t + s)u(s)ds. (8.81)

We notice that the condition (8.78) implies that I' defined by (8.81) is compact and if we
consider

T: C1(0,00;C™) — C1(0,00;C7), (Tu)(t) 2 /0°° h(t + s)u(s)ds, (8.82)
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then I' defined by (8.82) satisfies the same compactness property, where C; is the space
of absolute continuos functions with derivatives existing in L; sense. In [38] is proved
that I'"I" is compact and positive on L;(0,00; C™) and so it has countably many positive
eigenvalues

01> 2ar>.. >0, (8.83)

which are the singular values of I'. If v; and w;, i > 1 are the corresponding normaliezed
eigenvectors, the (v;,w;), ¢ > 1 are called Schmidt pairs of T

FU,‘ = o;w;, (884)
F*UJ,' = 0O,V (885)
An important property of the Schmidt pairs is given by
wy € Ly(0,00;C?) N Ly(0, 00; C?) N C1(0, 005 CP), (8.86)
v € L1(0,00; C™) N L3(0, 00; C™) N C1(0, 00; C™). (8.87)

The following result on balanced realizations of continuous-time infinite-dimensional sys-
tems is reported from [38]

Theorem 8.14 Consider the infinite-dimensional system with the input/output map de-
fined by (8.80) and let h(t) = CS(t)B be its impulse response satisfying (8.78). Assume
that the associated Hankel operator is nuclear.

(i) The following realization of h(-) is well defined

Aij ﬁ(i)i,w) ) (8.88)
B = ( o JEwi(0) e e ) , (8.89)
C = ( N () BRI ) , (8.90)

Furthermore, it is a balanced realization, i.e. if P and Q are the controllability and
observability gramians defined by

2

P

Q

/0  S()BB"S*(t)dt, (8.91)

>

/0 T s yeres(d, (8.92)

then
P=Q=%X%diag{or, .0 }.
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(i1) The A-operator defined by (8.88) is the infinitesimal generator of a strongly continuos
semigroup of operators S(-) satisfying

S(t)i; = \/:: /G T Wit + s)wi(s)ds, (8.93)

which is a £y-contraction

ISz < ll=ll3- (8.94)

(éii) The realization (A, B,C) defined by (8.88), (8.89) and (8.90) is approzimately con-

trollable and approzimately observable on {.

Let us consider now the discrete-time case. Our object is represented by linear infinite-
dimensional systems defined by the following input-output map

k-1
y(k) = h(du(k —i—1), (8.95)
=0
where the outputs and the inputs are square summable, i.e. y € £(0,00;C?) and u €
£,(0,00;C™), and the impulse respone satisfies (8.79). Corresponding to (8.79) is the
discrete-time Hankel operator

[e o]

T : £3(0,00; C™) — £5(0, 00, C?), (Tu)(k) 2 3 h(i + k)u(i). (8.96)

=0

We notice that the condition (8.79) implies that I’ defined by (8.96) is compact. In [31]
is proved that I'*T is compact and positive on £3(0,00; C™) and so it has countably many
positive eigenvalues

o122 20h 2 20, (8.97)

which are the singular values of . If v; and w;, ¢ > 1 are the corresponding normaliezed
eigenvectors, the (v;, w;), ¢ > 1 are called Schmidt pairs of T'

I‘v,- = Oywy, (898)

I“wi = 0;v;. (899)

The following result on balanced realizations of discrete-time infinite-dimensional systems
is reported from [31, 26]
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Theorem 8.15 Consider the infinite-dimensional system with the input/output map de-
fined by (8.95) and let h(k) = CA*B be its impulse response satisfying (8.79). Then the
following realization of h(-) is well defined

Ay = | /EG DG , (8.100)
B = ( VaEwi(0) - - )’ ) (8.101)
C; = ( G2 (1) S ) (8.102)

Furthermore, it is a balanced realization, i.e. if P and @ are the controllability and observ-
ability gramians defined by

P 2 3 A*BB A, (8.103)
k=0

Q 2 Y atcrcak, (8.104)
k=0

then
P=Q=% édiag{al,---,an,---}
and A defined by (8.100) is a contraction on €2(0,00; X).

8.3.1 Truncations of balanced realization

The realizations (8.88), (8.89), (8.90) and (8.100), (8.101), (8.102) suggest the way one
should approximate the infinite-dimensional system, both in continuous-time as well as in
discrete-time, by its truncations, that is, by a system

En(An, By, Cy)

such that
A:LJ = Aij’ i’jzlj"'vna (8105)
Bl = B, i=1l,n, (8.106)
Cjn = C]‘, j:l,'“,n. (8107)

Such a n-dimensional truncation has an impulse response defined by

n A™t n
hn(t)g{Ce B~ , teR

Cn(An)tBn , t c N (8108)

and a corresponding associated Hankel operator, say I'*. Let G(-) and G™(-) denote the
transfer functions of the original infinite-dimensional system and of its n-dimensional ap-
proximation. Then the following result holds
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Theorem 8.16

Jim |G~ GMleo =0, (8.109)
im0 =T =0, (8.110)
Tim_ |l — A"y =0, (8.111)

where
-1l 2 { I- ”‘I(Ovoo;R”"') , teN ‘
1 ey o tER

8.3.2 Asymptotic properties of Py and Q4 for infinite-dimensional
systems

As in the case of digital Riccati equations for infinite-dimensional systems, the asymptotic
properties of the sampled controllability and observability gramians can be extended from
finite to infinite-dimensional case only under certain assumptions made on the original sys-
tem. If one would like to prove a similar result to Lemma 8.3 in infinite dimensions, then
the same drawback, the fact that Py and Qq are generally not analytic functions in a neigh-
bourhood of the origin, would represent a insurmountable obstacle in applying a Implicit
Function Theorem argument. However, for certain class of infinite-dimensional systems
which, in our opinion, are important in practice, Lemma 8.3 can be readily extended. Let
us consider the parabolic system from subsection 7.1.1 and assume for simplicity that the
control and observation operators are bounded with respect to the state space X". Since
the semigroup is diagonal and B and C operators are £; sequences, it is a routine to show
that P = P* € £L(X) and Q = Q* € L(X) have the following expression

2 1 bikbej
Pz = (—Ek—'ﬁ—kﬁ> z, Yz € X, (8.112)
IR R R
Dkt CkiCky
Qz = (———————— z, Vo€ X. (8.113)
Ait+ A j=1, e

Exploiting the state space formulae for the time-discretized counterpart we get after ele-
mentary manipulation the expressions for Py = Py € L(X) and Qa = Qf € L(X) as

ks bicby;

Pdl' = m x, V-'EEX, (8114)
(=T (1=MT) /it
D te1 CkiChy
Quz = (mm DT o
1y=1,mn,
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Let us define the families of functions

(1 _ e)\.'T)(l _ e/\,T)

) B 1 _ ;) g e

D;:R—R, DT) = Y1 = BT ,7=1,---,n,---, (8.116)
1

YN 2 — g

D;:R-—R, D(T) = 1= eitr)T? ,3=1, -, n,---. (8.117)

Clearly D} ; and D}, are analytic since they are obtained by basic mathematical opera-
tions applied to the exponential function. Exploiting the Taylor series expansion of the
exponential we immediately derive the following element-by-element expansion

i
L

= P+ 6(T), (8.118)
TQY = QY+ —:;:cic,- +0(T). (8.119)
Let now z = {z1,---,i,---,z;,- -} be an arbitrary element of the state space X.
Lemma 8.17 The following hold
—;:(sz,y)x = (Pz,y)x +o(T), Va,y€ X, (8.120)
T(Qur,y)x = (Qz.yhr4 %(cx,cy)x +o(T), Va,y€ X. (8.121)

The input normal realization and the output normal realization have always been consid-
ered together with the concept of balanced realization in the model-reduction literature.
The first one is characterized by

P = I (8.122)
Q = ¥, (8.123)

while the second one is characterized by

P = X (8.124)
Q = I (8.125)

State-space formulae of input-normal, output-normal and balanced realizations are given in
[38]. In this subsection we shall extend the concept of approximately balanced realization
introduced in [4, 5] to infinite-dimensional systems. We also introduce the concepts of
approximately input-normal realization and approximately output-normal realization for
infinite-dimensional time-discretized systems. We give here the following
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Definition 8.18 Let £(SY(-), B,C,%) be an infinite-dimensional Pritchard-Salamon sys-
tem with respect to W — V with impulse response h(-) = x+CS(-)B € L1NL,(0, 00; C™*7)
and let X(®,T', A, *) its time-discretized counterpart.

(i) A realizations of £(®,T', A, ) is called approximately balanced if

(i) A realizations of £(®,T, A, x) is called approximately input-normal if

(i1i) A realizations of £(®,T, A, ) is called approximately output-normal if

P = T%,
by
Q = =

P = TI,
22
Q= =

P = T%,
Q =

1~

(8.126)
(8.127)

(8.128)
(8.129)

(8.130)
(8.131)

We claim here that the approximately balanced realization of infinite-dimensional time
discretized systems is obtainable via the same algorithm as in the finite-dimensional case

(see for details [4, 5]).

Step 1: Write down a balanced realization (Sy(-), By, Cb,*) of the impulse response

h(-) = % + CS(-)B € Ly N Ly(0, 00; C™*7)

as
57 (t)
Ay

B,
Gy

forallz,7 =1,2,---,.

ALGORITHM

ogi [*
\/U:j/() vi(t + T)v;(7)dr,
2 [

0'11),'(0),
O'gw,'((]),

(8.132)

(8.133)

(8.134)
(8.135)
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Step 2: The time-discretized counterpart of (Sp(+), By, C), denoted by (®y, T'v, Ay, ) is given

by
e = ST =2 /wv:(T+T)v]-(T)d‘r, (8.136)
O']' 0
I " G (t) Budt
b= /0 b(t) Bpdt =
x T poo
= vay [ / V¥t + 7)o;(r)drdt, (8.137)
3=0 e 0
Al = Ci = owi(0). (8.138)
Step 3: Update the [, and Ay, as
Iy
r —2 8.139
b &— \/T ( )
Ay — VTA,,. (8.140)

Furthermore, the following proposition holds

Proposition 8.19 Let T(SY(-), B,C, ) be an infinite-dimensional continuous-time sys-
tem on X with impulse response h(-) = % + CS(-)B € Ly N Ly(0,00;C™*?) and let
E(®,T, A, %) its time-discretized counterpart. Then the following realizations of £L(®, T, A, *)

(i) (AaB, Bap,Cag,*) defined by

2 [ ey (8.141)
Biy = \/"_Z/ / Xt + 7)oy (r)drdt, (8.142)

Cig = Touwi(0), (8.143)

(%) (A, Bin, Cin, %) defined by
W= \/Efoo Vi (T + m)vs{7)dr, (8.144)
By = \/‘Z/ / of (t + 7)v(7)drdt, (8.145)

Cin = VToa;(0), (8.146)
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(##) (Aon, Bon,Con,*) defined by

- /5; /D°° (T + 7)v;(7)dr, (8.147)

. o ol T proo

1 — t * . d .1
Biy ngfo /0 V3t + )v;(7)drdt, (8.148)
Cin = VTwi(0), (8.149)

are approximately balanced, approximately input-normal and approximately output-normal
realizations of T(®, T, A, *).

Proof It is sufficient to prove that the controllability and observability gramians associated
with (Aap, Bap, Cas) are equal with TY and %, respectively. Let us prove the property
for the observability gramian, since the proof for the controllability gramian goes in the
same way. Notice that

CABc;Bz(---, TU,»w,»(()),~-> Tow!(0) | . (8.150)

Exploiting the orthonormality of the Schimdt vectors, one can easily see that the above
double infinite-dimensional matrix is diagonal. It follows that the extradiagonal elements
of

A XAps — X

are nill, otherwise the Lyapunov equation that gives the observability gramian associated
with (Aap, Bag,Cag) is not solvable. A straightforward computation of the diagonal
elements of A3 X Aap — X shows that X = -:IE: Similar argument hold for the second

and the third items of this proposition and the proof is complete.
=

Notice that the expressions of the discrete semigroups Asp, Ain and Aon coincide with
®,. The following lemma shows that they are contracting semigroups on ¢3(0, 00; W).

Lemma 8.20 &, is a contraction discrete semigroup on £,(0,00; X).

An immediate consequence of Lemma 8.17 is given by the following infinite-dimensional
generalization of Corollary 8.4

Corollary 8.21 Let £(5¥(-), B,C,x) be a nuclear continuous-time infinite-dimensional
system with finite-dimensional input and output spaces and diagonal semigroup on {; and
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let o be arbitrary in X. Then the Hankel singular values of X(®,T,A,x), the time-
discretized of B(SV(-), B, C,x) recover their continuous-time counterparts as the sampling
period approaches zero

Jim £4=%. (8.151)

At the end of this subsection let us notice that the following weaker counterpart of the
result proved in Lemma 8.17 hold generally for arbitrary infinite-dimensional systems.
Indeed, let us relax the diagonality assumption made on the semigroup and consider the
more general case when S¥(-) has not only point spectrum. Then the following holds

Proposition 8.22 Let £(S¥(-), B, C,*) be a nuclear infinite-dimensional system with finite-
dimensional input and output spaces and diagonal semigroup on £, and let zo be arbitrary
in X. Assume that ©(S¥(-), B,C,) is ezponentially stable on X and let £(®,T, A, )
denote the time-discretized of £(S¥(-), B,C,%). Let P, Q, Py and Qq denote the con-
trollability and observability gramians associated with $(S*(-), B,C,*) and L(®,T, A, *),
respectively. Assume that the following limits exists

., Fa
BTIE}()(Tm’y)X’ Vz,y € &, (8.152)
3 Jim (TQuz,y)x, Vr,y€ X, (8.153)

Then the following hold

(%‘dz)y>/\’ - (vay)zl’

Tlimo T =0, Vz,ye X, (8.154)
lim T ((Quz.v)x — (C2.Cu))x) = (Qu.y)x, Vo,y€X.  (8.155)

Proof Let us define the following auxiliar operators

Agz = i'I-’LTI—"z, z € D(AY), (8.156)
Bau = 711- / " $V(r)Bdr, weu. (8.157)

Notice that
Jim Agz = A%z, = € D(AY), (8.158)

TlimD Bau= Bu, uel. (8.159)
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Consider now the following function

g RxX—R
defined by
6(T, X) = . . (8 160)
(Xz, (A%) y)w + ((A%) 2, Xy)x + (B'2, B'y)x , T=0.

Notice that G(T, X) is continuous in the origin with respect to 7', and this is true since
(8.156) and (8.157) hold. We claim that

P,
Jim (22,y)x = (Pz,v)x. (8.161)

Indeed, suppose that (8.161) does not hold and let P # P denote the corresponding limit,

1.e.

. P
}gl()(—,ﬁw,y)x = (Pz,y)x. (8.162)

A simple manipulation shows that

0 = Jim g( ) G(0, P) =
= (Pz, (4%) y)x +((AY) =, Py)x + (B2, By)x
— (P2, (A%) y)x + ((AY) 2, Py)x + (B2, B'y)x =
= {(P - P)z, (A") W+ {((A%) 2, (P = Ply)x. (8.163)

But the original system was assumed exponentially stable on X. It follows by exploiting
the uniqueness of the solution to the Lyapunov equation that

(P — P)z, (A%) y)x+((AY) 2,(P—Plylx =0¢=P =P, (8.164)
In order to prove (8.154) define the function

M:RxXxX—R

defined by

(T X)-g(0.Y)
M(T,X,Y)é{ T , T#0,

. Lol (8.165)
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Exploiting the continuity of G(-,-) in the origin, one can immediately show that a similar
continuity property is enjoied by M, fact which shows that

. P,
Jim M (T, T,P) —0, (8.166)

which is exactly (8.154). Dual constructions and manipulations imply (8.155) and the
proof is complete.
]

Remark 8.23 If in the case of systems with diagonal semigroup on {5 the limits (8.152)
and (8.153) always exist, it remains an open question whether these limit relations hold in
the general case.
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Chapter 9

Conclusions

9.1 Looking back

Two modern discrete-time control theories represent the theoretical framework for this
thesis where we have approached the problem of digital control of infinite-dimensional
systems with possible unbounded input and/or output operators. The first one is the so-
called discrete Popov theory giving the necessary and sufficient conditions for the existence
of a stabilizing solution to the discrete-time Riccati equation in terms of the invertibility of
a Toeplitz operator associated with the discrete-time system. The discrete Popov theory
framework proves to be rich enough to permit one to write down the solutions to various
discrete control problems, such as the LQ-optimal control problem, and the H* control
problem output measuremet feedback, respectively. The second one is the so-called discret
Hyland-Bernstein theory giving the set of necessary conditions for the existence of the
solution to the discrete-time fixed-order compensation problem, optimally with respect to
a quadratic cost function.

In this thesis we have outlined the main Popov theory based results on the discrete-time
H>* control problem and we have given a full extension to discrete-time infinite-systems of
the classical results of discrete Hyland-Bernstein theory known in the literature. Having
available the framework offered by these two discrete control theories, we have approached
the problem of digital control of linear infinite-dimensional systems with unbounded in-
put and/or output operators. The type of unboundedness considered Lere was the one
commonly accepted for systems that fall in the so-called Pritchard-Salamon class. Seve-
real concepts, specific to digital control, such as digital exponential stability and hybrid
stability, have been analysed and discussed in the framework offered by systems with un-
boundedness. Consequently, they have been enriched with a new meaning, specific to such
a framework, and have attained a fairly high degree of generality. Depending upon the
specific control problem considered in this thesis, the digital solutions were alternatively
constructed on the basis of the discrete Popov theory or the discrete Hyland-Bernstein the-
ory. They have been obtained by using a modern concept, the so-called lifting technique,
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which enables one to obtain a discrete-time control problem, equivalent with the digital
control problem in the sense that a solution to the former one is a solution to the latter one
as well. A step of paramount importance in the preocess of applying the lifting technique
to digital control was represented by Theorem 5.10 where, among other results, it is shown
that sampling and lifting have benefical effects on the control structure in the sense that
all the operators of the equivalent control structure are bounded on appropriate function
spaces.

Another feature that has been captured in the picture offered by this dissertation is
represented by the fact that the two discrete control theories we have applied are suitable for
coping with so-called singular control problems. These problems occur naturally in digital
control, mostly due to the definition of the sample operator which is not well defined over
L, spaces of functions. As an immediate example of difficulty that we had to overcome, is
the singularity Dq; = 0 in the digital H* control with measurement feedback. One of the
most important contributions of this thesis is given by the expression of the necessary and
sufficient conditions for the existence of the subpotimal controller, achieving both hybrid
stability and disturbance attenuation, in terms of coercivity of input/output operators
associated with the hybrid generalized control plant.

The last part of this thesis was concerned with the applications. Two special Pritchard-
Salamon systems, a parabolic system and a hyperbolic one were considered. For both of
them we have computed the time-discretized counterparts. For the parabolic system,
exploiting its semigroup diagonality we have computed also the equivalent discrete-time
Pritchard-Salamon-Popov triple. We have pointed out the difficluties arising in a possi-
ble implementation process, dificulties that are mainly due to the fact that one has to
calculate the inverse of a Toeplitz operator in order to express the stabilizing solution to
a Riccati equation. Since replacing a time-discretized infinite-dimensional system with a
finite-dimensional approximation of it represents a legitimate complaint directed toward
system modeling literature, we have devoted our efforts in the last part of the applications
to the asymptotic analysis with respect to high sampling frequency of the time-discretized
infinite-dimensional systems. Most of the results have originally been proved for finite-
dimensional systems, but we also show here how and in which extent they can be general-
ized in infinite dimensions.

9.2 Looking ahead

Let us try to point out the directions for future research opened by this study.

(i) First of all notice that the Pritchard-Salamon class of systems with unboundedness is
not the most general one possible. It is sufficient to mention that Dirichlet boundary
control usually leads to input operators that are ‘too unbounded’ for the Pritchard-
Salamon framework. This is obviously limiting the generality of the digital control
theory built in [13, 12, 9]. In a series of papers [75, 76, 85} Salamon and Weiss intro-
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duced the concepts of abstract linear systems and well posedness for linear systems
and regular systems, respectively. Basically, regular systems are represented by

{ z(t) = Az(t) + Bu(t), z(0)==z0€ X,
y(t) = Cz(t) + Dult),

with A, B, C' unbounded with respect to the Hilbert state space .X', and D bounded
from the space of inputs, say U to the space of outputs, . An extension of the
results of this thesis such that they become applicable to the class of regular systems
would be, in our opinion, not a trivial one. This statement is motivated as follows

(@) In order to be sampled the output function has to enjoy certain smoothness
properties with respect to time. A sufficient condition (such as zo € W in the
case of Pritchard-Salamon systems) for smooth output function is not known
yet for regular systems.

(b) The main result on digital exponentially stabilizability of this paper, Theorem
5.10 was proved on the basis of the structural decomposition (5.28). Such a
decomposition might hold for regular systems with finite-dimensional input and
output operators as well (we dare to state it as a conjecture that this is indeed
true), but for this class of systems the result is not available yet.

(¢) A general Riccati theory for regular systems is not available yet either; the latest
development of George Weiss (86] is about admissible feedback operators for
regular systems. Hence, another reason why for this class of systems we cannot
extend the main digital stabilizability result of this paper, Theorem 5.10.

() Secondly, even if the results presented in this thesis have, in appearence, only a the-
oretical importance, they have, in our opinion, nevertheless, a practical impact as
well. Let us make this statement more clear. A feature of paramount importance for
implementation is the fact that the controller, solving a certain optimization control
problem, is also a infinite-dimensional system. Such a controller, besides the fact that
presents the great disadvantage to be a system with unboundedness, when obtained
via a continuous-time synthesis, can be analytically determined only for particular
examples. Even in this case, the physical process, the plant, has to be controlled, and
the most convenient solution nowadays seems to be the computer control one. This
implies that we have to represent the unbounded operators in a finite stack computer
memory, a typical discrete device. Such a representation would imply two operations
made on the controller; approximation of the controller by a finite-dimensional one
and discretization. If for finite-dimensional systems those two operations can inter-
twine, as was shown in [5], this is not necessarily applicable for infinite-dimensional
systems generally. Besides the lose of optimality generated by approximating the
controller, the fact that the two operation do not intertwine generates an additional
uncertainty of the degree of suboptimality of the real, implementable controller. The
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digital control approach we proposed in this thsis eliminates these disadvantages.
The controller is born naturally from a digital control design process where the de-
signer manipulates only bounded operators and hence, the outgrowth of such a de-
sign process is a discrete-time infinite-dimensional controller which is a system with
boundedness in operators. The only leftover major difficulty is the controller approx-
imation. With this respect, the Popov theory based approach we took in this paper
leeds to approximation of a certain discrete Toeplitz operator. We believe that this
is opening a new and promising research direction, inverse Toeplitz operator theory
applied to approximate stabilizing solutions to Riccati equations. There are basically
two reasons why this direction is a promising one. The first one is represented by the
fact that, usually, the approximation of infinite-dimensional Riccati equations is done
via ad-hoc methods (see Delfour [36] and the references therein) and hence, there is
no available theory, only some receipes. The second one, eliminating the disadvan-
tage presented by the ad-hoc nature of those methods, is represented by its intrinsic
nature, that of having to approximate a Toeplitx operator, task for which a very well
developed literature is already available (see [54] and the references therein).

If we have succeeded to define two major directions opened by this research, the extension
of the main digital results to regular systems and the application of Toeplitz operator
theory to obtainining approximations of solutions to digital Riccati equations, let us end
this concluding chapter by summarizing a some of the technical difficulties encountered
that represents in our opinion, another source of interesting research.

(1)

(i)

In Chapter 4 a general discrete Hyland-Bernstein theory has been developed. The
main result, Theorem 4.14 gives the set of necessary conditions for the existence of
a fixed-order compensator for a infinite-dimensional discrete-time system, optimally
with respect to a quadratic cost function. The proof is based on vanishing the Fréchet
the first derivatives of the cost function with respect to the compensator parameters.
The set of necessary conditions is not necessarily the set of sufficient ones. It would
be extremely important to prove this fact.

In Chapter 6, section 6.3 we have proved that a sufficient condition for the existence of
the singular filtering H* Riccati equation is represented by the coercivity of the “1°-
input-2"d-output operator” T5;. We have conjectured that a so-called normal input
realization of the lifted counterpart of £(SY(-), By, Ch) generates always a coercive Ty,
operator. Such a realization exists for infinite-dimensional systems with the impulse
response in £1(0, oo; RP*™), but it is not obvious under which assumptions it exists
for infinite-dimensional discrete-time systems with arbitrary infinite-dimensional in-
put and output spaces. For such systems, Ober and Montgomery-Smith succeeded
to prove only the existence of parabalanced realizations (see [65] for details). The
development of such a realization theory for the general case of infinite-dimensional
discrete-time systems with infinite-dimensional input and output spaces, would give,
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besides the insight in this part of realization theory, an adequate framework to for-
mulate in terms of initial-data the sufficient conditions for the existence of the digital
controller solving the H* control problem.

In the application part of this thesis, Chapter 7, we have derived asymptotic proerties
with respect to the sampling step for controllability and observability gramians of
finite-dimensional time-discretized systems and we have shown in which extent they
can be generalized for infinite-dimensional system case. Summarizing, the results can
be readily extended for systems with diagonal semigroup, and in the general case,
they are in the form of “necessary conditions”, i.e. “if the limit exists”, then

o P

limT_,O ‘—T—T——‘ = 0, Yz € -’Y,

X
limy g &%——Qg - C*Cy”(y =0, Vye X.

“if the limit exists” =

Since the solution to the digital Riccati equation converges in the strong sense to its
the solution to the continuous-time Riccati equation as the sampling step approaches
zero (see [73]), we believe that this type of convergence holds also for the solutions
to Lyapunov equations and then we have

Tlln(]”Pdm—Px”x =0. (9.1)
. . . fiz—Px . .
However, this does not imply generally limp__o ”—TL = 0, and it is an interest-

ing fact to be able to state something whether this implication holds or not.

An extension of the concept of approximately balanced realization of time-discretized
Pritchard-Salamon systems would be also an interesting direction for future research.

Finally, the continuous-time full-order/fixed-order H?-optimal control problem for
infinite-diemensional systems seems to be an interesting problem for both cases, the
bounded case as well as the unbounded case.
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Appendix A

Notations and basic definitions

A.1 Notations

N - the set of positive integers

C - the field of complex numbers

R - the field of real numbers

Ry - the set of positive real numbers

JR - the imaginary axis

R - n X n real matrices

R¥” - n X n real symmetric matrices

R™ - n-dimensional real array

c - the complex plane

Re(s) - the real part of s € '

Im(s) - the imaginary part of s € C

Cy - {s € C|Re(s) > 0}, the right half plane

U1(0) - {z € C||z| < 1}, the open unit disc

U, X, Y, W, V, Z - real separable Hilbert spaces

XYy - the direct sum of A and

|- |lx - the norm on X

(,)x - the inner product on X’

L(X,Y) - the space of linear bounded operators from X' to Y.

LX) - the space of linear bounded operators on X’

N(X,Y) - the space of linear nuclear operators from X to Y.

N(X) - the space of linear nuclear operators on X'

paTe - the infinite-dimensional linear plant with transfer function ¢
Yk - the infinite-dimensional linear controller with transfer function K
% - the n-dimensional linear controller with transfer function A’
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ZG(S()vBsCaD)

Sa(A, B,C, D)
©¢(A, B,C, D)
Ti(F, K, L)

5*()
A%
D(AT)
A
A

*

€

X

8 >N »

e
(oz)(t)

8 &

T(®,T,A,0)
xXcy
XYy
G
K
Gylul

nuy
C(0,00; X)
C(0, 005 X)
Z(0,00; X)
L¢(0, 00; X')

£2(0, 003 X)
H> (LU, Y))

H(Z)

Appendiz A. Notations and basic definitions

the infinite-dimensional continuous-time plant ¢
in state space form
the infinite-dimensional discrete-time plant £¢
in state space form
the infinite-dimensional discrete-time controller Xk
in state space form
the n-dimensional controller £
in state space form
Co-semigroup on v’
the infinitesimal generator of 5%¥(-) on v’
the domain of 4
the unique extension of A
the adjoint of A
the growth bound of §¥(-) on X
the zero-order hold operator
the sampler operator
sampling period
equal by definition
z element of X
teR

&(t) ,
{ z(t+1) , teN
the sampled z(-)
the lifted z(-) unless otherwise else depending
on the context
the time-discretized Xg(S(-), B,C, D)
X is contained as a set in Y
X is contained in Y with continuous dense injection
transfer function of g
transfer function of Yk

transfer function of the closed-loop system from uy to ¥
the I/0 operator of the closed-loop system from u; to 31

the space of X-valued piece-wise constant functions
the space of continuous X-valued functions
the space of X-valued sequences with integer index

the space of locally square (Bochner) integrable functions

from [0, 00) to X
the space of square summable functions from [0, 00)
to X

the Hardy space of L(U,Y)-valued functions which are

bounded and analytic on Cy or U;(0)

the Hardy space of complex-valued functions G : (' — 2

which are holomorphic in Cy and for which
Ja) o0
IG()IE 2 A supso U2 16z + )l < o)
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E - the expectation

J(Xg,Zk) - the LQG cost function

Uy - disturbance input

n - regulated output

Uz - control input

Yo - measured output

A/D - analog-to-discrete device

D/A - discrete-to-analog device

Ustep(*) - piece-wise constant control function

Z(S5(:), B.M = M) - continuous-time Popov triple

Y(A,B,M = M*) - discrete-time Popov triple

JIx{zo, u(-)) - quadratic index associated to the Popov triple

v the admissible control class of a Popov triple

VYeelX - arbitrary z in X

3 - there exists

Bt - the controllability map

Ct - the observability map

Wlig,1) - the Sobolev space

by - the distribution function

R>0 - R is coercive

h| - inmer system

Yo - outer system

Iy - the identity operator on X

Lixn - the identity n X n matrix

By - discrete growth constant

Q2 - the lifting operator

F (( g; gz ) ,K) - the linear fractional transformation of ( g; g;z )
and K.

6(-) - the symbol of Landau
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A.2 Basic definitions

Definition A.1 (Cp-semigroup)

(i) A strongly continuous semigroup (or a Co-semigroup) is an operator valued function §¥:
R, — L(X), which satisfies

(a) §¥(t+7) = S¥(D)S¥(r), ¥, 7 2 0,

(b) $*(0) = Ly,

(c) lim,o ||S¥(t)x ~ z|lx =0, Vz e X.

t>0
(i) Ifwy = inft‘>(] % log ||S¥(t)|jx, then wy is called the growth bound of ¥ on SY.
(ii¢) The infinjtesimal generator of X' on $¥(-) is an operator A" : D(AY) —s Z defined by
A¥z & lim %(5-"@) - Iy)e,
>0

whenever the limit exists; the domain of A, D(A%), being the set of elemnts in X for
which the above limit exists.

(iv) The Co-semigroup S¥(-) on X is called exponentially stable if 3IM_x > 0 such that Vt > 0
IS*(Olly < Moe”
and its growth bound is negative, wy < 0.

(v) If in particular | S¥()|lx < 1 then the semigroup is called a contraction Co-semigroup.

Definition A.2 (separable spaces, continuous dense injection, dual spaces, reflexive spaces)

(i) A normed linear space (X, ||-||x) s called separable if it contains a countable dense subset.
In particular a Hilbert space is called separable if it contains an orthonormal basis.

(i3) Let X be a Banach space with norm ||-||x and let W be a linear subspace of X' and assume
that another norm, || - ||, is defined on W and in this way W is itself @ Banach space.
Consider the linear operator 3 : WlongrightarrowX', jw = w.

(a) We call this a continuous embedding if j € LW, X)

(b) If W is dense in X with respect to the norm in X (i.e. its closure is equal to X ) we
shall call 3 a dense injection. In the case when j is also a continuous application we
shall use the notation W — X to denote the continuous dense injection

(iii) The topological dual space of X is the space of all bounded linear functionals on X with

domain X N
X" ={f: & — R|f is linear and bounded } .
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(iv) The bidual space of X' is the space of all bounded functionals on X' with domain X'~
XL {f: X" — R|f is linear and bounded }
and the isomorphism from X to X**
2 i LN 2 f(a), Ve X
is called the natural embedding of X in X**.

(v) A space X is reflezive if its bidual X** is isometrically isomorphic to X under the natural
embedding

Definition A.3 (bounded, invertible, symmetric, adjoint, normal, self-adjoint, positive definite,
non-negative definite, coercive, semisimple, compact and closed operators)

(i) An operator A: X — Y is said to be bounded if

IAlly £ sup J|Az|| < %0, Vz € .
flzll<1

(1i) A densely defined operator A is called symmetric if Yo,y € D(A)
(Az,y) = (z, Ay).
(itt) An operator A: X — Y is said to be invertible if there exists A™' : Y — X such that

A Az z,Yz € X, (A.1)
AATYy = y¥ye . (A.2)

Then A™! is called the inverse of A. In particular, fA:L(X,Y) and A7V L(Y, X) then
A is called boundedly invertible.

(fv) Let A: D(A) C X — Y be a linear operator such that the domain of A is dense in .
Then the adjoint operator A™ : D(A*) C Y — X is defined by

Jy* € X, such that (Az,y) = (z,yA*), Vye€ ). (A.3)

(v) If A€ L(X) and AA* = A*A then A is called normal.

(vi) If A = A* then A is self-adjoint. In particular all bounded symmetric operators are self-
adjoint operators.

(vii) A self-adjoint operator for which (Az,z) > 0,Yz € D(AY) is called non-negative definite.

(viii) A self-adjoint operator for which {Az,z) > 0,Vz € D(A%Y) is called positive definite.
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(iz) A self-adjoint operator for which (Az,z) > €l|z(|%.Va € D(AY) is called coercive.

(z) An operator A € L(X,D) is said to be compact if A maps bounded sets of X' onto compact
sets of Y).

(zi) A lLinear operator A € L(X,Y) is said to be closed if its graph
G(A) & {(z. Az)jz € D(A)}

is a closed linear subspace of X X Y. In particular every self-adjoint operator is closed since
the adjoint of any operator is closed.

Definition A.4 Let A be a closed densely defined operator on a complex normed linear space X .
We say that X is in the resolvent set of A, denoted p(A), if the resolvent operator defined by

R(MA)E (M- AT (A.4)
ezists and is a bounded linear operator on a dense domain of X.
Let
o(4) 2 C\ p(4) (A5)
denote the spectrum of A, while the point spectrum of A is defined by
7,(A) £ {x € C| (AT — A)is not injective }, (A.6)
with p(A) the resolvent set of A.

Definition A.5 A point A € 0,(A) is called eigenvalue, and z # 0 such that (Al — A)z = 0 an
eigenvector.

Definition A.6 Let £(S(-), B,C,C) be an infinite-dimensional system and let G be its trans-
fer function. Let {oy,-++,0n, -} be the Hankel singular values. Then the Hankel norm of

2(5(-). B,C.C) is defined by

Gl = max 0. (A7)
Iy
Z 0, < 00, (A.8)
=0

then the system $(S(-), B,C,C) is called nuclear system and (A.8) defines the nuclear norm of
the system ¥

1GIN2E S o (4.9)

n=0
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if

2 o< 00, (A.10)
n=0
then the system E(5(-), B,C,C) has a Hilbert-Schmidt Hankel operator and (A.10) defines the
Hankel-Frobenius norm of the system %

00
A ;
Gllur = Y ol (A.11)

n=0

Definition A.7 (sesquilinear form) A sesquilinear form on the complex linear space X is a
complez valued function defined on X X X which is linear in the first argument and antilinear in
the second argument i.e.

Qlogzy + @222, %) = mQ(21,y) + 22Q(z2,y)

and
Qz, iy + ay2) = 3 Q(z, 1) + 32Q(x, 12)-

(@& is the complex conjugate of the complez number o)
A common example of sesquilinear form is the inner product on a complex Hilbert space.

Definition A.8 (The dual system associated with a Pritchard-Salamon system)
Let ©(SV(-), B, C, D) be a Pritchard-Salamon system with respect to the continuous dense injec-
tion

W XV

and consider the topological dual spaces of W, X and V. Identify X', U and Y with their dual
counterparts. Then we have
V9o A" =X — W

The dual of B, denoted B*, is defined by B* € L(V*,U) such that B* is an admissible output
operator for 5%(-) with respect to V* — X. The dual of C, denoted C'*, is defined by C* ¢
L(Y,W*) such that C* is an admissible output operator for for S*(-) with respect to .V — W*.
Then the infinite-dimensional system L(SW'(.), B*,C*, D*) is called the dual system associated
with a Pritchard-Salamon system. It is also a Pritchard-Salamon system with respect to

V' s X=X — W™



204 Appendiz A. Notations and basic definitions



List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2

3.1
3.2

5.1
5.2
5.3
5.4
5.5
5.6

5.7
6.1

8.1
8.2
8.3

The generalized plant . . . . .. . ... ...
Thecontroller . . . . . .. . ... ..
The closed loop configuration . . . . ... ... . ........ ... . . ... ..
The digital controller . . . . . . . .. ... ... ..,

The overlap of the control and observation mappings . . . . . ... ... ......
The mappings generated by a Pritchard-Salamon-Popov triple . . . . .. ... ...

The connection of Eyand So . . . . . . . ...
Two equivalent system configuration . . . .......... ... ... .. . ...

The mapping representation of the time-discretized Pritchard-Salamon system

The sampling step dependence of the suboptimal values of the cost functions

The extended closed loop configuration . . . .. ... ... ........ . .....
A particular a particular version of the extended closed loop configuration . . . . .
The modified digital control configuration . . .. ... ... .... ... .. .. . .
The extended digital control configuration . . . ... ... ... ... ... .. . .
Lifting a Ly(0, 00; Z) signal to a €5(0,00; Ly(0,T, Z)) sequence . . . . . ... ...

The mappings generated by the discrete Popov triple £(®, T, M1) ... ... ...

Basic principle of finite-order control design of DPS’s . . . . . . ... .. ... ...
Basic principle of finite-order digital control design of DPS’s . . . . . .. .. .. ..
Two ways to obtain a discrete-time approximation . . ... .. ... .. ......

205



206 LIST OF FIGURES



Bibliography

[1]

(2]
(3]

[4]

(5]

(8]

[9]

B. D. O. ANDERSON AND Y. Liu, Controller Reduction: Concepts and Approaches, IEEE
Transactions on Automatic Control 34 No. 8, 802-812, (1988).

J. P. AuBIN, Applied Functional Analysis, Wiley, New York , (1979).

A. V. BALAKRISHNAN, Applied functional analysis: Second edition Springer-Verlag, vol. 3,
(1981).

F.D. BArB aAND M. WEIss, On the Hankel singular values of linear continuous and sampled-
data multivariable systems, Systems & Control Letters 16, pp. 155-158, (1991).

F. D. BArB AND M. WEISs, Model reduction techniques for sampled-data systems, Nu-
merical Algorithms 4, pp. 47-64, (1993).

F. D. BArB aAND W. L. pE KoNING, Digital optimal reduced order compensation of dis-
tributed parameter systems with bounded input and bounded output operators, Report
93-01 of the Faculty of Technical Mathematics & Informatics, Technical University of Delft,
to appear in Control-Theory and Advanced Technology, Mita-Press, (1994).

F.D. BArB aND W. L. DE KoNiNG, The optimal projection equations for finite-dimensional
fixed-order H?-optimal control of infinite-dimensional discrete-time systems, Report 93-11
of the Faculty of Technical Mathematics & Informatics, Technical University of Delft, to
appear in International Journal of Control, (1994).

F. D. Bar AND W. L. DE KoNING, A Hyland-Bernstein approach to the digital control of
Pritchard-Salamon systems, IMA Journal of Mathematical Control & Information No. 11,
pp. 63-73, (1994).

F. D. Bars V. loNescu anpD W. L. pE KoNING, A Popov thory based approach to
digital H*® control with measurement feedback for Pritchard-Salamon systems, Report of
the Faculty of Technical Mathematics and Informatics, Delft University of Technology No.
94-12, (1994), to appear in IMA Journal on Mathematical Control and Information and to
be presented at the 33 IEEE Conference on Decision and Control, Orlando, (1994) under
the form of two regular papers

(¢) F. D. BarB V. IonEscyu AND W. L. pE Koning, Digital H* control with measure-
ment feedback for Pritchard-Salamon systems. Part I: The equivalent discrete-time
control problem,

207



208 BIBLIOGRAPHY

(#) F. D. Barp V. Iongscu aND W. L. pe KoNiNg, Digital H> control with measure-
ment feedback for Pritchard-Salamon systems. Part II: A Popov theory based approach,

[10] F. D. BarB, V. DraGAN AND M. WEIss, On the hybrid controller reduction problem,
Studies in Informatics and Control - An International Journal, vol. 2, No. 1, pp. 141-151,
(1992).

[11] F. D. Bars, V. IonEscu aND W. L. DE KONING, A Popov theory based survey on digital
control of infinite-dimensional systems with unboundedness submitted to IMA Journal on
Mathematical Control & Information, (1994) and to be presented at the European Control
Conference ECC-95 Roma, September 5-8, (1995), under the title

(i) F.D. Bars, V. IoNescu aNp W. L. oe Koning, Digital control of infiite-dimensional
systems with unboundedness. A Popov approach

[12) F. D. Bars V. Ionescu anp W. L. DE Koning, Digital state-feedback H* control
of Pritchard-Salamon systems. A Popov theory based approach Report of the Faculty of
Technical Mathematics and Informatics, Delft University of Technology No. 93-33, submitted
to SIAM Journal on Control and Optimization and presented at the 1°* Asian Control
Conference, Tokyo, July 27-30, (1994) under the title

(i) F. D. Barp V. loNgEscu AND W. L. bE KONING, A Popov theory based approach to
state-feedback digital H*® control i of Pritchard-Salamon systems

[13] F. D. BarB anD W. L. DE KoNiNG, Digital control of Pritchard-Salamon systems, Report
No. 33 (1993) of the faculty of Technical Mathematics and Informatics, Delft University of
Technology, submitted to International Journal of System Science.

[14] F. D. BarB axDp W. L. DE KONING, Necessary conditions for fixed, finite-order £%-optimal
control of discrete-time evolution systems, Proc. of the 32"¢ IEEE Conference on Decision
& Control, vol. 3, pp. 3325-3331, San Antonio Texas, 13-17 December 1993.

[15] F. D. BarB, W. L. DE KONING AND M. WEiss, The digital linear quadratic control prob-
lem for Pritchard-Salamon systems, Proc. of the and Fyropean Control Conference ECC93,
vol 3, pp. 1371-1376, Groningen, The Netherlands.

[16] F. D. BARB aND M. WEIss, Sampled-Hankel norm approximations of linear multivariable
sampled-data systems, Proc. AMSE Conference “Signals & Systems” Warsaw, Poland, July
15-17, Vol. 2, pp. 201-212, (1991).

[17] F. D. BArRB AND M. WEIss, An approximately balanced realization based solution to the
sampled-data model reduction problem, Proc. of ECC’93, vol. 3, pp. 420-425, (1993).

(18] B. A. BAMIEH AND J. B. PEARSON JR., A general framework for linear periodic systems
with application to H® sampled-data control, IEEE Transactions on Automatic Control Vol.
37, No. 4, (1992), pp. 418-435.



BIBLIOGRAPHY 209

[19] B. Bamiel, J. B. PEARsON, B. A. Francis, A. TANNENBAUM, A lifting technique for
linear periodic systems with applications to sampled-data control, Syst. & Contr. Lett. 17,
(1991), pp. 79-88.

[20] Y. Bar-NEss aND G. LANGHOLZ, Preservation of controllability under sampling, Int. J.
Control Vol. 22, No. 1, (1975), pp. 39-47.

(21] T. BasAR AND P. BERNHARD, H* optimal control and related minimax design problems.
A dynamic game approach, Birkhauser, Basel-Boston, (1991).

[22] D. S. BERNSTEIN, L. D. Davis, AND D. C. HyLanp, The optimal projection equations for
reduced-order discrete-time modeling, estimation and control, Journal Guidance on Control
Dynamics, 9, 288-293, (1986).

[23] D. S. BErNSTEIN AND D. C. HYLAND, The optimal projection equations for finite-
dimensional fixed-order dynamic compensation of infinite-dimensional systems, SIAM Jour-
nal of Control and Optimization, 24, 122-151, (1986).

[24] D. S. BERNSTEIN AND W. M. HADDAD, Optimal projection equations for discrete-time
fixed-order dynamic compensation of linear systems with multiplicative white noise, Inter-
national Journal of Control, 46, 65-73, (1987).

[25] S. BrrTanTi, A. J. LauB anD J. C. WILLEMS, (editors), The Riccati equation, Springer
Verlag, (1991).

[26] C. BONNET, Réalisation et réduction dans la base d’équilibre de systémes linéaires de di-
mension infinie & temps discret. Application 4 des systémes fractionnaires et extension 4 des
systémes postfiltrés, PhD Thesis, University of provence, (1991).

[27] J. BoNTsEMA AND R. CURTAIN Perturbation properties of a class of infinite-dimensional
systems with unbounded control and observation, IMA Journal of Mathematical & Informa-
tion 5 (1988), pp. 333-352.

(28] S. L. CamPBELL AND C. D. MEYER, JR., Generalized inverses of linear transformations,
Pitman, London, (1979).

[29] T. CHEN AND B. A. Francis, H2-optimal sampled-data control, IEEE Trans. Automat.
Control 36 (1991), pp. 387-397.

[30] R. CURTAIN, A synthesis of time-domain and frequency-domain methods for the control
of infinite-dimensional systems: A system theoretic approach, in the series “Frontiers in
Applied Mathematics” , (1992), pp. 171-224, Ed. H.T. Banks.

[31] R. CurTAIN, Balanced realizations for discrete-time infinite-dimensional systems 12t IFAC
Conference on System Modeling and Optimization, September 1985, Budapest, Hungary.

[32] R. CurTAIN, Sufficient conditions for infinite-rank Hankel operators to be nuclear, IMA J.
of Math. Control & Information 2, (1985), pp. 171-182.



210

(33]

(34]

[35]

(36]

(37]

(38]

(39]
(40]

41]
[42

-

[43]

[44]

[45]

[46]

(47]

BIBLIOGRAPHY

R. CURTAIN, H. LoGEMANN, S. TowNLEY AND H. ZwART, Well-posedness, stabilizability
and admissibility for Pritchard-Salamon systems, Report No. 260-1 (1992) of the Institute of
Dynamical Systems, University of Bremen, to appear in Journal of Mathematical Systems,
Estimation and Control.

R. F. CURTAIN AND A. PRITCHARD, Infinite dimensional linear system theory, Lecture
Notes on Control and Information Science, 8, Springer-Verlag, New-York, (1978).

R. F. CuRTAIN AND H. ZWART, An introduction to infinite-dimensional linear systems
theory, in preparation.

M. C. DELFOUR, The linear quadratic control problem with delays in state and control
variables: a state space approach, SIAM Journal on Control and Optimization Vol. 24, No.
5, (1986), pp. 835-883.

J. C. DoYLE, K. GLOVER, B. A. Francis AND P. KHARGONEKAR, State-space solutions
to standard H? and H™ control problems, IEEE Trans. Automatic Contr. 8, Vol. 34, (1989),
pp. 831-847.

K. GLOVER, R. F. CURTAIN AND J. R. PARTINGTON, Realization and approximation of
linear infinite-dimensional systems with error bounds, SIAM J. Control and Optimization
26, (1986) pp. 863-898.

K. GLOVER, A tutorial on Hankel-norm approximation, From Data to Model, J.C.Willems
ed., (1989).

K. GLOVER, All optimal Hankel-norm approximations of linear multivariable systems and
their Lo -error bounds, International Journal of Control, Vol. 39, (1984), pp. 1115-1193.

1. Gohberg and S. GOLDBERG, Basic Operator Theory, Birkhiuser,( 1981).

I. Gohberg, S. GOLDBERG and M. KAASHOEK, Classes of Linear Operators. Vol. I, Operator
Theory: Advances and Applications, vol 49, Birkhauser.

W. W. Hacer anp L. L. Horowirz, Convergence and stability properties of the discrete
Riccati operator equation and the associated optimal control and filtering problems, SIAM
J. Control & Optimization 14 (1976}, pp. 295-312.

S. J. HAMMARLING, Numerical solutions of the stable, non-negative definite Lyapunov equa-
tions, IMA Journal on Numerical Analisys Vol. 2, (1980}, pp. 303-323.

A. HALANAY aND V. loNEscU, Generalized discrete-time Popov-Yakubovitch theory Syst.
& Contr. Lett. 20, (1993), pp. 1-6.

A. HALANAY AND V. loNEscu, Time-varying discrete linear systems, Birkhduser Verlag
AG, Vol. OT.68, (1994), I. Gohberg Editor.

A. HavLanay, V. IonEscu AND V. DRAGAN, Infinite horizon disturbance attenuation for
discrete-time systems. A Popov-Yakubovitch approach Integral Equations and Operator The-
ory, Vol. 19, (1994), pp. 153-215.



BIBLIOGRAPHY 211

(48] A. HALANAY AND V. RAsVAN, General theory of hybrid control, Int. J. Control Vol. 26,
(1977), pp. 621-634.

[49] P. IGLESIAS State-space approach to discrete-time H™ control, Int. J. of Control 5, vol. 54,
(1991), pp. 1031-1073.

(50] V. lonescu AND M. WEiss, Continuous and discrete-time Riccati theory: A Popov function
approach, Linear Algebra and its Applications 193, (1993), pp. 173-209.

[51] V. loNescu AND M. WEiss, Two-Riccati formulae for discrete-time H® control problem,
Int. J. of Control 1, vol. 57, (1993), pp. 141-195.

[52] V. Ionescu aND M. Weiss, The [2-control problem for time-varying discrete-time systems,
Systems & Control Letters, 18, (1992), pp. 371-381.

[53] E. A. JONCKHEERE AND L. M. SILVERMAN, A new set of invariants for linear systems -
Application to reduced order compensator design, IEEE Transaction on Automatic Control
Vol. AC-28, (1983), pp. 953-964.

[54] T. KaiLaTh, A. VIEIRA AND M. Morr, Inverses of Toeplitz operators, innovations, and
orthogonal polynomials, SIAM Review Vol. 20, No. 1, (1978), pp. 106-119.

[55] R. E. KALMAN, Lyapunov function for the problem of Lurie in automatic control, Proc.
Mat. Acad. Sci. USA Vol. 49, (1963), pp.201-205.

[56] T. Kato, Perturbation Theory for Linear operators Springer-Verlag, New-York, (1966).

[57] W. L. b KonING, Digital Optimal Control Systems with Stochastic Parameters, PhD
Thesis, Delft University of Technology, (1984).

(58] A. J. LauB, On computing balancing transformations, Proc. J.A.C. San Francisco, Califor-
nia, {1980).

[59] D. C. Lay, Spectral properties of generalized inverses of linear operators, SIAM J. Appl.
Math. Vol. 29, (1975), pp. 103-109.

[60] K. Y. LEE, S. N. CHow AND R. O. BARR, On the control of discrete-time distributed
parameter systems, SIAM J. Control and Optimization 10 (1972), pp. 361-376.

[61] Y. Liv AND B. D. O. ANDERSON, Singular perturbation approximation of balanced systems,
International Journal of Control, Vol. 50, (1989), pp. 1379-1405.

[62] H. LoGEMMAN, Stability and stabilizability of linear infiite-dimensional discrete-time sys-
tems, IMA Journal of Mathematical Control & Information 9, (1992), pp. 255-263.

[63] B. C. MoORE, Principal component analysis in linear systems: controllability, observability
and model reduction, IEEE Transactions on Automatic Control Vol. AC-26, (1981), pp.
17-32.



212 BIBLIOGRAPHY

[64]) B. NoBLE AND J. W. DANIEL, Applied linear algebra, Second Edition, Prentice Hall,
Engelwood Cliffs, NJ, (1977).

[65] R. OBER AND S. MONTGOMERY-SMITH, Bilinear transformation of infinite-dimensional
state-space systems and balanced realizations of nonrational transfer functions SIAM J.
Control and Optimization Vol. 28, No. 2, (1990), pp. 438-465.

[66] R. OBER aAND Y. WU, Asymptotic stability of infinite-dimensional discrete-time balanced
realizations SIAM J. Control and Optimization Vol. 31, No. 5, (1993), pp. 1321-1339.

[67) A. V. OPENHEIM, A. S. WILLSKY AND L. T. Young, Signals and Systems, Prentice-Hall
International Editions, (1983), pp.326-328.

[68] A. Pazy, Semigroup of linear operators and application to partial differential equations,
Springer-Verlag, New York, (1983).

[69] V. M. Porov, Hyperstability of control systems, Bucuresti: Editura Academiei Romane,
Berlin: Springer Verlag, (1973), pp. 322.

[70] A. PRITCHARD AND D. Saramon, The linear quadratic control problem for infinite-
dimensional systems with unbounded input and output operators, SIAM J. Control and
Optimization Vol. 25, No. 1, (1987}, pp. 121-144

[71] A. J. PraTcHARD AND D. SALAMON, The linear quadratic control problem for retarded
systems with delays in control and observation, IMA J. Math. Control Inf. 2 (1985), pp.
335-362.

[72] C. R. Rao AND S. K. MITRA, Generalized inverse of matrices and its applications, John
Willey, New York, (1971).

[73] 1. G. RoseN aND C. WANG, On the continuous dependence with respect to sampling of the
linear quadratic regulator problem for distributed parameter systems, SIAM J. Control and
Optimization Vol. 30, No. 4, (1992), pp. 942-974.

[74] M. Saronov aND R. CHIANG, Robust control toolbox, Report U.S.C. (1988).

[75] D. SaLaMon, Infinite dimsnional linear systems with unbounded control and observation:
A functional analytic approach, Transactions of the American Mathematical Society, Vol.
300, No. 2, (1987), pp. 383-431

[76] D. SaLAMON, Realization theory in Hilbert space, Math. Systems Theory 21, (1989), pp.
383-431

[77] A. StoorvoGEL, The H* control problem: A state-space approach, Prentice Hall, (1992).

[78] G. TabpMoR, H*® optimal sampled-data control in continuous time systems, Int. J. odf
Control Val. 56, No. 1, (1992), pp. 99-141.



BIBLIOGRAPHY 213

(791 K. E. TarT, Stability properties of discrete-continuous feedback control systems with signal
dependent sampling. Part I - a bibliographical survey, Int. J. Control Vol. &, No. 6, (1968),
pp. 591-620.

[80] B. vaN KEULEN, H*-control for infinite-dimensional systems: a state-space approach, Pren-
tice Hall, (1993).

[81] A. VARGA aND V. IoNEscU, HTOOLS - A toolbox for solving H? and H*™ synthesis prob-
lems, Proc. of the 5% IFAC/IMACS Symposium on CAD in Control Systems, Swansee,
(1991).

[82] G. WEiss, Admissibility of unbounded control operators, SIAM J. Control and Optimization
Vol. 27, No. 3, (1989), pp. 527-545.

[83] G. WEiss, Admissibility of input elements for diagonal semigroups on ¢, Syst. & Control
Letters 10, (1988), pp. 79-82

[84] G. WEIss, Admissible observation operators for linear semigroups, Israel Journal of Math-
ematics, Vol. 65, NO. 1, (1989), pp. 17-43.

[85] G. WEiss, The representation of regular linear systems on Hilbert spaces, International
series of Numerical Mathematics, Vol. 91, (1989), pp. 401-416.

[86] G. WEIss, Regular linear systems with feedback, to appear in Mathematics of Control,
Signals and Systems.

[87] M. WEiss, Riccati equation on Hilbert space. A Popov function approach, Ph.D. thesis,
(1994), University of Groningen, The Netherlands.

[88] J. C. WILLEMS, Least square stationary optimal control and the algebraic Riccati equation,
IEEE Transactions on Automatic Control Vol. AC-16, (1971).

[89] V. A. YAKUBOVITCH, Solutions of some matrix inequalities occuring in the theory of aouto-
matic control, Dokl. A. N. SSSR Vol. 143, No. 6, (1962).

[90] Y. YaMAMOTO, Realization theory of infinite-dimensional linear system. Part I, Math. Sys-
tems Theory 15, (1981), pp. 55-77.

[91] Y. YamaMoTo, Realization theory of infinite-dimensional linear system. Part I, Math.
Systems Theory 15, (1982), pp. 169-190.

[92) Y. YAMAMOTO, New approach to sampled-data control systems. A function space method,
in the Proc. of the 29** IEEE Conference on Decision and Control, Honolulu, Hawai, (1990),
pp. 1882-1887.

[93] D. C. YouLa, H. A. JABR AND J. J. BONGIORNO-JR, Modern Wiener-Hopf design of op-
timal controllers - Part II: The multivariable case, IEEE Transaction on Automatic Control,
21, 367-386, (1973).



Index

(G, M, A)-factorization, 68, 142, 144
Co-semigroup, 154
v ‘
iterations procedure, 13
H2

norm, 14, 70

optimal control problem, 7, 8, 14, 60
HOO

control problem, 8

digital control problem, 130

norm, 9, 13

optimal control, 8, 9

sampled-data control, 10

suboptimal control, 7

absolute continuous function, 36
abstract
linear control system, 23
linear observation system, 23
actuator, 87, 130
admissibility, 34
admissible
control functions, 20
control sequence, 44
controller, 64
detectable, 130, 134
input operator, 25
output operator, 25
stabilizable, 26, 84, 87, 130, 134
stabilizing feedback, 84
weighting operator, 25
advance unit shift operator, 11
analog-to-discrete device, 15
analytic, 12
antistable system, 17
approximately

214

balanced realization, 18, 160

controllable, 136, 178

observable, 136, 178
asymptotic expansion, 165
augmented state space, 119

balanced realization, 160
balancing transformation, 166
Banach space, 112
bidual space, 201
bijective isometry, 112
bilinear mapping, 170
boundary
control, 31, 33, 35
observation, 33
bounded
input operator, 31, 33
linear map, 13, 38
output operator, 31, 33
boundedly
detectable, 134
invertible operator, 47, 66
stabilizable, 84, 134

Cauchy problem, 154
Cholesky factorization, 160, 168
closed-loop

structure, 10

system, 9, 48

dynamics, 12

compact

resolvent, 35, 36, 153
computer control approach, 7
condition number, 172
continuous

dense injection, 130
continuous-time



INDEX

T-periodically system, 9, 10, 112
design, 9

plant, 9

Riccati equation, 95, 97

continuous-to-discrete transformation, 167

contraction operator, 49
control :
input, 11, 63, 130
mapping, 9
operator, 9, 153
problem, 12
set-up, 12
space, 70
system, 9, 10
controllability
gramian, 64, 71, 135
map, 88
controllable, 89
controlled output, 11, 63, 130
controller, 9, 10, 49
reduction, 60
coupled operator/matrix equations, 7

damping, 38
delay
equation, 33, 34, 59
system, 34
delta distribution, 9
diagonal
matrix, 166
semigroup, 95, 149
differentiable, 98
differential, 98
differential operator, 11
digital
‘H®* control problem, 10, 17, 18
control
design, 7
problem, 10, 13
system, 9, 118
theory, 83
control law, 84
exponential stabilizability, 85
exponential stabilizing control, 21

fixed-order LQG optimal compensation

problem, 18
implementation, 9
LQ optimal control problem, 17, 18
LQG control problem., 10

output measurement-feedback H* con-

trol problem, 132
prestabilization, 85
Riccati equation, 100, 180
solution, 15
stability, 17, 83
state-feedback, 17
direct
design approach, 9
digital design, 10
Dirichlet boundary control, 38
Dirrac delta impulse, 33
discrete
Hyland-Bernstein theory, 10, 59
Popov theory, 8, 10, 13, 17, 41
Popov triple, 17, 44, 83
Riccati equation, 45
spectrum, 149
discrete-time
‘H? optimal control problem, 14
‘H™ control, 17
control problem, 10
controller, 9, 15
design, 9
equivalent representation, 123
LQ optimal control, 17, 46
output measurement equation, 137

output measurement-feedback H*™ con-

trol problem, 132

Riccati equation, 17, 97, 126
discrete-to-analog device, 15
distributed

control, 31, 33

parameter system, 7
distribution theory, 33
disturbance

attenuation problem, 13

input, 11, 63, 130

Drazin inverse, 70



216

dual
operator, 200
space, 200

eigenvalue, 35, 153
eigenvector, 35
equivalent
continuous-time problem, 171
discrete-time control problem, 10
discrete-time Popov triple, 133
discrete-time system, 13
essentially bounded, 136
Euclidean space, 14
exact controllability, 135
expectation operator, 15
exponential
decay, 21
exponential stabilizability, 38
exponentially
stability, 12

feedback
connection, 131
transformation, 84
feedthrough operator, 31, 60
finite
dimensional, 7
approximation, 59
control, 7
controller, 59

fixed-order compensation problem, 7

high-order plant, 7
systems, 7
rank, 66, 75
first-order
conditions, 7, 60, 74
system, 153
fixed-order

£2-optimal discrete compensation prob-

lem, 63
Fréchet derivative, 70
full-order case, 8
function space, 10, 112
functional differential equation, 37

generalized plant, 11
Glover’s error bound, 170
group inverse, 70

Hankel
norm approximation, 59, 160
operator, 136, 162
singular values, 162, 166
Hardy space, 12
Hilbert space, 10
hybrid
control system, 13
generalized plant, 121, 131
stability, 18, 100
stabilizability, 111
system, 16
Hyland-Bernstein control theory, 7
hyperbolic system, 18, 149, 153

idempotent operator, 60
imaginary axis, 136
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Implicit Function Theorem, 98, 100, 165

impulse response, 71
infinite-dimensional
control system, 8
discrete-time system, 63
discrete-time systems, 17
plant, 7, 10
system, 9, 13
infinitesimal generator, 19
initial
condition, 34
state, 9
value problem, 19, 44
injective, 98
inner
product, 35, 38, 49
input
normal realization, 136
operator, 31
input/output
operator, 49, 131
stability, 120
internal realization, 64
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isometry, 120

Jordan canonical form, 96

Kalman-Szego-Popov- Yakubovitch system, 41,
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kernel, 98 .

lifting
operator, 112
technique, 10
linear
fractional transformation, 12, 49, 121, 131
functional, 37
LQG
control problem, 15
optimal control, 7
quadratic cost function, 14
Lyapunov
function, 98

matrix representation, 150
measured output, 11, 63, 130
mild solution, 19, 31
minimal realization, 161
model reduction problem, 18
modified
Lyapunov equation, 7, 14, 60
Riccati equation, 7, 14, 60

natural embedding, 201
neighbourhood, 165
Neumann boundary control, 38
neutral functional equation, 38
non-negative
definite, 66, 75
semisimple, 66
nonsingular
map, 98
matrix, 96
transformation, 69
nuclear
system, 176

oblique projection

matrix, 7

operator, 7
oblique projection operator, 14, 60, 69
observability

gramian, 64, 71
observation

operator, 153

space, 70
open set, 73
optimal projection equations, 60, 69
orthogonal projection operator, 69
orthonormal

basis, 35

set of eigenvectors, 153
output

equation, 34

feedback control, 13

operator, 31

parabalced realization, 136
parabolic
partial differential equation, 33
system, 18, 149
Parseval’s theorem, 71
partial differential equation, 33, 59
PDE model, 8
piece-wise constant, 20
plant, 10
point
control, 8
measurement, 8
Popov
theory, 8
triple, 19, 25
Popov index, 25
positive
definite, 73
semisimple, 66
positivity
condition, 8, 41
theory, 8
power
stability, 12
stabilizability, 47
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stabilizable, 87
prestabilization problem, 17
Pritchard-Salamon

class, 9, 13

system, 9

Pritchard-Salamon-Popov triple, 17, 25, 84

quadratic
cost function, 64
cost functional, 8, 41
index, 19, 44 .

quasi full-order
compensator, 70
state

estimator, 69

random variable, 137
real axis, 47
realization, 135
reduced-order
controller, 59
reflexive space, 200
regular
linear systems, 23
Pritchard-Salamon-Popov triple, 25
system, 193
retarded system, 37
Riccati equation theory, 41
right half plane, 12
robust stability, 159

sampled
-data system, 9
controllability gramian, 164
measured output, 137
observability gramian, 164
sampler, 9
sampling
frequency, 9
period, 15
Schmidt pair, 177
self-adjoint operator, 35
sensor, 87, 130
separable Hilbert spaces, 12, 63
separation principle, 8, 60
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shift invariance, 10, 112
singular
control problem, 134
singular perturbation approximation, 163
Singular Value Decomposition Theorem, 168
smooth
Pritchard-Salamon system, 23, 38, 130,
132
Pritchard-Salamon-Popov triple, 25
Sobolev space, 36, 38
spectrum, 35
stabilizing
feedback operator, 47
feedback transformation, 85
solution, 8, 17
standard Gaussian white noise, 14, 137
state
equation, 34
feedback control, 13
function, 130
space, 9
decomposition, 64
description, 11
dimension, 64
strong convergence, 100
strong subsystem, 169
strongly continuous semigroup, 19
structural constraint, 64
symmetric
matrix, 98

Taylor series expansion, 97
temperature distribution, 8, 33
time

discretized systems, 18

invariant operators, 12

invariant system, 10

set, 10

varying

discrete-time system, 41

varying system, 9
time-discretized

initial value problem, 95

Pritchard-Salamon system, 86, 149, 159
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system, 92
Toeplitz operator, 8
topology, 130
transfer function, 12
truncation, 163

unbounded

case, 33, 34

control, 9

control operator, 33

observation, 9

observation operator, 33
unit

disc, 13
unobservable, 169
unstable

eigenvalues, 89

weak subsystem, 169
well
defined operator, 47
posedness, 23, 131

zero-order holder, 9
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Samenvatting

Een belangrijke klasse van oneindig-dimensionale systemen met onbegrensde ingangs- en uit-
gangsoperatoren wordt door Pritchard en Salamon geintroduceerd. Gewone voorbeelden van
systemen die tot deze klasse behoren zijn gedistribueerde-parameter systemen beschreven door
partiéle differentiaalvergelijkingen met puntbesturing en/of randbesturing en, respectievelijk, met
puntobservatie en/of randsobservatie en verdragende systemen.

Deze dissertatie behandelt de digitale-regeling van Pritchard-Salamon systemen. De resul-
taten en de oplossingen van de digitale-regeling problemen die hebben we in deze dissertatie
beschouwen

s Het digitale LQ-optimalregelprobleem
o Het vaste-orde eindig-dimensionale dynamische LQG-optimalcompensatieprobleem

o Het H*-optimalregelprobleem
wordt via twee moderne regeltheories gekregen.

(i) De eerste regeltheorie is de zogenaamde Hyland-Bernstein regeltheorie. Het specifiec van de
Hyland-Bernstein regeltheorie is de volgende: door deze theorie is het mogelijke de eerste-
orde noodzakelijke voorwaarden voor de existentie van de vaste-orde eindig-dimensionale
dynamische compensatoren voor oneindig-dimensionale systemen te geven met behulp van
een systeem van twee gemodificeerde Riccati vergelijkingen en twee gemodificeerde Lya-
punov vergelijkingen.

(#9) De tweede regeltheorie is de zogenaamde discrete Popov theorie. Door deze theorie kunnen
we bewijzen dat de noodzakelijke en voldoende voorwaarden voor de existentie van de
stabiliserende oplossing van de discrete Riccati vergelijkingen is de inverteerbaarheid van
een bepaalde Toeplitz operator van het systeem.

Dit proefschrift bevat vijf delen. De eerste deel is het kader en bevat twee hoofdstuken waarin
presenteren we de algemene problematiek van moderne regeltheories- en regelproblemen die
wordt in de volgende delen geanalisered, het motivatie van deze studie en geven we de elemen-
taiere wiskundige begrippen en resultaten over oneindig-dimensionale systemen met onbegrensde
ingangs- en uitgangsoperatoren en een paar voorbelden van systemen die in de Pritchard-Salamon
klasse behoren.

In de tweede deel de meest balangrijke discrete-tijd regeltheorie resultaten worden bewezen.
De originele bewijs van het resultaat over H*-optimalregelprobleem met toestand- en uitgang-
reactie, de extensie van de eindig-dimensionale resultaten van Hyland-Bernstein regeltheorie tot
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oneindig-dimensionale discrete-tijd systemen zijn de belangrijkste teoretische bijdragen van deze
dissertatie.
In de derde deel gebruiken we de discrete-tijd regeltheorie resultaten die in de tweede deel
worden bewezen om te beschouwen de digitale-oplossing van de eerder opmerking regelproblemen.
De vierde deel is de toepassing deel van dit proefschrift en bevat een studievoorbeeld en
eindig-dimensionale resultaten over zogenaamde “bijna gebalanseerde realisaties” van digitale

regelsystemen.
Ten slotte, de vijfde deel bevat de aanbevelingen voor verder onderzoek en conclusies.
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