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Abstract

Hyperspectral imaging, with its capability of capturing information beyond the visible spectrum, can
offer detailed spectral signatures that are critical in various applications, ranging from environmental
monitoring to medical diagnostics. However, a significant challenge arises when dealing with hyper-
spectral data due to the mixed-pixel phenomenon, where a single pixel contains spectral signatures
from multiple materials. To solve this problem, hyperspectral unmixing (HU) is used to decompose
mixed pixels into their constituent endmembers and their corresponding abundances. This study
introduces a novel approach that utilizes least squares optimization methods under various constraints
for abundance estimation, specifically using quadratic programming (QP). Additionally, a Principal
Component Analysis (PCA) based k-means clustering method is presented for endmember extraction.
The research also explores the potential of using Weighted Total Least Squares (WTLS) to refine the
estimation process iteratively for the abundance and endmember solutions. The results demonstrate
that the type of constraints, whether Weighted Constraints (WC) or Hard Constraints (HC), significantly
influences the accuracy of abundance estimation. The QP model, when optimized with appropriate
regularization and constraints, showed substantial improvements compared to standard unconstrained
least squares methods. The newly proposed PCA method for endmember estimation outperforms
traditional methods such as Vertex Component Analysis (VCA). Furthermore, while the WTLS method
was sensitive to initial inputs, it showed potential for further enhancing the solutions derived from the
QP and PCA methods.
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1
Introduction

Hyperspectral imaging, a branch within remote sensing that is rapidly developing, captures and
processes information across the electromagnetic spectrum beyond the visible range. Unlike traditional
imaging techniques which typically capture three spectrum bands (red, green, blue), hyperspectral
imaging captures hundreds of contiguous bands. This results in a more detailed spectral signature for
each pixel, which helps in identifying and differentiating various materials and objects (Bioucas-Dias
et al., 2012). Applications to this technology span from precision agriculture to monitor crop health,
mineral exploration, medical diagnostics for tissue characterization (G. Lu & Fei, 2014), and environ-
mental monitoring to detect changes in ecosystems (Chang, 2003).

One of the primary challenges in using hyperspectral image data is the mixed-pixel problem. Due to
the relatively low spatial resolution of hyperspectral sensors, individual pixels frequently encompass
spectral signatures from multiple materials, resulting in homogenized mixtures in the imagery (Keshava
& Mustard, 2002). For instance, in precision agriculture, this might result in a single pixel capturing both
healthy and diseased plant material which complicates accurate health assessments (Guerri et al., 2024).
In mineral exploration, one pixel may blend signatures from different materials, making it difficult to
assess the quantity and quality of the resources (Neville et al., 2003). Hyperspectral unmixing (HU),
therefore, plays a crucial role in decomposing these mixed pixels into their constituent materials, known
as endmembers, and quantifying their proportions, known as abundances.

To tackle the mixed-pixel problem, unmixing methods can generally be categorized into physical-
based and data-driven models (Heylen et al., 2014). Physical-based models, such as the linear mixing
model and non-linear mixing models, rely on established physical principles to simulate how light
interacts with materials. The linear mixing model assumes that the observed spectral signature is a
linear combination of endmember spectra weighted by their respective abundances. This simplicity and
interoperability make the linear mixing model a widely used approach when it comes to HU.

Specific examples of physical-based methods include geometric-based and statistical-based approaches.
Geometric-based methods, such as Vertex Component Analysis (VCA) and N-FINDR, identify end-
members by embedding data points in a lower-dimensional simplex in the feature space and finding
the vertices (Gholinejad & Amiri-Simkooei, 2024). These methods are effective only for endmember
extractions, thus abundances have to be determined separately.

In contrast, statistical-based methods can estimate both endmembers and abundance simultaneously. A
prominent example is Non-negative Matrix Factorization (NMF). NMF decomposes the hyperspectral
data matrix into two non-negative matrices representing endmembers and their corresponding abun-
dances. The non-convex nature of the NFM problem allows for the incorporation of various constraints
or regularization terms to guide the solutions toward more meaningful local minima. Since then,
different variations of the NMF methods have been proposed (Feng et al., 2022).

1



1.1. Research questions 2

However, despite the popularity of the linear mixing models, the linear assumption does not al-
ways hold, especially in cases involving multi-scattering effects or intimate mixtures of pixels (Heylen
et al., 2014). To address these limitations, non-linear mixing models have been developed which account
for more complex interactions between light and matter at a cost of increased computational complexity
(Dobigeon et al., 2014). Such examples include bilinear models which account for pairwise interaction
between endmembers (Heylen et al., 2014), and polynomial post-nonlinear mixing models, which
incorporate polynomial terms for higher-order interactions (Altmann et al., 2012).

While physical models are the traditional approach for unmixing, data-driven models leveraging
machine learning and deep learning have also gained significant attention (Bhatt & Joshi, 2020). These
methods excel in scenarios where underlying physical interactions are complex or poorly understood.
However, training these models often requires large labeled datasets and substantial computational
resources (Audebert et al., 2019; Paoletti et al., 2019).

This thesis explores advanced methods for extracting both abundances and endmembers in hy-
perspectral imaging. The primary objective is to develop a fast and computationally efficient approach
to address the mixed-pixel problem. Given its simplicity and effectiveness, a linear mixing model-based
method will be introduced for abundance estimation, along using least squares optimization. Although
there are existing studies that use the least squares method for abundance computation (Deborah et al.,
2021; Heinz & Chang, 2001; Menon et al., 2016; Pu et al., 2015), they do not investigate how individual
constraints and non-linear constraints affect the estimation process. This study aims to delve deeper by
applying least squares under various constraints and systematically investigate how different constraints
and regularization affect the abundance estimation process. Additionally, a new data-driven approach
will be utilized for endmember extraction, the method combines Principal Component Analysis (PCA)
with k-means clustering. Finally, a Weighted Total Least Squares (WTLS) algorithm will be investigated
to assess its potential to improve the solutions of the newly proposed models.

1.1. Research questions
The main research question for this research can thus be formulated as follows: How can least squares
methods be used to accurately and efficiently estimate abundance and endmembers for hyperspectral
unmixing?

To be able to answer the main research question, the following sub-questions will be addressed:

1. How does the solution differ when considering different constraints especially when dealing with
non-linear constraints for abundance estimation?

2. How do constrained least squares affect the estimation of abundances when compared to the
unconstrained approach?

3. How does regularization affect abundance and endmember estimation?
4. How does the endmember matrix influence the abundance matrix estimation? Can we develop a

fast and accurate method for endmember estimation?
5. How can the abundance and endmember solutions be further enhanced?

1.2. Thesis outline
Chapter 2 of this thesis presents the fundamental background theory of the least squares methods that
will be employed in this study. In Chapter 3, the detailed methodology for developing the models will
be explained. Chapter 4 discusses the results and evaluates the solution quality of the new models
using various real hyperspectral datasets. Finally, Chapter 5 concludes the study by addressing the
research questions and providing recommendations for future research.



2
Background Theory

This chapter presents the fundamental principles and mathematical framework for this research, which
serves as the bedrock of our analysis.

2.1. Least squares solutions
2.1.1. Objective function formulation
In many scientific and engineering applications, the primary challenge is to interpret observed data
in a way that can accurately reflect the underlying physical reality. This often involves solving an
optimization problem, where the goal is to minimize the discrepancy between the observed data and its
estimation based on a predefined linear model. One of the most commonly used methods to address
this optimization challenge is the least squares method.

The least squares approach is particularly effective in linear scenarios. This method aims to min-
imize the squares differences (residuals) between observed data and the estimated data by the linear
model. Mathematically, the objective is formulated as follows:

minimize 𝜙(𝑥) with

𝜙(𝑥) = 1
2 ∥𝑦 − 𝐴𝑥∥2

𝑄−1
𝑦

=
1
2 ∥𝑒∥

2
𝑄−1

𝑦

=
1
2 (𝑦 − 𝐴𝑥)𝑇𝑄−1

𝑦 (𝑦 − 𝐴𝑥)

=
1
2 (𝑦

𝑇𝑄−1
𝑦 𝑦 − 𝑦𝑇𝑄−1

𝑦 𝐴𝑥 − 𝑥𝑇𝐴𝑇𝑄−1
𝑦 𝑦 + 𝑥𝑇𝐴𝑇𝑄−1

𝑦 𝐴𝑥)

(2.1)

where 𝑦 ∈ R𝑚 is the vector of observations, 𝑥 ∈ R𝑛 is the vector of unknown parameters, 𝐴 ∈ R𝑚×𝑛 the
design matrix and 𝑄𝑦 ∈ R𝑚×𝑚 the covariance matrix of observations. The constant term 1

2 often appears
in optimization problems for mathematical conveniences when computing the critical points. Note that
since 𝑦𝑇𝑄−1

𝑦 𝐴𝑥 and 𝑥𝑇𝐴𝑇𝑄−1
𝑦 𝑦 are both scalars and transposes of each other, it follows that:

𝜙(𝑥) = 1
2 𝑦

𝑇𝑄−1
𝑦 𝑦 − 𝑦𝑇𝑄−1

𝑦 𝐴𝑥 + 1
2 𝑥

𝑇𝐴𝑇𝑄−1
𝑦 𝐴𝑥

Omitting the term 𝑦𝑇𝑄−1
𝑦 𝑦 that is not a function of 𝑥, for simplicity, the objective function is then:

𝜙(𝑥) = 1
2 𝑥

𝑇𝑁𝑥 − 𝑢𝑇𝑥 (2.2)

where 𝑁 = 𝐴𝑇𝑄−1
𝑦 𝐴 and 𝑢 = 𝐴𝑇𝑄−1

𝑦 𝑦. To be able to obtain solutions for the least squares method,
consider the following two cases that are presented in the next subsections.

3
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2.1.2. Unconstrained least squares solution
When dealing with least squares methods, there are generally 2 cases to be considered: Constrained
and Unconstrained solutions.

The unconstrained least squares approach is straightforward and fundamental in its own premise. It
does not impose any additional conditions or restrictions on the parameters. In this case, the solution
seeks to find the best fit for the observed data within the frame of the linear model. This unconstrained
scenario is essential for understanding the core principles of the least squares method and serves as a
foundation for more complex, constrained models.

The unconstrained least squares solution is rather trivial. To find the minimizer �̂�, the first and
second derivatives of 𝜙(𝑥)must be computed.

Let 𝑁 and 𝑢 be defined as previously, the first derivative of 𝜙 with respect to 𝑥 is given by:

𝜕𝜙

𝜕𝑥
= 𝜕𝑥(

1
2 𝑦

𝑇𝑄−1
𝑦 𝑦 − 𝑦𝑇𝑄−1

𝑦 𝐴𝑥 + 1
2𝑥

𝑇𝐴𝑇𝑄−1
𝑦 𝐴𝑥)

= −𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐴𝑇𝑄−1

𝑦 𝐴𝑥

= 𝑁𝑥 − 𝑢

(2.3)

The second derivative of 𝜙(𝑥) is given by:

𝜕2𝜙

𝜕𝑥2 = 𝜕𝑥(−𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐴𝑇𝑄−1

𝑦 𝐴𝑥)

= 𝐴𝑇𝑄−1
𝑦 𝐴

= 𝑁

(2.4)

The second derivative is positive definite if 𝐴 has full column rank and 𝑄−1
𝑦 is positive definite. This

ensures that the solution �̂� has a global minimum for 𝜙(𝑥). Thus by setting the first derivative to 0,
solution �̂� will be obtained as:

−𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐴𝑇𝑄−1

𝑦 𝐴𝑥 = 0

𝐴𝑇𝑄−1
𝑦 𝐴𝑥 = 𝐴𝑇𝑄−1

𝑦 𝑦

�̂� = (𝐴𝑇𝑄−1
𝑦 𝐴)−1𝐴𝑇𝑄−1

𝑦 𝑦

= 𝑁−1𝑢

(2.5)

2.1.3. Constrained least squares solution
The unconstrained least squares aims to minimize the objective function without any restriction on the
parameter 𝑥. However, while this is straightforward, in many practical scenarios, parameters must
satisfy certain physical constraints. To incorporate these physical constraints, the constrained least
squares can be considered.

The constrained least squares solution differs from the unconstrained least squares solution. As
shown in (Amiri-Simkooei, 2019), let the weighted or hard linear(ized) constraints be defined as:

𝑐 = 𝐶𝑇𝑥 + 𝑒𝑐 , 𝐷(𝑐) = 𝑄𝑐 (2.6)

where 𝐶𝑇 is the given matrix with constraints, 𝑐 a random vector with variance matrix 𝑄𝑐 , and 𝐷 the
dispersion operator which measures the spread or variability of the random vector 𝑐 that is equal to 𝑄𝑐 .
The solution with constraints can be obtained by expanding the objective function along the constraint
matrix 2.6 with the observation equations. To be more specific, consider the following systems of linear
equations:

𝑦 = 𝐴𝑥 + 𝑒

𝑐 = 𝐶𝑇𝑥 + 𝑒𝑐
(2.7)
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The objective function thus becomes:

minimize 𝜙(𝑥) with

𝜙(𝑥) = 1
2 ∥𝑦 − 𝐴𝑥∥2

𝑄−1
𝑦
+ 1

2 ∥𝑐 − 𝐶𝑇𝑥∥2
𝑄−1

𝑐

=
1
2 ∥𝑒∥

2
𝑄−1

𝑦
+ 1

2 ∥𝑒𝑐 ∥
2
𝑄−1

𝑐

=
1
2 (𝑦𝑐 − 𝐴𝑐𝑥)𝑇𝑄−1

𝑦𝑐
(𝑦𝑐 − 𝐴𝑐𝑥)

=
1
2 𝑦

𝑇
𝑐 𝑄
−1
𝑦𝑐
𝑦𝑐 − 𝑦𝑇𝑐 𝑄

−1
𝑦𝑐
𝐴𝑐𝑥 +

1
2 𝑥

𝑇𝐴𝑇
𝑐 𝑄
−1
𝑦𝑐
𝐴𝑐𝑥

(2.8)

where 𝑦𝑐 =

[
𝑦
𝑐

]
, 𝐴𝑐 =

[
𝐴

𝐶𝑇

]
and 𝑄𝑦𝑐 =

[
𝑄𝑦 0
0 𝑄𝑐

]
. Moreover, as 1

2 𝑦
𝑇
𝑐 𝑄
−1
𝑦𝑐
𝑦𝑐 is not a function of 𝑥, one has:

𝜙(𝑥) = 1
2 𝑥

𝑇𝐴𝑇
𝑐 𝑄
−1
𝑦𝑐
𝐴𝑐𝑥 − 𝑦𝑇𝑐 𝑄

−1
𝑦𝑐
𝐴𝑐𝑥 (2.9)

note that equation (2.9) has the same general form as presented in equation 2.2 if 𝑁𝑐 = 𝐴𝑇
𝑐 𝑄
−1
𝑦𝑐
𝐴𝑐 and

𝑢𝑐 = 𝐴𝑇
𝑐 𝑄
−1
𝑦𝑐
𝑌.

By computing 𝑁𝑐 explicitly:

𝑁𝑐 =
[
𝐴𝑇 𝐶

] [𝑄−1
𝑦 0
0 𝑄−1

𝑐

] [
𝐴

𝐶𝑇

]
= 𝐴𝑇𝑄−1

𝑦 𝐴 + 𝐶𝑄−1
𝑐 𝐶𝑇 (2.10)

similarly, for 𝑢𝑐 :

𝑢𝑐 =
[
𝐴𝑇 𝐶

] [𝑄−1
𝑦 0
0 𝑄−1

𝑐

] [
𝑦
𝑐

]
= 𝐴𝑇𝑄−1

𝑦 𝑦 + 𝐶𝑄−1
𝑐 𝑐 (2.11)

Following the same argument to the unconstraint least squares, combining equation 2.10 and 2.11, the
solution of least squares with constraint thus becomes:

�̂� = 𝑁−1
𝑐 𝑢𝑐

= (𝐴𝑇𝑄−1
𝑦 𝐴 + 𝐶𝑄−1

𝑐 𝐶𝑇)−1(𝐴𝑇𝑄−1
𝑦 𝑦 + 𝐶𝑄−1

𝑐 𝑐)
= (𝑁 + 𝐶𝑄−1

𝑐 𝐶𝑇)−1(𝑢 + 𝐶𝑄−1
𝑐 𝑐)

(2.12)

where 𝑁 = 𝐴𝑇𝑄−1
𝑦 𝐴 and 𝑢 = 𝐴𝑇𝑄−1

𝑦 𝑦.

The above solution (2.12) is a general form when considering weighted or hard linear(ized) con-
straints. In some cases, more advanced constraints may be introduced, including non-linear constraints.
These non-linear constraints can significantly increase computational complexity, sometimes making it
difficult for standard solvers to find solutions.

2.2. Weighted total least squares solutions
As stated previously, the objective of normal least squares is to minimize the sum of squared residuals
between observed dependent variables and the estimated solution. This approach assumes that errors
are only present in the vector of observations, while the independent variables are considered to be exact.
However, there might be cases where the errors can also be present in the design matrix. Golub and
Van Loan (Golub & Van Loan, 1980) introduced total least squares with an error-in-variable (EIV) model
that considers errors both in the observation and design matrix. In the following, a comprehensive
overview of the solution methodology for WTLS will be provided.

2.2.1. Univariate WTLS solution
Consider the standard univariate EIV model:

𝑦 = (𝐴 − 𝐸𝐴)𝑥 + 𝑒𝑦 (2.13)
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with stochastic properties:

𝑒 =

[
𝑒𝑦
𝑒𝐴

]
=

[
𝑒𝑦

vec(𝐸𝐴)

]
∼ (

[
0
0

]
, 𝜎2

0

[
𝑄𝑦 0
0 𝑄𝐴

]
) (2.14)

where 𝐸𝐴 ∈ R𝑚×𝑛 and 𝑒𝑦 ∈ R𝑚 correspond to random errors of the design matrix 𝐴 and the observation
vector 𝑦, respectively. 𝑄𝐴 ∈ R𝑚𝑛×𝑚𝑛 is the covariance matrices of the design matrix and 𝜎2

0 is the
(un)known variance factor of the unit weight (Gholinejad & Amiri-Simkooei, 2023).

Thus the minimization problem can be formulated as:

Objective: minimize𝒥𝑢 = 𝑒𝑇𝑦𝑄
−1
𝑦 𝑒𝑦 + 𝑒𝑇𝐴𝑄

−1
𝐴 𝑒𝐴

subject to: 𝑦 − 𝑒𝑦 = (𝐴 − 𝐸𝐴) 𝑥
(2.15)

Let ℒ𝑢 be the target Lagrange function (Schaffrin and Wieser, 2007; Shen et al., 2010) :

ℒ𝑢(𝑒𝑦 , 𝑒𝐴 ,𝜆, 𝑥) = 𝑒𝑇𝑦𝑄
−1
𝑦 𝑒𝑦 + 𝑒𝑇𝐴𝑄

−1
𝐴 𝑒𝐴 + 2𝜆𝑇

(
𝑦 − 𝐴𝑥 − 𝑒𝑦 +

(
𝑥𝑇 ⊗ 𝐼𝑚

)
𝑒𝐴

)
(2.16)

where 𝐼𝑚 is an identity matrix of size 𝑚 and 𝜆 ∈ R𝑚 is the vector of unknown Lagrange multipliers. The
stationary points have to be computed, this is done by computing the partial derivatives of the target
Lagrange function with respect to the unknown parameters 𝑒𝑦 , 𝑒𝐴, 𝜆 and 𝑥 are:

1
2
𝜕ℒ𝑢

𝜕𝑒𝑇𝑦
= 𝑄−1

𝑦 𝑒𝑦 − �̂� = 0 =⇒ 𝑒𝑦 = 𝑄𝑦�̂� = vec(�̃�𝑦) (2.17)

1
2
𝜕ℒ𝑢

𝜕𝑒𝑇
𝐴

= 𝑄−1
𝐴 𝑒𝐴 + (�̂� ⊗ 𝐼𝑚)�̂� = 0 =⇒ 𝑒𝐴 = −𝑄𝐴(�̂� ⊗ 𝐼𝑚)�̂� = vec(�̃�𝐴) (2.18)

1
2
𝜕ℒ𝑢

𝜕𝜆
= 𝑦 − 𝐴�̂� − 𝑒𝑦 + (�̂�𝑇 ⊗ 𝐼𝑚)𝑒𝐴 = 0 (2.19)

1
2
𝜕ℒ𝑢

𝜕𝑥𝑇
= −𝐴𝑇�̂� + �̃�𝑇

𝐴�̂� = 0 (2.20)

where tildas refer to the ’predicted’ vectors, and hats refer to ’estimated’ vectors. The estimated values
are generally obtained by minimizing the objective function, whereas the predicted values are obtained
after estimating the model parameters. After some simple mathematical substitution, one obtains

�̂� = 𝑄−1
�̃� (𝑦 − 𝐴�̂�) (2.21)

with
𝑄 �̃� = 𝑄𝑦 + (�̂�𝑇 ⊗ 𝐼𝑚)𝑄𝐴(�̂� ⊗ 𝐼𝑚) (2.22)

where 𝑄 �̃� the covariance matrix of predicted observations for �̃� = 𝑦 − �̃�𝐴 �̂�. Thus the minimizer �̂� can
be formulated as:

�̂� = ((𝐴 − �̃�𝐴)𝑇𝑄−1
�̃� 𝐴)−1(𝐴 − �̃�𝐴)𝑇𝑄−1

�̃� 𝑦 (2.23)

However the normal matrix in equation 2.23 is not symmetric and positive-definite. By letting 𝐴 = �̃�+�̃�𝐴,
the new �̂� can be reformulated similarly to the standard least squares solution form (Amiri-Simkooei
and Jazaeri, 2012; Gholinejad and Amiri-Simkooei, 2023):

�̂� = (�̃�𝑇𝑄−1
�̃� �̃�)−1�̃�𝑇𝑄−1

�̃� �̃� (2.24)
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2.2.2. Multivariate WTLS solution
The multivariate WTLS solution can be computed similarly to the univariate case, as it considers multiple
observation vectors at once (Gholinejad & Amiri-Simkooei, 2023). The multivariate EIV model can be
formulated as follows:

𝑌 − 𝐸𝑌 = (𝐴 − 𝐸𝐴)𝑋 (2.25)

where 𝑌 ∈ R𝑚×𝑔 is the vectors of observations with 𝑔 groups of data, 𝑋 ∈ R𝑛×𝑔 is the vectors of
unknowns and 𝐸𝑌 ∈ R𝑚×𝑔 the random errors. The new objective function thus can be restated as:

Objective: minimize𝒥𝑤 = 𝑒𝑇𝑦𝑄
−1
𝑌 𝑒𝑦 + 𝑒𝑇𝐴𝑄

−1
𝐴 𝑒𝐴

subject to: 𝑦 − 𝐸𝑌 = (𝐴 − 𝐸𝐴) 𝑥
(2.26)

where 𝑒𝑦 = 𝑒vec(𝑌) ∈ R𝑚×𝑔 and 𝑒𝑎 = vec(𝐸𝐴) = 𝑒vec(𝐴) ∈ R𝑚×𝑛 . By assuming 𝑎 = vec(𝐴), 𝑦 = vec(𝑌),
𝑥 = vec(𝑋) and , 𝜆 = vec(Λ)with identities vec(𝑎𝑏𝑐) = (𝑐𝑇 ⊗ 𝑎)vec(𝑏) and tr(𝑎𝑏𝑇) = vec(𝑎)𝑇vec(𝑏). The
target Lagrange function ℒ𝑚 for the multivariate case is:

ℒ𝑚(𝑒𝑦 , 𝑒𝑎 ,𝜆, 𝑋) = 𝑒𝑇𝑦𝑄
−1
𝑌 𝑒𝑦 + 𝑒𝑇𝑎 𝑄

−1
𝐴 𝑒𝑎 + 2 tr(Λ𝑇 (𝑌 − 𝐴𝑋 − 𝐸𝑌 + 𝐸𝐴𝑋))

= 𝑒𝑇𝑦𝑄
−1
𝑌 𝑒𝑦 + 𝑒𝑇𝑎 𝑄

−1
𝐴 𝑒𝑎 + 2𝜆𝑇(𝑦 − vec(𝐴𝑋) − 𝑒𝑦 + (𝑋𝑇 ⊗ 𝐼𝑚)𝑒𝑎)

(2.27)

Analogous to the univariate case, the partial derivatives of the Lagrange function with respect to the
unknown parameters 𝑒𝑦 , 𝑒𝑎 , 𝜆 and 𝑋 are:

1
2
𝜕ℒ𝑚

𝜕𝑒𝑇𝑦
= 𝑄−1

𝑌 𝑒𝑦 − �̂� = 0 =⇒ 𝑒𝑦 = 𝑄𝑌�̂� = vec(�̃�𝑌) (2.28)

1
2
𝜕ℒ𝑚

𝜕𝑒𝑇𝑎
= 𝑄−1

𝐴 𝑒𝑎 + (�̂� ⊗ 𝐼𝑚)�̂� = 0 =⇒ 𝑒𝑎 = −𝑄𝐴(�̂� ⊗ 𝐼𝑚)�̂� = vec(�̃�𝐴) (2.29)

1
2
𝜕ℒ𝑚

𝜕𝜆
= 𝑦 − vec(𝐴�̂�) − 𝑒𝑦 + (�̂�𝑇 ⊗ 𝐼𝑚)𝑒𝑎 = 0 (2.30)

1
2
𝜕ℒ𝑚

𝜕𝑋𝑇
= −𝐴𝑇Λ̂ + �̃�𝑇

𝐴Λ̂ = 0 (2.31)

By doing substitution and letting �̂� = 𝑌 − 𝐴�̂� being the estimated total residual matrix, one obtains:

�̂� = 𝑄−1
�̃�

vec(�̂�) = 𝑄−1
�̃�
𝑒 (2.32)

where 𝑒 = vec(�̂�)with
𝑄�̃� = 𝑄𝑌 + (�̂�𝑇 ⊗ 𝐼𝑚)𝑄𝐴(�̂� ⊗ 𝐼𝑚) (2.33)

The above formulation can be further simplified by assuming 𝑄𝐴 = Σ𝐴 ⊗ 𝑄 and 𝑄𝑌 = Σ𝑌 ⊗ 𝑄 where
𝑄 ∈ R𝑚×𝑚 and Σ𝐴 ∈ R𝑛×𝑛 , Σ𝑌 ∈ R𝑔×𝑔 being positive definite matrices that are elements of the covariance
matrices which explains the cross-covariances between 𝐴 and 𝑌. Therefore:

𝑄�̃� = 𝑄𝑌 + (�̂�𝑇 ⊗ 𝐼𝑚)𝑄𝐴(�̂� ⊗ 𝐼𝑚)
= Σ𝑌 ⊗ 𝑄 + (�̂�𝑇 ⊗ 𝐼𝑚)(Σ𝐴 ⊗ 𝑄)(�̂� ⊗ 𝐼𝑚)
= Σ𝑌 ⊗ 𝑄 + �̂�𝑇Σ𝐴�̂� ⊗ 𝑄

= Σ̂ ⊗ 𝑄

(2.34)

where Σ̂ = Σ̂𝑌 + �̂�𝑇Σ𝐴�̂�. This also yields that:

�̂� = (Σ̂−1 ⊗ 𝑄−1)vec(�̂�)
= vec(𝑄−1�̂�Σ̂−1)
=⇒ Λ̂ = inverse vec(�̂�) = 𝑄−1�̂�Σ̂−1

(2.35)
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Substituting everything back to equation 2.31 and to make a symmetric positive-definite normal matrix,
let 𝐴 = �̃� + �̃�𝐴, the minimizer �̂� is given as:

�̂� = ((𝐴 − �̃�𝐴)𝑇𝑄−1𝐴)−1(𝐴 − �̃�𝐴)𝑇𝑄−1𝑌

=⇒ �̂� = (�̃�𝑇𝑄−1�̃�)−1�̃�𝑇𝑄−1�̃�
(2.36)

Lastly, 𝑒𝑦 and 𝑒𝑎 can be simplified to:

𝑒𝑦 = vec(�̃�𝑌) = 𝑄𝑌�̂�

= (Σ𝑌 ⊗ 𝑄)(Σ̂−1 ⊗ 𝑄−1)vec(�̂�)
= vec(�̂�Σ̂−1Σ𝑌)
=⇒ �̂�𝑌 = inverse vec(𝑒𝑦) = �̂�Σ̂−1Σ𝑌

(2.37)

𝑒𝑎 = vec(�̃�𝐴) = −𝑄𝐴(�̂� ⊗ 𝐼𝑚)�̂�
= −(Σ𝐴 ⊗ 𝑄)(�̂� ⊗ 𝐼𝑚)vec(𝑄−1�̂�Σ̂−1)
= −(Σ𝐴�̂� ⊗ 𝑄)vec(𝑄−1�̂�Σ̂−1)
= vec(�̂�Σ̂−1�̂�𝑇Σ𝐴)
=⇒ �̃�𝐴 = inverse vec(𝑒𝑎) = −�̂�Σ̂−1�̂�𝑇Σ𝐴

(2.38)



3
Methodology

This chapter outlines the methodology employed in this research. Section 3.1 explains the methods used
for abundance computation, an important step for accurately interpreting hyperspectral data. Section
3.2 details the endmember extraction techniques, which are essential for material identification and have
a direct influence on the accuracy of abundance estimation. Finally, Section 3.3 discusses the motivation
and implementation of the WTLS methods, for potential enhancement of the solutions derived from
earlier stages.

3.1. Abundance computation
Historically, linear hyperspectral unmixing has been the standard method for resolving the mixed-pixel
challenge (Heinz & Chang, 2001). This approach is encapsulated in the following system of observation
equations:

𝑦 = 𝐴𝑥 + 𝑒 , 𝐷(𝑦) = 𝑄𝑦 (3.1)

where 𝑦 is the observed spectrum of the pixels; 𝐴 is the matrix that contains the spectral signatures of
the endmembers. Each column of matrix 𝐴 represents the spectrum of one endmember, describing
how each endmember absorbs or reflects light across various wavelengths; 𝑥 is the abundance matrix
that indicates the proportion of each endmember within a pixel; 𝑒 is the error or noise and 𝐷 is the
dispersion operator with 𝑄𝑦 being the variance matrix of 𝑦. The above model (3.1) is the foundation for
various unmixing techniques. The aim is to accurately estimate both the abundance matrix 𝑥 and the
endmember matrix 𝐴 given the observed data 𝑦. It reflects the inherent nature of hyperspectral data,
where each pixel’s spectrum is a composite of material contributions with given distribution.

Given this model, the hyperspectral unmixing (HU) problem can be formulated as a least squares
problem. To be able to accurately estimate the abundance solution, selecting a computationally efficient
and fast solver is crucial. Initially, two solvers were considered: a nonlinear programming solver and a
quadratic programming (QP) solver. The nonlinear programming solver has the advantage of handling a
wide variety of objective functions and constraints, including nonlinear and non-convex ones. However,
this flexibility comes at the cost of efficiency and speed, resulting in high computational complexity.

In contrast, general QP problems are considered to be NP-hard (Ye & Tse, 1989), which indicates
that they fall into a category where no efficient algorithms are known to solve these problems within
polynomial time. However, this does not apply if the QP problem is convex. For convex QP problems,
polynomial time interior-point method algorithm can be used to provide unique solutions. The objective
function of the least squares problem formulated is convex, making the QP solver a better choice. It
offers robustness, computational efficiency, and predictability compared to the general nonlinear solver.
Therefore, the QP solver was selected for this research due to its performance in solving convex least
squares problems with lower computational cost and more reliable behavior.

To make the abundance estimation more meaningful, nonnegativity, sum-to-one, and sparsity constraints

9
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were considered for this optimization procedure:

• Nonnegativity Constraint: Ensures that the estimated abundances are non-negative, reflecting the
physical reality that negative abundances do not make sense in the context of material composition.

• Sum-to-One Constraint: Imposes that the sum of the abundance for each pixel equals to one.
Representing a fractional abundance where the total proportion of materials in each pixel must
account for the entire pixel.

• Sparsity Constraint: Encourages solutions where most abundances are zero. Promoting a sparse
representation that aligns with the assumption that each pixel is composed of a few endmembers
rather than a mix of many.

Several studies have been conducted to design new algorithms for solving HU problems. However,
there are almost no studies or little that explicitly investigate how these constraints directly influence
the results. Most studies consider either the sum-to-one constraint or the sparsity constraint, but rarely
both together. Often, the sparsity constraint is treated as a regularization term in the objective function
rather than as an individual constraint (Qian et al., 2011). In this research, instead of incorporating the
sparsity constraint as a regularization term in the objective function, 𝐿𝑞-norm will be directly applied
as a regularizer to the sparsity constraint to enforce sparsness. To thoroughly investigate how these
constraints affect abundance estimation, the model for the constrained least squares problem will be
formulated as follows:

Objective : minimize 𝜙 =
1
2 𝑥

𝑇𝑁𝑥 − 𝑢𝑇𝑥

Subject to :
𝑛∑
𝑖=1

𝑥𝑖 = 1

𝑛∑
𝑖=1

𝑥2
𝑖 = ∥𝑥∥

2 = 1

𝑥 ≥ 0

(3.2)

when one also takes the Lq-norm into consideration:

Objective : minimize 𝜙 =
1
2 𝑥

𝑇𝑁𝑥 − 𝑢𝑇𝑥

Subject to :
𝑛∑
𝑖=1

𝑥𝑖 = 1

𝑛∑
𝑖=1

𝑥
𝑞

𝑖
= ∥𝑥∥𝑞 = 1

𝑥 ≥ 0

(3.3)

or alternatively, the most general form:

Objective : minimize 𝜙 =
1
2 𝑥

𝑇𝑁𝑥 − 𝑢𝑇𝑥

Subject to :
𝑛∑
𝑖=1

𝑥𝑖 = 1

𝑛∑
𝑖=1

𝑥
𝑞

𝑖
= ∥𝑥∥𝑞 ≤ 𝜇

𝑥 ≥ 0

(3.4)

where 0 < 𝑞 ≤ 1 and 𝜇 ∈ R+0 .

One might already notice that the sparsity constraints being considered are non-linear. In gen-
eral, non-linear constraints in QP can potentially lead to a non-convex problem. For instance, if one
considers more complex constraints such as the manifold constraint (Feng et al., 2022; X. Lu et al., 2013,
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2020), which exploits the underlying geometrical structure of the data under the assumption that the
hyperspectral data lies on a low-dimensional manifold, the feasible region of the optimization problem
might lie outside of the convex region. To ensure that our problem remains convex, it is imperative to
linearize the constraints.

3.1.1. Constraints implementation
The linearization of the constraint is achieved by using the first-order Taylor series expansion of a
function 𝑓 (𝑥) around an initial point 𝑥0. The linearized expression is given by

𝑓 (𝑥) ≈ 𝑓 (𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) (3.5)

For the case of sparsity constraint
∑𝑛

𝑖=1 𝑥
2
𝑖
≤ 𝜇, the function 𝑓 (𝑥𝑖) = 𝑥2

𝑖
is considered. The derivative

of 𝑓 (𝑥𝑖) with respect to 𝑥𝑖 is 𝑓 ′ (𝑥𝑖) = 2𝑥𝑖 . At the point 𝑥0,𝑖 , this derivative becomes 𝑓 ′ (𝑥0,𝑖) = 2𝑥0,𝑖 .
Expanding 𝑓 (𝑥𝑖) around 𝑥0,𝑖 yields:

𝑥2
𝑖 ≈ 𝑥2

0,𝑖 + 2𝑥0,𝑖(𝑥𝑖 − 𝑥0,𝑖) (3.6)

This simplifies to:
𝑥2
𝑖 ≈ 2𝑥0,𝑖𝑥𝑖 − 𝑥2

0,𝑖 (3.7)
Consequently, the constraint becomes:

𝑛∑
𝑖=1
(2𝑥0,𝑖𝑥𝑖 − 𝑥2

0,𝑖) ≤ 𝜇 (3.8)

The linearization process for the general sparsity constraint is analogous to the sparsity constraint, let
𝑓 (𝑥𝑖) = 𝑥

𝑞

𝑖
, taking the derivative at 𝑥0,𝑖 , one obtains: 𝑓 ′ (𝑥0,𝑖) = 𝑞𝑥

𝑞−1
0,𝑖 . Expanding around 𝑥0,𝑖 :

𝑥
𝑞

𝑖
≈ 𝑥

𝑞

0,𝑖 + 𝑞𝑥
𝑞−1
0,𝑖 (𝑥𝑖 − 𝑥0,𝑖) (3.9)

Which leads to the linearized form:
𝑛∑
𝑖=1

𝑥
𝑞

𝑖
≈

𝑛∑
𝑖=1

𝑞𝑥
𝑞−1
0,𝑖 𝑥𝑖 + (1 − 𝑞)

𝑛∑
𝑖=1

𝑥
𝑞

0,𝑖 ≤ 𝜇 (3.10)

Moreover, for the constrained least squares case, the constraints can be enforced in a way either as
weighted constraints (WC) or hard constraints (HC) (Amiri-Simkooei, 2017). The difference between the
two lies in the strictness with which the constraints are applied to the QP model. This is controlled by
𝑄𝑐 , the variance matrix for the constraints. A larger value of 𝑄𝑐 makes the constraints more weighted,
while a smaller value makes them harder. In this research, a scaled diagonal variance matrix for
𝑄𝑐 will be considered. This approach is chosen not only for its simplification and computational
efficiency but also based on the assumption that the different bands are uncorrelated or independent.
While this may not always be true in practice, it is a reasonable approximation when the bands are
sufficiently separated in the electromagnetic spectrum. Additionally, the noise in different bands will be
assumed to be independent, which naturally leads to a scaled diagonal variance matrix containing noises.

Regularization of the sparsity constraint also plays a crucial role in hyperspectral unmixing, as it
promotes sparsity and stabilizes the solution. Investigating the effect of regularization can help improve
the robustness and accuracy of the solution. Different regularizers will be investigated to see the effect of
abundance estimation, e.g: 0 < 𝐿 ≤ 2, 0 < 𝑎 ≤ 1. It is worth stating that when the sum-to-one constraint
is being considered, the 𝐿1 (q=1) does not significantly enhance sparsity, as 𝐿1 and the sum-to-one
constraint are related to each other (Qian et al., 2011). The sum-to-one constraint inherently imposes a
form of restriction on the total abundance, which can lead to a natural, albeit less explicit, sparsity. This
overlap with the 𝐿1 regularization in the constraint and the sum-to-one constraint can lead to a case
where the explicit sparsity-inducing effect of 𝐿1 regularization is subdued. In other words, while 𝐿1
regularization seeks to minimize the number of contributing endmembers, the sum-to-one constraint
simultaneously ensures that the total contribution remains constant. This dual requirement can lead to
solutions where the sparsity is not as pronounced as it might be with 𝐿1 regularization alone.
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3.1.2. Theoretical computational complexity for the QP model
One of the research questions aims to investigate how constraints affect abundance estimation. To
address this, the problem is divided into four specific cases, each with potentially different computational
complexities. The computational complexity of each case can be generally described in terms of the
operations involved in solving the QP problem, considering factors such as the number of pixels 𝑟, the
number of bands 𝑚, and the number of endmembers 𝑛. As each case involves different constraints with
varying dependent variables, to be able to find the most optimal solution, hyperparameter tuning for
each variable or case will be conducted for fair abundance computation. The theoretical computational
complexities for each case based on the QP solver are shown below:

1. Case 1 (Non-negativity constraint): In the first case, the optimization framework is exclusively
bounded by a non-negativity constraint. The interior point method implemented in the QP solver
gives a computational complexity of 𝒪(𝑟 𝑛3).

2. Case 2 (Non-negativity and Sum-to-one constraint): Implementing a sum-to-one constraint
alongside non-negativity adds a layer of computational complexity without fundamentally
changing the overall complexity compared to case 1, which remains 𝒪(𝑟 𝑛3).

3. Case 3 (Non-negativity, sum-to-one and sparsity constraint): Implementing non-negativity, sum-
to-one, and non-linear sparsity constraints directly can increase the computational complexity,
potentially exceeding 𝒪(𝑟 𝑛3.5). This increase accounts for an estimated factor of 𝑛0.5 additional
iteration due to non-linear constraints. However, linearizing these constraints through Taylor series
expansion can reduce the complexity to 𝒪(𝑟 𝑛3). This transition highlights the computational
benefits of linearization.

4. Case 4 (Non-negativity, sum-to-one and generalized sparsity constraint): Implementing a general-
ized sparsity constraint with extensive hyperparameter tuning is computationally challenging,
with complexity expected to exceed 𝒪(𝑟 𝑛3.5). However by linearizing the problem, one can reduce
this complexity to 𝒪(𝐻 𝑟 𝑛3), where 𝐻 represents the number of hyperparameter configurations
explored and 𝐻 ∈ Z+, 𝐻 ≥ 1.

3.2. Endmember extraction methods
Endmember estimation also plays an important role in the HU problem, as more accurate endmember
estimations lead to better solutions for the abundances. This is directly reflected in the minimizer �̂�
computed in Section 2 for the constrained least squares, where the endmember matrix 𝐴 is a dependent
variable for computing the abundances.

There are various methods for extracting endmembers, with geometric-based methods being the
most well-known. For example, the Pixel Purity Index (PPI) identifies pure pixels by projecting data
onto random unit vectors and counting the number of times each pixel is considered extreme in these
projections. However, since this method is not iterative, improving the solution requires increasing the
number of random projection vectors, leading to high computational complexity (Boardman, 1993; Dixit
& Agarwal, 2021). Another iterative method, N-FINDR, seeks to find the simplex of maximum volume
within the data. It iteratively examines pixel combinations and selects the one forming the largest
simplex, corresponding to the purest spectral signature. This method can also be computationally
demanding, especially with large datasets (Du et al., 2008; Winter, 1999).

To incorporate a robust and computationally efficient geometric method for endmember extraction,
Vertex Component Analysis (VCA) was chosen for comparison against the newly proposed PCA-based
k-means clustering method. VCA is widely used and computationally cheaper compared to the PPI
and N-FINDR methods mentioned above. Additionally, since VCA utilizes dimensional reduction
techniques such as Singular value decomposition (SVD) or PCA, it serves as a fair benchmark for
comparisons. The detailed procedure of how VCA works is shown in the following subsection with
slight adjustment to the original paper so it aligns with a pixel-by-pixel manner (Nascimento & Dias,
2005).
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3.2.1. Vertex component analysis
The vertex component analysis (VCA) is an unsupervised algorithm used for endmember extraction.
This algorithm works under the assumption that in a linear mixing model, the spectral signature of each
pixel can be represented as a linear combination of the spectra of the endmembers present in the scene.

The VCA algorithm primarily investigates two key aspects: first, whether the endmembers can
be identified as the vertices of simplexes in the data space, and second, whether the affine transformation
of each simplex remains simplex. The algorithm begins with the assumption that endmembers are
presented within the data, then it iteratively projects the sample data vectors onto directions orthogonal
to the subspace spanned by the previously identified endmembers. The new endmembers are identified
based on the minimal or maximal extreme projections, and this iterative process continues until all
potential endmembers have been evaluated for the dataset.

To have a better understanding of how VCA works, consider the following:

Assume in a linear mixing, in a pixel-by-pixel manner, the observed spectral vector is given as:

𝑦𝑖 = 𝛼𝑖 + 𝑒𝑖 = 𝐴𝛾𝑖𝑥𝑖 + 𝑒𝑖 = 𝐴𝑠𝑖 + 𝑒𝑖 for 𝑖 = 1, ...𝑟 (3.11)

Where 𝑟 is the number of pixels, 𝑦 is an 𝑚-vector with 𝑚 number of bands for each pixel, 𝑒𝑖 the additive
noise vector, 𝑥𝑖 = [𝑥𝑖 ,1 , 𝑥𝑖 ,2...𝑥𝑖 ,𝑛]𝑇 the abundance vector which contains the fractions of each endmember
for each pixel with 𝑛 endmembers, 𝐴 = [𝑎1 , 𝑎2 , ...𝑎𝑛] a 𝑚 × 𝑛 mixing matrix which maps the abundance
vector 𝑥𝑖 to the true spectral vector 𝛼𝑖 with endmember spectral vector 𝑎𝑛 , and lastly 𝛾𝑖 is a scale factor
modeling illumination variability due to surface topography.

The main goal of VCA is to find the abundance vector 𝑥𝑖 with its corresponding endmember vector
𝑎𝑛 . Now note that in this linear mixing model, one also has to consider the physical constraints for the
abundance fractions, specifically two constraints are being implemented, the nonnegativity 𝑥 ⪰ 0 with
positivity constraint 1𝑇𝑥 = 1 with 1 a 𝑛 × 1 vector of ones (Nascimento & Dias, 2005). Every pixel can be
considered as a sample vector within the 𝑚-dimensional Euclidean space.

Now since the set {𝑥 ∈ R𝑛 : 1𝑇𝑥 = 1, 𝑥 ⪰ 0} is simplex, the set 𝑆𝛼 = {𝛼 ∈ R𝑚 : 𝛼 = 𝐴𝑥, 1𝑇𝑥 = 1, 𝑥 ⪰ 0} is
also simplex. The proof of the above statement is rather straightforward: A simplex in a 𝑛-dimensional
space is a convex hull of 𝑛 + 1 vertices, where no vertices are colinear, forming the simplest possible
polytope in any given dimension. Note that as 𝐴 consists of 𝑛 linearly independent endmembers
/columns, the set of all linear combinations of 𝛼 = 𝐴𝑥 under the constraint 1𝑇𝑥 = 1 and 𝑥 ⪰ 0 forms a
convex polytope. The vertices of this polytope are the columns of 𝐴. Since 𝑥 enforces a combination of
these vertices where the coefficients sum to one are non-negative, 𝑆𝛼 forms a simplex, as it represents a
convex hull of these vertices under given constraints.

Consider now the scaling factor 𝛾 with 𝑒 = 0, the observed vector set then belongs to the con-
vex cone 𝐶𝑛 = {𝑦 ∈ R𝑚 : 𝑦 = 𝐴𝛾𝑥, 1𝑇𝑥 = 1, 𝑥 ⪰ 0, 𝛾 ≥ 0}. To prove that it indeed belongs to the convex
cone 𝐶𝑛 , by definition of a convex cone, it has to satisfy both the convexity and cone property, which can
be shown as follows:

1. (Convexity) For any two vectors 𝑦1 , 𝑦2 ∈ 𝐶𝑛 , with any scalar 𝑡 where 0 ≤ 𝑡 ≤ 1, the combination of
𝑡𝑦1 + (1− 𝑡)𝑦2 also belongs to 𝐶𝑛 . This is due to the linear nature of 𝑦 with respect to 𝑥 and 𝛾, and
the constraint of 𝑥 and 𝛾 ensures that any linear combination remains in the cone.

2. (Cone property) Let any vector 𝑦 ∈ 𝐶𝑛 and any scalar 𝜁 ≥ 0, the vector 𝜁𝑦 also belongs to 𝐶𝑛 . This
directly follows from the definition of 𝐶𝑛 as 𝛾 can be scaled by 𝜁, showing that scaling 𝑦 by any
non-negative scaler keeps it within 𝐶𝑛 .

The crucial aspect of 𝐶𝑛 is its ability to model the geometric structure of the data in the presence of scale
variability.

Lastly, a projective projection of the convex cone 𝐶𝑛 onto a chosen hyperplane transforms it into
another simplex 𝑆𝑛 , where the projection is defined as: 𝑆𝑛 = {𝑧 ∈ R𝑚 : 𝑧 = 𝑦/(𝑦𝑇𝑢), 𝑦 ∈ 𝐶𝑛} and 𝑢 is
chosen such that no vector 𝑦 in 𝐶𝑛 is parallel to the hyperplane defined by 𝑦𝑇𝑢 = 1. This condition
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ensures that the division by 𝑦𝑇𝑢 is always possible, mapping each point 𝑦 to new point 𝑧, and its infinite
extension is mapped to a bounded region on 𝑆𝑛 .

Figure 3.1: VCA algorithm illustration (Nascimento & Dias, 2005)

With the given simplex 𝑆𝑛 , the VCA algorithm iteratively projects the data onto a direction orthogonal
to the subspace spanned by the endmembers that have been identified. Figure 3.1 shows an illustration
of two iterations for the VCA algorithm to the simplex 𝑆𝑛 for a mixture of two endmembers. The
data first are projected along direction 𝑓1 where the extreme point 𝑎𝑐 of this projection corresponds
to the first endmember. Subsequently, the projection along direction 𝑓2, which is orthogonal to 𝑎𝑐 ,
identifies the second endmember at the extreme point 𝑎𝑑. The algorithm continues this iterative process,
identifying new endmembers by projecting the data onto directions orthogonal to the subspace defined
by all previously identified endmembers, until the total number of endmembers is determined. The
pseudo-code for the VCA algorithm used in this research is shown in Appendix 2, more details about
the code itself can be found in the paper (Nascimento & Dias, 2005).

To address the computational complexity, particularly given that most of the spectral information
(the ’subspace signal’) is contained within a far smaller space than the total number of spectral bands
(𝑛 ≪ 𝑁), different dimensional reduction techniques such as PCA or SVD can be employed to VCA
algorithm to narrow down the data onto subspace signal based on the signal-noise-ratio values.

3.2.2. Computational complexity for VCA
The theoretical computational complexity for VCA can become significant if the number of endmembers
is large. Consider the algorithm shown in Appendix 2. Let 𝑚 be the number of spectral bands, 𝑟 be
the number of pixels, and 𝑛 be the number of endmembers. The dimensional reduction step in the
VCA for a 𝑚 × 𝑟 matrix has 𝒪(𝑚 𝑟2) floating point operations (flops). In the iterative step where data is
projected onto a lower-dimensional subspace to identify vertices of the convex hull, has a complexity of
𝒪(𝑛 𝑟) flops per iteration. Since there are 𝑛 endmembers, there are 𝑛 iterations. Thus the total flops
for the iterative step is 𝒪(𝑛2 𝑟). Combining these steps, the total computational complexity of the VCA
algorithm is 𝒪(𝑚𝑎𝑥(𝑚 𝑟2 , 𝑛2 𝑟)).

3.2.3. The PCA method
In addition to VCA, a newly developed PCA-based k-means clustering method is introduced in this
research. For the remainder of this thesis, this method will be referred to as the PCA method. The
inspiration for this method came from the paper (Amiri-Simkooei et al., 2011), where a similar approach
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was used for seafloor classification. This method is simple and intuitive. It combines the advantages of
PCA with k-means clustering, which can simply the endmember extraction process while maintaining
computational efficiency and robustness for complex datasets. To have a better understanding of how
the method works, in the following PCA and K-means will be explained in detail:

Principal component analysis
Principal component analysis (PCA) is a statistical technique that uses an orthogonal transformation
to convert a set of possibly correlated observations into a set of linearly uncorrelated variables known
as principal components (PCs). In this transformation, the first principal component is defined to
capture the maximum variance from the data, then each subsequent component accounts for the
highest variance possible while being orthogonal to all previously defined components. The resulting
PCs form an uncorrelated orthogonal basis set, which is also sensitive to the relative scaling of the
original variables. To address the challenges with high-dimensional feature spaces, which usually have
complicated visualization and interpretation, PCA reduces the dimensionality while also retaining
the most feature variations. This reduction is achieved by identifying the direction of PCs where data
variation is maximized. When visualizing complex datasets as coordinates in a high-dimensional data
space, PCA usually provides a lower-dimensional picture, often referred to as the ’shadow’ of the object.
This shadow is viewed from the most informative angle that can capture the essential structure of the
data, however, it is important to note that, some parts of the data might be lost during the PCA process
(Jolliffe, 2002; Amiri-Simkooei et al., 2011).

The full PCA process is as follows: Given a data matrix 𝑌 ∈ R𝑚×𝑟 such that 𝑌 = [𝑦1 𝑦2 ... 𝑦𝑟]
where 𝑟 is the number of data points or sample size and 𝑚 be the spectral bands or features, the data
first have to go through standardization that involves adjusting each variable to have zero mean and
unit variance to ensure that each variable have the same weight and contributes equally to the PCA
process. Then the 𝑚 × 𝑚 covariance matrix Σ can be computed as

Σ =
𝑌𝑌𝑇

𝑟 − 1 (3.12)

where the diagonal elements represent the variances of the feature and off-diagonal elements are the
correlation coefficients of the features.

An eigenvalue decomposition of the positive-definite covariance also has to be performed

Σ = 𝑈Ω𝑈𝑇 (3.13)

where 𝑈 is the matrix whose columns are the eigenvectors of Σ, and Ω is a diagonal matrix with
eigenvalues 𝜈𝑖 , 𝑖 = 1, ... 𝑟 of Σ on the diagonal. The eigenvectors (principal axes directions) define the
direction of the new feature space, and the eigenvalues define their magnitude (the variance explained
by the principal axes).

Lastly, the eigenvectors are ordered by decreasing eigenvalues, a choice can be made on the number of
PCs to retain. To be more specific, 𝑈 can be partitioned as 𝑈 = [𝑈1;𝑈2], where 𝑈1 contains the first
𝑛 ≤ 𝑚 eigenvectors of Σ with the largest eigenvalues in Ω, and 𝑈2 contains the remaining eigenvectors
that have the smallest eigenvalues of Σ. The data then can be projected onto the new feature space

𝑃 = 𝑈𝑇
1 𝑌 (3.14)

where 𝑃 is the new coordinates of data 𝑌 in the PC space.

To quantify the relative importance of each PCs, the percentage of the total variance explained
by each component is computed as

%𝑖 =
𝜈𝑖∑𝑚
𝑘=1 𝜈𝑘

× 100 (3.15)

and 𝜈𝑘 = 𝑡𝑟𝑎𝑐𝑒(Ω) = 𝑡𝑟𝑎𝑐𝑒(Σ) is the total variance (Amiri-Simkooei et al., 2011).
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K-means clustering
K-means clustering is a widely used method for partitioning a dataset into 𝑘 distinct, non-overlapping
subgroups (clusters). It aims to minimize the clustering error, which is defined as the sum of the squared
distances between the data points and their respective cluster centroids (MacQueen, 1967; Sinaga and
Yang, 2020).

To be more specific, let 𝑦𝑖 ∈ R𝑚 and𝑌 = [𝑦1 𝑦2 ... 𝑦𝑟] be the dataset consisting 𝑟 points in 𝑚-dimensional
space. By letting 𝑃 = {𝑃1 , 𝑃2 , ... 𝑃𝑘} be the distinct subsets, the main objective is to partition the
observations into 𝑘 sets. The objective function thus can be formulated as:

arg min
𝑃

𝑘∑
𝑖=1

∑
𝑦𝑖∈𝑃𝑖

∥𝑦𝑖 − 𝑐𝑖 ∥2 (3.16)

where 𝑐𝑖 is the cluster centroid, and is defined as:

𝑐𝑖 =
1
|𝑃𝑖 |

∑
𝑦𝑖∈𝑃𝑖

𝑦𝑖 (3.17)

where |𝑃𝑖 | is the number of data points in the 𝑖-th subset, and the equation calculates the mean of these
points that represents the center of the cluster in the feature space.

With the help of equations 3.16 and 3.17, the k-means clustering algorithm works as follows: k-
means clustering algorithm is an iterative process, first an initialization step has to be taken, this step
selects the 𝑘 initial centroids, either randomly or by some heuristics. Each data point 𝑦𝑖 has to be
assigned to the nearest centroid to form 𝑘 clusters, this is usually based on the minimum distance
criteria:

𝑃
(𝜂)
𝑖

=

{
𝑦𝑖 ∈ 𝑌 :




𝑦𝑖 − 𝑐
(𝜂)
𝑖




2
≤



𝑦𝑖 − 𝑐

(𝜂)
𝑗




2
∀𝑗 , 1 ≤ 𝑗 ≤ 𝑘

}
(3.18)

where 𝜂 denotes the iteration number. The new centroid of the cluster then will be recalculated:

𝑐
(𝜂+1)
𝑖

=
1���𝑃(𝜂)𝑖

��� ∑
𝑦𝑖∈𝑃(𝜂)𝑖

𝑦𝑖 (3.19)

This process takes place until the centroids are stabilized, which indicates a convergence.

K-means clustering offers significant advantages, as it is a fast, robust method with high compu-
tational efficiency. However, it also has downsides. One major limitation is that it does not always lead
to a global minimum solution for the clustering function (Steinley, 2008). Instead, it often converges to
a local minimum, which means the final solution may depend heavily on the initial selection of the
centroids, that can lead to a suboptimal outcome. Furthermore, the use of Euclidean distance measures
can lead to unequal weights for underlying factors. In high-dimensional space, the distance can become
dominated by features with larger scales, and the square differences can over-penalize outliers. Thus to
address some of the limitations, an alternative metric cosine distance can be used, as it measures the
similarity in terms of the angle between points rather than their absolute positional differences. Which
can be defined as:

𝑃
(𝜂)
𝑖

=

𝑦𝑖 ∈ 𝑌 :
©­­«1 −

𝑦𝑖 · 𝑐(𝜂)𝑖
∥𝑦𝑖 ∥




𝑐(𝜂)𝑖 


ª®®¬ ≤
©­­«1 −

𝑦𝑖 · 𝑐(𝜂)𝑗
∥𝑦𝑖 ∥




𝑐(𝜂)𝑗 


ª®®¬∀𝑗 , 1 ≤ 𝑗 ≤ 𝑘

 (3.20)

The cosine distance is particularly useful when the orientation matters more than the magnitudes.
Figure 3.2a and 3.2b shows an example of the differences when considering the two distance metrics.
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(a) Example of squared euclidean distance metric (b) Example of cosine distance metric

Figure 3.2: Distance metrics examples

Integrating PCA and k-means clustering shown above, the PCA method proceeds as follows:

The process begins with PCA, which reduces the dimensionality of the hyperspectral data by re-
taining the most significant components. This step involves standardizing each spectral band to have
zero mean and unit variance, followed by computing the covariance matrix and performing SVD. The
number of PCs retained is determined based on the cumulative variance, which in this case is set to
capture over 99.5% of the variance. This criterion ensures that the most critical information is retained,
with the first two PCs capturing the majority of the variance.

After dimensionality reduction, k-means clustering is applied to the data transformed by PCA. The
k-means algorithm partitions the data into 𝑘 clusters, each representing a potential endmember, which
means in our case 𝑘 = 𝑛. During the k-means clustering process, various distance metrics can be
used to measure the similarity between data points and cluster centroids. In this research, metrics
such as squared Euclidean distance and cosine distance were utilized to explore different clustering
characteristics.

In summary, the steps for this method work as:

1. PCA step:

• Standardize each spectral bands to have zero mean and unit variance.
• Compute the covariance matrix of the standardized data.
• Perform SVD on the covariance matrix to obtain eigenvectors and eigenvalues.
• Retain PCs which captures over 99.5% of the cumulative variance.

2. k-means clustering step:

• Apply k-means clustering to the data transformed by PCA.
• Apply distance metrics to partition data into 𝑛 clusters where each 𝑛 corresponds to the

number of endmembers.
• The cluster centroid then represents a potential endmember.

3.2.4. Computational complexity for the PCA method
The computational complexity for the PCA method can potentially be lower than VCA if the number
of PCs retained after PCA and the number of k-means iterations are kept low. Let 𝑚 be the number
of spectral bands, 𝑟 be the number of pixels, 𝜂 be the number of iterations, 𝑛 be the number of
clusters/endmembers and 𝑝 be the retained PCs. The computational complexity of computing the
covariance matrix of an 𝑚 × 𝑟 data matrix is 𝒪(𝑚 𝑟2), performing SVD on the covariance matrix typically
has a complexity of 𝒪(𝑚3). However, when 𝑚 ≪ 𝑟, the complexity is dominated by the matrix
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multiplication, the complexity then remains with 𝒪(𝑚 𝑟2) flops. Each iteration of the k-means clustering
step involves assigning 𝑟 pixels to 𝑛 centroid in 𝑝-dimensional space and updating the centroid, with 𝜂
iteration, the complexity is 𝒪(𝜂 𝑛 𝑝 𝑟). Combining these steps the total computational complexity of
the PCA method is 𝒪(𝑚𝑎𝑥(𝑚 𝑟2 , 𝜂 𝑛 𝑝 𝑟)), which indicates the PCA method is more computationally
efficient when 𝑝 and 𝜂 are low.

3.3. WTLS algorithm formalization
In the field of HU, many methods estimate the endmember matrix and the abundance matrix simul-
taneously rather than computing them separately. Examples include various non-negative matrix
factorization (NMF) methods (Feng et al., 2022; Gholinejad & Amiri-Simkooei, 2024; Khoshsokhan
et al., 2019). These methods iteratively estimate both the endmember and abundance matrices by
decomposing the observed data into non-negative components, ensuring that the solution remains
physically meaningful.

Inspired by the iterative nature of NMF, the WTLS algorithm can be adapted to perform a simi-
lar joint estimation, potentially enhancing the solution quality for the endmembers. Unlike NMF, WTLS
inherently accounts for error in both the observation 𝑦 and the design endmember matrix 𝐴. This duel
error considerations makes the WTLS particularly suitable for HU where measurement noise and model
inaccuracies can impact the estimation process. The WTLS algorithm used in this research is adapted
from (Gholinejad & Amiri-Simkooei, 2023) with some modification. It uses the output from the QP
model and endmember estimation from the VCA and PCA methods as an initial input. The adapted
algorithm 1, outputs �̃�, which is the new estimated endmember matrix.

Algorithm 1 Weighted Total Least Squares (WTLS) Algorithm
Inputs: 𝐴, 𝑌, 𝑋optimal (Solution from QP)
Initialize: �̂� = 𝑋optimal
�̂�← 𝑌 − 𝐴�̂�

Σ̂−1 ← inv
(
Σ𝑌 + �̂�𝑇Σ𝐴�̂�

)
�̃�𝐴 ← −�̂�Σ̂−1�̂�𝑇Σ𝐴

�̃�← 𝐴 − �̃�𝐴

Output: �̃�

3.3.1. Computational complexity for WTLS algorithm
The computational complexity for the full WTLS algorithm can be found in paper (Gholinejad &
Amiri-Simkooei, 2023). Although the WTLS algorithm was modified, Σ−1 remains as one of the most
computationally heavy steps as it is required to compute the inverse of a 𝑔 × 𝑔 matrix, which leads
to 𝒪(𝑔3). As for the minimizer �̂�, it is dependent on the QP solutions. The specific computational
complexities for each case of the QP solution are listed in subsection 3.1.2. These complexities vary
based on the constraints applied towards the abundance estimation. Thus considering the most
computationally heavy QP solution, the complexity for the adjusted WTLS is 𝒪(𝑚𝑎𝑥(𝑔3 , 𝐻 𝑟 𝑛3)).

3.4. Evaluation metrics
The quality of the HU method proposed above will be assessed using two evaluation metrics: Root
Mean Square Error (RMSE) and Spectral Angle Distance (SAD). These metrics provide a quantitative
measure of the accuracy and reliability of the estimated abundance and endmember matrices.

The RMSE is computed as:

RMSE =

√√
1
𝑛

𝑛∑
𝑖=1
(𝑐𝑟 − 𝑐2

𝑟 ) (3.21)

where 𝑐𝑟 and 𝑐𝑟 represent the true and estimated spectral signatures of the r-th endmember, respectively.
RMSE is a widely used metric for quantifying the difference between the estimated values and the true
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values. It provides a straightforward measure of the magnitude of the error.

SAD is calculated as:
SAD = arccos( 𝑐𝑇𝑟 𝑐𝑟

∥𝑐𝑟 ∥∥𝑐𝑟 ∥
) (3.22)

SAD measures the spectral similarity between the true and estimated spectral signatures by calculating
the angle between them. Unlike RMSE, SAD is invariant to scaling, making it particularly useful in
hyperspectral applications where the spectral shape is more important than the absolute magnitude.



4
Results and Discussions

To evaluate the proposed QP model, endmember matrix estimation, and the effects of using WTLS
algorithm, a series of experiments have been conducted across different cases using three distinct
datasets: the Samson dataset, the Jasper Ridge dataset, and the Urban dataset. The Samson dataset
comprises 3 endmembers, while the Jasper Ridge and Urban datasets each contain 4 endmembers. The
three datasets contain diversified endmembers, which can test how the proposed method performs for
various spectral signatures. Moreover, all datasets include observed spectra 𝑦 and a known endmember
matrix 𝐴, enabling experiments to proceed under the assumption that these variables are pre-determined.
However, this assumption may not always hold in practical applications.

The specific settings for each case are listed in Subsection 3.1.2. To be able to conduct a compre-
hensive analysis of our QP model, the true abundance with unconstrained least squares solution
will also be included in the comparison. In each case, different parameters significantly influence
the outcomes of the QP model, thus to optimize results across various conditions, hyperparameter
tuning will be applied to each parameter. A grid search method will be implemented to find the best
hyperparameter values for this study (Zhu, Wang, Fan, et al., 2014; Zhu, Wang, Xiang, et al., 2014), and
the specific parameters to be tuned are as follows: 𝑄𝑐 , the variance matrix which assigns weights to the
corresponding constraints; 𝑞, the regularization factor that modulates the sparsity of the solution; and
𝜇, a constant that influences a certain degree of sparseness in the solution through the regularization
term involving 𝑞, that ensures the solution remains in a practical bound.

This process will also involve an exploration of both weighted constraints (WC) and hard constraints (HC)
to determine their ideal configurations. By systematically adjusting and evaluating these parameters,
the analysis ensures the most accurate result of the QP model for diverse datasets. Moreover, to evaluate
the performance under hyperparameter tuning, evaluation metrics such as RMSE and SAD will be used
to determine the performance of the QP model.

It is also worth stating that for the WC, the hyperparameter tuning for the variance matrix will
have the value 𝑄𝑐 ∈ {10−3 , 10−2 , 10−1 , 1, 101 , 102 , 103}, whereas for the HC the variance matrix will be
restricted to 0 < 𝑄𝑐 ≤ 1, specifically 𝑄𝑐 ∈ {10−3 , 10−2 , 10−1}, as it implies that the constraints are forced
to be implemented to the QP calculation. Note that as case 3 is equivalent to 𝐿2 regularization for
the sparsity constraint, and when 𝑞 = 1 it implies 𝐿1 regularization which duplicates the sum-to-one
constraint, investigation for 𝐿0<𝑞<1 will be done together with 0 < 𝜇 ≤ 1. This adopted range of values
for 𝑞 and 𝜇 will only be used in case 4, as it represents the most generic form for the QP model.

After the analysis of the QP model, the effectiveness and accuracy of the estimated endmember
matrix will be further investigated through comparison with the VCA and the new PCA methods. Lastly,
to explore the potential of enhancing these results, WTLS algorithm will be employed.

20
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(a) False color composite for Samson Dataset (b) False color composite Jasper Ridge Dataset

(c) False color composite for Urban Dataset

Figure 4.1: False color composite for each dataset

4.1. Samson Dataset
The Samson Dataset is the first hyperspectral dataset that will be tested. The data originally is very large
which has 952 × 952 pixels with 156 bands. However, for this study, a sub-image will be considered and
now the size is reduced to 95 × 95 pixels. As stated for this dataset the endmember signature and the
abundance are all available, so the quality of the QP model can be evaluated. Further details of the
dataset can be found in (Zhu, 2017).

The false color composite for the Samson Dataset can be found in Figure 4.1a, where it contains
3 endmembers, namely: ’Rock’, ’Tree’ and ’Water’.

4.1.1. Abundace solutions
The following Table 4.1 shows the optimal hyperparameter tuning values for the WC and HC under each
case. With these parameter settings, the visualization of the abundance maps using QP can be found in
Figure 4.2 and Figure 4.3 for the WC and HC respectively. Moreover, the quality of each endmember
compared to the true abundance solution is examined in terms of RMSE and SAD, which the results are
presented in Table 4.2 and 4.3.
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Parameters Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

𝑄𝑐1 - - 1000 1000 1000
𝑄𝑐2 - - - 1000 10
𝜇 - - - 1 0.7
𝑞 - - - 2 0.7

HC

𝑄𝑐1 - - 0.1 0.001 0.1
𝑄𝑐2 - - - 0.1 0.1
𝜇 - - - 1 0.6
𝑞 - - - 2 0.9

Table 4.1: Weighted Constraints (WC) and Hard Constraints (HC) optimal parameter values via hyperparameter tuning for
Samson Dataset

Figure 4.2: Weighted-constrained abundance maps for Samson Dataset with true and unconstrained abundance maps. Rows
from top to bottom represent rock, tree and water respectively.

Figure 4.3: Hard-constrained Samson abundance maps for Samson Dataset with true and unconstrained abundance maps. Rows
from top to bottom represent rock, tree and water respectively.
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Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Rock 0.1452 0.1369 0.1374 0.1353 0.1305
Tree 0.2546 0.2483 0.2482 0.2481 0.2496

Water 0.1663 0.0999 0.1005 0.1222 0.0589
WC Average 0.1887 0.1617 0.1620 0.1685 0.1463

HC

Rock 0.1452 0.1369 0.1789 0.3505 0.1924
Tree 0.2546 0.2483 0.2302 0.3311 0.2442

Water 0.1663 0.0999 0.3473 0.3646 0.2013
HC Average 0.1887 0.1617 0.2521 0.3487 0.2126

Table 4.2: Weighted constraint (WC) and Hard Constrained (HC) RMSE values for each case under optimal parameter settings
with Samson Dataset

Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Rock 16.0701◦ 15.3170◦ 15.3723◦ 15.1319◦ 14.5865◦
Tree 20.4673◦ 19.8965◦ 19.8704◦ 19.8307◦ 20.2670◦

Water 18.0215◦ 10.7151◦ 10.7467◦ 14.0768◦ 6.3698◦
WC Average 18.1863◦ 15.3095◦ 15.3298◦ 16.3465◦ 13.7411◦

HC

Rock 16.0701◦ 15.3170◦ 20.1884◦ 38.8075◦ 20.3512◦
Tree 20.4673◦ 19.8965◦ 17.8041◦ 37.6717◦ 21.8771◦

Water 18.0215◦ 10.7151◦ 33.3821◦ 34.3561◦ 25.6258◦
HC Average 18.1863◦ 15.3095◦ 23.7915◦ 36.9451◦ 22.6180◦

Table 4.3: Weighted Constrained (WC) and Hard Constrained (HC) SAD values for each case under optimal parameter settings
with Samson Dataset

As one can see from the Table 4.2, the solution for the WC tends to have better solutions compared to
the HC solution. This is reasonable as in HC cases setting extra restrictions can lead to a worse solution,
since the solution can lie outside the proper solution space after adding constraints. Moreover, while
the unconstrained weighted least squares case already has a quite decent solution when comparing the
abundance map to the true solution, WC case 4 has an even better solution. As for the HC cases, case 1
produces the best solution, although this is the case, the nonnegativity constraint itself is not enough as
it falls short of encapsulating the full physical essence of the unmixing process. Thus it is important to
consider the trade-off between the solution accuracy and the integrity of the physical interpretation of HU.

The solution from Table 4.3 shows a similar trend to the RMSE solutions meaning they are somewhat
correlated. Higher RMSE values show higher SAD values and vice versa. Based on Figure 4.3 shows that
most cases have difficulty estimating endmember ’water’ for HC cases, which might be the illumination
effect based on the dataset itself.

4.1.2. Endmember matrix estimations
As the endmember matrix plays a crucial role in abundance estimation for the QP model, the following
Figure 4.4 shows the result of using the VCA and PCA methods. These methods are categorized into
two distinct groups. In the VCA method, ’VCA single runs’ execute the algorithm only once to deduce
endmembers from the hyperspectral dataset 𝑦, while ’VCA bundle runs’ perform multiple iterations to
enhance the robustness of the extraction. Conversely, the PCA method is divided based on the 2 metrics
when clustering the data, specifically squared Euclidean distance and cosine distance, as they can affect
the final solution performances. The quality of clustering achieved by the two PCA methods is illustrated
in Figure 4.5. These plots show how the data points which represent different spectral signatures
are distributed along PCs. Effective clustering would be indicated by well-separated clusters with
minimal overlap, suggesting that the PCA method has successfully distinguished different endmembers.
Although the first two PCs in already captures 99.5% of the cumulative variance which reflects the most
critical variations within data, other PCs comparisons are also shown to reveal additional data structure
and to examine the consistency of clustering across different dimensions.
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Figure 4.4: Estimated endmembers (blue) and true endmembers (red) for Samson Dataset. Rows from top to bottom represent
rock, tree and water respectively

(a) PC1 vs PC2 using squared euclidean
metric for clustering

(b) PC1 vs PC3 using squared euclidean
metric for clustering

(c) PC1 vs PC2 using cosine distance metric
for clustering

(d) PC1 vs PC3 using cosine distance metric
for clustering

Figure 4.5: PCs visualization for Samson Dataset, each color represents a potential endmember
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Endmember VCA Single VCA Bundle PCA Square Euclidean PCA Cosine

RMSE

Rock 0.1516 0.0419 0.0502 0.0373
Tree 0.1068 0.0863 0.1148 0.2133
Water 0.0055 0.0050 0.0226 0.0046
Average 0.0880 0.0444 0.0625 0.0851

SAD

Rock 2.3168◦ 1.7947◦ 7.3738◦ 2.1329◦
Tree 4.0840◦ 2.6828◦ 2.8025◦ 2.8025◦
Water 7.4718◦ 6.4537◦ 27.0267◦ 6.2479◦
Average 4.6242◦ 3.6437◦ 12.4010◦ 3.7278◦

Table 4.4: RMSE and SAD values for endmember matrix estimation (Samson Dataset)

From Table 4.4, ’VCA bundle runs’ achieve the lowest values in terms of both RMSE and SAD. However,
a closer inspection of the second column in Figure 4.4 reveals that the ’VCA bundle runs’ generate
negative values. In the context of endmember estimation, negative values are not physically meaningful
and should generally be avoided.

In comparison, the ’PCA Square Euclidean’ and ’PCA Cosine’ methods provide the next best so-
lutions based on RMSE and SAD values, respectively. Although their RMSE values are relatively close,
there are notable differences in their SAD values. Specifically, the ’PCA Square Euclidean’ shows a
relatively poor estimation for the endmember ’water’ compared to the ’PCA Cosine’ method. This
indicates that when the dataset includes the endmember ’water’, the ’PCA Cosine’ approach might be
more appropriate due to its superior performance in capturing the spectral characteristics of water in
terms of SAD. Since there are no significant differences in RMSE values between the two PCA methods,
the better SAD performance of the ’PCA Cosine’ method makes it a preferable choice over the ’PCA
Square Euclidean’ method.

4.1.3. WTLS solutions
The solutions from the QP model and the endmember matrices will serve as inputs for the WTLS
simulations. For these tests, only case 4 will be examined for both WC and HC scenarios, as it is the
most generic case encompassing all constraints. Additionally, the QP solutions will be valued across
each endmember method that was proposed to assess the potential improvement in solutions.

To ensure efficient and effective convergence, a stopping criterion was set at 10−6 with a maximum of 50
iterations, since this process can be time consuming when the datasets get larger. Figures 4.6 and 4.7
illustrate the endmember solutions using the WC and HC solutions from the QP model, applied to each
endmember extraction method. Figures 4.8 and 4.9 demonstrate how the RMSE and SAD values for
endmembers and abundances change after implementing the WTLS algorithm.
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Figure 4.6: WTLS estimated endmembers (blue) and true endmembers (red) for Samson Dataset with WC settings. Rows from
top to bottom represent rock, tree and water respectively

Figure 4.7: WTLS estimated endmembers (blue) and true endmembers (red) for Samson Dataset with HC settings. Rows from top
to bottom represent rock, tree and water respectively
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Figure 4.8: Abundance RMSE (blue) and endmember RMSE (red) comparison with different input endmember matrices using
WTLS algorithm. The first row represents the RMSE after using WC abundance solutions, and the second row represents the

RMSE after using HC abundance solutions from QP respectively. (Samson Dataset)

Figure 4.9: Abundance SAD (blue) and endmember SAD (red) comparison with different input endmember matrices using WTLS
algorithm. The first row represents the SAD after using WC abundance solutions, and the second row represents the SAD after

using HC abundance solutions from QP respectively. (Samson Dataset)

From Figure 4.6, it can be observed that ‘VCA Single Runs’ produce negative values for the endmember
’tree’ under WC cases. For the other three cases, there is an improvement in the endmember ’tree’
compared to the original endmember extraction results in Figure 4.4, but generally, worse results for
the endmember ’water’. The first row of Figure 4.8 also shows an inversely proportional relationship
between the abundance and endmember RMSE: as the endmember RMSE improves, the abundance
RMSE worsens. Notably, the endmember RMSE for the PCA case seems to improve after 50 iterations.

When the abundance is set to HC solutions, all new endmember solutions become positive for
all methods. Significant improvement is observed for the endmember ’tree’ in all cases, along with a
direct improvement in the endmember ’water’ estimation. A closer examination, considering the average
RMSE values from Table 4.4 and the second row of Figure 4.8, indicates improvement in the endmember
solution for ’VCA Single Runs’, ’PCA Square Euclidean’, and ’PCA Cosine Distance’. However, the
RMSE value for abundances worsens compared to the original value of 0.2126 for abundance estimation
alone.
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Regarding the solutions in terms of SAD, using the WC QP solution, it can be seen that the SAD
values using WTLS can lead to an improvement in abundance results in terms of SAD compared to
the original value of 13.7411◦. There is a significant improvement in the ’PCA Square Euclidean’ SAD
value compared to 12.4010◦, but the SAD values for the other methods worsen slightly. Under HC QP
solutions, there are substantial improvements in the endmember estimation for ’PCA Square Euclidean’
SAD values, with slight improvements in abundance SAD and a slight worsening of endmember SAD
compared to their original values.

4.2. Jasper Ridge Dataset
Jasper Ridge is the second hyperspectral dataset that is going to be analyzed as it is popular in various
HU studies. The data is captured via AVIRIS (Airborn visible/infrared imaging spectrometer) sensor
from the Jet Propulsion Laboratory. The original dataset consists of 512 × 614 pixels with 224 bands. As
there is no available ground truth for the whole surface of this hyperspectral image, a sub-image of
100 × 100 will be considered. Moreover, due to atmospheric effects and dense water vapor, spectral
bands 1-3, 108-112, 154-266, and 220-224 have been removed which remains 198 bands for this study.
The false color composite of this dataset is shown in Figure 4.1b. The Jasper Ridge Dataset consists of 4
endmembers, namely: ’tree’, ’dirt’, ’water’, and ’road’. Further details can be found in (Zhu, 2017; Zhu,
Wang, Xiang, et al., 2014).

4.2.1. Abundace solutions
Table 4.5 shows the optimal hyperparameter tuning values for the weighted and hard constraints under
each case. The illustration of the abundance maps with their optimal setting for WC and HC are shown
in Figure 4.10 and 4.11. Furthermore, the RMSE and SAD values obtained from QP are presented in
Table 4.6 and 4.7 respectively.

Parameters Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

𝑄𝑐1 - - 0.1 0.1 1
𝑄𝑐2 - - - 1000 1
𝜇 - - - 1 0.8
𝑞 - - - 2 0.9

HC

𝑄𝑐1 - - 0.1 0.1 0.1
𝑄𝑐2 - - - 0.1 0.1
𝜇 - - - 1 1
𝑞 - - - 2 0.9

Table 4.5: Weighted Constraints (WC) and Hard Constraints (HC) optimal parameter values via hyperparameter tuning for Jasper
Ridge Dataset
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Figure 4.10: Weighted-constrained abundance maps for Jasper Ridge Dataset with true and unconstrained abundance maps.
Rows from top to bottom represent tree, water, dirt and road respectively.

Figure 4.11: Hard-constrained abundance maps for Jasper Ridge Dataset with true and unconstrained abundance maps. Rows
from top to bottom represent tree, water, dirt and road respectively.
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Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Tree 0.1332 0.0874 0.0574 0.0515 0.0658
Water 0.2337 0.1172 0.0819 0.0819 0.0518
Dirt 0.1726 0.0642 0.0703 0.0720 0.0789
Road 0.1213 0.0482 0.0585 0.0581 0.0528

WC Average 0.1652 0.0793 0.0670 0.0659 0.0623

HC

Tree 0.1332 0.0874 0.0574 0.1862 0.0641
Water 0.2337 0.1172 0.0819 0.1437 0.0695
Dirt 0.1726 0.0642 0.0703 0.2844 0.1141
Road 0.1213 0.0482 0.0585 0.2154 0.0858

HC Average 0.1652 0.0793 0.0670 0.2074 0.0833

Table 4.6: Weighted constraint (WC) and Hard Constrained (HC) RMSE values for each case under optimal parameter settings
with Jasper Ridge Dataset

Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Tree 9.9748◦ 7.5454◦ 5.9926◦ 5.7490◦ 6.9218◦
Water 19.8804◦ 9.1917◦ 7.6856◦ 7.6886◦ 5.2339◦
Dirt 16.9321◦ 8.6099◦ 9.3201◦ 9.8059◦ 10.6867◦
Road 26.9809◦ 12.2069◦ 14.7565◦ 14.7203◦ 13.2609◦

WC Average 18.4421◦ 9.3885◦ 9.4387◦ 9.4910◦ 9.0258◦

HC

Tree 9.9748◦ 7.5454◦ 5.9926◦ 18.3050◦ 7.2957◦
Water 19.8804◦ 9.1917◦ 7.6856◦ 13.2120◦ 6.5636◦
Dirt 16.9321◦ 8.6099◦ 9.3201◦ 41.0465◦ 15.6960◦
Road 26.9809◦ 12.2069◦ 14.7565◦ 47.7749◦ 20.8773◦

HC Average 18.4421◦ 9.3885◦ 9.4387◦ 30.0846◦ 12.6081◦

Table 4.7: Weighted Constrained (WC) and Hard Constrained (HC) SAD values for each case under optimal parameter settings
with Jasper Ridge Dataset

From table 4.5, 4.6 and 4.7, one can see that for the WC case, case 4 produces the best result in terms of
RMSE and SAD, and as for the HC case, case 2 leads to the lowest RMSE values and case 1 produces the
lowest SAD. This solution improvement is also translated into the abundance map, as in endmember
’dirt’ there are direct improvements across various cases.

By taking a closer look at case 3, it can be seen that the value 𝑄𝑐2, which corresponds to the weight
of the sparsity constraint, does not improve the solution as much for the WC case, and even produces
worse results in the HC case compared to case 2. This indicates that sparsity constraint and sum-to-one
constraint share similar properties when being considered together (Bruckstein et al., 2008, Qian et al.,
2011).

4.2.2. Endmember matrix estimations
The endmember matrix estimation exhibits greater variation when comparing solutions to the Samson
Dataset. Figure 4.12 illustrates the endmember estimation using VCA and PCA methods, while Figure
4.13 demonstrates the clustering quality for the PCA methods. Table 4.8 provides the RMSE and SAD
values for the endmember estimations.
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Figure 4.12: Estimated endmembers (blue) and true endmembers (red) for Jasper Ridge dataset. Rows from top to bottom
represent tree, water, dirt and road respectively

(a) PC1 vs PC2 using squared euclidean
metric for clustering

(b) PC1 vs PC3 using squared euclidean
metric for clustering

(c) PC1 vs PC4 using squared euclidean
metric for clustering

(d) PC1 vs PC2 using cosine distance metric
for clustering

(e) PC1 vs PC3 using cosine distance metric
for clustering

(f) PC1 vs PC4 using cosine distance metric
for clustering

Figure 4.13: PCs visualization for Jasper Ridge Dataset, each color represents a potential endmember



4.2. Jasper Ridge Dataset 32

Endmember VCA Single VCA Bundle PCA Square Euclidean PCA Cosine

RMSE

Tree 0.1919 0.0530 0.0243 0.0308
Water 0.0123 0.0115 0.0148 0.0095
Dirt 0.0952 0.3508 0.0790 0.0834
Road 0.3736 0.1600 0.0623 0.0695
Average 0.1683 0.1438 0.0451 0.0483

SAD

Tree 17.2757◦ 9.4105◦ 1.6098◦ 1.1857◦
Water 14.5512◦ 13.1135◦ 12.0531◦ 6.9352◦
Dirt 13.2047◦ 39.9091◦ 11.4405◦ 12.0477◦
Road 37.9603◦ 7.9833◦ 8.3121◦ 8.0858◦
Average 20.7480◦ 17.6041◦ 8.3539◦ 7.06336◦

Table 4.8: RMSE and SAD values for endmember matrix estimation (Jasper Ridge Dataset)

Based on Table 4.8, the ’PCA Square Euclidean’ method produces the best result in terms of RMSE,
while the ’PCA Cosine’ method yields the best SAD value. ’VCA bundle runs’ still produce negative
values, particularly for the endmember ’water’. As previously mentioned, VCA methods are sensitive to
illumination and atmospheric effects, which might lead to negative estimations for endmembers due to
the properties of the dataset.

The PCA methods demonstrate remarkable results compared to the VCA methods, with nearly three
times the improvement. Although there are no significant differences between RMSE and SAD values
overall, a closer examination reveals that the ’PCA Cosine’ method estimates the endmember ’water’
especially well compared to the ’PCA Square Euclidean’ method similar to the Samson Dataset. This is
likely due to the cosine distance metric, which measures the similarity in orientation between vectors
rather than their absolute differences. Since the spectral signature of water can vary due to factors like
illumination and viewing angle, the cosine metric is more effective in capturing these variations, making
’PCA Cosine’ a better choice when the dataset contains endmember ’water’.

4.2.3. WTLS solutions
The endmember simulation using WTLS for the Jasper Ridge Dataset with WC and HC settings are
shown in Figures 4.14 and 4.15, respectively. Figures 4.16 and 4.17 illustrate how the RMSE and SAD
values change when implementing different endmember extraction methods together with the QP
solutions.
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Figure 4.14: WTLS estimated endmembers (blue) and true endmembers (red) for Jasper Ridge dataset with WC settings. Rows
from top to bottom represent tree, water, dirt and road respectively
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Figure 4.15: WTLS estimated endmembers (blue) and true endmembers (red) for Jasper Ridge dataset with HC settings. Rows
from top to bottom represent tree, water, dirt and road respectively

Figure 4.16: Abundance RMSE (blue) and endmember RMSE (red) comparison with different input endmember matrices using
WTLS algorithm. The first row represents the RMSE after using WC abundance solutions, and the second row represents the

RMSE after using HC abundance solutions from QP respectively. (Jasper Ridge Dataset)
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Figure 4.17: Abundance SAD (blue) and endmember SAD (red) comparison with different input endmember matrices using
WTLS algorithm. The first row represents the SAD after using WC abundance solutions, and the second row represents the SAD

after using HC abundance solutions from QP respectively. (Jasper Ridge Dataset)

From Figure 4.14, it can be seen that the VCA method produces negative values under WC settings. Since
VCA does not perform well in endmember extraction, using WTLS worsens the solution, indicating that
the WTLS algorithm is quite sensitive to the initial input. By applying HC constraints to the abundance
solution, as shown in Figure 4.15, ’VCA Bundle Runs’ produce positive values, but ’VCA Single Runs’
still yield negative values for the endmember ’Tree’.

The PCA method remains positive for both WC and HC abundance solutions, but its performance
deteriorates compared to its initial results from endmember extraction alone. This decline in solution
quality is reflected in Figures 4.16 and 4.17, where RMSE and SAD values for both abundance and
endmember solutions worsen compared to their original values. This is somewhat expected since
introducing more errors to more variables can worsen the results.

Additionally, the relationship between abundance and endmember solutions still shows an inverse
trend, however, in this case, the abundance values improve while the endmember solutions deteriorate
in terms of RMSE values and in the first few iterations for the SAD values. This suggests that the
endmember solutions are compensating for the abundance solutions until convergence is reached.

4.3. Urban Dataset
The Urban Dataset is the last hyperspectral dataset that will be investigated in this study. It is one
of the most widely used hyperspectral images since its high spectral resolution together with its
intricate patterns of land coverage. The data was recorded by the HYDICE (Hyperspectral Digital
Image Collection Experiment) sensor at 2 × 2𝑚2 spacial resolution consisting of 307 × 307 pixels in
October 1995, Copperas Cove, TX, US. The image consists of 210 spectral bands ranging from 400 -
2500𝑛𝑚, providing a spectral resolution at a 10 𝑛𝑚 scale. Due to atmospheric effects and dense water
vapor, bands 1-4, 76,87,101-111,136-153, and 198-210 were removed leaving 162 bands for this experiment.

This dataset features four primary endmembers: ’asphalt’, ’grass’, ’tree’, and ’roof’, each representing a
distinct surface type within the urban landscape. The false color composite for this dataset is illustrated
in figure 4.1c. Further details of the dataset can be found in (Liu et al., 2011; Zhu, 2017).

4.3.1. Abundance solutions
Table 4.9 shows the optimal hyperparameter tuning values for the weighted and hard constraints for
each case. The abundance maps with their optimal setting for WC and HC are shown in Figure 4.18 and
4.19. Lastly, Table 4.10 and 4.11 demonstrate the RMSE and SAD values obtained from QP respectively.
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Parameters Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

𝑄𝑐1 - - 10 10 10
𝑄𝑐2 - - - 10 1000
𝜇 - - - 1 1
𝑞 - - - 2 0.9

HC

𝑄𝑐1 - - 0.1 0.1 0.1
𝑄𝑐2 - - - 0.1 0.1
𝜇 - - - 1 1
𝑞 - - - 2 0.9

Table 4.9: Weighted Constraints (WC) and Hard Constraints (HC) optimal parameter values via hyperparameter tuning for Urban
Dataset

Figure 4.18: Weighthed-constrained abundance maps for Urban Dataset with true and unconstrained abundance maps. Rows
from top to bottom represent asphalt, grass, tree and roof respectively.
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Figure 4.19: Hard-constrained abundance maps for Urban Dataset with true and unconstrained abundance maps. Rows from top
to bottom represent asphalt, grass, tree and roof respectively.

Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Asphalt 0.3963 0.2277 0.2152 0.1854 0.1892
Grass 0.2003 0.1875 0.1990 0.1991 0.2046
Tree 0.2518 0.1611 0.1481 0.1346 0.1403
Roof 0.1472 0.1280 0.1318 0.1383 0.1339

WC Average 0.2489 0.1761 0.1735 0.1644 0.1670

HC

Asphalt 0.3963 0.2277 0.2082 0.4343 0.2425
Grass 0.2003 0.1875 0.1766 0.4989 0.2279
Tree 0.2518 0.1611 0.1299 0.4147 0.1720
Roof 0.1472 0.1280 0.2614 0.2842 0.2804

HC Average 0.2489 0.1761 0.1940 0.4073 0.2307

Table 4.10: Weighted Constraint (WC) and Hard Constrained (HC) RMSE values for each case under optimal parameter settings
with Urban Dataset

Endmember Unconstrained WLS Case 1 Case 2 Case 3 Case 4

WC

Asphalt 33.5732◦ 24.1975◦ 23.1738◦ 19.9418◦ 21.4963◦
Grass 17.3710◦ 16.6498◦ 17.4633◦ 16.8690◦ 18.1270◦
Tree 27.6680◦ 20.4719◦ 19.0141◦ 17.4742◦ 18.3255◦
Roof 36.2513◦ 31.9628◦ 33.0220◦ 34.7200◦ 33.5475◦

WC Average 28.7159◦ 23.3205◦ 23.1683◦ 22.2513◦ 22.8740◦

HC

Asphalt 33.5732◦ 24.1975◦ 29.8737◦ 54.9721◦ 35.4025◦
Grass 17.3710◦ 16.6498◦ 18.7891◦ 56.3311◦ 24.1759◦
Tree 27.6680◦ 20.4719◦ 16.9978◦ 49.0940◦ 22.7913◦
Roof 36.2513◦ 31.9628◦ 55.3782◦ 61.9204◦ 56.3308◦

HC Average 28.7159◦ 23.3205◦ 30.2497◦ 55.5794◦ 34.6751◦

Table 4.11: Weighted Constrained (WC) and Hard Constrained (HC) SAD values for each case under optimal parameter settings
with Urban Dataset
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For the Urban Dataset, both the WC and HC cases reveal notable differences in performance, with case
3 excelling in the WC cases and case 1 outperforming in the HC cases. Although 𝐿2 regularization
promotes model generalization by penalizing the coefficients for the sparsity constraint, for all 3 datasets
it produces the worst results (case 3) under WC cases. 𝐿2 and 𝐿1 (a special case of case 3) translate their
straightforward penalization based on the current solution estimate after linearizing the constraint. The
exploration of 𝐿0<𝑞<1 (case 4) induces sparsity constraint more aggressively, but it aims to leverage the
benefits of both 𝐿1 and 𝐿2, as it allows for a more continuous and adjustable transition between the
sparsity level of 𝐿1 and smoothness of solution without enforcing too harshly on sparsity in 𝐿2.

Most literature considers the sparsity constraint regularization in the objective function, where 𝐿1/2
regularizer tends to be the optimal choice (Qian et al., 2011; X. Lu et al., 2013; Wang et al., 2016; Feng
et al., 2022). However as they use different methods and our regularization is implemented in the
constraint, the regularizer choice of the QP model is 𝐿0.9 while enforcing sum-to-one and sparsity
constraints to a certain level for all 3 datasets. The differences arise because the QP model tends to prefer
simpler solutions to reduce overfitting. Conversely, it directly limits model parameters to a predefined
domain where the parameter ′𝜇′ was defined, enforcing specific structural properties like sparsity or
bounds on coefficients.

4.3.2. Endmember matrix estimations
The superior performance of the PCA method for endmember estimation is further demonstrated using
the Urban Dataset. Figure 4.20 illustrates the endmember estimation, while Figure 4.21 shows the
clustering results. Table 4.12 provides the RMSE and SAD values for the endmember matrix estimation.

Figure 4.20: Estimated endmembers (blue) and true endmembers (red) for Urban dataset. Rows from top to bottom represent
asphalt, grass, tree and roof respectively
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(a) PC1 vs PC2 using squared euclidean
metric for clustering

(b) PC1 vs PC3 using squared euclidean
metric for clustering

(c) PC1 vs PC4 using squared euclidean
metric for clustering

(d) PC1 vs PC2 using cosine distance metric
for clustering

(e) PC1 vs PC3 using cosine distance metric
for clustering

(f) PC1 vs PC4 using cosine distance metric
for clustering

Figure 4.21: PCs visualization for Urban Dataset, each color represents a potential endmember

Endmember VCA Single VCA Bundle PCA Square Euclidean PCA Cosine

RMSE

Asphalt 0.2194 0.1007 0.0712 0.0615
Grass 0.1172 0.0568 0.0371 0.0212
Tree 0.1308 0.0988 0.0837 0.0202
Roof 0.1997 0.1830 0.1472 0.0925
Average 0.1668 0.1098 0.0848 0.0489

SAD

Asphalt 13.0373◦ 9.8501◦ 10.7305◦ 7.0806◦
Grass 37.1779◦ 18.2019◦ 10.1899◦ 3.6495◦
Tree 30.3539◦ 9.9970◦ 30.7708◦ 5.2747◦
Roof 49.6782◦ 40.8743◦ 21.3841◦ 3.2529◦
Average 32.5618◦ 19.7308◦ 18.2688◦ 4.8144◦

Table 4.12: RMSE and SAD values for endmember matrix estimation (Urban Dataset)

From Table 4.12, it is clear that the ’PCA Cosine’ method produces the best values in terms of both RMSE
and SAD. Remarkably, it achieves RMSE values that are twice as good as the ’PCA Square Euclidean’
method and SAD values that are almost four times better. In contrast, the VCA methods yield relatively
poor solutions compared to the PCA methods, with ’VCA bundle runs’ still producing negative values.

A closer examination of the PCA methods reveals that ’PCA Cosine’ excels at estimating the endmembers
’tree’ and ’roof’. Given that the Urban dataset is relatively larger compared to the other two datasets, it
becomes apparent that for larger datasets, ’PCA Cosine’ tends to deliver superior solutions in terms
of both RMSE and SAD compared to ’PCA Square Euclidean’ and the VCA methods. For smaller
datasets, the differences in magnitudes can be more accurately captured by the square Euclidean
distance. However, as the size of the dataset increases, the orientation of the data points becomes
more meaningful. While the RMSE values do not show significant differences for all three datasets,
the SAD values are always better for the ’PCA Cosine’. Considering all trade off between the two PCA
cases, ’PCA Cosine’ would be a better choice when comes to endmember estimation, as it highlights
the effectiveness of capturing the spectral characteristics more accurately when it comes to individual
endmembers.
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4.3.3. WTLS solutions
The results of the WTLS algorithm for endmember estimation on the Urban dataset are shown in Figure
4.22 for the WC setting and figure 4.23 for the HC setting. Figure 4.24 and Figure 4.25 correspond to the
RMSE and SAD values for the abundance and endmember after implementing the WTLS algorithm
using endmember extraction methods and QP solutions.

Figure 4.22: WTLS estimated endmembers (blue) and true endmembers (red) for Urban dataset with WC settings. Rows from top
to bottom represent asphalt, grass, tree and roof respectively
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Figure 4.23: WTLS estimated endmembers (blue) and true endmembers (red) for Urban dataset with HC settings. Rows from top
to bottom represent asphalt, grass, tree and roof respectively

Figure 4.24: Abundance RMSE (blue) and endmember RMSE (red) comparison with different input endmember matrices using
WTLS algorithm. The first row represents the RMSE after using WC abundance solutions, and the second row represents the

RMSE after using HC abundance solutions from QP respectively. (Urban Dataset)
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Figure 4.25: Abundance SAD (blue) and endmember SAD (red) comparison with different input endmember matrice using WTLS
algorithms. The first row represents the SAD after using WC abundance solutions, and the second row represents the SAD after

using HC abundance solutions from QP respectively. (Urban Dataset)

The WTLS simulations encounter significant difficulty when dealing with the Urban dataset. As shown
in Figures 4.22 and 4.23, all results produce negative values for endmember estimation. This outcome
highlights the sensitivity of the WTLS algorithm to the initial inputs, either the endmember matrix
or the abundance matrix. Given that the Urban dataset is substantially larger than the other two
datasets, Figure 4.20 clearly demonstrates the shortcomings of the VCA method in computing accurate
endmember solutions.

Although the PCA method yields relatively good results for endmember estimation, ’PCA Square
Euclidean’ struggles to accurately estimate the endmembers ’tree’ and ’roof’. The ’PCA Cosine Distance’
provides the best results, which is reflected in the WTLS estimations. As seen in Figures 4.22 and
4.23, column four, the general shape of the endmembers remains recognizable, further indicating the
sensitivity of the algorithm to initial inputs. However, the presence of negative values in the endmember
solutions is physically meaningless, meaning that the WTLS algorithm failed to provide accurate
estimations for the Urban dataset.

It is also interesting to note that since the WTLS algorithm itself does not incorporate constraints, for
testing purposes, the parameters 𝑄𝑐1 and 𝑄𝑐2 were set to harder conditions. By reducing these values,
it is possible to force the new endmember estimations using the WTLS algorithm to become positive.
This suggests a potential research direction for further optimizing the dependent variables in the QP
model to improve the robustness and accuracy of the WTLS algorithm’s results.

4.3.4. Summary
The results obtained from the three datasets highlight various aspects of the HU process using the
proposed methods. By comparing these datasets, one can identify trends and anomalies that provide
insight into the performance and limitations of the models.

1. The QP model shows comparable results for all three datasets. Jasper Ridge Dataset showed the
best performance when it came to abundance estimation in terms of RMSE and SAD. Although the
expectation was that the smaller dataset with fewer endmember should perform the best solution,
the Urban dataset with the largest data size did perform the worst out of the three. The WC cases
outperform the HC cases for all three datasets. The flexibility provided by WC allows the model to
better accommodate variations within the data, leading to more accurate abundance estimations.
In contrast, HC can overly restrict the solution space, resulting in suboptimal solutions.

2. The PCA method outperforms the VCA method in both the Jasper Ridge and Urban datasets.
The use of a cosine distance metric in PCA resulted in superior solutions in terms of SAD. While
the differences in RMSE values were negligible for the Samson and Jasper Ridge datasets, the
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cosine distance metric significantly outperformed both RMSE and SAD values for the Urban
dataset, making it a preferable choice for endmember estimation. This performance underscores
the robustness of the PCA method in capturing spectral characteristics more effectively than the
VCA method.

3. The WTLS algorithm showed a high sensitivity to the initial inputs across all three datasets.
Specifically, when the VCA method was used as the initial input, the algorithm tended to produce
negative endmember values. In contrast, initializing with the PCA method generally resulted in
positive endmember values for the Sasom and Jasper Ridge datasets. However, it only improved
the solutions during certain iterations, indicating that the initial choice significantly influences the
algorithm’s performance.



5
Conclusion and Recommendations

This chapter concludes all the findings of this research, the responses to each research question will be
provided, followed by recommendations for further studies.

5.1. Conclusion
How can least squares methods be used to accurately and efficiently estimate abundance and
endmembers for hyperspectral unmixing?

In prior research, a QP model was developed based on the least squares theory, specifically for
abundance estimation. Although there are existing studies that use least squares methods to solve the
unmixing problem (Deborah et al., 2021; Heinz & Chang, 2001; Menon et al., 2016; Pu et al., 2015), they
often do not consider nonlinear constraints such as the sparsity constraint, as well as how individual
constraints affects the abundance solution. Our research incorporated these constraints by lineariz-
ing the non-linear constraint and adding regularization effects, optimizing distinct cases with their
hyperparameters to achieve the best possible solution for abundance estimation. Moreover, a modified
WTLS algorithm was proposed, extending the standard least squares theory. This algorithm iteratively
computes abundance and endmember solutions using initial inputs from the QP model and the newly
proposed PCA method. However, the algorithm’s sensitivity to initial inputs limited its effectiveness in
further enhancing the abundance and endmember solutions produced by the QP model and PCA method.

1. How does the solution differ when considering different constraints, especially when deal-
ing with non-linear constraints for abundance estimation?

The inclusion of different constraints significantly impacts the quality of the abundance solutions.
The performance of the QP model is data-dependent and also relies heavily on the configuration of
the variance matrix, which determines whether the model applies WC or HC. The results indicate
that WC generally outperforms HC across all datasets. WC offers more flexibility by not enforcing
constraints as strictly as HC, allowing the model to accommodate variations in the data better. However,
the results also highlight that incorporating non-linear sparsity constraints without regularization
leads to a significant downgrade in solution quality. In contrast, when optimal hyperparameters
are used to regulate these sparsity constraints, the overall solution quality improves, particularly in
the WC case. This demonstrates that while non-linear constraints can enhance the model’s perfor-
mance, their effectiveness is highly dependent on appropriate regularization and hyperparameter tuning.

2. How do constrained least squares affect the estimation of abundances when compared to
the unconstrained approach?

Constrained least squares methods generally provide more accurate abundance estimations com-
pared to the unconstrained approach. This is shown in the results, with only a few exceptions noted in

44
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the Samson Dataset. By incorporating constraints, the solution space is restricted to a more feasible
region, reducing the likelihood of obtaining physically meaningless solutions. The results consistently
show that WC cases yield lower RMSE and SAD values than the unconstrained least squares approach,
highlighting the critical role of constraints in achieving reliable abundance estimations.

3. How does regularization affect abundance and endmember estimation?

Regularization plays a crucial role in abundance estimation by preventing overfitting and ensur-
ing the stability of the solution. Introducing regularization terms directly into the sparsity constraint
helps achieve sparser solutions. However, the choice of regularizer in this research differs from existing
literature (Qian et al., 2011), which typically incorporates the regularization term in the objective
function rather than the constraint itself. Moreover, the choice of tuning variables significantly impacts
the solution, potentially leading to different optimal regularizers. Regularization does not directly
influence endmember estimation methods like VCA or the new PCA method, as these methods depend
primarily on the observation matrix rather than the abundance solution. However, when using iterative
methods such as the proposed WTLS algorithm, regularization tends to improve the overall solution
quality. This is because regularization enhances the accuracy of the abundance estimation, which in
turn improves the endmember estimation in iterative methods.

4. How does the endmember matrix influence the abundance matrix estimation? Can we de-
velop a fast and accurate method for endmember estimation?

The quality of the endmember matrix directly influences the accuracy of abundance estimation.
In this research, the datasets provided included known endmember matrices, but in practical scenarios,
these matrices are often unknown. This underscores the necessity of accurate endmember extraction
methods to ensure reliable abundance estimations. This research also demonstrated a newly proposed
PCA method specifically for endmember extraction. The quality of solutions obtained using the PCA
method surpassed from the well-known VCA method. By combining PCA and k-means clustering, the
new method is both fast and accurate, benefiting from being computationally efficient. Furthermore,
the choice of evaluation metric significantly impacts solution quality. The results showed that using the
cosine distance metric leads to better solutions, especially with larger datasets.

5. How can the abundance and endmember solutions be further enhanced?

There are several aspects that can improve the accuracy of abundance and endmember solutions.
One key aspect is the quality of the dataset itself. Having a sensor with a higher resolution can lead to a
more accurate observation matrix, which in turn enhances the overall unmixing process. In this research,
a WTLS algorithm was proposed aiming at enhancing both abundance and endmember estimations.
However, the results indicated that the WTLS algorithm is highly sensitive to initial inputs. While it can
improve solutions to a certain extent, in some cases, it can produce worse results than the initial input.

5.2. Recommendations
There are several aspects that can be further explored in this research, recommendations for further
investigation are summarised below.

Constraints and regularization investigation for the QP model

The regularization term should be applied not only to the sparsity constraint but can also be ap-
plied to the sum-to-one constraint. Evaluation of the performance impact of adding regularization
terms to the objective function could also provide valuable insights. Additionally, more advanced
constraints can be considered for potential enhancement of the model’s robustness. Developing an
adaptive constraint mechanism that can dynamically adjust based on the dataset characteristics is
another promising area. This could involve real-time adjustment of constraint parameters to better fit
varying data conditions, which can improve the flexibility and generalizability of the QP model.
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Parameter tuning improvement for the QP model

While this research used a grid search method for hyperparameter tuning, future studies could
consider using smaller grid steps to achieve more precise optimization. Additionally, investigating the
relationships between variables could help identify which parameters have the most significant impact
on optimization, allowing for more targeted adjustments. Moreover, adopting more sophisticated
hyperparameter tuning techniques, such as Bayesian optimization or genetic algorithm, could lead to
more efficient and accurate identification of optimal parameter settings for abundance estimation.

Additional metrics evaluation for the PCA method

The current research only considered two evaluation metrics. Exploring different metrics such as
Minkowski distance (De Amorim, 2012), which is a generalization of both Euclidean and Manhattan
distances, can better capture the geometry of the data. Additionally, Mutual Information (Knops
et al., 2006) can be used to measure the amount of information obtained from one variable to another,
capturing non-linear dependencies between spectral bands.

Replacement of k-means clustering with spectral clustering for the PCA method

Instead of using k-means clustering, employing spectral clustering might be a suitable choice. Spectral
clustering uses the eigenvalues of the similarity matrix of the data to perform dimensional reduction
before clustering (Zhao et al., 2019). This technique is particularly effective for handling more complex
data and can potentially lead to better separation of endmembers.

WTLS algorithm improvement

As discussed in the results section, although the WTLS algorithm did not meet its expectations
for solution enhancement, there is still significant potential in this algorithm. The lack of constraints
led to negative values in the WTLS solutions. Enforcing constraints to ensure physically meaningful
solutions should be considered. Subsequently, hyperparameter tuning can be performed in conjunction
with the QP model parameters to obtain the most optimal settings.

Original WTLS algorithm investigation

The proposed WTLS was an adjusted version of the original algorithm (Gholinejad & Amiri-Simkooei,
2023). Future research could explore using the full process of the original WTLS algorithm, which
iteratively produces abundance and endmember solutions rather than relying strictly on the initial
input. Alternatively, finding more robust initialization techniques for the adjusted WTLS algorithm
could also be a viable option.

Dataset investigation

Further investigation into the real datasets could provide deeper insights and improvement for
the model. Techniques such as applying Fourier transform within the frequency and spatial domain
followed by noise reduction can be explored. This approach can potentially help in identifying and
mitigating various types of noises and distortions presented in the hyperspectral dataset. Additionally,
studying the effects of different types of preprocessing sets such as normalization can lead to more
accurate and reliable solutions.
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6
Appendix A

Algorithm 2 Vertex Component Analysis (VCA)
Input: 𝑛,Y ≡ [y1 , y2 , . . . , y𝑟]
SNRth = 15 + 10 log10(𝑘)dB
if SNR > SNRth then

𝑑 := 𝑛
X := UT

𝑑
Y {U𝑑 obtained by SVD}

u := mean(X) {u is a 1 × 𝑑 vector}
[Z]:, 𝑗 := [X]:, 𝑗/

(
[X]𝑇:, 𝑗u

)
{projective projection}

else
𝑑 := 𝑛 − 1
[X]:, 𝑗 := UT

𝑑

(
[Y]:, 𝑗 − y

)
{U𝑑 obtained by PCA}

𝑐 := arg max𝑗=1...𝑛 ∥[X]:, 𝑗 ∥
c := [𝑐 |𝑐 | . . . |𝑐] {c is a 1 × 𝑛 vector}
Z :=

[
X
c

]
end if
A := [e𝑢 |0| . . . |0] {e𝑢 = [0, . . . , 0, 1]𝑇 and A is a 𝑛 × 𝑛 auxiliary matrix}
for 𝑖 := 1 to 𝑛 do

w := randn(0, I𝑛) {w is a zero-mean random Gaussian vector of covariance I𝑛}
f :=

( (
I −AA#) w

)
/
(
∥
(
I −AA#) w∥

)
{f is a vector orthonormal to the subspace spanned by [A]:,1:𝑖}

v := f𝑇Z
𝑜 := arg max𝑗=1,...,𝑛 |[v]:, 𝑗 | {find the projection extreme}
[A]:,𝑖 := [Z]:,𝑜
[indices]𝑖 := 𝑜 {stores the pixel index}

end for
if SNR > SNRth then

M̂ := U𝑑[X]:,indices {M̂ is a 𝑚 × 𝑛 estimated mixing matrix}
else

M̂ := U𝑑[X]:,indices + y {M̂ is a 𝑚 × 𝑛 estimated mixing matrix}
end if
Output: M̂

50


	Abstract
	Nomenclature
	Introduction
	Research questions
	Thesis outline

	Background Theory
	Least squares solutions
	Objective function formulation
	Unconstrained least squares solution
	Constrained least squares solution

	Weighted total least squares solutions
	Univariate WTLS solution
	Multivariate WTLS solution


	Methodology
	Abundance computation
	Constraints implementation
	Theoretical computational complexity for the QP model

	Endmember extraction methods
	Vertex component analysis
	Computational complexity for VCA
	The PCA method
	Computational complexity for the PCA method

	WTLS algorithm formalization
	Computational complexity for WTLS algorithm

	Evaluation metrics

	Results and Discussions
	Samson Dataset
	Abundace solutions
	Endmember matrix estimations
	WTLS solutions

	Jasper Ridge Dataset
	Abundace solutions
	Endmember matrix estimations
	WTLS solutions

	Urban Dataset
	Abundance solutions
	Endmember matrix estimations
	WTLS solutions
	Summary


	Conclusion and Recommendations
	Conclusion
	Recommendations

	References
	Appendix A

