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Samenvatting

Motivatie: Bij de behandeling van levertumoren wordt een techniek gebruikt genaamd thermale ablatie,

waarbij tumoren worden verwarmd tot een temperatuur hoog genoeg om kankercellen te doden. Voor een

effectieve behandeling is het essentieel om deze temperatuur nauwkeurig te monitoren. Een mogelijke

methode om de temperatuur tijdens de behandeling te controleren is doormiddel van computertomografie

(CT), maar dit kan soms onnauwkeurig zijn door beeldverstoringen van de ablatienaald die gebruikt

wordt tijdens de procedure.

Onderzoeksdoelen: Dit onderzoek verkende een gespecialiseerde soort CT-beeldvorming genaamd

spectrale CT thermometrie, die mogelijk een betere manier biedt om de temperatuur te monitoren

zonder daarvoor temperatuursensoren in te brengen. De studie vergeleek verschillende methoden van

CT thermometrie om te zien welke de meest reproduceerbare en nauwkeurige temperatuurmetingen

geeft. Er werd ook gekeken naar verschillende manieren om beeldverstoringen te verminderen die

veroorzaakt worden door de ablatienaald (naaldartefacten).

Methode: In het onderzoek werden kunstmatige levermodellen gebruikt die uitgerust waren met temper-

atuursensoren en onderworpen werden aan een ablatiebehandeling. Tijdens deze 10 minuten durende

behandeling werden meerdere CT-scans uitgevoerd om dichtheidsveranderingen rondom de ablatien-

aald te meten. Deze scans werden verwerkt om zowel standaard CT-beelden als dichtheidsbeelden te

produceren, waaruit vervolgens de temperatuur werd herleidt. Er werden verschillende scans gemaakt

om de verandering in temperatuur over tijd vast te leggen en om verschillende technieken voor het

verminderen van metaalartefacten te testen.

Bevindingen: De studie toonde aan dat er een zeer lineair verband bestaat tussen de gemeten CT-

waarden en de gemeten temperaturen. De studie vond dat het gebruik van een combinatie van spectrale

CT en metaalartefactreductie technieken de verstoringen door de ablatienaald kan verminderen en

nauwkeurigere temperatuurmetingen kan bieden.

Conclusie: Deze studie illustreert dat spectrale CT een waardevolle methode kan zijn voor het ver-

beteren van de nauwkeurigheid bij het monitoren van thermale ablatiebehandelingen. De combinatie van

spectrale CT met metaalartefactreductie kan de kans op een succesvolle behandeling verhogen door

betere temperatuurcontrole. Verdere ontwikkelingen in CT-technologieën beloven nog nauwkeurigere

methodes om de behandeling van levertumoren te monitoren.
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Abstract

Motivation: Effective management of liver tumors through thermal ablation requires precise monitoring

of the ablation zone to ensure successful treatment outcomes. Computed tomography (CT) thermometry

offers a promising non-invasive solution to monitor if tumor cells have been heated to the lethal temper-

ature threshold. However, achieving reproducible, precise, and accurate temperature measurements

remains a challenge, particularly due to metal artifacts introduced by the ablation equipment.

Purpose: This study investigates the applicability of spectral CT thermometry in monitoring liver

microwave ablation. It compares the reproducibility, precision and accuracy of CT thermometry on

attenuation value images, with CT thermometry on physical density maps using spectral CT. Furthermore,

it identifies the optimal metal artifact reduction (MAR) method — among O-MAR, deep learning-MAR,

spectral CT, or a combination — to reduce needle artifacts and improve CT thermometry precision.

Materials and Methods: Four liver-mimicking gel phantoms embedded with temperature sensors

underwent a 10-minute, 60W microwave ablation imaged by dual-layer spectral CT using a Philips

CT7500 scanner. Each scan was processed to reconstruct standard 120 kVp images alongside physical

density maps, which were derived from virtual monochromatic imaging (70 - 150 keV) and effective

atomic number maps. During each procedure, 23 CT scans were acquired to monitor attenuation and

physical density values in proximity of the ablation antenna over time. Attenuation-based and physical

density-based thermometry models were tested for reproducibility (coefficient of variation) over three

repetitions; a fourth repetition focused on accuracy (Bland-Altman analysis). MAR techniques were

applied to a single repetition to evaluate temperature precision in artifact-corrupted slices.

Results: The correlation between CT value and temperature was highly linear with an R-squared

value exceeding 96% for both attenuation and physical density-based thermometry. Model parameters

for attenuation-based and physical density-based thermometry were -0.38 HU/ºC and 0.00039 ºC−1,

with coefficients of variation of 0.023 and 0.067, respectively, indicating a high reproducibility. CT

thermometry precision increased with distance from the ablation antenna, the use of attenuation maps

and deep learning-MAR. Physical density maps generated at 150 keV alone and in combination with

O-MAR and deep learning-MAR reduced needle artifacts by 73% on average (p=0.003) compared to

attenuation images. Bland-Altman analysis reveals limits-of-agreement of -7.7°C to 5.3°C and -9.5°C to

8.1°C for attenuation and physical density-based thermometry, respectively.

Conclusion: Spectral CT has the potential to make CT thermometry more universally applicable.

This study demonstrates the effectiveness of spectral CT thermometry for non-invasive temperature

monitoring during liver microwave ablation. It shows that using spectral physical density maps at 150

keV, alongside deep learning-MAR and O-MAR, enhances temperature accuracy and minimizes metal

artifacts. However, standardizing thermometry parameters across different patient conditions remains a

challenge. Future enhancements in photon counting CT and deep learning technologies could further

refine this method, ultimately reducing the risk of local tumor recurrence.
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1
Introduction

Thermal ablation is a minimally invasive technique that employs thermal energy and can be used to treat

hepatic lesions. In individual cases, thermal ablation may be preferred over other therapies, such as

surgery or chemotherapy, depending on factors such as the tumor size and location, and liver function

[1]. A typical ablation system consists of an energy generator and a needle-like electrode that delivers

thermal energy percutaneously to the target tumor, causing coagulative tissue necrosis. For instance,

radiofrequency ablation and microwave ablation (MWA) aim to heat the tissue to the cytotoxic threshold

of at least 60°C. Alternatively, cryoablation cools the tissue to -40°C or lower to cause necrosis [2].

The interventional radiologist usually relies on image guidance, such as ultrasound, computed tomogra-

phy (CT), or magnetic resonance imaging (MRI) to accurately position the electrode in the target tumor

[3]–[5]. To evaluate the success of tumor ablation in the liver, it is essential to monitor the ablation zone,

which is the region that reaches the cytotoxic temperature threshold. Besides electrode positioning,

imaging assists the physician during and after the procedure to detect any residual tumor or collateral

damage to healthy tissue [6], [7]. The ablation zone is commonly monitored based on differences in

tissue perfusion that are caused by coagulative necrosis. First, a multi-phase pre-ablation scan with

a contrast agent is made with CT or MRI to visualize the tumor. After ablation, another multi-phase

contrast enhanced scan is made to verify non-enhancement of the ablated tissue, suggesting a suc-

cessful ablation. However, interpreting these scans can be challenging. Tissue perfusion changes may

occur not only in the areas subjected to high temperatures that are not lethal, but also as a result of

vascular occlusion. Moreover, the ablated area and the surrounding tissue are prone to shrinkage and

perfusional changes, making it insufficient to rely solely on post-ablation scans for identifying residual

tumor tissue. Difficulties in detecting local residual tumor cells and determining technical success based

on tissue perfusion imaging can contribute to high rates of local recurrence [8].

As an alternative to tissue perfusion imaging, tissue temperature can be directly monitored non-invasively.

MRI-based thermometry, for example, is currently most trusted method and golden standard for this

purpose [9]. While effective, interventional MRI is rarely applied due to high costs and the necessity for

metal-free instruments. CT presents a cost-effective alternative that is already widely used for planning,

probe positioning, and treatment confirmation. CT thermometry utilizes the inverse relationship between

CT attenuation coefficient and tissue temperature. In this method, heating or cooling causes a change

in tissue density, measurable through changes in Hounsfield Unit (HU), thus providing thermal feedback

to the physician [10]. Furthermore, in-room CT imaging is especially suitable for thermal ablation due to

its speed, high spatial resolution, and the capacity to depict tumors using contrast enhancement.

1
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1.1. Background
1.1.1. Liver tumor
Hepatocellular carcinoma (HCC) is the most common type of liver tumor and is the fourth leading

cause of cancer-related deaths worldwide. The incidence rate of HCC in Southern Europe, Western

Europe, and North America lies between 10 to 15 per 100,000 population [11]. Key risk factors for

developing HCC include chronic infections with hepatitis B or C viruses, excessive alcohol consumption,

and metabolic liver disorders [12]. These risk factors can lead to liver cirrhosis, which may result in

DNA damage within liver cells. This damage can trigger uncontrolled cell growth and the invasion of

surrounding tissues. Unfortunately, a significant number of HCC patients are diagnosed at an advanced

stage, which correlates with a poor prognosis and a five-year survival rate of only 18 percent [13].

Fortunately, screening programs targeting cirrhotic patients are being implemented to detect these

tumors at an earlier stage.

Treatment strategies for HCC vary, depending on factors such as the cancer’s stage, tumor size and

location, and overall liver function. Historically, surgical resection or liver transplantation was considered

the gold standard for HCC treatment. However, the feasibility of resection is often compromised due

to underlying liver disease, the tumor’s location, and the presence of multiple tumors within the liver.

Moreover, both resection and transplantation are associated with significant morbidity and mortality

risks due to their invasive nature [13]. In recent decades, there has been a shift towards local thermal

ablation, which is gaining recognition as an effective, safe, and minimally invasive alternative. According

to the Barcelona Criteria for Liver Cancer [14], for tumors smaller than 2 cm, ablation is the first-line

treatment. In the case of tumors of 2 to 5 cm, surgical resection is recommended, although most patients

are deemed unsuitable for this procedure. For the third category, which is bridging to transplantation, it

is preferred to avoid surgery and ablation is favored to manage the condition until transplantation is

possible. Compared to other treatment methods, ablation techniques are more cost-effective, better at

preserving healthy liver tissue, and lead to reduced hospitalization durations [15].

1.1.2. Ablation techniques
Ablation techniques employ various energy sources to destroy tumors through either thermal heating

or cooling. The specific technique used influences the energy transfer at the needle-tissue interface.

Exposure to temperatures of 40–45°C can cause irreversible cellular damage if sustained for 30 to 60

minutes. However, at temperatures above 60°C, irreversible damage occurs much more rapidly due to

swift protein denaturation and subsequent coagulative necrosis [2], [16].

Thermal ablation is recognized as a potentially curative treatment for hepatic tumors ineligible for surgical

resection. It adheres to the oncological principles of resection regarding treatment margins [17]. The

procedure targets not just the tumor itself, but also a safety margin of 0.5 to 1 cm of the adjacent

liver tissue, to ensure complete eradication [18]. The success of the treatment hinges on heating the

entire tumor and margin to temperatures that cause thermal coagulation necrosis. The goal of thermal

ablation is to create large, predictable areas of necrosis to prevent any residual tumor and subsequent

recurrence. However, the efficacy of thermal ablation decreases with distance from the ablation focus,

limiting the size of the treatable tumor to typically 3 to 4 cm in diameter. To increase the size of the

ablation zones, multi-needle ablations can be employed, allowing for the creation of larger necrotic

areas. Despite this advantage and the guidelines provided in user manuals, the shape and size of the

ablation zones tend to vary with each treatment, making the outcomes less predictable. This variability

underscores the importance of imaging in assessing the success of the ablation.

In this study, MWA was utilized as heat energy sources to ablate liver tissue or phantom material.

MWA uses electromagnetic waves within the range of 900–2500 MHz to heat the tissue. By inserting

an antenna directly into the tumor, the electromagnetic field forces dipole molecules, mainly water,

present in the tissue to align repeatedly with the rapidly changing electric field. Rotating these molecules

increases their kinetic energy, thereby heating the tissue. Unlike radiofrequency ablation, MWA is

not dependent on electrical currents passing through tissue, allowing it to reach temperatures above

100°C without the risk of vaporization of tissue interfering with thermal delivery [19]. MWA outperforms

radiofrequency ablation by efficiently heating larger tumor volumes and reducing the heat-sink effect.

It can directly warm tissues up to 2 cm from the antenna, a range not achievable with radiofrequency
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ablation. Additionally, MWA’s use of multiple antennas can synergistically enlarge the ablation zone

[20].

Parameter Requirement

Temperature precision <1–2°C

Spatial resolution <1–2 mm

Acquisition time <10–30 seconds

Three-dimensional temperature mapping.

Measurements presented in real time.

Insensitive to motion artifacts.

Compatible with medical equipment.

Radiation exposure from repeated CT measurement needs to meet safety standards.

Table 1.1: Essential criteria for effective CT thermometry in ablation procedures [6].

1.2. Related work
The concept of CT thermometry is not new; its potential for non-invasive temperature monitoring

was already explored in the seventies and early eighties [21], [22]. These studies demonstrated a

temperature resolution of a fraction of degree Celsius with a spatial resolution of 1 cm. But, at that time,

CT measurements were not reproducible due to unstable CT values and this application was not further

developed until 1997 [23]. In that year, Jenne and colleagues proposed CT thermometry as a method

for monitoring tumor ablation [24]. However, the reproducibility of CT values was still insufficient and

thermal ablation was not widespread. It was only until the introduction of large multi-row detectors that

CT thermometry began to gain renewed attention [25]. Meanwhile, Frich et al. outlined essential criteria

for making non-invasive thermometry for thermal heating clinically viable, as summarized in Table 1.1.

In 2011, Pandeya et al. studied radiofrequency ablation on ex vivo bovine livers using a 128-slice

scanner. They found a clear inverse relationship between CT value and temperature with a spatial

resolution of 1.2 mm [26]. More recently, Pohlan’s team examined CT thermometry’s diagnostic accuracy

in MWA and cryoablation procedures on ex vivo porcine livers. Their objective was to determine if CT

thermometry could accurately predict whether tissue temperatures had surpassed a specific clinically

relevant threshold. They reported an 89.2% predictive temperature accuracy for MWA, which dropped

to 65.3% for cryoablation [27].

A recent development in CT thermometry is the use of spectral CT, showing potential to monitor

temperature non-invasively with higher precision [28]–[30]. Liu et al. investigated the potential application

of using physical density maps, produced with spectral CT, for conducting CT thermometry. The

authors heated ex vivo bovine muscle tissue and found a linear correlation between temperature and

physical density of 0.42% decrease in physical density with every 10°C increase in temperature [31]. In

subsequent research, the team assessed the reproducibility, temperature precision, and radiation dose

requirements of physical density-based thermometry in tissue mimicking phantoms. They concluded that

physical density maps exhibited a strong and reproducible correlation with temperature in liver-mimicking

phantoms. A clinically required temperature precision of <2°C could be obtained with a radiation dose

of 2 mGy with additional denoising [32]. These findings increasingly enhance the feasibility of adopting

non-invasive temperature monitoring during thermal ablation procedures.

However, the use of this physical density model remains untested for heating procedures with an ablation

needle. This leaves open questions regarding the potential impact of gas bubbles or metal artifacts on

physical density measurements. Specifically, there has been no investigation into the effectiveness of

metal artifact reduction (MAR) techniques in mitigating artifacts induced by the ablation antenna.
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1.3. Objectives and clinical relevance
This study investigates the applicability of spectral CT thermometry in monitoring liver MWA procedures.

It compares the reproducibility, precision and accuracy of CT thermometry on attenuation value images

from conventional CT, with CT thermometry on physical density maps using spectral CT. Furthermore,

it identifies the optimal MAR method to reduce needle artifacts and improve CT thermometry precision.

• Reproducibility assessment: Evaluate the consistency of thermal sensitivity across different

scanning repetitions using liver and liver-mimicking phantoms.

• Temperature precision: Investigate how temperature precision is affected by attenuation or

density maps, radiation dose and slice thickness in the absence of metal artifacts.

• The effect of metal artifacts and MAR: Investigate the influence of metal artifacts on temperature

precision and the effectiveness of MAR algorithms in mitigating this impact.

• Temperature accuracy: Investigate whether CT thermometry accurately represents tissue tem-

peratures during thermal ablation.

The outcomes of this study hold significant clinical relevance as they promise to enhance the precision

of CT-guided MWA procedures in liver treatments. By optimizing CT parameters and understanding the

role of metal artifacts, this research aims to improve treatment safety and efficacy, ultimately benefiting

patient care in interventional radiology.



2
CT physics

This section introduces the fundamental principles of CT, emphasizing topics relevant to this research.

It begins with a broad explanation of photon physics, then narrows to explore the physics of photon

attenuation and its significance in spectral CT. The chapter then discusses CT artifacts resulting from

metallic objects, discussing three methods to reduce artifacts caused by ablation needles. Finally, it

explains the principles of CT thermometry, the main focus of this research.

2.1. Photons and CT
CT uses the transmission of photons, exploiting the principle of differential attenuation across various

tissues, to create detailed internal images of the human body. As a beam of photons traverses different

materials, its intensity attenuates, which is dependent on the characteristics of the materials in the body.

This attenuation of the photon beam encodes valuable information about the body’s internal tissues.

By acquiring these photon attenuation projections from multiple angles, it is possible to reconstruct

cross-sectional images of the human body using dedicated software (Figure 2.1).

Figure 2.1: Schematic overview of computed tomography. (A) Depicts a simplified setup of the tomographic system, highlighting

the x-ray source, the detector, and the object. The x-ray source and detector rotate around the object (Θ) to facilitate projection
imaging. (B) Illustrates the raw data output as a collection of projection images captured from various angles. (C) Demonstrates

the digital reconstruction phase, where projection images undergo processing through techniques like filtered backprojection and

iterative reconstruction. (D) Shows the visualization of the sample in a image domain; this includes the 3D volume rendering (Di)

as well as the option to examine 2D cross-sectional views or ’slices’ (Dii) of the object. Figure adapted from [33].

5
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Understanding photon physics is crucial in understanding the nuances in CT artifacts and spectral CT

thermometry. High-energy photons or x-rays, characterized by frequencies much higher than visible

light, belong to the spectrum of ionizing radiation. This form of radiation carries sufficient energy to

eject electrons from atoms, resulting in the formation of ions and free electrons. It is important to note

that these particles can break molecular bonds in the DNA, potentially resulting in cell mutations or cell

death. This is the main reason why imaging with ionizing radiation such as high-energy photons should

always be performed with great caution.

2.1.1. Generating the photon beam
In CT imaging, the production of photons within an x-ray tube primarily occurs through bremsstrahlung

radiation. When electrons, emitted from a electrically-heated cathode, are accelerated towards a

tungsten anode under high voltage (kV), they undergo rapid deceleration upon interaction with positive

nuclei in the anode. The lost kinetic energy of electrons during deceleration is converted into the

emission of a polychromatic spectrum of photon energies, characteristic of bremsstrahlung radiation.

The highest possible energy of a photon is limited by the tube voltage, which, for instance, can be set to

100 kV and will result in photons of maximum 100 keV. Although a monochromatic photon beam would

be ideal for CT to reduce artifacts such as beam hardening (Box beam hardening) and improve image

clarity, achieving this is not feasible with current CT technology.

Figure 2.2: The graph illustrates the polychromatic energy spectrum of a photon beam at two distinct tube voltages, displaying

the intensity distribution across energies. The spectrum is predominantly composed of bremsstrahlung, with characteristic x-rays

manifesting as discrete peaks. Variations in tube voltage or the application of beam filtration are shown to cause a shift in the

mean energy of the photon spectrum. Figure adapted from [34].
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Beam hardening

Beam hardening is observable with polychromatic x-ray sources. As x-rays traverse the body,

photons of lower energy are more easily absorbed, transmitting photons of higher energy that

are less attenuated. Consequently, the transmission of the beam does not exhibit the simple

exponential decay characteristic of a monochromatic x-ray source, resulting in a shift to a higher

effective energy of the attenuated beam. This effect is especially seen in materials with high atomic

numbers like bone, iodine, or metal, which show significantly higher attenuation at lower energies

compared to materials with low atomic numbers such as water. Beam hardening artifacts typically

manifest as dark streaks along the paths of highest attenuation and as bright streaks in other

areas. These artifacts can be mitigated by using higher a tube voltage settings, employing modern

scanners with beam hardening correction algorithms, or by using spectral CT to generate virtual

monochromatic images (VMI) that are less susceptible to such effects [35].

The contribution of characteristic x-rays to the overall energy spectrum is relatively minor. Characteristic

x-rays occur when these high-energy electrons eject inner-shell electrons from the tungsten atoms. This

ejection leads to electron transitions from higher energy shells to fill the vacancies, creating a net energy

loss, corresponding to the difference in energy levels. This process gives rise to the term ’characteristic

radiation’, as the magnitude of this energy difference is unique to specific atoms. Characteristic x-rays

present as spike at certain energies in the polychromatic energy spectrum (Figure 2.2). When examining

the properties of a photon beam that does not vary with time, it is crucial to consider the spectral

quantities. These are represented as:

• The spectrally resolved photon fluence, denoted as ΦE , which is the number of photons per unit

area per unit energy interval, and

• The spectrally resolved energy fluence, denoted as ΨE , which is the energy deposited per unit

area per unit energy interval.

To optimize the photon beam to reduce patient dose, a process called beam filtration is employed. The

polychromatic nature of the photon beam necessitates filtering to narrow the range of photon energies,

particularly by removing less penetrating photons. These low-energy photons contribute to patient dose,

but do not enhance image quality because they do not reach the detector. By filtering the beam, the

mean energy of the energy spectrum will also shift, which can result in a differences in image contrast.

2.1.2. Photon interactions and attenuation
After exiting the x-ray tube, photons travel through the object, experiencing various interactions influenced

by the material they encounter. These interactions attenuate the photon beam by altering the photon’s

trajectory or completely stopping them, and we measure this attenuation in the projection domain. In CT

imaging, which typically uses photon energies between 40 to 140 keV, the primary interactions are the

photoelectric effect and Compton scattering. Rayleigh scattering also occurs, but plays a much smaller

role:

1. Photoeletric effect: A photon interacts with the inner shell electron of an atom and ejects it from

its shell. The ejected electron is known as a photoelectron, while the incident photon is completely

absorbed in the process (Figure 2.3B). The energy of the ejected photoelectron is equal to the

difference between the incident photon energy (E0) and the electron binding energy (W ):

Ee− = E0 −W (2.1)

The free photoelectron subsequently loses energy by ionizing other atoms in the tissue and

therefore contributes to patient dose.

The probability of the photoelectric effect occurring is dependent on the incident photon energy

and atomic number (Z) of the material. For the effect to happen with a K-shell electron, the

incident photon must have energy exceeding the binding energy (W ) of that electron. Notably,
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when the photon energy surpasses the binding energy of the K-shell electrons (known as the K

edge), there’s a marked increase in photon absorption. For instance, in iodine the K edge is at

33 keV, leading to a significant rise in photon interactions at this energy level. However, as the

photon energy increases beyond the K edge, the probability of photoelectric absorption diminishes

rapidly. Above this threshold, the photoelectric effect is proportional to 1/E3.

Furthermore, the probability of photoelectric absorption escalates with the atomic number, following

a proportionality to Z3 or Z4. This effect is especially prominent when the atomic number is high,

and the photon energy is just above the K edge. The photoelectric effect is the main source of

image contrast in x-ray imaging, as it varies with the atomic number of the material. Different

tissues in the body have different atomic numbers, and thus different absorption probabilities for

photons. This contrast is more pronounced at lower photon energies.

2. Compton scattering: Compton scattering is a phenomenon where incident photons interact with

outer shell electrons. During this interaction, the incident photon is scattered, losing a portion of

its energy and changing direction (Figure 2.3D). The outer shell electron is ejected as a recoil

electron and carries the lost energy of the photon as kinetic energy. This recoil electron contributes

to the patient dose by losing its kinetic energy through excitation and ionization of other atoms in

the tissue. A distinctive feature of Compton scattering is the remaining positive atomic ion, which

has lost an outer shell electron and will eventually catch an electron again. Compton scattering is

predominant in diagnostic radiology and can degrade image quality due to the scattered photons

potentially reaching the detector. Moreover, scattered photons may undergo more interactions

within the tissue.

The probability of a Compton interaction occurring is determined by the electron density of the

material and is inversely proportional to the photon energy, following a 1/E relationship. Addi-

tionally, the scattered photons can be deflected in any direction, including backscattering at 180

degrees from the incident photon. The Klein-Nishina electronic cross-section is used to model the

probability of interaction of an x-ray photon photon with an electron in the tissue [36]. The energy

dependence of the total cross-section for Compton scattering is represented by the dimensionless

Klein-Nishina function:

fKN (α) =
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
ln(1 + 2α)

]
+

1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2
(2.2)

where α = E0/511 keV [37].

3. Rayleigh scattering: When a low-energy photon interacts with an electron, it may be elastically

deflected, a phenomenon known as coherent or Rayleigh scattering. This interaction temporarily

elevates the electron’s energy state without ejecting it from the atom. Subsequently, the electron

falls back to its initial energy state, emitting a photon with the same energy but slightly altering the

trajectory, as depicted in Figure 2.3C. In this scattering type, there is no net energy absorption,

and the photons are deflected at a small angle. The likelihood of Rayleigh scattering is relatively

minor in soft tissue, accounting for approximately 5 percent of all scattering. The intensity of

Rayleigh scattering is greater in tissues with higher atomic numbers, due to the increased number

of electrons available for scattering. Additionally, Rayleigh scattering is more pronounced at lower

photon energies, as it is inversely proportional to about 1/E1.2 [38].

2.1.3. Photon beam attenuation
When a photon beam travels through the human body, it experiences attenuation, which is a decrease in

its intensity caused by interactions with body tissues. This attenuation alters the photon beam’s intensity

profile upon exit, revealing information about the composition of the tissues it has passed through. The

degree of attenuation is quantified by the linear attenuation coefficient, denoted as µ. While linear

attenuation coefficients are practical for engineering purposes, their values are linked to the density of the



2.1. Photons and CT 9

Figure 2.3: Schematic overview of x-ray photon interactions: (A) The primary beam traverses the material without attenuation,

indicating no interaction. (B) Photoelectric effect occurs when an incident x-ray photon with energy surpassing an electron’s

binding energy is completely absorbed, transferring the excess to the kinetic energy of the photoelectron. (C) In Rayleigh

scattering, the photon interacts with an electron or the atom as a whole without any energy transfer, thus the energy of the

incident and scattered photons remains equal, only altering the photon’s trajectory slightly. (D) Compton scattering involves

interactions with quasi-free electrons, where energy is distributed between the ejected recoil electron and the scattered photon as

determined by the Klein–Nishina function. Figure adapted from [38].

attenuating material, denoted as ρ, a property that varies with the material’s physical state. Considering
that the molecular binding energies are generally insignificant compared to the photon interaction

energies within the diagnostic energy spectrum, it is reasonable to assume a direct proportionality

between µ and the material’s physical density besides its physical dependency on Z and E (section

2.1.2). This assumption is evident in the example of water in its various states: liquid, vapor, and ice. To

normalize the linear attenuation coefficient for density variations, the mass attenuation coefficient (µ/ρ)
is used. This standardization allows for consistent comparisons of a material’s attenuation properties

across its different states. Note that CT images display the linear attenuation coefficient as reconstructed

from projection data. This coefficient is a product of both the mass attenuation coefficient and the

physical density of the scanned tissues. The photon fluence of a monochromatic beam at a certain

depth can be calculated by:

Φ(x) = Φ0 · e−
∫
µ(E)dx = Φ0 · e−

∫ µ(E)
ρ ρdx (2.3)

where Φ(x) is the beam’s photon fluence at a certain depth x in the body and Φ0 is the beam’s initial

photon fluence before entering the object.

Mass attenuation coefficients for multi-element compounds can be approximately evaluated from the

mass-weighted average fraction of each element’s mass attenuation coefficient:

µ(E)

ρ
=

N∑
i=1

wi
µ(E)i
ρi

(2.4)

where wi represents the proportion of the total mass attributed to element i, and (µ/ρ)i denotes the
mass attenuation coefficient for element i within the compound.

Beam polychromacy

As a polychromatic beam of photons passes through a medium, the beam’s intensity diminishes due to

attenuation. This phenomenon can be mathematically represented as follows:
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ΦE = Φ0
E · e−µ(E)x (2.5)

and

ΨE = Ψ0
E · e−µ(E)x, (2.6)

where Φ0
E and Ψ0

E denote the initial spectra of the photon fluence and energy fluence respectively and

µ(E) signifies the total linear attenuation coefficient at a certain energy E. The expressions for the total
photon fluence (Φ) and energy fluence (Ψ) at any given position within a single-elemental material are:

Φ =

∫
Φ0

E · e−µ(E)xdE, (2.7)

Ψ =

∫
Ψ0

E · e−µ(E)xdE. (2.8)

Because the photon beam is polychromatic and the human body consists of multi-elemental materials,

we need to integrate over all energies and combine equations 2.3, 2.4, and 2.7. Equation 2.9 presents

the formula for calculating the total energy fluence, (Ψ), of a polychromatic photon beam. This energy
fluence is determined by the integrating the initial spectrally resolved energy fluence at each energy,

attenuated by the integral of µ(E) over the path length x:

Ψ(x) =

∫
E

Ψ0
E · e−

∫
x
µ(E)dxdE, (2.9)

This equation represents the total photon energy measured at the detector as a line integral of the linear

attenuation coefficient for the photon beam, a fundamental concept in CT image formation. By combining

multiple projections an internal image of the body can be reconstructed. In a reconstructed scan, the

resulting volume is composed of voxels, each reflecting the averaged linear attenuation coefficient over

energy of the materials inside it. Because a voxel is not infinitely small, the individual elements are

weighted and summed to an averaged attenuation coefficient. Subsequently, the linear attenuation

coefficients of all voxels are scaled to obtain the CT value in HU:

HU = 1000 · µ(E)− µwater

µwater
(2.10)

where µwater is the linear attenuation coefficient of water at room temperature.

The x-ray tube emits photons with a range of energies and a conventional scintillating detector (Box

scintillating detector) integrates its measurement over all energies, meaning µ(E,Z) is averaged over
all energies. This can result in different materials presenting the same CT values as the attenuation

coefficient is influenced by both the material’s Z and density. Spectral CT overcomes this by employing

dual-energy measurements, allowing for improved material discrimination and facilitating new clinical

applications.



2.2. Spectral CT 11

Scintillating detector

A scintillating detector converts x-ray photons into an electrical signal and consist of three parts. In

the upper scintillator layer, incoming x-rays are converted into visible light. This conversion occurs

when the x-ray photons interact with the scintillator material, triggering the emission of secondary

visible light photons. These photons are then captured by a photodiode, a device made from

semiconducting materials, which quantifies the light intensity and produces an electrical signal.

The signal reflects the cumulative energy deposited during the measurement interval rather than

the energy of each individual photon, which is why it is referred to as an energy-integrating detector.

Photon detectors are a critical component of CT systems, with extensive research dedicated to

enhancing their sensitivity and efficiency.

Figure 2.4: In a scintillating detector, an incoming x-ray photon is converted into multiple visible light photons within a

scintillator. These photons then strike a light sensor positioned below, where they induce the production of positive and

negative electrical charges. Figure adapted from [39].

2.2. Spectral CT
Spectral CT introduces the capability to measure attenuation across multiple energy spectra and use

this extra information to analyze the elemental composition of tissues with greater detail. This technique

leverages the energy-dependent attenuation characteristics of materials. In this subchapter, the physical

principles underlying spectral CT are explored, delving into the computational algorithms enabling

material decomposition, and reviewing the various technical methods used to acquire spectral data.

2.2.1. Requirement for multiple unique energy measurements
The general idea of spectral CT was first described by Godfrey Hounsfield and later investigated by

Alvarez and Macovski [37]. It leverages the principle that the attenuation of photons varies according to

both the energy spectrum and the type of material involved. As discussed in section 2.1, the material-

dependent part of photon attenuation is dependent on the material’s Z and density. If attenuation did not

vary with the material, distinguishing between different materials would be impossible. Conversely, if

there were no variation in absorption with different energies, data obtained from various energy spectra

would be redundant.

Figure 2.5 plots the contributions of the photoelectric effect, Compton and Rayleigh scattering to

the mass attenuation coefficient (µ/ρ) for muscle tissue and cortical bone on a log-log scale. In the
analysis of muscle mass attenuation coefficients (Figure 2.5a), it is observed that Rayleigh scattering

plays a negligible role compared to the photoelectric effect and Compton scattering within this energy
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range. Therefore, discussions on spectral CT often disregard Rayleigh scatter, focusing instead on the

photoelectric effect and Compton scattering for the theoretical derivation of material decomposition.

The photoelectric effect, which is highly energy-dependent, dominates at lower energies but diminishes

rapidly with increasing photon energy. On the other hand, the energy dependence of Compton scattering

is significantly weaker, making it the dominant interaction as photon energy increases. Spectral CT

leverages these differential interactions for material differentiation and decomposition [40].

Figure 2.5: In the displayed log-log scale graph, mass attenuation coefficients are shown for muscle (a) and cortical bone (b).

Note the attenuation value ranges on the y-axis are different for muscle compared to cortical bone. Figure adapted from [40].

The behaviour of the photon interactions within muscle tissue is similar in cortical bone but at different

scales, as illustrated in Figure 2.5(b). Moreover, the mass attenuation coefficient significantly depends

on the properties of the material, particularly its effective atomic number (Zeff ), which represents the

weighted-average atomic number of a multi-element material within a confined volume. To demonstrate

the requirement for multiple measurements at different energies, the linear attenuation coefficients for

bone (ρ = 1 g/cm3), iodine (ρ = 1 g/cm3), and iodine with lower density (ρ = 0.1 g/cm3) as a function

of energy are shown in Figure 2.6. For two different materials, like iodine and bone, equivalent linear

attenuation coefficients can be observed at a certain energy level, depending on the mass density of

each material. At other energy levels, the difference in attenuation coefficient can be more pronounced.

Spectral CT introduces an additional layer of differentiation. It measures attenuation at varying photon

energy spectra, thereby enabling discrimination of materials based on both their effective atomic number

(Zeff ) and the energy-dependent attenuation behavior.

Figure 2.6: This figure plots linear attenuation coefficients for bone (ρ = 1 g/cm3), iodine (ρ = 1 g/cm3), and iodine at a lower

density (ρ = 0.1 g/cm3), as functions of energy. The graph shows that identical linear attenuation coefficients (µ(E)) can be found
for different materials such as iodine and bone, as shown by the large arrow. By acquiring attenuation measurements at a

different energy, indicated by the small arrow, it is possible to differentiate between the materials. Figure adapted from [41].



2.2. Spectral CT 13

2.2.2. Material decomposition
The basis of most spectral mappings start with decomposing the materials in the image into two or more

basis functions. The initial mathematical model for spectral CT was established in 1976 [37]. In this

model, the mass attenuation coefficient for any given material is modeled by summing the contributions

from the photoelectric effect and Compton scattering, both of which are functions of photon energy. The

mass attenuation contributions from the photoelectric effect and Compton scattering are mathematically

represented by fPE(E) and fCS(E), respectively. Therefore, the formula for calculating the total mass
attenuation coefficient combines these contributions as follows:

(
µ

ρ
)(E) = αPEfPE(E) + αCSfKN (E), (2.11)

where αPE and αCS are material specific coefficients that we would like to determine. If we ignore

K-edges, fPE(E) and fCS(E) are monotonic and smoothly varying functions that are known from photon

physics. The attenuation coefficients at low energy (EL) and high energy (EH ) can be expressed as the

individual contributions of the photoelectric effect and Compton scatter to the total attenuation:

(
µ

ρ
)(EL) = αPEfPE(EL) + αCSfKN (EL) (2.12)

(
µ

ρ
)(EH) = αPEfPE(EH) + αCSfKN (EH) (2.13)

Because all photon energy dependent parameters are known, αPE and αCS can be determined. This

combination of (αPE , αCS) is unique per material and serves as the basis to characterize a material.

However, if the material-of-interest has K-edges in the diagnostic energy range, these effects should be

included in the model and additional measurements may be necessary.

Above model, however, has its limitations in accurately describing compound materials as molecular

interactions are ignored [42]. As an alternative to basis functions that are used above, known-material

attenuation functions can be used as the basis functions for material decomposition. For instance, the

attenuation behaviour of water and bone are well known and other materials can be represented as a

mixture or linear combination of these basis materials. Instead of Equation 2.11, the basis function are

replaced by (µ/ρ)A and (µ/ρ)B , which are the attenuation functions of basis materials A and B:

(
µ

ρ
)(E) = βA(

µ

ρ
)A(E) + βB(

µ

ρ
)B(E) (2.14)

where βA and βB are the energy independent coefficients that we would like to determine.

After acquiring the spectral raw datasets, a EL and EH image can be reconstructed and equations 2.12

and 2.13 are solved on a voxel-per-voxel basis in the image domain. However, non-idealities in the

acquisition process, such as beam hardening, can result in artifacts or inaccurate quantitative spectral

reconstructions. Sinogram-domain (Box Sinogram) decomposition offers a solution to counteract

inaccuracies like beam-hardening by using EL and EH sinogram data instead of reconstructed images

[37]. This approach demands precise temporal and spatial alignment of high- and low-energy data.

Movement of or within the subject during the high- and low-energy data acquisition phase can generate

artifacts and quantitative inaccuracies. To address this, various technical implementations of spectral

CT exist to ensure the high- and low-energy data remain consistent with each other. Moreover, although

this discussion assumes data acquisition at two energy levels, the polychromatic nature of the beam

adds complexity to material decomposition. Despite this, Alvarez and Macovski have shown that it is

still possible to separate attenuation coefficients into their contributions from photoelectric and Compton

effects.
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Sinogram

A CT sinogram is a graphical representation of raw x-ray data collected from the CT detector as it

rotates around a subject. A sinogram appears as a series of overlapping sinusoidal waves which

encode the attenuation of x-rays as they pass through the body from various angles. Each point

on the sinogram corresponds to a specific path the x-ray has taken, and the intensity of each

point reflects the degree of attenuation along that path. In the sinogram, the x-axis represents the

detector positions across the detector array, while the y-axis represents the gantry’s rotation angle

around the patient. Each full pass along the y-axis amounts to a complete 360-degree rotation,

providing all the data required for accurate image reconstruction.

2.2.3. VMI and Zeff

After material decomposition, the spectral data includes energy-independent information about the

imaged materials. This information can be used to generate VMIs, which simulate the appearance of

CT acquisition with an ideal monoenergetic x-ray source. Theoretically, it is possible to generate VMI at

any specified energy, but considerations related to image quality and clinical practice often lead spectral

CT systems to offer VMI within a 40 to 200 keV range. VMIs can be generated using:

• Density-Based Approach: This approach starts with calculating the mass densities of two

basis functions using material decomposition. Here, the photoelectic effect and Compton scatter

(Equation 2.11) can serve as basis functions or the mass attenuation functions of two basis

materials can be used (Equation 2.14). Subsequently, these densities are used to calculate VMIs

at a specified energy level using the known mass attenuation coefficients of the basis materials

at the specified energy. Density-based VMI can be performed both in the image and sinogram

domain.

• Weighted Summation: Alternatively, VMIs are derived by linearly combining the information from

both low- and high-energy images. The VMI is a weighted sum of CT (EL) and CT (EH), and the
weights are adjusted according to the desired energy level for the monoenergetic image in the

image domain. However, since every material has a different µ(E) curve, weighted summation
can never be fully accurate unless all materials in the object are mapped.

Another spectral mapping that can be generated after material decomposition is the effective atomic

number (Zeff ), which is defined as:

Zeff = (

N∑
i=1

fiZ
nZ
i )1/nZ (2.15)

where nZ = 2.94 in correspondence with Hua et al. [43].

Using the results from material decomposition with Equation 2.11, the effective atomic number can be

obtained by solving:

αPE = K1
ρ

A
Zn
eff (2.16)

αCS = K2
ρ

A
Zeff , (2.17)

where ρ/A and Zeff are unknowns and K1, K2 and n are known constants.

Although material decomposition can serve as the basis for various spectral mappings such as iodine

and electron density maps, this study will not consider them due to their lack of relevance to this study.
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2.2.4. Technical approaches to spectral CT
There are several technical approaches to obtain spectral data, each with its own advantages and

challenges (Figure 2.7) [41]:

A. Dual x-ray sources: Dual-source CT is a technique that uses two x-ray sources and two detectors

mounted on the same gantry, positioned orthogonally to each other. Each x-ray source operates

at a different tube potential and each detector collects the corresponding low- or high-energy data

sets. The advantage of this method is that it allows independent control of the tube potential,

tube current, and spectral filtration for each source-detector pair, which can improve the spectral

separation and the noise performance of the spectral images. Moreover, this method also improves

the temporal resolution of the conventional CT images, as the spectral data are acquired in a

single rotation. However, this method also has some limitations, such as the reduced field of view

due to the orthogonal geometry, and the increased cost and complexity of the dual-source CT

system.

B. Rapid kV-switching: Another approach to spectral CT is to switch the x-ray tube potential between

two values during the data acquisition. This can be done either between successive views or

between successive rotations, depending on the speed of the tube potential switching. The

advantage of this method is that it reduces the temporal misregistration between the low- and

high-energy data sets, as the time interval between two projections is less than a millisecond.

However, this method also poses some technical challenges, such as the need for fast and stable

tube potential switching, the optimization of the tube current and spectral filtration for each tube

potential, and the preservation of the spatial resolution and signal-to-noise ratio in the spectral

images.

C. Temporally sequential scans: One of the simplest ways to perform spectral CT is to acquire

two consecutive scans of the same object at different tube potentials, such as 80 kV and 140 kV.

The advantage of this method is that it does not require any modification of the conventional CT

hardware. However, the main drawback is the increased susceptibility to motion artifacts due to

the time interval between the two scans, which can be several seconds. This can degrade the

quality of the spectral images and the material decomposition results.

D. Dual-layer detector: A dual-layer detector is a type of detector that consists of two layers of

scintillating material, each with a different thickness and energy sensitivity. A single x-ray beam

with high tube potential is used and the low- and high-energy data is collected from the top and

bottom layers of the detector, respectively. The advantage of this detector-based method is

that it provides perfectly overlapping raw data, both spatially and temporally. This eliminates

system-based motion artifacts and enables increased noise and artifact reduction in VMI [44] and

beam hardening correction [45]. However, this method also faces some challenges, such as the

optimization of the detector thickness and material, and the correction of the spectral distortion

and cross-talk effects between the detector layers.

E. Split-filter: The split-filter technology uses a longitudinally arranged split filter, made of gold and

tin, to achieve spectral separation of the polychromatic x-ray beam. At a tube voltage of 120 kVp,

this configuration produces distinct low- and high-energy spectra. The primary advantage of this

method lies in its retrofitting capability, enabling existing clinical CT scanners to adopt dual-energy

imaging without extensive hardware modifications. However, it is important to note that the spectral

separation offered by the split filter is comparatively low, which may affect the efficacy of material

decomposition. Additionally, the finite size of the x-ray tube’s focal spot produces a penumbra at

the transition between the two filters, which decreases the spectral separation in the center of the

beam.

F. Photon-counting detector: A photon-counting detector is a type of detector that can count

and measure the energy of individual x-ray photons, using a semiconductor material, such as

cadmium telluride. The advantage of this method is that it offers the possibility of multi-energy

CT, as the detected photons can be binned into several energy windows, depending on the
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number and placement of the energy thresholds. This can enhance the material discrimination

and quantification capabilities of spectral CT, especially for materials with K- or L-edges within

the diagnostic energy range, such as iodine or gadolinium. However, this method also has some

limitations, such as the high cost and complexity of the photon-counting detector, the low count

rate and energy resolution of the current detector technology, and the correction of the non-ideal

effects, such as pulse pile-up, charge sharing, and K-escape [39]. Currently, photon-counting

spectral CT is limited due to a trade-off between a preferably high spatial resolution and energy

separation. Effective energy separation requires a lower photon fluence; higher fluences will result

in pulse pile-up, where photon-counting detectors are unable to distinguish between consecutive

photons.

For a more in-depth review of approaches to obtain spectral data and clinical applications, we refer to

an excellent review by McCollough et al. [41].

Figure 2.7: Approaches to acquiring spectral data that are currently available. A. Dual x-ray sources. B. Rapid kV-switching. C.

Temporally sequential scans D. Dual-layer detector. E. Split-filter. F. Photon-counting detector. Figure adapted from [46].
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2.3. Metal Artifacts
In an ideal scenario, by using high radiation doses, a monochromatic photon beam, infinite detector

resolution, perfect detectors, absence of motion, and no scatter, CT images would reflect actual

anatomical and pathological details without distortion. However, deviations from these optimal conditions

can lead to artifacts. This paragraph discusses artifacts that are commonly encountered in CT, focusing

on metal-induced artifacts, and how they can be reduced.

Metallic objects, such as dental fillings and orthopedic hardware, cause artifacts that appear as high

and low attenuating streaks across reconstructed CT images. These artifacts degrade image quality by

obscuring the metallic objects and the surrounding tissue, which may result in inaccurate diagnosis or

missed findings [35]. In the context of thermal ablation procedures, needle-induced metal artifacts can

hamper the visualization of the ablation zone during the procedure. Additionally, these artifacts may

alter CT values, which makes quantitative CT techniques, such as CT thermometry, unreliable.

Metal artifacts are caused by several mechanisms, such as beam hardening, photon starvation, scatter-

ing, and edge effects. Beam hardening occurs as lower energy photons are attenuated more easily,

while higher energy photons are more likely to penetrate, which is especially a problem with metallic

object (see 2.1.2). Traditional image reconstruction techniques, such as filtered backprojection, assume

that the spectrum does not vary along the beam direction, leading to a mismatch between the raw data

and the algorithm and resulting in image artifacts. While modern algorithms like iterative reconstruction

now integrate corrections for beam hardening, they still do not completely eliminate these artifacts

[47]. In addition, Compton scatter causes photons to change direction and reach an incorrect detector.

This scattering is amplified in the case of highly-attenuating objects, where predominantly scattered

photons reach detectors that otherwise would detect very few photons. The reduced photon count at

the detector is known as photon starvation and comes with a loss of projection data. Consequently,

when photon beams are heavily attenuated, both beam hardening and scatter lead to an increased

detection of photons than expected, resulting in dark streaks along the paths of highest attenuation.

In addition, at the interface between dense objects and tissue, edge effects cause discontinuities in

detector measurements, appearing as bright streaks along the objects boundary [35].

Figure 2.8: CT scan with bilateral hip arthroplasty demonstrating the effect of metallic implants (left) and metal artifact reduction

with (right). The left image exhibits pronounced dark and bright streaks, a result of beam hardening and photon starvation, which

obscure the implant and surrounding tissue. The right image shows a marked reduction using an iterative sinogram-based metal

artifact reduction algorithm (O-MAR). Figure adapted from [48].

To enhance image quality, various metal artifact reduction (MAR) techniques have been developed

for different applications, such as dental fillings, surgical clips, coils, and orthopedic hardware. These

techniques range from tube prefiltration and iterative image reconstruction to specialized MAR algorithms

like normalized MAR or frequency-split MAR [48], which often operate in the sinogram domain. This

study includes a MAR technique that iteratively corrects the sinogram.

2.3.1. Iterative sinogram-based MAR
The first MAR technique evaluated in this study is a commercially available iterative approach to sinogram

modification, called O-MAR (Philips Healthcare, Best, The Netherlands) [49]. This method starts by

reconstructing an initial, uncorrected image directly from CT scan data, which serves as input for the

first iteration. In each iteration, a series of steps are undertaken:
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1. The uncorrected image is segmented into a tissue classified and a metal only image, using HU

thresholding. In the tissue classified image, all pixels within a range near 0 are set to the average

of the pixels within this range and other pixels are left unmodified.

2. The metal-only, tissue classified, and input image are forward projected into the sinogram domain.

3. The tissue classified sinogram is subtracted from the original image sinogram, resulting in the

error sinogram, and should contain only metal pixels.

4. To remove any other nonmetal pixels from the error sinogram, a mask of the metal sinogram is

applied.

5. Removed metal pixels are replaced with interpolated values which simulate tissue in place of the

metal (Figure 2.9).

6. The error sinogram is back projected to make a correction image, which is then subtracted from

the current input image to create the updated image for the next iteration.

7. Steps 1 - 6 are iteratively repeated until a point of convergence is reached.

Figure 2.9: Original uncorrected sinogram containing projections from metal objects (left). After applying O-MAR, the metal

projections in the corrected sinogram are replaced by interpolation with tissue projections (right). Figure adapted from [49].

In this algorithm, the accuracy of the metal-only mask serves as a critical foundation. It identifies

projections within the sinogram affected by metal, ensuring the algorithm’s modifications are targeted

and precise. The use of a mask ensures that without presence of large clusters of metal pixels, the

image will not be altered and therefore has no impact on nonmetal regions. However, in the first iteration,

severe metal artifacts and hypodense areas in the initial uncorrected image may impact segmenting

an accurate tissue mask. To circumvent this issue, the tissue mask is not generated from the initial

uncorrected sinogram, but from the first metal-corrected sinogram. This sinogram is back projected

and used to segment the tissue mask. This step is exclusive to the initial iteration, with no repetition in

later stages. From the second iteration onward, the tissue mask is segmented from the updated input

image as a substantial portion of metal artifacts has been reduced. Moreover, these corrections are

specific to areas impacted by metal artifacts, thereby preserving the spatial resolution of uncorrected

areas. This targeted approach differs from other algorithms that generate a completely new image for

artifact correction, potentially compromising the spatial resolution of the corrected image [50].

Because the primary development of this MAR algorithm targets the reduction of artifacts induced by

orthopedic hardware, there is an interest in investigating its efficacy in reducing artifacts from to metallic

needles. Besides this dedicated MAR algorithm, this study focuses on two alternative approaches:

spectral MAR and deep learning MAR, which are discussed below.

2.3.2. Spectral MAR
As discussed above, metal artifacts in polychromatic CT imaging mainly arise from beam hardening and

photon starvation. Beam hardening stems from metals absorbing more low-energy photons, leading to

a higher energy beam that underrepresents tissue absorption, causing dark streaks in images. Photon
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starvation happens when metals absorb many photons, reducing the signal-to-noise ratio and producing

similar dark streaks.

Spectral CT allows the generation of VMI across a broad energy spectrum (40-200 keV) by blending

low and high-energy data with specific weighting factors. As VMI can emulate images that are acquired

with high-energy photons, the mean beam energy suffers less “hardening”, in addition to the fact that

more photons penetrate the metal as they travel through the body [51]. Spectral CT also enables

examination of various energy levels, aiding radiologists in identifying the optimal balance to reduce

metal artifacts without losing soft tissue contrast, which is generally better at low energies. This optimal

imaging window is often between 100-140 keV [48]. In quantitative CT applications, where the focus

is on precise measurements rather than visual inspection, the importance of image contrast is of less

importance. In such contexts, the use of higher energy levels becomes a more feasible strategy for the

reduction of metal artifacts. This ability to adjust VMI energy levels for certain cases, makes spectral CT

a valuable tool in reducing metal artifacts.

Applying plain VMI to reduce metal artifacts is often not sufficient to reduce metal artifacts to an

acceptable level. Therefore, VMI can be used in combination with other MAR techniques, as visualized

in Figure 2.10.

Figure 2.10: CT scan with unilateral hip arthroplasty demonstrating the effect of dedicated metal artifact reduction software

(O-MAR) and virtual monochromatic imaging at 130 keV. In both the O-MAR and 130 keV VMI image, artifacts resulting from the

hip implant continue to obscure surrounding tissue. The combination of 130 keV VMI and O-MAR shows superior artifact

reduction over both plain O-MAR and VMI. Figure adapted from [48].

2.3.3. Deep learning MAR
Deep learning, a subset of artificial intelligence, is currently one of the most discussed techniques in

medical research. The exponential growth of deep learning in healthcare is predominantly sparked by

improved computational power and increased availability of healthcare data. This technology learns

by processing labeled training data—where the inputs are paired with the correct outputs (ground

truth)—enabling the models to improve iteratively, aimed at minimizing errors between predicted and

ground truth.

Recently, deep learning-based MAR (DL-MAR) has been investigated. Researchers have developed

DL-MAR algorithms that operate either in the sinogram or image domain and are trained through

supervised or unsupervised learning methods, each demonstrating potential [48]. In supervised learning,

algorithms typically require paired sets of input and ground truth images for training. However, this poses

a challenge in metal artifact reduction, as often only the artifact-corrupted input images are available,

without corresponding artifact-free ground truth images for comparison. The ground truth image, which

would be the same image with metal but without the artifact, is often not available. To this end, Selles

et al. used a method to simulate training data. Using metal-free CT images, both images with metal

artifacts (input) and with metal but free from artifacts (ground truth) were simulated [52]. This approach

enables the curation of large datasets with paired CT data that can be used for supervised learning.

Furthermore, it facilitates the generation of training data with a diverse range of metal implants, such

as small surgical clips and bilateral hip implants. In short the data generation process comprises the

following steps:

1. Water and bone images: From the original CT image, a water image and a bone image is

created.
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2. Anatomy identification: Detect specific anatomical regions within the bone image and choose

implant and position in bone image.

3. Mask creation: Create a metal mask that represents the shape and position of the metal implant.

4. Projection and Simulation: Generate forward projections for water, bone, and the metal mask to

simulate projection data. Noise is also added in this step.

5. Image combination and reconstruction: Combine the simulated projections and reconstruct

the image using filtered back projection to create an image with metal artifacts.

6. Ground truth image generation: Combine and reconstruct water and bone projections to create

a ground truth image without artifacts, then replace CT values at position of implant with CT values

of iron.

Figure 2.11: CT scan with an orthopedic hip screw demonstrating the effect of dedicated metal artifact reduction software

(O-MAR) and deep learning-based metal artifact reduction (DL-MAR). In both the O-MAR and DL-MAR image, artifacts resulting

from the hip screw were reduced. DL-MAR is able to reduce more artifacts in proximity of the metallic object. Additionally, while

O-MAR introduced secondary artifacts inside the screw no secondary artifacts were introduced with DL-MAR. Figure adapted

from [52].

Model training: the authors used this method to create a dataset of 105,163 artifact-corrupted images

and paired ground truth, of which 83,192 served for training and 21,971 for model validation. A deep

residual U-NETmodel was trained with a combined loss function prioritizing mean squared error (L2) loss,

alongside structural similarity (SSIM) and mean absolute error (L1) losses. Optimization was performed

using an Adam optimizer with an initial learning rate of 0.0001, adjusted by a ReduceLROnPlateau

optimizer. Training data augmentation included probabilistic flipping, scaling, rotating, and shifting of

the CT images. No augmentation was applied to the validation set. The model underwent 25 epochs of

training with a batch size of 8, and the iteration with the lowest validation loss was selected as the final

model.
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2.4. CT thermometry
CT thermometry is a method that links changes in CT values to variations in temperature, based on the

principle of thermal expansion. The influence of temperature on CT numbers was already investigated

by Bydder and Kreel in 1979 to analyze the effects of temperature on the calibration process of CT

scanners [22]. Until the introduction of spectral CT, temperature measurements relied solely on changes

in CT attenuation [10]. Spectral CT, however, offers a new method to measure physical density with

greater accuracy. The following section will explain these two methods in detail.

Principle of thermal expansion
The theory of thermal expansion is well understood; when a material is heated, its physical density is

commonly reduced. This is expressed as:

ρ(T ) =
ρ(T0)

1 + α ∆T
, (2.18)

where T0 is the calibration temperature, ∆T = T − T0, and the thermal expansion coefficient is denoted

by α. At an atomic level, this reduction in density can be attributed to the increased vibrational energy of
atoms. As temperature rises, atoms vibrate more actively due to the increased thermal energy, causing

them to occupy more space. This increase in the separation between atoms leads to a decrease in

the material’s density. These relationships, as visualized in Figure 2.12, explain the phenomenon of a

decreasing CT value with increasing temperature and are the basis of CT thermometry.

Figure 2.12: Schematic representation of the basic principles behind CT thermometry, illustrating the process from thermal

expansion to CT value determination. The sequence involves transformations from temperature change (∆T) to volume change

(∆V), physical density change (∆ρ), and linear attenuation change (∆µ), finishing in the derivation of the CT value (∆CT). Each

transformation is influenced by specific parameters, indicating the relationship between the parameters.

CT attenuation-based
The temperature dependence of CT attenuation can be derived from the effect of thermal expansion

on density. As shown in Figure 2.12, as temperature increases, density decreases, resulting in lower

attenuation at higher temperatures. As proposed by Homolka et al. [53], linearization based on Taylor

series expansion in α∆T gives:

[1 + α∆T ]−1 = 1− α∆T +O((α∆T )2) (2.19)

The CT value at a given temperature relative to a reference temperature (T0) can be noted as:

HU(T ) ≈ HU(T0)−
1000 µ(T0) α ∆T

µwater
. (2.20)

With Equation 2.10 the change in CT value due to temperature can be approximated as:

∆HU(T ) ≈ −[1000 +HU(T0)] α ∆T (2.21)

where ∆HU = HU(T )−HU(T0). This expression shows that temperature changes can be approxi-
mated by monitoring the CT values during an ablation. To examine how local temperatures affect the

CT number and determine the thermal sensitivity, a regression analysis is conducted on the CT values

and the corresponding temperature measurements:

∆HU = a∆T + b (2.22)
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The parameters temperature sensitivity (a) and intercept (b), measured in [HU/°C] and [HU] respectively,
represent how HUs vary with temperature. This variation is specific to the type of tissue being imaged,

the imaging protocol used, and how the tissue is heated. The slope of the fitted curve indicates the

sensitivity of the attenuation-based CT thermometry: a larger slope reflects a higher thermal sensitivity

a, which causes a greater change in CT numbers with temperature. The intercept b should approach 0
in this case. Multiple studies have investigated this linear relationship under varying circumstances and

found temperature sensitivities ranging from -2.00 to -0.23 HU/°C for thermal heating (Appendix B).

Physical density-based
As can be seen in Figure 2.12, CT values not only reflect changes in temperature, but also changes in

mass attenuation coefficient that result from changes in tissue composition. Moreover, in practice the

scanner model and tube voltage influence the conventional HU, along with the patient size. These factors

result in considerable variations in the thermal sensitivity values reported in prior studies (Appendix

B). While a linear relationship has been used to model the dependence of attenuation on temperature

with conventional CT, spectral CT can be used to develop more reproducible quantitative models by

extracting material specific coefficients, αPE and αCS . Spectral quantifications not only provide more

consistent and quantitative measures for diagnosis, but combining spectral maps can also be used to

estimate other quantities, such as physical density.

The Alvarez-Macovski model [37] has been used in various simplified forms for the development of

density mappings. One of these models is the Alvarez-Macovski physical density (AM-PD) model. It

models the material specific coefficients αPE and αCS as follows:

αPE = K1
ρ Zn

A
(2.23)

αCS = K2
ρ Z

A
, (2.24)

where K1, K2 and n are known constants. Combining this with Equation 2.11 results in the following

relationship between attenuation coefficient and physical density:

µ(E) =
ρ

A
[K1

Zn

E3
+K2 Z fKN (E)], (2.25)

where E is the photon energy in keV and fKN is the dimensionless Klein-Nishina function from Equation

2.2.

The research group of Noël has used these relationships to build two physical density models that

rely on VMI and Zeff , that are clinically available on spectral CT scanners [54]. Zeff is computed on

the scanner by comparing the measured αPE and αCS with materials with known αPE , αCS and Z.
The effective atomic mass, Aeff , is not available on clinical scanners and was obtained by fitting a

third-order polynomial between the atomic mass and number of the first 30 elements (H, He, Li, etc.),

which yielded a good approximation, with R2 = 0.9935:

Aeff = a1 + a2Zeff + a3Z
2
eff + a4Z

3
eff (2.26)

where a1, a2, a3, and a4 are constants (Table 2.1). As VMI emulates the attenuation at a single energy,
the linear attenuation coefficient, µ(E), can be extracted using Equation 2.10. By combining VMI, Zeff ,

and Aeff the following model for physical density was used:

(AM-PD) : ρ =
Aeff µ(E)

K1 Zn
eff

E3 +K2 Zeff fKN (E)
(2.27)

Additionally, this group utilized parameterized versions of the AM-PDmodel to account for multi-elemental

tissues and model assumptions, such as the exclusion of Rayleigh scattering influence. They proposed

the following parameterized version of the AM-PD model using VMIs of 70 keV:
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(p. AM-PD) : ρ = p1
Aeff µp2(70keV )

p3 Z
p4
eff

70p5 + Zp6

eff fp7

KN (70keV )
(2.28)

The parameters of this model (Table 2.1) were fitted to 180 anthropomorphic tissues defined by the

International Commission on Radiation Units and Measurements (ICRU) Reports 44 and 46 [55] with

corresponding attenuation coefficients from the National Institute of Standard and Technology (NIST)

XCOM [54], [56]. The authors validated the model’s accuracy using a phantom containing inserts with

known density and found a root mean square error of 0.0007 g/mL.

Aeff Parametrized AM-PD

a1 0.436191 p1 3.48632

a2 1.85908 p2 1.0704

a3 0.015449 p3 46.8754

a4 -1.737E-4 p4 4.1907

p5 2.94742

p6 1.01921

p7 0.995567

Table 2.1: Parameters for Aeff and AM-PD models [54].

The use of physical density maps for CT thermometry has been tested on a tissue mimicking phantom

[32]. However, because differences in physical density are small when tissue is heated, the relative

density is used instead of a density difference to perform the regression analysis to determine the

parameters of the physical density-based model:

ρ(T0)

ρ(T )
= α∆T + β (2.29)

In the regression analysis, the thermal expansion coefficient (α) and the intercept (β) as defined in
Equation 3.1 are determined. It is important to understand that these parameters, α and β, are distinct
from a and b in Equation 2.22 and are independent of the imaging protocol employed.

Although the parameterized AM-PD method has shown promise for CT thermometry (see Appendix B

and Figure 2.13), its use during heating procedures with an ablation needle remains untested. This

leaves open questions regarding the potential impact of gas bubbles or metal artifacts on physical

density measurements.
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Figure 2.13: Physical density maps using the AM-PD model of ex vivo bovine muscle in a water bath at 22 °C (A) and 45.5 °C

(B). Physical density decreased with increased temperatures. The area of high physical density (yellow) corresponds to optical

fiber temperature probes. These quantifications illustrate a strong relationship with change in temperature that corresponds to

thermal volumetric expansion. Figure adapted from Liu et al. [57].
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Materials and Methods

This chapter describes the materials and methods used in this project. A general description of the

research setup is given after which the image processing and analysis is explained. Section 3.2 outlines

the processing of the data used for building the CT thermometry models and making temperature maps.

This is followed by section 3.3, which describes the different metrics to evaluate the applicability of CT

thermometry.

3.1. Research setup
The study involved two scanning sessions where a total of six phantoms were heated through thermal

MWA and imaged through CT. In this section, the materials, CT scan parameters, and the ablation

procedure are detailed.

Ablation system: thermal heating was performed with aMWA system (EMPRINT, Medtronic, Minneapolis,

USA) at a frequency of 2.45 GHz. This technique manages thermal control through a water cooling

system extending to the antenna tip, and microwave field shape and wavelength regulation [58]. The

MWA antenna tip was inserted to a depth of approximately 5 cm.

Temperature verification: four metallic k-type thermocouples (PH218, JBC tools, Barcelona, Spain)

with 0.2°C accuracy and diameter of 0.4 mm were used to invasively verify material temperature

around the MWA antenna. Thermocouples are small devices that consist of two dissimilar metal wires

joined at one end, forming a junction. The junction generates a voltage that is proportional to the

temperature difference and was measured by a dedicated instrument (NI-9211, National Instruments

Corp, Austin, Texas, USA) that amplifies and converts the analogue voltage it into a temperature reading.

A temperature logging tool (LabVIEW (DAQmx), National Instruments Corp, Austin, Texas, USA) logged

temperature over time with a sample rate of 3 s−1. Recorded temperature was logged in an Excel

worksheet (Microsoft Office, Microsoft Corp, Redmond, WA, USA). The thermocouples were inserted at

a depth of 4 cm on a horizontal line at different distances from the MWA antenna (Figure 3.1).

Scanning parameters: all CT acquisitions were performed with a dual-layer spectral CT (Spectral

CT7500, Philips Healthcare, Best, The Netherlands). This system’s detector has a thin yttrium-based

scintillator to detect the low-energy x-rays, while a thicker gadolinium oxysulfide scintillator detects the

higher-energy x-rays. The spectral material decomposition are based on the Alvarez and Macovksi

model [37], and are performed in the sinogram domain. CT acquisitions were performed in axial mode

with a tube voltage of 120 kVp and exposures of 387, 150, and 75 mAs. Collimation was set to 128 x

0.625 mm and the rotation time was 1.0 s. Images were reconstructed with a field of view of 350 mm, a

smooth kernel B, and slice thickness/increments of 2.0/1.0 and 1.0/0.5 mm. The raw spectral data was

sent to a dedicated workstation (IntelliSpace, Philips Healthcare, Best, The Netherlands) to generate

the following spectral maps: VMI at 70, 90, 110, 130, 150 keV, and Z effective maps. Acquisition

and reconstruction parameters are listed in Table 3.1. In addition to these parameters, in the second

scanning session one repetition was reconstructed with an orthopedic MAR algorithm (O-MAR, Philips

25
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Scanner Philips Spectral CT 7500

Tube voltage 120 kVp

Exposure 387, 150, 75 mAs

Pitch -

Rotation time 1.0 s

Collimation 128 x 0.625 mm

Slice thickness/increment 1.0/0.5, 2.0/1.0 mm

Kernel B

FOV 350 mm

Matrix 512

Spatial resolution 0.683 mm

Reconstructions 120 kVp, VMI (70, 90, 110, 130, 150 keV), Z effective

Metal artifact reduction DL-MAR, O-MAR

Table 3.1: Parameters for CT acquisition and reconstruction. VMI = virtual monochromatic image; DL-MAR = deep

learning-based metal artifact reduction; O-MAR = orthopedic metal artifact reduction.

Healthcare, Best, The Netherlands). DL-MAR was applied employing the software developed by Selles

et al. [52]. Both MAR methods were also applied in series (first O-MAR, then DL-MAR).

The DL-MAR algorithmwas trained on a dataset containing images of predominantly orthopedic hardware

in bone tissue, but no images containing needle-like object in soft tissue nor images of phantoms.

Therefore, applying this algorithm in this study is an out-of-distribution use, which may lead to reduced

performance.

3.1.1. Liver phantom
The initial ablation experiments were conducted on November 9th, 2023, at the University Medical

Center Utrecht. These procedures utilized two porcine liver specimens that were approximately 60

hours post-extraction. Livers were collected from a local slaughterhouse and cut into cubes of roughly 8

x 8 x 8 cm. Each cube of liver tissue was placed into a transparant PMMA box with internal size 8.5 x

8.5 x 8.5 cm. This box contained holes to insert the ablation antenna and four temperature sensors.

For the setup, the liver tissue was placed within an abdominal extension ring (Multi Energy phantom,

Gammex™, Sun Nuclear, Middleton, WI, USA). The ablation antenna and thermocouples were placed

on opposite sites and aligned in z-direction of the CT gantry. To precisely monitor the heat propagation

during ablation, thermocouples were placed at distances of approximately 5, 10, 15, and 20 mm from

the antenna. This arrangement is depicted in Figure 3.1.

Prior to starting the ablation procedure, a baseline scan was acquired with the ablation antenna and

thermocouples in situ, serving as a reference for subsequent analyses. Subsequently, the tissue was

heated at an ablation power of 100W for 6 minutes and thermocouples recorded the internal temperature.

The scanning protocol during the ablation had two phases: in the first 2 minutes of heating, a series of 8

scans were made at 15-second intervals. During the remaining 4 minutes an additional 8 scans were

performed at 30-second intervals. During the two procedures, a total of 34 scans were made. After

heating, a clear coagulative ablation zone was visible in the liver tissue (Figure 3.2).

3.1.2. Gel phantom
The second session of ablation experiments was conducted on February 19, 2024, at the University

Medical Center Utrecht. Instead of porcine livers, a homogeneous polyacrylamide gel was produced to

mimic the thermal, dielectric, and attenuation properties of a human liver [59]. In short, to prepare 1250

mL of polyacrylamide gel, 2.5 g of ammonium persulfate (Carl Roth GmbH, Karlsruhe, Germany) was

dissolved in 6 mL of water. Separately, 725 mL of demineralized water was mixed with 500 mL of 40%

acrylamide/bisacrylamide 19:1 (Carl Roth GmbH, Karlsruhe, Germany) solution. In concordance with
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Figure 3.1: Schematic representation of the research setup of the liver phantom. Abdominal extension ring with, liver tissue box

placed inside, was placed in the CT scanner. The thermocouple sensors were inserted at 5, 10, 15, and 20 mm from the

microwave antenna.

(a) (b) (c)

Figure 3.2: Photos made of the research setup of the gel phantom. The abdominal extension ring with liver tissue was placed in

the gantry of the CT scanner (a, b). After heating, a clear coagaluative ablation zone was visible in the liver tissue (c).

Leening et al. [32], 14.5 g of calcium chloride dihydrate (Carl Roth GmbH, Karlsruhe, Germany) was

separately mixed in 25 mL water and added to the acrylamide/bis mixture. Then, to initiate and catalyze

polymerisation, the ammonium persulfate solution and 2.5 mL of N,N,N’,N’-tetramethylethylenediamine

(Carl Roth GmbH, Karlsruhe, Germany) were added to the acrylamide solution. Finally, the gel was

quickly poured into the four PMMA boxes, sealed airtight, and stored overnight in a refrigerator at 4°C.

The phantom was then moved to room temperature until use.

For this setup, the ablation antenna and thermocouples were placed on opposite sites and aligned in

x-direction of the CT gantry. This orientation of the ablation antenna, typically inserted in an anterolateral

manner into the patient, aligns more closely with clinical practice than with the z-direction orientation. As

a consequence, this alignment is expected to result in a higher presence of in-plane metal artifacts. Due

to size constraints, the gel phantom was not placed within the abdominal extension ring. To monitor the

heat propagation during ablation, thermocouples were placed at distances of approximately 10, 15, 20

and 25 mm from the antenna.

Prior to starting the ablation procedure, a baseline scan was acquired with the ablation antenna and

thermocouples in situ. Subsequently, the gel phantom was heated at an ablation power of 60 W for

10 minutes and thermocouples recorded the internal temperature. The scanning protocol during the

ablation had two phases: in the first 2 minutes of heating, a series of 7 scans were made at 15-second
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intervals. During the remaining 8 minutes an additional 15 scans were performed at 30-second intervals.

After heating, a clear ablation zone was visible in the gel phantom (Figure 3.3b). This procedure was

repeated 4 times, 3 times with a high exposure of 150 mAs, once with a low exposure of 75 mAs. During

these four repetitions, a total of 94 scans were made.

(a) (b)

Figure 3.3: Photos made of the research setup of the gel phantom. The gel phantom was placed in the gantry of the CT scanner

and the ablation antenna was inserted in x-direction of the gantry (a). After heating, a clear ablation zone was visible at the tip of

the antenna in the gel phantom. Temperature sensors were inserted at radial distances of 10, 15, 20 and 25 mm from the

ablation antenna as seen in the top view in (b).

3.2. Image processing and analysis
The analysis of the acquired scans was conducted using a suite of software tools. Spectral mappings,

including VMI and Z effective maps, were generated with IntelliSpace. Furthermore, a dedicated

pipeline was built using Python 3.10, developed within the PyCharm environment (version 2023.1,

Prague, Czechia). This pipeline was designed to process all acquired scans and temperature data.

It encompasses the entire spectrum of data processing: the generation of physical density maps,

automatic segmentation, determining model parameters, reproducibility, precision and accuracy of

the CT thermometry models, and generation and visualization of temperature maps. The individual

components of this pipeline are detailed in the subsequent sections. As the analysis was performed on

both HUs and physical density we will simply refer to CT value for both terms.

3.2.1. Automatic segmentation of ablation needle and temperature sensors
The pipeline starts with the segmentation process, where the ObjectAnalyzer class identifies and

isolates the ablation needle and temperature sensors from the CT scan data. Imported DICOM files

undergo thresholding based on predefined values for the ablation antenna (1500 to 4000 HU), and

temperature sensors (700 to 1200 HU). After refinement using morphological (closing) operations,

sensor tips are located and used for subsequent region of interest (ROI) measurements, which was

managed by the ROIMeasurements class.

3.2.2. Generating physical density maps
The AM_PD.py script serves as the backbone for generating physical density maps through the reparam-

eterization of the AM-PD model. As described in section 2.4, the parameterized version of the AM-PD

model was fitted to the physical density, effective atomic mass and number, and linear attenuation of

180 human tissues with or without iodine contrast. A list was made of physical density and the elemental

composition of these materials [55]. The elements included elements are: H, C, N, O, Na, Mg, P, S, Cl,

K, Ca, Fe, and I.

The developers of this model only parameterized this model for an x-ray energy of 70 keV [54]. Because

the linear attenuation coefficient of materials varies with x-ray energy, the parameters of the model



3.2. Image processing and analysis 29

were fit to an energy range of 40 - 200 keV to enable the use of VMI in this energy range. To this

end, the effective atomic number and mass of 180 materials were calculated using relations 2.15 and

2.26. Mass attenuation coefficients were retrieved from a well-accepted material property dataset [56]

(Table 3.2). For every energy level within the 40-200 keV range, the optimal fit parameters (p1 to p7) for
the parameterized AM-PD model (Equation 2.28) were found using a least squares fit. This approach

aims to align the model closely with the reported physical density values. To measure and compare

model accuracy, the absolute error and root mean square error (RMSE) relative to the reported physical

density values were calculated. Subsequently, physical density maps of all CT acquisitions on the liver

and gel phantom were generated using the reparameterized AM-PD model.

Elemental mass fraction Mass attenuation

Tissue
ρ

(kg/m3)
H C N ... S Cl ... Fe I

µ/ρ (50 keV)

(cm−1)

µ/ρ (70 keV)

(cm−1)

µ/ρ (110 keV)

(cm−1)

µ/ρ (150 keV)

(cm−1)

Adipose tissue 970 1.12E-01 5.17E-01 1.30E-02 1.00E-03 1.00E-03 0.00E+00 0.00E+00 2.14E-01 1.88E-01 1.64E-01 1.50E-01

Iodinated blood 1064 1.02E-01 1.10E-01 3.30E-02 2.00E-03 3.00E-03 1.00E-03 3.77E-05 2.28E-01 1.92E-01 1.65E-01 1.49E-01

Heart 1050 1.03E-01 1.21E-01 3.20E-02 ... 2.00E-03 3.00E-03 ... 1.00E-03 0.00E+00 2.26E-01 1.92E-01 1.65E-01 1.49E-01

Liver 1060 1.02E-01 1.39E-01 3.00E-02 3.00E-03 2.00E-03 0.00E+00 0.00E+00 2.27E-01 1.92E-01 1.64E-01 1.49E-01

Skeleton-cartilage 1100 9.60E-02 9.90E-02 2.20E-02 9.00E-03 3.00E-03 0.00E+00 0.00E+00 2.33E-01 1.94E-01 1.64E-01 1.49E-01

Iodinated kidney 1056 1.03E-01 1.32E-01 3.00E-02 2.00E-03 2.00E-03 0.00E+00 5.71E-05 2.27E-01 1.92E-01 1.65E-01 1.49E-01

Table 3.2: An excerpt of the 180 ICRU materials with their physical density, elemental composition, and some attenuation values.

CT thermometry

CT thermometry correlates changes in CT values with temperature variations, relying on thermal

expansion principles. As a material is heated, its physical density typically decreases, captured by

the relationship:

ρ(T ) =
ρ(T0)

1 + α ∆T
, (3.1)

In this study, linear regression was used to define two CT thermometry models. These models are

described as follows:

Attenuation-based: ∆HU = a∆T + b (3.2)

and

Physical density-based:
ρ(T0)

ρ(T )
= α∆T + β (3.3)

In the attenuation-based model, absolute changes in CT values are linearly correlated with tem-

perature variations, allowing the determination of the thermal sensitivity a and intercept b. For the
physical density-based model, relative density changes are correlated with temperature change

to establish the parameters α and β, reflecting the tissue’s thermal expansion coefficient and

intercept.
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3.2.3. ROI measurements

Figure 3.4: Region of Interest placement for both the liver

and gel phantom. The central bright point is the ablation

antenna. The surrounding darker points are the

temperature sensors.

Assuming radial symmetry of temperature aorund the

ablation antenna, two circular ROIs are placed adja-

cent to the tip of the temperature sensors as visualized

in Figure 3.4. Voxels are thresholded to account for

gas bubbles inside the tissue. CT value mean and

standard deviation are measured. ROI measurements

are performed individually for each scan and for each

temperature sensor in that scan.

3.2.4. Determining thermometry model pa-
rameters
Prior to conducting regression analysis for thermal

sensitivity assessment, the temperature data from

the thermocouples were synchronized with the time

stamps of CT scans. This synchronization ensures

accurate pairing of each sensor’s temperature reading

with its corresponding CT value as measured in the

ROIs.

In the script TemperatureHURegression class, regres-

sion analysis was executed to correlate the temperature

measurement over time with the variation of CT value,

and to determine the thermometry model parameters

a or α and b or β. This analysis quantifies the relationship between temperature and HU or physical

density, as represented by the equations 3.2 and 3.3 and recapitulated in Box CT thermometry.

For each repetition and sensor, a weighted linear regression, was performed using the statsmodels
package. The weighting was based on the inverse variance of each ROImeasurement, thus incorporating

the uncertainty of ROI measurements into the analysis. Reference values T0 and CT (T0), denoting the
temperature and CT value before starting ablation procedure, were utilized. Subsequently, for every

sensor and repetition, the derived parameters, and squared correlation coefficient (R2) were recorded.

To determine the parameters of the general models for CT thermometry in liver tissue and gel phantoms,

a weighted linear regression was conducted on the combined data from all temperature sensors within

one repetition. These models were fitted to CT series with highest dose and thickest slices to reduce

uncertainty in ROI measurements. No MAR was applied to these series. The resulting parameters are

averaged over the repetitions and the standard deviation are recorded.

3.2.5. Visualization of temperature maps and isolines
The visualization of temperature distribution within the tissue was accomplished by the TempMap class.

This class employs the CT thermometry models found in 3.2.4 to convert the CT scans made during

the ablation procedure into temperature maps. First, noise in the volumes was reduced by applying

non-local means denoising which was implemented through the scikit-image package. This method

operates by comparing each patch of the volume to other patches in a local neighborhood, thus allowing

for the preservation of essential structures while effectively reducing noise. In this implementation,

non-local means was applied to three-dimensional volumes with a noise standard deviation (σ) of 2.1,
using 2x2 mm patches within a 6x6 mm search area, and a filtering parameter h set to 0.8xσ, all to
ensure noise reduction while preserving small structures and gradient. The patch size and search area

are optimized in the non-local means denoising process to effectively reduce noise and preserve both

details and gradients in the temperature maps. The denoising was expedited by enabling fast_mode,

which approximates patch comparisons for efficient computation. After denoising, rigid registration of

CT scans from different time points to the reference scan was performed, ensuring accurate spatial

alignment. This is important to accurately detect local difference in CT value after heating the tissue.

By applying attenuation or physical density-based thermometry, these volumes are transformed into

temperature maps, visualizing the distribution and intensity of heat throughout the tissue. Additionally,

temperature isolines and temperature overlay images can be generated in this class. The use of temper-
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ature isolines on the pre-ablation image provides an insightful representation of relevant temperatures,

while having a reference where the tumour is. A temperature overlay on the pre-ablation image similarly

provides information about spatial distribution of heat in the tumour and surrounding tissue.

3.3. Statistical analysis
3.3.1. Thermometry reproducibility
Parameters of the attenuation-based (Equation 3.2) and physical density-based thermometry model

(3.3) were determined in section 3.2.4. The consistency of fit parameters was evaluated using the

coefficient of variation (CV), defined as the standard deviation normalized by the mean. Additionally,

scatter plots were created to visualize thermal volumetric expansion in each of the repetitions.

3.3.2. Temperature precision
In this study, the metric temperature precision was used. Temperature precision is defined as the

maximum error between modeled and actual temperature measurements. This measure is vital for

evaluating the precision of CT thermometry, where CT-based temperature measurements are influenced

by measurement uncertainties, such as noise and metal artifacts, as well as uncertainty in thermometry

model parameters. These uncertainties can undermine the reliability of CT thermometry, hence the

need for a robust measure of precision.

Temperature precision was quantified by propagating the uncertainties in CT images and model pa-

rameters to ∆T as measured with CT thermometry. This metric quantifies the degree of uncertainty

in ∆T attributable to uncertainties within the inputs of the thermometry model. This was done through

mathematical error propagation for functions of multiple sources of uncertainty in the thermometry

models:

δT =

√(
∂T

∂CT (T )
δCT (T )

)2

+

(
∂T

∂CT (T0)
δCT (T0)

)2

+

(
∂T

∂p1
δp1

)2

+

(
∂T

∂p2
δp2

)2

(3.4)

where δCT (T0) and δCT (T ) are the uncertainties of the ROI measurements in CT images at lowest and
highest temperature, respectively. δp1 and δp2 are the standard deviations in the thermometry model
parameters a or α and b or β, respectively.

More specifically, by applying the model for attenuation-based thermometry (Equation 3.2), temperature

precision was calculated through error propagation as follows:

δT =

√(
1

a
δHU(T )

)2

+

(
−1

a
δHU(T0)

)2

+

(
−1

a
δb

)2

+

(
−δa

a2
(HU(T )−HU(T0)− b)

)2

(3.5)

The temperature precision for physical density-based thermometry (Equation 3.3) was calculated as

follows:

δT =

√(
1

α ρ(T )
δρ(T0)

)2

+

(
− ρ(T0)

α ρ(T )2
δρ(T )

)2

+

(
1

α
δβ

)2

+

((
− ρ(T0)

ρ(T ) α2
+

β

α2

)
δα

)2

(3.6)

Because a high standard deviation in CT images can be attributed to both high noise levels or severe

metal artefacts, the placement of the ROI was varied to identify the true source of uncertainty. First, to

determine the temperature precision at varying distances from the ablation antenna, rectangular ROIs

of 2 by 2 mm were placed at 10, 15, 20, and 25 mm from the ablation antenna. These ROIs were placed
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such that the influence of metal artifacts was minimized. The measurement uncertainty in these ROIs

was defined as the standard error of the mean (standard deviation divided by the square root of the

number of voxels in the ROI).

Alternatively, to evaluate the effect of metal artifacts on temperature precision, two additional circular

ROIs with a radius of 6 mm were placed—one in line with the ablation antenna and another lateral of

the ablation antenna, within the slices most affected by metal artifacts (Figure 3.5). The measurement

uncertainty in these artifact-corrupted ROIs was defined as the standard deviation divided in the ROI.

(a) Region of interest placed in line with ablation antenna,
which is oriented orthogonal to the paper.

(b) Region of interest placed lateral to the ablation antenna,
which is oriented orthogonal to the paper.

Figure 3.5: Placement of regions of interest in slices that contained severe metal artifacts. The standard deviation within these

regions were used to calculate the temperature precision. Small white dots are the temperature sensors. Small white dots

represent the temperature sensors. Note that the ablation antenna is absent in slice (a) but visible in slice (b).

To assess the precision of CT thermometry under diverse acquisition and reconstruction settings,

the temperature precision was calculated across different combinations of MAR techniques, slice

thicknesses, and radiation doses. The outcomes of these calculations are visually represented in

a heatmap format, with each segment illustrating a specific combination of radiation dose and slice

thickness. This visual approach facilitates the identification of the optimal combination of radiation dose,

slice thickness, and MAR algorithm necessary to achieve clinically relevant temperature precision.

To examine the impact of increasing either the dose or slice thickness on precision, a paired t-test

was utilized. Additionally, the efficacy of different MAR techniques under varying imaging conditions

was compared. Given the paired nature of the data, an initial Shapiro-Wilk test was conducted to

evaluate the normality of the dataset. The results revealed a non-normal distribution, leading to the use

of non-parametric statistical methods for subsequent analysis.

In comparing the effectiveness of these MAR methods, the Wilcoxon signed-rank test was applied for

pairwise comparisons. Each MAR method was compared against the others to assess the significance

of differences in performance across all considered imaging conditions. The reduction of metal artifacts

in physical density maps was quantified as the percentage decrease in temperature precision of the

physical density map relative to attenuation images. Similarly, the effectiveness of different MAR

algorithms was measured by the percentage decrease in temperature precision of the MAR method

compared to when no MAR was applied.

3.3.3. Accuracy
In this study, two CT thermometry models were developed based on the three repetitions with a high

dose. The model’s accuracy was subsequently evaluated using the single repetition that was not

incorporated into the model development, specifically the low dose repetition. For this, temperature

maps for the low dose repetition were generated using the model parameters from 3.2.4. The modeled

temperatures in proximity to the temperature sensors were recorded by employing ROI measurements

as detailed in section 3.2.3. To assess the accuracy of modeled temperatures, a Bland-Altman analysis

was made. This analysis provided the mean-of-difference between the temperature as measured by the

thermocouples and modeled temperatures. Moreover, the 96% limits-of-agreement, calculated as 1.969

× standard deviation of differences, were established. The Bland-Altman plot graphically presents the

difference between measured and modeled temperatures against the average of these temperatures.
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3.4. Image quality assessment
Image quality of different MAR methods and of attenuation and physical density maps were assessed in

a homogeneous slice of one repetition in the gel phantom. Only metrics related to image noise were

utilized because the assessment of image contrast was not possible due to the homogeneity of the

gel phantom. To evaluate image noise, the standard deviation of the mean CT value (HU or physical

density) within 9 ROIs, each 10 × 10 mm and arranged radially, was computed in a slice without metal

artifacts (Figure 3.6). The signal-to-noise ratio was defined as the mean CT value divided by the noise.

Subsequently, the 2D noise power spectrum (NPS) and 1D normalized NPS were computed to further

characterize image noise texture. The calculation of the NPS adhered to the method established by the

ICRU as described below [60].

While the autocorrelation function describes noise correlation in the spatial domain, the NPS describes

noise correlation in the Fourier domain. Considering a two-dimensional ROI, suppose Ii(x, y) denotes
the signal in the ith ROI and Ī represents the average of Ii(x, y). The calculation of the 2D NPS then

proceeds as follows:

NPS2D(fx, fy) =
1

N

N∑
i=1

|DFT2D[Ii(x, y)− Ī]|2∆x∆y

NxNy
(3.7)

Figure 3.6: Region of interest placement for image

quality assessment. Nine radially dispersed square

(10 x 10 mm) regions of interest were placed in a

homogeneous slice of the gel phantom that did not

contain metal artifacts. Standard deviation,

signal-to-noise ratio and the noise power spectrum

were calculated in these regions.

Here, the summation across i denotes the mean of the NPS
values across N ROIs. The ∆ values represent the pixel

size within a specified slice. Nx and Ny are the voxel counts

across each dimension of the ROI. The variables fx and fy
represent the spatial frequencies in the x and y directions,
respectively, while DFT2D is the two-dimensional discrete

Fourier transform.

The 1D NPS was derived from the 2D NPS via radial aver-

aging. This was done by summing and averaging the noise

power values along multiple radial lines extending from the

center of the 2D NPS. This process transforms the 2D NPS

into a 1D representation, providing a more comprehensive

characterization of noise texture. The resulting 1D NPS was

normalized by dividing the noise power at each frequency

by the total noise power. The NPS analysis was performed

in the same 9 ROIs from Figure 3.6.





4
Results

4.1. AM-PD reparameterization

X-ray energy

70 keV 110 keV 150 keV

p1 3.5699 3.7651 3.6723

p2 1.0761 1.0804 1.0816

p3 44.2394 45.7486 42.6138

p4 4.4857 5.3714 6.8218

p5 3.1221 3.6567 4.4194

p6 1.0303 1.0551 1.0436

p7 1.0064 1.0869 1.1679

RMSE

(g/mL)
0.00290 0.00290 0.00300

Table 4.1: Parameters of three AM-PD models at x-ray energy

levels of 70, 110, and 150 keV. This table illustrates the variation

in fitted parameters between each model, alongside their

consistently similar root mean square error (RMSE) values. This

demonstrates the model’s uniform performance across diverse

energy spectra.

The reparameterization of the AM-PD model

demonstrated minimal variance in root mean

square error across different energy levels (50

- 200 keV), with values spanning from 0.00283

to 0.00317 g/mL. The highest discrepancy ob-

served, a maximum absolute error of 0.49 g/mL,

was found in materials of greater density, such

as breast calcifications and cortical bone. Con-

versely, in the middle density range, with tissues

such as soft tissue, blood, and fat, the maximum

absolute error was lowest, remaining under 0.01

g/mL. Increased error margins were again ob-

served in lower-density regions, specifically in

lung tissues (Figure 4.1). Nonetheless, the phan-

tom materials used in this study predominantly

fell within the mid-density range, ensuring that the

absolute error for these materials did not exceed

the 0.01 g/mL threshold. Model parameters and

RMSE for x-ray energy levels of 70, 110, and 150

keV are shown in Table 4.1.

Figure 4.1: Left: Comparison of nominal densities with those predicted by the parameterized AM-PD model with an energy level

of 150 keV. ICRU materials were sorted on increasing density. Right: Difference in density values between the nominal and fitted

densities. The fitted densities deviate most from the nominal densities in the lower and higher density regions.

35
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4.2. Liver phantom
The temperature in the livers rose from 9 to 150°C measured by the closest thermocouple. Other

thermocouples recorded lower maximum temperatures. Figure 4.2 shows the CT and physical density

images of the reference scan (before ablation) and after 60, 150, and 360 seconds of ablation.

Figure 4.2: Example of CT and physical density images in the liver phantom before ablation and after 60, 150 and 360 seconds

of ablation. The images show a hypodense area around the ablation antenna. Metal artifacts from the ablation antenna obscure

both proximal and distal surrounding tissue. Setting for window/level were 400/60 and 0.12/1.055 for the CT images and physical

density maps, respectively.

Figure 4.3: Assessment of reproducibility in attenuation-based (top) and physical density-based (middle) CT thermometry from 9

to 150 ºC (bottom) over two repetitions.
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4.2.1. Thermometry reproducibility
In the analysis of attenuation-based images of liver phantoms, a mildly inverse correlation between

HU difference and temperature difference was found in two separate test repetitions (Figure 4.3, top

row). The thermal sensitivity (a) averaged -0.36 ± 0.013 HU/ºC, while the intercept (b) was 3.1 ± 2.1
HU. These values led to a CV of 0.037 for a and 0.66 for b, indicating a relatively high reproducibility in
attenuation-based CT thermometry for this experiment. However, the linear relationship between HU

difference and temperature difference was weak with a mean R2 value of 0.68 across the two repetitions.

In a similar vein, physical density images in the liver phantoms showed an even weaker linear relationship

between relative density change (ρ(T0)/ρ(T )) and temperature difference (∆T = T − T0) (Figure 4.3,

middle row). The measured thermal expansion coefficient (α) was 0.00034 ± 0.000087 ºC−1 and the

intercept (β) 0.99 ± 0.0047. These results, with a CV of 0.26 for α and 0.047 for β, reflect the challenges
in the reproducibilty of physical density-based CT thermometry in this experiment. A mean R2 value of

0.18 was found across the two repetitions.

4.2.2. Temperature precision

Exposure 387 mAs

Slice thickness 1 mm 2 mm

Distance from antenna 10 mm 15 mm 20 mm 25 mm 10 mm 15 mm 20 mm 25 mm

Attenuation 53 20 13 17 32 16 11 14

PD: 70 keV 135 37 18 20 104 40 20 19

PD: 110 keV 135 37 18 20 104 40 20 19No MAR

PD: 150 keV 135 37 18 20 104 40 20 19

Table 4.2: Temperature precision heatmap in liver phantom calculated using

equations 3.5 and 3.6. Colours demonstrate a superior temperature precision

differences of attenuation-based thermometry. Additionally, greater slice

thickness and distance from the ablation antenna improves precision.

The evaluation of temperature preci-

sion in the liver phantom was con-

ducted without the use of O-MAR or DL-

MAR. Temperature precision improved

through attenuation-based thermome-

try, thicker slices, and greater distances

from the ablation antenna as visual-

ized in a heatmap. Near the ablation

antenna, attenuation-based thermome-

try yielded more favorable results than

thermometry based on physical den-

sity. The temperature precision did not

change with the use of high energy VMI

for the physical density maps.
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4.3. Gel phantom
Figure 4.4 shows the CT and physical density images of the reference scan (before ablation) and

after 120, 300, and 600 seconds of ablation. The temperature range as measured by the closest

thermocouple was 18 to 98ºC.

Figure 4.4: Example of CT and physical density images of the liver mimicking gel phantom before ablation and after 120, 300

and 600 seconds of ablation. The images show a hypodense area around the ablation antenna. Metal artifacts from the ablation

antenna obscure both proximal and distal surrounding tissue. Setting for window/level were 400/60 and 0.12/1.055 for the CT

images and physical density maps, respectively.

4.3.1. Phantom characterization
The attenuation of the liver mimicking gel phantom matched the attenuation of a human adult liver as

described by the ICRU 44 and 46 [55]. At lower energies, the difference in attenuation was larger with a

maximum of 8 HU, while this difference decreased to 0.5 HU at higher energies (Figure 4.5).

4.3.2. Thermometry reproducibility

Figure 4.5: Attenuation values of ICRU 46 liver and the liver

mimicking gel phantom at different energy levels. Differences in

attenuation decreased with increasing energy levels.

In the analysis of attenuation-based images of gel

phantoms, a strong inverse correlation between

HU change (∆HU = HU(T )−HU(T0) and tem-
perature difference (∆T = T − T0) was found

across the three separate test repetitions (Figure

4.6, top row). The thermal sensitivity (a) averaged
-0.38 ± 0.0088 HU/ºC, while the intercept (b) was
0.31 ± 0.47 HU. These values led to a CV of 0.023

for a and 1.53 for b, indicating a high reproducibility
in attenuation-based CT thermometry for this ex-

periment. Note that although the CV for intercept

b is very high, the standard deviation of 0.47 HU
is still very small. The high mean R2 value over

three repetitions of 0.98 ± 0.0054 demonstrated

the strong linear relationship between HU change

and temperature difference.

In a similar vein, physical density images in the gel phantoms showed a comparable but direct relationship

between relative density change (ρ(T0)/ρ(T )) and temperature difference (Figure 4.6, middle row). The
measured thermal expansion coefficient (α) was 0.00039 ± 0.000026 ºC−1 and the intercept (β) 0.99 ±
0.00054. These results, with a CV of 0.067 for α and 0.0005 for β, similarly reflect the high reproducibility
of the CT thermometry in this experiment. The high mean R2 value over three repetitions of 0.96 ±

0.019 demonstrated the strong linear relationship between relative physical density and temperature

difference, recapitulating thermal volumetric expansion.
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Figure 4.6: Reproducibility results from the experiments on the liver mimicking gel phantom. Weighted linear regression was

performed on three repetitions to determine the parameters for the attenuation-based (top) and physical density-based (middle)

thermometry models. Physical density-based CT thermometry was applied on physical density maps generated at 70 keV. The

maximum temperature difference as measured by the thermocouples was 80 ºC.

4.3.3. Temperature precision
In the temperature precision analysis using equations 3.5 and 3.6, an improved temperature precision

was observed with an increase in both distance from the ablation antenna and slice thickness, across

all MAR methods, as shown in the heatmap (Table 4.3). Attenuation-based thermometry provided

better precision close to the ablation antenna compared to physical density-based thermometry, but

this advantage decreased as the distance from the antenna increased. In absence of metal artifacts,

a constant level of precision was observed when using higher energy VMI for physical density-based

thermometry (p>0.999).

Under the high dose and thin slice condition, the implementation of DL-MAR significantly improved

temperature precision, showing a substantial decrease in temperature precision compared to when

DL-MAR was not used (3.0 vs. 5.5, p<0.001), with a median difference of 2.7ºC. The use of O-MAR
slightly improved precision compared to not using MAR (5.4 vs. 5.5, p=0.003). The combination of
O-MAR and DL-MAR also improved temperature precision compared to no MAR (3.0 vs. 5.5, p<0.001).

Temperature precision was better in low dose (75 mAs) settings compared to high dose (150 mAs)

settings (3.6 vs. 4.0, p<0.001). Increasing the slice thickness from 1 to 2 mm significantly improved

temperature precision (4.6 vs. 5.5, p<0.001). When DL-MAR was applied, the precision difference

between thin and thick slices decreased to 0.1ºC (3.0 vs. 2.9, p=0.03) The findings indicate that to
achieve clinically acceptable temperature precision of 2ºC, a minimum distance of 20 mm from the

ablation antenna is required when using DL-MAR with a slice thickness of 1 mm.
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Exposure 150 mAs 75 mAs

Slice thickness 1 mm 2 mm 1 mm 2 mm

Distance from antenna 10 mm 15 mm 20 mm 25 mm 10 mm 15 mm 20 mm 25 mm 10 mm 15 mm 20 mm 25 mm 10 mm 15 mm 20 mm 25 mm

Attenuation 6.1 5.2 5.1 5.2 5.2 3.7 3.4 4.1 8.1 4.8 5.2 4.0 5.1 3.9 4.1 3.2

PD: 70 keV 7.4 4.9 5.0 4.6 7.4 4.2 3.5 3.7 8.8 4.1 4.1 3.8 7.1 3.8 3.3 2.6

PD: 90 keV 7.3 4.8 4.9 4.7 7.3 4.1 3.5 3.7 8.7 4.1 4.1 3.9 7.1 3.8 3.3 2.6

PD: 110 keV 7.4 4.8 4.9 4.7 7.4 4.1 3.5 3.8 8.8 4.1 4.1 3.9 7.1 3.8 3.3 2.6

PD: 130 keV 7.4 4.9 5.1 4.6 7.4 4.1 3.5 3.7 8.7 4.0 4.2 3.9 7.0 3.7 3.3 2.6

No MAR

PD: 150 keV 7.6 5.0 4.9 4.5 7.5 4.2 3.5 3.7 9.0 4.2 4.1 3.9 7.1 3.8 3.3 2.6

Attenuation 6.1 5.2 5.1 5.2 5.2 3.7 3.4 4.1

PD: 70 keV 7.2 4.8 5.0 4.6 7.2 4.1 3.5 3.7

PD: 90 keV 7.2 4.7 4.9 4.7 7.2 4.0 3.5 3.7

PD: 110 keV 7.2 4.8 4.9 4.7 7.2 4.0 3.5 3.7

PD: 130 keV 7.2 4.8 5.1 4.6 7.3 4.0 3.5 3.7

O-MAR

PD: 150 keV 7.4 4.9 4.9 4.5 7.3 4.1 3.5 3.6

Attenuation 2.8 1.8 1.5 2.0 2.9 1.9 1.4 1.4 3.2 1.7 1.5 1.5 2.0 1.7 1.5 1.4

PD: 70 keV 5.8 3.1 2.3 1.8 5.6 3.3 2.2 1.7 5.3 3.1 2.0 1.6 4.0 3.1 1.8 1.6

PD: 90 keV 5.7 3.1 2.2 1.7 5.4 3.2 2.1 1.7 5.2 3.0 1.8 1.6 3.8 3.0 1.7 1.7

PD: 110 keV 5.6 3.2 2.2 1.7 5.3 3.2 2.2 1.7 5.1 3.0 1.8 1.6 3.7 3.0 1.8 1.6

PD: 130 keV 5.6 3.2 2.2 1.7 5.4 3.2 2.2 1.7 5.0 2.9 1.8 1.6 3.6 2.9 1.8 1.7

DL-MAR

PD: 150 keV 5.7 3.3 2.3 1.7 5.5 3.3 2.1 1.8 5.1 3.0 1.8 1.6 3.6 3.0 1.9 1.7

Attenuation 2.8 1.8 1.5 2.0 2.9 1.9 1.4 1.4

PD: 70 keV 5.8 3.0 2.3 1.8 5.6 3.3 2.2 1.7

PD: 90 keV 5.7 3.1 2.2 1.7 5.4 3.2 2.1 1.7

PD: 110 keV 5.6 3.2 2.2 1.7 5.4 3.2 2.2 1.7

PD: 130 keV 5.6 3.2 2.2 1.7 5.4 3.2 2.2 1.7

O-MAR + DL-MAR

PD: 150 keV 5.7 3.3 2.3 1.7 5.4 3.3 2.1 1.8

Table 4.3: Temperature precision heatmap calculated using equations 3.5 and 3.6. This metric quantifies the degree of

uncertainty in ∆T attributable to uncertainties within the inputs of the thermometry model. Green colors demonstrate a superior

temperature precision of attenuation-based thermometry and the use of DL-MAR. Additionally, greater slice thickness and

distance from the ablation antenna improves precision. A clinically required level of precision was found from 20 mm from the

ablation antenna when using DL-MAR and 1 mm slice thickness.
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4.3.4. Needle artifact reduction
The temperature precision in artifact-corrupted slices was evaluated using ROI measurements from

Figure 3.5 and equations 3.5 and 3.6. In the assessment of efficacy of physical density maps in reducing

needle artifacts in CT scans at a 1 mm slice thickness and a 150 mAs setting, the Wilcoxon signed-rank

test indicated significant differences with attenuation maps. These differences were most notable when

comparing attenuation maps to physical density maps at varying energy levels. A clear decrease in

needle artifacts was observed with the use of higher energy physical density maps for artifacts in line

with the ablation antenna, though this trend was less pronounced for lateral artifacts (Figure 4.7).

Pairwise comparisons revealed that physical density maps at 70 keV did not significantly reduce needle

artifacts compared to attenuation maps. However, at higher energy levels, the reduction of needle

artifacts became more substantial. Specifically, physical density maps at 90 keV reduced needle artifacts

by an average of 53% (95% CI, 11% - 96%) compared to attenuation maps, with a median difference of

104ºC (p<0.05). At 110 keV, the reduction was 66% (95% CI, 47% - 84%) on average, with a median

difference of 129ºC (p<0.05). At 130 keV, the average reduction reached 71% (95% CI, 60% - 81%),

with a median difference of 127ºC (p<0.05), and at 150 keV, there was a 73% (95% CI, 61% - 84%)

average reduction, with a median difference of 125ºC (p<0.05).

Exposure 150 mAs 75 mAs

Slice thickness 1mm 2mm 1mm 2mm

ROI position In line Lateral In line Lateral In line Lateral In line Lateral

Attenuation 523 202 504 190 870 175 844 167

PD: 70 keV 549 49 529 44 876 58 849 54

PD: 90 keV 316 52 306 47 648 59 629 54

PD: 110 keV 219 56 213 50 539 60 523 55

PD: 130 keV 173 59 168 53 485 61 472 56

No MAR

PD: 150 keV 149 61 145 56 456 62 443 57

Attenuation 254 144 245 137

PD: 70 keV 242 28 234 26

PD: 90 keV 136 30 131 28

PD: 110 keV 92 32 90 29

PD: 130 keV 73 33 71 31

O-MAR

PD: 150 keV 64 34 62 32

Attenuation 323 154 312 145 649 85 623 81

PD: 70 keV 492 72 476 65 663 92 628 83

PD: 90 keV 291 60 279 54 604 62 581 55

PD: 110 keV 167 56 158 51 535 54 516 48

PD: 130 keV 106 55 99 50 487 52 469 47

DL-MAR

PD: 150 keV 79 57 74 52 453 52 437 47

Attenuation 134 89 127 84

PD: 70 keV 145 51 139 48

PD: 90 keV 59 36 58 34

PD: 110 keV 35 30 34 29

PD: 130 keV 27 29 26 27

O-MAR + DL-MAR

PD: 150 keV 24 28 23 27

Table 4.4: Heatmap of temperature precision, calculated using equations 3.5

and 3.6 in presence of needle artifacts. Temperature precision quantifies the

degree of uncertainty in ∆T attributable to uncertainties within the inputs of

the thermometry model. Green colors indicate the enhanced effectiveness of

high-energy physical density maps, O-MAR, DL-MAR, and their combination

in reducing needle artifacts. Artifact measurements are conducted both inline

and laterally to the ablation antenna.

Further analysis on the effectiveness

of MAR techniques at the same

settings showed that the Wilcoxon

signed-rank test revealed notable dif-

ferences between having no MAR

approach and applying various MAR

techniques. O-MAR reduced nee-

dle artifacts on average by 49% com-

pared to no MAR, with a median

difference of 72ºC (p=0.001). DL-

MAR showed a 12% average reduc-

tion, with a median difference of 37ºC

(p=0.01). The combined use of O-

MAR and DL-MAR further reduced

needle artifacts to 60% on average,

with a median difference of 119ºC

(p=0.001).

Adjustments to the scan parameters

also influenced metal artifact reduc-

tion. Specifically, doubling the slice

thickness led to a 6.1% reduction in

metal artifacts, with a mean difference

of 9ºC (p<0.001). Increasing the ex-

posure doubled the reduction effect to

29%, with a mean difference of 162ºC

(p=0.003). This evaluation illustrates

the effectiveness of physical density

maps and MAR techniques in the con-

text of thermal ablation.
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Figure 4.7: The effect of various MAR methods on temperature maps after a 10-minute ablation procedure is illustrated. In panel

A.1, the ablation antenna’s trajectory is depicted as a pink line on an 120 kVp attenuation map (window/level = 400/60 HU). Panel

A.2 shows the application of attenuation-based thermometry (window/level = 80/50ºC), which led to significant artifacts laterally to

(green arrow) and in line with the antenna. Panels B.1 through B.3 demonstrate the use of physical density-based thermometry

with VMIs at energies of 70, 110, and 150 keV, respectively. This approach resulted in fewer artifacts laterally to the antenna

(green arrow in B.1). Increasing VMI energy levels progressively reduced artifacts in line with the antenna (purple arrows in B.1

and B.3). In panel C, O-MAR, DL-MAR, and their combination were applied to 150 keV physical density-based thermometry. The

use of O-MAR (C.1) significantly reduced overall artifact presence compared to no MAR (B.3). Applying DL-MAR in C.2

substantially reduced image noise and slightly decreased artifacts both laterally and along the antenna. The most effective

strategy for reducing metal artifacts, shown in C.3, involves applying both O-MAR and DL-MAR to 150 keV physical density maps.

4.3.5. Accuracy
Using attenuation-based thermometry, the Bland-Altman analysis shows a mean-of-difference of -1.2°C

with limits of agreement of -7.7°C and 5.3°C. A high agreement was observed at lower temperatures, while

this agreement was weaker at increasing temperatures (Figure 4.8 top). In the Bland-Altman analysis

using physical density-based thermometry a mean-of-difference of -0.7°C with limits of agreement of

-9.47°C and 8.05°C was found (Figure 4.8 bottom).

When analyzing temperature differences up to a clinically relevant maximum of 40°C using Bland-

Altman analysis, the results for attenuation-based thermometry and physical density-based thermometry

show a better agreement than the full temperature range. Attenuation-based thermometry yielded a

mean-of-difference of -0.2°C, with limits of agreement ranging from -5.0°C to 4.6°C (Figure 4.9 top).

In contrast, physical density-based thermometry demonstrated a mean-of-difference of 0.7°C, with a

range of agreement from -4.5°C to 6.0°C (Figure 4.9 bottom).
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Figure 4.8: Comparative Bland-Altman plots for attenuation (top) and physical density-based CT thermometry at 150 keV

(bottom). The plots display the difference between measured and modeled temperatures on the y-axis against the mean of the

two temperatures on the x-axis. Limits of agreement are marked by the dashed red lines, while the clinical requirement threshold

is indicated by the dashed green line. In both thermometry methods a high agreement is observed at low temperatures while this

agreement decreases with increasing temperature. The reduced agreement at high temperatures could be due to more presence

of metal artifacts, as Sensor 1 was positioned closest to the ablation antenna.
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Figure 4.9: Comparative Bland-Altman plots for attenuation (top) and physical density-based CT thermometry at 150 keV

(bottom) with a maximum temperature of 60°C. The plots displays the difference between measured and modeled temperatures

on the y-axis against the mean of the two temperatures on the x-axis. Limits of agreement are marked by the dashed red lines,

while the clinical requirement threshold is indicated by the dashed green line. In both thermometry methods a high agreement is

observed in this clinically relevant situation where the maximum temperature difference was 40°C.
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(a) The use of DL-MAR shifts high-frequency noise to the low-frequency
noise peak in attenuation maps. Overlapping NPS plots suggest no

difference in noise texture.

(b) 2D noise power spectrum in an attenuation image without MAR. The
central peak and surrounding distribution visible in the 2D noise
spectrum indicates an anisotropic noise pattern, with a notable

low-frequency noise peak in the y-direction.

(c) The use of DL-MAR shifts high-frequency noise to the low-frequency
noise peak in physical density maps. Overlapping NPS plots suggest no

difference in noise texture.

(d) The normalized noise power spectrum shows that by using physical
density maps, the low-frequency noise will increase at the cost of

high-frequency noise.

Figure 4.10

4.4. Image quality assessment
Noise SNR

No MAR (a) 4.99 HU 11.2

O-MAR (a) 4.99 HU 11.2

DL-MAR (a) 4.2 HU 13.4

O-DL-MAR (a) 4.2 HU 13.4

No MAR (c) 0.00555 g/mL 188

O-MAR (c) 0.00555 g/mL 188

DL-MAR (c) 0.00516 g/mL 202

O-DL-MAR (c) 0.00516 g/mL 202

HU (d) 4.99 HU 11.2

PD: 70 keV (d) 0.00540 g/mL 196

PD: 90 keV (d) 0.00542 g/mL 194

PD: 110 keV (d) 0.00548 g/mL 191

PD: 130 keV (d) 0.00553 g/mL 189

PD: 150 keV (d) 0.00555 g/mL 188

Table 4.5: Noise and signal-to-noise

ratio of different MAR methods,

attenuation maps, and physical density

maps. The letter in boldface

correspond to the noise power spectrum

curves from Figures 4.10 a, c, d.

Table 4.5 presents the measured outcomes related to image noise

magnitude. When DL-MARwas applied, both HU and physical density

images had decreased noise levels, leading to an improved SNR.

No significant changes in noise levels were observed with the use of

O-MAR. The SNR for physical density images significantly exceeded

that of HU images, with a more than tenfold increase observed.

Although DL-MAR and physical density images enhance SNR, they

also both alter the frequency distribution of noise, as shown in Figure

4.10. Specifically, there was a relative increase in noise power at lower

frequencies, with a corresponding decrease in high-frequency noise.

The texture of the noise remained unchanged with the application of

O-MAR. Note that the 1D NPS curves are normalized, meaning the

heights of the curves are not assigned absolute numerical values.

The 2D noise spectrum indicates an anisotropic noise pattern, char-

acterized by a peak in low-frequency noise in the y-direction.
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Discussion

The aim of this study was to assess the applicability of spectral CT for non-invasive temperature mea-

surements in thermal liver ablation. More specifically, reproducibility, temperature precision, temperature

accuracy and metal artifact reducing capabilities of spectral CT thermometry based on physical density

maps were compared to attenuation-based thermometry. Additionally, a sinogram-based MAR and

deep learning-based MAR algorithm were applied to further reduce artifacts from the ablation antenna.

5.1. Key findings and comparison to literature
This study demonstrated that thermal volumetric expansion during liver thermal ablation can be effectively

monitored using spectral CT. We observed a strong linear correlation between tissue temperature and

physical density, with a consistent variation of only 0.067 across three separate ablation procedures

using a liver-mimicking gel phantom. By employing DL-MAR on physical density maps, we achieved

temperature precision below the clinically required 2°C threshold. Attenuation-based thermometry

reached the 2°C precision mark at a 15 mm distance from the ablation antenna. In contrast, physical

density-based thermometry achieved this precision at a 25 mm distance, suggesting potential for

improvement closer to the antenna. Nonetheless, this might be less relevant considering the ablation

zone extended to about 20 mm within the gel phantom.

Physical density maps at 150 keV proved most effective in reducing metal artifacts from the ablation

antenna, achieving an average reduction of 73%, compared to attenuation maps. Furthermore, the

combined use of O-MAR and DL-MAR facilitated a 60% reduction in metal artifacts compared to no

MAR. In terms of accuracy, CT thermometry using physical density maps at 150 keV showed high

temperature accuracy, with limits of agreement ranging from -4.5°C to 6.0°C.

In this study, we identified a thermal sensitivity of -0.38 HU/°C in a liver-mimicking phantom using

attenuation-based thermometry. This result aligns with the established range in literature, which spans

from -2.00 to -0.23 HU/°C (see Appendix B). Additionally, we determined a thermal expansion coefficient

(α) of 0.00039 °C−1 using physical density-based thermometry. This figure is slightly lower than those

reported by Noël’s research group, who developed the AM-PD model. They documented coefficients of

0.00042 and 0.00053 °C−1 for a liver-mimicking phantom and ex vivo bovine liver, respectively [31], [32].

The difference in results could be attributed to differences in heating methods: while our study employed

thermal ablation, their approach involved slow heating in a warm water bath, potentially causing greater

thermal expansion.

To our knowledge, this study is the first to apply equations 3.5 and 3.6 for quantifying temperature

precision. Although Liu et al. utilized a similar metric known as temperature tolerance, direct comparisons

with their results are difficult due to methodological differences [32].

A Bland-Altman analysis was performed on a set of data not previously used for determining CT

thermometry parameters, revealing a mean-of-difference of 0.7 °C. Comparatively, a study by Pohlan et

al. showed that binary logistic regression could distinguish between tissue temperatures below and

above 70°C with 89.2% accuracy [27]. In another study, Hübner et al. evaluated the accuracy of

47
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CT thermometry during cryoablation [61]. Using Bland-Altman analysis, they achieved thermometry

accuracy within the 1-2°C requirement, but the broad limits-of-agreement (24.7°C and -22.2°C) hinder

its direct clinical application.

These findings should be contrasted to the current gold standard, MR thermometry. Since the introduction

of MR thermometry two decades ago, a variety of thermometry techniques have been developed [62].

While effective, interventional MRI is rarely applied due to high costs and the necessity for metal-free

instruments. As CT thermometry approaches the performance of MR thermometry, CT presents an

cost-effective alternative that is already integral to intervention planning and probe positioning.

In summary, applying O-MAR and DL-MAR to spectral CT and generating physical density maps at 150

keV can achieve the necessary clinical temperature precision in areas unaffected by metal artifacts,

potentially reducing these artifacts by up to 93%.

5.2. Clinical implications
To ensure the effective monitoring of thermal ablation in clinical settings, the criteria from Table 1.1 for

non-invasive thermometry were established. In short, a spatial resolution below 2 mm, a CT acquisition

time under 30 seconds, and a temperature precision within 2°C must be met [6]. This study achieved

the spatial resolution and acquisition time criteria with measures of 0.68 mm and 1 second, respectively.

Although the image reconstruction and registration time was not recorded, it was well below 30 seconds.

Moreover, by employing O-MAR and DL-MAR on spectral CT to generate physical density maps at

150 keV, it is possible to achieve the clinically desired temperature precision within approximately 20

mm of the ablation antenna. Liu et al. have previously explored denoising strategies, such as bilateral

and non-local means filtering, aiming to improve temperature tolerance [28]. Although they did not use

an ablation antenna in their study, they showed that applying non-local means denoising to physical

density-based CT thermometry—conducted with 2 mm slices at a radiation dose of 2 mGy—could

achieve a temperature precision of under 2°C.

In contrast to other imaging modalities like MRI, CT technology offers superior spatial and temporal

resolution, allowing for a detailed depiction of small structures, such as vessels or small tumors, in three

dimensions. However, the radiation exposure associated with CT, and in particular the additional dose

associated with CT thermometry poses a potential concern in clinical applications. Standard practice

for monitoring ablation success involves two contrast-enhanced scans. CT thermometry introduces at

least two additional non-contrast scans to track temperature-related changes in CT values. Despite the

increase in radiation exposure, it is important to weigh this against the potential for reduced local tumor

recurrence rates. In their 2012 study, Pandeya et al. reported an increased radiation dose of 8 mSv per

ablation procedure when CT thermometry was performed, correlating to an additional fatal tumor in 1

out of 2,500 patients [63]. Over the past decade, advancements in CT technology have significantly

focused on minimizing radiation doses. Consequently, a new evaluation of the risk versus benefit, taking

into account the advancements in CT technology and its impact on patient outcomes, is needed.

Physical density-based thermometry represents a significant benefit in the determination of the thermal

expansion coefficient of various tissue types. This methodological advancement lies in the inherent

stability of physical density measurements, which unlike attenuation-based thermometry, remain unaf-

fected by the variations in imaging parameters typically associated with CT scans. This consistency

may streamline the process by removing the variability and complexity often introduced by differing

imaging protocols, thereby enhancing its universal applicability. Such standardization could facilitate

broader acceptance and normalization of CT thermometry practices. Nevertheless, further research is

needed to determine if the thermal expansion coefficient of tissues can be accurately measured without

relying on CT, and how these measurements can be effectively integrated into physical density-based

CT thermometry for optimal accuracy.

During a standard ablation procedure, several minutes can elapse between two CT scans. The time gap

between consecutive CT scans can lead to interscan motion artifacts resulting from breathing, organ

pulsation, or movements by the patient. These artifacts can significantly hinder the monitoring of the

ablation zone, as consecutive scans are compared voxel-wise for CT thermometry. To minimize these
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Figure 5.1: This figure presents three methods for visualizing temperature data as acquired with CT during a thermal ablation

procedure. The temperature data was obtained using physical density-based thermometry at an energy level of 150 keV, without

metal artifacts reduction. The images shown are after 60, 300, 450 and 600 seconds of ablation. The top row depicts thermal

maps with a temperature range of 10°C to 90°C. The middle row integrates the thermal map onto the CT images, highlighting

regions where the temperature has exceeded 30°C. The bottom row delineates regions of specific thermal significance on the CT

image, with isolines at temperatures of 40°C, 60°C, and 80°C. To improve image quality, bilateral filtering was employed on the

density maps used to derive the temperature data. This visualization approach assists physicians in accurately delineating the

ablation zone.

artifacts, it is essential to accurately register successive images. In a study conducted by Kostyrko

et al. an in vivo MWA procedure was performed on a pig [64]. Rigid and elastic registration were

evaluated both qualitatively and quantitatively for their effectiveness in CT thermometry. The qualitative

analysis indicated that rigid registration was marginally less effective compared to other techniques,

while quantitative assessments showed that a combined approach of rigid and elastic registration

significantly improved movement reduction.

The O-MAR algorithm is effective in reducing metal artifact from large metal implants in CT scans, but

faces limitations with smaller metal objects such as surgical stents or needles. Secondary artifacts

may arise due to the dimensions of these small objects as O-MAR is not designed for such objects

[50]. Challenges are particularly pronounced when these metal objects are adjacent to air spaces; the

algorithm tends to mask and exclude these areas, leaving some artifacts uncorrected. This potentially

limits the efficacy of O-MAR when gas bubbles are formed around the ablation antenna. The developer

of O-MAR advises against using this algorithm for images containing small metal objects near air and

have highlighted cases where metal’s proximity to air or lung tissue can lead to diagnostic challenges.

Furthermore, this study also used the DL-MAR algorithm, which was trained on images with large

orthopedic devices implanted in bone tissue. Its performance on needle-like structures in soft tissue

has not been investigated before this study. Although DL-MAR demonstrated superior capabilities in

reducing image noise and enhancing temperature precision, it was inferior to O-MAR at minimizing

artifacts caused by the ablation antenna. Therefore, combining O-MAR and DL-MAR emerges as a

synergistic approach to improve CT thermometry. Moreover, training the DL-MAR’s deep learning

network with images containing artifacts from needle-like structures in soft tissues could establish it as

a one-stop solution for enhancing both precision and metal artifact reduction in CT thermometry.

For CT thermometry to be successfully implemented in clinical settings, special focus must be placed on

how temperature maps are visualized for physicians. Spectral CT thermometry must achieve two critical

goals to be effective: producing precise and accurate temperature maps without metal artifacts, and

presenting these maps to physicians in a comprehensive and meaningful manner. Figure 5.1 illustrates

various methods for displaying temperature distribution in one repetition conducted in this study. The
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first row depicts a basic temperature map, ranging from 10°C to 90°C. However, such maps alone are

insufficient for clinicians to assess the success of an ablation procedure. It is essential to visualize the

tumor location within the temperature distribution to verify that both the tumor and ablation margin are

covered by the cytotoxic threshold.

To address this, the second row of Figure 5.1 integrates a temperature overlay on a CT image, ideally one

that is contrast-enhanced and taken before ablation to accurately represent the tumor’s original volume

and position. Alternatively, as shown in the third row, temperature isolines indicating clinically relevant

thresholds can be superimposed on the CT image. These isolines simplify the task of determining

whether specific tissue areas have exceeded the cytotoxic temperature threshold. Beyond these

methods, visualization techniques could extend into three dimensions or incorporate the ablation

procedure’s duration, offering a more dynamic and informative approach to interpreting temperature

data and evaluating treatment efficacy.

5.3. Methodological considerations
Several methodological considerations should be taken into account for this study. Firstly, the design

for experiments using porcine liver could have been improved. Conducting these experiments 60 hours

after extraction introduced the complication of putrefaction, a decomposition process involving tissue

breakdown and gas formation by bacterial and fungal activity. This issue, combined with the utilization

of a high ablation power setting, led to the formation of gas bubbles significantly larger than those

typically observed in clinical scenarios. In measuring ROIs, a threshold was applied to exclude voxels

containing gas. However, the partial volume effect at the borders between gas and tissue might have

led to artificially decreased CT values, affecting the reliability of these measurements. Furthermore, the

inherent heterogeneity of liver tumors posed challenges in objectively assessing temperature precision

and the effectiveness of metal artifact reduction.

Taking these considerations into account, subsequent experiments employed a liver-mimicking gel

phantom, designed to replicate the attenuation, dielectric, and thermal properties of human liver tissue

[32]. While this choice aimed to eliminate the confounding effects of liver tissue heterogeneity and

allow for a more controlled assessment of precision and artifact reduction, it does not fully mimic clinical

conditions. Moreover, unlike the experiments with the liver phantom, these tests did not utilize an

anthropomorphic abdominal phantom ring. Future research should strive for a more anthropomorphic

approach that better reflects the complexities of the clinical environment.

Secondly, the study utilized metallic thermocouples to verify temperature measurements. Previous

research has highlighted that the metallic junction’s interaction with the microwave field may cause

inaccuracies in temperature readings [65]. While this effect was not directly observed in the gel phantom,

the liver phantom exhibited exceptionally high temperatures, exceeding 140°C. Switching to fiber optic

temperature sensors could potentially eliminate these reading artifacts, as these sensors do not contain

metallic components.

The results indicate a notable difference in temperature precision and, in certain instances, the prevalence

of metal artifacts between low and high-dose repetitions, with low doses demonstrating more favorable

outcomes. Contrary to the expected reduction factor of
√
2 in the high dose setting, such an improvement

was not realized. This may originate from the experimental setup. Specifically, the fact that the

temperature precision and metal artifact assessments for low and high doses were not conducted within

identical repetitions. The high-dose repetitions might have exhibited a greater concentration of metal

artifacts in the ROI measurements, in contrast to a more dispersed presence of artifacts throughout the

volume in low-dose scans. To address this confounding effect and ensure a more accurate comparison,

future research conduct both low and high-dose measurements within the same repetition.

Physical density-based thermometry demonstrated an inferior temperature precision near the ablation

antenna compared to attenuation-based thermometry. This lowered precision could be attributed to the

fact that the AM-PD model showed an increased root mean square error when applied to materials of

lower density, indicating a lower accuracy in these materials. Consequently, the AM-PD model accuracy

decreases after heating, as the physical density in proximity to the ablation antenna was substantially

lowered. To address this limitation, further research may be needed to improve the accuracy of the

AM-PD model in low-density materials.
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5.4. Future research
Although CT thermometry is based on a simple concept, it has a significant challenge: different tissues,

patients, and ablation methods can have different parameters of the thermometry model (α and β).
These parameters are difficult or impossible to measure in vivo, and they can be substantially different

from the ex vivo measurements that are done under different physiological conditions. Also, the thermal

properties of the target region may be altered by the intense heat during thermal ablation, which may

introduce further errors [10].

Some studies have also reported that the thermometry parameters are not constant with large tem-

perature variations, implying that α and β are a function of temperature. These studies suggest that

quadratic [66], [67], cubic [68] or exponential [69], [70] models fit the experimental data better than

the linear model. These studies also suggest that tissue heating and cooling affect the CT numbers

differently.

Lastly, tissue properties may change due to heating, for instance, with increasing distance from the

microwave antenna. Lopresto et al. investigated the impact of temperature-dependent variations in

tissue properties on the outcomes of MWA. They concluded that a maximum variation of ± 25% in

dielectric and thermal properties must be incorporated into the accurate prediction of the ablation zone

[71]. This highlights the importance of considering tissue property variability in MWA treatment planning

to enhance the predictability of ablation outcomes. It also suggests that the parameters of a thermometry

model are not constant with temperature changes, implying that these parameters should be adjusted

based on the distance from the ablation antenna.

Future studies, essential for the clinical translation of CT thermometry, should include evaluations that

consider tissue heterogeneity, the presence of other anatomical structures, and the heat-sink effect.

Research could be structured around experiments using ex vivo liver tissues or phantoms that are

perfused, incorporate various tissue types—healthy, cirrhotic, or tumorous—or are subject to intrapro-

cedural movement. A critical step before human trials could involve using CT thermometry, including

postprocessing such as registration, denoising, and MAR, to monitor different ablation procedures (such

as radiofrequency, microwave, or cryoablation and variations in ablation power) on living pigs. Finally,

active research must focus on establishing thermometry parameters across diverse conditions, tissue

types, and patient demographics. Given the wide range of variance sources, this field presents a range

of research opportunities.

Spectral CT may enhance CT thermometry by leveraging its ability to discriminate between materials,

which enables the generation of mappings for specific tissues such as liver and tumors. This capability

is a significant advancement over single-energy CT, which lacks the specificity to distinguish between

different types of tissues with similar densities. By discriminating tissues and voxel-wise assigning them

varying thermometry parameters specific to their composition, more accurate temperature mappings

may be generated. Furthermore, improved tissue discrimination provided by spectral CT facilitates

the development of personalized treatment plans. Understanding how various tissues respond to

temperature changes enables clinicians to tailor treatments to individual patients, thereby improving

treatment efficacy and reducing recurrence rates.

Recently, Wang et al. used improved material decomposition capabilities of photon-counting CT

to develop a deep learning-based thermometry tool [72]. This tool was developed using the linear

attenuation coefficient in four energy bins at different temperatures to build a non-linear thermometry

model. Although the tool was tested on non-anthropomorphic materials, results showed a mean

absolute error of 3.40°C. Further research is needed to determine if either photon-counting CT or deep

learning-based thermometry is promising for the future.

CT thermometry shows potential for monitoring ablation procedures in the liver, but it is not the only

image post-processing technique to monitor the ablation zone. Ziv and colleagues developed two

algorithms designed to noninvasively evaluate treatment success during the procedure [73]. Similar to

CT thermometry, these algorithms necessitate a pre-ablation and a intra-procedure scan for analysis.

The first algorithm is based on image subtraction, thresholding, and morphological refinement. It implicitly

draws on CT thermometry principles because of its reliance on changes in HU. The algorithm was
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compared to a gold standard, which were gross pathology contours of corresponding CT scan slices.

Results demonstrated a mean absolute difference from pathology contours of the ablation zone radius

of 1.04± 0.74 mm, indicating a high accuracy.
The second algorithm utilizes radial optical flow, specifically the Lucas-Kanade method, applied to a

polar transformation of the CT images [74]. Although the details are complex, its core concept is based

on detecting the radial expansion of the ablation front around the antenna. By focusing on changes

in the texture of consecutive CT images, radial optical flow calculates the expansion of the ablation

area over time. This method was tested in an in vivo pig ablation study and was validated against

contrast-enhanced post-ablation CT scans. It demonstrated high accuracy in contouring the ablation

zone and effectively handled challenges associated with major blood vessels and blood flow.

However, both algorithms entail a significant increase in radiation dose due to the necessity for multiple

consecutive scans. In conclusion, when evaluating these post-processing algorithms for ablation zone

monitoring against CT thermometry, a thorough comparison is essential to ascertain which method

offers superior predictive accuracy for the success of ablation treatments.



6
Conclusion

This study has demonstrated the applicability of spectral CT thermometry for non-invasive temper-

ature monitoring during liver microwave ablation, comparing physical density-based thermometry to

attenuation-based methods. The results indicate that physical density maps, especially at 150 keV

when used in combination with DL-MAR and O-MAR, significantly reduce metal artifacts. Additionally,

they enhance temperature precision and accuracy, bringing temperature measurements closer to the

clinically required 2°C threshold.

One of the primary challenges in spectral CT thermometry lies in accurately determining the parameters

of the thermometry model, which can vary significantly across different tissue types, perfusion rates,

patient characteristics, or ablation techniques. These parameters are critical as they directly influence

the accuracy of temperature predictions. Variations in tissue composition and the dynamic nature of

thermal properties during ablation make it difficult to standardize these parameters, thereby complicating

the calibration of CT thermometry for individual cases.

Looking forward, the potential use of photon counting CT in this domain is particularly promising. This

technology could enhance the discrimination of tissue types and improve the accuracy of temperature

mappings, which is crucial for tailoring treatments to individual patients. Furthermore, considering the

complex behavior of tissue when heated, the development of deep learning-based thermometry tools

represents a significant advancement toward more precise and personalized ablation treatments.

The findings from this study establish a robust foundation for advancing the development and clinical

application of spectral CT thermometry. By continuously refining CT parameters, this research strives

to improve the safety and effectiveness of CT-guided microwave ablation procedures. Furthermore, the

progression of spectral CT thermometry is streamlining the clinical adoption of non-invasive temperature

monitoring in thermal ablation treatments, ultimately reducing the risk of local tumor recurrence.

53





References

[1] L. Crocetti, T. de Baére, P. L. Pereira, et al., “CIRSE Standards of Practice on Thermal Ablation of

Liver Tumours,” Cardiovascular and Interventional Radiology, Jul. 2020. DOI: 10.1007/s00270-
020-02471-z.

[2] M. Nikfarjam, V. Muralidharan, and C. Christophi, “Mechanisms of Focal Heat Destruction of Liver

Tumors,” Journal of Surgical Research, Aug. 2005. DOI: 10.1016/j.jss.2005.02.009.

[3] E. M. Knavel and C. L. Brace, “Tumor Ablation: Common Modalities and General Practices,”

Techniques in Vascular and Interventional Radiology, Ablation Update, Dec. 2013. DOI: 10.1053/
j.tvir.2013.08.002.

[4] S. Clasen, H. Rempp, R. Hoffmann, et al., “Image-guided radiofrequency ablation of hepatocellular

carcinoma (HCC): Is MR guidance more effective than CT guidance?” European Journal of

Radiology, Jan. 2014. DOI: 10.1016/j.ejrad.2013.09.018.

[5] L. Crocetti, C. Della Pina, D. Cioni, et al., “Peri-intraprocedural imaging: US, CT, and MRI,”

Abdominal Imaging, Dec. 2011. DOI: 10.1007/s00261-011-9750-9.

[6] L. Frich, “Non�invasive thermometry for monitoring hepatic radiofrequency ablation,” Minimally

Invasive Therapy & Allied Technologies, Jan. 2006. DOI: 10.1080/13645700500470025.

[7] S. N. Goldberg, C. J. Grassi, J. F. Cardella, et al., “Image-guided Tumor Ablation: Standardization

of Terminology and Reporting Criteria,” Journal of Vascular and Interventional Radiology, Society

of Interventional Radiology 2009 Standards’ Division Guidelines Supplement, Jul. 2009. DOI:

10.1016/j.jvir.2009.04.011.

[8] N. V. Violi, R. Duran, B. Guiu, et al., “Efficacy of microwave ablation versus radiofrequency

ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: A

randomised controlled phase 2 trial,” The Lancet Gastroenterology & Hepatology, May 2018. DOI:

10.1016/S2468-1253(18)30029-3.

[9] P. Saccomandi, E. Schena, and S. Silvestri, “Techniques for temperature monitoring during

laser-induced thermotherapy: An overview,” International Journal of Hyperthermia, Nov. 2013.

DOI: 10.3109/02656736.2013.832411.

[10] F. Fani, E. Schena, P. Saccomandi, et al., “CT-based thermometry: An overview.,” International

journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North

American Hyperthermia Group, Jun. 2014. DOI: 10.3109/02656736.2014.922221.

[11] A. Tang, O. Hallouch, V. Chernyak, et al., “Epidemiology of hepatocellular carcinoma: Target

population for surveillance and diagnosis,” Abdominal Radiology (New York), Jan. 2018. DOI:

10.1007/s00261-017-1209-1.

[12] J. D. Yang, P. Hainaut, G. J. Gores, et al., “A global view of hepatocellular carcinoma: Trends,

risk, prevention and management,” Nature Reviews Gastroenterology & Hepatology, Oct. 2019.

DOI: 10.1038/s41575-019-0186-y.

[13] A. Villanueva, “Hepatocellular Carcinoma,” The New England Journal of Medicine, Apr. 2019.

DOI: 10.1056/NEJMra1713263.

[14] M. Reig, A. Forner, J. Rimola, et al., “BCLC strategy for prognosis prediction and treatment

recommendation: The 2022 update,” Journal of hepatology, Mar. 2022. DOI: 10.1016/j.jhep.
2021.11.018.

[15] J. M. Llovet, X. Mas, J. J. Aponte, et al., “Cost effectiveness of adjuvant therapy for hepatocellular

carcinoma during the waiting list for liver transplantation,” Gut, Jan. 2002.

[16] K. F. Chu and D. E. Dupuy, “Thermal ablation of tumours: Biological mechanisms and advances

in therapy,” Nature Reviews Cancer, Mar. 2014. DOI: 10.1038/nrc3672.

55

https://doi.org/10.1007/s00270-020-02471-z
https://doi.org/10.1007/s00270-020-02471-z
https://doi.org/10.1016/j.jss.2005.02.009
https://doi.org/10.1053/j.tvir.2013.08.002
https://doi.org/10.1053/j.tvir.2013.08.002
https://doi.org/10.1016/j.ejrad.2013.09.018
https://doi.org/10.1007/s00261-011-9750-9
https://doi.org/10.1080/13645700500470025
https://doi.org/10.1016/j.jvir.2009.04.011
https://doi.org/10.1016/S2468-1253(18)30029-3
https://doi.org/10.3109/02656736.2013.832411
https://doi.org/10.3109/02656736.2014.922221
https://doi.org/10.1007/s00261-017-1209-1
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.1016/j.jhep.2021.11.018
https://doi.org/10.1016/j.jhep.2021.11.018
https://doi.org/10.1038/nrc3672


References 56

[17] B. Cady, R. L. Jenkins, G. D. Steele, et al., “Surgical margin in hepatic resection for colorectal

metastasis: A critical and improvable determinant of outcome,” Annals of Surgery, Apr. 1998. DOI:

10.1097/00000658-199804000-00019.

[18] K. Verdonschot, S. Arts, P. Van den Boezem, et al., “Ablative margins in percutaneous thermal

ablation of hepatic tumors: A systematic review,” Expert Review of Anticancer Therapy, Sep. 2023.

DOI: 10.1080/14737140.2023.2247564.

[19] M. G. Lubner, C. L. Brace, J. L. Hinshaw, et al., “Microwave tumor ablation: Mechanism of action,

clinical results, and devices,” Journal of vascular and interventional radiology: JVIR, Aug. 2010.

DOI: 10.1016/j.jvir.2010.04.007.

[20] A. S. Wright, F. T. Lee, and D. M. Mahvi, “Hepatic microwave ablation with multiple antennae

results in synergistically larger zones of coagulation necrosis,” Annals of Surgical Oncology, Apr.

2003. DOI: 10.1245/aso.2003.03.045.

[21] B. G. Fallone, P. R. Moran, and E. B. Podgorsak, “Noninvasive thermometry with a clinical x-ray

CT scanner.,” Medical physics, Oct. 1982. DOI: 10.1118/1.595117.

[22] G. M. Bydder and L. Kreel, “The temperature dependence of computed tomography attenuation

values,” Journal of computer assisted tomography, Aug. 1979. DOI: 10.1097/00004728-1979080
00-00013.

[23] A. H. Mahnken and P. Bruners, “CT thermometry: Will it ever become ready for use?” International

journal of clinical practice. Supplement, Apr. 2011. DOI: 10.1111/j.1742-1241.2011.02651.x.

[24] J. Jenne, M. Bahner, J. Spoo, et al., “CT on-line monitoring of HIFU therapy,” in 1997 IEEE

Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118), Oct.

1997. DOI: 10.1109/ULTSYM.1997.661833.

[25] P. Bruners, E. Levit, T. Penzkofer, et al., “Multi-slice computed tomography: A tool for non-

invasive temperature measurement?” International journal of hyperthermia : the official journal of

European Society for Hyperthermic Oncology, North American Hyperthermia Group, 2010. DOI:

10.3109/02656731003605654.

[26] G. D. Pandeya, J. H. G. M. Klaessens, M. J. W. Greuter, et al., “Feasibility of computed tomography

based thermometry during interstitial laser heating in bovine liver.,” European radiology, Aug.

2011. DOI: 10.1007/s00330-011-2106-6.

[27] J. Pohlan, W. Kress, K.-G. Hermann, et al., “Computed Tomography Thermography for Ablation

Zone Prediction in Microwave Ablation and Cryoablation: Advantages and Challenges in an Ex

Vivo Porcine Liver Model.,” Journal of computer assisted tomography, Oct. 2020. DOI: 10.1097/
RCT.0000000000001081.

[28] L. P. Liu, R. Pua, D. N. Rosario-Berrios, et al., “Spectral CT thermometry with improved temperature

sensitivity for image-guided thermal ablation,” inMedical Imaging 2023: Physics of Medical Imaging,

Apr. 2023. DOI: 10.1117/12.2649111.

[29] A. Heinrich, S. Schenkl, D. Buckreus, et al., “CT-based thermometry with virtual monoenergetic

images by dual-energy of fat, muscle and bone using FBP, iterative and deep learning-based

reconstruction.,” European radiology, Jan. 2022. DOI: 10.1007/s00330-021-08206-z.

[30] J. Paul, T. J. Vogl, and A. Chacko, “Dual energy computed tomography thermometry during

hepatic microwave ablation in an ex-vivo porcine model.,” Physica medica : PM : an international

journal devoted to the applications of physics to medicine and biology : official journal of the Italian

Association of Biomedical Physics (AIFB), Nov. 2015. DOI: 10.1016/j.ejmp.2015.05.014.

[31] L. P. Liu, M. Hwang, M. Hung, et al., “Non-invasive mass and temperature quantifications with

spectral CT.,” Scientific reports, Apr. 2023. DOI: 10.1038/s41598-023-33264-2.

[32] L. P. Liu, R. Pua, D. N. Rosario-Berrios, et al., “Reproducible spectral CT thermometry with

liver-mimicking phantoms for image-guided thermal ablation,” Physics in Medicine and Biology,

Jan. 2024. DOI: 10.1088/1361-6560/ad2124.

[33] J. D. B. O’Sullivan, J. Behnsen, T. Starborg, et al., “X-ray micro-computed tomography (μCT): An

emerging opportunity in parasite imaging,” Parasitology, Jun. 2018. DOI: 10.1017/S00311820170
02074.

https://doi.org/10.1097/00000658-199804000-00019
https://doi.org/10.1080/14737140.2023.2247564
https://doi.org/10.1016/j.jvir.2010.04.007
https://doi.org/10.1245/aso.2003.03.045
https://doi.org/10.1118/1.595117
https://doi.org/10.1097/00004728-197908000-00013
https://doi.org/10.1097/00004728-197908000-00013
https://doi.org/10.1111/j.1742-1241.2011.02651.x
https://doi.org/10.1109/ULTSYM.1997.661833
https://doi.org/10.3109/02656731003605654
https://doi.org/10.1007/s00330-011-2106-6
https://doi.org/10.1097/RCT.0000000000001081
https://doi.org/10.1097/RCT.0000000000001081
https://doi.org/10.1117/12.2649111
https://doi.org/10.1007/s00330-021-08206-z
https://doi.org/10.1016/j.ejmp.2015.05.014
https://doi.org/10.1038/s41598-023-33264-2
https://doi.org/10.1088/1361-6560/ad2124
https://doi.org/10.1017/S0031182017002074
https://doi.org/10.1017/S0031182017002074


References 57

[34] W. Huda, “Review of Radiologic Physics,” Journal of Applied Clinical Medical Physics, Mar. 2003.

DOI: 10.1120/jacmp.v4i2.2535.

[35] F. E. Boas and D. Fleischmann, “CT artifacts: Causes and reduction techniques,” Imaging in

Medicine, Apr. 2012. DOI: 10.2217/iim.12.13.

[36] Z. Fatima, N. Ali, M. A. Williams, et al., “X-ray scattering and attenuation cross-sections and

coefficients of bone, brain, lung, fat, and soft tissue for applications in dosimetry, cancer detection,

and treatment,” Radiation Physics and Chemistry, Jul. 2023. DOI: 10.1016/j.radphyschem.2023.
110908.

[37] R. E. Alvarez and A. Macovski, “Energy-selective reconstructions in X-ray computerised tomogra-

phy,” Physics in Medicine & Biology, Sep. 1976. DOI: 10.1088/0031-9155/21/5/002.

[38] J. A. Seibert and J. M. Boone, “X-Ray Imaging Physics for Nuclear Medicine Technologists. Part

2: X-Ray Interactions and Image Formation,” Journal of Nuclear Medicine Technology, Mar. 2005.

[39] M. J. Willemink, M. Persson, A. Pourmorteza, et al., “Photon-counting CT: Technical Principles

and Clinical Prospects,” Radiology, Nov. 2018. DOI: 10.1148/radiol.2018172656.

[40] C. H. McCollough, K. Boedeker, D. Cody, et al., “Principles and applications of multienergy CT:

Report of AAPM Task Group 291,” Medical Physics, 2020. DOI: 10.1002/mp.14157.

[41] C. H. McCollough, S. Leng, L. Yu, et al., “Dual- and Multi-Energy CT: Principles, Technical

Approaches, and Clinical Applications,”Radiology, Sep. 2015. DOI: 10.1148/radiol.2015142631.

[42] J. F. Williamson, S. Li, S. Devic, et al., “On two-parameter models of photon cross sections:

Application to dual-energy CT imaging,” Medical Physics, Nov. 2006. DOI: 10.1118/1.2349688.

[43] C.-h. Hua, N. Shapira, T. E. Merchant, et al., “Accuracy of electron density, effective atomic number,

and iodine concentration determination with a dual-layer dual-energy computed tomography

system,” Medical Physics, 2018. DOI: 10.1002/mp.12903.

[44] J. Greffier, S. Si-Mohamed, D. Dabli, et al., “Performance of four dual-energy CT platforms for

abdominal imaging: A task-based image quality assessment based on phantom data,” European

Radiology, Jul. 2021. DOI: 10.1007/s00330-020-07671-2.

[45] C. Maass, M. Baer, and M. Kachelriess, “Image-based dual energy CT using optimized precorrec-

tion functions: A practical new approach of material decomposition in image domain,” Medical

Physics, Aug. 2009. DOI: 10.1118/1.3157235.

[46] A. So and S. Nicolaou, “Spectral Computed Tomography: Fundamental Principles and Recent

Developments,” Korean Journal of Radiology, Jan. 2021. DOI: 10.3348/kjr.2020.0144.

[47] M. J. Willemink, P. A. de Jong, T. Leiner, et al., “Iterative reconstruction techniques for computed

tomography Part 1: Technical principles,” European Radiology, Jun. 2013. DOI: 10.1007/s00330-
012-2765-y.

[48] M. Selles, J. A. C. van Osch, M. Maas, et al., “Advances in metal artifact reduction in CT images: A

review of traditional and novel metal artifact reduction techniques,” European Journal of Radiology,

Jan. 2024. DOI: 10.1016/j.ejrad.2023.111276.

[49] Philips Metal Artifact Reduction for Orthopedic Implants (O�MAR). White paper. 2012.

[50] H. Li, C. Noel, H. Chen, et al., “Clinical evaluation of a commercial orthopedic metal artifact

reduction tool for CT simulations in radiation therapy,” Medical Physics, Dec. 2012. DOI: 10.1118/
1.4762814.

[51] T. M. Coupal, P. I. Mallinson, P. McLaughlin, et al., “Peering through the glare: Using dual-energy

CT to overcome the problem of metal artefacts in bone radiology,” Skeletal Radiology, May 2014.

DOI: 10.1007/s00256-013-1802-5.

[52] M. Selles, D. J. Slotman, J. A. C. van Osch, et al., “Is AI the way forward for reducing metal

artifacts in CT? Development of a generic deep learning-based method and initial evaluation in

patients with sacroiliac joint implants,” European Journal of Radiology, Jun. 2023. DOI: 10.1016/
j.ejrad.2023.110844.

[53] P. Homolka, A. Gahleitner, and R. Nowotny, “Temperature dependence of HU values for various

water equivalent phantom materials,” Physics in Medicine & Biology, Aug. 2002. DOI: 10.1088/
0031-9155/47/16/307.

https://doi.org/10.1120/jacmp.v4i2.2535
https://doi.org/10.2217/iim.12.13
https://doi.org/10.1016/j.radphyschem.2023.110908
https://doi.org/10.1016/j.radphyschem.2023.110908
https://doi.org/10.1088/0031-9155/21/5/002
https://doi.org/10.1148/radiol.2018172656
https://doi.org/10.1002/mp.14157
https://doi.org/10.1148/radiol.2015142631
https://doi.org/10.1118/1.2349688
https://doi.org/10.1002/mp.12903
https://doi.org/10.1007/s00330-020-07671-2
https://doi.org/10.1118/1.3157235
https://doi.org/10.3348/kjr.2020.0144
https://doi.org/10.1007/s00330-012-2765-y
https://doi.org/10.1007/s00330-012-2765-y
https://doi.org/10.1016/j.ejrad.2023.111276
https://doi.org/10.1118/1.4762814
https://doi.org/10.1118/1.4762814
https://doi.org/10.1007/s00256-013-1802-5
https://doi.org/10.1016/j.ejrad.2023.110844
https://doi.org/10.1016/j.ejrad.2023.110844
https://doi.org/10.1088/0031-9155/47/16/307
https://doi.org/10.1088/0031-9155/47/16/307


References 58

[54] M. Hwang, H. I. Litt, P. B. Noël, et al., “Accurate physical density assessments from clinical

spectral results,” in Medical Imaging 2021: Physics of Medical Imaging, Feb. 2021. DOI: 10.1117/
12.2581748.

[55] D. R. White, J. Booz, R. V. Griffith, et al., “4. The Composition of Body Tissues,” Reports of the

International Commission on Radiation Units and Measurements, Jan. 1989. DOI: 10.1093/
jicru_os23.1.20.

[56] “XCOM: Photon Cross Sections Database,” NIST, Sep. 2009.

[57] L. P. Liu, M. Hung, M. C. Soulen, et al., “Real-time spectral CT thermometry via physical density

for image-guided tumor ablation,” in Medical Imaging 2022: Physics of Medical Imaging, Apr.

2022. DOI: 10.1117/12.2608743.

[58] M. Alonzo, A. Bos, S. Bennett, et al., “The Emprint™ Ablation System with Thermosphere™

Technology: One of the Newer Next-Generation Microwave Ablation Technologies,” Seminars in

Interventional Radiology, Dec. 2015. DOI: 10.1055/s-0035-1564811.

[59] A. H. Negussie, A. Partanen, A. S. Mikhail, et al., “Thermochromic tissue-mimicking phantom for

optimisation of thermal tumour ablation.,” International journal of hyperthermia : the official journal

of European Society for Hyperthermic Oncology, North American Hyperthermia Group, May 2016.

DOI: 10.3109/02656736.2016.1145745.

[60] International Commission on Radiation Units and Measurements, “ICRU Report No. 87: Radiation

dose and image-quality assessment in computed tomography,” Journal of the ICRU, Apr. 2012.

DOI: 10.1093/jicru/ndt007.

[61] F. Hübner, R. Schreiner, B. Panahi, et al., “Evaluation of the thermal sensitivity of porcine liver in

CT-guided cryoablation: An initial study.,” Medical physics, Oct. 2020. DOI: 10.1002/mp.14432.

[62] L. Winter, E. Oberacker, K. Paul, et al., “Magnetic resonance thermometry: Methodology, pitfalls

and practical solutions,” International Journal of Hyperthermia, Jan. 2016. DOI: 10.3109/02656736.
2015.1108462.

[63] G. D. Pandeya, M. J. W. Greuter, B. Schmidt, et al., “Assessment of thermal sensitivity of CT

during heating of liver: An ex vivo study.,” The British journal of radiology, Sep. 2012. DOI:

10.1259/bjr/23942179.

[64] B. Kostyrko, K. Rubarth, C. Althoff, et al., “Evaluation of Different Registration Algorithms to

Reduce Motion Artifacts in CT-Thermography (CTT).,” Diagnostics (Basel, Switzerland), Jun.

2023. DOI: 10.3390/diagnostics13122076.

[65] K. Gammampila, P. B. Dunscombe, B. M. Southcott, et al., “Thermocouple thermometry in

microwave fields,” Clinical Physics and Physiological Measurement: An Official Journal of the

Hospital Physicists’ Association, Deutsche Gesellschaft Fur Medizinische Physik and the European

Federation of Organisations for Medical Physics, Nov. 1981. DOI: 10.1088/0143-0815/2/4/005.

[66] N. Weiss, J. Sosna, S. N. Goldberg, et al., “Non-invasive temperature monitoring and hyperthermic

injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue.,”

International journal of hyperthermia : the official journal of European Society for Hyperthermic

Oncology, North American Hyperthermia Group, Mar. 2014. DOI: 10.3109/02656736.2014.
883466.

[67] E. Schena, P. Saccomandi, F. Giurazza, et al., “Experimental assessment of CT-based thermom-

etry during laser ablation of porcine pancreas.,” Physics in medicine and biology, Aug. 2013. DOI:

10.1088/0031-9155/58/16/5705.

[68] K.-W. Li, D. Fujiwara, A. Haga, et al., “Physical density estimations of single- and dual-energy

CT using material-based forward projection algorithm: A simulation study.,” The British journal of

radiology, Dec. 2021. DOI: 10.1259/bjr.20201236.

[69] L. Strigari, S. Minosse, D. D’Alessio, et al., “Microwave thermal ablation using CT-scanner for

predicting the variation of ablated region over time: Advantages and limitations.,” Physics in

medicine and biology, May 2019. DOI: 10.1088/1361-6560/ab1a67.

https://doi.org/10.1117/12.2581748
https://doi.org/10.1117/12.2581748
https://doi.org/10.1093/jicru_os23.1.20
https://doi.org/10.1093/jicru_os23.1.20
https://doi.org/10.1117/12.2608743
https://doi.org/10.1055/s-0035-1564811
https://doi.org/10.3109/02656736.2016.1145745
https://doi.org/10.1093/jicru/ndt007
https://doi.org/10.1002/mp.14432
https://doi.org/10.3109/02656736.2015.1108462
https://doi.org/10.3109/02656736.2015.1108462
https://doi.org/10.1259/bjr/23942179
https://doi.org/10.3390/diagnostics13122076
https://doi.org/10.1088/0143-0815/2/4/005
https://doi.org/10.3109/02656736.2014.883466
https://doi.org/10.3109/02656736.2014.883466
https://doi.org/10.1088/0031-9155/58/16/5705
https://doi.org/10.1259/bjr.20201236
https://doi.org/10.1088/1361-6560/ab1a67


References 59

[70] N. Weiss, S. N. Goldberg, J. Sosna, et al., “Temperature-density hysteresis in X-ray CT during

HIFU thermal ablation: Heating and cooling phantom study.,” International journal of hyperthermia :

the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia

Group, Feb. 2014. DOI: 10.3109/02656736.2013.860241.

[71] V. Lopresto, R. Pinto, L. Farina, et al., “Microwave thermal ablation: Effects of tissue properties

variations on predictive models for treatment planning,” Medical Engineering & Physics, Aug.

2017. DOI: 10.1016/j.medengphy.2017.06.008.

[72] N. Wang, M. Li, and P. Haverinen, “Photon-counting computed tomography thermometry via

material decomposition and machine learning.,” Visual computing for industry, biomedicine, and

art, Jan. 2023. DOI: 10.1186/s42492-022-00129-w.

[73] O. Ziv, S. N. Goldberg, Y. Nissenbaum, et al., “Optical flow and image segmentation analysis for

noninvasive precise mapping of microwave thermal ablation in X-ray CT scans - ex vivo study.,”

International journal of hyperthermia : the official journal of European Society for Hyperthermic

Oncology, North American Hyperthermia Group, Sep. 2018. DOI: 10.1080/02656736.2017.
1375160.

[74] O. Ziv, S. N. Goldberg, Y. Nissenbaum, et al., “In vivo noninvasive three-dimensional (3D)

assessment of microwave thermal ablation zone using non-contrast-enhanced x-ray CT,” Medical

Physics, 2020. DOI: 10.1002/mp.14428.

https://doi.org/10.3109/02656736.2013.860241
https://doi.org/10.1016/j.medengphy.2017.06.008
https://doi.org/10.1186/s42492-022-00129-w
https://doi.org/10.1080/02656736.2017.1375160
https://doi.org/10.1080/02656736.2017.1375160
https://doi.org/10.1002/mp.14428


A
Source Code

1 # Standard library imports
2 import math
3 import os
4 import re
5 from datetime import date, datetime, timedelta
6

7 # Third-party libraries for data handling and computation
8 import numpy as np
9 import pandas as pd
10 import pydicom
11 import statsmodels.api as sm
12 from scipy.ndimage import rotate
13 from scipy.optimize import curve_fit, least_squares
14 from sklearn.linear_model import LinearRegression
15 from sklearn.metrics import mean_squared_error, r2_score
16

17 # Image processing and analysis libraries
18 import SimpleITK as sitk
19 from skimage import io, measure, restoration
20 from skimage.morphology import (closing, cube, opening, remove_small_objects ,
21 skeletonize, square)
22

23 # Visualization libraries
24 import matplotlib.pyplot as plt
25 from matplotlib.colors import Normalize
26 from matplotlib.ticker import MaxNLocator
27

28

29 def main():
30 object_analyzer = ObjectAnalyzer(C.ref_scan_path)
31 segment_results = object_analyzer.analyze(C.lower_thresh_1, C.upper_thresh_1, C.

lower_thresh_2, C.upper_thresh_2)
32 metal_rois = object_analyzer.view_slice_draw_roi()
33 folder = 'DICOM_O_DL_MAR' if (C.DLMAR and C.O_MAR) else 'DICOM_DL_MAR' if C.DLMAR else '

DICOM_O_MAR' if C.O_MAR else 'DICOM'
34 # Perform PD-based thermometry
35 if C.thermometry_method == 'PD':
36 PD_maps = {}
37 monoE_maps = {}
38 PD_dataframes = []
39 metal_dataframes = []
40 columns = [['Object Label', 'Mean', 'SD', '#Voxels', 'Scan Time', 'Acquisition'],
41 ['Scan time', 'mean_prox', 'SD_prox', 'mean_dist', 'SD_dist']]
42 # Perform reparametrization
43 params, mu_water = Reparametrization(C.monoE_level).fit_model()
44 for mono_entry in tqdm(os.listdir(os.path.join(C.root_path, f'MonoE{C.monoE_level}',

folder)), desc="Making PD maps"):
45 mono_entry_path = os.path.join(C.root_path, f'MonoE{C.monoE_level}', folder,

mono_entry)
46

60
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47 if os.path.isdir(mono_entry_path):
48 for file in os.listdir(mono_entry_path):
49 if file.startswith(('I', 'E')):
50 dcm_data = pydicom.dcmread(os.path.join(mono_entry_path, file))
51 mono_image_time = dcm_data.AcquisitionTime
52 break
53

54 for zeff_entry in os.listdir(os.path.join(C.root_path, 'Zeff', folder)):
55 zeff_entry_path = os.path.join(C.root_path, 'Zeff', folder, zeff_entry)
56

57 if os.path.isdir(zeff_entry_path):
58 for file2 in os.listdir(zeff_entry_path):
59 if file2.startswith('I'):
60 dcm_data = pydicom.dcmread(os.path.join(zeff_entry_path,

file2))
61 zeff_image_time = dcm_data.AcquisitionTime
62 break
63

64 if mono_image_time == zeff_image_time:
65 PD_map = AM_PD(mono_entry_path, zeff_entry_path, C.monoE_level,

params,
66 mu_water).generate_PD_map()
67 PD_maps[zeff_image_time] = PD_map
68 roi_analyzer = ROIMeasurements(mono_entry_path, segment_results,

C.lower_threshold_liver_PD ,
69 C.upper_threshold_liver_PD , PD_map

=PD_map)
70 roi_results = roi_analyzer.calculate_roi_2()
71 # Convert roi_results to DataFrame and store it in the list
72 for label, data in roi_results.items():
73 row = [label, data['mean'], data['SD'], data['#voxels'], data

['Scan time'],
74 data['Acquisition']]
75 PD_dataframes.append(pd.DataFrame([row], columns=columns[0]))
76 # analyze and store results from noise_metal function
77 metal_roi_results = roi_analyzer.noise_metal(metal_rois)
78 row = [metal_roi_results['Scan time'], metal_roi_results['

mean_prox'],
79 metal_roi_results['SD_prox'],
80 metal_roi_results['mean_dist'], metal_roi_results['SD_dist

']]
81 metal_dataframes.append(pd.DataFrame([row], columns=columns[1]))
82 # Concatenate all DataFrames in the list
83 roi_results_df = pd.concat(PD_dataframes, ignore_index=True)
84 metal_results_df = pd.concat(metal_dataframes, ignore_index=True)
85 # Process temperature sensor data
86 temperature_processor = TemperatureDataProcessor(C.temperature_sensor_path)
87 processed_sensor_data = temperature_processor.load_and_process_data(C.scan_date)
88 # Save the DataFrame to an Excel file
89 current_time = datetime.now().strftime("%Y%m%d-%H%M%S")
90 file_name = os.path.basename(C.thermometry_method) + str(C.monoE_level) + "_" +

folder + '_' + str(C.slice) + 'mm_' + current_time + ".xlsx"
91 excel_path = os.path.join(C.output_path, file_name)
92

93 with pd.ExcelWriter(excel_path, engine='openpyxl',
94 mode='a' if os.path.exists(excel_path) else 'w') as writer:
95 roi_results_df.to_excel(writer, index=False, sheet_name='ROI measurements')
96 processed_sensor_data.to_excel(writer, index=False, sheet_name='Sensor 

measurements')
97 metal_results_df.to_excel(writer, index=False, sheet_name='Metal ROI measurements

')
98

99 # Temp_sensitivity
100 linear_regression = TemperatureHURegression(excel_path)
101 linear_regression.temperature_tolerance()
102

103 # temperature mapping
104 temperature_mapper = TempMap(PD_maps, ref_temp=18.2, monoE=monoE_maps)
105 temp_maps = temperature_mapper.perform_temperature_map_NLM()
106 temperature_mapper.plot_temperature_maps(53)
107 temperature_mapper.plot_temperature_maps_with_isolines(53)
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108 temperature_mapper.plot_temp_overlay(53)
109

110 # Calculate mean temperature in ROIs close to sensors
111 columns = ['Object Label', 'Mean', 'SD', '#Voxels', 'Scan Time']
112 temp_dataframes = []
113 for scan_time, temp_map in tqdm(temp_maps.items(), desc='Calculating ROI on temp_maps

'):
114 temp_analyzer = ROIMeasurements(None, segment_results, C.lower_temp_threshold , C.

upper_temp_threshold , temp_map=temp_map)
115 temp_roi_results = temp_analyzer.calculate_roi_2()
116 # Convert temp_results to DataFrame and store it in the list
117 for label, data in temp_roi_results.items():
118 row = [label, data['mean'], data['SD'], data['#voxels'], scan_time]
119 temp_dataframes.append(pd.DataFrame([row], columns=columns))
120

121 all_temp_df = pd.concat(temp_dataframes, ignore_index=True)
122 with pd.ExcelWriter(excel_path, engine='openpyxl', mode='a' if os.path.exists(

excel_path) else 'w', if_sheet_exists='replace') as writer:
123 all_temp_df.to_excel(writer, index=False, sheet_name='Temp ROI measurements')
124 # Check if temperature maps correspond to sensor measuremenst
125 temperature_regression = TemperatureHURegression(excel_path)
126 temperature_regression.temp_map_sensor_regression()
127 temperature_regression.bland_altman_plot()
128

129 # Perform HU-based thermometry
130 if C.thermometry_method == 'HU':
131 HU_dataframes = []
132 metal_dataframes = []
133 columns = [['Object Label', 'Mean', 'SD', '#Voxels', 'Scan Time', 'Acquisition'],
134 ['Scan time', 'mean_prox', 'SD_prox', 'mean_dist', 'SD_dist', '#Voxels']]
135 for entry in tqdm(os.listdir(os.path.join(C.root_path, 'Idose', folder)), desc="

Analyzing Scans"):
136 entry_path = os.path.join(C.root_path, 'Idose', folder, entry)
137 if os.path.isdir(entry_path):
138 if C.thermometry_method == 'HU':
139 roi_analyzer = ROIMeasurements(entry_path, segment_results, C.

lower_threshold_liver_HU ,
140 C.upper_threshold_liver_HU)
141 roi_results = roi_analyzer.calculate_roi_2()
142 # Convert roi_results to DataFrame and store it in the list
143 for label, data in roi_results.items():
144 row = [label, data['mean'], data['SD'], data['#voxels'], data['Scan time'

], data['Acquisition']]
145 HU_dataframes.append(pd.DataFrame([row], columns=columns[0]))
146 metal_roi_results = roi_analyzer.noise_metal(metal_rois)
147 row = [metal_roi_results['Scan time'], metal_roi_results['mean_prox'],
148 metal_roi_results['SD_prox'],
149 metal_roi_results['mean_dist'], metal_roi_results['SD_dist'],

metal_roi_results['#Voxels']]
150 metal_dataframes.append(pd.DataFrame([row], columns=columns[1]))
151 # Concatenate all DataFrames in the list
152 roi_results_df = pd.concat(HU_dataframes, ignore_index=True)
153 metal_results_df = pd.concat(metal_dataframes, ignore_index=True)
154 # Process temperature sensor data
155 temperature_processor = TemperatureDataProcessor(C.temperature_sensor_path)
156 processed_sensor_data = temperature_processor.load_and_process_data(C.scan_date)
157 # Save the DataFrame to an Excel file
158 current_time = datetime.now().strftime("%Y%m%d-%H%M%S")
159 file_name = os.path.basename(C.thermometry_method) + "_" + folder + '_' + str(C.slice

) + 'mm_' + current_time + ".xlsx"
160 excel_path = os.path.join(C.output_path, file_name)
161

162 with pd.ExcelWriter(excel_path, engine='openpyxl', mode='a' if os.path.exists(
excel_path) else 'w') as writer:

163 roi_results_df.to_excel(writer, index=False, sheet_name='ROI measurements')
164 processed_sensor_data.to_excel(writer, index=False, sheet_name='Sensor 

measurements')
165 metal_results_df.to_excel(writer, index=False, sheet_name='Metal ROI measurements

')
166 # Temp_sensitivity
167 linear_regression = TemperatureHURegression(excel_path)
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168 linear_regression.temperature_tolerance()
169 #temperature mapping
170 temperature_mapper = TempMap(os.path.join(C.root_path, 'Idose', folder), ref_temp

=18.2)
171 temp_maps = temperature_mapper.perform_all_temperature_mappings()
172 temperature_mapper.plot_temperature_maps(95)
173 temperature_mapper.plot_temperature_maps_with_isolines(95)
174 temperature_mapper.plot_temp_overlay(65)
175 # Calculate mean temperature in ROIs close to sensors
176 temp_dataframes = []
177 for scan_time, temp_map in tqdm(temp_maps.items(), desc='Calculating ROI on temp_maps

'):
178 temp_analyzer = ROIMeasurements(None, segment_results, C.lower_temp_threshold , C.

upper_temp_threshold , temp_map=temp_map)
179 temp_roi_results = temp_analyzer.calculate_roi_2()
180

181

182 class ObjectAnalyzer:
183 def __init__(self, directory_path):
184 self.directory_path = directory_path
185 self.volume = None
186 self.labeled_volume = None
187 self.endpoints = None
188 self.rois = {}
189

190 def load_dicom_volume(self):
191 files = [pydicom.dcmread(os.path.join(self.directory_path, f)) for f in os.listdir(

self.directory_path) if f.startswith(('I', 'E'))]
192 files.sort(key=lambda x: float(x.ImagePositionPatient[2]))
193 rescale_slope = files[0].RescaleSlope
194 rescale_intercept = files[0].RescaleIntercept
195 self.volume = np.stack([s.pixel_array * rescale_slope + rescale_intercept for s in

files])
196 self.volume = rotate(self.volume, angle=90, axes=(0, 2), reshape=True, mode='constant

')
197 self.volume = self.volume[200:300, 200:300, :]
198 return self.volume
199

200

201 def threshold_and_label(self, lower_thresh_1, upper_thresh_1, lower_thresh_2,
upper_thresh_2, min_size=150):

202 binary_1 = (self.volume >= lower_thresh_1) & (self.volume <= upper_thresh_1)
203 binary_2 = (self.volume >= lower_thresh_2) & (self.volume <= upper_thresh_2).astype(

int)
204 binary_2 = closing(binary_1 | binary_2, cube(5))
205

206 labeled_volume_1 = measure.label(binary_2)
207 self.labeled_volume = labeled_volume_1
208 self.labeled_volume = remove_small_objects(self.labeled_volume, min_size=min_size)
209

210 def find_object_endpoints(self):
211 properties = measure.regionprops(self.labeled_volume)
212 self.endpoints = []
213 for prop in properties:
214 min_slice, min_row, min_col, max_slice, max_row, max_col = prop.bbox
215 object_label = prop.label
216 y_indices_bottom, x_indices_bottom = np.where(self.labeled_volume[min_slice, :,

:] == object_label)
217 cxb, cyb = self.calculate_center(x_indices_bottom, y_indices_bottom, min_slice)
218 y_indices_top, x_indices_top = np.where(self.labeled_volume[max_slice - 1, :, :]

== object_label)
219 cxt, cyt = self.calculate_center(x_indices_top, y_indices_top, max_slice - 1)
220 if cxb is not None and cyt is not None:
221 self.endpoints.append({
222 'object_label': object_label,
223 'bottom': (cxb, cyb, min_slice),
224 'top': (cxt, cyt, max_slice - 1),
225 'size': prop.area
226 })
227

228 def calculate_center(self, x_indices, y_indices, slice_index):
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229 if len(y_indices) > 0 and len(x_indices) > 0:
230 cx = int(round(np.median(x_indices)))
231 cy = int(round(np.median(y_indices)))
232 return cx, cy
233 return None, None
234

235 def find_longest_object(self):
236 longest_length = 0
237 longest_object = None
238 for obj in self.endpoints:
239 length = np.linalg.norm(np.array(obj['top']) - np.array(obj['bottom']))
240 if length > longest_length:
241 longest_length = length
242 longest_object = obj
243 return longest_object
244

245 def calculate_circle_center_radius(self, other_object, longest_object):
246 z_top = other_object['top'][2]
247 y_indices, x_indices = np.where(self.labeled_volume[z_top, :, :] == longest_object['

object_label'])
248

249 if len(y_indices) > 0 and len(x_indices) > 0:
250 cx = np.median(x_indices)
251 cy = np.median(y_indices)
252 center = (cx, cy, z_top)
253 radius = np.linalg.norm(np.array([cx, cy]) - np.array([other_object['top'][0],

other_object['top'][1]]))
254 return {'center': center, 'radius': radius}
255 return None
256

257

258 def analyze(self, lower_thresh_1, upper_thresh_1, lower_thresh_2, upper_thresh_2):
259 self.load_dicom_volume()
260 self.threshold_and_label(lower_thresh_1, upper_thresh_1, lower_thresh_2,

upper_thresh_2)
261 self.find_object_endpoints()
262 longest_object = self.find_longest_object()
263 results = {}
264 for obj in self.endpoints:
265 if obj['object_label'] != longest_object['object_label']:
266 circle_info = self.calculate_circle_center_radius(obj, longest_object)
267 if circle_info:
268 results[obj['object_label']] = {
269 'circle_center': circle_info['center'],
270 'circle_radius': circle_info['radius'],
271 'sensor_top' : obj['top']
272 }
273 self.visualize_segmented_objects_and_circles()
274 return results
275

276

277 class Reparametrization:
278 def __init__(self, E):
279 self.df = pd.read_excel('path', sheet_name="Zeff Aeff keV")
280 self.rho = np.array([self.df['Rho [kg*m^-3]'][1:181]], dtype=float) / 1000
281 self.Zeff = np.array([self.df['Zeff'][1:181]], dtype=float)
282 self.Aeff = np.array([self.df['Aeff'][1:181]], dtype=float)
283 self.E = E
284 self.mu_water = self.df[self.df['E'] == self.E]['mu_water'].iloc[0]
285 self.muE = np.array([self.df[f'{self.E} keV'][1:181]], dtype=float)
286 self.muE = self.muE * self.rho
287 self.optimized_params = None
288 self.fKN = None
289

290 def residuals(self, params):
291 p1, p2, p3, p4, p5, p6, p7 = params
292 model = (p1 * self.Aeff * (self.muE ** p2)) / ((p3 * (self.Zeff ** p4) / (self.E **

p5)) + (self.Zeff ** p6) * (self.fKN ** p7))
293

294 return (model - self.rho).transpose().flatten()
295
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296 def fit_model(self):
297 # klein nishina calculation
298 alpha = self.E / 510.975
299 fKN = ((1 + alpha) / alpha ** 2) * (
300 (2 + 2 * alpha) / (1 + 2 * alpha) - 1 / alpha * math.log(1 + 2 * alpha))

+ 1 / \
301 (2 * alpha) * math.log(1 + 2 * alpha) - (1 + 3 * alpha) / (1 + 2 * alpha) ** 2
302 self.fKN = fKN
303 # Initial guess
304 initial_guess = np.array([3.5, 1.1, 46, 4.2, 2.9, 1, 1])
305 lower_bounds = np.array([0, 0, 0, 0, 0, 0, 0])
306 upper_bounds = np.array([100, 100, 100, 100, 100, 100, 100])
307 # Perform least squares optimization
308 result = least_squares(self.residuals, initial_guess, bounds=(lower_bounds,

upper_bounds))
309 self.optimized_params = result.x
310 return result.x, self.mu_water
311

312

313 class AM_PD:
314 def __init__(self, mono_entry_path, zeff_entry_path, E, params, mu_water):
315 self.Aeff = None
316 self.E = E
317 self.mono_entry_path = mono_entry_path
318 self.zeff_entry_path = zeff_entry_path
319 self.params = params
320 self.mu_water = mu_water
321 self.muE = None
322 self.Zeff = None
323 self.PD_map = None
324 self.patient_ID = None
325 self.series_description = None
326 self.scan_time = None
327

328 def load_muE(self):
329 files = [pydicom.dcmread(os.path.join(self.mono_entry_path, f)) for f in os.listdir(

self.mono_entry_path) if f.startswith(('I', 'E'))]
330 files.sort(key=lambda x: float(x.ImagePositionPatient[2]))
331 self.scan_time = files[0].AcquisitionTime
332 self.patient_ID = files[0].PatientID
333 self.series_description = files[0].SeriesDescription
334 rescale_slope = files[0].RescaleSlope
335 rescale_intercept = files[0].RescaleIntercept
336 monoE = np.stack([s.pixel_array * rescale_slope + rescale_intercept for s in files])
337 monoE = rotate(monoE, angle=90, axes=(0, 2), reshape=True, mode='constant')
338 monoE = monoE[200:300, 200:300, :]
339 self.muE = (monoE * self.mu_water) / 1000 + self.mu_water
340 return self.muE
341

342 def load_Zeff_Aeff(self):
343 """Loads Zeff and Aeff values from DICOM files"""
344 files = [pydicom.dcmread(os.path.join(self.zeff_entry_path, f)) for f in os.listdir(

self.zeff_entry_path) if f.startswith(('I', 'E'))]
345 files.sort(key=lambda x: float(x.ImagePositionPatient[2]))
346 rescale_slope = files[0].RescaleSlope
347 rescale_intercept = files[0].RescaleIntercept
348 self.Zeff = np.stack([f.pixel_array * rescale_slope + rescale_intercept for f in

files])
349 self.Zeff = rotate(self.Zeff, angle=90, axes=(0, 2), reshape=True, mode='constant')
350 self.Zeff = self.Zeff[200:300, 200:300, :]
351 self.Aeff = 0.436191 + 1.85908 * self.Zeff + 0.0154491 * self.Zeff ** 2 - 0.000173656

* self.Zeff ** 3
352

353 def generate_PD_map(self):
354 """Generates the PD map"""
355 self.load_muE()
356 self.load_Zeff_Aeff()
357 p1, p2, p3, p4, p5, p6, p7 = self.params
358 alpha = self.E / 510.975 # Klein-Nishina calculation
359 fKN = ((1 + alpha) / alpha ** 2) * ((2 + 2 * alpha) / (1 + 2 * alpha) - 1 / alpha *

np.log(1 + 2 * alpha)) + 1 / (2 * alpha) * np.log(1 + 2 * alpha) - (1 + 3 * alpha
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) / (1 + 2 * alpha) ** 2
360 self.PD_map = (p1 * self.Aeff * self.muE**p2) / ((p3 * self.Zeff**p4) / self.E**p5 +

self.Zeff**p6 * fKN**p7)
361 self.PD_map[np.isnan(self.PD_map)] = 0
362 self.PD_map[np.isinf(self.PD_map)] = 0
363 self.PD_map[self.PD_map < 0.05] = 0
364 self.PD_map[self.PD_map > 1000] = 0
365 return self.PD_map
366

367

368 class ROIMeasurements:
369 def __init__(self, directory_path, results, lower_threshold_liver , upper_threshold_liver ,

PD_map=None, temp_map=None):
370 self.patient_ID = None
371 self.series_description = None
372 self.directory_path = directory_path
373 self.volume = None
374 self.PD_map = PD_map
375 self.temp_map = temp_map
376 self.results = results
377 self.lower_threshold_liver = lower_threshold_liver
378 self.upper_threshold_liver = upper_threshold_liver
379 self.roi_results = {}
380 self.metal_roi_results = {}
381 self.scan_time = None
382

383 def load_dicom(self):
384 files = [pydicom.dcmread(os.path.join(self.directory_path, f)) for f in os.listdir(

self.directory_path) if f.startswith(('I', 'E'))]
385 files.sort(key=lambda x: float(x.ImagePositionPatient[2]))
386 rescale_slope = files[0].RescaleSlope
387 rescale_intercept = files[0].RescaleIntercept
388 self.scan_time = files[0].get('AcquisitionTime', None)
389 self.patient_ID = files[0].get('PatientID', None)
390 self.series_description = files[0].get('SeriesDescription', None)
391 self.volume = np.stack([s.pixel_array * rescale_slope + rescale_intercept for s in

files])
392 self.volume = rotate(self.volume, angle=90, axes=(0, 2), reshape=True, mode='constant

')
393 self.volume = self.volume[200:300, 200:300, :]
394

395 def resample_slices(self, slice_thickness, increment, current_thickness=1):
396 new_slices = []
397 num_slices_to_avg = int(slice_thickness / current_thickness)
398 increment_steps = int(increment / current_thickness)
399 # Padding both ends of the volume by mirroring
400 pad_width = num_slices_to_avg // 2
401 padded_volume = np.pad(self.volume, ((pad_width - 1, pad_width), (0, 0), (0, 0)),

mode='reflect')
402 i = 0
403 while i < len(padded_volume) - num_slices_to_avg + 1:
404 averaged_slice = np.mean(padded_volume[i:i + num_slices_to_avg], axis=0)
405 new_slices.append(averaged_slice)
406 i += increment_steps
407

408 new_volume = np.array(new_slices)
409 return new_volume
410

411 def calculate_roi_tolerance_2(self):
412 if C.thermometry_method == 'HU':
413 self.load_dicom()
414 elif C.thermometry_method == 'PD':
415 self.load_dicom()
416 self.volume = self.PD_map
417

418 ROI_dim_mm = np.array([2, 2, C.slice]) # Desired ROI dimensions in mm
419 voxel_size_mm = np.array([0.6836, 0.6836, 1]) # [x, y, z] in mm
420 ROI_dim_voxels = np.ceil(ROI_dim_mm / voxel_size_mm).astype(int) # Convert mm to

voxels
421

422 for obj_label, obj_info in self.results.items():



67

423 center = np.array(obj_info['circle_center'])
424 angle = 2.3
425 radius = obj_info['circle_radius']
426 start = center + 1.114 * radius * np.array([0, np.sin(angle), np.cos(angle)])

#1.114 for correction of different z,y voxels sizes
427 included_voxels = []
428

429 z_indices = []
430 if C.slice == 1:
431 z_indices = range(int(start[2]), int(start[2]) + 1) # For slice thickness of

1
432 elif C.slice == 2:
433 z_indices = [int(start[2]), int(start[2]) + 2] # For slice thickness of 2
434

435 for z in z_indices:
436 for y in range(int(start[1]), int(start[1]) + ROI_dim_voxels[1]):
437 for x in range(int(start[0]), int(start[0]) + ROI_dim_voxels[0]):
438 included_voxels.append(self.volume[x, y, z])
439

440 if filtered_voxels:
441 mean_val = np.mean(filtered_voxels)
442 std_dev = np.std(filtered_voxels)
443 voxel_count = len(filtered_voxels)
444

445 self.roi_results[obj_label] = {
446 'mean': mean_val,
447 'SD': std_dev,
448 '#voxels': voxel_count,
449 'Scan time': self.scan_time,
450 'Acquisition': self.patient_ID + self.series_description
451 }
452 return self.roi_results
453

454

455 def calculate_roi_2(self):
456 if (C.thermometry_method == 'HU' or C.thermometry_method == 'mu') and (self.temp_map

is None): # for measurements on HU maps
457 self.load_dicom()
458 roi_radius = 6
459 elif (C.thermometry_method == 'PD') and (self.temp_map is None): # for measurements

on PD maps
460 self.load_dicom()
461 self.volume = self.PD_map
462 roi_radius = 6
463 else: # for ROI measurements in temp_maps
464 self.volume = self.temp_map
465 roi_radius = 6
466 if C.slice != 1:
467 self.volume = self.resample_slices(C.slice, C.increment)
468

469 for obj_label, obj_info in self.results.items():
470 center = obj_info['circle_center']
471 radius = obj_info['circle_radius']
472 object_top = obj_info['sensor_top']
473

474 angle_object_top = np.arctan2(object_top[1] - center[1], object_top[2] - center
[2])

475 shift_angle = np.arctan2(2.5 * roi_radius, radius)
476 angle_roi_1 = angle_object_top + shift_angle
477 angle_roi_2 = angle_object_top - shift_angle
478 roi_center_1 = center + radius * np.array([0, np.sin(angle_roi_1), np.cos(

angle_roi_1)])
479 roi_center_2 = center + radius * np.array([0, np.sin(angle_roi_2), np.cos(

angle_roi_2)])
480

481 self.roi_visualization_data[obj_label] = {
482 'roi_center_1': roi_center_1,
483 'roi_center_2': roi_center_2,
484 'roi_radius': roi_radius,
485 'slice_index': int(center[0])
486 }
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487 def calculate_roi_metrics(roi_center, roi_radius):
488 included_voxels = []
489 x = int(roi_center[0])
490 for y in range(self.volume.shape[1]):
491 for z in range(self.volume.shape[2]):
492 dist_to_center = np.linalg.norm(np.array([y, z]) - roi_center[1:])
493 if dist_to_center <= roi_radius:
494 included_voxels.append(self.volume[x, y, z])
495 return included_voxels
496

497 voxels_roi_1 = calculate_roi_metrics(roi_center_1, roi_radius)
498 voxels_roi_2 = calculate_roi_metrics(roi_center_2, roi_radius)
499

500 combined_voxels = voxels_roi_1 + voxels_roi_2
501

502 if combined_voxels:
503 combined_mean = np.mean(combined_voxels)
504 combined_std_dev = np.std(combined_voxels)
505 combined_voxel_count = len(combined_voxels)
506

507 self.patient_ID = "" if self.patient_ID is None else self.patient_ID
508 self.series_description = "" if self.series_description is None else self.

series_description
509 self.roi_results[obj_label] = {
510 'mean': combined_mean,
511 'SD': combined_std_dev,
512 '#voxels': combined_voxel_count ,
513 'Scan time': self.scan_time,
514 'Acquisition': self.patient_ID + self.series_description
515 }
516 return self.roi_results
517

518 def noise_metal(self, metal_rois):
519 if C.thermometry_method == 'PD':
520 self.volume = self.PD_map
521 elif C.thermometry_method == 'HU' or C.thermometry_method == 'mu':
522 self.load_dicom()
523 if C.slice != 1:
524 self.volume = self.resample_slices(C.slice, C.increment)
525 prox_center = metal_rois[0][0:3]
526 prox_radius = metal_rois[0][3]
527 dist_center = metal_rois[1][0:3]
528 dist_radius = metal_rois[1][3]
529

530 def calculate_roi_metrics(roi_center, roi_radius):
531 included_voxels = []
532 x = int(roi_center[0])
533 for y in range(self.volume.shape[1]):
534 for z in range(self.volume.shape[2]):
535 dist_to_center = np.linalg.norm(np.array([y, z]) - roi_center[1:])
536 if dist_to_center <= roi_radius:
537 included_voxels.append(self.volume[x, y, z])
538 return included_voxels
539

540 voxels_prox_roi = calculate_roi_metrics(prox_center, prox_radius)
541 voxels_dist_roi = calculate_roi_metrics(dist_center, dist_radius)
542

543 self.patient_ID = "" if self.patient_ID is None else self.patient_ID
544 self.series_description = "" if self.series_description is None else self.

series_description
545 self.metal_roi_results = {
546 'mean_prox': np.mean(voxels_prox_roi),
547 'mean_dist': np.mean(voxels_dist_roi),
548 'SD_prox': np.std(voxels_prox_roi),
549 'SD_dist': np.std(voxels_dist_roi),
550 '#Voxels': len(voxels_dist_roi),
551 'Scan time': self.scan_time,
552 'Acquisition': self.patient_ID + self.series_description
553 }
554

555 return self.metal_roi_results
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556

557

558 class TemperatureHURegression:
559 def __init__(self, file_path):
560 self.file_path = file_path
561 self.roi_df = pd.read_excel(file_path, sheet_name='ROI measurements')
562 self.sensor_df = pd.read_excel(file_path, sheet_name='Sensor measurements')
563 self.roi_df['Scan Time'] = pd.to_datetime(self.roi_df['Scan Time'], format='%H%M%S').

dt.time
564 self.sensor_df['Rounded Time'] = pd.to_datetime(self.sensor_df['Rounded Time']).dt.

time
565 self.coupled_data = {}
566

567 def find_closest_time(self, roi_time, sensor_times):
568 roi_time = datetime.strptime(str(roi_time), '%H:%M:%S').time()
569 # add time to align scan time with sensor time, see notes in phone
570 roi_time_with_offset = (datetime.combine(datetime.today(), roi_time) + timedelta(

seconds=28)).time()
571 min_diff = None
572 closest_time = None
573 for time in sensor_times:
574 diff = (datetime.combine(datetime.today(), roi_time_with_offset) -
575 datetime.combine(datetime.today(), time)).total_seconds()
576 if min_diff is None or abs(diff) < abs(min_diff):
577 min_diff = diff
578 closest_time = time
579 return closest_time
580

581

582 def perform__combined_weighted_regression_hu(self):
583 # Combined data across all objects for regression
584 combined_temp_diffs , combined_hu_diffs, combined_sd_hus = [], [], []
585 for object_label in range(1, 5):
586 object_data = self.roi_df[self.roi_df['Object Label'] == object_label]
587 temps, mean_hus, sd_hus, times = [], [], [], []
588 for _, row in object_data.iterrows():
589 closest_sensor_time = self.find_closest_time(row['Scan Time'], self.sensor_df

['Rounded Time'])
590 temperature = self.sensor_df[self.sensor_df['Rounded Time'] ==

closest_sensor_time][
591 f'Temp{object_label}'].values
592 if temperature.size > 0:
593 temps.append(temperature[0])
594 mean_hus.append(row['Mean'])
595 sd_hus.append(row['SD'])
596 times.append(closest_sensor_time)
597 # Filtering and sorting data
598 hu_temp_time_pairs = [(HU, SD, temp, time) for HU, SD, temp, time in zip(mean_hus

, sd_hus, temps, times) if
599 pd.notna(HU) and pd.notna(temp)]
600 if not hu_temp_time_pairs:
601 continue
602

603 # Sort by time
604 hu_temp_time_pairs.sort(key=lambda x: x[3])
605 mean_hus_sorted, sd_hus_sorted, temps_sorted, times_sorted = zip(*

hu_temp_time_pairs)
606

607 # Convert to numpy arrays
608 ref_HU = np.array(mean_hus_sorted)[0]
609 ref_temp = np.array(temps_sorted)[0]
610

611 hu_temp_time_pairs = hu_temp_time_pairs[1:] # exclude measurements from
reference scan

612

613 hu_temp_time_pairs.sort(key=lambda x: x[0])
614 mean_hus_sorted, sd_hus_sorted, temps_sorted, _ = zip(*hu_temp_time_pairs)
615 mean_hus_sorted, sd_hus_sorted, temps_sorted = map(np.array, [mean_hus_sorted,

sd_hus_sorted, temps_sorted])
616

617 temp_diffs = temps_sorted - ref_temp
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618 hu_diffs = mean_hus_sorted - ref_HU
619

620 # Append to combined data for regression
621 combined_temp_diffs.extend(temp_diffs)
622 combined_hu_diffs.extend(hu_diffs)
623 combined_sd_hus.extend(sd_hus_sorted)
624

625 # Perform regression on combined data
626 combined_temp_diffs , combined_hu_diffs, combined_sd_hus = map(np.array,
627 [

combined_temp_diffs
,

628 combined_hu_diffs,
629 combined_sd_hus])
630

631 weights = 1 / np.square(combined_sd_hus)
632 X = sm.add_constant(combined_temp_diffs.reshape(-1, 1))
633 wls_model = sm.WLS(combined_hu_diffs, X, weights=weights)
634 results = wls_model.fit()
635

636 # Store the results
637 self.coupled_data = {
638 'coefficients': coefficient,
639 'intercept': intercept,
640 'std_err_coefficient': std_err_coefficient ,
641 'std_err_intercept': std_err_intercept,
642 'r_squared': results.rsquared # Store R^2 score
643 }
644

645

646 def perform__combined_weighted_regression_pd(self):
647 # Combined data across all objects for regression
648 combined_relative_pd, combined_temps, combined_mean_pds, combined_sd_pds,

combined_temp_diffs = [], [], [], [], []
649 for object_label in range(1, 5):
650 object_data = self.roi_df[self.roi_df['Object Label'] == object_label]
651 temps, mean_pds, sd_pds, times = [], [], [], []
652 for _, row in object_data.iterrows():
653 closest_sensor_time = self.find_closest_time(row['Scan Time'], self.sensor_df

['Rounded Time'])
654 temperature = self.sensor_df[self.sensor_df['Rounded Time'] ==

closest_sensor_time][
655 f'Temp{object_label}'].values
656 if temperature.size > 0:
657 temps.append(temperature[0])
658 mean_pds.append(row['Mean'])
659 sd_pds.append(row['SD'])
660 times.append(closest_sensor_time)
661 # Filtering and sorting data
662 pd_temp_time_pairs = [(PD, SD, temp, time) for PD, SD, temp, time in zip(mean_pds

, sd_pds, temps, times) if
663 pd.notna(PD) and pd.notna(temp)]
664 if not pd_temp_time_pairs:
665 continue
666 pd_temp_time_pairs.sort(key=lambda x: x[3])
667 mean_pds_sorted, sd_pds_sorted, temps_sorted, _ = zip(*pd_temp_time_pairs)
668 mean_pds_sorted, sd_pds_sorted, temps_sorted = map(np.array, [mean_pds_sorted,

sd_pds_sorted, temps_sorted])
669 ref_PD, ref_temp = mean_pds_sorted[0], temps_sorted[0]
670 relative_pd = (np.ones_like(mean_pds_sorted) * ref_PD) / mean_pds_sorted
671 temp_diff = temps_sorted - ref_temp
672

673 relative_pd = relative_pd[1:] # exclude reference scan from regression analysis
674 temp_diff = temp_diff[1:]
675 sd_pds_sorted = sd_pds_sorted[1:]
676 # Append to combined data for regression
677 combined_relative_pd.extend(relative_pd)
678 combined_temps.extend(temps_sorted)
679 combined_mean_pds.extend(mean_pds_sorted)
680 combined_sd_pds.extend(sd_pds_sorted)
681 combined_temp_diffs.extend(temp_diff)
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682 # Perform regression on combined data
683 combined_temps, combined_relative_pd , combined_sd_pds, combined_temp_diffs = map(np.

array,
684 [

combined_temps
,

685 combined_relative_pd
,

686 combined_sd_pds
,

687 combined_temp_diffs
])

688 weights = 1 / np.square(combined_sd_pds)
689 X = sm.add_constant(combined_temp_diffs.reshape(-1, 1))
690 wls_model = sm.WLS(combined_relative_pd , X, weights=weights)
691 results = wls_model.fit()
692 # Store the results
693 self.coupled_data = {
694 'coefficients': coefficient,
695 'intercept': intercept,
696 'std_err_coefficient': std_err_coefficient ,
697 'std_err_intercept': std_err_intercept,
698 'r_squared': results.rsquared # Store R^2 score
699 }
700

701

702 def temperature_tolerance(self):
703 def calculate_tolerance(mean, sd, vox, times):
704 if mean and sd:
705 HU_sorted, sd_sorted, vox_sorted, times_sorted = zip(*sorted(zip(mean, sd,

vox, times), key=lambda x: x[3]))
706 mean_ref = np.array(HU_sorted)[0]
707 sd_ref = np.array(sd_sorted)[0] / np.array(vox_sorted)[0]**0.5
708 mean_T = np.array(HU_sorted)[-1]
709 sd_T = np.array(sd_sorted)[-1] / np.array(vox_sorted)[-1]**0.5
710 if 'HU' in self.file_path:
711 alpha, del_alpha = C.alphaHU, C.alphaHUsd
712 beta, del_beta = C.betaHU, C.betaHUsd
713 err_ref = (1/alpha * sd_ref)**2
714 err_T = (-1/alpha * sd_T)**2
715 err_alpha = ((mean_T - mean_ref - beta)/alpha**2 * del_alpha)**2
716 err_beta = (1/alpha * del_beta)**2
717 return (err_ref + err_T + err_alpha + err_beta)**0.5
718 elif 'PD' in self.file_path:
719 alpha, del_alpha = C.alphaPD, C.alphaPDsd
720 beta, del_beta = C.betaPD, C.betaPDsd
721 err_ref = (1/(alpha * mean_T) * sd_ref)**2
722 err_T = (mean_ref/(alpha * mean_T**2) * sd_T)**2
723 err_alpha = ((-1/alpha**2)*((mean_ref/mean_T) - beta) * del_alpha)**2
724 err_beta = (1/alpha * del_beta)**2
725 return (err_ref + err_T + err_alpha + err_beta)**0.5
726 else:
727 return None
728 #noise tolerance
729 noise_tolerance = {}
730 for object_label in [10, 15, 20, 25]: #range(1, 5): # Assuming there are 4

objects
731 object_data = self.roi_df[self.roi_df['Object Label'] == object_label]
732 mean = []
733 sd = []
734 vox = []
735 times = []
736 for _, row in object_data.iterrows():
737 mean.append(row['Mean'])
738 sd.append(row['SD'])
739 vox.append(row['#Voxels'])
740 times.append(row['Scan Time'])
741

742 noise_tolerance[object_label] = calculate_tolerance(mean, sd, vox, times)
743 self.coupled_data['noise_tolerance'] = noise_tolerance
744
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745 #metal tolerance
746 mean_prox, sd_prox, mean_dist, sd_dist = [], [], [], []
747 times = []
748 vox = []
749 for _, row in self.metal_df.iterrows():
750 mean_prox.append(row['mean_prox'])
751 sd_prox.append(row['SD_prox'])
752 vox.append(1) # because we dont want to have the

standard error for artifacts
753 mean_dist.append(row['mean_dist'])
754 sd_dist.append(row['SD_dist'])
755 times.append(row['Scan time'])
756

757 tolerance_prox = calculate_tolerance(mean_prox, sd_prox, vox, times)
758 tolerance_dist = calculate_tolerance(mean_dist, sd_dist, vox, times)
759

760 # Combine the tolerances into a single dictionary
761 metal_tolerance = {'prox': tolerance_prox, 'dist': tolerance_dist}
762 self.coupled_data['metal_tolerance'] = metal_tolerance
763

764

765 def bland_altman_plot(self):
766 temp_roi_df = self.temp_roi_df
767 sensor_df = self.sensor_df
768 df_merged = pd.DataFrame()
769

770 for sensor in range(1, 5):
771 sensor_measurements = sensor_df.copy()
772 sensor_measurements['Sensor'] = sensor # Adding sensor identifier to sensor

measurements
773 sensor_measurements['Temp'] = sensor_measurements[f'Temp{sensor}'] # Simplify

column naming
774

775 for index, row in temp_roi_df.iterrows():
776 if row['Object Label'] == sensor:
777 closest_sensor_time = self.find_closest_time(row['Scan Time'],

sensor_measurements['Rounded Time'])
778 matched_sensor_row = sensor_measurements[sensor_measurements['Rounded 

Time'] == closest_sensor_time]
779 if not matched_sensor_row.empty:
780 df_merged = pd.concat([df_merged, pd.DataFrame({
781 'Mean': [row['Mean']],
782 'Measured Temp': matched_sensor_row['Temp'].values[0],
783 'Sensor': [sensor],
784 'Rounded Time': [closest_sensor_time]
785 })])
786 # Calculate differences and means after merging
787 df_merged['Difference'] = df_merged['Measured Temp'] - df_merged['Mean']
788 df_merged['Mean'] = (df_merged['Measured Temp'] + df_merged['Mean']) / 2
789 # Add mean difference and limits of agreement
790 mean_diff = df_merged['Difference'].mean()
791 std_diff = df_merged['Difference'].std()
792 upper_loa = mean_diff + 1.96 * std_diff
793 lower_loa = mean_diff - 1.96 * std_diff
794

795

796 class TempMap:
797 def __init__(self, base_directory_path, ref_temp, monoE=None):
798 self.scan_time = None
799 self.bilateral_filter = None
800 self.base_directory_path = base_directory_path
801 self.ref_temp = ref_temp # Temperature of tissue of reference scan, measured by

sensors
802 self.alpha = None # best alpha to be determined
803 self.volume_t0 = None # Reference scan at T0
804 if C.thermometry_method == 'PD':
805 self.monoE = monoE
806 self.temperature_maps = {} # Stores temperature maps for t1, t2, t3, etc.
807 self.volume_t = {} # store volumes for t1, t2, t3 etc.
808

809 def load_dicom_volume(self, directory_path):
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810 files = [pydicom.dcmread(os.path.join(directory_path, f)) for f in os.listdir(
directory_path) if

811 f.startswith('I')]
812 files.sort(key=lambda x: float(x.ImagePositionPatient[2]))
813 self.scan_time = files[0].get('AcquisitionTime', None)
814 rescale_slope = files[0].RescaleSlope
815 rescale_intercept = files[0].RescaleIntercept
816 volume = np.stack([s.pixel_array * rescale_slope + rescale_intercept for s in files])
817 volume = rotate(volume, angle=90, axes=(0, 2), reshape=True, mode='constant')
818 volume = volume[200:300, 200:300, :]
819 return volume
820

821 def calculate_temperature_map(self, volume_t, ref_temp):
822 # Register volume_t to volume_t0
823 elastixImageFilter = sitk.ElastixImageFilter()
824 if np.ndim(self.volume_t0) > 1:
825 elastixImageFilter.SetFixedImage(sitk.GetImageFromArray(self.volume_t0))
826 else:
827 elastixImageFilter.SetFixedImage(self.volume_t0)
828 elastixImageFilter.SetMovingImage(volume_t)
829 elastixImageFilter.LogToConsoleOn()
830 # Set up the parameters for translation
831 parameterMap = sitk.GetDefaultParameterMap('rigid')
832 elastixImageFilter.SetParameterMap(parameterMap)
833 # Execute the registration
834 elastixImageFilter.Execute()
835 volume_t = elastixImageFilter.GetResultImage()
836 # Get the result
837 volume_t = sitk.GetArrayFromImage(volume_t)
838 if np.ndim(self.volume_t0) < 2:
839 self.volume_t0 = sitk.GetArrayFromImage(self.volume_t0)
840 if C.thermometry_method == 'HU':
841 # Calculate the change in Hounsfield Units (Delta HU) voxel-wise
842 self.alpha = C.alphaHU
843 beta = C.betaHU
844 delta_hu = volume_t - self.volume_t0
845 delta_t = (delta_hu - beta) / self.alpha
846 elif C.thermometry_method == 'PD':
847 self.alpha = C.alphaPD
848 beta = C.betaPD
849 relative_pd = self.volume_t0 / volume_t
850 delta_t = (relative_pd - beta) / self.alpha
851 T = delta_t + ref_temp
852 return T
853

854 def perform_temperature_map_NLM(self):
855 if C.thermometry_method == 'HU':
856 def extract_number(directory_name):
857 match = re.search(r'S(\d+)', directory_name)
858 return int(match.group(1)) if match else 0
859

860 directories = [d for d in os.listdir(self.base_directory_path) if
861 os.path.isdir(os.path.join(self.base_directory_path, d))]
862 directories.sort(key=extract_number) # Sort directories based on the extracted

number
863 reference_directory = directories[0] # Reference scan directory
864 print("Reference directory:", reference_directory)
865 self.volume_t0 = self.load_dicom_volume(
866 os.path.join(self.base_directory_path, reference_directory, 'DICOM_DL_MAR'))
867 # estimate the noise standard deviation from the noisy image
868 sigma = 2.1
869 patch_kw = dict(patch_size=3, # 3x3 patches
870 patch_distance=4) # 9x9 search area
871 # fast algorithm
872 self.volume_t0 = restoration.denoise_nl_means(self.volume_t0, h=0.8 * sigma,

sigma=sigma,
873 fast_mode=True,
874 **patch_kw)
875 for directory in tqdm(directories[1:], desc='Filter and register'): # Skip the

reference directory
876 volume_t = self.load_dicom_volume(os.path.join(self.base_directory_path,
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directory, 'DICOM_DL_MAR'))
877 scan_time = self.scan_time
878 self.volume_t[scan_time] = volume_t
879 volume_t = restoration.denoise_nl_means(volume_t, h=0.8 * sigma, sigma=sigma,
880 fast_mode=True,
881 **patch_kw)
882 volume_t = sitk.GetImageFromArray(volume_t)
883 temperature_map = self.calculate_temperature_map(volume_t, self.ref_temp)
884 self.temperature_maps[scan_time] = temperature_map
885 elif C.thermometry_method == 'PD':
886 PD_maps = self.base_directory_path
887 sorted_PD_maps = sorted(PD_maps.items(), key=lambda item: item[0])
888 reference_ac_time, self.volume_t0 = sorted_PD_maps[0]
889 print('Reference acquisition time is:', reference_ac_time)
890 self.volume_t = dict(sorted_PD_maps[1:])
891 sigma = 0.02
892 patch_kw = dict(patch_size=3, # 3x3 patches
893 patch_distance=4) # 9x9 search area
894 # fast algorithm
895 self.volume_t0 = restoration.denoise_nl_means(self.volume_t0, h=0.8 * sigma,

sigma=sigma,
896 fast_mode=True,
897 **patch_kw)
898 # Iterate over each directory and calculate temperature maps
899 for scan_time, PD_map in tqdm(self.volume_t.items(), desc='Filter and register'):
900 PD_map = restoration.denoise_nl_means(volume_t, h=0.8 * sigma, sigma=sigma,
901 fast_mode=True, **patch_kw)
902 PD_map = sitk.GetImageFromArray(PD_map)
903 temperature_map = self.calculate_temperature_map(PD_map, self.ref_temp)
904 self.temperature_maps[scan_time] = temperature_map
905 return self.temperature_maps
906

907 def plot_temperature_maps(self, initial_slice_index):
908 def extract_number(time_point):
909 match = re.search(r'S(\d+)', time_point)
910 return int(match.group(1)) if match else 0
911 rowcol = math.ceil(np.sqrt(len(self.temperature_maps)))
912 fig, axs = plt.subplots(rowcol, rowcol, figsize=(20, 20))
913 axs = axs.flatten() # Flatten the 2D array of axes
914

915 # Initial plotting
916 for i, (time_point, temperature_map) in enumerate(sorted_temperature_maps):
917 ax = axs[i]
918 window_width = 80
919 window_level = 50
920 lower_bound = window_level - (window_width / 2)
921 upper_bound = window_level + (window_width / 2)
922 windowed_map = np.clip(temperature_map, lower_bound, upper_bound)
923 im = ax.imshow(windowed_map[initial_slice_index], cmap='OrRd', interpolation='

nearest', vmin=lower_bound, vmax=upper_bound) #'gist_heat'
924 ax.set_title(f'Slice of scan {time_point} - Slice {initial_slice_index}')
925 ax.axis('off')
926 plt.show()
927

928 def plot_temperature_maps_with_isolines(self, initial_slice_index):
929 def extract_number(time_point):
930 match = re.search(r'S(\d+)', time_point)
931 return int(match.group(1)) if match else 0
932 window_width = 400
933 window_level = 60
934 lower_bound = window_level - (window_width / 2)
935 upper_bound = window_level + (window_width / 2)
936

937 rowcol = math.ceil(np.sqrt(len(self.temperature_maps)))
938 fig, axs = plt.subplots(rowcol, rowcol, figsize=(20, 20))
939 axs = axs.flatten()
940 sorted_temperature_maps = sorted(self.temperature_maps.items(), key=lambda x:

extract_number(x[0]))
941 max_slices = max(len(temp_map) for temp_map in self.temperature_maps.values())
942 # Pre-calculate and store isoline data
943 isoline_data = {}
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944 for time_point, temperature_map in sorted_temperature_maps:
945 data_per_slice = []
946 for slice_index in range(len(temperature_map)):
947 X, Y = np.meshgrid(np.arange(temperature_map[slice_index].shape[1]),
948 np.arange(temperature_map[slice_index].shape[0]))
949 Z = temperature_map[slice_index]
950 data_per_slice.append((X, Y, Z))
951 isoline_data[time_point] = data_per_slice
952 current_slice = [initial_slice_index]
953 slice_index_text = fig.text(0.5, 0.01, f'Slice Index: {initial_slice_index}', ha='

center')
954 def update_slice(event):
955 if event.button == 'up' and current_slice[0] < max_slices - 1:
956 current_slice[0] += 1
957 elif event.button == 'down' and current_slice[0] > 0:
958 current_slice[0] -= 1
959 for i, (time_point, _) in enumerate(sorted_temperature_maps):
960 ax = axs[i]
961 ax.clear()
962 slice_data = self.volume_t[time_point][current_slice[0]]
963 ax.imshow(slice_data, cmap='gray', interpolation='nearest', vmin=lower_bound,

vmax=upper_bound)
964 # Recreate isolines using stored data
965 X, Y, Z = isoline_data[time_point][current_slice[0]]
966 CS = ax.contour(X, Y, Z, levels=[40, 60, 80], colors=['blue', 'green', 'red'

], linewidths=[3,3,3])
967 ax.clabel(CS, inline=True, fontsize=20)
968 ax.set_title(f'Slice of scan {time_point} - Slice {current_slice[0]}')
969 ax.axis('off')
970 slice_index_text.set_text(f'Slice Index: {current_slice[0]}')
971 fig.canvas.draw_idle()
972 # Initial plotting
973 for i, (time_point, _) in enumerate(sorted_temperature_maps):
974 ax = axs[i]
975 slice_data = self.volume_t[time_point][initial_slice_index]
976 ax.imshow(slice_data, cmap='gray', interpolation='nearest', vmin=lower_bound,

vmax=upper_bound)
977 # Recreate isolines using stored data
978 X, Y, Z = isoline_data[time_point][initial_slice_index]
979 CS = ax.contour(X, Y, Z, levels=[40, 60, 80], colors=['blue', 'green', 'red'],

linewidths=[3,3,3])
980 ax.clabel(CS, inline=True, fontsize=20)
981 ax.axis('off')
982 fig.canvas.mpl_connect('scroll_event', update_slice)
983 plt.figlegend(['40°C', '60°C', '80°C'], loc='lower center', ncol=3, labelspacing=0.)
984 plt.show()
985

986 def plot_temp_overlay(self, initial_slice_index=65):
987 # Function to extract the numerical part for sorting
988 def extract_number(time_point):
989 match = re.search(r'S(\d+)', time_point)
990 return int(match.group(1)) if match else 0
991

992 if C.thermometry_method == 'PD':
993 self.volume_t = self.monoE
994 #W/L settings for HU map and overlay
995 window_width = 400
996 window_level = 60
997 lower_bound_hu = window_level - (window_width / 2)
998 upper_bound_hu = window_level + (window_width / 2)
999 window_width = 80
1000 window_level = 50
1001 lower_bound_T = window_level - (window_width / 2)
1002 upper_bound_T = window_level + (window_width / 2)
1003

1004 rowcol = math.ceil(np.sqrt(len(self.temperature_maps)))
1005 fig, axs = plt.subplots(rowcol, rowcol, figsize=(20, 20))
1006 axs = axs.flatten() # Flatten the 2D array of axes
1007 # Sort temperature maps for each time point
1008 sorted_temperature_maps = sorted(self.temperature_maps.items(), key=lambda x:

extract_number(x[0]))
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1009 ax_counter = 0
1010 # Iterate over the sorted temperature maps
1011 for i, (time_point, temperature_map) in enumerate(sorted_temperature_maps):
1012 ax = axs[ax_counter]
1013 slice_data = self.volume_t[time_point][initial_slice_index , :, :]
1014 im1 = ax.imshow(slice_data, cmap='gray', interpolation='nearest', vmin=

lower_bound_hu, vmax=upper_bound_hu)
1015 windowed_temperature_map = np.clip(temperature_map[initial_slice_index, :, :],

lower_bound_T, upper_bound_T)
1016 # Create an alpha mask for where the temperatuer exceeds 30 degrees
1017 alpha_mask = np.zeros_like(windowed_temperature_map)
1018 alpha_mask[windowed_temperature_map > 30] = 0.55 # Inner pixels with 75% opacity
1019 # Overlay the temperature map onto the volume_t slice with the alpha mask
1020 im2 = ax.imshow(windowed_temperature_map , cmap='OrRd', interpolation='nearest',

alpha=alpha_mask)
1021 ax.axis('off')
1022 ax_counter += 1
1023 # Add one colorbar for the whole figure, referencing the last image plotted
1024 fig.subplots_adjust(right=0.85, wspace=0, hspace=0)
1025 cbar_ax = fig.add_axes([0.87, 0.15, 0.05, 0.7])
1026 norm = plt.Normalize(vmin=lower_bound_T, vmax=upper_bound_T)
1027 sm = plt.cm.ScalarMappable(cmap='OrRd', norm=norm)
1028 plt.tight_layout(rect=[0, 0, 0.85, 1])
1029 plt.show()
1030

1031

1032 # declare all constants for CT phantom analysis
1033 thermometry_method = 'HU'
1034 monoE_level = 70
1035 DLMAR = True
1036 O_MAR = False
1037 slice = 2
1038 increment = 1 #always keep on 1
1039

1040 ref_scan_path = '/path/to/reference/scan'
1041 root_path = '/path/to/repetition/folder' # Path to the folder containing CT scans
1042 temperature_sensor_path = '/path/to/temperature/sensor/data'
1043 output_path = os.path.join(root_path, 'scan_summary')
1044

1045 # thresholds for segmenting temperature sensors and ablation needle
1046 lower_thresh_1 = 200 #sessie 1: 700, sessie 2: 200
1047 upper_thresh_1 = 600 #sessie 1: 1200, sessie 2: 600
1048 lower_thresh_2 = 1100 #sessie 1: 1500, sessie 2: 1100
1049 upper_thresh_2 = 4000 #sessie 1: 4000, sessie 2: 4000
1050 # thresholds for liver tissue
1051 lower_threshold_liver_HU = 10 #HU
1052 upper_threshold_liver_HU = 80 #HU
1053 lower_threshold_liver_PD = 0.7 #g/mL
1054 upper_threshold_liver_PD = 1.2 #g/mL
1055 lower_threshold_liver_mu = 0.16
1056 upper_threshold_liver_mu = 0.24
1057 # thresholds for temperature analyzer with ROIs
1058 lower_temp_threshold = 0
1059 upper_temp_threshold = 150
1060

1061 # Alpha and beta fitted on rep1 - rep3
1062 alphaHU, alphaHUsd = -0.3814688, 0.008819
1063 betaHU, betaHUsd = 0.306405, 0.46975
1064 alphaPD, alphaPDsd = 0.000390252, 0.000026
1065 betaPD, betaPDsd = 0.99986339, 0.000544375
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Computed Tomography Thermometry for Ablation Zone Monitoring in Liver Tumor
Ablation: Technical Principles and Challenges
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Abstract

Thermal ablation for liver tumors necessitates precise monitoring of the ablation zone to ensure treatment efficacy and minimize
risks. Traditional monitoring methods like MRI and ultrasound face limitations in cost, accessibility, and precision, especially in
deep-seated or complex tumors. Computed Tomography (CT) thermometry emerges as a promising alternative, offering real-time,
non-invasive and accurate monitoring of tissue temperature changes during ablation. Utilizing the inverse relationship between
photon attenuation and tissue temperature, CT thermometry can provide valuable feedback to visualize the ablation zone. Vari-
ous approaches to CT thermometry, including conventional and spectral CT, are explored, where spectral CT showing particular
promise due to its enhanced precision and reproducibility. However, challenges such as variability in thermal sensitivity across pa-
tients, motion artifacts, and artifacts from metal ablation needles persist. Addressing these issues may involve using metal artifact
reduction techniques and using spectral CT capabilities. This review provides an overview of the current state and challenges of
CT thermometry in thermal ablation, delving into various CT-based temperature monitoring methods, experimental protocols for
assessing CT thermometry’s sensitivity and accuracy, and strategies for mitigating metal artifacts induced by ablation needles.

Keywords: CT thermometry, thermal ablation, ablation zone monitoring, noninvasive thermometry

1. Introduction other multiphase contrast enhanced scan is made to verify non-
enhancement of the ablated tissue, suggesting a successful ab-
lation. However, the postprocedure ablation zone can be poorly
displayed; challenges in identifying local recurrences include
identification of original tumor position and non-enhancement
in the border region of ablation necrosis. Partly due to these
challenges, tumor progression and local recurrence rates re-
main higher than acceptable (8). Alternatively, ultrasound can
be used but has several disadvantages such as blind spots, gas
bubble interference, and low spatial resolution, which make it
impractical for ablation zone monitoring (9).

As an alternative to perfusion imaging, tissue temperature
can be directly monitored. MRI-based thermometry, for exam-
ple, is currently the most widely employed non-invasive method
for this purpose (10). While effective, interventional MRI is
rarely applied due to high costs and the necessity for metal-free
instruments. CT presents an cost-effective alternative that is al-
ready integral to intervention planning and probe positioning.
CT-thermometry utilizes the inverse relationship between CT
attenuation and tissue temperature. In this method, heating or
cooling causes a change in tissue density, measurable through
changes in Hounsfield Unit (HU), thus providing thermal feed-
back to the physician (11). Furthermore, in-room CT imaging
is especially suitable for thermal ablation due to its speed, high
spatial resolution, and the capability to depict tumors using con-
trast enhancement.

The concept of CT-thermometry is not new; its potential for
non-invasive temperature monitoring was already explored in

Thermal ablation is a minimally invasive technique that em-
ploys thermal energy to treat hepatic lesions. This technique is 
regarded as a potential first-line therapy for patients with small 
hepatocellular carcinomas, or as an alternative option for pa-
tients who are ineligible for surgical resection or have not re-
sponded to chemotherapy (1). A typical ablation system con-
sists of an energy generator and a needle-like electrode that de-
livers thermal energy percutaneously to the target tumor, caus-
ing coagulative tissue necrosis. For instance, radiofrequency 
ablation (RFA), microwave ablation (MWA), high-intensity fo-
cused ultrasound (HIFU), and laser induced thermal therapy 
(LITT) aim to heat the tissue to the cytotoxic threshold of at 
least 60°C. Alternatively, cryoablation cools the tissue to -40°C 
or lower to cause necrosis (2).

The interventional radiologist usually relies on image guid-
ance, such as computed tomography (CT), magnetic resonance 
imaging (MRI) or ultrasound imaging to accurately position the 
electrode in the target tumor (3; 4; 5). To evaluate the success 
of tumor ablation in the liver, it is essential to monitor the ab-
lation zone, which is the region that has reached a temperature 
of at least 60°C or -40°C. Besides electrode positioning, imag-
ing assists the physician during and after the procedure to de-
tect any residual tumor or collateral damage to healthy tissue 
(6; 7). The ablation zone is commonly monitored based on dif-
ferences in perfusion that are caused by coagulative necrosis. 
First, a multi-phase pre-ablation scan with a contrast agent is 
made with CT or MRI to visualize the tumor. After ablation, an-
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the seventies and early eighties (12; 13). These studies demon-
strated a temperature resolution of a fraction of degree Celsius
with a spatial resolution of 1 cm. But, at that time, CT measure-
ments were not reliable due to unstable CT values and this ap-
plication was not further developed until 1997 (14). In that year,
Jenne and colleagues proposed CT-thermometry as a method
for monitoring tumor ablation with HIFU (15). However, the
reproducibility of CT values was still insufficient and thermal
ablation was not widespread. It wasn’t until the introduction of
large multi-row detectors that CT-thermometry began to gain
renewed attention (16). Meanwhile, Frich et al. outlined es-
sential criteria for making non-invasive thermometry clinically
viable, as summarized in table 1.

In 2011, Pandeya et al. studied RF ablation on ex-vivo
bovine livers using a 128-slice scanner. They found a clear
inverse relationship between CT value and temperature with
a spatial resolution of 1.2 mm (17). More recently, Pohlan’s
team examined CT-thermometry’s diagnostic accuracy in MWA
and CA procedures on ex-vivo porcine livers. They reported
an 89.2% predictive temperature accuracy for MWA, which
dropped to 65.3% for CA (18). A recent development in
CT-thermometry is the use of spectral CT, showing potential
to monitor temperature non-invasively with higher precision
(19; 20; 21).

Despite meeting most established criteria from table 1, CT-
thermometry sees limited clinical use (22). Its reproducibility
cannot be guaranteed due to factors such as interscanner vari-
ability or patient-specific differences. Another main factor lim-
iting the reproducibility of CT-thermometry is the presence of
metal artifacts induced by the ablation needle (23). These ar-
tifacts affect CT values and result in dark and bright streaks
around the metal object (24).

This review provides an overview of the current state and
challenges of CT-thermometry for thermal ablation. The review
covers the following topics:

• What are the different methods of temperature monitoring
based on CT, such as with conventional or spectral CT, and
their advantages and disadvantages?

• What protocols are used for designing and conducting ex-
periments to evaluate the sensitivity, accuracy, and preci-
sion of CT-thermometry, including the choice of phantom
materials, temperature sensors, and scanning parameters?

• What are possible solutions to mitigate the metal artifacts
caused by ablation needles, such as applying artifact re-
duction algorithms or using spectral CT?

After reading, the reader should be equipped with the knowl-
edge necessary to identify future research opportunities that aim
to enhance patient outcomes, reduce costs associated with ther-
mal ablation procedures, and alleviate the workload on physi-
cians.

2. Methods

This systematic review and meta-analysis were performed
according to the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) guidelines (25).

Parameter Requirement

Temperature precision <1–2°C
Spatial resolution <1–2 mm
Acquisition time <10–30 seconds

Three-dimensional temperature mapping
Measurements presented in real time
Insensitive to motion artifacts
Compatible with medical equipment
Radiation exposure from repeated CT measurement needs to
meet safety standards.

Table 1: Essential criteria for effective CT thermometry in ablation procedures
(6).

2.1. Literature search

PubMed was searched to find studies that describe (I) CT-
thermometry methods, (II) ablation zone monitoring using
phantoms, and (III) CT needle artifact reduction methods. For
each topic a single search string was used and results were ex-
ported to a reference manager (Zotero 6.0, Corporation for Dig-
ital Scholarship, Fairfax, VA, US):

I (”Tomography, X-Ray Computed” OR ”Computed To-
mography” OR ”CT”) AND (”Thermography” OR ”Ther-
mometry” OR ((”Thermal” OR ”Temperature”) AND
(”Map” OR ”Sensitivity” OR ”Monitoring” OR ”Assess*”
OR ”Measu*”)) OR ”Physical Density”).

II (”Radiofrequency Ablation” OR ”Ablation Techniques”
OR “Microwave Ablation”) AND (”Thermal” AND
(”Phantoms, Imaging” OR ”Tissue-mimicking” OR ”Ther-
mochromic”)) AND (”Liver” OR ”Hepat*”).

III (”Tomography, X-Ray Computed” OR ”Computed To-
mography” OR ”CT”) AND (“Metal Artifact” OR “Needle
Artifact”) AND (“Needle” OR “Antenna” OR “Probe” OR
“Ablation Techniques” OR “Interventio*”).

The complete search strings are described in Appendix Ap-
pendix A. No beginning search date was set; the literature
search was updated until September 23, 2023.

2.2. Exclusion criteria

The titles, abstracts, and full-text of all studies were screened
by one researcher. Studies not in English were excluded.

2.2.1. CT thermometry methods
Studies were excluded if the title clearly indicated that CT

thermometry or CT physical density measurement was not de-
scribed. The exclusion criteria for abstract from search string

2

79



(I) were as follows: (1) no temperature or physical density mea-
surement performed; (2) CT not used for temperature measure-
ment; (3) CT not used for physical density measurement; and
(4) no X-ray CT used. The exclusion criteria for full-text eli-
gibility were as follows: (1) no CT values, SNR, or CNR de-
scribed and (2) no DLR on abdominal organs described.

2.2.2. Ablation zone monitoring using phantoms
Studies were excluded if the title clearly indicated that ther-

mal ablation with a liver or thermochromic phantom was not
described. The exclusion criteria for abstract from search string
(II) were as follows: (1) no temperature verification performed;
(2) phantom not thermochromic; (3) no imaging performed;
and (4) in-vivo experiments. The exclusion criteria for full-text
eligibility were as follows: (1) no liver phantom described and
(2) no thermochromic phantom described.

2.2.3. CT needle artifact reduction methods
Studies were excluded if the title clearly indicated that CT

metal artifact reduction was not described. The exclusion cri-
teria for abstract from search string (III) were as follows: (1)
no metal artifact reduction performed; (2) no needle artifacts
described; and (3) no CT used.

3. Results

The combination of three search strings resulted in 699
records. From these records, 62 records were included in this
review.

3.1. Principles of computed tomography attenuation

Computed tomography uses X-ray photons to build cross-
sectional slices of the body. These slices are reconstructed from
the attenuation coefficient measured after the photons passed
through the body. At photon energy levels used in CT imaging
(40 - 140 keV), the mass attenuation coefficient (µm) of a com-
pound is largely determined by Compton scattering, while to

a lesser extent by the photoelectric effect and Rayleigh scatter-
ing. Compounds with higher atomic numbers (Z) have a greater
probability of photon interaction, leading to higher mass atten-
uation coefficients. This is particularly notable at lower photon
energies where the photoelectric effect dominates, and attenu-
ation is highly dependent on the third to fourth power of the
atomic number (Z3 or Z4). The photoelectric effect is the main
source of image contrast in x-ray imaging, as it varies with the
atomic number of the material. Different tissues in the body
have different atomic numbers, and thus different absorption
probabilities for x-rays.

The Compton effect is dominant above ∼ 30 keV photons in
human tissues. The µm for Compton scattering is independent
of Z, decreases slowly with photon energy, and is directly pro-
portional to the mass electron density (ρe). The Compton effect
does not produce much contrast between tissues and degrades
the image quality by causing noise and scatter. In CT imaging,
we measure the linear attenuation coefficient µ, which is depen-
dent on µm and physical density ρ (the mass m divided by the
volume V):

µ = µm × ρ (1)

A CT scan produces a volume that consists of a matrix of
voxels, each representing the average X-ray attenuation coeffi-
cient of the material within the corresponding voxel. To obtain
the CT value of a voxel, expressed in HU, the linear attenuation
coefficients of all voxels are scaled:

HU = 1000 ×
µ(x, y, z) − µwater

µwater
, (2)

where µwater is the linear attenuation coefficient of water at room
temperature, and µ(x, y, z) is the average linear attenuation co-
efficient of voxel (x,y,z).

The X-ray tube emits photons with a range of energies and
the attenuation measurement is integrated, throwing away all
the energy dependence of a specific material. This can cause
two different materials to have the same CT value, making it

(a) Flow diagram for studies on methods for CT thermometry.
Studies were found using search string (I).

(b) Flow diagram for studies on ablation zone monitoring us-
ing phantoms. Studies were found using search string (II).

(c) Flow diagram for studies on metal artifact reduction for
needles. Studies were found using search string (III).

Figure 1: Flow diagrams for search string (I), (II), and (III).
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difficult to distinguish them. Spectral CT, however, can im-
prove the material discrimination and enable new clinical ap-
plications.

3.1.1. Spectral CT
The general idea of spectral CT was first described by Al-

varez and Macovski (26). It uses a material’s energy de-
pendence, by differentiating between materials based on their
weighting photoelectric effect and Compton scattering:

µ(E) = αPE fPE(E) + αCS fKN(E), (3)

where αPE and αCS are material specific coefficients that we
would like to determine. fPE(E) is closely approximated by
1/E3.2 while fKN(E), defined as the Klein-Nishina function ap-
proximates the Compton effect and only depends on the pho-
ton energy. To determine the contribution of these effects to
attenuation, in spectral CT, a second attenuation measurement
is performed with photons of a different energy. The attenua-
tion coefficients at low energy (EL) and high energy (EH) can
be expressed as the attenuation contributions from a predefined
combination of basis materials:

µ(EL) = αPE fPE(EL) + αCS fKN(EL) (4)

µ(EH) = αPE fPE(EH) + αCS fKN(EH) (5)

Because all photon energy dependent parameters are known,
αPE and αCS can be accurately determined. Because these co-
efficients are the basis of attenuation, several mappings can be
constructed from them. This includes virtual monochromatic
images (VMI), where images represent attenuation at a single
photon energy, effective atomic number (Ze f f ), and material
decomposition, where mappings of two basis materials can be
constructed.

For monoenergetic x-ray sources, the energy spectra of dif-
ferent materials are known. However, in practice the x-ray
tubes in CT scanners produce a polychromatic spectrum due
to bremsstrahlung with k-edges at characteristic values. Al-
varez and Macovski have shown that, despite the polychromatic
spectrum of the x-ray tube, it is still possible to separate attenu-
ation coefficients into their contributions from photoelectric and
Compton effects. For a more in-depth review of approaches to
obtain spectral data and clinical applications, we refer to an ex-
cellent review by McCollough et al. (27).

3.2. CT thermometry methods

The search resulted in 428 studies. After title screening, 354
articles were excluded. Then, abstracts were screened, and 42
more studies were excluded based on the predetermined ex-
clusion criteria. There were several studies excluded based on
more than one criterion. As a result, a total of 32 studies were
full text reviewed. Among them, 7 studies were excluded be-
cause no CT thermometry was performed. Finally, 25 articles
were included in the systematic review (Figure 1a). We also
found 4 studies that reviewed non-invasive thermometry in gen-
eral or specifically CT thermometry.

3.2.1. Principle of thermal expansion
The theory of thermal expansion is well understood; when

a material is heated, its physical density is commonly reduced.
This is expressed as:

ρ(T ) =
ρ(T0)

1 + α ∆T
, (6)

where T0 is the calibration temperature, ∆T = T − T0, and
the thermal expansion coefficient is denoted by α. At an atomic
level, this reduction in density can be attributed to the increased
vibrational energy of atoms. As temperature rises, atoms vi-
brate more actively due to the increased thermal energy, causing
them to occupy more space. This increase in the separation be-
tween atoms leads to a decrease in the material’s density. These
relationships, as visualized in figure 2, explain the phenomenon
of a decreasing CT value with increasing temperature and are
the basis of CT thermometry.

The influence of temperature on CT numbers was already in-
vestigated by Bydder and Kreel in 1979 to analyze the effects of
temperature on the calibration process of CT scanners (13). Un-
til the introduction of spectral CT, temperature measurements
relied solely on changes in CT attenuation (11). Spectral CT,
however, offers a new method to measure physical density with
greater accuracy. The following sections will explain these two
methods in detail.

3.2.2. CT attenuation-based
The temperature dependence of CT attenuation can be de-

rived from the effect of thermal expansion on density. As shown

Figure 2: Schematic representation of the basic principles behind CT thermometry, illustrating the process from thermal expansion to CT value determination.
The sequence involves transformations from temperature change (∆T) to volume change (∆V), physical density change (∆ρ), and linear attenuation change (∆µ),
finishing in the derivation of the CT value (∆CT). Each transformation is influenced by specific parameters, indicating the relationship between the parameters.
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in Figure 2, as temperature increases, density decreases, result-
ing in lower attenuation at higher temperatures. Thus, the fol-
lowing equation can be used to express the CT value at a given
temperature relative to a reference temperature (T0):

HU(T ) ≈ HU(T0) −
1000 µ(T0) α ∆T

µwater
. (7)

By simplifying this equation and using a linear Taylor series
expansion as proposed by Homolka et al. (28), the change in
CT value due to temperature can be approximated as:

∆HU(T ) ≈ −[1000 + HU(T0)] α ∆T. (8)

This expression shows that temperature changes can be approx-
imated by monitoring the CT values during an ablation. To
examine how local temperatures affect the CT number, a re-
gression analysis is conducted on the CT values and the cor-
responding temperature measurements. Multiple studies have
investigated a linear relationship under varying circumstances,
such as ablation method or imaging protocol and found tem-
perature sensitivities ranging from -2.00 to -0.23 HU/°C for
thermal heating (Figure 3). The slope of the fitted curve in-
dicates the sensitivity of the attenuation-based CT thermometry
and varies depending on the material/tissue that is studied: a
larger slope reflects a higher thermal expansion coefficient α,
which causes a greater change in CT numbers with tempera-
ture. However, some studies have reported that the temperature
sensitivity is not constant with large temperature variations, im-
plying that α is a function of temperature. These studies suggest
that quadratic (29; 30), cubic (31) or exponential (32; 33) mod-
els fit the experimental data better than the linear model. These
studies also suggest that tissue heating and cooling affect the
CT numbers differently.

Although attenuation-based CT thermometry is based on a
simple concept, it has a significant challenge: different tissues,
patients, and scanning protocols have different thermal sensitiv-
ities. These sensitivities are difficult or impossible to measure
in-vivo, and they are substantially different from the ex vivo
measurements that are done under different physiological con-
ditions. Also, the thermal properties of the target region may
be altered by the intense heat during thermal ablation, which
may introduce further errors (11). To address this issue, some
studies have proposed to use VMI acquired with spectral CT
(20; 21; 34). With VMI, new parameters are available to mod-
ulate the temperature sensitivity. Moreover, the linear correla-
tions of CT attenuation with temperature are more pronounced
at lower VMI energy levels, resulting in better separation be-
tween ablation zone and surrounding tissue (34). However,
separate calibration curves, depending on the tissue and VMI
energy level, are also required. Recently, Wang et al. used im-
proved material decomposition capabilities of photon counting
CT to develop a deep learning-based thermometry tool (35).
Although the tool was tested on non-anthropomorphic materi-
als, results showed a mean absolute error of 3.40°C. Further
research is needed to determine if either photon counting CT or
deep learning-based thermometry is promising for the future.

Figure 3: Variability in temperature sensitivity between several materials deter-
mined with attenuation-based thermometry. The included studies used different
methods to heat or cool the material (34; 20; 18; 36; 23; 21; 37; 38; 39; 17; 16;
28; 12).

3.2.3. Physical density-based
As can be seen in figure 2, CT values not only reflect changes

in temperature, but also changes in mass attenuation coefficient
that result from changes in tissue composition. Moreover, the
scanner model and tube voltage influence the conventional HU,
along with the patient size. These factors result in consider-
able variations in the thermal sensitivity values reported in prior
studies (Figure 3). While a linear relationship has been used to
model the dependence of attenuation on temperature with con-
ventional CT, spectral CT can be used to develop more repro-
ducible quantitative models by extracting material specific co-
efficients, αPE and αCS . Spectral quantifications not only pro-
vide more consistent and quantitative measures for diagnosis,
but combining spectral maps can also be used to estimate other
quantities, such as physical density. This could also extend the
application of spectral results to interventional procedures.

The Alvarez-Macovski model (26) has been used in vari-
ous simplified forms for the development of density mappings,
mainly for non-clinical purposes (40). One of these models
is the Alvarez-Macovski physical density (AM-PD) model. It
models the material specific coefficients αPE and αCS as fol-
lows:

αPE = K1
ρ Zn

A
(9)

αCS = K2
ρ Z
A
, (10)

where K1, K2 and n are known constants. Combining with
equation (3) results in the following relationship between at-
tenuation coefficient and physical density:

µ(E) =
ρ

A
[K1

Zn

E3 + K2 Z fKN(E)], (11)

where E is the photon energy in keV and fKN is the dimension-
less Klein-Nishina function. Furthermore, physical density of a
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single element can be related to electron density by the ED-PD
model:

ρed ∼ ρ
NA

A
Z, (12)

where NA is the Avogadro constant.

The research group of Noël has used these relationships to
build four physical density models that rely on VMI, Ze f f , and
ED maps, that are clinically available on spectral CT scanners
(42). Ze f f is computed on the scanner by comparing the mea-
sured αPE and αCS with materials with known αPE , αCS and
Ze f f . The effective atomic mass, Ae f f , is not available on most
clinical scanners and was obtained by fitting a third-order poly-
nomial between the atomic mass and number of the first 30 el-
ements (H, He, Li, etc.), which yielded a good approximation.
By combining these variables, the following models for physi-
cal density were used:

(AM-PD) : ρ =
Ae f f µ(E)

K1 Zn
e f f

E3 + K2 Ze f f fKN(E)
, (13)

(ED-PD) : ρ =
ρed Ae f f

NA Ze f f
. (14)

Additionally, this group utilized parameterized versions of
the AM-PD and ED-PD model to account for multi-elemental
tissues and model assumptions, such as the exclusion of
Rayleigh scattering influence. They proposed the following pa-
rameterized version of the AM-PD model using VMI of 70 keV:

(p. AM-PD) : ρ = p1
Ae f f µ

p2 (70keV)
p3 Zp4

e f f

70p5 + Zp6
e f f f p7

KN(70keV)
. (15)

The ED-PD model was parameterized as follows:

(p. ED-PD) : ρ = p8

ρ
p9
ed Ap10

e f f

NA Zp11
e f f

. (16)

The parameters of both models (table 2) were fitted to 180 an-
thropomorphic tissues defined by the International Commission
on Radiation Units and Measurements (ICRU) Report 44 with
corresponding attenuation coefficients from the National Insti-
tute of Standard and Technology (NIST) XCOM (42). The au-
thors validated the model using a phantom containing inserts
with known density and found that the parametrized AM-PD
model was the most accurate, with a root mean square error of
0.0007 g/mL. They decided to use this model for temperature
monitoring in a follow-up study.

Parametrized AM-PD Parametrized ED-PD

p1 3.48632 p8 0.800168
p2 1.0704 p9 1.01325
p3 46.8754 p10 0.857102
p4 4.1907 p11 0.800386
p5 2.94742
p6 1.01921
p7 0.995567

Table 2: Parameters for parametrized AM-PD and ED-PD models (42).

Liu et al. evaluated the temperature sensitivity of the param-
eterized AM-PD model by heating ex-vivo bovine muscle in a
warm water bath from 22 to 49.5°C (43). To establish the rela-
tionship between temperature and physical density variations,
temperature verification was performed with invasive thermal
sensors and equation (6) was applied. The authors demon-
strated a high linear correlation (R = 0.98) between physical
density and temperature with a thermal expansion coefficient
0.00042±0.00001 °C−1. This means that a 10°C increase leads
to a 0.42% decrease in physical density. The physical density
dependence on temperature is visualized in figure 4.

In another follow-up study, this research group investigated
how image noise influenced the temperature precision in 35 to
80°C conditions (19). They scanned a liver-mimicking phan-

Figure 4: Physical density maps of ex-vivo bovine muscle in a water bath at 22 °C (A) and 45.5 °C (B). Physical density decreased with increased temperatures.
The area of high physical density (yellow) corresponds to optical fiber temperature probes. These quantifications illustrate a strong relationship with change in
temperature that corresponds to thermal volumetric expansion. Figure adapted from Liu et al. (41).
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Phantom material Frequency Temperature sensor Frequency

Ex-vivo tissue 12 (33; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54) Thermocouple 9 (33; 45; 50; 54; 55; 56; 57; 58; 51)
Polyacrylamide gel 10 (23; 59; 45; 60; 55; 61; 62; 63; 64; 65) Fiber optic 7 (59; 46; 48; 49; 53; 64; 66)
Agar 4 (47; 53; 56; 57) Thermochromic ink 7 (23; 59; 45; 60; 61; 62; 64)
Silicone gel 3 (67; 50; 54) Fiber Bragg grating 2 (68; 47)
Serum albumin 2 (33; 65)

Table 3: Experimental setup materials, tissues, and temperature sensors for ablation zone monitoring with MWA, RFA, HIFU or LITT. The studies that used these
materials are listed between brackets

tom with different radiation doses, slice thicknesses, recon-
struction methods and denoising methods. Results show that
without denoising but with a high level iterative reconstruction,
they needed a CT dose index volume (CTDIvol) of 30 mGy and
a slice thickness of maximum 2 mm to achieve a precision of
<3°C. However, with non-local means denoising, the radiation
dose could be decreased to 2 mGy and still achieve this preci-
sion. Thus, they showed that additional denoising at low doses
enhanced the temperature precision. Conversely, without de-
noising, a higher radiation dose was required to meet the clini-
cal practice requirements of CT thermometry.

Although the parameterized AM-PD method has shown
promise, its use during heating procedures with an ablation nee-
dle remains untested. This leaves open questions regarding the
potential impact of gas bubbles or metal artifacts on physical
density measurements. Addressing this knowledge gap may be
possible by conducting a phantom experiment. Using metal ar-
tifact reduction software within this context could provide in-
sights into the influence of the ablation needle.

3.3. Ablation zone monitoring using a phantom

The search resulted in 206 studies. After title screening, 128
articles were excluded. Then, abstracts were screened, and 40
more studies were excluded based on the predetermined exclu-
sion criteria. As a result, a total of 36 studies were full text
reviewed. Among them, 6 studies were excluded because no
liver or thermochromic phantoms were used. Finally, 30 arti-
cles were included in the systematic review (Figure 1b). We
also found 3 studies that reviewed chemical and thermal prop-
erties of materials that are commonly used for liver phantom
fabrication. Table 3 provides an overview of the common phan-
tom materials and temperature verification methods.

3.3.1. Liver phantom
Phantoms are used in research of medical imaging to re-

place real tissues and in studies where in-vivo models are in-
adequate. A phantom that mimics the temperature response
of liver tissue to thermal ablation should be designed to match
the liver’s physical properties, which differ from those of other
tissues such as bone, lung, and adipose. The physical proper-
ties that are relevant for the phantom include density, specific
heat capacity, thermal conductivity, thermal diffusivity, spe-
cific absorption rate, electrical conductivity, and permittivity
(69). In particular, when the phantom is used for CT imag-
ing, density and photon attenuation properties should resemble

real liver tissue. These properties influence the ablation zone’s
size and shape as well as its appearance after image acquisition.
Additionally, practical considerations include that the phantom
should be made from nontoxic materials, nondegradable over
time, maintain its structure, and should be easy to handle (70).

Several materials have been used to fabricate liver phan-
toms, such as ex-vivo animal tissue polyacrylamide gel (PAG),
agar(ose), and silicone gel. Each material has its advantages
and disadvantages in terms of thermal similarity, repeatability,
and puncture resistance, as well as cost, availability, and ease
of preparation. Table 4 summarizes the main characteristics of
these materials.

Ex-vivo tissue samples, obtained from freshly-excised ani-
mal organs, are commonly used to simulate human liver tissue
in ablation procedures. Ex-vivo porcine or bovine liver tissue
has similar thermal and dielectric properties to in-vivo human
liver tissue, both in normal and tumor tissue (71; 72). However,
these properties can change after multiple ablations as coagu-
lation effects alter tissue structure and composition. It is there-
fore not recommended to perform repeated ablation procedures
on the same tissue sample, as this reduces the reliability of the
measurements. To prepare ex-vivo tissue samples, liver or mus-
cle tissue from pigs, cows or swines are often readily available
at local butchers and can be preserved in a cooled saline bath.
Artificial tumors can also be added to the tissue to mimic dif-
ferent tumor sizes and shapes (44).

PAG is composed of acrylamide C3H5NO, which forms a gel
when hydrated. PAG is a solid, optically transparent, and elas-
tic material that can be easily shaped into the desired shape.
This allows the creation of multilayered samples with different
properties depending on the water concentration in each layer
(73). Mikhail et al. evaluated PAG for ablation purposes and
found that thermal properties (such as heat capacity and ther-
mal diffusivity), electrical conductivity, and permittivity of the
PAG-based phantom are similar to biological liver tissue (59).
By sealing the phantoms to prevent water evaporation, the elec-
trical and thermal characteristics of the PAG are stabilized. The
phantoms should be stored in sealed glass tubes to maintain
their integrity. PAG is suitable for phantom models because
they are inexpensive, moldable, and insensitive to temperature
variations (70). Furthermore, polyacrylamide has a high melt-
ing point, which is well-suited for RFA and MWA. The down-
sides of PAG are its neurotoxicity and limited shelf-life of about
five months.
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Material Density Thermal similarity Electrical similarity Cost Availability Ease of preparation

Ex-vivo tissue ++ + + + + +

Polyacrylamide +- + + +- - -
Agar +- + +- ++ + +

Silicone + - – +- - -

Table 4: Comparison of phantom material properties.

Agar and agarose gel are polysaccharide-based gels, often
extracted from certain red seaweeds. Agarose is one of the two
main components of agar, along with agaropectin, but it is less
commonly used than agar. Thermal and dielectric properties of
agar similar to those of liver tissue can be obtained with a con-
centration of 2.5% agar (74). Agar gel is easy to shape and ma-
nipulate by temperature control, and it can cool rapidly at room
temperature, which enhances its reproducibility (70). However,
agar is a hydrophilic, organic material that is prone to microbial
growth, which can affect its thermal and dielectric properties
over time. Another limitation of agar gels is their low stability
at high temperatures, which restricts their applicability for high
temperature ablations (> 80°C) (69).

Silicones are polymers with a silicon-oxygen backbone and
various organic side groups. They have high mechanical
strength, thermal stability, and are easy to fabricate. Therefore,
they are suitable for making phantoms that can mimic the shape
and hydration of blood vessels (70). Although one study re-
cently introduced a silicone-based phantom mimicking thermal
properties of soft tissue, this material remains underexplored
for MWA or RFA (67).

3.3.2. Temperature verification
The aim of thermal ablation is to reach a temperature of at

least 60°C or -40°C for cell death. There are two main methods
to verify the temperature around the ablation center. The first
method uses small thermometer probes to invasively measure
the tissue’s local temperature. Alternatively, a thermally sensi-
tive phantom can be used to produce a visible and measurable
ablation zone.

The invasive method uses small thermometer probes that are
inserted into the tissue at different distances from the ablation
center. These probes can measure the local temperature of the
tissue with high accuracy and precision. However, they have
some drawbacks, such as interfering with the thermal therapy
and the imaging modality, and being affected by strains caused
by thermal expansion or patient movement (10). There are three
main types of invasive temperature sensors: thermocouples, op-
tical fiber sensors, and fiber Bragg gratings.

Thermocouples are small devices that consist of two dissimi-
lar metal wires joined at one end, forming a junction. The junc-
tion generates a voltage that is proportional to the temperature
difference and is measured by a dedicated instrument that con-
verts it into a temperature reading. Multiple thermocouples can
be used to monitor the temperature near an ablation probe by in-
serting them at fixed distances from the probe. This allows the
real-time observation of the thermal effects of ablation on the

surrounding tissue with sub-degree precision (29; 45). Ther-
mocouples are often made of a metallic material, and therefore
may affect the current distribution of RFA in a way that does not
occur during a real ablation procedure. Additionally, imaging
metal artifacts can be induced, especially in CT imaging.

Optical fiber sensors are based on the principle of light re-
flection and refraction in a fiber optic core. Temperature mea-
surement with these sensors is based on the fact that absorption
and transmission properties of the fiber change with temper-
ature. They offer significant advantages over thermocouples,
such as smaller size, higher resistance to hysteresis, and lower
self-heating. Moreover, fiber-optics enable high spatial reso-
lution and thermal precision, reaching below 0.1 mm 1°C, re-
spectively (75). Increasing application of optical fiber sensors
is seen in the monitoring of ablation zones, although moni-
toring is progressing more towards non-invasive thermometry
(46). More recently, fiber Bragg gratings, a subtype of fiber
optical sensors, were introduced as an alternative to thermo-
couples (68; 47). Fiber Bragg gratings allow for multi-point
measurements along the fiber, but they are sensitive to strain,
which may cause measurement errors due to patient motion.

Another method to evaluate ablation zones is to add a ther-
mally sensitive material to the phantom that changes visibly
when it reaches a certain temperature. This approach allows
measuring the size and shape of the ablation zone, which may
vary due to internal or external factors such as tissue composi-
tion or ablation technique, instead of only measuring temper-
atures at specific points from the ablation probe. Moreover, it
avoids using metallic thermocouples that can alter the ablation
zone size and shape. Serum albumin is often used as a ther-
mally sensitive additive, but it has a drawback of coagulating
at a fixed temperature, which limits the information about the
temperature gradient and the repeated use of the phantom (76).
Alternatively, thermally sensitive ink can be added to create a
color gradient that represents the temperature gradient in the
phantom (60). A combination of methods may be optimal for
monitoring ablation zones; first, the invasive method to under-
stand the heat dynamics and gradient relative to the ablation
zone, and second, the thermally sensitive phantom to examine
the ablation zone details.

3.4. Needle artifact reduction

Metallic objects, such as dental fillings and orthopedic hard-
ware, cause metal artifacts that appear as high and low atten-
uating streaks across reconstructed CT images. These artifacts
degrade image quality by obscuring the metallic objects and the
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surrounding tissue, which may result in inaccurate diagnosis or
missed findings (24). Metal artifacts also affect thermal abla-
tion procedures, as they can impair the needle positioning and
temperature monitoring as shown in figure 5. Metal artifacts
are caused by several mechanisms, such as photon starvation
and beam hardening, and are more pronounced when acquiring
images with low tube current or voltage. To improve the image
quality, several metal artifact reduction (MAR) algorithms have
been proposed for different applications, such as dental fillings,
surgical clips, coils or orthopedic hardware (77). However, few
studies have specifically addressed MAR for ablation needles.
Here, we review the general methods for MAR and then focus
on MAR for needles.

3.4.1. Sinogram-based
Sinogram-based MAR algorithms aim to improve the quality

of CT images with metallic objects by identifying and replac-
ing the metal-corrupted regions in the sinogram with estimated
values. The sinogram is an image that represents the raw data
at multiple angles as measured by the detector and serves as
input for image reconstruction. As Katsura et al. excellently
reviewed sinogram-based MAR (77), we will provide a short re-
cap. First, metal is identified either in the reconstructed image
or the sinogram. Among commercially-available algorithms,
the exact method may differ, yet the foundational approach re-
mains similar, potentially extended by proprietary additional
steps. Typically, the following steps are taken:

1. The metal object is segmented in the uncorrected CT im-
age using a CT value threshold.

2. The segmented metal object is forwardprojected to find the
artifacted-corrupted X-ray data in the sinogram.

3. The artifact-corrupted sinogram data is removed and re-
placed by interpolation based on the uncorrupted data.

4. The artifact-removed sinogram is backprojected to obtain
the artifact-reduced image.

This process may be iterated until a point of convergence is
reached. In general, this sinogram-based approach leads to an
image that is consistent with the uncorrected image. However,
the original image may contain severe artifacts, which makes
segmentation difficult, and the interpolation may not restore the
lost information completely. While initial artifacts are reduced,
secondary interpolation artifacts may be introduced. Sinogram-
based MAR is effective for correcting photon starvation, but it
is less capable of correcting beam-hardening artifacts, which
are better handled by spectral CT.

3.4.2. Spectral-based
Modern CT scanners have several options, such as beam

filtration, calibration correction or dedicated beam hardening
software, to reduce beam-hardening artifacts caused by high Z
materials (24). The introduction of VMI with spectral CT has
given physicians another method to reduce the effects of beam-
hardening. As VMI should ideally imitate images that are ac-
quired with photons of one energy level, the mean beam energy
does not “harden” as it travels through tissue. Several studies

have evaluated the capabilities of VMI for MAR at different en-
ergy levels and metallic implants (77; 79). VMI reconstructions
at higher energy levels reduce beam-hardening artifacts as high-
energy photons are far less susceptible to absorption in high Z
materials (80). To reduce metal artifacts, VMI levels between
95 and 150 keV are effective. However, higher energy VMI
also leads to less tissue contrast so there is a trade-off depend-
ing on the application (77). In another study, researchers com-
bined sinogram-based iterative MAR with high-energy VMI
and compared both methods with each other. They found that
for severe artifacts caused by dental material, iterative MAR
led to a much more pronounced artifact reduction than the use
of VMI with higher keV levels (81).

3.4.3. Deep learning-based
More recently, deep learning-based MAR has been investi-

gated. These algorithms predominantly fall into two categories:
image-based algorithms and those that optimize in both the im-
age and sinogram domains (82). Image-based algorithms re-
move primary metal artifacts or secondary interpolation arti-
facts, by feeding the artifact-corrupted image into a deep learn-
ing network (83). Alternatively, a deep learning network is used
before image reconstruction to identify, remove, and replace
sinogram data corrupted by metal. This network frequently
introduces secondary artifacts in the image, different from in-
terpolation artifacts, which are then removed by a subsequent
network (84). The majority of MAR techniques are available
as standalone frameworks for imaging metallic objects. Thus,
dual domain MAR algorithms, which need sinogram input, are
confined to CT scans where sinograms are available.

Several studies compared their deep learning MAR algorithm
with various non-deep learning and other deep learning MAR
algorithms, generally observing superior performance of deep
learning MAR over sinogram-based MAR (82). For instance,
Selles et al. developed a deep learning MAR algorithm for
sacroiliac joint implants and compared it to a clinically avail-
able sinogram-based MAR algorithm (85). Their algorithm is
trained on images of simulated metal artifacts and operates in
the image domain. They found that both techniques signif-
icantly reduced metal artifacts, with deep learning MAR re-
sulting in more reduction than sinogram-based MAR in most
anatomical regions. Moreover, they propose the potential util-
ity of their algorithm in combination with VMI to reduce beam-
hardening artifacts in advance.

3.4.4. Metal artifact reduction for needles
The search resulted in 62 studies. After title screening, 46

articles were excluded. Then, abstracts were screened, and 8
more studies were excluded based on the predetermined ex-
clusion criteria. There were several studies excluded based on
more than one criterion. As a result, a total of 8 studies were
full text reviewed. Among them, 1 study was excluded because
MAR was applied but not compared to other MAR algorithms
or no MAR. Finally, 7 articles were included in the systematic
review (Figure 1c).

A limited number of studies have delved into the metal ar-
tifact effects of needles utilized in biopsy or ablation proce-
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Figure 5: Metal artifacts in pig liver in proximity of a MWA probe. Artifacts leading to mild loss of visibility of liver tissue in proximity of the probe (A); Artifacts
leading to moderate loss of visibility of liver tissue in proximity of the probe (B); Artifacts leading to complete loss of visibility of liver tissue in proximity of the
probe (C) Figure adapted from Do et al. (78).

dures. The extent of needle artifacts in CT-guided procedures
may be influenced by factors such as needle alloy, configura-
tion, thickness or internal shape (86). Nevertheless, even with
these factors taken into account, needle artifacts can still ob-
scure surrounding tissue, thus hampering image interpretation
(Figure 5). The research group of Do et al. explored the use of
sinogram-based MAR, spectral MAR, and a hybrid approach
in in-vivo pig models during biopsy and ablation procedures
(87; 88; 78; 89; 90). We distilled their findings into several key
conclusions:

I standalone sinogram-based MAR was more effective than
spectral-based MAR (90);

II using their own artifact quantification method (89), the
combination of 80 keV VMI and sinogram-based MAR
was most effective (88);

III in a reader study, increasing keV energy level increased
overall image quality and decreased artifact degree (88);

IV in a comparative study among MWA, RFA, and CA nee-
dles, sinogram-based MAR proved effective in MWA and
CA, but not in RFA (87);

V sinogram-based MAR generated new artifacts such as
blooming irregularities along the antenna edge and splay-
like radiating stripes at the periphery, which were observed
around the liver or abdomen’s periphery, but not at the an-
tenna tip or within the liver in the puncture direction (78).

The scope of these studies, however, was limited to a sin-
gle type of sinogram-based MAR. It is possible that employing
MAR algorithms from other vendors could yield varying re-
sults, highlighting the need for further comparative studies.

Wang et al. used a MAR algorithm which takes into account
geometry of the scanner, noise, and anatomy, in a study involv-
ing 30 lung cancer patients undergoing MWA (91). Their find-
ings showed that the MAR algorithm was capable of reducing
MWA antenna-induced artifacts, both quantitatively and quali-
tatively. Despite this, a comparative analysis of different MAR
algorithms was not conducted and additional research is needed
to explore the potential of deep learning-based MAR in needle
artifact reduction.

4. Discussion

4.1. Challenges

This review highlights several issues and challenges that
need to be tackled before clinical implementation of CT-based
thermometry, in particular for liver tumor ablation. A critical
challenge lies in the variability of the thermal expansion co-
efficient (α) or temperature sensitivity across different tissues,
tumor types, patients or scan parameters (38). Moreover, some
studies found different temperature sensitivities for the same
tissue under cooling and heating conditions (33). This variabil-
ity complicates the generalization of findings and affects the ac-
curacy of CT thermometry. Because of these issues, we might
need custom settings for each patient. It would be difficult
or impossible to obtain these highly personalized settings in-
vivo, and there are substantial differences between in-vivo and
ex-vivo measurements because of varying physiological condi-
tions, such as perfusion. Although physical density-based ther-
mometry reduces the influence of factors such as scanner model
or tube voltage, large inconsistencies in thermal sensitivity val-
ues still exist between patients (92). It is therefore even more
important to conduct studies investigating temperature sensitiv-
ities in a wide range of tissue and tumor types, patients, and
temperatures.

In the time between consecutive CT scans, which may span
several minutes during an interventional procedure, motion ar-
tifacts arising from breathing, organ movement, or patient po-
sitioning can misalign the scans. If the initial temperature ref-
erence scan becomes misaligned with later temperature scans,
this can lead to significant errors in temperature measurement.
To mitigate such artifacts, precise image registration of succes-
sive acquisitions is needed, although these often bring their own
set of computational and time constraints (93). After registra-
tion, the interventional radiologist may find it useful to visualize
the temperature map as an overlay on the pre-ablation contrast
enhanced scan, as shown in figure 6. Alternatively, an auto-
matic segmentation of the tumor can be used to determine what
portion of the tumor has reached the critical 60°C temperature,
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Figure 6: Example of CT scans (left) during RFA procedure in ex-vivo bovine liver tissue. The central circle shows the position of the ablation probe, and the other 5
circles show the location of thermal sensors. In subfigures (a) - (i) the temperature increases over time from 20°C to 98°C in the most proximal thermal sensor. The
corresponding temperature maps are shown as overlay on CT scans (right). The temperature was visualized according to the temperature bar as indicated. Figure
adapted from Pandeya et al. (17)

providing useful feedback for the physician. Real-time tem-
perature maps lead us to an exciting area that could make CT-
guidance during ablation much more useful in a clinical setting.
Continued research and technological innovation in this domain
are paramount for pushing the boundaries of what is currently
achievable.

In clinical settings, the issue of radiation exposure from CT
scans is always relevant. However, for liver cancer patients fac-
ing a poor prognosis (94), this concern may be less pressing.
As Bruners et al. have pointed out, the priority often shifts to-
wards achieving accurate and low-noise temperature measure-
ments (38). Accurate measurements can help minimize the risk
of incomplete ablation and reduce the likelihood of tumor re-
currence, while the risk of radiation-induced tumors is small.
Nonetheless, optimizing radiation dose remains a focus of on-
going research, particularly in the case of repeated scans. Ways
to reduce the radiation dose are to optimize the acquisition,
reconstruction, and post-processing parameters and limit the
number of scans. However, sub-optimal parameters can result
in image noise, which decreases the thermal-spatial resolution
of temperature measurements. To this extent, efforts have been
made to find the limits of these parameters (19; 20) but more
prospective research is needed.

When it comes to metal artifact reduction, the scope of re-
search appears limited to specific, often vendor-specific, algo-
rithms. The effect of these algorithms is twofold: while they are
able to reduce artifacts, they also risk altering the Hounsfield
Units, potentially skewing temperature estimations. A compre-
hensive comparison among various MAR algorithms, therefore,
stands as an unmet need in this field.

4.2. Comparative landscape and future directions

Within this web of challenges and considerations, CT
thermometry finds itself competing with other temperature-
monitoring techniques such as MRI and ultrasound-based ther-
mometry (10; 95). MRI enables measurement of relative tem-
perature changes in the body with a resolution of a few mm,
temporal resolution of around 5 seconds, and a temperature
precision of approximately 1°C and is currently regarded as
the golden standard for non invasive thermometry. However,
it comes with limitations in terms of cost, the need for MRI-
compatible equipment, and sensitivity to changed tissue com-
position during coagulation (96). Ultrasound, though less ex-
pensive and real-time, suffers from operator dependency and
may lack the necessary precision for deeper tumors. In this re-
gard, CT thermometry emerges as a viable middle-ground op-
tion that balances cost, accessibility, and spatio-temporal reso-
lution. However, direct comparative studies are vital for a more
conclusive evaluation of its advantages and drawbacks.

Looking ahead, the spectral features of photon-counting CT
(PCCT) hold promise for more accurate tissue characterization
(97). The thermal expansion coefficient α is one of the main
sources of inaccurate temperature measurements, and PCCT
could offer a more precise determination of this variable. Al-
ternatively, deep learning algorithms can be exploited during
CT thermometry. The discovery of a nonlinear relationship be-
tween CT values and temperature in some studies indicates that
data-driven modeling is suitable for CT thermometry. Deep
learning algorithms can already detect pathologies from CT
images (98), and in the future they might extract parameters,
thermal expansion coefficient α or temperature, from a single
dataset or even several multimodal datasets. Wang et al. already
successfully utilized both PCCT and deep learning in CT ther-
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mometry (35). They demonstrated a data-driven thermometry
algorithm that can accurately predict temperatures of unknown
materials based on spectrally resolved linear attenuation coeffi-
cients from known materials at different temperatures. This has
significant implications for ablation procedures, as it offers a
method for determining tissue characteristics without the need
for in-vivo calibration.

5. Conclusion

In summary, CT-based thermometry holds substantial
promise for improving liver tumor ablation procedures, yet sev-
eral challenges remain that limit its widespread clinical imple-
mentation. One critical concern revolves around the variability
of the thermal expansion coefficient (α) across different tissues,
tumor types, and patients. This variability complicates the stan-
dardization of CT thermometry and necessitates patient-specific
settings that are challenging to obtain in-vivo. Equally, metal
artifacts induced by the ablation needle can hamper accurate
and precise temperature measurements as they introduce dis-
tortions in CT values.

While MRI and ultrasound-based thermometry present their
own sets of advantages and limitations, CT thermometry posi-
tions itself as a balanced alternative. Future prospects include
the incorporation of PCCT and deep learning algorithms. Both
hold the potential to refine our understanding and application
of thermal expansion coefficients as well as improving MAR
algorithms. In conclusion, CT thermometry, despite its poten-
tial advantages and ongoing advancements, has its challenges.
Solving these issues is paramount for the technology to move
from the experimental phase into routine clinical practice.

6. Research plan spectral CT thermometry

Building upon the reviewed literature in this manuscript, our
research plan is designed to address knowledge gaps in usage
of spectral CT for thermometry during liver tumor ablation. We
aim to refine the parametrized Alvarez-Macovski physical den-
sity (AM-PD) model to enhance the precision of temperature
measurements during ablation procedures, especially consider-
ing the challenges posed by the presence of ablation needle-
induced metal artifacts and the potential impact of gas bubbles.

Our methodology encompasses a series of phantom exper-
iments, utilizing ex-vivo porcine liver to closely mimic liver
tissue. These experiments are designed to simulate the thermal
ablation process, using a microwave ablation needle to deter-
mine the influence of metal artifacts on temperature measure-
ment accuracy. We will conduct these experiments using the
Philips Spectral CT 7500, performing microwave ablations and
acquiring CT scans at one-minute intervals under various set-
tings. Temperature verification will be performed using inva-
sive thermocouples.

A critical aspect of our approach is the use of higher energy
levels of Virtual Monochromatic Images (VMI) as input in the
AM-PD model to assess their efficacy in reducing metal arti-
facts and enhancing temperature measurement precision. As
the initial parametrized AM-PD model was built on 70 keV
VMI, we will reparametrize the model for other energy levels.
Complementing this, we plan to explore the application of deep
learning-based Metal Artifact Reduction (MAR).

The expected outcomes of our research are twofold: first, we
aim to compare the precision and accuracy of the physical den-
sity based thermometry with attenuation-based thermometry in
scenarios that involve an ablation needle. Second, we intend
to demonstrate the effectiveness of high-energy VMI and deep
learning-based MAR in mitigating metal artifacts, resulting in
more reliable temperature data.

This research project spans over a 9-month period from
September 2023 to May 2024. The literature review and re-
search plan was covered in the first two months. Data collec-
tion, analysis, and development and evaluation of MAR soft-
ware will be performed in the period November to April and is
shown in figure 7.
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Appendix A. Full search strings

Search strings used in PubMed to find results for (I) CT ther-
mometry methods, (II) experimental setup for CT thermometry,
and (III) needle artifact reduction methods.

I (((”Tomography, X-Ray Computed”[majr] OR ”computer
tomographic”[ti] OR ”computed tomographic”[ti] OR
”computed tomography”[ti] OR ”computer tomogra-
phy”[ti] OR ”computer assisted tomographic”[ti] OR
”computed assisted tomography”[ti] OR ”computer
assisted tomography”[ti] OR ”CT”[ti]) AND (”thermogra-
phy”[ti] OR ”thermometry”[ti] OR ”Thermometry”[majr]
OR ”Thermography”[majr] OR ((”thermal”[ti] OR ”tem-
perature”[ti] OR ”temperature”[majr]) AND (”map”[ti]
OR ”sensitivity”[ti] OR ”monitoring”[ti] OR ”assess*”[ti]
OR ”measu*”[ti])) OR ”physical density”[tw] OR ”physi-
cal density”[title/abstract: 3])) OR ((”Tomography, X-Ray
Computed”[mesh] OR ”computer tomographic”[tw] OR
”computed tomographic”[tw] OR ”computed tomogra-
phy”[tw] OR ”computer tomography”[tw] OR ”computer
assisted tomographic”[tw] OR ”computed assisted
tomography”[tw] OR ”computer assisted tomogra-
phy”[tw]) AND (”map temperature”[title/abstract: 3]
OR ”mapped temperature”[title/abstract: 3] OR
”mapping temperature”[title/abstract: 3] OR ”sen-
sitivity temperature”[title/abstract: 3] OR ”moni-
toring temperature”[title/abstract: 3] OR ”monitor
temperature”[title/abstract: 3] OR ”monitored tem-
perature”[title/abstract: 3] OR ”assessment tem-
perature”[title/abstract: 3] OR ”assessed temper-
ature”[title/abstract: 3] OR ”assessing tempera-
ture”[title/abstract: 3] OR ”assessments tempera-
ture”[title/abstract: 3] OR ”measurement temper-
ature”[title/abstract: 3] OR ”measurements tem-
perature”[title/abstract: 3] OR ”measured temper-
ature”[title/abstract: 3] OR ”measuring tempera-
ture”[title/abstract: 3] OR ”map thermal”[title/abstract: 3]
OR ”mapped thermal”[title/abstract: 3] OR
”mapping thermal”[title/abstract: 3] OR ”sen-
sitivity thermal”[title/abstract: 3] OR ”mon-
itoring thermal”[title/abstract: 3] OR ”mon-
itor thermal”[title/abstract: 3] OR ”moni-
tored thermal”[title/abstract: 3] OR ”assess-
ment thermal”[title/abstract: 3] OR ”assessed
thermal”[title/abstract: 3] OR ”assessing ther-
mal”[title/abstract: 3] OR ”assessments ther-
mal”[title/abstract: 3] OR ”measurement ther-
mal”[title/abstract: 3] OR ”measurements ther-
mal”[title/abstract: 3] OR ”measured ther-
mal”[title/abstract: 3] OR ”measuring ther-
mal”[title/abstract: 3])))

II (((”Radiofrequency Ablation”[Mesh] OR ”Ablation Tech-
niques”[Mesh] OR ”ablat*”[tiab]) AND (”thermal”[tiab]
OR ”therm*”[tiab]) AND (”Phantoms, Imaging”[Mesh]
OR ”tissue-mimicking”[tiab] OR ”phantom”[tiab] OR
”phantom*”[tiab] OR ”thermochromic”[tiab]) AND

(”Liver”[Mesh] OR ”liver”[tiab] OR ”hepat*”[tiab]))
OR ((”Radiofrequency Ablation”[majr] OR ”Ablation
Techniques”[majr] OR ”ablat*”[ti]) AND (”thermal”[ti]
OR ”therm*”[ti]) AND (”Phantoms, Imaging”[majr] OR
”tissue-mimicking”[ti] OR ”phantom”[ti] OR ”phan-
tom*”[ti] OR ”thermochromic”[ti])))

III (((”Needle Artifact”[tw] OR ”Needle Artifact”[tw]
OR ”Needle Artifact”[title/abstract: 3] OR ”Needle
Artifact”[title/abstract: 3] OR ((”Needles”[Mesh] OR
”Biopsy, Needle”[Mesh]) AND ”Artifacts”[Mesh])) AND
(”Tomography, X-Ray Computed”[mesh] OR ”computer
tomographic”[tw] OR ”computed tomographic”[tw] OR
”computed tomography”[tw] OR ”computer tomogra-
phy”[tw] OR ”computer assisted tomographic”[tw] OR
”computed assisted tomography”[tw] OR ”computer
assisted tomography”[tw])) OR ((”Metal Artifact”[tw] OR
”Metal Artifact”[tw] OR ”Metal Artifact”[title/abstract: 3]
OR ”Metal Artifact”[title/abstract: 3] OR ”Met-
als Artifact”[title/abstract: 3] OR ”Metals Arti-
fact”[title/abstract: 3]) AND (”Tomography, X-Ray
Computed”[majr] OR ”computer tomographic”[ti] OR
”computed tomographic”[ti] OR ”computed tomogra-
phy”[ti] OR ”computer tomography”[ti] OR ”computer
assisted tomographic”[ti] OR ”computed assisted tomog-
raphy”[ti] OR ”computer assisted tomography”[ti] OR
”CT”[ti])))
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