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ON THE LIMITS OF FINITE-TIME DISTRIBUTED CONSENSUS
THROUGH SUCCESSIVE LOCAL LINEAR OPERATIONS

Mario Coutino†‡, Elvin Isufi†, Takanori Maehara‡, Geert Leus†

†Delft University of Technology, Delft, The Netherlands
‡AIP RIKEN, Tokyo, Japan

ABSTRACT

In this work, we explore the limits of finite-time distributed con-
sensus through the intersection of graph filters and matrix function
theory. We focus on algorithms capable to compute the consensus
exactly through filtering operations over a graph, and that have been
proven to converge in finite time. In this context, we show that there
exists an algebraic algorithm that can minimize the minimum poly-
nomial of a matrix whose support is known. Different from previ-
ous works, we leverage the structure of matrices that share the same
support and are diagonalizable by the eigenbasis of the graph shift
operator to prove a theoretical result with respect to the minimum
number of diffusion steps required to reach consensus. We show that
the previously known bound on the number of consensus iterations
can be further reduced in accordance to the algebraic properties of
the matrix representation of the network. Finally, insights with re-
spect to the relation between the graph topology and the algebraic
properties of such matrices are provided in order to encourage fur-
ther discussion on the role of eigenvalues and eigenvectors in the
network topology.

Index Terms— Consensus, distributed averaging, graph filters,
signal processing over networks

1. INTRODUCTION

Since its first appearance [1], distributed consensus has been a sub-
ject of extensive research [2–8]. Most of these works aim at address-
ing the design question: which combining rule of local information
provides exact/approximate consensus in a distributed network of
agents?

This question can be mathematically expressed by first consider-
ing a network with n agents, whose communication capabilities are
described by a graph G = (V, E). Here, V = {v1, . . . , vn} denotes
the set of agents (nodes) and E ⊆ V × V the set of pair-wise com-
munication links (edges). For the ith agent, we define its reachable
set Ni = { j | (vi, vj ) ∈ E, j � i} as the set of agents that agent vi
can communicate with. Under this model, each agent vi at time k
is assumed to hold a (scalar or vector) quantity xi (k). Agents share
their information with the members of their reachable set and apply
a combining rule to the received information to update their values
as

xi (k + 1) = fk (xi (k), {x j (k)}j∈Ni
), (1)

where fk (·) is the combining rule at time instant k. Therefore, the
design problem for achieving exact/approximate consensus is re-
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duced to that of finding a suitable fk (·) for all nodes to reach the
value

y =
1
N

(
x1(0) + x2(0) + · · · + xn (0)

)
, (2)

in the minimum number of communication rounds.
Typically, the combining rule is chosen to be linear, i.e.,

xi (k + 1) = wii (k)xi (k) +
∑
j∈Ni

wi j (k)x j (k), (3)

and the design problem is reduced to only finding the (possibly)
time-varying weights {wi j (k)} to achieve consensus in the network.

By using linear combining rules or their equivalent formulations
using successive products, guarantees for finite-time consensus have
been already obtained. In [9], a connection between finite-time con-
sensus and an autoregressive relation on the graph signal, xi (k), has
been established. Using such a relation, it has been shown that con-
sensus on a network can be achieved in a number of time instances
equal to the order of a specific matrix polynomial related to the ma-
trix constructed using the weights in (3). Further, the authors in [10]
proposed a framework using graph filters [11–13] to provide guar-
antees for finite-time consensus on arbitrary networks. In the same
context, in [14] and [15] it is shown that finite-time consensus can
be achieved using the so-called node-variant and edge-variant graph
filters.

Although all these works draw tools from different fields and
their construction seems to be specific to their particular research
area, in this work, we provide a unified view of these methods
through the framework of matrix function theory. This framework
not only provides a natural way to derive such expressions, but also
gives insights into how to further improve them.

In this context, we provide a constructive method for the ex-
istence of an algorithm to design matrices with fixed support for
achieving consensus in the fastest possible way. We do so by opti-
mizing an algebraic property of matrices with fixed support. Hence,
this approach, up to the best of our knowledge, is the most gen-
eral formulation for distributed consensus though restricted to ma-
trix functions. Furthermore, as we recognize that in many cases this
algebraic construction might prove itself difficult, we show that if
we restrict ourselves to matrices not only sharing support but also
eigenbasis, we can still improve current state-of-the-art results for
finite-time consensus. This result also provides new insights into
the relation between the eigenvectors and eigenvalues of the graph
Laplacian and the topological structure of the related graph.

2. ON THE HERMITE INTERPOLATING POLYNOMIAL

To initiate a general discussion on finite-time consensus through
successive local linear operations, we need to draw relations with
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the theory of matrix functions [16]. To do so, we use concepts
from polynomials with matrix arguments and the definition of matrix
functions via a scalar function f (·) and the Jordan canonical form of
A, i.e.,

f (A) � Zdiag( f (J1), . . . , f (Js ))Z−1, (4)

where

f (Jk ) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λk ) f (1) (λk ) · · · f (nk−1) (λk )
(mk−1)!

f (λk )
. . .

...

. . . f (1) (λk )
f (λk )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

with Jk being the kth Jordan block, f (n) denotes the n-th derivative
of f and A = ZJZ−1 being the Jordan canonical form of A. Here,
s and nk denote the number of Jordan blocks and dimension of the
kth block, respectively.

Now, let us introduce the following definition.

Definition 1. (minimum polynomial) The minimal polynomial of
A ∈ Cn×n is the unique monic polynomial ψ of lowest degree such
that ψ(A) = 0.

By considering the Jordan canonical form of A, it can be shown
that

ψ(t) =
s∏

i=1
(t − λi )ni , (6)

where λ1, . . . , λs are the distinct eigenvalues of A and ni is the di-
mension of the largest Jordon block in which λi appears. From (6),
we can observe that ψ is identically zero on the spectrum of A. In
addition, the degree of ψ, d = deg(ψ) =

∑s
i=1 ni , is at most n. This

is because the dimensions of the Jordan blocks of A have to add up
to n [17].

An interesting characteristic of the minimal polynomial ψ, is
that it divides any other polynomial p for which p(A) = 0 [16].
In addition, as noted in [9], this polynomial allows for an autore-
gressive description of sequential signals shifts. That is, considering
x(k +1) � Ax(k), where x(k) = [x1(k) · · · xn (k)]T , we have that
x(d) = −∑d−1

k=0 αkx(k) for some coefficients {αk }d−1
k=0 defined by

ψ. Using this relation, the authors in [9] showed that a node only
requires to know its own d previous values to compute further linear
iterations. However, the minimal polynomial of a matrix not only
provides an autoregressive property but also defines a unique poly-
nomial associated with a given matrix function [16]. This fact is
provided in the following definition.

Definition 2. (matrix function via Hermitian interpolation) Let f
be a function defined over the spectrum of A ∈ Cn×n. Further,
consider ψ as the minimal polynomial of A. Then, there exists a
unique polynomial p of degree less than deg(ψ) such that

p( j) (λi ) = f ( j) (λi ), j ∈ {0, . . . , ni − 1}, i ∈ {1, . . . , s}, (7)

and this polynomial is known as the Hermite interpolating polyno-
mial.

Using these definitions, it is clear that any function f , defined in
the spectrum of A [cf. (4)], has a unique polynomial of order deg(ψ)
equivalent on the spectrum of A. In the following section, we show
how this polynomial can be directly used to generalize previous re-
sults in finite-time consensus using the general framework of matrix
function theory.

3. FINITE-TIME CONSENSUS AND THE HERMITE
POLYNOMIAL

Using the formalism introduced in the previous section, we can relate
results from finite-time consensus with matrix functions theory.

For a matrix A with distinct eigenvalues, i.e., ni = 1, s = n,
the Hermite interpolating polynomial p [cf. Def. 2] is given in its
Lagrange form by [16]

p(t) =
n∑
i=1

f (λi )�i (t), �i (t) =
n∏

j=1, j�i

( t − λ j
λi − λ j

)
. (8)

From the Lagrange form of the polynomial (8), we can devise a
way to achieve consensus in finite steps for certain networks. That
is, consider the Laplacian matrix L and the function

f (λ) =
⎧⎪⎨
⎪
⎩

1, λ = 0
0, otherwise

, (9)

where zero is the eigenvalue associate to the constant eigenvector c
of L whose entries are all one1.

Using this function and the spectrum of L, (8) simplifies as

p(t) =
n∏
j=2

(
1 − 1
λ j

t
)
, (10)

where we assigned an ordering to the spectrum of L in which λ1 = 0.
By substituting t with L, we obtain the matrix polynomial

p(L) =
n∏
j=2

(
I − 1
λ j

L
)
, (11)

where I is the n×n identity matrix. Notice that this expression is the
polynomial description of the result provided in [10] but obtained by
the natural framework of matrix functions. Here, there is no need
to further prove that (11) achieves consensus in finite time as p(L)
is identically (9) by definition (which in turn defines the consensus
operation when it is defined over the spectrum of L). From (11)
it is also seen that only n − 1 diffusions are required, i.e., matrix
multiplications.

In a similar way, we can extend these so-called graph filters to
general matrices for which an eigenvalue decomposition is not de-
fined or their eigenvalues have a multiplicity greater than one. That
is, for a given function f we can obtain its Hermite interpolating
polynomial [cf. Def. 2] of order deg(ψ) as

q(t) = f [λ1] + f [λ1, λ2](t − λ1) + f [λ1, λ2, λ3](t − λ1)(t − λ2)
+ · · · + f [λ1, . . . , λs](t − λ1)(t − λ2) · · · (t − λs−1),

(12)
where f [·] are the Newton’s divided differences of the function f
that are defined recursively by

f [xk ] = f (xk ) (13)

f [xk, xk+1] =
⎧⎪⎨
⎪
⎩

f (xx+1)− f (xk )
xk+1−xk , xk � xk+1

f (1) (xk+1), xk = xk+1,
(14)

f [x0, x1, . . . , xk+1] =

⎧⎪⎪⎨
⎪⎪
⎩

f [x1,...,xk ]− f [x0,x1,...,xk ]
xk+1−x0

, x0 � xk+1,
f (k+1) (xk+1)

(k+1)! , x0 = xk+1.
(15)

1Here, we assume that zero is a simple eigenvalue, i.e., the multiplicity is
equal to one, which implies a single connected component in the network.

���

Authorized licensed use limited to: TU Delft Library. Downloaded on August 30,2021 at 11:41:09 UTC from IEEE Xplore.  Restrictions apply. 



The construction in (12) provides a way to compute the weights that
a given implementation, in terms of graph filtering, needs to apply
for computing the consensus operation. This approach exhibits con-
nections to the construction proposed in [9] where the coefficients of
the minimal polynomial of a given network have to be computed to
implement a protocol using local linear aggregations for achieving
consensus in finite time.

Notice that in the definition of the Newton’s divided difference,
the derivatives of f are required. This requirement can be waived
in case of finite-dimensional matrices as it is possible to find a suffi-
ciently differentiable function f̃ such that the interpolation condition
[cf. (7)] is satisfied.

At this point, we have shown the natural connection between
Hermitian interpolation, graph filters, and finite-time consensus. It
should be clear now that given a fixed matrix A, nothing can be
faster than the application of the minimal polynomial of such a ma-
trix if we are restricted to operations that can be defined as matrix
functions. However, this approach might be too restrictive for gen-
eral cases. In the following, we leverage certain structural properties
to improve the performance achievable when a known support, i.e.,
nonzero positions, is given.

4. MINIMIZATION OF THE ORDER OF MINIMUM
POLYNOMIAL

As discussed before, the order of the minimum polynomial defines
the lowest order for any matrix function. Therefore, it is natural to
raise the question: is it possible to design the minimum polynomial
for a given network?

In this context, we might consider the following problem: given
a fixed support, i.e., connections among nodes in the graph, can we
design the weights of the network such that the resulting matrix has
the minimum polynomial with the lowest order? Obviously, this
problem has a trivial solution: the all-zero matrix. Despite this, in
the following, we show that a solution generator, i.e., a descriptor
for all solutions, can be obtained for this problem. Here, a notice of
warning. As we are solving for a solution generator, we can expect
that this approach might not be tractable for several instances.

First, let us consider a matrix A ∈ Rn×n with entries ai, j,∀ i, j ∈
{1, . . . , n}. Its zero entries are defined through the setAo, i.e.,Ao =

{ai, j | ai, j = 0}. Further, let

ϕ(λ,A) = det(A − λI), (16)

be the characteristic polynomial of A. Here, we have specified the
dependency of the polynomial in terms of the entries of A by adding
it as an argument of the function.

Now, consider the following true statement: A has duplicated
eigenvalues ⇐⇒ ϕ(λ,A) has repeated roots. This statement im-
plies that the gcd(ϕ, ϕ′) is the polynomial defined by the repeated
roots of ϕ. Here, gcd(·, ·) is the greatest common divisor of its ar-
guments, and ϕ′(λ,A) denotes the derivative, with respect to λ, of
ϕ(λ,A).

Therefore, we can transform the problem at hand into an as-
signment problem. That is, we need to find entries {ai, j } such that
gcd(ϕ, ϕ′) has the largest possible degree. At first glance, the only
thing that has happened is that now instead of looking for some low
degree polynomial, we are searching for a high degree polynomial.
However, under this formulation, we can exploit the properties of
subresultants [18].

Definition 3. (ith subresultant polynomial) The ith subresultant
polynomial, Si (p, q), of two polynomials p and q is a polynomial of

Algorithm 1: Algebraic Polynomial Order Maximization
Input: ϕ
Result: d∗ : maximum order of gcd(ϕ, ϕ′),

{ai j } : assignment
Init: compute ϕ′, gcd(ϕ, ϕ′), d = 0;
while consistent do

d ← d + 1;
compute Sd (ϕ, ϕ′);
{ai j } ←solve system {Si (ϕ, ϕ′) = 0}d

i=1;
if inconsistent then

return d∗ ← d − 1 break;
end

end

degree at most i whose coefficients are polynomial functions of the
coefficients of p and q.

The following property holds for subresultants.

Proposition 1. [18] The gcd of p and q has a degree d if and only
if the system

S0(p, q) = · · · = Sd−1(p, q) = 0, (17)

has a nontrivial solution.

This result implies that Sd (p, q) is a gcd(p, q), hence the or-
der of the gcd(p, q) is d which relates to the number of repeated
eigenvalues. Using the necessary and sufficient condition provided
in Proposition 1, we can devise an algebraic algorithm for finding a
solution generator to maximize d, and therefore increase the number
of repeated roots of the characteristic polynomial.

The algebraic algorithm is conceptually simple as it only re-
quires to solve a series of systems of polynomial equations. Intu-
itively, we only need to solve the system in (17) for increasing values
of d until it becomes inconsistent. This way, we find the maximum
value of d for which the system is consistent. The procedure is sum-
marized in Algorithm 1.

To solve such systems of polynomials we first compute a
Gröbner basis [19] and check if the system is inconsistent, zero-
dimensional or positive-dimensional [19]. Then, we solve the
system by deducing the lexicographical Gröbner basis by the FGLM
algorithm [20] and applying the Lextriangular algorithm [21]. For
each consistent system, this provides an assignment {ai j } for the
entries of the matrix, providing a solution for A.

Although we devise an algorithm to approach the general prob-
lem, we remark that, under the current state-of-the-art algebraic ge-
ometry computational methods, Algorithm 1 has certain limitations.
First, as we will most likely work with rational coefficients, the so-
lution generator may involve large integers which hardens the com-
putations. Second, as we are not only interested in the consistency of
the problem, we need to deduce the numeric values for a particular
solution. This requires a solution to univariate polynomials whose
coefficients are approximated, i.e., finite-arithmetic precision, hence
it is a highly unstable problem. Despite that research has been done
to tackle such problems (see [22, 23]), this approach still requires a
large computational effort. Hence, for many problem instances this
approach might not be computationally tractable.

Although the introduced constructive method presents computa-
tional challenges, in the following, we focus on a particular instance
of the problem which still is of interest. Here, besides knowledge
of the support of the network more information of its structure is

���
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employed to obtain the network with the largest possible number of
repeated eigenvalues.

5. A PARTICULAR CASE: KNOWN GRAPH EIGENBASIS

In the previous section, we have shown that it is possible to increase
the number of repeated eigenvalues for a fixed-support matrix us-
ing algebraic techniques. However, most of the times, this approach
might be intractable. As a result, we require to impose restrictions
to make this problem tractable.

Here, we follow the framework of [15,24] where instead of con-
sidering the family of matrices with a fixed support, we consider the
family of matrices that have a fixed support and are diagonalizable
with the same set of eigenvectors. That is, we focus on matrices that
belong to the set

MA0
U
= {A : U−1AU = diag(ω), zero(A) = A0}, (18)

where U is an n× n-eigenbasis, diag(·) constructs a diagonal matrix
out of it vector argument, and zero(·) denotes the indexes of the zero
entries of its argument.

For matrices belonging to the set (18), the problem of minimiz-
ing the degree of the minimum polynomial can be further simpli-
fied. Instead of the general problem, we can now ask the following
question: what is the matrix with support defined by A0, and with
eigenbasis U , that has the largest number of repeated eigenvalues?

As noted in [15], the matrices belonging to (18) can be parametrized
using the nullspace of a given matrix. More specifically, the ele-
ments of (18) have eigenvalues given by ω = BA0

U
α, where BA0

U

is a basis for the nullspace of ΦA0 (U−T ∗ U ), where ΦA0 is the
|A0 | × n2-selection matrix whose rows are the rows of the n2 × n2

identity matrix indexed by the set A0. Here, | · | denotes the car-
dinality of a set. The dimension of this nullspace is fixed given the
pair (A0,U ), i.e., dim(BA0

U
) = r .

The following proposition provides a result involving the dimen-
sion of this nullspace and the number of repeated eigenvalues.

Lemma 1. Let BA0
U

be an n × r-basis for the nullspace of the ma-
trix

ΦA0 (U−T ∗U )

for a given eigenbasis U and support defined by A0. Then there
exists a matrix with eigenbasis U and support defined byA0 with at
least r − 1 repeated eigenvalues and it is not the all-zero matrix.

Proof. The proof follows from the rank condition of BA0
U

. By
selecting r linearly independent rows, we can build a nontriv-
ial r × r linear system which has a unique solution. For in-
stance, for the consensus problem, we can consider the system
Bz = b = [1, 0, 0, . . . , 0]T , where B denotes a submatrix of BA0

U

with r rows and b is a target partial spectrum. As BA0
U

is full
column rank, there exists a B such that rank(B) = r . Therefore,
the above system has a (unique) exact solution z∗ as desired. As the
first entry of b is nonzero, the resulting matrix with partial spectrum
b is not all-zero. �

Lemma 1 leads to the following interpretation: There exists a
graph filter, i.e., a polynomial on the matrix representation of the
graph, which can be implemented in a single step and nulls at least
r − 1 graph modes. This fact arises naturally as it is clear that all
matrices in (18) are polynomials of the graph shift operator, i.e.,
a matrix representation of the graph from which the eigenbasis has

been extracted, and they all share the support of the shift. Therefore,
they are a particular family of polynomials that can be implemented
through point-wise weighting of the shift operator. Using the result
of Lemma 1 and its connection with graph filters, we can state the
following result on finite-time consensus.

Proposition 2. Let G be a connected (network) graph, and W be a
n × n symmetric matrix satisfying

wnn =
∑

m∈Nn

wnm and wnm ≤ 0 n � m, (19)

where Nn is the set of (vertices) nodes that has an edge with the
nth node, and having distinct eigenvalues. Furthermore, let r be the
rank of BA0

U
, where U andA0 are the eigenbasis and the set of zero

entries of W , respectively.
Then, the minimum number of communication rounds, k∗, re-

quired to compute the average in a distributed manner is upper
bounded as

k∗ ≤
⎧⎪⎨
⎪
⎩

n − r + 1 r ≥ 2
n − 1 otherwise

(20)

Proof. Under the given conditions, the matrix W can be seen as
a Laplacian matrix for the graph. Further, since the graph is con-
nected, the multiplicity of its zero eigenvalue is one. In addition, the
all-one vector is the related eigenvector to this eigenvalue. There-
fore, consensus can be computed using this communication matrix.
Now, for the case r < 2, we can directly apply the polynomial (10)
whose implementation only requires n − 1 communication rounds.
This result is equivalent to the result provided by [10]. For r ≥ 2,
from Lemma 1, there exists a graph filter that nulls at least r − 1
eigenvalues in a single communication round, i.e., there exists a ma-
trix with the same support as the connections of the network which
zeroes several eigenvalues in a single operation. As a result, after
applying this graph filter, we can apply a truncated version of the
polynomial (10), i.e., only considering the eigenvalues that have not
been nulled, to null the remaining N − (r + 1) eigenvalues. Hence,
the result. �

Proposition 2 generalizes the state-of-the-art in finite-time con-
sensus through linear operations on the matrix representation of the
graph as in the case of a graph with r > 2, we obtain k∗ < deg(ψ).
This result provides guarantees for faster convergence in certain net-
works although the original graph from which the eigenbasis has
been taken has no repeated eigenvalues. Further, it provides a venue
to explore the capabilities of weight-varying networks to improve
convergence to consensus. That is, finding network weights, for each
communication round, such that more than one eigendirection gets
nulled, as already demonstrated in [14, 15].

6. CONCLUSION

Using matrix function theory, we generalized all state-of-the-art
methods for finite-time consensus through linear operations of the
matrix representation of a network. This framework provides a
unified strategy for designing consensus algorithms for arbitrary
networks. We showed that it is possible to minimize the order of
the minimum polynomial of a network with known support through
algebraic geometry techniques. As this approach is generally not
tractable, we showed that, under certain conditions, we can achieve
faster consensus convergence than stated in known bounds. We
achieved this by restricting our discussion to a particular family of
matrices who do not only share the same support but also the same
eigenbasis.
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Moura, and Pierre Vandergheynst, “Graph signal processing:
Overview, challenges, and applications,” Proceedings of the
IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[13] Mario Coutino, Elvin Isufi, and Geert Leus, “Distributed Edge-
Variant Graph Filters,” in Int. Workshop on Comp. Adv. in
Multi-Sensor Adaptive Proc. (CAMSAP). IEEE, 2017.

[14] Santiago Segarra, Antonio Marques, and Alejandro Ribeiro,
“Optimal graph-filter design and applications to distributed lin-
ear network operators,” IEEE Trans. Signal Process, 2017.

[15] Mario Coutino, Elvin Isufi, and Geert Leus, “Advances in
distributed graph filtering,” arXiv preprint arXiv:1808.03004,
2018.

[16] Nicholas J Higham, Functions of matrices: theory and compu-
tation, vol. 104, Siam, 2008.

[17] Roger A Horn and Charles R Johnson, Matrix analysis, Cam-
bridge university press, 2012.

[18] Saugata Basu, Richard Pollack, and Marie-Françoise Coste-
Roy, Algorithms in real algebraic geometry, vol. 10, Springer
Science & Business Media, 2007.

[19] Daniel Lazard, “Gröbner bases, gaussian elimination and res-
olution of systems of algebraic equations,” in European Con-
ference on Computer Algebra. Springer, 1983, pp. 146–156.

[20] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo
Mora, “Efficient computation of zero-dimensional gröbner
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