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Preface
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I am deeply grateful to my supervisors Dr. Nergis Tömen, Alejandro Castañeda, Sara Cardona, and
Dr. Milica Dostanic for their guidance and help through the challenges I faced during this thesis. I am
especially thankful to Dr. Nergis Tömen and Alejandro Castañeda, who served as my daily supervisors
and played a key role in helping me find the right direction for this thesis when it was most difficult. Their
continued support, feedback, and encouragement were instrumental in shaping both the research and
my growth as a researcher. I would also like to thank the thesis committee member Dr. Michael
Weinmann for the interest he has shown in my research and for his evaluation of my work.

Finally, I would like to thank my family for their constant support, patience, and encouragement through-
out my studies. Their belief in me made this work possible.

Arjun Vilakathara
Delft, October 2025
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Summary

Engineered heart tissues (EHTs) provide a promising platform for studying cardiac physiology, but their
dense fibrous architecture poses significant challenges for quantitative analysis. This thesis develops
an automated pipeline for segmenting and analyzing fibers in confocal microscopy images of EHTs,
with the goal of extracting structural metrics relevant to tissue function.

The pipeline integrates:

1. Preprocessing using FFT-based bandpass filtering to isolate mid-frequency structures corre-
sponding to fibers.

2. Segmentation with three encoder–decoder architectures: U-Net, Attention U-Net, and U-Net++
(with and without pretrained backbones).

3. Refinement through a secondary U-Net aimed at improving continuity and suppressing false
fibers.

4. Evaluation at both the pixel level (Dice, MSE, confusion matrix components) and fiber level
(length, connectivity, orientation), complemented by human inspection.

Experiments were conducted on two datasets: a labeled synthetic collagen dataset for accurate bench-
marking, and real EHT confocal volumes with sparse manual annotations. The results reveal clear
trade-offs between models. U-Net recovered the most complete and connected fibers but introduced
hallucinations. Attention U-Net generated clean outputs with fewer hallucinations but more fragmented
fibers. U-Net++ balanced sensitivity and structural fidelity, with pretrained backbones offering the best
quantitative scores. Refinement networks reduced hallucinations in U-Net outputs but often further
fragmented the fibers in other models.

Fiber-level metrics and visual inspection confirmed that orientation is consistently captured, while con-
tinuity and connectivity remain major challenges. The work highlights the importance of frequency-
domain preprocessing, careful model selection, and the need for improved annotation and refinement
strategies.

Overall, this thesis demonstrates the feasibility of automated structural analysis of EHTs and provides a
reproducible framework that bridges confocal imaging with computational modeling. The findings estab-
lish a foundation for future extensions to 3D datasets, more advanced refiners, and broader biomedical
applications.
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1
Engineered Heart Tissues:

Background and Significance

1.1. What are Engineered Heart Tissues (EHTs)?
Engineered heart tissues (EHTs) are lab-grown constructs designed to replicate the structure and func-
tion of native cardiac muscle. They are typically developed by culturing cardiomyocytes, often derived
from human induced pluripotent stem cells (hiPSCs), within a three-dimensional biomaterial scaffold
[1]. Over time, these cells mature and align, leading to tissue constructs that exhibit spontaneous and
paced contractile activity similar to native myocardium.

EHTs provide an in-vitro system where cellular, structural, and mechanical properties can be studied
under controlled laboratory conditions. Unlike two-dimensional cell cultures, they preserve a physio-
logically relevant three-dimensional environment, allowing realistic investigation of cardiac physiology
and pathology [2, 3].

Figure 1.1: An image of a EHT tissue captured using confocal microscopy.

1.2. Why Fiber Architecture Matters
A defining feature of cardiac tissue is its fibrous architecture. Fiber orientation and connectivity govern
the anisotropic propagation of electrical signals and the mechanical response under load [4, 5]. In
EHTs, understanding the internal fiber organization is critical for linking microstructure to macroscopic
contractile performance [3].
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1.3. Use Cases and Applications 3

Metrics such as fiber length, orientation, and connectivity can thus be used to estimate and evaluate
mechanical robustness. Highly aligned fibers tend to produce stronger, more coordinated contractions,
whereas disordered or fragmented fibers reduce contractile efficiency. For computational modeling and
biomechanical simulations, accurate quantification of these structural properties is essential.

Figure 1.2: Example representation of fibrous tissue with structural metrics. Length is measured as the span of individual
fibers, angle quantifies fiber orientation relative to an axis, and connectivity denotes intersections where fibers meet. Such

metrics capture biologically meaningful features of EHT organization.

1.3. Use Cases and Applications
EHTs are useful and critical in several domains.

• Drug screening: EHTs provide a human-relevant platform for testing cardiotoxicity and drug effi-
cacy without relying on animal models.

• Disease modeling: Patient-derived hiPSCs enable EHTs that replicate genetic cardiac diseases
in-vitro, making them a valuable research tool.

• Regenerative medicine: Insights from EHTs provide insight into replacing damaged cardiac tis-
sue.

Their reproducibility and controlled culture conditions make EHTs particularly attractive for computa-
tional integration. Imaging techniques such as confocal microscopy provide detailed imagery of tissue
architecture, which can be fed into automated pipelines for segmentation and analysis.

Summary
Their dense fibrous architecture of EHT’s are both a biological and a computational challenge. The re-
mainder of this thesis develops and evaluates automated approaches to extract, segment, and analyse
this structure, enabling further research into their mechanical properties.



2
Imaging and Computer Vision

2.1. Confocal Microscopy
Confocal microscopy is a laser-scanning technique that provides optical sectioning of thick biological
samples by rejecting out-of-focus light through the use of a pinhole aperture. Compared to conventional
widefield microscopy, confocal imaging yields higher contrast and resolution in thick specimens, making
it particularly suited for three-dimensional tissue constructs such as engineered heart tissues (EHTs).
By acquiring serial optical sections, confocal microscopy can generate volumetric image stacks that
capture both cellular and extracellular features with sub-micron precision [6].

Figure 2.1: Schematic of a confocal microscope. A laser beam is focused into the sample, and emitted light from the focal
plane is collected through a pinhole before detection. (Image from [6]).

2.2. Computer Vision Context
From a computer vision perspective, confocal stacks can be treated as dense grayscale images with
high dynamic range and significant background noise. They exhibit:

• High resolution and detail
• Low signal-to-noise ratio in certain regions
• High structural complexity due to overlapping fibers and heterogeneous textures.

4



2.3. Image Processing 5

These properties make automated analysis challenging: segmentation models must separate fine fi-
brous structures from noisy backgrounds, maintain continuity across slices, and preserve geometrical
features relevant to downstream biomechanical modeling.

2.3. Image Processing
Before applying deep learning methods, the images/slices retrieved from the microscope must first be
processed to remove unwanted information or to make relevant information stand out more.

2.3.1. Noise and Normalization
Raw confocal microscopy images often contain a nearly constant background intensity caused by aut-
ofluorescence, detector offsets, or scattered light. This background makes it harder to distinguish true
structures (fibers) from noise. A simple way to correct for this is background subtraction.

let I(x, y) be the raw grayscale intensity at pixel coordinates (x, y). We estimate a background value
b by sampling regions of the image that contain no visible structures (e.g., the corners or dark areas).
The corrected image is then

Isub(x, y) = I(x, y)− b.

If subtraction leads to negative values, these are clipped to zero:

Isub(x, y) = max{I(x, y)− b, 0}.

After background subtraction, pixel values may have arbitrary units or ranges depending on the micro-
scope’s settings. To make data comparable across images and suitable for computer vision models,
we apply normalization. The simplest form, which we use, is min–max normalization:

Inorm(x, y) =
Isub(x, y)− Imin

Imax − Imin
· 255,

where Imin and Imax are the minimum and maximum pixel intensities in the background-subtracted
image. This rescales the data into the standard range [0, 255] used for 8-bit grayscale images.

Normalization has two advantages:

• It makes brightness values comparable across different images, regardless of acquisition settings.
• It ensures consistency of input images when training deep learning models, which typically expect
inputs in a fixed range (e.g., [0, 1] or [0, 255]).

Figure 2.2: Example of raw output of microscope with background noise.



2.3. Image Processing 6

Figure 2.3: Example of raw output in image 2.2 with the background subtracted and then normalized

2.3.2. Frequency Content, FFT
Every grayscale image can be understood not only as a grid of pixel intensities but also as a sum of
spatial frequency components:

• Low frequencies correspond to slow intensity changes across the image, such as the smooth
gradient of the sky in a portrait photo.

• High frequencies correspond to very rapid changes, such as noise or sharp edges, like the fine
details of leaves on a tree.

• Mid frequencies often capture structural features like fibers: thin but extended patterns that vary
neither too slowly nor too rapidly.

Mathematically, this decomposition is achieved through the two-dimensional Discrete Fourier Trans-
form (DFT), which represents the image in terms of its sinusoidal frequency components.

Figure 2.4: Left: original confocal image slice f(x, y). Middle: log-scaled magnitude spectrum |F (u, v)|, showing frequency
distribution. Right: annotated spectrum highlighting low, mid, and high frequency regions.

The Fourier Transform of an Image. Let f(x, y) be an image of size M ×N . The two-dimensional
Discrete Fourier Transform (DFT) is defined as:

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y) e−2πi(ux
M + vy

N ),

where (u, v) are frequency coordinates. F (u, v) is generally complex-valued:

F (u, v) = A(u, v) eiϕ(u,v),

where A(u, v) = |F (u, v)| is the magnitude spectrum and ϕ(u, v) is the phase spectrum.
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Magnitude Spectrum. The magnitude A(u, v) tells us how much of each frequency is present in the
image.

• Bright spots near the center of the spectrum correspond to low frequencies (large-scale intensity
variations).

• Features away from the center correspond to higher frequencies.

Filtering in the Frequency Domain. We can isolate specific frequency ranges by multiplying the
Fourier spectrum with a mask H(u, v):

F̃ (u, v) = F (u, v) ·H(u, v).

Typical masks include:

• Low-pass: H(u, v) = 1 for small
√
u2 + v2, else 0 (keeps only low frequencies).

• High-pass: H(u, v) = 1 for large
√
u2 + v2, else 0 (keeps only fine details).

• Band-pass: H(u, v) = 1 only within a range between radii Rlow and Rhigh.

Figure 2.5 shows what each filter looks like on the magnitude spectrum from figure 2.4. White is where
the filter is 1 and black is where it is 0.

Figure 2.5: Examples of frequency masks. Left: low-pass (center region kept). Middle: high-pass (outer region kept). Right:
band-pass (ring-shaped region kept).

Inverse Transform. After masking, we convert back to the spatial domain using the inverse Fourier
transform:

f̃(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F̃ (u, v) e+2πi(ux
M + vy

N ).

The result f̃(x, y) is a filtered image that contains only the desired frequency content. For fiber seg-
mentation, we choose band-pass filters that preserve mid-frequency structures corresponding to fibers,
while discarding low-frequency background and high-frequency pixel noise.

(a) Low-cut = 0 (b) Low-cut = 60 (c) Low-cut = 200

Figure 2.6: Frequency filtering example with fixed high-cut value. As the low-cut threshold increases, more low-frequency
background is removed, progressively isolating mid-frequency fiber content.
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Figure 2.6 illustrates the effect of applying FFT-based filtering with a fixed high-cut frequency while
gradually increasing the low-cut threshold. As the low-cut increases, more of the lower frequencies
are removed. Initially this helps suppress background intensity variations and illumination gradients.
However, when the low-cut is pushed too high, we begin to lose mid-to-high frequency content that
actually corresponds to the fibrous structures of interest. At very high low-cut values (e.g., 200), the
fibers are almost completely lost, leaving primarily residual noise. This demonstrates that while low-
cut filtering can be beneficial, retaining a sufficient range of high-frequency information is essential to
preserve fiber visibility and structural integrity.

2.4. Segmentation in Computer Vision
When addressing the general task of defining what’s in an image, we can define it as assigning a label
to an entire image (e.g., classifying whether it contains a cat or a dog ). Image segmentation, in contrast,
is defined as the process of assigning a label to every individual pixel in the image. Formally, given an
input image I ∈ RH×W , where H and W are the height and width of the image respectively, the goal
is to learn a function

f : RH×W −→ {0, 1}H×W ,

which maps each pixel location (x, y) to either foreground (feature of choice such as a cat) or back-
ground. The output of such a model is therefore a binary mask of the same resolution as the input,
where each pixel encodes the presence or absence of the structure of interest. In multi-class seg-
mentation, f can map to more than two categories, but in our case of engineered heart tissue (EHT)
images we restrict to a binary setting. Figure 2.7 illustrates this concept, showing how the input image
is decomposed into regions of interest by a segmentation model.

Figure 2.7: Example of multi-class segmentation. The input photograph (left) is paired with a pixel-wise segmentation mask
(right), where each colour encodes a distinct semantic class (e.g., cow, horse, person, vegetation, sky, ground), and

background is treated as its own class. While this figure illustrates the general task of semantic segmentation, this thesis
focuses on the problem of fiber vs. background using an identical input–output structure.

Challenges in biomedical and microscopy segmentation. Segmentation in natural images, such
as a picture of a dog, primarily requires preserving the fine boundaries between the foreground ob-
ject and its background. Biomedical microscopy, however, presents additional challenges. Confocal
slices are typically grayscale, lacking the rich color information available in natural image segmentation.
Moreover, the signal-to-noise ratio (SNR) is often low. In practical terms, this ratio describes the ratio
of pixels belonging to the structure of interest versus the background. Figure 2.8 illustrates this concept
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with three images of a dog at different SNR levels: as the ratio decreases, even human observers find
it increasingly difficult to separate signal from noise.

(a) High SNR: dog clearly visible in
foreground. Image from [7]

(b) Medium SNR: dog visible but further in
background. Image from [8]

(c) Low SNR: dog is very hard to distinguish
from from background. Image from [9]

Figure 2.8: Illustration of signal-to-noise ratio (SNR) using a natural image example. As SNR decreases, the object of interest
(the dog) becomes progressively harder to distinguish from background noise.

For medical images, this problem is often much more severe. In some cases, the ratio may be as low as
1,000 foreground pixels for 20,000 background pixels. On top of this imbalance, detector noise, autoflu-
orescence, and light scattering further obscure faint structures. In such settings, traditional approaches
such as edge detection or morphological filtering are insufficient. Instead, deep learning models must
learn the weak but consistent patterns while suppressing the abundant background noise.

This leads into the other challenge of class imbalance. In the fibrous tissues used in this thesis, fibers
often constitute less than 10% of all pixels, With the overwhelming majority belonging to background.
This imbalance can biasmodels toward predictions where nearly every pixel is classified as background,
yielding deceptively high accuracy but biologically meaningless results. Viewed from the perspective
of signal-to-noise ratio (SNR), the signal i.e., the pixels corresponding to fibers, is severely diluted by
the noise of background pixels. For example, a ratio of 1,000 foreground pixels to 20,000 background
pixels represents an SNR so low that distinguishing structure from noise is difficult even for human
observers. In such cases, models must be robust to the scarcity of positive pixels and the abundance
of background/negetive pixels.

Specific challenges in fiber segmentation. Fiber segmentation introduces unique difficulties be-
yond generic biomedical imaging. Fibers are thin, often only a few pixels wide, and their continuity
across long distances is crucial for downstream biomechanical analysis. For example, metrics such
as fiber length and connectivity depend on recovering as much of a connected fiber as possible, in
contrast to fragments of it. False positives, or “hallucinated fibers,” are especially problematic in this
context: they may inflate connectivity metrics or introduce non-existent junctions, leading to misleading
conclusions about tissue structure.

Summary
Confocal microscopy provides high-resolution volumetric images of engineered heart tissues but in-
troduces challenges such as noise, intensity variations, and dense structural complexity. Traditional
image processing techniques (edges, morphology, frequency filtering) offer useful insights but are in-
sufficient on their own. This motivates the application of deep learning models, which perform the task
of segmentation, as introduced in the subsequent chapters.



3
Deep Learning and CNN Basics

3.1. Nonlinear Activation Functions
Neural networks rely on nonlinear activation functions. Without nonlinearity, a sequence of linear layers
would collapse into a single linear transformation, severely limiting the representational power of the
model. Activation functions introduce nonlinear decision boundaries, enabling the network to approxi-
mate more complex mappings from inputs to outputs.

Commonly used functions include:

• Sigmoid: squashes inputs to (0, 1), historically popular but prone to saturation and vanishing
gradients.

• Tanh: similar to sigmoid but symmetric about zero, still affected by gradient saturation.
• ReLU (Rectified Linear Unit): f(x) = max(0, x), avoids saturation for positive values and is
computationally efficient.

ReLU is the default choice in most modern CNNs, as it supports sparse activations and accelerates
convergence [10].

Figure 3.1: Examples of nonlinear activation functions. Image from [11].

10



3.2. From Perceptrons to Deep Networks 11

3.2. From Perceptrons to Deep Networks
Neural networks are composed of computational units called neurons. A single neuron, also known as
a perceptron, maps an input vector x ∈ Rd to a scalar by applying a weighted sum with bias, followed
by a nonlinear activation:

z = w⊤x+ b, a = σ(z),

where w ∈ Rd is the weight vector, b ∈ R is the bias, and σ(·) is an activation function such as ReLU
or sigmoid.

From Perceptrons to Deep Networks. While a single perceptron outputs only one scalar, stacking
multiple perceptrons in parallel forms a layer, producing a vector of activations. A fully-connected layer
with m neurons maps

x ∈ Rd 7−→ a = σ(Wx+ b),

where W ∈ Rm×d is a weight matrix, b ∈ Rm is a bias vector, and σ is applied element-wise.

Deep networks are built by connecting such layers together:

f(x) = f (L)
(
f (L−1)(· · · f (1)(x))),

where each f (ℓ) is a nonlinear transformation parameterized by weights and biases. Stacking many
such layers, a process referred to as increasing the depth of the network, improves its representational
capacity and enables it to approximate highly complex functions. Naturally, adjusting the depth of
a network comes with trade-offs: increasing depth allows the model to capture more abstract and
complex patterns, but also raises the risk of overfitting, vanishing gradients, and higher computational
cost, whereas shallower networks are easier to train but may lack in capacity for more complex tasks.

Limitations of Fully Connected Layers. A fully connected layer is one in which every neuron in a
given layer is connected to every neuron in the preceding and succeeding layers. Each such connection
is associated with a weight, and each neuron typically also has an additional bias term. The total number
of trainable parameters in a layer is therefore determined by the number of connections (weights) plus
the number of biases. This means that parameter count scales as the product of the input and output
sizes of the layer.

This is why densely connected layers, even if not fully connected, become impractical when applied
directly to images, including relatively small ones. The parameter count still scales with the product of
input and output dimensions, and in the case of segmentation, where each pixel is both an input feature
and must also be predicted as an output, this problem is highlighted further.

As an example, for an input image of size H × W , the input dimension is d = H · W . Mapping this
input to a hidden layer of m neurons requires d × m weights, in addition to m biases. A 256 × 256
grayscale image has 65,536 pixels. Evenmapping to a hidden layer of only 1,000 neurons would require
65,536×1,000 ≈ 65million weights, plus 1,000 biases, in a single layer. Such a dense parameterization
not only demands excessive memory and computational power, but also introduces several practical
and theoretical problems:

• Overfitting: With so many connections, the network can memorize the training images instead
of learning general patterns. In practice, this means it performs very well on the training data but
fails to generalize to new, unseen examples.

• Vanishing gradients: In very deep networks, the error signals used for learning gradually dimin-
ish as they are propagated backward through the layers, a process known as backpropagation
(explained in Section 3.5.3). In simple terms, the earliest layers receive almost no useful feed-
back, causing them to stop learning effectively.

• Computational cost: Tens of millions of connections require large amounts of memory and
processing. This makes training extremely slow and inefficient as image sizes grow.

Convolution as a Solution.
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Convolution as a Solution. Both fully connected layers and convolutional layers perform the same
kind of operation: they take an input, apply a linear transformation with trainable weights and biases,
and then pass the result through a nonlinearity. The difference then lies in the structure of the weight
matrix. In a dense layer, every input pixel is connected to every output unit, leading to a weight matrix
of size (m × d) where d is the number of input pixels and m the number of output units. By contrast,
a convolutional layer replaces this dense weight matrix with a much smaller ‘kernel’ (e.g., 3×3) that is
applied repeatedly across the image. Unlike fully connected layers, a convolution keeps the input and
output in the same grid-like shape: it maps an image to another image-shaped feature map, instead of
collapsing everything into a flat vector.

These convolutional layers address the limitations of the dense layers by introducing structure into how
‘connections’ are formed. Instead of every neuron being connected to every pixel, convolutions exploit
two key principles:

• Local receptive fields: each neuron connects only to a small neighborhood of the image (e.g., a
3×3 patch). This drastically reduces the number of parameters while reflecting the fact that pixels
close to one another are more likely to be related than distant ones.

• Weight sharing: the same kernel (set of weights) is applied across all spatial locations i.e, all
pixels. This ensures translation equivariance: For example, a filter that learns to detect the outline
of a dog’s nose in one part of the image will respond to the same feature even if the dog appears
in a different location.

This architecture directly addresses the problems of fully connected layers with images. By reducing
parameters through locality and weight sharing, convolutional networks are less prone to overfitting:
they cannot simply memorize the training data pixel-by-pixel, but must instead learn general patterns
(e.g., edges, textures) that are useful across the whole image. Because the kernels (trained weights)
are reused across locations, the model generalizes better to new inputs where the same structures may
appear in different positions. The reduced parameter count also lowers computational cost, making
training feasible even for large images. Finally, the hierarchical stacking of convolutional layers helps
reduce the vanishing gradient problem: earlier layers focus on simple features like edges, while deeper
layers combine them into complex shapes and objects, allowing gradients to propagate meaningfully
through multiple layers and types of representation.

Formally, given an input feature map X and a kernel K ∈ Rk×k, the convolution output at pixel (i, j) is

Y (i, j) =

k−1∑
u=0

k−1∑
v=0

K(u, v)X(i+ u− p, j + v − q),

where k is a chosen kernel size (for example, k = 3 for a 3×3 filter), and (p, q) denotes the padding
applied at the image boundaries. Padding typically means adding artificial pixels around the border,
commonly zeros but sometimes mirrored values, so that the convolution can still be computed at the
edges of the image. Subtracting p and q in the indexing simply shifts the kernel back into the valid
image region, ensuring that every output pixel corresponds to a well-defined neighborhood.

(a) Single perceptron from [12] (b) Fully-connected network from [13] (c) Convolutional network from [14]

Figure 3.2: From perceptron to deep learning for images. Left: a single neuron (perceptron). Middle: stacking many
perceptrons yields fully-connected deep networks, but with dense parameterization. Right: convolutional networks exploit local

receptive fields and weight sharing to efficiently handle image data.
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3.3. Convolution for Images: From Toy Example to General Form
Convolution in Practice. To illustrate convolution intuitively, consider a 5×5 image X and a 3×3
kernel K. At each spatial location, the kernel overlays a patch of the image and we compute the sum
of element-wise multiplications. For example, if the kernel is

K =

1 0 −1
1 0 −1
1 0 −1

 ,

then sliding it over a 3×3 region of X produces

Y (i, j) =

2∑
u=0

2∑
v=0

K(u, v)X(i+ u, j + v).

This operation extracts vertical edge patterns: positive weights on the left subtract negative weights on
the right. Repeating this across all positions forms a new feature map Y that highlights edges in the
input image.

Figure 3.3: Illustration of convolution. Left: input image with a 3×3 region highlighted in red. Middle: kernel values (edge
detector). Right: overlay of the kernel on the region and the computed convolution result. This shows how convolution extracts

local features by combining input pixels with shared weights.

The figure above makes two points clear: (i) convolutions use local receptive fields, each output de-
pends only on a small neighborhood of the input, and (ii) the same kernel weights are shared across all
spatial locations, drastically reducing parameters compared to fully connected layers. In real networks,
dozens of kernels are learned in parallel, producing multiple feature maps that capture edges, textures,
and higher-level patterns. Stacking layers of convolutions allows the receptive field to grow, enabling
the network to combine local features into global structures.

General 2D Convolution for Images. Fully connected layers ignore the spatial structure of images,
while convolutions explicitly exploit it through locality and weight sharing. Given input image (or feature
map) X ∈ RH×W and a learnable kernel K ∈ Rk×k, a 2D discrete convolution producing output
Y ∈ RH′×W ′ is

Y (i, j) =

k−1∑
u=0

k−1∑
v=0

K(u, v)X(i+ u− p, j + v − q),

where (p, q) are padding terms. For multi-channel inputs X ∈ RH×W×Cin and Cout kernels K(c) ∈
Rk×k×Cin , the output is Y ∈ RH′×W ′×Cout with

Yc(i, j) =

Cin∑
m=1

∑
u,v

K(c)
m (u, v)Xm(i+ u− p, j + v − q) for c = 1, . . . , Cout.

Padding, Stride, and Receptive Field. Convolutional layers have a few key hyperparameters, which
determine how the filter moves across the image and howmuch of the image each output unit can “see”.
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• Padding (p): determines what happens at the image borders. Without padding, the filter cannot
slide over the edges, so the output image shrinks after every convolution. Padding adds extra
pixels around the border, commonly zeros, but sometimes mirrored values, so that edge pixels
are treated the same as those in the center. With such paddings, the height and width of the
output remain equal to the input (H ′ = H, W ′ = W ).

• Stride (s): specifies how far the filter moves at each step. A stride of 1means the filter slides one
pixel at a time, producing a dense output. Larger strides skip pixels and therefore downsample
the image, reducing its resolution. Mathematically, the output height is

H ′ =

⌊
H + 2p− k

s

⌋
+ 1,

with a similar expression for the width W ′. In simple terms: larger strides mean fewer output
pixels and more aggressive compression of spatial information.

• Pooling: another common way to reduce spatial resolution is pooling. Instead of sliding a filter
with stride, pooling layers explicitly combine values within a small window (e.g., 2×2). The most
common forms are max pooling, which takes the maximum value in the window, and average
pooling, which takes the mean of the window. Pooling discards exact pixel values while retaining
the strongest or most representative signal. In modern architectures, downsampling is often
achieved by either using stride in convolutions or by applying pooling operations. They both
serve the purpose of reducing resolution while increasing the receptive field.

• Receptive field: the portion of the input image that affects a single output unit. At shallow layers
this region is small, covering only local neighborhoods (e.g., a 3×3 patch). As more layers are
stacked, receptive fields expand: a unit in a deeper layer may depend on pixels spanning a much
larger area of the original input. This allows the network to gradually combine fine details (edges,
textures) into higher-level concepts (shapes, objects), giving it global understanding from local
features.

Figure 3.4: Basic CNN pipeline: convolution (+ReLU), optional batch normalization [15], and downsampling (stride or pooling),
followed by deeper blocks. For segmentation, we keep spatial grids all the way to a dense per-pixel prediction.

The CNN Pipeline in Words. Figure 3.4 shows how the core components of a convolutional neural
network work together. An input image is first processed by a number of convolutional filters, each
detecting a different type of local feature such as edges, corners, or textures. After each convolution,
a nonlinear activation function (typically ReLU) is applied, introducing nonlinearity so that the network
can model complex decision boundaries. Batch normalization layers are often included to stabilize
the distribution of activations, making optimization faster and more reliable. Downsampling, either
through strided convolutions or pooling, progressively reduces the spatial resolution while expanding
the number of feature channels. This allows the network to aggregate local features into increasingly
abstract, global representations. Stacking multiple such blocks deepens the receptive field: shallow
layers capture simple edges, while deeper layers encode higher-level structures. For segmentation
tasks, unlike classification, the spatial grid is preserved all the way to the output, so that the network
can produce dense, per-pixel predictions that map directly back onto the input image domain.
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3.4. Convolution as Image Filtering
Up to now, we have described convolution mathematically. To build intuition, it helps to view convolu-
tions as filters applied to images. In classic image processing, we often use small kernels (e.g., 3×3
or 5×5) to detect edges, sharpen detail, or blur noise. In convolutional neural networks, the same prin-
ciple applies, except now the filters are learned automatically through the training process rather than
designed by hand.

Visual Example: Classic Filters. Figure 3.5 illustrates this idea using a natural image (sunflower
field). Applying different 3×3 kernels yields distinct effects:

• The blur kernel produces a smoothed version of the field, suppressing fine texture.
• The edge kernel highlights the outlines of sunflower stems and leaves.
• The sharpen kernel enhances petal details while increasing contrast noise.

(a) Original (b) Blur filter (c) Edge filter (d) Sharpen filter

Figure 3.5: Convolutions as image filters. Classic kernels applied to a sunflower field produce blur, edge detection, and
sharpening. In CNNs, similar filters are not designed manually but learned automatically from data.

Custom Filters for Targeted Patterns. Beyond standard edge or blur filters, kernels can also be
designed to emphasize specific structures at different scales. For illustration, we applied two Laplacian-
of-Gaussian (LoG) style kernels of different sizes to a natural scene containing sunflowers (Figure 3.6).
The larger kernel responds to broad, blob-like structures such as the overall flower heads, while the
smaller kernel emphasizes finer-scale detail. The comparison shows how simply changing the kernel
size shifts the sensitivity of the filter to different aspects of the image. This demonstrates the principle
that convolution acts as a detector of targeted patterns, with the choice of kernel directly determining
what features are enhanced or suppressed.

From Hand-Crafted Filters to Learned Representations. The examples above show how different
kernels emphasize different aspects of an image: blur filters suppress detail, edge filters highlight
boundaries, and LoG filters emphasize blob-like structures at different scales. In traditional computer
vision, experts manually selected or engineered such filters depending on the task at hand.

Convolutional neural networks (CNNs) replace this manual process by learning filters automatically
from data. During training, the network adjusts the weights in its kernels so that they respond strongly
to features useful for the target task, such as distinguishing fibers from background. Many first-layer
CNN filters resemble familiar patterns such as edges, blobs, or Gabor filters [16], while deeper layers
capture more abstract features that are not visually obvious to humans yet prove highly discriminative.

By analogy to the sunflower example, CNNs can learn filters that highlight subtle structures in biomed-
ical images, such as faint fibers embedded in noisy confocal slices, that may be difficult for a human
observer to consistently identify. These intermediate feature maps effectively act as automatic detec-
tors, making downstream classification or segmentation easier. Repeated convolutional layers refine
these feature maps into higher-level outputs, ultimately producing either segmentation masks or labels
corresponding to the structures of interest.

3.5. Training by Gradient-Based Optimization
Training a convolutional neural network consists of repeatedly simulating predictions, measuring error,
and adjusting parameters to reduce that error. This process can be broken down into the forward pass,
loss evaluation, backpropagation, and parameter updates.
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Figure 3.6: Effect of applying custom kernels to a natural image. Top row: a large kernel highlights broad, blob-like structures.
Bottom row: a small kernel emphasizes fine-scale detail. This illustrates how convolutional filters can be tuned to extract

different patterns from the same input image.

3.5.1. Forward Pass
Let the input image be x ∈ RH×W×C , where H and W are height and width, and C is the number of
channels. Each layer of the network computes a nonlinear transformation:

h(ℓ) = f (ℓ)(h(ℓ−1); θ(ℓ)), h(0) = x,

where θ(ℓ) are the trainable parameters of layer ℓ. In convolutional layers, this transformation is a
discrete convolution followed by a nonlinearity:

h(ℓ)(i, j, c) = σ

Cℓ−1∑
m=1

∑
u,v

K(ℓ)
u,v,m,c h

(ℓ−1)(i+ u, j + v,m) + b(ℓ)c

 ,

where K(ℓ) is the convolutional kernel, b(ℓ)c is a bias, and σ(·) is an activation function such as ReLU.
The final layer produces per-pixel predictions ŷij ∈ [0, 1] via a 1×1 convolution and sigmoid activation.

3.5.2. Loss Function
Given ground truth labels yij ∈ {0, 1}, the loss function quantifies prediction error. Binary Cross-Entropy
(BCE) is defined as

LBCE = − 1

HW

∑
i,j

[
yij log ŷij + (1− yij) log(1− ŷij)

]
.

For imbalanced segmentation, the Dice coefficient is more robust:

Dice =
2
∑

i,j ŷijyij + ϵ∑
i,j ŷij +

∑
i,j yij + ϵ

, LDice = 1−Dice.

We use a combined loss
Ltotal = LBCE + LDice,

which enforces both pixel-wise fidelity and region-level overlap.
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3.5.3. Backpropagation
To minimize the loss, we require gradients of L with respect to each parameter θ. Backpropagation
applies the chain rule of calculus in reverse through the network:

∂L
∂θ(ℓ)

=
∂L
∂h(ℓ)

· ∂h
(ℓ)

∂θ(ℓ)
.

Intermediate gradients are recursively propagated:

∂L
∂h(ℓ−1)

=
∂L
∂h(ℓ)

· ∂h(ℓ)

∂h(ℓ−1)
.

This efficiently computes derivatives for all layers in time linear to the depth of the network.

3.5.4. Parameter Updates with Adam
Parameters are updated iteratively using an optimizer. We employ Adam [17], which adaptively scales
updates for each parameter using running averages of gradients and squared gradients:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t ,

where gt = ∇θLt is the gradient at iteration t. Bias-corrected estimates are

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

,

and the parameter update is
θt = θt−1 − η · m̂t√

v̂t + ε
.

Adam combines the benefits of momentum (smoothing updates over time) and adaptive learning rates
(scaling updates per parameter), which leads to faster and more stable convergence than plain stochas-
tic gradient descent.

3.5.5. One Training Step, Visually: From Loss to Update
To visualize how the above steps work, consider a single training iteration with a mini-batch B =
{(xi, yi)}Bi=1. A forward pass produces predictions ŷi = fθ(xi) and a batch loss LB = 1

B

∑
i∈B L(ŷi, yi).

Backpropagation then applies the chain rule to compute∇θLB efficiently from output back to inputs [18,
19]. Finally, an optimizer (e.g. SGD or Adam) updates the parameters θ.

Geometric picture. Figure 3.7 depicts level sets (contours) of a loss function over a 2D slice of pa-
rameter space (θ1, θ2). Each closed curve (“circle”) is a set of parameters with equal loss. Moving
inward toward the center means lower loss. The negative gradient −∇θL points in the direction of
steepest local decrease and thus indicates the shortest way to the next lower contour. A plain SGD
step θ(t+1) = θ(t) − η∇θLB(θ

(t)) follows this direction with step size η (learning rate). Momentum and
Adam modify the raw gradient to smooth or precondition the step [17, 20].

What each element means.

• Contours (circles): sets {θ : L(θ) = c} for different constants c. Smaller contours correspond to
lower loss values.

• Gradient vector: ∇θL is orthogonal to the contour and points toward higher loss; −∇θL points
toward lower loss.

• Learning rate η: step length. Too small η crawls; too large can overshoot or diverge.
• Momentum/Adam: accumulate smoothed gradient statistics to take longer steps along gently
sloped directions and shorter steps along steep axes, which helps on the elongated contours.

From this toy picture back to CNNs. In our segmentation networks, θ contains millions of weights
across convolutional filters, normalization parameters, and biases. Backpropagation propagates errors
from the pixel-wise loss (BCE+Dice) through the decoder, skip connections, and encoder to compute
∇θL. Adam then applies an adaptive, per-parameter step that typically converges faster and more
stably than plain SGD for our setting.
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Figure 3.7: Loss contours (level sets) and optimizer trajectories on a 2D quadratic loss. Each curve is an equal-loss boundary;
moving inward lowers the loss. Arrows show parameter updates for several steps of SGD (blue) versus Adam (orange) from

the same start point.

3.5.6. Training On Data: Batches, Iterations, and Stopping Criteria
Previously, we have illustrated a single parameter update. However, CNNs are trained on large datasets
that cannot be processed all at once due to hardware memory limits. Instead, training proceeds in mini-
batches, with multiple passes through the dataset until convergence [19, 21]. To do so, we must first
split the dataset.

Dataset Splits
The full dataset is typically divided into:

• Training set: used to update the model parameters.
• Validation set: used to monitor generalization and tune hyperparameters.
• Test set: unseen data used only for final evaluation.

Batch and Mini-Batch
Suppose the training set has N samples. Instead of computing gradients on all N at once, we divide
them into mini-batches of size B:

{(xi1 , yi1), . . . , (xiB , yiB )}.
For each mini-batch, we run a forward pass, compute the loss, and update the parameters. This
strikes a balance between the noisy updates of stochastic gradient descent (where B = 1) and the
high memory cost of full-batch gradient descent (B = N ). Typical mini-batch sizes range from 16 to
256, depending on dataset size and GPU memory.

Iteration and Epoch
One gradient update on a single mini-batch is an iteration. Processing all N samples once (i.e., all
N/B mini-batches) is called an epoch. Training usually involves many epochs (tens to hundreds or
thousands), during which the optimizer gradually reduces loss and improves accuracy.
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Stopping Criteria and Overfitting
Previously, we introduced the idea of iteratively updating parameters through gradient-based optimiza-
tion. In practice, it is not possible train indefinitely: at some point, the network begins to memorize the
training data instead of learning generalizable patterns. This phenomenon is known as overfitting.

Training vs. Validation Loss. A standard way to monitor training progress is by plotting both training
and validation losses across epochs. Figure 3.8 illustrates the typical behavior [19, 22]:

• During early epochs, both training and validation loss decrease, as the network learns useful
representations.

• After a certain point, training loss continues to decline, but validation loss starts to rise. This
indicates that the model is fitting noise and peculiarities of the training set, rather than general
structure [23].

• The epoch corresponding to the minimum validation loss is usually the best checkpoint to select.
Training beyond this point worsens generalization [22].

Figure 3.8: Illustration of overfitting during CNN training [19]. Training loss (blue) decreases continuously. Validation loss
(orange) decreases initially but begins to rise once the model overfits. The optimal stopping point is often taken at the minimum

of the validation curve.

Epochs, Batches, and Iterations. Training data are rarely processed all at once due to hardware
limitations. Instead:

• A batch is a subset of the dataset passed through the network in one forward and backward pass.
• A mini-batch refers to this same concept, typically containing 16–256 samples depending on
GPU memory.

• An iteration is one update step based on a single mini-batch.
• An epoch is a complete pass through the entire dataset, i.e., dataset size

batch size iterations.

Thus, training usually spans multiple epochs, where the optimizer updates weights iteratively across
mini-batches until validation performance stabilizes [19].

Why Stopping Criteria Matter. Without a stopping rule, a model may continue reducing training
loss indefinitely, while its performance on unseen data deteriorates. Stopping criteria ensure a balance
between underfitting (too few epochs, model fails to capture structure) and overfitting (too many epochs,
model memorizes noise). Common approaches include:
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• Early stopping: halt training when validation loss stops improving for k consecutive epochs [22].
• Maximum epochs: a hard cap on the number of epochs, often combined with early stopping.
• Regularization-awaremonitoring: techniques such as dropout [24] or weight decay that reduce
the risk of overfitting, thereby allowing longer training before validation loss diverges.

Dataset Size and Generalization. The balance between training time and generalization is influ-
enced by dataset size. With small datasets, overfitting tends to occur earlier, requiring stronger regu-
larization and aggressive early stopping. Larger datasets allow longer training, as each epoch exposes
the network to more diverse samples, which delays overfitting [23, 19].

In summary, monitoring the gap between training and validation loss provides a consistent way to
decide when to stop training. The optimal model is not the one with the lowest training loss, but the
one that achieves the lowest validation loss, ensuring the best generalization to unseen data.

Putting It Together
Training a CNN can thus be summarized as:

1. Randomly initialize parameters.
2. For each epoch:

(a) Shuffle the training data and divide into mini-batches.
(b) For each mini-batch:

i. Perform a forward pass to compute predictions.
ii. Calculate the loss function comparing predictions with ground truth.
iii. Apply backpropagation to compute gradients of the loss w.r.t. all parameters.
iv. Update parameters using the chosen optimizer (e.g. SGD or Adam), scaled by the

current learning rate η.
(c) Evaluate the model on the validation set to monitor generalization.

3. Stop according to the chosen criterion (e.g. early stopping, maximum epochs).

In summary, each iterationmoves the parameter vector one step closer to aminimumof the loss surface,
guided by gradients and scaled by the learning rate. Repeating this cycle across many mini-batches
and epochs gradually refines the network until it achieves parameters that not only fit the training data
but also generalize to unseen inputs.

3.5.7. Regularization and Generalization
Finally, regularization strategies are essential to prevent overfitting. Key approaches include:

• Weight decay: penalizes large parameter values to discourage overconfident models.
• Data augmentation: increases the effective diversity of the dataset by introducing variations in
the input images.

• Early stopping: halts training once validation performance stops improving.
• Architectural techniques: elements such as Batch Normalization and skip connections improve
generalization by stabilizing gradients and optimizing training dynamics.



4
Segmentation Architectures Used in

This Thesis

4.1. Segmentation as Dense Pixel-Wise Prediction
Convolutional neural networks (CNNs) form the backbone of most modern computer vision systems.
They can be applied to a wide range of tasks, from simple image-level classification to more fine-grained
analyses (Figure 4.1):

• Classification: predict a single label for the whole image (e.g., “cat”).
• Classification + Localization: additionally provide a bounding box indicating where the object
is.

• Object Detection: detect multiple objects of different classes and output bounding boxes for
each.

• Instance Segmentation: delineate the precise pixel-wise boundaries of each object instance.

Figure 4.1: Illustration of CNN tasks in computer vision. A CNN can classify entire images, localize objects, detect multiple
instances, or perform dense pixel-wise segmentation. Biomedical image analysis typically requires the latter, as subtle

structures must be localized with pixel-level precision. Image from [25]

21
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For biomedical applications such as collagen fiber analysis in engineered heart tissues (EHTs), dense
pixel-wise segmentation is what is needed. Unlike classification or detection, which provide only coarse
information, segmentation assigns a label to every pixel. This enables quantitative measurement of
fiber lengths, connectivity, and orientations metrics that are critical for linking microscopic structure to
macroscopic tissue function.

Patch-Based vs. Pixel-Based Segmentation. Before the development of encoder–decoder net-
works, one common strategy was to train CNNs in a patch-based manner: a small window (patch)
around each pixel was extracted and classified independently. While effective, this approach was
computationally inefficient and often failed to capture long-range context. Modern architectures like
U-Net [26] instead perform pixel-to-pixel segmentation: the entire image is processed end-to-end, and
the network directly outputs a segmentation mask of the same resolution (Figure 4.2). This not only
accelerates inference but also allows the model to utilize both local and global spatial context.

Figure 4.2: Patch-wise vs. pixel-wise segmentation. In patch-based approaches, small windows around pixels are classified
independently, which is inefficient and lacks global context. Pixel-to-pixel architectures like U-Net process the entire image in

one forward pass, producing dense predictions at the original resolution. Image from [27]

Why U-Net? The U-Net architecture was designed specifically to address the challenges of biomed-
ical segmentation, where:

• Accurate delineation of thin structures (fibers, membranes, vessels) is essential.
• Annotated data are often limited, requiring efficient use of available information.
• Pixel-wise labels, not just image-level predictions, are needed for quantitative analysis.

U-Net extends CNN’s by implementing an encoder–decoder structure with skip connections, enabling it
to combine global context with fine-grained localization [26]. In the following sections, we will describe
this architecture in detail and introduce the variants used in this thesis.

4.2. From CNNs to U-Nets
While CNNs excel at extracting features, their canonical form was designed for classification, with
repeated downsampling steps that collapse spatial detail into global feature vectors. Such architectures
are not effective for segmentation, where precise spatial correspondence between input and output
must be preserved.

The U-Net architecture [26] was introduced specifically for biomedical image segmentation. It retains
the strengths of CNNs for feature extraction, but augments them with a symmetric encoder–decoder
structure and long-range skip connections. This design enables the network to capture both global
context (via encoding) and fine detail (via skip pathways), making it highly effective on datasets where
annotated images are scarce but high-resolution pixel-level accuracy is essential.

Figure 4.5 illustrates the canonical U-Net, showing how contracting and expanding paths are connected
by skip links.

4.3. Encoder-Decoder with Skip Connections
The encoder–decoder principle is the basis of the UNet structure:
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• The encoder progressively downsamples the input image using convolutions and pooling. This
aggregates information over larger receptive fields, capturing context and global structure.

• The decoder then upsamples the compressed representation back to the original resolution using
transposed convolutions or interpolation layers, reconstructing spatial detail.

• Skip connections pass intermediate encoder features directly to the decoder at matching resolu-
tions. This preserves high-frequency detail, ensuring that thin or small structures (such as fibers)
are not lost during downsampling.

Figure 4.3: Encoder–decoder architecture of the canonical U-Net with skip connections. The encoder compresses the input
into high-level representations, while the decoder reconstructs dense predictions. Skip connections transfer spatial detail

directly to the decoder, improving localization of thin structures. Image from [26]

4.3.1. Encoder-Decoder Walkthrough
To make the role of pooling and skip connections concrete, we illustrate the encoder–decoder process
using a toy example. The input is a 5×5 grid with black pixels representing zeros and a single gray
dot in the center. For all the images below, the lighter the color, the higher the value. We apply a
3×3 convolutional kernel, followed by a nonlinearity (ReLU), pooling to a 1×1 bottleneck, and finally
decoding back to the original 5×5 size. Figure 4.4 shows the result with and without a skip connection.

What each panel shows.

1. Input (5×5): black background (0) with a single bright pixel (1.0) in the center.
2. Kernel (3×3): the filter used to detect local structure. Lighter shading indicates higher weights.
3. Convolution (3×3): local weighted sums of the input, producing a 3×3 feature map.
4. ReLU (3×3): keeps positive activations, zeroes out negative responses.
5. Max-pooling (1×1): collapses the 3×3 activations to a single bottleneck value, discarding almost

all spatial information.



4.4. Architectures Used in This Thesis 24

Figure 4.4: Toy encoder→bottleneck→decoder with and without a skip connection. Black corresponds to 0 and lighter shades
indicate stronger activations. The arrows illustrate how information flows through the encoder (top row) and decoder (bottom
row). The red dashed arrow highlights the skip connection: activations from the encoder’s 3×3 ReLU feature map are passed

directly to the decoder at the same scale, supplementing the upsampled bottleneck. Without this skip (bottom left), the
reconstruction is blurred because the 1×1 bottleneck loses most of the fine detail. With the skip (bottom right), high-frequency

information is restored, producing a noticeably sharper reconstruction.

6. Decoder (5×5): reconstruction by upsampling and filtering. Without a skip, detail is blurred. With
a skip connection, the 3×3 encoder features are added back into the decoding process, restoring
sharpness and preserving fine structures.

Why skips help. Downsampling increases context but discards precise locations of edges and thin
structures. Skip connections copy high-resolution encoder features directly to the decoder at the same
spatial scale. These features carry the missing fine detail , allowing the decoder to combine global
context (from the bottleneck) with sharp localization (from the skip). This is the rationale behind U-
Net [26] and its variants for biomedical segmentation, where boundaries and filaments are thin and
easily lost by pooling.

4.4. Architectures Used in This Thesis
We now describe the three segmentation architectures evaluated in this work, all of which build upon
the encoder–decoder foundation but have additional features. Each architecture addresses the same
core task: producing a dense, pixel-wise segmentation map, but they differ in how they preserve detail,
filter information, or fuse features at multiple scales.

4.4.1. U-Net (Ronneberger et al., 2015)
The U-Net [26] is a landmark architecture designed for biomedical segmentation. The “U” shape has a
contracting path (encoder) and an expansive path (decoder). At each downsampling step the number
of channels doubles, while at each upsampling step it halves. Crucially, U-Net concatenates encoder
features to decoder features at the same resolution (skip connections), so localization (edges, thin
fibers) is preserved while global context is retained.

In Figure 4.5, the encoder (left arm) progressively compresses the input into higher-level representa-
tions, while the decoder (right arm) upsamples to restore spatial detail. The horizontal skip connections
transfer fine-grained encoder features directly into the decoder, preventing loss of localization.
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Figure 4.5: Canonical U-Net architecture [26]. Skip connections concatenate encoder features into the decoder to preserve
spatial detail crucial for thin structures.

4.4.2. Attention U-Net (Oktay et al., 2018)
Skip connections are helpful, but they may also forward irrelevant background signal. Attention U-Net
[28] introduces attention gates that learn to apply a weight to the encoder features before they are fused
into the decoder.

What is an Attention Gate? An attention gate computes a spatial weight map A ∈ [0, 1]H×W using
(i) encoder features and (ii) a gating signal from deeper layers. The weight map A highlights relevant
regions (e.g., fibers) and suppresses irrelevant ones. The gated feature F̃ = A � F is then passed
along the skip.

(a) Encoder feature F (toy)
(b) Gating signal (from deeper

layer) (c) Attention weights A ∈ [0, 1] (d) Gated feature F̃ = A ⊙ F

Figure 4.6: Toy illustration of an attention gate in Attention U–Net [28]. Panel (a): encoder feature map with two activations
(blue; darker = stronger response, lighter = weaker/zero). Panel (b): gating signal from deeper layers (purple; darker = stronger

cue). Panel (c): attention weights A computed from (a) and (b) (orange; darker = higher weight), highlighting the relevant
region. Panel (d): elementwise gating F̃ = A⊙ F (green) suppresses the irrelevant blob (top-left) and preserves the relevant
one (bottom-right). The gated feature F̃ is then passed through the skip connection, reducing background clutter while keeping

relevant structure. Colors indicate relative magnitude only (darker = higher).

Attention Demo. To make this concept concrete, Figure 4.6 shows a simple illustration. The encoder
feature contains two blobs, and the gating signal marks only one as relevant. The attention weights A
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are high at that location, and the final gated feature retains only the important blob. This is analogous
to how the Attention U-Net learns to suppress clutter while keeping fibers.

Figure 4.7: Canonical Attention U-Net architecture [28]. The encoder path (left, blue blocks) compresses the input into
high-level features, while the decoder path (right, green blocks) restores spatial detail through upsampling. Horizontal skip
connections (gray arrows) transfer encoder features into the decoder, but here each skip passes through an attention gate
(orange blocks). These gates compute a spatial weight map that suppresses irrelevant background regions and highlights

important structures before fusion with the decoder.

Attention in Practice. Figure 4.7 shows the canonical Attention U-Net diagram from [28]. Attention
gates (AG) are placed on the skip pathways, where the green arrows mark modulation of encoder
features by gating signals from deeper context. This allows the decoder to highlight fibers while ignoring
clutter. In practice, this improves segmentation quality in challenging biomedical images where fine
boundaries must be distinguished from noise.

4.4.3. U-Net++ (Zhou et al., 2018)
U-Net++ [29] enhances the original U-Net by introducing nested, dense skip pathways. The motivation
is that in a plain U-Net, encoder features and decoder features at the same resolution may still be very
different in “semantics.” For example, the encoder may contain low-level edges or textures, while the
decoder expects features already aligned with segmentation masks. Passing them directly can cause
a mismatch.

Nested Skips. Instead of one direct skip, U-Net++ inserts intermediate convolutional blocks along
the pathway. These refine the encoder output step by step before it reaches the decoder. Each in-
termediate node acts like a small translator, narrowing the semantic gap so that when features finally
arrive at the decoder, they are more useful for precise segmentation.

Dense Connectivity. In addition, U-Net++ connects these intermediate nodes laterally across scales
(dense links). This allows information to flow not only vertically (encoder to decoder) but also horizon-
tally (between refinements at the same resolution). As a result, features are combined from multiple
depths and receptive fields, which is especially beneficial for faint, thin, or overlapping fibers where
local and global context must be fused.

Canonical U-Net++ Figure. Figure 4.8 shows the canonical U-Net++ diagram. The top-left subfigure
(a) is the plain U-Net with direct skips, while (b) shows U-Net++ with nested and dense skip connections.
Notice how each decoder stage now receives features that have been progressively refined through
multiple intermediate nodes, rather than raw encoder features. This refinement reduces the semantic
gap and improves final segmentation accuracy. The figure also shows some other variations of the
unet++, but these are unused in this thesis and are here simply to showcase them.

Toy Illustration. Figure 4.9 illustrates this concept in a simplified form. Blue circles represent feature
maps, while red arrows indicate the main encoder and decoder path. Blue arrows show the additional
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Figure 4.8: Canonical U-Net++ [30]. (a) Plain U-Net skip connections. (b) U-Net++ nested and dense skip pathways:
intermediate nodes refine encoder features, while dense lateral links fuse information across scales. This design improves

multi-scale feature fusion and localization of thin, complex structures.

nested connections that refine skip features before they reach the decoder, and red dashed lines depict
dense lateral links. Together, these create a grid of intermediate nodes that gradually refine information
rather than sending it in a single step. Conceptually, U-Net++ can be seen as building several short
bridges across a river rather than a single long one, allowing information to flow more smoothly and
reliably.

4.4.4. U-Net++ with Pretrained Backbones
While U-Net++ already improves segmentation through nested and dense skip connections, its perfor-
mance can be further enhanced by using a pretrained backbone as the encoder.

What is Pretraining? Pretraining refers to initializing part of a model with weights learned on a large,
generic dataset such as ImageNet [31]. These datasets contain millions of images across many cate-
gories, so the network learns general-purpose features in its early layers:

• Lower layers capture edges, corners, and simple textures.
• Intermediate layers capture object parts or repeating patterns.
• Higher layers capture more abstract concepts, such as shapes or categories.

By reusing these pretrained weights, we avoid training from scratch and leverage the “knowledge”
already embedded in the backbone.
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Figure 4.9: Toy schematic of U-Net++ nested skips. Blue nodes are intermediate refinements; gray arrows the main backbone;
blue arrows the nested skip hops; red dashed lines the dense lateral links. These refinements bridge the gap between encoder

and decoder features, improving multi-scale fusion and localization.

How Backbones Fit into U-Net++. In U-Net++, the encoder path can be replaced by a pretrained
CNN backbone (e.g., ResNet, VGG, or EfficientNet). Instead of random initialization, the encoder con-
volutions start with weights from pretraining. The decoder path and skip refinements are then trained
specifically for the biomedical segmentation task. This approach combines the strong representation
power of pretrained models with the multi-scale refinement of U-Net++.

Fine-Tuning. During training, there are two common strategies:

• Frozen backbone: the pretrained encoder weights are kept fixed, and only the decoder and skip
pathways are trained. This is useful when the dataset is small, to avoid overfitting.

• Fine-tuned backbone: the pretrained encoder is further trained alongside the decoder, but often
with a smaller learning rate. This allows the model to adapt general features to the biomedical
domain while retaining its prior knowledge.

Why This Helps. Biomedical datasets are often limited in size, so training deep networks from scratch
can lead to poor generalization. Pretrained backbones provide a strong initialization, speeding up
convergence and improving accuracy, particularly for subtle features like faint or thin fibers. In practice,
this approach consistently outperforms randomly initialized models, especially when combined with
data augmentation and regularization.

Summary
Pixel-wise encoder-decoder models are the backbone of biomedical segmentation.

• U-Net preserves spatial detail by directly concatenating encoder features into the decoder via
skip connections, making it effective even with limited data.

• Attention U-Net filters these skips with attention gates, ensuring that only important, task-relevant
features (e.g., fibers) reach the decoder while suppressing background noise.

• U-Net++ refines skip information with nested, densely connected pathways that gradually bridge
the semantic gap between encoder and decoder, improving delineation of thin and overlapping
structures.
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• U-Net++ with Pretrained Backbones further enhances performance by initializing the encoder
with weights learned from large-scale datasets such as ImageNet. This leverages general visual
features, reduces training time, and improves generalization when biomedical datasets are small.

Together, these architectures represent the different techniques used: direct skips, gated skips, refined
multi-scale skips, and pretrained feature hierarchies. Each step addresses the central challenge of
combining global context with precise localization for accurate fiber segmentation. Pixel-wise encoder-
decoder models are the backbone of biomedical segmentation. U-Net preserves detail via direct skips,
Attention U-Net filters those skips so the decoder sees specific content, U-Net++ further refines skip
information with nested, densely connected pathways, improving recovery of thin and complex struc-
tures.



5
Datasets and Preprocessing

5.1. Real-World EHT Confocal Volumes
The volumetric confocal datasets used in this thesis were acquired using Imaris, a proprietary mi-
croscopy acquisition and analysis suite. Since Imaris file formats are not directly compatible with
Python-based image processing workflows, the volumes were exported as multi-page TIFF stacks.
TIFF was chosen over JPEG as it preserves the full dynamic range and avoids compression artifacts
that would compromise quantitative analysis.

The dataset consists of three 3D images, each with dimensions of approximately 9300×5400×48 (width
× height × slices). In practice, many of the z-slices contained little or no visible signal, so the effective
depth was closer to 25 slices per volume. Across the three stacks, only one was manually annotated:
three representative slices were traced in Photopea using a pen tool to create binary masks of fibers.
These annotations are sparse and were produced by a novice labeler, but they provide a limited ground
truth reference for testing segmentation models.

The annotation exercise also highlights the challenges of this dataset. Many slices appear nearly empty,
and in those that contain signal, fibers are faint and difficult to trace consistently. This subjectivity
and sparsity reinforce the need for automated segmentation methods that can reliably capture fiber
structures at scale.

5.2. Secondary Synthetic Collagen Dataset
The secondary dataset originates from the work of Park et al. [32], who proposed a deep-learning
pipeline for collagen fiber centerline tracking in fibrotic tissues. A key innovation of their study was the
creation of a synthetic training dataset using a variational autoencoder (VAE).

In their approach, binary label maps of collagen fibers were first generated, representing ground-truth
centerlines and fiber structures. A VAE was then trained to translate these binary maps into realistic
second-harmonic generation (SHG)-like images, capturing the noise patterns, intensity variations, and
textural appearance of actual microscopy acquisitions. This procedure allowed the authors to generate
large volumes of paired image–label data, where the underlying “ground truth” was fully controlled.

The final dataset consisted of 1200 training images and 300 test images, each accompanied by a
pixel-accurate label. Although the images are synthetic, they closely resemble real SHG collagen
imaging, making them suitable for supervised training of segmentation models. For this thesis, this
dataset provided the necessary scale and annotation quality to pretrain deep learning architectures
before applying them to the smaller, noisier, and more complex engineered heart tissue (EHT) confocal
images.

It should be noted, however, that while the synthetic dataset captures many statistical and textural
features of fibrous tissues, it inevitably lacks the structural complexity observed in real EHTs and thus
the real EHT images. Fibers in synthetic images tend to be more homogeneous, better aligned, and

30



5.3. FFT Bandpass Filtering 31

less entangled compared to those in EHT slices, which display dense, irregular and heterogeneous
organizations. Despite this limitation, the Park dataset provides a strong baseline for initial training and
benchmarking, to evaluate future potential in the field.

5.3. FFT Bandpass Filtering
Preprocessing was conducted using frequency-domain bandpass filtering. As described in detail in
Section 2.3.2, Fourier transforms allow an image to be represented in terms of its spatial frequency
components. By applying a mask in the frequency domain and reconstructing the slice with the inverse
transform, we can isolate the frequencies corresponding to fiber boundaries, while suppressing both
low-frequency illumination gradients and high-frequency noise.

Compared to sequential highpass–lowpass filtering, this FFT-based approach provides finer control
over the retained frequency band and is more robust to the variability of real confocal data. For this
reason, it was adopted as the standard preprocessing step throughout the experiments in this thesis.

5.4. Alternative: Highpass–Lowpass Filtering
We briefly considered a simpler highpass–lowpass filtering approach, where an image is convolved
with Gaussian kernels to remove unwanted frequencies.

Formally, given an image f(x, y) and a Gaussian kernel gσ(x, y) with standard deviation σ, a lowpass
filter is defined as

flow(x, y) = (f ∗ gσ)(x, y),

where ∗ denotes convolution. This operation removes high-frequency detail (sharp edges, noise) while
retaining smooth background variations.

A corresponding highpass filter can be obtained by subtracting the lowpass image from the original:

fhigh(x, y) = f(x, y)− flow(x, y).

This emphasizes rapid intensity changes such as edges and fine texture. By chaining lowpass and
highpass filters with different σ, we create a bandpass filter that maintains the features of the desired
structure.

While conceptually straightforward, this method provides less precise control over the retained fre-
quency band. The choice of σ directly determines the effective cutoff frequency, but this relationship
depends on the image resolution and can be difficult to tune consistently across datasets. Moreover,
unlike FFT-based filtering, the frequency response cannot be directly visualized.

In contrast, FFT bandpass filtering (Section 2.3.2) allows us to inspect the magnitude spectrum of an
image, define exact low- and high-cut values, and explicitly mask frequencies outside the desired range.
This makes FFT filtering more transparent and more adaptable to the heterogeneity of confocal data.

A short comparison confirmed that FFT-based filtering produced clearer and more interpretable results
for fiber segmentation. For this reason, all downstream experiments in this thesis employ FFT bandpass
filtering as the primary preprocessing step.

5.5. Denoising Experiments for Confocal Imaging
This supplementary section documents the denoising techniques explored in addition to the FFT band-
pass used in the main pipeline. The goal was to test whether classical deconvolution and intensity-
domain filtering could further improve fiber visibility prior to segmentation. In practice, with our EHT
data, these approaches did not produce consistent improvements beyond the FFT band-pass, but they
are promising directions for future work.

5.5.1. Deconvolution Approaches (PSF-Based)
Confocal images are well modeled as a convolution of the underlying object with the point-spread
function (PSF) plus noise. We trialed two classical deconvolution techniques with synthetic Gaussian
PSFs (2D and 3D) because the true PSF was unavailable.
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Tikhonov–Miller (Wiener-like) Deconvolution. Let g be the observed image, h the PSF, and f the
latent object. In the Fourier domain,

F̂ (u, v) =
H(u, v)

|H(u, v)|2 + λ
Ĝ(u, v),

where λ > 0 is the Tikhonov/Miller regularization parameter. This stabilizes the inversion of small
|H| but introduces bias; too small λ amplifies noise (ringing), too large over-smooths fibers. With
approximate Gaussian PSFs (e.g. 21 × 21, σy = σx ∈ [2, 4]), we saw local sharpening but also noise
amplification on EHT slices, and no consistent benefit downstream.

Richardson–Lucy (RL) Deconvolution. RL performs iterative, non-negative deconvolution assum-
ing Poisson statistics:

f (k+1) = f (k)

[(
g

f (k) ∗ h

)
∗ h⋆

]
,

with h⋆ the flipped PSF. We tested 2D RL on slices and 3D RL on small volumes using Gaussian
PSFs (e.g. 213 with anisotropic σz > σx,y). RL can sharpen fibers when the PSF is accurate, but
with a mismatched/guessed PSF we observed grain amplification and staircase artifacts after 20–100
iterations. Even when visually crisper, segmentations (Dice/IoU) did not improve reliably over the FFT
baseline.

5.5.2. Practical Notes and Failure Modes
• PSF mismatch: Using a synthetic Gaussian PSF (no instrument calibration) limits deconvolution
benefits; errors in width/anisotropy translate into ringing or over-sharpening.

• Noise amplification: Both TM and RL can boost salt-and-pepper–like speckle, making thin fibers
harder to threshold robustly without extra denoisers.

• Parameter sensitivity: TM’s λ, RL’s iteration count, and PSF size/sigmas require per-volume
tuning. Settings that help one slice often harm another.

5.5.3. Outcome
Across EHT slices, the FFT band-pass (2.3.2) consistently delivered the best trade-off: it removes low-
frequency illumination and high-frequency sensor noise while preserving mid-frequency fiber edges.
Deconvolution and intensity-domain high-pass sometimes improved local contrast, but at the cost of
intensified noise. Given our unknown PSF and heterogeneous volumes, we therefore standardized on
FFT band-pass for all downstream experiments.



6
Engineering, Reproducibility, and

Ethics

6.1. Engineering and Reproducibility
This thesis puts an emphasis on engineering clarity and reproducibility. All preprocessing steps, model
architectures, training procedures, and evaluation metrics have been described in detail to enable full
replication of the experiments. In addition, the complete codebase used in this thesis will be made
publicly available (in this GitHub repository), ensuring that others can build on the pipeline without
ambiguity. Anyone interested in extending or applying this work are welcome to contact the author for
clarification or collaboration.

6.2. Ethics and Limitations
Beyond technical considerations, biomedical applications carry ethical and scientific responsibilities.

Hallucinations inmedical imaging. Deep networksmay produce hallucinated structures, i.e. plausible-
looking but nonexistent fibers. In medical contexts, such outputs could mislead downstream analysis
or clinical decision-making. We explicitly report such limitations by combining quantitative metrics with
qualitative human inspection, highlighting both successes and failure cases.

Dataset mismatch. The primary dataset consists of engineered heart tissue (EHT) confocal volumes,
while the secondary dataset (Park et al. [32]) contains synthetic collagen textures. Although useful as a
baseline, the synthetic dataset lacks the complexity and variability of real EHT samples. This mismatch
must be acknowledged when interpreting generalization results.

Fair reporting. To avoid cherry-picking, we report metrics across multiple random seeds and include
both successes and failures. Where preprocessing or model choices did not yield improvements, these
are documented transparently to prevent bias.

Mitigations. Potential risks can be reduced by:

• Including human expert evaluation alongside automated metrics.
• Training with diverse datasets to reduce overfitting to synthetic or lab-specific conditions.
• Open-sourcing code, configurations, and (where possible) data to enable independent verifica-
tion.

In summary, while deep learning offers powerful tools for biomedical imaging, reproducibility and ethical
safeguards are essential for ensuring that results are both trustworthy and responsibly applied.
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Untangling the Heart: Automated Fiber Segmentation and

Structural Metrics via Deep Learning

Arjun Vilakathara (4995074)

Figure 1: Overview of the proposed pipeline for automated fiber segmentation and structural analysis of
engineered heart tissues (EHTs). Starting from a noisy confocal input slice (left), the pipeline applies pre-
processing (orange) via FFT-based bandpass filtering to enhance mid to high frequency fiber structures.
The enhanced slices are passed into segmentation models (blue), illustrated here with the U-Net model’s
output, and optionally refined through a secondary post-processing step (maroon). The resulting masks
are compared against ground-truth annotations in the metrics stage (green), where both pixel-level overlap
metrics (Dice, MSE, IoU) and biologically meaningful fiber-level metrics (length, connectivity, orientation)
are computed. Together, this workflow bridges raw confocal imaging with quantitative, reproducible
analysis of fiber architecture in EHTs , which can be used in downstream tasks such as evaluating muscle
strength.

Abstract

Engineered heart tissues (EHTs) provide a
promising platform for modeling cardiac phys-
iology, but their dense and heterogeneous fiber
organization makes quantitative analysis highly
challenging. This thesis presents an auto-
mated pipeline for fiber segmentation and struc-
tural analysis of confocal EHT images. The
framework integrates frequency based prepro-
cessing using FFT bandpass filtering, state of
the art deep learning segmentation models (U-

Net, Attention U-Net, and U-Net++), and post-
processing refinement through a secondary U-
Net. Evaluation was conducted on a syn-
thetic labeled dataset and on real EHT slices
with sparse annotations. The results highlight
clear trade-offs between model architectures. U-
Net produced the most complete and connected
fibers but introduced substantial hallucinations.
Attention U-Net generated clean outputs but
with fragmented fibers, and U-Net++ achieved
a balance by capturing directionality and coher-
ence with reduced continuity. Refinement net-
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works were effective at reducing thickness and
noise in some cases, but they often removed true
fibers and fragmented long structures, provid-
ing limited overall benefit. Fiber level metrics
and human inspection confirmed these findings,
showing that orientation is captured reliably
across models, while continuity and connectivity
remain major challenges. Overall, the pipeline
demonstrates the feasibility of automated struc-
tural analysis of EHTs and establishes a foun-
dation for future work with improved datasets,
advanced refinement strategies, and broader use
of pretrained or structurally informed models.

1 Introduction

Advances in tissue engineering have enabled the
creation of biomimetic constructs that replicate
the structure and function of human organs.
Among them, engineered heart tissues (EHT)
have been shown as a powerful platform for
studying cardiac physiology in a controlled set-
ting. These lab-grown tissues are developed
by culturing cardiomyocytes, often derived from
human stem cells, within a 3D scaffold, result-
ing in a structure that exhibits contractile be-
havior similar to native heart muscle. EHTs are
increasingly used as test-beds for drug screen-
ing, disease modeling, and regenerative strate-
gies, offering a reproducible and physiologically
relevant alternative to animal models [17].

A major advantage of EHTs lies in their po-
tential for integration with computational tools.
Due to these tissues being created and ma-
tured under well-defined conditions, they can
be imaged and analyzed systematically. High-
resolution imaging techniques such as confocal
microscopy provide detailed views of the tissue
architecture, capturing features like fiber ori-
entation, density, and alignment. This allows
for quantitative analysis and experimentation,
which in itself presents a significant computa-
tion challenge. The resulting images are typi-
cally dense, noisy, and complex, making manual
analysis both time-consuming and inconsistent
[6] [11].

In this thesis, we develop a machine learn-
ing–based pipeline for analyzing the internal
fiber architecture of EHTs from confocal mi-
croscopy data. Specifically, we aim to segment
individual fibers and extract structural metrics
that can be used to construct a graph-based
model of the tissue. This model supports down-

stream analysis in a separate biomechanical sim-
ulation project, which studies how fiber orienta-
tion influences tissue behavior under mechanical
load.

To achieve this, we explore the use of deep
learning segmentation models, along with tai-
lored preprocessing and post-processing tech-
niques designed to enhance fiber visibility and
separability. The resulting framework enables
automated, reproducible analysis of EHT struc-
ture, contributing to the broader goal of bridg-
ing experimental tissue engineering with com-
putational modeling.

We evaluate three deep learning segmenta-
tion architectures: U-Net, Attention U-Net, and
U-Net++ (with and without pretrained back-
bones), on engineered heart tissue images. Mod-
els were trained on a synthetic collagen dataset
and tested both on this labeled dataset and on
real EHT confocal slices with limited manual
annotations. We further explored FFT-based
frequency preprocessing, patch-based inference,
and a U-Net–based refiner network for post-
processing. The results reveal clear trade-offs
between architectures: U-Net achieves the high-
est recall and produces visually complete fibers
but introduces many hallucinations, while At-
tention U-Net yields clean but fragmented out-
puts. U-Net++ provides a more balanced com-
promise, with the pretrained version offering the
best overall Dice score on the labeled dataset.
Post-processing refiners were generally ineffec-
tive, often reducing recall rather than improving
continuity. Overall, the pipeline demonstrates
that meaningful structural metrics can be ex-
tracted from challenging EHT data, but that
model choice strongly influences the balance be-
tween completeness and precision.

2 Related Works and Moti-
vation

Automated detection and segmentation of fi-
brous networks in biological tissues has been
studied across multiple domains, ranging from
engineered microtissues to pathological human
samples. In this section, we group related
works into three domains: (i) imaging and
datasets for engineered tissues, (ii) segmenta-
tion methods for biomedical microscopy images,
and (iii) fiber-specific segmentation and analysis
pipelines. This is to clarify the context of our
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work and highlights the specific gap addressed
by this thesis.

2.1 Imaging and Datasets for En-
gineered Tissues

Engineered heart tissues (EHTs) are increas-
ingly used for drug screening and disease mod-
eling, requiring quantitative analysis of their in-
ternal architecture. Foundational studies such
as Tiburcy et al. [17] and Greiner et al. [6]
highlight how confocal imaging enables detailed
views of cardiac tissue organization, including
fiber orientation and remodeling. However, an-
notated datasets for EHTs remain scarce.

To address this, synthetic datasets have been
introduced. Notably, the Synthetic MicroBun-
dle dataset by Kobeissi et al. [10] simulates fi-
brous microtissues and provides a framework for
segmentation benchmarking. While powerful,
the synthetic fibers are simpler and more ho-
mogeneous than the dense, heterogeneous net-
works found in real EHTs. Similarly, Park et
al. [14] proposed a GAN-based pipeline to gen-
erate fibrotic-like collagen datasets for training
segmentation models. This synthetic dataset,
which we use as our Labeled dataset, enables
training but does not fully capture the den-
sity and complexity of EHTs. The contrast be-
tween realistic but under-annotated EHT data
and richly annotated but synthetic datasets mo-
tivates the dual-dataset strategy adopted in this
thesis.

2.2 Segmentation Methods in
Biomedical Imaging

Segmentation of biomedical microscopy images
has been commonly done through convolutional
encoder–decoder architectures. U-Net, intro-
duced by Ronneberger et al. [15], established the
baseline for biomedical segmentation. Exten-
sions such as Attention U-Net [13] added gat-
ing modules to improve focus on relevant fea-
tures, while U-Net++ [21] introduced nested
skip connections for better multi-scale feature
integration. Beyond these, 3D extensions such
as 3D U-Net [5] and V-Net [12] adapt the en-
coder–decoder design to volumetric data, di-
rectly relevant for confocal stacks of EHTs.

Other approaches have emphasized improved
training objectives and refinement strategies.
For example, boundary-aware losses [8] and
residual refinement networks [4] were developed

to mitigate structural fragmentation in medical
segmentation tasks. These studies demonstrate
that both architectural choices and loss design
strongly influence the ability of networks to re-
cover fine structures such as fibers.

2.3 Fiber Segmentation and Anal-
ysis

Several methods specifically target collagen or
fibrous structures. Xu et al. [19] presented one
of the earliest quantitative frameworks for ana-
lyzing fiber orientation and morphology in SHG
microscopy. Bredfeldt et al. [3] developed CT-
FIRE, which integrates curvelet-based denoising
with fiber-tracking, providing fiber-level met-
rics such as length and curvature. More re-
cently, Stein et al. [16] demonstrated deep learn-
ing for collagen fiber segmentation in lung tissue
SHG images, showing the feasibility of learning-
based methods for dense fibrous networks. Ko-
bat et al. [9] further introduced a deep learning
approach for collagen fiber centerline tracking,
combining synthetic SHG-like data with super-
vised training. These works highlight both the
promise and the difficulty of extracting reliable
fiber-level metrics from noisy, high-density mi-
croscopy data.

In contrast to these studies, our focus is
on dense and heterogeneous EHT images cap-
tured by confocal microscopy. We systemati-
cally evaluate three architectures (U-Net, At-
tention U-Net, and U-Net++), combined with
FFT-based preprocessing and U-Net–based re-
finers, to extract biologically meaningful metrics
such as fiber length, orientation, and connectiv-
ity. Unlike prior fiber segmentation pipelines,
which often focus on sparse or homogeneous net-
works, our pipeline explicitly addresses the chal-
lenges of EHT imaging and emphasizes metric-
level analysis alongside pixel-level evaluation.
This end-to-end approach bridges imaging, seg-
mentation, and structural analysis, providing a
proof of concept for integrating computational
pipelines with engineered tissue research.

3 Dataset

This section describes the two datasets and any
processing needed on them to be used through-
out this thesis for training and evaluation.
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3.1 Delft EHT Dataset

The primary dataset comprises of three unla-
beled volumetric (3D) confocal-microscopy im-
ages of engineered heart tissues (EHTs), origi-
nally acquired and preprocessed in Imaris. Be-
cause Imaris’s processing and image conversion
code are not accessible for Python, we use a
third-party library, imaris file reader [1], to ex-
tract each volume as a stack of TIFF slices
(see Figure 2 for one such slice). These raw
slices contain a uniform background noise floor,
which we estimate by sampling the feature-free
regions at the very edges of the image and then
subtracting that value from every pixel. After
noise subtraction, each slice is normalized to the
[0,255] range (Figure 3). This denoising and
normalization pipeline is applied independently
to every layer in all three volumes.

Figure 2: Raw slice from the Delft EHT dataset
showing the uniform background noise floor. This
illustrates the preprocessing challenge: noise domi-
nates the image and must be subtracted before seg-
mentation.

Figure 3: The same Delft EHT slice after noise
subtraction and normalization to [0,255]. Fiber
structures become visible, providing the true input
for downstream segmentation.

Zooming into a small crop of a normalized
slice (Figure 4) may appear nearly empty, in re-
ality, there are fiber structures present which be-
come evident when the same crop is displayed
on a color calibrated BenQ EL2870U monitor
as seen in Figure 5. For visualization purposes
in this thesis, we show the image in figure 3
with boosted pixel values, which look like fig-
ure 6. All quantitative segmentation and met-

ric computations are performed on the raw, de-
noised volumes without any additional intensity
enhancement.

Figure 4: Zoomed crop of Figure 3 (Delft EHT
dataset). Although the crop appears nearly empty
at first glance, faint fiber structures are present,
highlighting the difficulty of detecting subtle fibers.

Figure 5: The same crop from Figure 4 displayed
on a color-calibrated BenQ monitor. Fine fiber de-
tails become visible, showing the true detail of the
slice.

Figure 6: The crop from Figure 4 with boosted
pixel intensities (visualization only). This artificial
enhancement makes fiber structures clearer for the
reader, though all quantitative analysis uses the nor-
malized but unboosted images.

To provide ground-truth reference values for
evaluation, we manually annotated a small sub-
set of slices from this dataset. Given that these
annotations were produced by a novice labeler
without extensive domain experience, they are
not intended as a gold-standard segmentation.
Rather, they serve as a rough reference to eval-
uate the relative performance of our methods.
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An example of the annotation of figure 3 can be
seen in figure 7.

Figure 7: Delft EHT dataset: manual annotation
(ground truth) for Figure 3. Provides the reference
mask for evaluation, noting conservative labeling by
a novice annotator.

3.2 Synthetic Labeled Dataset

Figure 8: Labeled synthetic dataset: represen-
tative input image from Park et al. data. Shows
the simpler, cleaner appearance used for train-
ing/evaluation of baseline models.

Figure 9: Labeled synthetic dataset: correspond-
ing ground-truth mask for Figure 8, used for super-
vised training and evaluation.

To validate and train our methods, we need to
use a publicly available dataset. The work in
[14] describes how they used a GAN to generate
training data, similar to fibrotic tissue, given la-
bels. They provide both training data of 1200
images and test data of 300 images, which we
utilize to train and evaluate the methods that
will be discussed later. An example of the image
and label can be seen in figure 8 and 9 respec-
tively.

4 Pipeline

This section will go over the entire pipeline used
to process the EHT images. We first discuss
the Pre-processing in Section 4.1, followed by
the different models used to process the images
in Section 4.2, followed by the Post-Processing
steps in Section 4.3, which describe the models
used to refine the raw outputs, and conclude
with how the metrics are computed in Section
4.4.

The figure in image 10 shows a visual repre-
sentation of how the image is transformed into
the output label and metrics.

4.1 Pre-Processing

The raw images contain features of varying
frequencies. As seen in Figure 5, the fibers
that appear in bright white are surrounded
by a low-frequency background of grey fea-
tures. Similarly, some features toward the
top right resemble salt-and-pepper noise: dots
packed closely together. These non-fiber com-
ponents are not relevant to our segmentation
task, so removing them improves downstream
processing. Because we are specifically targeting
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Figure 10: Ooverview for Section 4: FFT bandpass pre-processing (orange), model inference with U-Net
/ Attention U-Net / U-Net++ (blue), optional U-Net-based refinement (maroon), and metric computa-
tion from skeletonized masks (green) covering Dice/MSE and fiber length, connectivity, and orientation.
Repeated here from Figure 1 for convenience.

mid-frequency fiber boundaries, we safely dis-
card both lower- and higher-frequency content.
Therefore, we explore both Highpass–Lowpass
filtering and FFT-based bandpass techniques.

4.1.1 Highpass–Lowpass Filtering

Highpass–Lowpass filtering works by convolv-
ing the image with kernels that attenuate unde-
sired frequency bands. A lowpass filter smooths
out high-frequency noise (e.g., salt-and-pepper),
while a highpass filter removes low-frequency
background. Combining these operations re-
sults in a bandpass effect that preserves the fre-
quencies of the fibers.

4.1.2 FFT-Based Bandpass

Using the Fourier transform to pre-process the
image allows for very precise frequency selec-
tion. Given that the fiber details we are inter-
ested are lie between a specific frequency range,
we can use this transform to precisely remove
the excess frequencies. Below, we describe how
the FFT functions.

The 2D Fourier transform of an image f(x, y)
of size M ×N is:

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y) exp
[
−2πi (ux/M+vy/N)

]
.

To isolate mid-range frequencies, we define a
bandpass mask based on the frequencies we wish
to preserve Rlow, Rhigh:

H(u, v) =

{
1, Rlow ≤

√
u2 + v2 ≤ Rhigh,

0, otherwise,

and apply it:

F̃ (u, v) = F (u, v)H(u, v).

The filtered image f̃(x, y) is recovered via the
inverse FFT:

f̃(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F̃ (u, v) exp
[
2πi (ux/M+vy/N)

]
.

A Visual description of this process is de-
scribed in detail in the supplementary section
of the paper at Section 2.3.2.

4.2 Processing

For segmentation, we selected three convolu-
tional encoder–decoder architectures commonly
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applied in biomedical imaging: U-Net, Atten-
tion U-Net, and U-Net++. These models were
chosen because they share a comparable en-
coder–decoder backbone while having some ar-
chitectural variations that enable evaluation of
their relative strengths and weaknesses for engi-
neered EHT images.

To ensure fair comparison, all models were
trained under identical conditions described in
section 5 Training.

This setup ensures that performance differ-
ences can be attributed primarily to model ar-
chitecture, rather than variations in training pa-
rameters.

4.2.1 U-Net

We implemented a standard U-Net based on the
architecture introduced by Ronneberger et al.
[15], consisting of a symmetric encoder–decoder
structure connected through skip connections.
Our implementation begins with 64 filters in
the first convolutional block, doubling the num-
ber of filters at each downsampling stage. The
decoder employs bilinear upsampling to recon-
struct the segmentation map. This model serves
as the baseline against which the other architec-
tures are compared.

For this thesis, we build upon the U-Net vari-
ant pretrained and evaluated by Park et al. [14],
originally developed for collagen fiber detection
in SHG microscopy images. Their pipeline has
demonstrated robustness in segmenting fibrous
biological textures, making it a suitable foun-
dation for adaptation to engineered heart tissue
segmentation. Since their publicly available im-
plementation and pretrained weights share the
same architectural design as our U-Net, we use
their model trained on the secondary dataset
described in Section 3.2.

4.2.2 Attention U-Net

Attention U-Net extends the baseline by intro-
ducing attention gates at skip connections, al-
lowing the network to focus on relevant fiber
structures and suppress irrelevant background
features. The implementation is based on Oktay
et al. [13], with attention blocks inserted before
concatenation in the decoder. Aside from these
gates, the architecture and training parameters
remain aligned with the baseline U-Net for com-
parability.

4.2.3 U-Net++

For U-Net++, we used the segmentation-
models-pytorch implementation of U-Net++.
The library also allows the option to use pre-
trained encoders, which allow us to compare the
results:

U-Net++ (base): configured with no pre-
trained encoder weights. This ensures the model
learns entirely from the fiber datasets and allows
a fairer comparison with our custom U-Net and
Attention U-Net implementations.

U-Net++ (pretrained): configured with a
ResNet34 backbone initialized on ImageNet.
This version leverages transfer learning, which
allows us to see if and how the performance im-
proves.

Both models used the same setup as in Sec-
tions 5.1–5.2 (input size, output, optimizer, loss
function, epochs), ensuring comparability with
U-Net and Attention U-Net.

While U-Net++ introduces nested skip con-
nections and dense pathways that distinguish it
from standard U-Net [21], keeping the training
conditions identical allows us to attribute per-
formance differences either to the architecture
and/or to the presence of pretrained features.

4.3 Post-Processing

This section describes the post-processing stage
of the pipeline. When comparing the processed
output images to their ground truth labels, a few
common errors are observed (Figure 11 show-
cases these errors):
1. Disconnected Lines: Continuous fibers in

the labels may appear broken in the pre-
dictions.

2. False Positives: False positive fibers, and
often noise such as dots, appear where in
reality the region contains no features.

3. Disconnected Intersections: Points where
fibers intersect in the label may appear as
separate, unconnected segments in the pre-
dictions.

These artifacts would affect the metric com-
putations. The goal of this step is to reduce the
errors. We first present a rule-based algorithm
that uses manually tuned thresholds in section
4.3.1, followed by a learned refinement strategy
using the Refiner U-Net in section 4.3.2.

The Refiner U-Net used here follows the idea
of image-to-image translation, where a network
is trained to map one structured representa-
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Figure 11: Prediction errors vs. ground truth (la-
beled dataset examples), highlighting broken fibers,
false positives, and disconnected intersections.

tion into another. This concept is used by con-
ditional GAN approaches such as Pix2Pix [7],
which learn to transform edge maps or seman-
tic layouts into realistic images. Our refiner is
similar in concept, as it also maps one image-
like representation (a segmentation mask) to a
more refined version, but differs in two key as-
pects: (i) it is trained only with direct supervi-
sion against ground-truth masks rather than ad-
versarial objectives, and (ii) its goal is not pho-
torealism but structural correction (removing
hallucinations, reconnecting fragmented fibers).
Related approaches in biomedical imaging have
also explored U-Net–based refinement of coarse
predictions [20, 18], showing that such post-
processing networks can improve local struc-
tural quality.

4.3.1 Fiber clustering through manual
input

To analyze the fiber structures, we first skele-
tonize the image using the skeletonize function
from Scikit-Image [2]. This reduces the fibers to
one-pixel-wide lines, making the structure sim-
pler to process with neighborhood-based algo-
rithms.

After skeletonization, we use connected com-
ponent analysis to label each group of connected
pixels. This step helps in identifying continuous
fibers in the image. Figure 12 shows the output
from this step where each detected fiber is given

a unique color.

Figure 12: EHT dataset: skeletonized predictions
with connected components color-coded.

Fibers are then connected by checking if any
pixel from one fiber is within a defined proximity
threshold of any pixel from another fiber. In
which case, the fibers are then merged. Figure
13 shows how the fibers are reconnected from
the result in Figure 12.

Figure 13: EHT dataset: proximity-based merging
of connected components, reconnecting near-miss
segments into more continuous fibers. Used to com-
pute length and orientation metrics.

Although effective, this method is limited by
the user-defined threshold that determines when
two fibers are considered connected. If the
threshold is set too high, it could result in the
entire image being considered as a single fiber.
While this approach is useful, it suffers from
significant computational inefficiency. The time
complexity is poor because the algorithm checks
every pixel against every other pixel across all
fibers, making the process computationally ex-
pensive, especially for large images. While this
method provides a possible solution, a more el-
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egant approach would be preferable to reduce
computational time.

4.3.2 Refiner U-Net

The Refiner U-Net method is another approach
to improve fiber connectivity. In this method,
we use the outputs of the existing models (in-
ferred images) as inputs to a Refiner U-Net. The
idea is that this refiner network learns to refine
the model’s output towards the ground truth
labels, improving the accuracy of fibers in the
outputs.

The Refiner U-Net takes the original model
output and the same ground truth labels used
previously, training to minimize the difference
between the predicted fibers and the true fiber
structure. The network learns to correct any
disconnects in the output, filling in gaps and re-
ducing False positives. The U-Net architecture
used in this refinement step is identical to the
one described in section 4.2.1, which has been
proven effective for segmentation tasks. By fine-
tuning the model output with this additional
refinement step, we can achieve more accurate
results with lower computational intensity than
the manual thresholding method.

Figure 14, which shows the result of the re-
fining pipeline on the training images, demon-
strates that the method works. However, this
image is as good as it is since it is part of the
data used to train the model, and refinements
on real data may not be this good.

Figure 14: Labeled dataset: example of base pre-
diction and refined output alongside ground truth,
illustrating intended refiner behavior on training im-
ages.

4.4 Metric Computation

This section describes the metric computation
pipeline, which calculates key medically rele-
vant properties of the segmented fibers, includ-
ing length, angle, and connectivity. The process
begins by skeletonizing the segmented image,

as described in Section 4.3.1. Once the image
is skeletonized, the following metrics are com-
puted.

4.4.1 Length Calculation

Fiber lengths are computed by identifying each
individual fiber segment in the skeletonized im-
age using connected component labeling. The
length of each fiber is calculated by summing
the number of pixels in that component. The
number of pixels associated with each label di-
rectly corresponds to the fiber length. The real-
world length is then computed by multiplying
the pixel-based length by the physical size of a
pixel in real-world units (micrometers per pixel).

4.4.2 Angle Calculation

Fiber orientation is estimated by calculating the
angle of each individual fiber segment based on
its endpoints. For each connected component
identified in the skeletonized image, the end-
points are determined, and a straight line is fit
between them. The orientation angle θ is then
computed using the arctangent of the slope:

θ = arctan

(
y2 − y1
x2 − x1

)
where (x1, y1) and (x2, y2) are the coordinates

of the two endpoints of the fiber segment. The
resulting angle θ is the direction of the fiber rel-
ative to the horizontal axis. This method pro-
vides an approximate but effective measure of
fiber alignment across the image.

4.4.3 Connectivity Calculation

Connectivity is evaluated by identifying points
in the skeletonized image where multiple fibers
join or intersect. This is done by checking the
number of neighboring pixels around each pixel
in the skeleton.

For each pixel, we check how many of the sur-
rounding pixels (in all directions i.e. the 3x3
neighborhood of the pixel) are also part of the
fiber. If a pixel is connected to more than two
other fiber pixels, it is considered a branching or
intersection point. These points indicate where
fibers are connected.

To avoid overcounting due to closely clustered
intersections, a small distance threshold is ap-
plied to group nearby intersection points to-
gether. The total number of such grouped in-
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tersections gives a measure of the overall con-
nectivity in the image.

Figure 15 shows an example where the de-
tected intersection points are highlighted in red.

Figure 15: EHT dataset: detected intersection
points highlighted in red on a skeletonized mask,
showing how connectivity is computed.

Interpretation of Metrics. It is important
to note that the computed fiber metrics (length,
orientation, and connectivity) represent numer-
ical approximations rather than true physical
measurements. They are derived from the pixel
geometry of the binary segmentation masks and
do not capture the exact structure of the under-
lying fibers. However, because the same metric
extraction algorithm is applied consistently to
both the ground-truth labels and the model pre-
dictions, the resulting values remain compara-
ble across experiments. Thus, while these met-
rics do not reflect absolute real-world quantities,
they provide a reliable and reproducible result
for our purposes.

5 Training

This section describes the training process for
the models in this thesis. In Section 5.1, we out-
line the training setup, including data prepara-
tion and hardware configuration. In Section 5.2,
we present the loss functions used to optimize
the models. Finally, in Section 5.3, we describe
the saving strategy adopted to preserve check-
points and select the best-performing models.

5.1 Training Setup

The training dataset consisted of paired images
and binary masks representing the centerlines

of collagen fibers. All images and masks were
resized to 256×256 pixels and normalized using
standard PyTorch transformations. A random
80/20 train-validation split was applied.

Each model was trained using the Adam op-
timizer with a learning rate of 1×10−4 for 1200
epochs. A batch size of 8 was used throughout.
The training was conducted on the NVIDIA
Tesla P100 GPU.

5.2 Loss Function

Given the nature of the segmentation task: de-
tecting thin, sparse collagen fibers. We use
a composite loss consisting of Binary Cross-
Entropy (BCE) and Dice loss:

Ltotal = BCE+DiceLoss

Binary Cross-Entropy (BCE) Loss. BCE
loss evaluates pixel-wise differences between the
predicted and ground truth masks:

LBCE(p, t) = − [t log(p) + (1− t) log(1− p)]

where p is the predicted probability, and t is
the ground truth label (0 or 1).

Dice Loss. Dice loss measures the overlap be-
tween the predicted mask and the ground truth
mask:

LDice(p, t) = 1− 2 · |p ∩ t|+ ϵ

|p|+ |t|+ ϵ

|p ∩ t| denotes the intersection between pre-
diction and target, and a very small value ϵ is
added to avoid division by zero.

Combined: The combined loss leverages the
strengths of both methods: BCE contributes to
pixel-wise correctness, while Dice loss promotes
structural coherence and robustness to imbal-
ance. The combination provides a better way
to evaluate the error compared to just using ei-
ther.

5.3 Saving Strategy

Each model was trained for a total of 1200
epochs, with checkpoints saved at epoch 500,
epoch 1000, and at the end of training. In ad-
dition, we maintained a separate checkpoint for
the best performing model, defined as the epoch
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with the lowest validation loss. This model was
saved independently of the fixed-epoch check-
points.

6 Experiments

The experiments in this thesis were designed
to systematically evaluate how preprocessing,
model choice, and refinement strategies affect
segmentation quality and structural metric ex-
traction in EHT images. To maintain clarity,
the experiments are grouped into six categories,
which correspond directly to the subsections in
Section 7 (Results and Discussion).

The overall pipeline (Section 4) is followed
in all cases: each image was preprocessed, seg-
mented with a trained model, optionally refined,
and then converted into both pixel-level and
fiber-level metrics.

6.1 Inference Setup

Since all models were trained on 256×256 pixel
images from the secondary dataset, inference on
the larger slices of the primary dataset required
a patch-based approach. Each confocal slice was
divided into 256×256 patches, predictions were
made independently for each patch, and the re-
sults were stitched together. This ensured com-
patibility with the training setup while allowing
full-resolution evaluation.

6.2 Low-Cut Preprocessing Ex-
periments

The effect of frequency-domain preprocessing
was evaluated by varying the low-cut parameter
of the FFT-based bandpass filter. In the Fourier
domain, the low-cut specifies the minimum re-
tained spatial frequency, expressed as the ra-
dius of the central region that is suppressed.
Lower values preserve large-scale intensity vari-
ations, whereas higher values progressively re-
move background structure and emphasize finer
detail.

For the labeled dataset, low-cut values from 0
to 10 were tested. Here, low-cut 0 retains all fre-
quencies, while low-cut 10 suppresses all content
within the central radius of 10 pixels in Fourier
space. For the EHT dataset, which has larger
image dimensions and correspondingly higher
frequency resolution, the sweep was extended to
0–20 to cover an equivalent range of scales.

Each architecture was evaluated across these
low-cut values, with results compared in terms
of Dice scores and confusion matrix components.
This experiment was used to determine the op-
timal low-cut setting for subsequent evaluations
and to assess how frequency suppression inter-
acts with model performance.

6.3 Baseline Models

We then evaluated the four baseline segmenta-
tion models described in Section 4.2:

• U-Net (baseline)

• U-Net++ (base, no pretrained encoder)

• U-Net++ (pretrained, ResNet34 backbone)

• Attention U-Net

For each model, predictions were generated
on both the labeled test dataset and the EHT
dataset. These baseline outputs provided the
foundation for all subsequent refinements and
comparisons.

6.4 Refinement with Refiner U-
Net

To investigate whether structural inconsisten-
cies could be corrected as a post-processing step,
we trained a Refiner U-Net for each model. The
refiner took base model outputs as input and
ground-truth masks as targets, with the goal of
improving fiber continuity and suppressing hal-
lucinations. Refined predictions were then com-
pared to baseline outputs across all metrics.

6.5 Threshold Sweeps

Because refiner outputs are continuous probabil-
ity maps, we tested multiple binarization thresh-
olds (0.3, 0.5, 0.7, 0.9) to explore the preci-
sion–recall trade-off. A threshold of 0.5 was used
as the default, but additional sweeps allowed us
to assess whether alternative thresholds could
provide more favorable trade-offs.

6.6 Fiber-Level Metric Evaluation

Beyond pixel-level metrics, we computed biolog-
ically meaningful fiber-level properties:

• Distribution of and mean fiber length (pix-
els)
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• Distribution of and mean fiber orientation
(degrees)

• Distribution of and connectivity score (in-
tersection count)

These were derived from skeletonized masks
and aggregated across datasets, providing medi-
cally relevant structural context to complement
Dice, MSE, and True Positive / False Postive
statistics.

6.7 Human Inspection

Finally, we complemented quantitative analysis
with a qualitative inspection of all model and re-
finer outputs. Outputs from all models were vi-
sually compared against ground truth labels, fo-
cusing on perceptual continuity, hallucinations,
and the overall overlap of predicted fiber struc-
tures with the ground truth.

7 Results and Discussion

This section presents results in the following or-
der. We first analyze the impact of frequency
pre-processing via the low-cut parameter, which
determines how much low-frequency content is
suppressed before inference. We begin with the
labeled dataset to, then perform the same analy-
sis on the EHT dataset to find the architecture-
specific optimal lowcut boundary. Subsequent
subsections (baseline models, refiner, threshold
sweeps, and fiber-level metrics) will use these
chosen low-cut settings to ensure fair and infor-
mative comparisons.

In order to interpret the quantitative results
presented in this section, we first clarify the
meaning of the basic evaluation terms used
throughout. A true positive (TP) refers to a
pixel that is correctly predicted as belonging to a
fiber, while a false positive (FP) refers to a pixel
that is predicted as a fiber but is not annotated
as such in the ground truth. Conversely, false
negatives (FN) are fiber pixels that are missed
by the model, and true negatives (TN) are back-
ground pixels correctly identified as non-fiber.
The balance between TP, FP, FN, and TN un-
derlies the reported metrics such as Dice and
mean squared error (MSE), and provides a more
detailed picture of model behavior.

7.1 Effect of Low-Cut Frequency
Preprocessing (Labeled
Dataset)

Figure 16: Labeled dataset: Dice vs. lowcut
for all models. Dice declines with increasing low-
cut.

Figure 17: Labeled dataset: TP vs. lowcut.
TP is highest at lowcut 0 and falls gradually up
to ∼5, then drops steeply beyond 6 as useful fiber
content is filtered out. Takeaway: modest lowcut
(2–5) preserves recall while enabling cleaner out-
puts.
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Figure 18: Labeled dataset: FP vs. lowcut.
FP decreases sharply from 0 to ∼2, then flattens or
even rises for higher lowcut as models begin to hal-
lucinate missing structure. Takeaway: lowcut 5
seems to be a good choice as it is relatively flat be-
fore, and FP increases after 6.

Figure 19: Labeled dataset: percentage-point gap
between ∆TP and ∆FP (refined vs. base). Negative
values indicate that refinement removes more TP
than FP. This show sus that this gap increases as
the lowcut increases, which means refiners remove
even more TP’s than FP’s as lowcut increases.

Figure 16 shows that Dice scores decrease as
the lowcut threshold increases. However, the
underlying TP/FP curves (Figures 17-18) re-
veal a more informative trade-off. At lowcut 0,
both true and false positives are the highest:
recall (TP) is high, but hallucinations (FP)
dominate. Introducing moderate filtering (low-
cut 2–5) substantially reduces FP while TP de-
clines only mildly, producing cleaner and more
interpretable segmentations. Beyond lowcut 6,
TP drops steeply and FP paradoxically begins
to rise again, indicating that essential fiber con-
tent is being removed and the models begin to
hallucinate structures to compensate.

This overall trend is complemented by the
TP–FP gap in Figure 19, which compares re-
fined outputs to their corresponding base mod-
els. Negative values here indicate that the re-
finer removes more TP than FP, illustrating that

refinement often suppresses true fibers more ag-
gressively than hallucinations. While this figure
does not describe the direct effect of lowcut fil-
tering, it helps to interpret how refinement in-
teracts with the filtered outputs.

Taken together, these results suggest that
lowcut 5 provides the most balanced trade-off
on the labeled dataset: it suppresses hallucina-
tions meaningfully without excessively reducing
recall. Therefore, unless stated otherwise, all
labeled-dataset comparisons that follow use low-
cut 5 FFT preprocessing before all inferences.

7.2 Effect of Low-Cut Frequency
on EHT Data

Figure 20: EHT dataset: Dice vs. lowcut. U-
Net peaks at lowcut 2; Attention U-Net and both
U-Net++ variants are flatter with gentle optima
near lowcut 8. Takeaway: choose 2 for U-Net,
8 for Attention/U-Net++.

Figure 21: EHT dataset: TP vs. lowcut. U-
Net maintains high TP at lowcut 2 but loses TP
as lowcut rises; other models degrade more gently.
Takeaway: less aggressive filtering benefits U-Net
on EHT.
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Figure 22: EHT dataset: FP vs. lowcut. U-
Net’s FP is minimized near lowcut 2, Attention/U-
Net++ keep FP controlled up to ∼8 before trade-
offs worsen. Takeaway: 2 for U-Net, 8 for
Attention/U-Net++ balance FP with good TP.

Figure 23: EHT dataset: percentage-point gap
between ∆TP and ∆FP (refined vs. base). Negative
values indicate that refinement removes more TP
than FP.

Applying the same analysis to the EHT dataset
yields a more architecture-specific picture (Fig-
ures 20–23). For the base U-Net, Dice peaks at
lowcut 2 (Figure 20), which also coincides with
one of its lowest FP values (Figure 22) while TP
remains high (Figure 21). This indicates that
U-Net benefits from a less aggressive filter that
suppresses only the most obvious noise.

By contrast, Attention U-Net and both U-
Net++ variants display flatter Dice curves with
a gentle optimum around lowcut 8. At this
setting, TP is not overly suppressed, FP re-
mains low, and Dice is near the maximum for
each model. The percentage-point gap analysis
in Figure 23, which compares refined outputs
against their base counterparts, further refines
this view. Unlike the labeled dataset, where the
gap values were initially small, the U-Net++
models show consistently high negative values,
indicating that refinement removes substantially
more TP than FP. In contrast, Attention U-Net
and the base U-Net remain relatively flat and

low in percentage change, meaning they lose
only marginally more TP than FP regardless
of lowcut. While this figure does not directly
describe the effect of lowcut filtering, it high-
lights how refinement interacts with filtered out-
puts and why its impact differs between archi-
tectures.

Therefore, for the experiments below, U-Net
is evaluated at lowcut 2, Attention U-Net at low-
cut 8, and U-Net++ (base and pretrained) at
lowcut 8. These settings reflect each architec-
ture’s most balanced trade-off between TP, FP,
and Dice on the EHT dataset.

7.3 Baseline Model Performance

Unless otherwise specified, labeled-dataset re-
sults use lowcut 5 (Section 7.1); EHT results
use the best-performing lowcut per model (Sec-
tion 7.2), i.e. 2 for U-Net and 8 for Attention
U-Net and U-Net++.

Before presenting baseline results, we briefly
define the evaluation metrics used in this sec-
tion. Precision measures the fraction of pre-
dicted fiber pixels that are correct:

Precision =
TP

TP + FP
.

Recall measures the fraction of ground-truth
fiber pixels that are correctly detected:

Recall =
TP

TP + FN
.

High precision indicates that few hallucinations
are produced, while high recall indicates that
most true fibers are recovered. Together with
Dice and MSE, these metrics provide a more
complete picture of model behavior.

7.3.1 Baseline Model Performance on
Labeled Data

Table 1 summarizes the average TP, FP, and FN
values, along with derived precision and recall,
for the labeled dataset.

U-Net achieves the highest recall (0.46),
meaning it detects the most true fibers, but
at the cost of very low precision (0.36) due to
its high FP rate. Attention U-Net and both
U-Net++ variants achieve substantially higher
precision (0.54–0.57), reflecting their ability to
suppress hallucinations, but at the cost of lower
recall (0.40–0.45). Thus, U-Net prioritizes com-
pleteness, whereas U-Net++ and Attention U-
Net prioritize precision. Between the U-Net++
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Table 1: Labeled dataset: average TP, FP, FN, and derived precision/recall at lowcut 5. U-Net achieves
the highest recall; U-Net++ (pretrained) is most balanced.

Model TP FP FN Precision Recall
U-Net 578 1040 685 0.36 0.46
U-Net++ (base) 527 399 736 0.57 0.42
U-Net++ (pretrained) 568 437 695 0.57 0.45
Attention U-Net 509 432 754 0.54 0.40

variants, U-Net++ (pretrained) achieves the
most balanced trade-off.

Figure 24: Labeled dataset: MSE, base vs.
refined. Refinement reduces MSE for U-Net but
worsens it for the other models. Takeaway: refin-
ers do not universally improve pixel similarity.

Figure 25: Labeled dataset: Dice, base vs. re-
fined. U-Net’s Dice drops sharply with refinement;
U-Net++ and Attention U-Net are less affected. U-
Net++ Pretrained seems to have the best dice score.

Figure 24 compares MSE between base and
refined models. For U-Net, refinement reduces
MSE, confirming that the refiner suppresses hal-
lucinations. However, for the other models,
MSE either worsens or changes only marginally,
suggesting that their cleaner base outputs leave
little room for meaningful improvement.

Figure 25 shows Dice scores. Here U-Net++
(pretrained) achieves the highest Dice overall,
balancing relatively high recall with fewer hal-
lucinations.

In contrast, refinement generally lowers Dice
scores by similar amounts across U-Net++
(base), U-Net++ (pretrained), and Attention

U-Net, rather than benefiting any one model.
This pattern aligns with the percentage-point
TP–FP gap analysis (Figure 19), which showed
that refiners consistently remove more true posi-
tives than false positives. As a result, Dice tends
to decline uniformly across architectures, even if
the visual differences between refined and base
outputs are subtle.

Together with the precision/recall values in
Table 1, these results confirm that U-Net++
(pretrained) provides the most balanced base-
line model on the labeled dataset.

Overall, the labeled dataset highlights the
trade-off between recall and precision across ar-
chitectures. U-Net achieves the highest recall
but at the cost of very low precision, with the
refiner being of no help, since the refiner re-
moves many true positives along with halluci-
nations. Attention U-Net and U-Net++ are
more conservative, yielding higher precision but
reduced recall. Among them, U-Net++ (pre-
trained) stands out: it achieves the best Dice
score (Figure 25), maintains relatively low MSE
(Figure 24), and balances precision and recall
more effectively than the other models. This
makes U-Net++ (pretrained) the most reliable
baseline on the labeled dataset.

7.3.2 Baseline Model Performance on
EHT Data

Table 2 shows the corresponding metrics for the
EHT dataset, evaluated at the optimal lowcut
per model.

On the EHT dataset, all models perform con-
siderably worse than on the labeled dataset, re-
flecting both the higher complexity of the im-
ages and the poor quality of the annotations,
which were produced conservatively by a novice
annotator. We return to this issue in Sec-
tion 7.6.2, where qualitative inspection provides
further context for interpreting these results.

Having seen that the labeled dataset already
revealed distinct precision–recall trade-offs be-
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Table 2: EHT dataset: average TP, FP, FN, and derived precision/recall at each model’s optimal lowcut.
U-Net recovers far more fibers than others but with low precision, although all models have very low
precision. At a glance of this table only, it is clear that U-Net is the best performer by far.

Model TP FP FN Precision Recall
U-Net 991 6840 3327 0.13 0.23
U-Net++ (base) 210 1158 4107 0.15 0.05
U-Net++ (pretrained) 117 799 4200 0.13 0.03
Attention U-Net 113 1104 4204 0.09 0.03

tween the architectures, it is useful to now ex-
amine how these behaviors manifest on the more
challenging EHT data. Here, U-Net recovers the
most fibers (recall 0.23) but with very low pre-
cision (0.13) due to its extremely high FP rate.
U-Net++ (base) slightly improves precision to
0.15 but suffers from very low recall (0.05). U-
Net++ (pretrained) and Attention U-Net are
the most conservative, with recall near 0.03 but
also low precision (0.09–0.13). These results
highlight the difficulty of the EHT dataset and
the contrasting behaviors of the architectures:
U-Net favors recall at the expense of precision,
whereas Attention U-Net and U-Net++ sacri-
fice recall for more conservative, but incomplete,
segmentations.

Figure 26: EHT dataset — MSE, base vs. re-
fined. Refinement reduces U-Net’s MSE dramati-
cally by suppressing hallucinations; for U-Net++
and Attention U-Net, effects are minor or negative.

Figure 26 shows MSE values for the EHT
dataset. Refinement drastically reduces U-Net’s
MSE, due to suppressing the large number of
hallucinations present in the base output. For
Attention U-Net and both U-Net++ variants,
however, MSE reduces only slightly or even in-
creases, highlighting that refinement fragments
already conservative predictions rather than im-
proving them.

Figure 27 illustrates Dice scores. Here, the
difference between architectures is striking: the
base U-Net achieves by far the highest Dice at
its optimal lowcut (2), with values that are more

Figure 27: EHT dataset — Dice, base vs. re-
fined. U-Net achieves the highest Dice at its best
lowcut (2), but refinement cuts Dice severely. At-
tention U-Net and U-Net++ achieve modest Dice
that remain relatively stable.

than double those of Attention U-Net and U-
Net++ (recall 0.23 vs. 0.03–0.05). Refinement
reduces U-Net’s Dice sharply, consistent with
the recall drop observed in Table 2, but even
after refinement it still outperforms the other
models numerically. Attention U-Net and U-
Net++ variants achieve modest Dice values that
are relatively stable with or without refinement,
reflecting their conservative behavior: low re-
call, but also lower FP rates.

In summary, the EHT dataset further il-
lustrates the architectural differences. U-Net
achieves significantly higher recall and Dice than
any other model, more than four times the re-
call of Attention U-Net and U-Net++, making it
the only model that consistently recovers a sub-
stantial fraction of fibers. While its precision
is low (0.13), this is not especially worse than
the other architectures, which also fall in the
0.09–0.15 range. The key distinction is there-
fore not that U-Net is uniquely imprecise, but
that it achieves much higher recall while the oth-
ers fail to recover most fibers at all. Attention
U-Net and U-Net++ both produce more conser-
vative predictions, reflected in stable Dice values
and reduced FP rates, but with negligible recall.
Of these, U-Net++ offers slightly better struc-
tural fidelity, whereas Attention U-Net is the
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most resistant to hallucinations. Thus, U-Net
provides the most complete but noisy segmen-
tations, while U-Net++ and Attention U-Net
prioritize caution but at the expense of missing
the majority of fibers.

7.4 Effect of the Refiner Network

Figure 28: Labeled Dataset: Example of input im-
age, expected outcome, and true output of refiner.
This image showscases that the refined output in-
stead of moving closer to the ground truth, primar-
ily removes information from the inferred image.

Figure 28 illustrates the intended role of the
refiner network. Comparing the inferred im-
age with the ground truth, it can be seen that
some fibers are only partially detected: seg-
ments of a fiber appear disconnected, or small
false “fibers” are detected that should be re-
moved. The refiner was designed to address
these issues by connecting broken segments of
true fibers and removing false detections. For
example, in the inferred image the rightmost
fiber is split into three shorter fragments. The
ground truth shows it to be one continuous fiber,
so ideally the refiner would join these fragments
into a more coherent fiber structure. Impor-
tantly, the refiner was not expected to fully re-
construct missing fibers, but rather to enforce
local structural consistency.

7.4.1 Refinement on Labeled Data

In practice, the results show that the refiner
does not behave as intended. While it some-
times improves structural quality, the quanti-
tative outcomes vary strongly between models.
Table 3 summarizes the average changes in TP,
FP, and FN after refinement relative to the base
models.

For U-Net, refinement reduces false positives
by about 260 pixels on average, but this comes
at the expense of 172 true positives being lost.
The net effect is a lower recall and only a modest
precision gain. For Attention U-Net and both
U-Net++ variants, the refiner consistently de-
creases TP (–36 to –56 pixels) while actually

Table 3: Labeled dataset: average change after
refinement vs. base outputs. Refiners generally re-
move more TP than FP, reducing Dice.

Model ∆TP ∆FP ∆FN
U-Net −172.2 −264.3 +172.2
Attention U-Net −35.8 +20.5 +35.8
U-Net++ (base) −56.9 +50.3 +56.9
U-Net++ (pretrained) −56.2 +61.5 +56.2

increasing FP, making their outputs quantita-
tively worse. These patterns mirror the Dice
and MSE plots for the labeled dataset: refine-
ment generally lowers Dice across all models and
only marginally improves MSE for U-Net.

This behavior can be explained by the re-
finer’s tendency to remove more than it adds.
By aggressively suppressing what it identifies as
noise, it lowers FP but simultaneously removes
many correctly predicted pixels, increasing FN.
The result is that TP decreases across all mod-
els, and for some models FP increases. Con-
sequently, Dice scores decline after refinement,
but this does not necessarily mean that refined
outputs are visually less interpretable. Manual
inspection still shows occasional improvements
in structural integrity, such as the removal of
small hallucinated fragments or smoother fiber
shapes, even when overlap metrics worsen.

7.4.2 Refinement on EHT Data

On the real EHT dataset, the refiners behave
visually much like on the labeled data, but the
quantitative results highlight their much greater
potential for suppressing hallucinations in U-
Net outputs. Table 4 shows the changes relative
to the base models.

Table 4: EHT dataset: average change after refine-
ment vs. base outputs. U-Net gains from strong FP
suppression; Attention U-Net modestly improves;
U-Net++ increases FP.

Model ∆TP ∆FP ∆FN
U-Net −790.6 −5260.6 +790.6
Attention U-Net −52.8 −478.2 +52.8
U-Net++ (base) +30.4 +517.8 −30.4
U-Net++ (pretrained) +18.4 +351.8 −18.4

For U-Net, refinement removes a large num-
ber of false positives (over 5,200 on average),
but at the cost of nearly 800 true positives being
lost. This explains the sharp reduction in recall
and Dice observed in Section 7.3, even as MSE
improves dramatically. For Attention U-Net,
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the effect is smaller but consistent: around 480
false positives are removed, while just 53 true
positives are lost, resulting in only a marginal
precision gain.

Interestingly, U-Net++ behaves differently.
Both variants actually see a small increase in TP
(+18 to +30), but this comes alongside a sub-
stantial increase in FP (+350 to +520). Thus,
the refiners effectively make U-Net++ more sen-
sitive but less precise, in contrast to their con-
servative nature. These outcomes suggest that
the refiner is especially effective at cleaning up
the noisy baseline U-Net, modestly helpful for
Attention U-Net, and counterproductive for U-
Net++ by reintroducing hallucinations.

Taken together, these results confirm that the
refiner is architecture-dependent. On U-Net,
it plays an aggressive denoising role, removing
thousands of false positives at the expense of re-
call. On Attention U-Net, it makes only small
corrections. On U-Net++, it shifts the balance
in the wrong direction, increasing false positives
while adding only a handful of true detections.
This variability underscores that the refiner can-
not be assumed to provide universal benefit: its
effectiveness depends critically on the baseline
model’s error profile.

7.4.3 Thresholding of Refined Outputs

To investigate whether post-processing thresh-
olds could improve the effectiveness of the re-
finer, we evaluated the outputs at different
thresholds (0.3, 0.5, 0.7, 0.9). Table 5 summa-
rizes the results.

Table 5: Labeled dataset: refined outputs across
thresholds (0.3–0.9), showing TP and FP averages.
Lower thresholds boost recall but also hallucina-
tions; higher thresholds reduce both TP and FP.

Threshold TP FP
0.3 424 836
0.5 406 777
0.7 389 722
0.9 362 640

The results show a clear trade-off between
true and false positives. At lower thresholds
(e.g. 0.3), the models detect more true fibers
(higher TP), but this comes at the cost of
many additional hallucinations (higher FP). At
higher thresholds (e.g. 0.9), false positives are
reduced substantially, but true positives also

drop, meaning that fewer genuine fibers are re-
covered.

Intermediate thresholds (0.5–0.7) offer the
most balanced outcome: false positives are re-
duced compared to very low thresholds, while
the number of true positives remains reasonably
high. For consistency, the 0.5 threshold was
used in earlier comparisons between base and
refined models. Nonetheless, these results con-
firm that thresholding alone cannot fully resolve
the limitations of the refiner, since suppressing
false positives almost always comes with a loss
of true positives.

7.4.4 Interpreting Refiner Behavior

The numerical results presented above can be
better understood in the context of how the re-
finer was trained. The refiner learns to map
model outputs closer to the true labels, effec-
tively correcting false detections or missing seg-
ments. If the base model hallucinates many
structures, as in the case of U-Net, the re-
finer would ideally be trained to suppress them,
which explains the dramatic reductions in false
positives observed on both the labeled and EHT
datasets. Conversely, when the base model is al-
ready conservative, as with Attention U-Net or
U-Net++, the refiner has less opportunity to re-
move hallucinations and instead tends to add a
small number of detections.

However, across all architectures the refiner
demonstrates limited capacity to add true posi-
tives. This bias toward removal rather than ad-
dition likely arises from the data distribution:
positive-class pixels are relatively rare in these
images, and during training, suppressing nega-
tives (false positives) may have been the most
reliable way to reduce the loss. As a result, the
refiner appears to converge toward a strategy of
“cleaning up” rather than reconstructing miss-
ing fibers.

This behavior shows both the potential and
the limitation of the approach. On one hand,
the refiner is highly effective at reducing hallu-
cinations, particularly when applied to models
such as U-Net that tend to over-predict. On
the other hand, it lacks the corrective power to
recover missing fibers, which diminishes recall
and overall Dice. Future work/improvements
may require modified training strategies, such
as class reweighting, loss functions that penal-
ize missed positives more strongly, or specialized
data augmentation, to hopefully improve the re-
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finers ability to add information.

7.5 Fiber-Level Metrics: Con-
nectivity, Orientation, and
Length

To complement pixel-based metrics, we evalu-
ated fiber-level statistics across models: con-
nectivity score, mean angle, and mean fiber
length. These metrics provide insight into how
well structural properties of the predicted fibers
match the ground truth.

7.5.1 Labeled Data

Figures 29–31 show the distributions of length,
connectivity, and orientation across models for
the labeled dataset.

For fiber length (Figure 29), ground-truth
annotations display a wide range of lengths with
several very long fibers, as expected in the de-
fined labels. U-Net captures some of this range,
with longer fibers present in its predictions,
though refinement tends to fragment them into
shorter segments. Attention U-Net and both
U-Net++ variants consistently underestimate
length, producing fragmented fibers that rarely
approach the lengths of the ground truth. This
confirms that the main challenge for these mod-
els is not detection of fibers itself but rather the
preservation of its continuity.

For connectivity (Figure 30), U-Net sig-
nificantly overshoots, producing highly inflated
connectivity scores with wide variance and
many outliers. This can be explained by its
tendency to hallucinate fibers, which artificially
create numerous junctions. Refinement reduces
connectivity drastically, closer to ground-truth
levels but at the expense of recall. Attention
U-Net and U-Net++ predict more conservative
structures, with low connectivity values that re-
flect their underestimation of fiber intersections.

For orientation (Figure 31), all models align
relatively well with the ground truth: median
fiber angles and spreads are similar, indicating
that the models are detecting the correct direc-
tional trends even when length and connectivity
differ substantially. This suggests orientation is
the most reliable structural metric across mod-
els, whereas length and connectivity reveal their
biases (U-Net exaggerates, U-Net++/Attention
U-Net underestimate).

Overall, these results show that U-Net pre-
serves continuity but hallucinates, inflating

structural metrics, while Attention U-Net and
U-Net++ avoid hallucinations but produce frag-
mented outputs. Orientation is preserved across
all architectures, reinforcing that directionality
is easier to capture than continuity.

Figure 29: Labeled dataset: mean fiber
length. U-Net captures some longer fibers, while
other models underestimate length consistently.

Figure 30: Labeled dataset: connectivity
score. U-Net overshoots due to hallucinations,
while Attention U-Net and U-Net++ underestimate
connectivity.

Figure 31: Labeled dataset: mean orienta-
tion angle. Orientation is captured well across all
models, even where length and connectivity diverge.

7.5.2 EHT Data

Figures 32–34 show the same fiber-level metrics
for the EHT dataset.
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Figure 32: EHT dataset: mean fiber length.
All models predict extremely short fibers compared
to ground truth, consistent with fragmented out-
puts.

Figure 33: EHT dataset: connectivity score.
U-Net’s mean aligns with ground truth but with
wide variance due to hallucinations; Attention U-
Net surprisingly matches well, while U-Net++ con-
sistently underestimates.

For fiber length (Figure 32), the gap between
models and ground truth is significant. All mod-
els predict extremely short fibers, far below the
range of annotated values. This aligns with
the disjoint predictions observed earlier: frag-
mented outputs cannot approximate the long
continuous fibers in the ground truth. Given
that even on the labeled dataset models under-
estimated fiber length, this result is expected to
be amplified on the more difficult EHT data.

For connectivity (Figure 33), disjoint predic-
tions again lower connectivity scores. Interest-
ingly, Attention U-Net and base U-Net produce
mean connectivity values that are closer to the
ground truth, though for very different reasons.
Attention U-Net aligns surprisingly well, pro-
ducing a distribution with a similar mean and
a narrow spread, whereas base U-Net matches
the mean but with an extremely wide spread,
likely due to hallucinations generating halluci-
nated junctions. Thus, the apparent similar-
ity in averages is misleading: Attention U-Net
may occasionally approximate true connectiv-
ity, while U-Net’s mean may simply be a result

Figure 34: EHT dataset: mean orientation
angle. Orientation distributions appear reasonable,
but fragmentation undermines global directionality.

of its hallucinations. U-Net++ variants con-
sistently underestimate connectivity, producing
sparse and fragmented structures.

For orientation (Figure 34), distributions re-
main relatively close to the ground truth. Me-
dian values and spreads suggest that models
can capture directional information even when
fiber continuity is poor. However, because many
fibers are predicted as short fragments, these
orientation estimates may not represent the true
global fiber organization. Thus, while angle dis-
tributions appear numerically reasonable, they
dont represent the loss of structural context
caused by fragmentation.

Together, these results highlight the interde-
pendence of fiber-level metrics. Short, disjoint
fibers lead directly to poor connectivity scores
and undermine the reliability of angle measure-
ments. While the labeled dataset provides a
clearer demonstration of model capabilities, on
the EHT dataset the metrics must be inter-
preted cautiously, as annotation noise and frag-
mented outputs obscure the models’ true perfor-
mance. Still, the consistency of angle distribu-
tions across datasets suggests that orientation
may remain the most transferable metric, even
when completeness and connectivity fail.

7.6 Human Inspection of Model
Outputs

While quantitative metrics provide valuable in-
sights into pixel accuracy, fiber length, and con-
nectivity, they cannot fully capture how the seg-
mentations appear to a human observer. Cer-
tain aspects of structural coherence, perceptual
continuity, and visual stability are not repre-
sented by numerical scores. To address this, we
include a qualitative comparison of model out-
puts in Figure 35 for the labeled dataset and
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Figures 36-40 for the EHT dataset, highlighting
differences in human-perceived quality.

7.6.1 Human Inspection on Labeled
Data

From visual inspection, U-Net outputs appear
the most human-friendly. The predicted fibers
are long, connected, and consistent in appear-
ance, resembling the overall fiber structure of
the ground truth. However, U-Net also intro-
duces many obvious hallucinations, which are
clearly visible as extra fibers not present in the
label. As discussed earlier, this explains its in-
flated connectivity and length metrics: the long
continuous predictions come at the cost of over-
structuring and adding non-existent fibers.

Attention U-Net produces visually clean and
consistent segmentations. Its fibers are rarely
broken and contain few visible hallucinations.
However, the fibers it predicts are notably
shorter than in the ground truth. Careful com-
parison shows that they do correspond to real
parts of fibers, but they lack the full continuity
of the original structures. Thus, the segmenta-
tions are visually precise but incomplete.

Both U-Net++ variants generate outputs
similar to Attention U-Net. The base U-Net++
recovers some longer fibers, though not ap-
proaching the lengths captured by U-Net. The
pretrained U-Net++ detects more fibers than
the base variant but with less clarity: its pre-
dictions appear more disjointed and less visu-
ally consistent. This suggests that while pre-
training enhances sensitivity, it also introduces
additional fragmentation.

Across all architectures, refinement consis-
tently produces visually inferior outputs. The
refined versions tend to remove information, re-
sulting in thinner and more fragmented fibers.
In some cases, refinement does suppress halluci-
nations (most notably in the base U-Net), but
overall it reduces structural coherence and the
impression of continuity.

Figure 35: Labeled dataset: qualitative compari-
son of predictions vs. ground truth. U-Net is most
complete but hallucinates; Attention U-Net is clean
but incomplete; U-Net++ lies in between; refiners
often fragment predictions.

Human inspection therefore confirms and con-
textualizes the quantitative results. U-Net pro-
vides the most visually complete fibers, but ex-
aggerates structure through hallucinations. At-
tention U-Net yields the cleanest, most reliable
outputs, but they are generally shorter than the
ground truth fibers. U-Net++ variants lie some-
where in between: the base U-Net++ recovers
more fiber structure than Attention U-Net but
less than U-Net, while the pretrained U-Net++
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produces more fragmented predictions despite
higher sensitivity. Refinement generally wors-
ens visual quality, sacrificing completeness and
coherence for marginal gains in suppressing false
positives.

7.6.2 Human Inspection on EHT Data

Figure 36: EHT dataset: original confocal slice
(top) and its annotation (bottom). Labels omit
faint structures, inflating measured false positives
for models.

Evaluating the EHT dataset using numerical
metrics alone is problematic, primarily due to
the quality of the available annotations. As
noted earlier, the labels were created by a
novice annotator and are highly conservative:
only very obvious fibers were annotated, while
any ambiguous structures were deliberately ex-
cluded. For example, in Figure 36, the above
image shows the original EHT slice and the
botttom image shows its annotation. Several
faint structures visible in the original are omit-
ted from the annotation, even though they
may plausibly correspond to fibers. These fea-
tures become apparent when the image is in-
spected at its native resolution (4650×2700) on
a high-quality display, but cannot be shown
clearly here. Models that detect such struc-
tures are therefore penalized with false posi-
tives (FPs), even though the detected regions
may in fact represent true fibers. This suggests
that the absolute FP rates reported in Table 2

are likely overestimates, although the relative
trends across models remain meaningful.

Figure 37: EHT dataset: U-Net predictions, base
(top) and refined (bottom). Base captures long
fibers but with excessive thickness; refinement thins
them but fragments continuity.

Figure 38: EHT dataset: Attention U-Net predic-
tions, base (top) and refined (bottom). Outputs are
clean but fragmented; refinement reduces thickness
without restoring structure.
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Figure 39: EHT dataset: U-Net++ (base back-
bone), base (top) and refined (bottom). Base recov-
ers longer fibers than Attention U-Net; refinement
often reintroduces false positives.

When visually inspecting the outputs, we ob-
serve a more nuanced picture than in the la-
beled dataset. As shown in Figure 37, the base
U-Net recovers the most connected and longest
fibers. From visual inspection and comparison
to the label and original image, it appears that
most of the false positives may stem from the
predicted fibers being substantially thicker than
the one-pixel annotations, however, we can also
see very noticeable hallucinations in the image.
This makes the detections look more realistic to
the eye, but artificially inflates FP counts. The
refiner for U-Net (bottom image of Figure 37)
does succeed in thinning these predictions, but
at the cost of breaking apart the long, continu-
ous fibers that gave the base model its visual ad-
vantage. The result is a fragmented output that
resembles the refinements of the other models,
however, still preserving a significant amount of
the true fiber structure.

Attention U-Net (Figure 38), by contrast,
produces short and fragmented predictions,
rarely capturing long continuous fibers. Al-
though its quantitative TP rates are similar
to U-Net++ (113 vs. 117 on average), qualita-
tively the difference is clear: Attention U-Net
mainly recovers small fiber fragments, whereas
U-Net++ (Figures 39–40) captures longer, more
coherent stretches of the same fibers. This

makes U-Net++ visually more similar to the
true fiber architecture despite similar scores.

Figure 40: EHT dataset: U-Net++ (pretrained
backbone), base (top) and refined (bottom). Pre-
trained model is more conservative; refinement adds
little and sometimes raises false positives.

Comparing the U-Net++ variants, the pre-
trained version (Figure 40) behaves more con-
servatively than the base model (Figure 39), of-
ten fragmenting fibers further rather than re-
constructing them fully. Nevertheless, both U-
Net++ variants produce outputs that are more
structurally meaningful than those of Attention
U-Net, with fibers appearing less like scattered
dashes and more like connected fiber elements.

The refiners behave consistently with the la-
beled dataset: they tend to degrade outputs
by disconnecting fibers and removing genuine
structures. While they suppress thickness and
occasional noise (notably in the base U-Net),
this comes at the expense of structural continu-
ity and coherence. As with the labeled data, the
refiners show little ability to add missing fiber
content.

In summary, visual inspection of the EHT
dataset highlights discrepancies with the quan-
titative metrics. U-Net (Figure 37) provides the
most visually convincing reconstructions, with
long and connected fibers, but these come at
the cost of excessive thickness that drives up FP
counts. Its refiner reduces thickness but sacri-
fices continuity. U-Net++ (Figures 39–40) pre-
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serves fiber directionality and length more faith-
fully than Attention U-Net (Figure 38), which
remains the most conservative but also the most
incomplete. Overall, if completeness and visual
plausibility are valued, U-Net offers the rich-
est representations; if precision and structural
fidelity are prioritized, U-Net++ is the stronger
choice. The refiners, while useful for suppressing
thickness, consistently reduce structural quality,
underscoring their limited utility in the current
form.

7.7 Summary of Findings

Across both datasets, several consistent pat-
terns emerge. Frequency pre-processing plays a
critical role: on the labeled dataset, a moderate
lowcut around 5 achieves the best balance be-
tween recall and suppression of hallucinations,
while on the EHT dataset the optimal setting
is architecture-specific (around 2 for U-Net and
around 8 for Attention U-Net and U-Net++).

With these settings, U-Net stands out for its
high recall, recovering substantially more fibers
than any other model, but at the expense of
low precision due to thick predictions and hal-
lucinations. Attention U-Net and U-Net++
are more conservative, achieving higher preci-
sion but missing many fibers. Among them, U-
Net++ (pretrained) provides the most balanced
performance on the labeled dataset. The re-
finer network generally lowers Dice by removing
more true positives than false positives, prov-
ing useful mainly for suppressing U-Net’s hal-
lucinations on EHT, but offering little or even
counterproductive benefit for the other models.

Refiner threshold sweeps highlight the ex-
pected trade-off: lower thresholds increase recall
but also hallucinations, while higher thresholds
reduce false positives but miss true fibers.

Fiber-level metrics reflect these trends: fiber
length is underestimated due to fragmentation,
connectivity is inflated by U-Net’s hallucina-
tions and underestimated by conservative mod-
els, and orientation is relatively stable but less
meaningful when fibers are broken. Human
inspection reinforces these conclusions: U-Net
produces the most visually complete but noisy
segmentations, U-Net++ better preserves struc-
tural fidelity with fewer hallucinations, and At-
tention U-Net is the cleanest but most in-
complete. In summary, U-Net is best suited
when completeness is prioritized and additional
cleanup is feasible, whereas U-Net++ is the

stronger choice when precision and structural
reliability are valued. The current refiner pri-
marily functions as a cleaner rather than a true
reconstructor of missing fibers.

8 Limitations and Future
Work

Several limitations of this work should be ac-
knowledged. First, the datasets available were
small and not fully representative of real engi-
neered heart tissue (EHT). The labeled dataset
lacked the density and structural complexity of
true EHTs, while the annotated EHT dataset
was limited both in size and in annotation qual-
ity, as labels were produced conservatively by a
novice annotator. Better annotation practices,
ideally involving domain experts and more con-
sistent labeling protocols, would greatly improve
the reliability of evaluation and training.

Second, this thesis initially aimed to extract
and analyze 3D fiber metrics, since the EHT im-
ages are volumetric confocal stacks. However,
this proved infeasible in practice. The available
EHT volumes contained only ∼25 usable z-slices
per stack, compared to the very high in-plane
resolution (∼9500×5000 pixels), meaning that
the data were effectively two-dimensional with
limited depth information. Moreover, no suit-
able 3D training datasets were available to train
volumetric models, making robust 3D inference
unattainable within the scope of this project.
As a result, all analysis was constrained to 2D
slice-wise metrics, even though a volumetric ap-
proach would be more biologically meaningful.
Future work with deeper EHT stacks or realis-
tic synthetic 3D training data could extend this
pipeline to volumetric segmentation and met-
rics.

Third, the refinement networks tested in this
thesis often degraded performance, removing
true fibers or fragmenting long structures. This
suggests that the current design is too bi-
ased toward suppressing false positives. Fu-
ture work should explore alternative strategies,
such as reweighted loss functions that empha-
size recall, data augmentation to better cap-
ture rare positive cases, or entirely different re-
finement paradigms (e.g. graph-based refiners,
transformer- or diffusion-based post-processing,
or topology-preserving losses).

Fourth, only a small set of model architec-
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tures (U-Net, Attention U-Net, and U-Net++)
were explored, with one pretrained backbone
(ResNet34). Exploring other pretrained back-
bones, foundation models for biomedical seg-
mentation, or self-supervised pretraining on
large unlabeled microscopy datasets could yield
better generalization. Alternative training
strategies such as semi-supervised learning or
weakly supervised approaches might also allow
more effective use of the limited annotations
available.

In summary, future work could focus on four
main directions: (i) building larger and better-
annotated datasets, (ii) extending the pipeline
toward volumetric (3D) segmentation and met-
rics when deeper datasets become available, (iii)
investigating more advanced or structurally-
aware refinement strategies, and (iv) exploring
a broader range of pretrained architectures and
training methodologies. Together, these direc-
tions could push this pipeline beyond proof-of-
concept into a robust and generalizable tool for
EHT analysis.

9 Conclusion

This thesis presented a pipeline for automated
fiber segmentation and analysis in engineered
heart tissue (EHT) images. By combining
frequency-based pre-processing, established seg-
mentation architectures, and post-processing re-
finers, we systematically evaluated the trade-offs
between recall, precision, structural fidelity, and
visual plausibility.

Across experiments, clear architectural differ-
ences emerged. U-Net produced the most com-
plete and connected fibers but at the cost of
many hallucinations, while Attention U-Net of-
fered the cleanest predictions but missed much
of the fiber structure. U-Net++ provided an
intermediate solution, with pretrained weights
improving sensitivity but often at the expense
of continuity. Refiners, although designed to en-
force structural consistency, generally acted as
suppressors rather than reconstructors, reduc-
ing hallucinations but also removing true fibers.
Fiber-level metrics and human inspection con-
firmed these trade-offs, showing that orientation
was captured reliably across models, but length
and connectivity suffered from fragmentation or
hallucinations depending on the architecture.

Together, these results demonstrate that the
pipeline can already extract meaningful struc-

tural information from challenging EHT data,
despite the limitations of available datasets. U-
Net is most suitable when completeness is pri-
oritized, while U-Net++ offers a more precise
representation of fiber topology when structural
reliability is preferred. Although refiners in their
current form provide limited added value, the
broader framework shows promise as a founda-
tion for future developments.
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