Asymmetric
Attestation
Protocol for
Constrained IoT
Devices

%
TUDelft

Asymmetric Attestation
Protocol for Constrained
IoT Devices

By

Nikolaos Skartsilas

In partial fulfilment of the requirements for the degree of:
Master of Science

in Embedded Systems

at the Delft University of Technology,

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS),
to be defended publicly on December 17, 2025, at 14:00 PM.

Supervisor: Dr.ir. M. Taouil MSc, TU Delft
Thesis committee: Dr.ir. M. Taouil MSc, TU Delft
Prof.dr. K.G. (Koen) Langendoen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

i3
TUDelft

http://repository.tudelft.nl/

Preface

This thesis was conducted in collaboration with Intrinsic ID and addresses security mechanisms for
resource-constrained embedded systems. The work combines protocol design, security analysis, and
a prototype implementation to evaluate the feasibility of a DICE-rooted, certificate-based asymmetric
attestation approach on microcontroller-class devices.

Due to confidentiality constraints associated with the industrial development environment at Intrinsic
ID, the complete prototype source code and certain implementation-specific artifacts cannot be
included in this report. To support scientific evaluation, the thesis documents the design through explicit
assumptions and requirements, protocol flows, pseudocode-level descriptions, and quantitative
measurements on representative hardware.

Contents

Preface

Abstract

List of Figures

List of Tables

Acknowledgments

1 Introduction

1.1
1.2
1.3
1.4

Motivation

State of the Art
Main Contributions
Thesis Outline

2 Background

21

2.2

23

24
2.5

Embedded Systems Security

2.1.1 Information Security

2.1.2 Device Security

Cryptography

2.2.1 Symmetric Cryptography
2.2.2 Public Key Cryptography
2.2.3 Hash Functions and Message Authentication Codes
Public Key Infrastructure

2.3.1 PKI Components

2.3.2 Trust Models

Transport layer Security

Device Identifier Composition Engine

3 System Architecture and Protocol Design

3.1
3.2

3.3

Design Approach

Design Objectives and Requirements
3.2.1 Design Objectives

3.2.2 Requirement Analysis
Protocol Design

3.3.1 System Architecture

3.3.2 Protocol Functional Flows
3.3.3 Protocol Security Analysis

4 Implementation and Results

41

System Architecture and Design Exploration
4.1.1 High-Level Architecture

11

12

13
13
14
16
17

18
18
19
21
23
25
25
27
28
28
30
32
34

38
38
40
40
41
43
44
48
52

56
56
56

4.1.2 Design Space Exploration

4.2 Prototype Development
4.2.1 Proof of Concept Implementation
4.2.2 Embedded Implementation

4.3 Empirical Evaluation and Discussion
4.3.1 Measurement Limitations and Challenges
4.3.2 Cycle Count and Stack Usage Analysis
4.3.3 Analysis and Discussion

5 Conclusions
5.1 Thesis Summary
5.2 Future Work

Bibliography

59
63
63
66
68
68
68
71

71
73
74

76

Abstract

The evolution of computing systems, particularly in the Internet of Things (loT), has emphasized
openness to support innovation, but this same openness introduces critical security challenges. Modern
cyber-attacks are increasingly sophisticated and persistent, exposing the limitations of traditional
software-only defenses. loT devices, often deployed in hostile environments and subject to stringent
constraints in power, memory, and cost, lack the robust security mechanisms required for trust and
resilience, especially as the demand for remote software updates grows.

To address these challenges, this thesis proposes a scalable and cost-effective security architecture
that supports hardware-rooted identity, remote attestation, and secure device updates for resource-
constrained embedded devices. The design is grounded in modest hardware assumptions compatible
with commercial lIoT platforms. A statistically unique, device-specific secret anchors the root of trust,
enabling verifiable software identity throughout the device lifecycle. Building on the Device Identifier
Composition Engine (DICE) standard, an asymmetric attestation protocol is developed specifically for
constrained environments.

The architecture is validated through a prototype implementation on an STM32 microcontroller,
demonstrating secure remote attestation via server communication. Performance measurements,
including clock cycles and memory utilization, alongside a structured security analysis offer insight into
the feasibility and resilience of the proposed solution. This work contributes to the advancement of
DICE-based architectures by providing a practical and secure framework for verifying software
execution in trusted loT devices.

List of Figures

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Connected loT Devices Forecast by 2025 [5]
The C.I.A triad of Information Security
Device Security Techniques

Cryptographic Encryption/Decryption
Classification of Cryptographic Algorithms
Symmetric cryptography

Public Key cryptography

User authentication scheme

Message Authentication Code (MAC) usage
Certificate chain of Trust

Figure 2.10: Hierarchical trust model

Figure 2.11: TLS Handshake protocol

Figure 2.12: DICE boot model

Figure 2.13: Layer code change

Figure 2.14: DICE Engine

Figure 2.15: DICE Engine layer and firmware
Figure 2.16: Malware attack scenario

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

Waterfall Model for Sequential Software Development

General Testing V-Model for Security-Critical loT Systems

Layered Boot Process in DICE-Based Architecture

Internal Components of the DICE Engine

Structure of Firmware Layer 1

Protocol Manufacturing Phase Flow

High-level system architecture

Demonstrator scenario

Total CPU cycle cost per cryptographic operation

Internal breakdown of ECC key generation for DevicelD and Layer keys
Stack memory usage for selected cryptographic operations

Cycle breakdown of alias certificate creation using mbedTLS routines
Summary of stack and code memory usage across components
Stack usage across attestation stages (DICE-based prototype)

10

List of Tables

Table 3.1: maps the design phases adopted in this work to the main contributions (MC) introduced in
Section 1.3:

Table 3.1: Mapping of Design Phases to Main Contributions

Table 3.2: System Requirements

Table 3.3: Security Capability Mapping and Corresponding Requirements

Table 3.4: Structure of Device and Layer Certificates with FWID Extension

Table 3.5: Threat matrix using STRIDE

Table 3.6: Asset protection table

Table 3.7: Mapping of security capabilities to system requirements

11

Acknowledgments

| would like to express my sincere gratitude to my academic supervisors and committee members, Dr.ir.
Mottagiallah Taouil and Prof.dr. Koen Langendoen, for their guidance, feedback, and support
throughout this thesis.

This work was conducted in collaboration with Intrinsic ID. | would particularly like to thank my company
supervisor, Georgios Selimis, for his mentorship, technical input, and continuous support during the
implementation and evaluation phases. | also thank my colleagues at Intrinsic ID for the constructive
discussions and assistance.

Finally, | would like to thank my family, my friends, and Ifigeneia for their encouragement and support
throughout my studies.

12

1 Introduction

This chapter concerns the motivation around this thesis, presents a summary of research studies that
constitute the state of the art, describes the main contributions of the work done and provides an outline
for the rest of the thesis. First, Section 1.1 refers to the importance of the rising sector of the Internet of
Things (IoT), highlighting the need for effective security strategies against sophisticated attacks and
threats. This section also describes the security challenges derived from such threats towards
establishing a robust holistic security solution for end-to-end lIoT nodes. Section 1.2 investigates past
and present security solutions spanning many disciplines from software to hardware, focusing on
attestation schemes. Section 1.3 describes the main contributions of this study, while Section 1.4
concludes the chapter with a short description of the other chapters of this thesis.

11 Motivation

The proliferation of open, autonomous embedded systems connected via the Internet or other networks
has led to the emergence of the Internet of Things (IoT). The global deployment of loT devices now
numbers in billions. According to Gartner, 5.8 billion enterprise and automotive loT endpoints were
projected to be in use by the end of 2020 [1]. Forecasts suggest this growth will continue, with IDC
anticipating that loT devices will generate 79.4 zettabytes of data annually by 2025 [2]. McKinsey Digital
further estimates that loT could contribute up to $11 trillion annually to the global economy by 2025,
potentially boosting corporate profits by 21% as early as 2022 [3]. These projections have incentivized
major firms to invest in innovative loT technologies that enhance business processes and improve
operational efficiency. In particular, Industrial 10T (lloT) has gained traction by promoting automation
and leveraging big data analytics to reduce costs and enhance customer insights.

The loT infrastructure is characterized by an openness that facilitates innovation but also
presents substantial security challenges. This openness makes loT systems attractive targets for
cybercriminals, who exploit systemic vulnerabilities [4]. As shown in Figure 1.1, the expected surge in
connected devices will only increase the attack surface. Ensuring the reliable and secure operation of
loT systems has thus become an increasingly complex and challenging task. Common wireless
communication technologies, such as Bluetooth and Wi-Fi, possess known vulnerabilities that can be
exploited by adversaries [6]. Further complicating matters are the resource constraints and physical
inaccessibility of many loT deployments, which hinder the implementation of robust security protections
[71.

An expanded attack surface increases the risk of system compromise, yet many organizations
fail to prioritize security due to limited expertise or budget constraints [8]. As a result, device
manufacturers must prioritize security as a design imperative, not an afterthought. The heterogeneity
of loT ecosystems further complicates security: the threats concerning industrial sensors differ
considerably from those affecting smart appliances or consumer wearables [9]. Privacy violations,
intellectual property theft, impersonation, and device cloning are among the diverse threats loT devices
face. Notably, loT systems can be compromised even without network connectivity. Security attacks
span multiple domains, ranging from software-level exploits to direct hardware manipulation targeting
the device’s physical components. In 2015, security researchers successfully demonstrated remote
hijacking of vehicle systems, manipulating functions ranging from braking to infotainment [10]. Financial
and operational damage from such incidents is substantial for major companies, some of which report
recovery costs exceeding $500,000 per breach [11]. Healthcare institutions have also been targeted,

13

with ransomware attacks encrypting critical patient data and demanding payment for its release [12].
High-profile hardware vulnerabilities like Meltdown and Spectre further underscore the risks inherent in
modern computing architectures [13].

7544

2015 2018 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 1.1 Connected loT Devices Forecast by 2025 [5]

As connectivity among loT devices grows, the risk of malware-based attacks increases
significantly. A single infected device can spread malware to others in the network, triggering a chain
reaction that may compromise sensitive system information. The absence of strong security
mechanisms at the device level can make such infections especially damaging. Although previous
research has explored the types of malware threats loT systems face, relatively little attention has been
given to developing effective countermeasures for infected or compromised loT devices.

Preserving privacy and ensuring security in IoT systems entails a range of technical and
procedural challenges. First, trust must be established across the entire lifecycle of each device, from
development and manufacturing to deployment and decommissioning [14]. Equally important is the
protection of secrets within embedded devices. Secure key storage and tamper-resistant provisioning
mechanisms are essential. Although modern cryptographic algorithms can address many system-level
vulnerabilities, long-term security remains elusive, particularly in the case of side-channel attacks and
speculative execution flaws. Firmware updates represent another vector of vulnerability, exposing loT
endpoints to attack if not secured properly. Physical tampering and the lack of standardized defenses
further complicate secure system design. Standardization efforts, while necessary, progress slowly and
often lag behind emerging threats. To reduce liability and improve resilience, security considerations
must be integrated into the design phase of 10T products. The next section surveys existing security
solutions that form the state of the art in protecting embedded loT systems.

1.2 State of the Art

The challenges outlined in the previous section have motivated researchers to explore security
techniques aimed at preventing malicious adversaries from compromising critical operations in loT
systems. This section reviews existing security solutions for protecting IoT endpoint devices, with an
emphasis on attestation techniques.

Memory protection is a common hardware-based countermeasure, involving the use of
Memory Protection Units (MPUs) [15] and Memory Management Units (MMUs) [16] to prevent
unauthorized access to sensitive memory regions by unprivileged software components. Early
solutions, such as the segmentation mechanism introduced in Intel’s 80286 architecture, linked memory
segments to privilege levels, thereby enforcing access restrictions. More recently, Execution-Aware

14

Memory Protection (EA-MPU) [17] has been proposed to associate code segments with specific data
regions, allowing for finer-grained isolation of software modules within a trusted runtime environment.
Remote attestation is a foundational technique for verifying the internal state of an untrusted device
(the prover) by a trusted entity (the verifier) [18]. It enables use cases such as secure firmware updates,
patch validation, and system integrity checks across embedded platforms. Attestation protocols
generally fall into three categories: (1) software-based, (2) hardware-based, and (3) hybrid schemes.

Software-based attestation techniques leverage platform constraints to detect unauthorized
modifications. One notable example is Pioneer, proposed by Seshadri et al. in 2005 [19], which
implements a software-based attestation technique by computing memory checksums using a verifier-
specified algorithm. The design introduces intentional timing overhead to detect unauthorized
modifications, as deviations in execution time can reveal compromise of the attestation code or
underlying memory state. Similar methods have been adapted for various embedded platforms [20—
23]. Despite their conceptual appeal, software-only attestation schemes remain vulnerable to attacks
and typically depend on restrictive assumptions about the adversary's capabilities. These include the
requirement of exclusive one-to-one communication between the verifier and the prover, which
prohibits third-party attestation and reduces protocol flexibility. Moreover, the lack of persistent secret
storage on the device necessitates such constraints. To address these shortcomings, some proposals
introduce minimal hardware extensions for securely storing cryptographic secrets [24], [25]. However,
even lightweight trust anchors often demand exclusive access to system resources, making it infeasible
to support multiple trusted execution environments concurrently. As a result, software-based attestation
schemes are generally unsuitable for deployment in realistic, multi-context IoT scenarios.

Hardware-based attestation schemes gained early traction with mechanisms such as Secure
Boot [26], introduced by Arbaugh et al. in 1997. Secure Boot verifies the integrity of system components
at startup using a trusted bootloader that hashes memory content and compares it with a signed
reference hash stored in ROM. Another widely adopted mechanism is the Trusted Platform Module
(TPM) [27], which extends this principle using Platform Configuration Registers (PCRs) for securely
storing integrity measurements. TPM-enabled systems establish trust through early boot processes,
supported by the BIOS. Several experimental TPM-based approaches have been studied [28-30].
Commercial alternatives, such as ARM TrustZone [31], implement secure execution environments via
a set of privileged registers and isolated on-chip memory. However, these static root-of-trust models
do not adequately protect against runtime attacks such as Return-Oriented Programming (ROP) [32].
Addressing these threats requires dynamic root-of-trust architectures that provide runtime integrity
verification [33]. These approaches do not provide dynamic root of trust, while the cost of the TPM
module is prohibitive for low-end embedded devices.

Dynamic Root of Trust (DRT) architectures extend TPM specifications and has been
implemented by vendors such as Intel and AMD [34, 35]. These systems dynamically isolate memory
regions and use CPU instructions to reset PCRs and measure memory contents during execution.
While TrustZone is primarily based on secure boot, it has also been repurposed to support DRT
functionality [36, 37]. McCune et al. introduced Flicker [38], a system architecture that utilizes Intel TXT
and AMD SVM technologies to establish a dynamic root of trust on commodity computing platforms.
Flicker ensures the secure execution of a minimal, isolated code segment, referred to as a Piece of
Application Logic (PAL), even when critical system components such as the BIOS, operating system,
or DMA subsystems are compromised by an adversary. Building on this foundation, TrustVisor was
later proposed by McCune et al. [39] as an enhancement that integrates a minimal hypervisor to reduce
performance overhead while maintaining strong isolation guarantees for PALs. Despite their
robustness, these architectures rely heavily on platform-specific hardware features and impose

15

significant resource demands, making them impractical for constrained loT environments. Other
research efforts have explored trust establishment in remote systems using similar principles [40], [41].

To overcome the limitations of pure software and heavyweight hardware schemes, hybrid
attestation approaches have been proposed. The Software-Protected Module (SPM), introduced by
Strackx et al. [42], represents an early hardware-supported process isolation mechanism built atop a
static root of trust. It achieves software compartmentalization by loading and measuring protected
application logic into designated secure memory regions, referred to as “vaults.” While SPM offers
strong isolation guarantees, it is primarily designed for high-end platforms equipped with Memory
Management Units (MMUs) or Memory Protection Units (MPUs), limiting its feasibility on low-cost
embedded systems. To overcome these constraints, Sancus [43] extends the SPM paradigm for low-
end microcontrollers, achieving secure module isolation without relying on trusted software stacks. It
supports remote attestation and inter-module message authentication via specialized hardware
instructions. Similarly, SMART, proposed by EI Defrawy et al. [44], introduces a minimalist hardware-
software co-design for dynamic root-of-trust establishment on devices lacking MMUs or TPMs. SMART
requires modest hardware modifications to the system's microcontroller to achieve attestation and
memory integrity verification. TrustLite [45] builds upon this concept by integrating an Execution-Aware
Memory Protection Unit (EA-MPU), enabling fine-grained isolation of lightweight software modules,
referred to as “trustlets.” The platform also supports secure boot, ensuring the authenticity and
confidentiality of trustlet code. More recent research has proposed further refinements of these
lightweight architectures to support remote attestation and secure execution in severely resource-
constrained embedded environments [46-48].

England et al. [49] demonstrated that even a minimal feature, such as a hardware-locked
secret accessible only by boot ROM, can provide sufficient guarantees for boot-time attestation.
Building on this insight, the Trusted Computing Group introduced the Device Identifier Composition
Engine (DICE) [50], a lightweight attestation framework tailored for resource-constrained loT devices.
Its feasibility has been validated in multiple studies [51, 52].

1.3 Main Contributions

Building on the review of attestation methods in the previous section, this thesis identifies a
critical gap in existing research: the absence of a unified, lightweight, and hardware-constrained
security architecture capable of establishing trust across the full 1oT device lifecycle. Although prior
work addresses specific aspects, such as resilient transmission protocols or cryptographic primitives,
few approaches integrate these into a cohesive end-to-end solution that begins at the silicon level and
extends to cloud-based service infrastructure. This continuity of trust is essential, particularly for loT
environments characterized by limited computational resources, minimal silicon capabilities, and cost-
sensitive deployment constraints.

This study proposes an end-to-end attestation architecture that maps robust security
mechanisms onto commercially available hardware, enabling trust establishment from device
provisioning to remote authentication. A key requirement addressed is the development of a device-
specific authentication mechanism, grounded in a dedicated hardware-derived value, that enables
secure interaction with remote cloud infrastructures. By combining minimal hardware trust anchors with
proven cryptographic methods, the proposed design facilitates the creation of a cryptographically strong
device identity and supports the secure delivery and verification of firmware updates.

16

The primary contributions of this thesis are as follows:

1.

14

Design of an Asymmetric Attestation Protocol

A lightweight attestation protocol tailored for resource-constrained loT nodes is proposed. It
combines secure boot, proven cryptographic primitives, and the Device Identifier
Composition Engine (DICE) standard to create an adaptable architecture. At its core, the
protocol derives a cryptographic identity from a statistically unique hardware root of trust. It
also incorporates an authentication mechanism for device-to-cloud communication via TLS
and supports secure, over-the-air firmware updates with integrated data protection.

Security Analysis and Threat Modeling

A qualitative security evaluation is conducted based on the STRIDE threat modeling
methodology. The analysis identifies potential threats across system components and
communication interfaces, characterizing attacker capabilities, risk impact, and attack
scalability. Based on this assessment, targeted countermeasures are formulated to address
each identified vulnerability.

Prototype Implementation on Embedded Hardware

The proposed attestation protocol is implemented on a commercial STM32 Nucleo-74LG
board, which features a 32-bit ARM Cortex-M4 microcontroller. This prototype serves as a
proof of concept, demonstrating the feasibility of deploying the security architecture on low-
power embedded platforms.

Quantitative Evaluation and Performance Metrics

The final implementation is evaluated in terms of runtime performance and memory footprint.
Metrics such as clock cycle overhead and memory utilization are measured to assess the
practicality of deploying the protocol on real-world resource-constrained devices.

Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents essential background on security in edge-to-edge loT systems. It
introduces core principles and countermeasures against security threats, encompassing
cryptographic algorithms, resilient communication protocols, hardware security features, and
attestation techniques. Special attention is given to lightweight and silicon-efficient
architectures, with a focus on the Device Identifier Composition Engine (DICE) as a
representative model for cryptographically agile trust anchors.

Chapter 3 introduces the design of a security protocol for asymmetric remote attestation
tailored to resource-constrained loT devices. It begins with a V-Model-inspired design
methodology, followed by a structured analysis of the system’s functional, non-functional, and
security requirements. The chapter details the protocol's layered architecture, including key
derivation and operational flows across the device lifecycle. It concludes with a threat modeling
assessment based on the STRIDE framework to evaluate the design’s resilience against
adversarial threats.

Chapter 4 describes the implementation and evaluation of a prototype that realizes the
proposed protocol on a commercial STM32 microcontroller. Implementation details, design
decisions, and performance metrics, such as memory usage and execution overhead, are
presented to assess the feasibility of the architecture.

Chapter 5 summarizes the key findings and contributions of this work. It also discusses
identified limitations and suggests potential directions for future research.

17

2 Background

This chapter provides foundational background on security principles, techniques, and technologies
relevant to embedded systems. Section 2.1 introduces core concepts in embedded systems security,
distinguishing between information security, which encompasses confidentiality, integrity, and
authentication, and device security, which pertains to the protection of platforms responsible for
processing sensitive data. Section 2.2 explores the role of cryptographic techniques in building secure
systems, emphasizing the evolution and application of modern encryption schemes. Section 2.3
reviews authentication mechanisms and trust models underpinning Public Key Infrastructure (PKI),
while Section 2.4 examines the Transport Layer Security (TLS) protocol as a cornerstone for secure
communication between clients and servers. Finally, Section 2.5 presents the Device Identifier
Composition Engine (DICE), a lightweight, cryptographically agile attestation framework designed for
resource-constrained embedded devices.

21 Embedded Systems Security

An embedded system is a computing system designed for implementing dedicated functions within a
larger system, electrical or mechanical [53]. It is a combination of computer hardware, software and
optionally mechanical parts, referring to any computing system other than general purpose or
mainframe computers [54]. Embedded systems run real-time operating systems (RTOS) that are aiming
to control device-dedicated applications with real-time computing constraints. The low manufacturing
cost of embedded systems makes them highly beneficial in a variety of intelligent and industrial
application domains such as automotive electronics, factory automation, smart homes, transportation,
commerce and finance, healthcare and many others [55]. Embedded systems are considered either
closed or open depending on which level they communicate and share information with one another
[56]. Within a closed system, devices interact only with devices that are part of that system, often
through protocols and standards designed exclusively for the needs of the closed system. For example,
modern cars are equipped with smart sensing and control systems that communicate and exchange
information among these systems. However, the communicated data is not shared with other systems
or devices outside of the car, for example the car manufacturer. Embedded systems connected with
other devices or systems through a network are considered open embedded systems. Open embedded
systems exchange data with other devices and systems using open communication standards and
protocols for purposes such as information sharing.

The increasing number of embedded devices connected to the Internet formulates the Internet
of Things (loT). There does not exist only one definition as to what comprises the “Internet of Things”.
According to [57], the IoT refers to a set of embedded devices or “things” that are embedded with
software, sensors, and network and are capable of communicating data with one another. The “things”
can use their communication protocols, although some sort of Internet connection may be necessary
at some point. The term “Internet” does not necessarily refer to communication via Internet protocols.
Apart from connecting embedded devices to the Internet, the 10T allows these devices to collect and
exchange data. Data communication provides the lIoT endpoint devices with flexibility minimizing the
need for physical connectivity and manual intervention. The exchanged data, for example, the raw
measurements of a humidity sensor are not of great value and do not produce any useful knowledge
when examined individually. However, the manipulation of these data via filtering and contextualizing
processes provides in-depth knowledge about the system, its users, the environment, and its
objectives. Adding context to the exchanged raw information, patterns can be created containing
information about a particular activity of the device. Categorization and processing of these data also

18

provide information regarding the repetition of certain processes. Finally, the organization of data
provides valuable information regarding the relationships formulated between different pieces of
information.

The growing deployment of interconnected systems renders necessary the increased
protection of computer systems, networks and communication data, against sophisticated attacks from
malicious cybercriminals, ensuring the security and reliability of the information systems.
Interconnected embedded systems face important security challenges related to their resource
constrained nature. Their limited processing capabilities, the battery-driven power, the wireless network
connectivity, and the remote control of their software, render these devices vulnerable against
attackers. These attacks may compromise important security properties resulting in loss of control of
embedded systems. Therefore, the security of embedded systems is considered end-to-end, starting
from the physical endpoint devices that receive and transmit data, to hubs and gateways layer that
aggregate the edge devices to the large network, to cloud-based systems that store and analyze the
data provided by the edge nodes. This section focuses on two important types of embedded systems
security: (1) the information security, and (2) the device or platform security.

2.1.1 Information Security

The practice of protecting information and the systems that use, store, or transmit that information is
defined as cybersecurity [58]. Cybersecurity is also known as information security and concerns the
mitigation of security risks by preventing unauthorized access, use, or modification of information data
[59]. According to Pipkin in the “Information security: protecting the global enterprise”, information
security is the process of protecting the intellectual property of a company or organization [60]. The
primary focus of information security is balancing the security risks by providing information assurances
and by defining a set of security goals [61]. These goals are the result of a security analysis called risk
management process and include a variety of security attributes and guidelines that span multiple
disciplines based on the security model in use. Risk management involves the identification of
information assets and potential threats, a risk evaluation of the impact of the identifying threats, a valid
mitigation plan to address these risks, and the selection and implementation of appropriate security
techniques [62].

One of the first security models in information security is the “Guidelines for the Security
Systems and Networks” that was proposed by the Organization for Economic Cooperation and
Development (OECD) in 1992. According to this model, there are nine security principles to consider,
including awareness, responsibility, response, ethics, democracy, risk management, security design
and implementation, security management and reassessment [63]. In 1998, Donn Parker in his MSc
thesis with the title “The Parkerian Hexad” proposed the six elements of information [64], while in 2004,
the National Institute of Standards and Technology (NIST) proposed 33 fundamental principles in their
study “Engineering Principles for Information Technology Security” [65]. Another suggested security
model is the information security management maturity standard O-ISM3, published by the Open Group
[66]. According to this model, a set of management policies is proposed after the definition of the
required security targets. Information security focuses on the balanced protection of the confidentiality,
integrity, and availability of data, three of the most important attributes of information [67]. Together
they formulate the C.I.A. triangle, a well-known and widely accepted security standard for computer
security (Figure 2.1). The C.1.A. triangle is also referred to as the A.l.C triad to avoid confusion with the
intelligence agency in the USA.

19

Integrity

Confidentiality Availability

Figure 2.1 The C.I.A triad of Information Security

Confidentiality

Confidentiality is a security principle referring to the concealment of valuable information or resources
in sensitive areas such as governance and industries [68]. Government services often apply
classification systems that restrict the access to sensitive content to classified personnel [69]. The
appearance of such systems is traced back in the mid-nineteenth century when the British Government
published the “Official Secret Art’, a document concerning diplomatic espionage and information
disclosure [70]. Similar principles apply to the industry sector where companies protect their intellectual
property by preventing competitors from gaining access to design information regarding their products.
Confidentiality also refers to the fact that sometimes revealing the information is more important than
the information itself. For example, the reveal that a company secretly monitors its employees is more
important than the findings of such an action. Another important aspect of confidentiality is hiding critical
systems and resources that an entity may not wish to be used without proper authorization. Examples
of compromised confidentiality are password theft and email phishing. Protection of sensitive
information concerns the definition of strict access policies that arrange the data into categories,
according to the type of personnel that has access to it and their sensitivity level. Common
confidentiality policies include biometric verification, two-factor authentication and traditional Unix-file
access control lists. However, mechanisms that enforce confidentiality in a system should be trusted
that they supply the correct verification data.

Integrity

Integrity constitutes a basic security element of information security that refers to the trustworthiness
and accuracy of data resources and is responsible for protecting sensitive data against unauthorized
alterations [71]. Integrity concerns not only the integrity of the data but the integrity of its source, a
method often referred to as authentication. The reliability of the source of the information plays a vital
role for a system to gain credibility and trust. For example, the credibility of the source of any news in
a newspaper or magazine determines if the news is fake or not. Integrity mechanisms can be classified
into two categories, detection mechanisms and prevention mechanisms. Integrity detection
mechanisms report whether an information is trusted, or an integrity violation exists. Detection
mechanisms use analysis tools to detect possible violations and report any corruption that may occur.
Prevention mechanisms deny any unauthorized attempt to alter sensible data, or any attempt to alter
data in unauthorized ways. Modifications or deletions from authorized users should be performed with
caution in order to avoid unintentional or malicious alterations. For example, a company’s authorized
employee tries to embezzle money instead of moving it into a trusted account.

20

Availability

Availability refers to the last component of the triad and concerns the ability of data to be present and
available when needed [72]. Systems with high availability aim to remain available at all times and at
all costs, preventing failures and disruptions. This requires the design of a statistical model that
analyzes the patterns of use and the existence of mechanisms able to act on these patterns. Ensuring
availability involves protection against denial-of-service-attacks. In these kinds of attacks, a malicious
attacker may deliberately deny access to services or information by making the system unavailable.
Denial-of-service attacks have proven to be quite challenging to detect. The analyst should be able to
determine if any unusual change in patterns of use is due to normal malfunctions or deliberate
manipulation of the system resources by the adversary.

Although the CIA triad provides notable security policies for the information technology, it is debatable
whether it can keep up with the latest technological developments and distinguish security from privacy
[73]. The CIA triad gives the impression of a holistic security solution that is the answer to most of the
security problems. However, it tends to ignore other equally important factors and therefore it should
be considered only as a part of a broader security approach.

2.1.2 Device Security

Designing a trustworthy security approach for interconnected embedded devices goes beyond
satisfying the basic principles of information security, such as confidentiality, integrity, availability, and
non-repudiation, and extends to the device itself. Device security involves a range of security solutions
that protect device resources and sensitive data from physical tampering, network attacks, and
unauthorized access by malicious adversaries. These solutions vary from software protection
techniques targeting remotely accessible devices to physical protection mechanisms that secure
platform sensitive information. The rapid proliferation and deployment of embedded devices renders
the design of device security solutions quite challenging. This section presents an overview of effective
device security techniques and methods in a layered fashion, where each layer corresponds to the
protection of a specific security feature. Figure 2.2 illustrates three device security layers: (1) secure
storage of key device security components, (2) memory protection and secure boot mechanisms known
as platform security, and (3) remote attestation authentication schemes that ensure code integrity when
connecting to a remote cloud provider.

Secure Storage

Secure storage is an important device security mechanism that stores confidential data and
cryptographic secret keys, namely the Root of Trust (RoT). The RoT is the basis of the device’s unique
identity, and it is inherently trusted every time the device is booted or reset [74]. At startup, the
generation and provisioning of an immutable root secret must be ensured in order to establish reliable
device authentication and secure communication. The generated root secret is typically encrypted and
stored in non-volatile memory units, such as One Time Programmable (OTP) memory. One of the main
benefits of OTP memory units is that they are programmable in a secure environment during device
manufacturing. However, the provisioning of the root key during manufacturing lurks the risk of potential
secret leakage to third parties. Physical Unclonable Functions (PUFs) is a flexible key provisioning
solution aiming to circumvent this limitation. PUFs are electronic design components that exploit the
unique silicon properties of individual integrated circuits (ICs) to create a statistically unique identity
bound to the device [75]. The trusted generation and provisioning of the root keys ensures that the key
material is unique and specific to the device, non-cloneable, non-modifiable by malicious adversaries,
and unknown to non-authenticated third parties.

21

Local
Attestation

Platform
Security

Remote Attestation N N

~1 .)
<\ /> \ Cloud 5
- l — —

Secure
Storage

Figure 2.2 Device Security Techniques

Platform Security

The second layer of device security involves the enforcement of access control mechanisms and secure
booting processes to enhance trustworthiness within the device. The first prevents unauthorized third
parties from accessing sensitive device resources, while the latter ensures the integrity and authenticity
of device firmware. It is important that access control mechanisms are implemented at all levels, both
user and system. On a user level, authentication is ensured using simple methods, such as PIN entry,
or even biometric identifiers, such as fingerprints or facial patterns [76]. On a system level, it is essential
to mitigate the risk of unauthorized usage from malicious adversaries by providing protected access to
System on Chip (SoC) busses and interfaces. The Memory Protection Unit (MPU) is an embedded
system component that prevents access to confidential data stored in memory, by setting access
permissions and attributes to specified memory regions [77]. Secure boot is the part of platform security
responsible for validating the authenticity and integrity of the code running on the device [78]. A secure
boot process involves trusted bootloaders, strong encryption schemes, and secure storage units, which
ensure that only authorized firmware is executed when the device powers up. A typical example of code
authentication is the storage of firmware in flash memory, executed by a trusted bootloader during boot.

Attestation

The last layer of device security concerns a process that verifies the identity of the internal state of an
embedded device, namely attestation [79]. Architectures equipped with attestation capabilities provide
adequate security guarantees of the attested software state of the device to a trusted third party, called
verifier. Attestation can be classified as local and remote attestation. The first refers to an intra-platform
mechanism, where application modules running on the same platform verify and authenticate their
respective software images with one another. An example of local attestation is the Intel SGX Report
mechanism that provides confidentiality, code integrity, and strong protection within the device [80].
Remote attestation involves an external trusted verifier entity for verifying the integrity of the code
running on the device. Attestation is typically performed by calculating a code measurement of the
attested software module and by sending it to the trusted third entity during manufacturing. The verifier
may request the module code measurement at any time verifying its validity. A number of remote and
local attestation solutions have been proposed by academia including software-based schemes,
hardware-based protocols, and hybrid techniques. Attestation schemes are useful tools for a variety of
services related to embedded devices such as over-the-air (OTA) software updates and patches,
memory reset, and malware replacement.

22

2.2 Cryptography

This section provides the reader with useful background information regarding the terms and concepts
behind basic cryptographic methods and techniques. Also, a detailed description of various
cryptographic algorithms is given along with examples of their applications in numerous areas of
information security. Cryptographic systems provide solutions towards mitigating the security threats
and attacks present in embedded systems.

Cryptography can be described as the method of concealing information during
communication, in the presence of malicious entities called adversaries [81]. The prefix “crypt-’ of the
term derives from the Greek word “kryptos” and means hidden or secret, while the suffix “-graphy”
originates from the word “graphein”, which stands for writing or script in Greek [82]. Cryptography is
closely associated with encryption, a technique of transforming ordinary information, called plaintext,
into an unintelligible form called ciphertext [83]. Another term for encryption, though less common, is
encipherment, with decipherment or decryption standing for the opposite procedure. Both encryption
and decryption rely upon a cipher, a procedure of well-defined steps known as algorithm and a piece
of information, called key. The key is a secret value known only to the parties that communicate, the
absence of which makes it impossible to decrypt ciphertext into plaintext and vice-versa (Figure 2.3).
The communicating parties share the secret key with one another, a cryptographic method called key
exchange or key establishment [84]. Key exchange together with a finite set of plaintexts, cyphertexts,
keys, encryption and decryption algorithms constitute a cryptosystem. Cryptosystems can be classified
into two kinds, symmetric and asymmetric. Symmetric systems use the same key to encrypt and decrypt
the transmitted message. Asymmetric systems, on the other hand, use a public key to encrypt a
message and a private secret key to decrypt it. In the crypto field, the common nomenclature for two
communicating parties is usually “Bob” and “Alice”, while a malicious third party is referred to as
“Malory”, an eavesdropper as “Eve” and a trusted party as “Trend”.

Encryption Key

Plain Text Cipher Text

Decryption Key

Figure 2.3 Cryptographic Encryption/Decryption

Cryptography is also related to the terms of cryptology and cryptanalysis. Cryptanalysis refers
to the science of analyzing a cryptographic scheme aiming to expose possible vulnerabilities. It is
performed either by searching for loopholes in the mathematical basis of the cipher or by finding logical
flaws in its design [85]. A famous example of cryptanalysis is the breaking of the Enigma machine, the
encryption device developed and used for encrypting military operations during the World War Il [86].
Cryptology refers to a broader term that encompasses both cryptography and cryptanalysis, including
designing of ciphers, key exchange techniques and cryptanalysis tools [87]. Applications of
cryptography span multiple disciplines from electronic commerce and wireless payments to military
communications and digital crypto currencies. Although cryptography has proven a powerful weapon
against malicious adversaries, it is also being used as a tool for espionage, forcing several governments
to constrain its use.

23

The attempt to establish message confidentiality in communications dates back to the ancient
world, where political diplomats and military emissaries understood the necessity of a mechanism
capable of concealing valuable information from the enemy. Sensitive messages were transported in
safe boxes and were protected against tampering by armed envoys. The first proof of the use of
cryptography is an encrypted text curved in stone in the Old Kingdom of Egypt at 1900 B.C. [88].
However, the true nature of that message remains a mystery to researchers. Stenography was a well-
known method of information concealment, used by the Ancient Greeks and Persians of the fifth century
B.C. and involved the use of microdots, invisible ink and merge of words with images [89]. Other
classical cryptographic methods are transportation ciphers and substitution ciphers. Transportation
ciphers refer to rearrangement of the order of the letters in a message, while substitution ciphers allow
the replacement of groups of letters with other letters. The most famous substitution cipher is the
Caesar cipher, where each letter in the plain text is shifted three positions further down the alphabet
[90]. Most of these ciphers became vulnerable to cryptanalysis after the discovery of frequency analysis
by the Arab mathematician Al-Kindi in the 9th century as they were based on the premise that the
adversary has no knowledge of the cipher itself [91]. It was until the 19th century when Auguste
Kerckhoffs claimed that a cryptographic scheme should remain secret even in the unwanted case of
leak to the adversary, formulating the Kerckhoffs’s principle. Kerckhoffs’s principle was restated by the
founder of information theory, Claude Shannon, formulating the fundamental theory of theoretical
cryptography, the Shannon’s Maxim [92].

By the end of the twentieth century, rapid advancements in telecommunications, electronics
and computing systems led to revolution in the communications sector. Computing systems have
become smaller, more powerful and cheaper and are able to communicate and exchange information
via interconnected networks. Modern Cryptography constitutes a vital aspect of secure communications
and is related to main principles of information security such as confidentiality, data integrity, system
availability, authentication and non-repudiation. Modern cryptographic systems are based on
mathematical algorithms and computer science principles rendering the breaking of such systems
computationally exhausting and impractical, as it would require unlimited computing power and
resources. The biggest challenge of these algorithms is the growing concerns regarding the processing
power of future quantum computing systems and their ability to break many of the current cryptography
encryption standards. Quantum computing systems make use of the quantum bits capable of
representing both zero and one and performing two calculations at once, hence being computationally
more powerful [93]. The cryptographic algorithms of modern cryptography are categorized into three
types, based on the number of keys used for encryption and decryption, namely secret key of symmetric
cryptography, public-key or asymmetric cryptography and hash functions (Figure 2.4).

Cryptology

Cryptography Cryptanalysis

Symmetric Cryptography

ENraiea [

[MD5] [SHA-ZZ“} SHA-ZSB} [SHA-G}
v ¥
[ECC]

[RSA] [Diﬂie-HeHman
Figure 2.4 Classification of Cryptographic Algorithms

24

2.21 Symmetric Cryptography

Symmetric or secret key cryptography refers to information concealing methods where both
communication entities share a single key for both encryption and decryption providing privacy and
confidentiality (Figure 2.5). The secure key distribution between the two communicating entities is
known as the key distribution problem, a limitation of symmetric cryptography [94]. Cryptographic
schemes that follow this type of cryptography are classified into two categories, namely stream ciphers
and block ciphers. Stream ciphers encrypt a single bit of plaintext at a time, using a relatively long
stream of pseudorandom bits as key material. This pseudorandom generator needs to remain
unpredictable so that the derived key gets to change constantly. Although stream ciphers do not
propagate transmission errors, their periodic nature causes a repetition of the keystream, a vulnerability
known to potential attackers [95]. A well-known application stream cipher is One-Time Pad, an ideal
cipher that performs pure random key generation achieving maximum secrecy [96]. In contrast to
stream ciphers, block ciphers are encryption schemes using a fixed size block of data for encryption at
a time. The size of plaintext block is the same as the ciphertext block and varies from 64 bits to 128
and 256 bits. In cases of shorter size of plaintext bits, padding schemes are used [97]. A well-known
block cipher is the Feistel cipher, where the encryption and decryption stages are similar causing a
considerable reduction in size of code.

(=3 (=3

Encryption Key Decryption Key
Plain Text —— Cipher Text —— Plain Text

Figure 2.5 Symmetric cryptography

The majority of symmetric algorithms used today for secure communications are designed by
cryptographers and mathematicians aiming to render the decryption of ciphertext infeasible without the
possession of the appropriate encryption key. One of the most well-known and well-studied symmetric
algorithms is the Data Encryption Standard (DES), designed by the National Bureau of Standards
(NBS) in 1977 for governmental purposes [98]. The DES algorithm is a complex block cipher with key
size of 56 bits and block size of 64 bits, designed for fast hardware implementations. In 1998 the NSA
managed to break the DES algorithm using brute-force attack, exposing a mathematical backdoor in
its design. This fact motivated the academic community to propose a DES variant called triple-DES that
made the DES algorithm more robust [99]. However, the security implications of DES led the NSA to
introduce a new cryptosystem called Advanced Encryption Standard (AES). The AES describes a 128-
bit block cipher that features a key with 128, 192 and 256 bits and became a standard in December
2001 [100]. Other important symmetric ciphers that are considered secure are ChaCha20 and RC5
[101]. Although the sufficient key size for a symmetric algorithm to be considered as secure is between
112 and 128 bits, advances in quantum cryptography come as a threat to the level of security these
algorithms possess.

2.2.2 Public Key Cryptography

Public-key cryptography, also referred to as asymmetric key cryptography, is a revolutionary
cryptographic scheme proposed by Martin Hellman and Whitfield Diffie in 1976 aiming to mitigate the
shortcomings of symmetric key cryptography regarding key distribution. The basic principle of
asymmetric cryptography concerns the generation of a cryptographically related key pair consisting of
a freely distributed part called public key and a secret part called private key, where it is computationally
infeasible to derive one from the other [102]. While one key is used for plaintext encryption, the other
is used for decrypting the ciphertext, regardless of which key is applied first (Figure 2.6). Public-key
cryptography also concerns a user authentication mechanism that proves the identity of the message

25

sender. In essence, one communication entity (“Alice”) encrypts information using its private key, while
the other entity (“Bob”) is capable of decrypting it, using the freely shared public key of Alice. In the
described scenario, the sending entity cannot deny the sending of the message satisfying the non-
repudiation security principle. Diffie and Hellman proven the feasibility of asymmetric cryptography by
introducing the Diffie-Hellman key exchange protocol, where the two communicating parties should first
agree upon a shared encryption key [103].

(=~ (==

Encryption Key Decryption Key
Plain Text E— Cipher Text E— Plain Text

Figure 2.6 Public Key cryptography

The first successful attempt of an asymmetric scheme is the RSA algorithm that took its name
from the initials of its creators, namely Ronald Rivest, Adi Shamir and Leonard Adleman, three notable
MIT mathematicians [104]. RSA spans a wide range of uses from key exchange and digital signatures
to encryption of small data blocks. The derived key pair is the product of two prime numbers with length
of 100 or more bits each, yielding in a very large number n. Although it is difficult for an attacker to
determine the prime factors of n, the advancements of modern computing systems to factorize large
numbers, are becoming a potential threat to the algorithm. In 2005, a test aiming to factor a 200-digit
number was performed and took almost 50 years in computation time, while in 2009 Kleinjung claimed
that factoring a 1024-bit RSA number would require almost one thousand years. Apart from the RSA,
Diffie and Hellman proposed their own asymmetric cryptography suitable for key exchange. Another
approach to public key cryptography is the Elliptic-curve Cryptography (ECC) which is based upon
elliptic curves over finite fields. ECC uses smaller keys in comparison with RSA is suitable for resource
constrained devices such as endpoint loT devices [105]. ECC algorithms are suitable for key agreement
and digital signatures and may be used in combination with symmetric encryption schemes. An
example of such a scheme is the Elliptic-curve Diffie-Hellman (ECDH) key agreement protocol
proposed by Diffie and Hellman [106]. Finally, the Digital Signature Algorithm (DSA) refers to digital
signature capabilities with X.509 standard to be the most used format of this algorithm [107].

An important element of public key cryptography is a mathematical scheme for validating the
authenticity of digital documents and messages, called digital signature. Digital signatures provide
strong authentication and message integrity capabilities, enhancing the trust between two
communication entities. Digital signatures are part of cryptographic methods and techniques applied in
various applications such as online financial transactions, internet banking and software distribution
[108]. A user authentication example using digital signatures is illustrated in Figure 2.7, where two
communication parties validate one another. The sender entity “Bob” sends a message to the verifier
entity “Alice”, together with a digital signature that proves the authenticity of his identity. “Bob” feeds
the message data to a signature algorithm and signs it with his private key, called encryption key. The
produced digital signature is appended to the message and then both are sent to the receiver entity.
The message receiver “Alice” verifies the authenticity of “Bob” by decrypting the received signature with
the freely distributed public key of “Bob”. This key is called verification key and is adamant towards the
signature decryption. In case the resulting message value is different, “Alice” may correctly assume
that the received message has been forged by a malicious adversary. On the contrary, if the signature
gets verified by “Alice”, that means that non-repudiation is provided as only “Bob” could be the sender
of the message.

26

Sender Receiver
(Bob) (Alice)

public key

public key public key

key pair

v Verification

: - — ;
—» Signature Algorithm
| message Signature

Algorithm |
| |—>‘ message |

Figure 2.7 User authentication scheme

2.2.3 Hash Functions and Message Authentication Codes
Hash functions constitute the third type of modern cryptographic algorithms known also as one-way
functions and message digests. Hash functions are capable of encrypting plaintext data irreversibly
without the use of encryption keys by computing a fixed-length hash value of the plaintext. Any change
in the message contexts will effectively result in the calculation of a completely different hash value,
ensuring data integrity [109]. Cryptographic hash functions add a layer of security by verifying the
authenticity of received data from an unknown source. Hash functions span a wide range of applications
from digital fingerprints on sensitive file data to deployments in operating systems for password
encryption purposes. A well-studied family of hash algorithms is the Message Digest (MD) algorithms
that produce a 128-bit hash value regardless of the message length. MD4 is a well-known example of
the MD family developed by Rivest for fast processing in software that is now broken [110]. After the
appearance of vulnerabilities in the MD4 algorithm, an improved cryptographic scheme was introduced
by Hans Dobbertin in 1996, under the name MD5 in his work “Cryptanalysis of MD5 Compress” [111].
The US national Security Agency (NSA) developed another important hash function family, the Secure
Hash Algorithm standard (SHA) [112]. SHA-1 is the first deployed algorithm of the SHA family that
produces a 160-bit hash value for data encryption. SHA-2 family was proposed by the NSA as an
improvement to the SHA-1 family after reports of attacks against it. SHA-2 comprises of five algorithms
namely SHA-1 plus, SHA-224, SHA-256, SHA-384 and SHA-512. Each one of the aforementioned
algorithms is able to produce hash values of length 224, 256,384 and 512 respectively. However,
vulnerabilities in the SHA-2 family led NSA to introduce a third family that is called SHA-3 in 2012 [113].
A similar integrity measurement scheme to the hash functions is the Message Authentication
Codes (MACs). A MAC refers to a symmetric cryptographic technique capable of providing message
authentication. Similar to hash, a MAC function encrypts an arbitrary long input of data into a fixed
output using a key. A MAC consists of three algorithms, a key generator algorithm responsible for
selection of a suitable key, a signing algorithm that returns a tag of the selected key and the message
and a verifying algorithm that accepts or rejects the message [114]. In the example of Figure 2.8, the
sending entity “Bob” creates a tag of the message that he wants to communicate with the receiving
party “Alice”, using a key and a signing mac algorithm. The message together with the generated tag
are send to “Alice”, who tries to generate her tag of the received message using the same key. The
data integrity of the message is verified by an algorithm which compares the two tags and validates
any possible tampering or alteration of the message. A special type of message authentication code is
the hash-based MAC called HMAC. The HMAC uses a cryptographic hash function and a secret key
for verifying the integrity of the data and authenticating the message.

27

Sender Receiver
(Bob) (Alice)

> Message

MAC MAC y
‘kef ™ aigoritnm Algorithm [€ | *®Y
—

L 4
'.ag_| » {3g = fag

Figure 2.8 Message Authentication Code (MAC) usage

2.3 Public Key Infrastructure

Today an increasing number of companies are using the Internet as a platform to conduct their business
transactions, including retail sales, marketing, and business-to-business operations. Although e-
commerce has become an important tool for modern companies, it poses significant security and
integrity issues. Online transactions differ from the traditional face-to-face business model and therefore
require the development of robust security mechanisms. Symmetric cryptography is an ideal solution
for data encryption, ensuring the confidentiality and privacy of the transaction data. Public key
cryptography offers user authentication and non-repudiation, allowing companies and customers to
validate their respective identities. Finally, hash functions and MACs provide data integrity, enhancing
confidence between customers and enterprises. However, proper implementation of security requires
more than sound cryptography. It involves the establishment of trust among the communication entities.
Public key infrastructure (PKI) is a framework based on public key cryptography, that provides
trustworthy digital communications over a network [115]. In cryptography, the PKI refers to the binding
of public keys with digital identities of entities such as people or companies. PKI is an essential
component of the overall system security strategy and a foundation element of network security.

2.3.1 PKI Components

This section demonstrates the key components of PKI facilitating trusted communications with
confidentiality, integrity and non-repudiation among the communication parties. PKI involves public key
certificates, certificate authorities, registration authorities, registration and insurance certificate policies,
a centralized certificate management system, certificate chains, and hardware security modules.

Digital Certificates

In the dynamic environment of e-commerce, online transactions are performed among digital
representations of physical entities such as people or organizations. These digital entities need to prove
the authenticity of their identity while communicating with one another over a network. In PKI, digital
identities are represented by digital documents called public key certificates or identity certificates.
Public key certificates certify the binding of a digital identity to its public key, allowing another entity to
validate the identity of the certificate owner. Digital certificates secure confidential information with
encrypting methods and sign public keys with digital signatures, ensuring tamper protection. Typically,
a certificate contains the public key of an entity, identifying information regarding the certificate owner,
the name of the certificate issuer and the expiration date of the certificate. The certificate owner is called
subject entity and usually differs from the issuer. However, there are certificates called self-issued
certificates, where the two fields are identical. Additional information included in a digital certificate are

28

the types of cryptographic algorithms used, policies that describe how the certificate may be used, a
serial number of the certificate, and a digital signature of the issuing entity of the certificate. Perhaps
the most common used format for digital certificates is described by the IETF X.509 standard in the
RFC 2459 document [116]. However, there is no single definition of digital certificates which allow
vendors and users to generate their own version of digital certificates. Public key certificates are widely
used to authenticate HTTPS-based websites, where web browsers validate the authenticity of a HTTPS
web server, ensuring that there are no eavesdroppers during the client-server communication.
However, digital certificates are vulnerable against treats and attacks from malicious adversaries. For
example, a web browser may not notify a user in case of changes in the certificate provider or expiration
date.

Certificate Authorities

The foundation element of PKIl is a trusted third party called certificate authority (CA), responsible for
issuing, signing, and storing digital certificates [117]. Examples of certificate authorities are a company
that issues certificates to its employees or an internet service issuing certificates to its users. An end-
user requesting a digital certificate from a certificate authority creates a certificate signing request
(CSR), which contains the public key of the end-user and useful identity information such as the name
of the certificate owner. The CSR is digitally signed with the private key of the certificate owner and is
sent to a certificate authority called registration authority (RA). Registration authorities are responsible
for accepting or rejecting requests for digital certificates and authenticating the subject entities of these
requests. The authentication process involves the decryption of the end-user signature, incorporated
in the CSR, using the public key of the end-user. Subsequently, an RA performs due diligence tests on
the end-entity, examining the subject name, validity date and other important identity information.
Although RAs constitute an important PKI element, they are not entitled to sign or issue digital
certificates. After validating the end-user authenticity, a certificate authority signs the certificate request
with its secret signing key, issuing a digital certificate. The issued certificates should be unique for
constantly valid maintaining the trustworthiness provided by the CA. The validation mechanism of
issued certificates is performed by a PKI entity called validation authority (VA). Common validation
techniques involve the revocation of compromised or lost keys and the protection of public and private
keys. Revocation information regarding invalid certificates is provided via the Online Certificate Status
Protocol (OCSP) and Certificate Revocation Lists (CRLs). Prominent certificate authorities currently
available in the market include DigiCert and Sectigo [118]. Common problems with certificate authorities
involve purchases of cheap, low quality certificates from end-entities, dropping the quality of the
certificate chain. Another CA vulnerability is unexpected changes to the built-in list of root-certificates
provided to all web browsers by certified organizations. Such changes might be performed by
inexperienced or even malicious developers resulting in erroneous certificates.

Chain of Trust

Certificate authorities enhance the validation capabilities of their authentication mechanism by
establishing trust relationships with other CAs. A well-known method to achieve that is the use of
certificate chain or chain of trust. Chain of trust refers to a list of certificates that authenticate one
another in a hierarchical manner [119]. Starting from an end-entity, certificates are issued and signed
by certificates higher in the certificate hierarchy, using the secret key corresponding to the next
certificate in the chain. The authentication process involves the verification of the signature of the target
certificate using the corresponding public key of the next certificate, until the last certificate in the chain
is reached. The last certificate in the chain is a self-signed certificate which is inherently trusted by
users. This certificate is called root certificate and is the trust anchor of the chain of trust. In case the

29

root certificate gets compromised by a malicious adversary, then all certificates issued by the root CA
will be affected, resulting in re-issuing of new certificates, the validity of which will be questionable.
Therefore, it is important for root CAs to use intermediate authorities to sign and issue end-entity
certificates. A useful schema representing a chain of trust between three certificates is illustrated in
Figure 2.9.

End Entity Certificate

Owner's Distinguished
Name

Owner's Publikey

Issuer's (CA) Reference
Distinguished Name

Issuer’s (CA) Signature e-====== - Issuer's PrivateKey Intermediate Certificate

Issuer’s Distinguished
Name

Issuer's PublicKey

Veerify Signature
Root CA Reference
Distinguished Name

Root CA Signature PUEE L Root CA PrivateKey Roat Certificate

Roat CA
Distinguished Name

i
i
: Root CA Publickey
i
i

...... Root CA Signature

Figure 2.9 Certificate chain of Trust

Hardware Security Module

The trustworthiness of a Certificate Authority (CA) critically depends on the secure generation, storage,
and usage of its private keys, operations typically performed within a Hardware Security Module
(HSM). An HSM is a tamper-resistant cryptographic processor that generates, stores, and executes
cryptographic functions, such as digital signing and key management, entirely within its secure
hardware perimeter, ensuring that private keys never leave the protected environment [120]. These
devices are often certified under standards like FIPS 140-2/3 and are widely used in environments
requiring high assurance, including internet banking, Public Key Infrastructure (PKI) applications, and
cryptocurrency systems.

2.3.2 Trust Models

The public key infrastructure involves security policies and methods equipped with authentication
capabilities, in order to establish trust within a system. The trust relationships developed in the PKI
framework are a result of a collection of rules known as trust models. In this section an overview of
three well-known examples of trust models is presented.

Hierarchical Model

The most common implementation of the PKIl is the hierarchical trust model. It refers to a tree model
consisting of a number of certificate authorities and end-entities, arranged in a hierarchical manner
[121]. The root node of the tree is called root CA, while the inner nodes are referred to as intermediate
or subordinate CAs and the leaves as end-entities. The root CA is the PKI trust anchor and usually
issues a self-signed certificate containing the public key used to verify certificates issued by the root
CA. in the hierarchical model, trust is established via a certification path. This path consists of a
sequence of certificates that authenticate certificates next in the hierarchy based on information
provided from certificates higher in the tree. An example user authentication is described in Figure 2.10.

30

In this PKI framework, “Alice”, “Bob” and “Carl” are certified end-entities from different CAs. The end-
entities “Alice” and “Bob” trust each other as they share a common issuing CA. Although “Alice” and
“Carl’ have different issuing certificate entities, they share a common root CA. In order for “Alice” to
establish trust relationship with “Carl’, she needs to verify the certification path of “Carl’. The
certification path consists of a self-signed certificate of the root CA, a signed certificate of the
intermediate CA2 by the root CA, and the end-entity certificate of “Carl” signed by CA2. Since “Alice”
inherently trusts the root CA, she subsequently trusts the intermediate CA2 and the end-entity “Carf".

Root CA

Alice Bob Carl
Figure 2.10 Hierarchical trust model

A tiered hierarchy with multiple CAs offers a high level of control mitigating the risk of trust violation.
However, the number of intermediate CAs increases the administrative effort required to maintain the
hierarchy and thus increases the risk. This can be very practical in the Internet environment where
multiple users are connected to a web server. If the trustworthiness of the server gets compromised,
all users are notified at once and refused access. However, this can be very impractical in e-commerce
transactions where communication is on a one-on-one basis. On the other hand, a flat hierarchy using
a single CA as trust anchor is more flexible and requires less administrative effort. The drawback of this
hierarchy type is corruption of the entire certificate chain, in case of a failure in the root CA.

Peer-to-peer Model

The most basic PKI trust model is the direct or peer-to-peer model. In this model, there is no
intermediate trusted third party and end-entities establish trust with one another on a direct manner
[122]. Each end-entity relies on a local CA to issue its certificate, creating a local trust domain. In the
local domain, the end-entity can verify the validity of the local CA signature, using the public key of that
CA. The direct connection between the end-entity and the local CA ensures the secure provisional of
the CA’s public key to the end-entity. An example of a direct communication within a trust domain is the
installation of software updates form a Linux server located on the Internet to a local machine. The
server public key in usually provisioned either in the Linux distribution or in a CD or DVD, ensuring
protection against theft from a malicious adversary. This model offers flexibility, making the extension
of trust domain quite convenient. However, the increasing number of local CAs makes the
manageability of the system quite challenging. Therefore, the peer-to-peer trust model is not an ideal
candidate for e-commerce or web browsing. A variation of the peer-to-peer trust model is the cross-
certification model. This model allows the CAs of two different trust domains to authenticate the public
key to one another, creating a bidirectional trust.

Web of Trust

In cryptography, the term web of trust refers to decentralized systems where end-entities authenticate
one another without using trusted third parties. Contrary to the hierarchical PKI model, no third party
ensures the integrity and authenticity of an end-entity. End-entities are allowed to specify the validity of
their certificate by indicating the number of trusted signatures placed on that certificate. The web of

31

trust works better with small groups of end-entities who have preexisting trust relationships. However,
it does not scale well with big numbers of end nodes being unsuitable for e-commerce transactions
[123]. The web of trust is applicable to a variety of well-known systems such as the PGP, GnuPG and
other OpenPGP-related systems. Pretty Good Privacy (PGP) is a private e-mail scheme based on
public key methods. A communication entity maintains a list of all trusted public keys of the entities that
the entity trusts, formulating a web of trustworthy users. For example, the user “Bob” may obtain the
public key of user “Alice” via an e-mail or a server containing the public key of “Alice”. “Bob” is not aware
of the validity of the stored key and therefore assumes that it is valid. Trust among users is established
on a one-to-one basis. For example, the fact that user “Carol’ claims that he has a copy of “Alice’s” key
in his database, does not necessarily mean that “Bob” should trust that key, even though he trusts
“Alice”. An important characteristic of this model is that trust establishment is not transitional and there
is no chain of trust among the users of the web.

2.4 Transport layer Security

Secure communication is essential for internet-based applications to ensure data integrity,
confidentiality, and mutual authentication between endpoints. The Transport Layer Security (TLS)
protocol is the predominant solution at the transport layer, designed to prevent eavesdropping,
tampering, and unauthorized data access [124]. TLS facilitates the establishment of an encrypted
channel between a client and a server, enabling secure data exchange after connection negotiation.
Originally developed by Netscape as the Secure Sockets Layer (SSL) in the mid-1990s, version 1.0
was never publicly released due to significant vulnerabilities, prompting the release of SSL 2.0 in 1995
and a complete redesign in SSL 3.0 by 1996. The Internet Engineering Task Force (IETF) later
standardized the protocol under the TLS name, starting with TLS 1.0 in 1999 and evolving through
versions 1.1 and 1.2.

The most recent iteration, TLS 1.3, was published as RFC 8446 in August 2018, introducing several
key improvements: streamlined handshake with one round-trip, removal of obsolete and insecure
cipher suites, mandatory forward secrecy, and enhanced privacy through encrypted handshake
metadata [125]. Today, TLS is widely deployed across protocols such as HTTPS, SMTP, FTPS, VPNs,
and VolIP, forming a cornerstone of. Clients and servers may support multiple TLS versions, negotiating
the highest mutually supported version during handshake. While TLS 1.3 is now the default in modern
browsers and servers, earlier versions remain in use for compatibility, though many deprecated
versions carry known security risks.

The TLS protocol comprises two core components: (1) the Handshake Protocol, responsible for
negotiating cryptographic parameters, mutual authentication, and key material exchange; and (2) the
Record Protocol, which secures application data using keys and algorithms established during the
handshake. The handshake proceeds through several defined steps to establish a secure session

between client and server [126].

1. The client initiates the handshake with a ClientHello message, specifying supported cipher
suites (for key exchange, authentication, encryption, and integrity), TLS versions, session
identifiers, compression methods, and a 32-bit random nonce used in subsequent key
derivation.

2. The server responds with a ServerHello message, selecting the protocol version, cipher suite,
and compression method from the client’s list and providing its own random nonce.

3. The negotiation concludes with the server sending a ServerHelloDone message, indicating
readiness to proceed with the key establishment and authentication exchange.

32

Handshake Continuation and Key Exchange

Upon selecting the cipher suite, the server proves its identity to the client using the agreed
authentication mechanism. Typically, this involves the server sending an X.509 certificate; client
authentication is optional and initiated only if required by the server. When requested, the client similarly
provides its certificate. Next, the handshake enters the key exchange phase, where both parties
collaboratively derive the “master secret key”, which subsequently generates session encryption
keys. The process typically proceeds as follows:

1.
2.

3.
4.

The client generates a “pre-master secret” using the negotiated key exchange algorithm.
This pre-master secret is encrypted with the server’s public key (from its certificate) and sent
to the server.

The server decrypts the message using its private key.

Both client and server then derive the master secret key from the pre-master secret and the
nonces (random values) exchanged during the initial ClientHello and ServerHello steps.
Session keys are derived from the master secret; the client notifies readiness via the
ChangeCipherSpec message and then sends a “ClientFinished” message.

The server echoes with its own ChangeCipherSpec and “ServerFinished” messages,
confirming handshake completion.

Upon receipt of "ServerFinished", both client and server begin encrypted and authenticated data
exchange. This protocol flow is summarized in Figure 2.11.

Client Server

Step 1: Client Hello

¥

Step 2: Server Hello

[

Step 3: Server Certificate +
Server Hello Done

Step 4: Client Certificate
(optional)

¥

Step 5. Key Exchange
"pre-master secret”

Y

Step 6: "master Step 7: Client Cipher Spec .| Step6:"master
secret key" » secret key"
calculation calculation

Step & Client Finished

Y

Step 90 Server Cipher Spec

A

Step 100 Server Finished

A

Encrypted Data

»
]

-
™

Figure 2.11 TLS Handshake protocol

TLS Record Protocol

The TLS Record Protocol ensures secure transmission of application data by providing confidentiality,
integrity, and authenticity, all based on the cryptographic parameters negotiated during the handshake
[127]. Each message is divided into discrete units known as records, which undergo the following
processing steps:

1.

Fragmentation: Messages are segmented into appropriately sized records.

2. Compression (optional): Data is compressed if negotiated.

33

3. MAC Application: A Message Authentication Code (MAC) is computed and appended to each
record to ensure integrity.

4. Encryption: The record (including the MAC) is encrypted using the session key.

5. Transmission: The encrypted records are transmitted over the secure channel.

On the receiving end, the entity reverses these steps: decrypting each record, verifying the MAC to
confirm integrity, decompressing if needed, and reassembling the data for delivery to higher-layer
protocols. The Record Protocol operates in conjunction with upper-layer mechanisms such as
ChangeCipherSpec and alert protocols to manage security state transitions and error handling.

TLS Vulnerabilities and Known Attacks

Although TLS is the de facto standard for transport-layer security, multiple vulnerabilities remain in older
versions and implementations. Notably, the POODLE (“Padding Oracle On Downgraded Legacy
Encryption”) attack, disclosed in October 2014, exploits fallback mechanisms to compel clients and
servers to negotiate SSL 3.0 connections. Because SSL 3.0 does not validate CBC-mode padding
correctly, attackers can perform decryption via a man-in-the-middle approach [128]. Another significant
vulnerability is Heartbleed (CVE-2014-0160), which emerged in April 2014 in OpenSSL’s heartbeat
extension. By sending malformed heartbeat requests with inflated payload lengths, attackers could trick
servers into leaking up to 64 KB of sensitive memory, potentially exposing private keys, passwords,
and confidential session data [129]. These cases underscore the persistent risk borne by deprecated
protocol versions and flawed implementations, reinforcing the importance of rigorous version checks,
secure library updates, and deprecation of obsolete features.

2.5 Device Identifier Composition Engine

The Device identifier Composition Engine (DICE) is a security standard developed by the Trusted
Computing Group (TCG) within the DICE Architectures Work Group, in order to address the need for
increased security in the l1oT [130]. The TCG spans a wide range of security standards and resilient
technologies aiming to provide critical security and privacy capabilities to the embedded world. The
most notable among these technologies is the Trusted Platform Module (TPM) that provides a hardware
root of trust for secure boot. However, the TPM is a heavyweight solution for systems with constraints
related to cost, size and energy such as the end-to-end loT devices [131]. Therefore, DICE is proposed
as a lightweight and robust security solution that establishes trust within deployed loT systems. The
simple silicon requirements of DICE [132] together with software techniques form a foundation for
important security capabilities such as attestation, strong device identity, verified firmware updates and
secure device recovery. The ability of DICE to integrate into existing hardware infrastructure and being
compatible with existing security standards makes it adaptable to the majority of systems and
components at almost zero cost. A major benefit of DICE is that it is based on sound security principles,
developed and tested by industry experts, such as hash functions and integrity measurements.

The key concept behind DICE is that with only a unique device-specific secret and a one-way
cryptographic function rooted in hardware, a device is capable of verifying its state. Firmware, divided
into layers, is running on top of the DICE engine and creates keys for multiple purposes enhancing the
foundational trust services within the device. Those trust services include the formulation of a
cryptographically strong device identity based on a robust hardware root-of-trust. The device is able to
authenticate its identity and the identity of its software when connecting to cloud provider services, an
operation known as attestation. Attestation ensures that only authenticated code is running on the
device attesting this way to the trustworthiness of the device itself. Furthermore, DICE protects data by
preventing access to old software versions. Other trust services offered by DICE include secure data

34

storage (sealing), data integrity and safe deployment and verification of software updates, a frequent
source of malware attacks.

An important feature that distinguishes DICE from other software-only solutions is its approach
towards the device boot process. In a DICE architecture, the boot process breaks up into layers that
communicate with one another by passing secret values that are unique not only to the device itself,
but to each layer respectively. The first layer of the booting process is immutable, meaning that is not
subjected to alterations. This layer contains a unique, device-dedicated initial secret value that is the
root of trust for the identity of the targeted system. The immutable DICE code is stored in an NV-memory
and cannot be altered. For this purpose, an access preventing mechanism is preferably implemented.
The generation of secrets is performed by one-way functions starting from the initial secret value. The
secret of the previous layer together with configuration data or code measurement from the next layer
in the hierarchy, are cryptographically mixed in a way that is infeasible to derive one secret from
another. The code measurement of a layer refers typically to a cryptographic hash of the code or data
of the layer. The derived secret is provided to the next layer in the boot chain after all remnants of its
creation are erased. Secret confidentiality is of paramount importance and thus secrets should remain
strictly confidential within their respective layer. The secret derivation process continues during startup,
resulting in a measurement chain that is rooted in the device’s identity and is based on measured code.
The boot model of DICE is illustrated in the Figure 2.12.

Immutable First Mutable |:> Second Mutable
Power On Code Code Code

Initial Secret Create secret
for next layer

Secret for Second

Secret for First
Q Mutable Code ﬁ Q Mutable Code Q

Create secret
for next layer

Figure 2.12 DICE boot model

The secrets that are used for establishing device identity or data sealing may leak if the code
used for their manipulation gets compromised by an adversary attack. The process of secure re-keying
such compromised devices may be a difficult task. ARM’s TrustZone establishes a Trusted Execution
Environment (TEE) where only trusted applications run [133]. The secrets are stored in one-time
programmable memories with limited access from run-time software. This way the risk for secrets to
get compromised is considerably reduced. However, most TEEs contain thousands of lines of code
retaining the high risk of compromise.

Resilient cyber-attacking systems create malformed programs aiming to steal the device
identity. Therefore, all data structures processed in early boot should be simple in order to minimize the
chances of exploitable bugs. File systems should not be used in early boot code due to their complexity.
Also, vendors should deploy technologies to guard against hardware attacks such as glitching. DICE
standard tackles these problems by providing techniques that minimize the amount of code that gets
access to the device secret. The uniqueness of device secrets and keys in each layer of the DICE
architecture ensures that if new layer code or configuration is modified, the derived secret changes for
the corresponding layer. Changing of a secret in one-layer results in changing of all the following secrets
in the chain change as well. If a vulnerability exists and a secret is disclosed, patching the code
automatically creates a new secret, effectively re-keying the device. In other words, when malware is
present, the device is automatically re-keyed, and secrets are protected. An example of layer code
change is illustrated in Figure 2.13.

35

———

Immutable First Mutable Second Mutable | - Mutable
il
Power On Code Code Code == Code N

=

Initial Secret

Secret 2 Secret N

—

New Second == Mutable
Mutable Code =27 Code N
New Secret 2 New Secret N

Figure 2.13 Layer code change

The DICE engine is the first code that is executed unconditionally by the device after it is
powered or reset. The DICE boot code for simple devices is read-only and preferably one time
programmable during manufacture. An updatable implementation is possible for more complex systems
and requires a vendor-certified secure update mechanism. Ideally DICE is implemented by silicon
vendors in ROM firmware. In DICE specification the device secret is an uncorrelated and statistically
unique identity value called Unique Device Secret (UDS). It is generated intrinsically in a trusted
environment every time the device powers on or resets. The access to UDS should be limited by a
hardware access preventing mechanism incorporated in DICE hardware. This mechanism should
disable read-access privileges to UDS before transferring control to the firmware. A system reset should
ensure that malware that arrives later in boot or at runtime cannot have access to the UDS. Also, storing
the UDS in a NV-memory or Read-only memory (ROM) further strengthens confidentiality of the device
secret, ensuring that the UDS is only available to DICE at boot time.

Although such a mechanism can protect access to the UDS, boot code can still be
compromised if an adversary makes a copy of it in RAM. Using a one-way cryptographic function to
transform the UDS, mitigates the problem to a later state. One-way function or message digest is a
function designed in such way that even a slight change in the input string should cause the hash value
to change drastically. Even if one bit is flipped in the input string, at least half of the bits in the hash
value will flip as a result. In this way, if the derived cryptographic identity value gets compromised, the
original UDS is still secure. In addition to the lockout mechanism, DICE needs to ensure that no data is
left in the registers or cache memory that might assist an attacker extracting the UDS.

The cryptographic identity value derived from the UDS is called Compound Device Identifier (CDI) and
is provided to the early boot code of the device. The CDI is a combination of the UDS and a
cryptographic representation of the early boot code running on the device, called First Mutable code. It
can optionally include hardware state measurements and configuration data that affect the execution
of the First Mutable code. A simple one-way function for the derivation of CDl is a secure hash algorithm
used to hash the concatenation of the two values. Another approach is the use of an HMAC for higher
level of protection.

cDI = H(UDS || H(First Mutable code))

36

The general process of the DICE Engine is illustrated in the Figure 2.14.

Reset

S

Device |dentifier Compasition Engine

Compute measurement of first mutable code

Combine UDS and measurement using a one-way function to create CDI

Prevent access to the UDS via hardware mechanism and completely erase remnants from memory

Transfer control to the First Mutable Code passing the CDI

NS
First Mutable Code

Figure 2.14 DICE Engine

Based on the CDI, keys in the form of secrets are generated for attestation and other purposes.
These keys are bound to both UDS and the firmware. A change in either of them would result in a
different CDI effectively re-keying the device. For example, if the First Mutable code is replaced by
malware (Figure 2.16), the attacking program gets a different hash and thus obtains a different CDI key
than the authorized program. In case the application accidentally discloses the CDI, the device must
be re-keyed. Flashing a patched firmware will result in creating a new CDI value restoring trust within
the device. The CDI value is provided to the First Mutable Code and can be stored in memory or
registers. The First Mutable code should be able to read the CDI and then use it to create keys for
attestation and other purposes. However, disclosure of the CDI to a latter executing code may
compromise the First Mutable code. Therefore, the CDI value should be hidden or deleted maintaining
it confidential within the First Mutable code.

—
[Device Firmware J |:> DICE Engine |::> Firmware
—

—
1} col col

DICE Engine Qﬁ

USD)

Malware

NV-mamory, ROM, New CDI

Figure 2.15 DICE Engine
layer and firmware Figure 2.16 Malware attack scenario 37

3 System Architecture and Protocol
Design

This chapter presents the design of a security protocol that enables asymmetric remote attestation for
resource-constrained loT devices. The proposed architecture builds upon the Device Identifier
Composition Engine (DICE) standard, which provides cryptographically verifiable device identity and
firmware integrity using a hardware-based trust anchor. Section 3.1 introduces the design methodology,
motivating the choice of a V-Model to organize development and validation activities. Section 3.2
defines the system’s functional, non-functional, and security requirements, establishing the objectives
and constraints guiding the protocol’s development. Section 3.3 describes the protocol architecture in
detail, including its layered components, key derivation mechanisms, and operational flows across the
device lifecycle. Finally, Section 3.3.3 provides a structured security analysis of the protocol using the
STRIDE threat modeling framework, evaluating how the design mitigates common attack vectors
across the defined trust boundaries. Together, these sections form the basis for the implementation
and evaluation presented in the following chapter.

3.1 Design Approach

System design in software engineering is the disciplined process of shaping an IT artifact from a set of
interconnected components [134]. Offerman et al. classify such artifacts as systems, methods,
algorithms, requirements and metrics [135]. Aligned with the design-science research (DSR)
methodology of Peffers et al. [136], this thesis adopts a Systems Development Life Cycle (SDLC)
approach [137], which structures development into sequential stages that transforms an abstract
problem into a verified and maintainable implementation.

Among various SDLC models, the waterfall model, originally proposed by Royce [138] and
later adopted by the U.S. Department of Defense [139], divides development into six cascading phases
(Figure 3.1). Each phase begins only after the deliverables of its predecessor phase have been
completed and reviewed, providing clarity of scope, explicit milestones, and predictable cost control.
Although the waterfall approach suits tightly scoped projects with stable requirements, security-critical
systems demand an even stronger emphasis on early and systematic verification and validation.

The V-Model, an extension of the waterfall paradigm, integrates verification and validation
activities in every design phase [140]. Its left branch contains development activities (requirements
analysis, architecture design, module design, and here security requirement analysis), while the right
branch mirrors them with corresponding test activities (unit, integration, and system validation). The
vertical axis denotes the abstraction level, whereas the horizontal axis denotes project time. Verification
confirms that artefacts comply with specifications, whereas validation ensures that the final system
satisfies stakeholder needs [141], [142]. Widely used instantiations include the German V-Modell XT
used by the federal government [143], the U.S. Department of Transportation standard [144], and the
general testing V-Model adopted in commercial software engineering.

38

Figure 3.1 Waterfall Model for Sequential Software Development

Design approach
This study adopts a general testing V-Model approach (Figure 3.2) because it

1.
2.
3.

4.

offers straightforward deliverables at each stage

associates clear validation criteria with every design decision

embeds review processes that facilitate early fault detection, essential for loT hardware where
rework is costly

remains lightweight for projects with clearly defined goals

Its main limitations are i) reduced flexibility with late-changing requirements and ii) suitability for small-
to-medium-scale projects. However, these limitations are acceptable within the context of a security
mechanism targeted at constrained loT devices. The selected V-Model offers a disciplined yet

pragmatic framework that aligns with the iterative nature of security engineering: every design decision
is paired with an explicit verification activity, ensuring that the resulting architecture meets both
functional and non-functional.

In the proposed model (Figure 3.2):

Requirement-analysis defines the system’s functional and non-functional requirements as
well as the security goals that drive architecture design.

Architecture design produces a high-level overview of the protocol, identifies candidate
cryptographic primitives, and assesses feasibility for resource-constrained platforms (high-
level design).

Module design refines the architecture into discrete components with well-defined interfaces,
enabling isolated implementation and unit testing (low-level design).

Security requirements analysis conducts a list of potential threats and attacks after careful
investigation of the system’s main components and interfaces. Several attributes that span
multiple disciplines are examined for the accessibility risk and the potential reward to the
attacker. These attributes vary from the cost of the attacking equipment to the scalability of the
performed attack. A counter-measurement list is conducted to protect the system against
malicious attackers.

Code implementation realizes all system components on actual hardware.

Integration and implementation testing verify end-to-end functionality and feasibility of the
proposed security architecture. is performed during the prototype implementation
(demonstrator) to

Performance validation measures execution time (clock cycles) and memory footprint (code
size) to validate that the prototype satisfies the original set constraints.

39

System Design Approach

a System Validation
Requirement

Analysis

Measurements
Validation

)) Integration Testing
Architecture Design Ngrr=r=rmrmrmmrmimimimimm e Implementation (DEMO)

Unit Testing

Module Design \&=r=:=r==mrmeme =#/ Design Prototype

F 3

v

Figure 3.2 General Testing V-Model for Security-Critical loT Systems

Table 3.1 maps the design phases adopted in this work to the main contributions (MC) introduced in
Section 1.3:

Table 3.1 Mapping of Design Phases to Main Contributions

Design phase Main contribution

Requirement analysis MC1 — Asymmetric attestation protocol design
Architecture design MC1 — Asymmetric attestation protocol design
Module design MC1 — Asymmetric attestation protocol design
Security requirements analysis MC3 — Qualitative security analysis

Prototype implementation MC3 — Demonstration prototype

Prototype evaluation MC4 — Qualitative performance analysis

3.2 Design Objectives and Requirements

This section establishes the security objectives and system constraints that shape the protocol
architecture presented in this section 3.3.1. The target deployment scenario involves resource-
constrained loT devices, characterized by limitations in size, power, and computational capability. While
these constraints reduce design flexibility, they pose the compelling challenge to deliver robust security
guarantees on minimal hardware.

Section 3.2.1 outlines the high-level design objectives that the protocol must fulfil, including
secure identification, authentication, remote attestation, and software update capabilities. Section 3.2.2
analyzes the different types of requirements involved in achieving these objectives, distinguishing
between functional, non-functional, and security requirements, while defining assumptions that limit the
design.

3.21 Design Objectives
The overarching goal of the design is to embed a hardware-rooted trust mechanism into commercial
IoT nodes. Achieving this objective requires equipping constrained loT devices with robust security

capabilities based on cutting-edge cryptographic principles and protocols. To this end, the architecture
is designed to:

40

e Generate a device-unique asymmetric key pair at boot to establish a unique digital identity.

e Ensure firmware integrity and confidentiality by preventing the execution of unauthorized or
outdated software.

e Support mutual authentication with cloud infrastructure through a remote attestation
mechanism.

e Offer a lightweight solution with minimal silicon footprint, enabling secure deployment and
verification of software updates.

3.2.2 Requirement Analysis
Once the design goals have been established, a requirement analysis is conducted to identify the
technical solutions the system must satisfy to meet its objectives.

General Requirements and Classifications

According to Brennan [145], a requirement is a premise necessary for a design to achieve its objective
or satisfy a functional need. Requirements must conform to formally defined standards or specifications,
and play a central role in the verification process, serving as reference points for evaluating the
correctness and completeness of system testing. In both system and software engineering,
requirements are typically formulated prior to implementation and ensure that the final product is robust,
maintainable, and free of critical flaws. Early-stage requirement analysis contributes directly to
eliminating exploitable bugs and aligning developer efforts with end-user expectations and constraints.
As Hay [146] notes, requirements define the foundational functions and properties needed by a system,
and must be documented in a clear, consistent, and unambiguous manner. However, this process can
be lengthy and complex, especially in large-scale designs where the number of system requirements
can grow rapidly [147].

The IEEE Standard Glossary of Software Engineering Terminology [148] classifies system

requirements into two main categories:
1. Functional Requirements. Define what a system should do, describing the relationship
between inputs and expected outputs [149].

2. Non-Functional Requirements. Define how a system should behave, imposing quality
constraints such as performance, reliability, flexibility, and security [150].

Functional requirements are typically considered mandatory (“must-do”), whereas non-functional
requirements, though equally important, are often classified as conditional or qualitative constraints
(“shall-do”) [151].

These categories form the foundation for specifying the system- and security-level
requirements in the remainder of this section. They directly inform the design of the proposed attestation
protocol, where both functional and non-functional properties are critical.

System Requirements

The proposed architecture relies on a set of well-defined requirements that are modest and applicable
to the majority of targeted IoT platforms. Together with a small set of basic assumptions, these
requirements define the core principles that guide the system’s design and implementation. In the
context of software engineering, an assumption is typically defined as “a thing accepted as true or
certain to happen, without proof’ [152] or “a fact or statement taken for granted” [153]. While
assumptions are often necessary for practical reasons, they can introduce potential risks. If an
assumption proves false in a given deployment, it may lead to software faults, misconfigurations, or
even security vulnerabilities. For this reason, the number of assumptions made in this design are
intentionally kept to a minimum. Fewer assumptions increase the breadth of verification and testing
scenarios that can be applied to the system and reduce the likelihood of errors.

41

The proposed design is based on a set of six concrete requirements (R1-R6) defined to
balance security strength with practical deployment constraints (Table 3.2). These requirements are
deliberately minimal and portable to commercially available 10T platforms. Together with a set of limited
assumptions, they serve as the foundation for protocol design.

Table 3.2 System Requirements

ID Requirement

R1 The device must have enough power to derive asymmetric key-pairs and generate digital signatures.

R2 The private key must remain confidential. The public key may be freely disseminated.

R3 The device must be able to establish a connection and communication with a network infrastructure.

R4
provider.

R5 The device shall use client certificates for mutual authentication (including certificate chaining).

R6 The design should require minimal silicon overhead.

The device should use the Transport Layer Security (TLS) to communicate with a cloud server

Security Requirements

Within this study, requirements are further examined from a security perspective, where protection
against misuse, and unauthorized access is paramount. Security requirements can originate from
multiple points in the design process, and they represent the explicit security goals of the application.
To be effective, security requirements must be clear, measurable, consistent, and formally verified. A
particularly useful methodology is architecture risk analysis [154], which helps identify vulnerabilities
that may be exploitable in deployed software.

The Open Security Architecture (OSA) framework [155] classifies IT security requirements into four
types:

¢ Secure Functional Requirements. State what shall not happen and are embedded within
traditional functional requirements.

¢ Functional Security Requirements. Define the specific system behavior that enforces
security. Examples include authentication mechanisms, access control, and data integrity
enforcement.

¢ Non-Functional Security Requirements. Describe the quality attributes the system must
meet to remain secure (e.g. encryption strength, fault tolerance).

e Secure Development Requirements. Ensure that development practices and tooling reduce
vulnerability exposure.

Capability Mapping
This thesis defines four core security capabilities summarized in Table 3.3:

Table 3.3 Security Capability Mapping and Corresponding Requirements

Functional Non-Functional Linked

Capability Security Objectives) . .
Requirements Requirements Requirement(s)

Cryptographically
Device Identity verifiable, device-
unique identity

On-device key Confidential private

R1, R2, R6
pair derivation key storage

42

. . L Functional Non-Functional Linked
Capability Security Objectives . . .
Requirements Requirements Requirement(s)

Mutual verification

Device o between device and TLS. Yvith client .Resistance.to R4. R5
Authentication server certificates impersonation
Remote Firmware integrity Certificate-based Tamper/repla

. d fresh | perepiay R1, R2, R4, R5
Attestation and ireshness reporting protection

Authenticated and Rollback protection,

Secure Software thorized fi Update — pl R1 R3. R6
Update authorized firmware oo ot minimal silicon , R3,

updates overhead

Each of these capabilities is supported by a subset of the system requirements and collectively they
fulfill the architecture's security objectives. Some of the previously defined requirements are strict, while
others offer more flexibility depending on the deployment context. For example, a modest increase in
silicon area may significantly improve performance or strengthen security guarantees—highlighting the
need for careful trade-offs. As a result, the design must strike a balance between competing objectives
such as resource constraints, security, and operational efficiency.

With the system objectives and constraints now defined, the next section introduces a DICE-
based attestation protocol. It outlines the protocol’s structure, involved entities, and adversarial
assumptions, showing how the identified requirements are translated into a layered boot and attestation
framework suitable for resource-constrained loT devices.

3.3 Protocol Design

This section presents a DICE-based protocol tailored to the constraints and operational requirements
of resource-constrained IoT devices. The protocol is designed to achieve four foundational security
capabilities: device identity, device authentication, remote attestation, and secure software
updates. These capabilities are essential for establishing trust in distributed IoT ecosystems,
particularly in scenarios where devices are physically exposed, and secure interaction with cloud
infrastructures is critical.

The design builds upon two key industry specifications: the Hardware Requirements for a
Device Identifier Composition Engine (DICE), developed by the Trusted Computing Group (TCG)
[130], and the Device Identity with DICE and RloT architecture, proposed by Microsoft Corporation
[49]. DICE introduces a hardware-rooted mechanism for deriving cryptographically strong identities that
are tightly bound to both the device’s hardware and the integrity of its software state. This facilitates not
only unique device identification, but also effective tamper detection.

Compared to traditional hardware security modules such as the Trusted Platform Module
(TPM), DICE offers a light-weight and more scalable alternative. TPMs, while powerful, often demand
significant silicon area and power resources, making them impractical for constrained environments
such as embedded sensors, microcontroller-based devices, or low-cost loT platforms. In contrast, DICE
is explicitly designed to operate with minimal hardware footprints, relying on immutable boot code and
simple cryptographic operations that fit well within the capabilities of modern microcontrollers.

43

Building on this foundation, the proposed protocol incorporates asymmetric cryptography, public
key infrastructure (PKI) digital certificates, and a lightweight attestation flow compatible with TLS-

based cloud infrastructures. By integrating these elements, the protocol ensures that devices can:
e Establish cryptographically verifiable identity.

¢ Authenticate securely to external services.
e Attest their current software configuration.
e Securely receive, verify, and install firmware updates.

These objectives are achieved through a layered protocol flow described in the sections that follow.

Scope

The protocol is defined within a clearly bounded scope to ensure its feasibility for constrained platforms,
while still offering enough generality for practical deployment, verification, and extension. These
boundaries are shaped by a modest set of assumptions, which reduce complexity without
compromising the protocol’s security or its relevance to real-world use cases.

Assumptions
e DICE Support: Devices implement the DICE specification, including the generation of a
Compound Device Identifier (CDI) during the boot process.

e Computational Capabilities: Devices are capable of generating asymmetric key pairs,
signing operations, and basic certificate handling.

¢ Network Capability: Devices are equipped with network interfaces that allow them to establish
secure connections to remote servers. This is a prerequisite for remote attestation and
software update delivery.

e Manufacturer-Cloud Separation: The cloud service provider does not require prior
knowledge of the device internals. Any critical provisioning, such as key enrollment or
metadata registration, is assumed to occur during manufacturing in a secure, trusted
environment.

e Hardware Capabilities: The proposed architecture can be implemented by a variety of loT
nodes that feature a micro-processor with basic hardware-based security capabilities.

3.3.1 System Architecture

DICE-based architecture provides four foundational security capabilities—device identity,
authentication, remote attestation, and secure software updates—by segmenting the device's boot
process into discrete, layered stages (Figure 3.3 a). Each layer generates a unique secret using a one-
way key derivation function (KDF), combining the prior layer’s secret with either configuration data or a
cryptographic hash of the subsequent layer. These secrets are cryptographically isolated: deriving one
from another is computationally infeasible. Each secret is securely erased after use, ensuring
confidentiality throughout the boot sequence and forming a cryptographic measurement chain rooted
in device identity.

As illustrated in Figure 3.3 (b), architecture separates the immutable DICE Engine from the
layered mutable firmware. The DICE Engine executes immediately upon power-on and resides in ROM
or equivalent non-writable memory to enforce immutability. It derives a Compound Device Identifier
(CDI) from a unique device secret (UDS) and a measurement of the first mutable firmware layer. The
UDS serves as the hardware root of trust while the CDI becomes the first cryptographic anchor handed
off to subsequent firmware layers.

44

..

..

FW Layer 1
code description

FW Layer 2
code description

Secret 2

Attestation

Layer 0 DICE
Immutable code
uDsS
:|L v
One-way
Secret 0 KDF
. - Firmware |
toert : . Layer1 v :
First mutable code J
: Generate KeylD &
....................................... :‘_. v :
— One-way :
: Fi v
Layer 2 s . Firmware 2 |
Second mutable . : Layer2
code Q .
. . . . Device
...................................... : : [Device Identity ’ e Rty ’
P :

Figure 3.3 Layered Boot Process in DICE-Based Architecture
(a) Secret derivation and isolation across layers (b) DICE Engine and firmware layer segmentation

The layered firmware uses CDI to derive keys for identification, authentication, and attestation.
This design ensures that device identity persists through firmware updates. The first firmware layer
derives a persistent device identity key (Keyip) directly from the CDI and a second key (KeyLayer1) using
the CDI and a descriptor of the next layer. These are passed to the second firmware layer, which
connects to a cloud (remote) server, authenticates the device, verifies the firmware integrity, and
enables secure software updates.

The system architecture consists of three major components:
1. DICE Engine (First Major Component)

2. Firmware Layer 1 (Second Major Component)

3. Firmware Layer 2 (Third Major Component)

Each major component comprises smaller, well-defined system units. The next sections describe these
components in detail.

DICE Engine (First Major Component)

The DICE Engine is the root of the trust chain and adheres to the "Hardware Requirements for a
Device Identifier Composition Engine" specification [130]. It is the first code executed after a system

45

reset, operating from ROM or equivalent non-volatile memory to ensure immutability. Its role is to derive
a unique CDI using a one-way function from the UDS and a deterministic cryptographic digest (e.g.,
SHA-256) of the firmware layer 1 code.

The UDS serves as a hardware-bound identity anchor, while the firmware measurement
captures the initial execution state. Any modification to either input yields a new CDI, thus invalidating
any previous trust anchors. For example, firmware modification by malware will trigger CDI
regeneration, invalidating derived keys. While valid patches restore trust, compromise of the UDS
results in a permanent loss of device identity.

To ensure trustworthiness, the DICE Engine must meet these requirements:

e One-time Programmable UDS: At least 256 bits, statistically unique, and securely stored in
non-volatile memory or ROM.

e Exclusive Access: The UDS must be readable only by DICE; no external access is permitted.

¢ Debug Interface Lockdown: Debug ports must be disabled or configured to prevent UDS
access during CDI generation.

¢ Immutable Boot Code: Must execute from read-only or one-time programmable memory.

e Memory: All sensitive data, including UDS and CDI remnants, must be cleared from memory
and registers post-execution.

Although newer drafts describe “updatable” DICE models, this design assumes a strictly immutable
DICE implementation. The UDS may be generated intrinsically during boot or securely provisioned
during manufacturing (see Section 3.3.2 for provisioning options). Figure 3.4 illustrates the internal

structure of this component.
Non-Volatile/
ROM

the UDS

Code for
Initialization code creating/provisioning

Code for CDI creation| | Delete all memory
remnants

Figure 3.4 Internal Components of the DICE Engine

This architecture adopts a two-layer firmware model for simplicity, though it can be extended. This
approach is consistent with principles from the “RloT: A Foundation for Trust in the Internet of
Things” specification [49].

Firmware Layer 1 (Second Major Component)

Firmware Layer: continues the chain of trust as the first mutable code executed after the DICE Engine.
Its design and function are shown in Figure 3.5. This layer must remain small, simple, and auditable to
reduce attack surfaces. Updates to this layer trigger regeneration of the CDI and all derived keys. As
such, it should remain static and updated only under secure, manufacturer-controlled conditions.

Using the CDI, Firmware Layer: deterministically derives an asymmetric key pair (Keyip) during
manufacture in a secure environment. Device key is used to achieve device identity. The public portion
is certified by the manufacturer in a PKI certificate and linked to a trusted root authority. The private key
remains securely contained within this layer and is never exposed externally. Due to limited computing
resources in loT devices, ECC-based key derivation is favored over RSA for its smaller keys and
computational efficiency. Chapter 4 details the selection of ECC curves for this implementation.

This layer also derives a second asymmetric key pair, KeyLayer1, from the CDI and a
measurement or descriptor of the next firmware layer. KeyLayer1 is signed by the private portion of Keyip,
producing a Layer certificate. The private key and certificate are securely passed to Firmware Layero,
supporting attestation without compromising the device identity.

46

To prevent misuse, the firmware descriptor for Layer—including version, size, and
cryptographic hash—is embedded in the Layer 1 certificate as a Firmware Identity (FWID). This value
may be encrypted using authenticated symmetric encryption for confidentiality. External verifiers can
then validate firmware integrity without exposing sensitive implementation details. Table 3.4 illustrates
a possible structure for the layer and device certificates Including the FWID extension).

FW Layer,
Descriptor

HASH

FW Layer,
Measurement

................

Firmware |

Authentication][Attestation] [Identification] Layer;

Firmware
Layer,

Generate
Layer,
Certificate

Generate
Device
Certificate

Keyp

Private . Public Private | Public

Keyp . Keyp

KeYiayert

Generate
A

................

Figure 3.5 Structure of Firmware Layer 1

Table 3.4 Structure of Device and Layer Certificates with FWID Extension

Field

Description

Version

Serial Number

Signature Algorithm

Issuer
Validity Period
Subject

Subject Public Key Info

Extensions

Signature

Certificate format

Unique identifier from the issuing Certificate Authority
Algorithm used for signing (e.g., ECDSA)
Distinguished Name (DN) of the Certificate Authority
Timestamps defining certificate lifetime

DN of the certificate subject (e.g., device or vendor)
Public key and algorithm (e.g., ECC)

FWID and optional fields such as usage constraints

Digital signature from the issuer over the certificate
contents

Firmware Layer 2 (Third Major Component)
Firmware Layer: is the third major component that acts as the application layer, interfacing with external

systems. After taking control from Layers, it is responsible for:
1. Authenticating the device

47

2. Attesting firmware integrity
3. Establishing secure communication with a cloud service

Network connectivity is assumed as a design requirement. Depending on the platform, secure
communication can be implemented using TLS (for TCP-based transport), DTLS (for UDP-based
environments), or OSCORE (for application-layer object security in CoAP-based systems). For
constrained environments, DTLS with raw public keys or CoAP secured by OSCORE is preferred.
Protocol selection is explored in Section 3.3.2 and implemented in Chapter 4.

Firmware Layer 2 performs authentication and attestation using:
1. The device certificate (public portion of Keyp).

2. The KeyLayer1 key pair.
3. The Layer1 certificate (signed by Keyip).

Once connected to a cloud server, the device presents a certificate chain from Layers to the trusted
manufacturer root. The Layer1 certificate contains the FWID of Layerz, which the cloud server uses to
verify firmware integrity. A mismatch (e.g., caused by malware) invalidates the chain and may prompt
a secure update. Crucially, the device identity (Keyip) remains unchanged. This architecture supports
cloud-agnostic deployments. While the cloud service and manufacturer may be distinct, all necessary
metadata (device certificates, FWIDs) are assumed to be securely distributed by the manufacturer to
trusted cloud platforms, supporting multi-cloud and vendor-agnostic trust infrastructures.

3.3.2 Protocol Functional Flows

Having established the layered architectural components of the DICE-based protocol, this section
describes the functional behavior of the system across its lifecycle. It distinguishes between a
manufacturing phase, where device identities are securely provisioned and certified in a controlled
environment, and a deployment phase, which governs the device’s behavior once deployed in the
field. These functional flows examine how each core security capability (device identity, device
authentication, remote attestation and secure software updates) is achieved in each stage.

3.3.2.1 Manufacturing Phase

Initial enroliment (also known as device provisioning) is a crucial step during loT device manufacturing,
where the device is prepared to securely identify itself and communicate with cloud services or other
trusted systems. This process establishes the device’s identity, trust anchor, and optionally, its
cryptographic credentials [156]. This section focuses on the tasks performed during the initial
provisioning of the device in a secure and trusted manner, while considering the foundation security
capabilities and design requirements set in section 3.2.

The scope is defined by a limited set of assumptions that maintain generality for practical deployments.

These assumptions include:
e Trusted Environment: The manufacturing environment is secure and under the control of a
trusted entity.
¢ Network Capability: Access to a network is not required.
¢ UDS Provisioning: The Unique Device Secret (UDS) is securely injected into the device.

The key functions of the manufacturing phase include:
1. Unique device identity establishment.
2. Cryptographic key generation.
3. Secure storage of private keys.
4. Initial device certificate enrollment.
5. Secure boot and attestation configuration.

48

Figure 3.6 shows the manufacturing phase of the protocol, highlighting key interactions between the
device and the manufacturer.

Manufacturer)) Device

Manufacturer loads the

el firmware onto the device

v

Manufacturer stores the FWID

Step 2
values to a local database

Elliptic curve cryptography (ECC)is

Step 3 sed to derive the device key (Key;p)

Send device key CSR

to the manufacturer Siep:s

Manufacturer signs the device
Step5 key public key with its secret
key issuing a device certificate

Manufacturer sends the device
Step 6 and rootcertificates to the
device for authentication

v

Device and root certificates

Step7 are installed to the device

Fiéure 3.6 Protocol Manufacturing Pha'se Flow

Functionality Flow

The process begins with the manufacturer loading the firmware onto the device in a secure
environment. A trusted environment ensures the confidentiality, integrity, and authenticity of the
provisioned data, while minimizing exposure to untrusted entities, including personnel and software.
The UDS is injected into the device and stored in read-only memory (ROM). Upon boot, the DICE
Engine executes first and uses the UDS and a cryptographic hash (SHA-256) of the first firmware layer
to compute the CDI. A recommended mechanism for CDI derivation is a HMAC-based key derivation
function (HKDF) using SHA-256, which ensures that the UDS cannot be derived from the CDI

The device then uses elliptic curve cryptography (ECC) to generate its asymmetric key pair
(Keyin) securely within a microcontroller unit (MCU) or secure element. The private portion of this key
remains confined to the device. To certify its identity, the device generates a certificate signing request
(CSR), which includes the public key and is signed using the corresponding private key. This CSR is
transmitted securely to the manufacturer's certificate authority (CA) over an authenticated and
encrypted channel.

The manufacturer's CA verifies the CSR and signs it, creating the device certificate. This
certificate binds the device’s public key to its identity and includes the CA’s digital signature. The signed
certificate is then securely installed on the device in flash or non-volatile memory. To reduce risk,
debugging interfaces such as JTAG and UART should be either disabled or access-controlled to
prevent unauthorized modification after provisioning.

The manufacturer also installs its own CA certificate (root or intermediate) on the device to
support authentication once the device is in the field. Finally, the firmware identities (FWIDs) of the
device’s software layers are extracted and stored in a local database or backend cloud. This process
implicitly initializes secure boot, as the measurement of the first firmware layer is cryptographically
bound to the CDI. The recorded FWID then serves as a reference for future attestation, enabling remote
verifiers to detect firmware tampering or unauthorized updates.

49

At the end of the manufacturing phase, the device undergoes final mechanical assembly.
Firmware, device identity credentials, and UDS are written to protected storage. The device holds a
signed certificate that authenticates its public key, and the manufacturer's CA retains the corresponding
certificate chain for use in later authentication and attestation processes. A final integrity check confirms
the correctness of the installed software and configuration, after which the device is flagged in the
manufacturer's backend system as eligible for deployment. Manufacturing functional flow fulfills the first
design requirement (see Section 3.2) by enabling the derivation of an asymmetric device key pair
(Keyp). It also satisfies the second requirement, ensuring that the private portion of the key remains
protected through secure manufacturing practices.

3.3.2.2 Deployment Phase

Following secure provisioning during the manufacturing phase, the deployment of an loT device marks
its transition from a controlled environment to its operational state in the field [26]. Deployment refers
to the physical installation of the device at its intended location, initialization with network-specific
parameters, and integration into a live infrastructure. This phase not only activates communication
interfaces but also initiates secure connectivity with external services, particularly cloud infrastructure.

During deployment, the device must authenticate its identity using the cryptographic
credentials established during manufacturing and validate its software integrity through secure boot
and remote attestation. Proper deployment ensures that the device integrates into a larger system
architecture while preserving the security guarantees established during provisioning, particularly with
respect to identity, data confidentiality, and resistance to tampering.

Transport Layer Security (TLS) is the protocol selected for secure communication and
authentication in this design. Its widespread adoption, standardized interoperability, and proven
security guarantees make TLS particularly suitable for embedded systems with constrained resources
[157]. The use of TLS in this context satisfies system requirement R4, as defined in Section 3.2.

The remainder of this section analyzes the functional steps involved in the deployment process, as
illustrated in Figure 3.7. These steps form the operational flow of the device as it transitions into the

production environment:
1. Network configuration

2. TLS handshake with a cloud server
3. Device authentication

4. Remote Attestation

5. End of TLS Handshake

Step 1 - Network configuration

Upon initial power-up, the device configures its network stack, thereby satisfying system requirement
R3 (see Section 3.2). It activates the appropriate communication interface and retrieves network
parameters using DHCP and DNS or relies on static configuration if required. Parameters include IP
addresses, subnet masks, default gateways, and port numbers.

Step 2 - TLS handshake with the cloud server

To establish a secure and authenticated communication channel, the loT device initiates a TLS
handshake by sending a ClientHello message to the cloud server. This message includes the supported
TLS version (e.g., 1.2 or 1.3), a list of preferred cipher suites, and relevant extensions such as Server
Name Indication (SNI), enabling virtual server selection. A client-generated nonce is also included to
contribute to session key derivation.

50

The server responds with a ServerHello, confirming the negotiated parameters: selected TLS
version, cipher suite, and a server nonce. Depending on the TLS version and configuration, session-
specific parameters such as session IDs or resumption tickets may also be included.

Following the negotiation, both parties exchange ephemeral key shares and compute a shared
secret using the Elliptic Curve Diffie-Hellman (ECDH) key exchange. This enables the derivation of
symmetric session keys without directly transmitting them, thereby ensuring confidentiality and forward
secrecy.

Step 3 - Device authentication

Once the TLS channel is established, mutual authentication proceeds using X.509 certificates. The
server first sends its certificate to the device, which validates it against a trusted root certificate installed
during manufacturing. This step ensures the device communicates with a trusted and authorized
infrastructure.

The device then authenticates itself to the server. It computes a digital signature over the entire
handshake transcript using SHA-256 and signs it with its private key, derived from the final stage of its
DICE-based key hierarchy. This signature cryptographically binds the device’s identity to the
handshake process.

Next, the device transmits its certificate chain, which includes its own certificate and any
intermediate certificates linking it to a trusted manufacturer root. The server validates the chain by
verifying digital signatures, confirming the chain terminates at a trusted authority, and checking
certificate validity periods. If all checks succeed, the device is authenticated, and a mutually trusted
session is established.

Step 4 — Remote attestation

After authentication, the cloud server attests to the integrity of the device's software by verifying
firmware identities embedded in the certificate chain exchanged during the TLS handshake. In the
DICE-based architecture (see Section 3.3.1), each certificate corresponds to a firmware layer and
includes a structured extension field containing its firmware identifier (FWID).

The server extracts these FWIDs and compares them against a trusted database of known-
good reference hashes registered during manufacturing. A match confirms that the corresponding
firmware layer remains unaltered and authorized. If all FWIDs align with the expected values, the
device's software stack is validated as genuine, completing the attestation process and establishing a
high-assurance root of trust for secure operation.

Step 5 - End of TLS handshake

Following successful authentication and attestation, the TLS handshake proceeds to its final stage:
confirming session integrity and transitioning to secure communication. The device initiates this phase
by sending a ChangeCipherSpec message, indicating that subsequent traffic will be encrypted using
the negotiated symmetric session keys. It then transmits a Finished message containing a hash-based
Message Authentication Code (MAC) over the entire handshake transcript, binding all prior messages,
certificates, and parameters to a single cryptographic context.

The server validates the MAC by computing its own version from the handshake transcript and
comparing it to the device’s. If verified, the server responds with its own ChangeCipherSpec and
Finished messages, completing the mutual authentication and key confirmation. The device performs
a final MAC verification, after which the session transitions to encrypted and authenticated
communication. At this point, application data may be exchanged securely between the device and the
cloud server.

51

3.3.3 Protocol Security Analysis

With the protocol’s functional flows now established, it is essential to assess its resilience against
potential security threats. This section presents a qualitative security analysis of the proposed design,
guided by established threat modeling practices. The analysis evaluates the protocol's capacity to
maintain device trustworthiness by identifying relevant threats, outlining key assets, and mapping them
to the system and security requirements defined in Section 3.2. Special attention is given to the
protocol’s ability to support trusted device identity, remote attestation, and secure update mechanisms
within the constraints of IoT environments. In doing so, this section provides a structured foundation for
understanding the protocol’s robustness throughout its lifecycle.

Threat Model

This section presents a structured security analysis of the proposed asymmetric attestation protocol for
constrained loT devices. To ensure methodological rigor and alignment with best practices in security
engineering, the analysis adopts the STRIDE threat modeling framework developed by Microsoft [158].
STRIDE evaluates six threat categories, Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege, each mapped to relevant system assets,
trust boundaries, and security requirements identified in Section 3.2.

System Scope and Assumptions
The attestation protocol operates in a potentially adversarial environment, where attackers may
intercept communication, access devices physically, or attempt firmware manipulation. The protocol

assumes:
e Secure on-device derivation and protection of asymmetric keys (R1, R2).
e Network availability with TLS-based mutual authentication (R3, R4, R5).
e Hardware support for minimal isolation mechanisms, such as secure boot and protected
memory regions (R6).

Adversarial Capabilities

The attacker is assumed to be resourceful and persistent, with the following capabilities:
¢ Network-level control: interception, modification, or replay of messages.
e Physical access: attempts to extract secrets or modify firmware.
o Software-level exploitation: injection of malicious firmware or use of vulnerable code paths.
¢ Side-channel attacks: extraction of secrets via power analysis, fault injection, or timing-based
techniques.

The attacker is assumed unable to break standard cryptographic primitives (e.g., ECC, SHA-256) or
compromise immutable hardware roots of trust (e.g., ROM-based bootloaders or one-time
programmable secrets).

Trust Boundaries
The protocol defines three primary trust boundaries:

e DICE Layer 0 (ROM): generates the Compound Device Identifier (CDI).
e Secure Bootloader: verified, integrity-protected code that anchors mutable trust.
e TLS Stack and crypto libraries: perform mutual authentication and remote attestation.

All other software, including application and update code, is untrusted until verified through attestation.
To systematically evaluate the protocol’s resilience against common attack vectors, Table 3.5
organizes the identified threats using the STRIDE model, linking each threat category to relevant
system components and the mitigation measures implemented through design choices and
requirements.

52

Table 3.5 Threat matrix using STRIDE

L Relevant e
Threat Description Mitigation Strategy
Components
Attacker
) . . Unique key derivation from UDS (R1,
. impersonates a Device credentials, o .
Spoofing leqitimate device or identity kevs. TLS R2), mutual authentication via TLS
iti Vi i i , . .
9 yxey client certificates (R4, R5)
server
Modification of Firmware, Secure boot (R1), signed firmware
Tampering firmware or attestation tokens, updates, TLS encryption and integrity
messages in transit TLS sessions protection (R4)
Entities deny havin Logs, attestation Digital signatures on reports (R1, R2),
Repudiation ynaving - o9 grta’ sig N reports ()
performed actions results authenticated logging (optional)
Information Unauthorized access Private keys, Confidential storage of keys (R2, R6),
Disclosure to confidential firmware, TLS use of secure memory, TLS with strong
information session data cipher suites, debug interfaces disabled
Input validation, timeout mechanisms,
Denial of Disruption of device Network stack, P o) .
))) TLS rate limiting (optional), minimal
Service operation update logic
attack surface
Memory isolation (R6), debug lockout,
. Unauthorized Bootloader, v I (R6) ug !
Elevation of . i layered trust via secure boot,
L escalation of access firmware update . o
Privilege i) separation of responsibilities across
rights routines

firmware components

Each STRIDE category corresponds to a specific class of system vulnerability. By systematically
addressing each through architectural and cryptographic controls, the proposed design provides strong
protections against both remote and physical attackers. The countermeasures derive directly from the
system requirements defined in Section 3.2.2, ensuring consistency between the threat model and the
protocol’s trust anchors.

Asset Analysis

To maintain a trustworthy system state throughout the device lifecycle, the protocol design carefully
identifies critical assets involved in identity derivation, remote attestation, and secure software updates.
Each asset plays a distinct role within the security architecture and requires tailored protection
strategies to mitigate potential threats.

The table below summarizes the key assets, their function within the protocol, and the associated
storage or protection mechanisms.

Table 3.6 Asset protection table

Asset Description / Role Storage / Protection Mechanism

Source of device-specific entropy
used for unique key derivation

Volatile memory accessed during boot;

UDS Entro
Py cleared post-boot to prevent leakage

Device-unique asymmetric signing
keys

Write-protected memory region or secure

Private Key(s
y(s) hardware vault; never exposed externally

53

Asset Description / Role Storage / Protection Mechanism

Used in TLS mutual authentication Stored in non-volatile memory (NVM),

Public Key(s
yes) and certificate chaining protected by memory access restrictions

Bootloader & FW Verifies integrity of firmware and Write-protected flash; subject to secure boot
Layer 1 performs initial measurements verification

. Assert device identity and software Issued and anchored during provisioning;
Certificates

integrity to remote verifiers validated during TLS handshake
Firmware Layer Executes main application logic; Validated at boot using cryptographic
2 subject to integrity checks measurements; updates require signature

The asset management strategy follows a defense-in-depth principle, beginning with identity derivation
from hardware-resident secrets during the initial boot stage. Through DICE-based layering, each
successive stage propagates trust via cryptographic bindings, verified certificates, and authenticated
execution. Protecting the generation, storage, and validation of these assets is central to ensuring the
confidentiality, integrity, and authenticity of the device across its operational lifecycle.

Assumptions and Security Requirements

The security guarantees of the proposed protocol rest on a set of well-defined assumptions and a
minimal, yet essential, set of system and security requirements. These foundations are critical for
interpreting the threat landscape defined in the previous subsection and for ensuring that the
architectural protections described throughout Chapter 3 remain valid under real-world deployment
conditions.

Design Assumptions
As established in Section 3.2.2, the protocol makes a small number of explicit assumptions regarding
the operational environment and hardware platform. These assumptions are intentionally minimized to

enhance portability and reduce reliance on external conditions:
e A1 - Cryptographic Trust Primitives: The underlying cryptographic algorithms (ECC, SHA-
256) are assumed secure and not vulnerable to feasible mathematical or implementation-
based attacks.

e A2 — Hardware Root of Trust: The immutable boot ROM is trusted and cannot be modified
or bypassed by an attacker.

e A3 - Secure Key Storage: The platform provides sufficient memory protection to prevent
unauthorized access to confidential key material.

e A4 - Secure Communication Stack: The TLS stack used for device-server communication
is assumed to be correctly implemented and configured with strong cipher suites.

e A5 - Debug Interfaces Disabled: Post-provisioning, all hardware debug interfaces (e.g.,
JTAG, SWD) are disabled or locked to prevent physical exploitation.

These assumptions correspond to realistic capabilities of commercially available loT microcontrollers
and reflect common industry practices in secure embedded systems design.

Mapping Requirements to Security Capabilities

The security goals outlined in the protocol design, device identity, device authentication, remote
attestation, and secure software update, each impose distinct protection requirements. Table 3.7 in
Section 3.2 maps these capabilities to system requirements R1-R6. This section further clarifies how

54

those requirements, together with the assumptions above, contribute to mitigating the threats identified
in the STRIDE-based model.

Table 3.7 Mapping of security capabilities to system requirements

Securit
y Required Protections Supported By
Capability
. . Secure generation and storage of asymmetric A1, A2, A3; Requirements
Device Identity i .
keys; uniqueness and non-reproducibility R1, R2, R6
Device Mutual TLS authentication with certificate validation

o ,) A4; Requirements R4, R5
Authentication and chain-of-trust anchoring

Remote Integrity-protected firmware measurements and A1 A2, A3, A%

1ty- | ‘W u
. I y P . Requirements R1, R2, R4,
Attestation authenticated attestation reports R5

Verification of firmware signatures, rollback
Secure Updates protection, and controlled access to update
interfaces

A2, A5; Requirements R1,
R3, R6

Each security capability is thus grounded in both a set of implementation safeguards and protocol-level
design principles, ensuring layered defense against a wide range of threat vectors.

Security Design Rationale
By explicitly enumerating both assumptions and requirements, this design promotes clarity in the
system’s trust boundaries and facilitates rigorous validation. Moreover, it aligns with best practices in
security engineering by:

e Minimizing the Trusted Computing Base (TCB) to only essential components such as the

bootloader, cryptographic primitives, and certificate store.
e Constraining assumptions to industry-standard conditions that are auditable and testable.
e Ensuring coverage of all STRIDE threat categories through direct architectural mitigations.

This structured security baseline allows the protocol to maintain consistent trust guarantees across the
device lifecycle, from provisioning to field operation, even under adversarial conditions.

This security analysis demonstrates that the proposed asymmetric attestation protocol
incorporates a robust set of architectural protections, grounded in formal threat modeling and aligned
with best practices for embedded systems. By leveraging a minimal yet sufficient Trusted Computing
Base, enforcing layered cryptographic validation, and maintaining clear security boundaries, the
protocol mitigates a wide spectrum of realistic threat scenarios. The use of the STRIDE framework has
enabled systematic reasoning about adversarial behavior and validation of defense mechanisms at
each critical stage of the boot and update process. Ultimately, the design achieves a balance between
security assurance and resource efficiency, fulfilling the protocol's objectives under constrained loT
deployment conditions.

55

4 Implementation and Results

This chapter presents the implementation and evaluation of the asymmetric attestation protocol
introduced in Chapter 3. The main objective is to demonstrate the feasibility of realizing the protocol on
a constrained embedded platform while preserving its core security goals. To this end, a structured
implementation strategy was adopted, consisting of a software/hardware co-design on an STM32-
based embedded system. Section 4.1 introduces the system architecture, mapping the protocol’s
layered trust model to the physical and logical structure of an embedded microcontroller. It details the
design rationale for each subsystem, including the ECC and symmetric cryptographic units, memory
layout, and power and debug interfaces. Section 4.2 describes the development and testing of two
complementary prototypes: a software-only proof of concept and a hardware-backed demonstration on
an STM32 Nucleo board. This section walks through the implementation of manufacturing and
enrollment phases, integration of cryptographic components, and setup of a demonstrator environment
for live validation. Section 4.3 reports the empirical evaluation results, quantifying cycle counts, memory
usage, and protocol execution timings using hardware instrumentation. It also reflects on measurement
challenges, design trade-offs, and potential improvements for future iterations. Together, these
implementation efforts validate the practical feasibility of the attestation protocol under real-world
constraints and lay the groundwork for further system integration and deployment. The outcomes also
support the broader evaluation and future considerations discussed in Chapter 5.

41 System Architecture and Design Exploration

To demonstrate the practical feasibility of the attestation protocol introduced in Section 3.3, its abstract
design must be realized through a concrete implementation on an embedded platform. This translation
from theoretical protocol behavior to operational system behavior allows for validation of the protocol’s
core security guarantees under realistic platform constraints. The chosen implementation targets a
resource-constrained loT device, representative of edge environments where memory, computational
power, and energy efficiency are highly limited. To support this mapping, a well-structured system
architecture is needed—one that clearly organizes both hardware and software elements involved in
the attestation flow and aligns with the trust and layering principles defined in the protocol design.

The architectural design presented in this chapter is guided by the functional and security
requirements established in Section 3.2.1. To satisfy these objectives, the system must deliver four
essential capabilities: (1) derivation of a unique device identity anchored in a hardware-protected
secret, (2) authentication with a remote server through PKl-based credentials over a secure TLS
channel, (3) attestation of the integrity of the installed firmware, and (4) validation and application of
software updates in a manner that preserves the authenticity and integrity of the device. The following
sections elaborate on the system architecture developed to support these capabilities and examine the
design choices made across hardware platforms, cryptographic libraries, and communication interfaces

4.1.1 High-Level Architecture

Implementing the asymmetric attestation protocol introduced in Section 3.3 on a physical loT device
necessitates a secure and modular system architecture. This section introduces the fundamental
components required to realize the protocol and explains how these elements interact within the
constraints of a resource-limited embedded environment. The architecture builds upon the Device
Identifier Composition Engine (DICE) framework, and each system component is tailored to meet

56

specific requirements for secure identity derivation, cryptographic processing, and controlled internal
and external communication.

The proposed system architecture instantiates the layered DICE-based protocol architecture
by mapping each of its conceptual stages directly onto the embedded memory layout of the target
device. Execution begins with the immutable DICE layer, implemented in ROM, which is triggered
immediately upon system reset. This initial layer has exclusive access to the Unique Device Secret
(UDS) and generates the Compound Device Identifier (CDI) by applying a cryptographic one-way
function to both the UDS and a measurement of the first mutable firmware. The first mutable layer,
located in Flash memory, uses the resulting CDI to derive the device's asymmetric identity key pair. It
also generates a layer-specific key used for authentication and attestation. A second mutable layer,
loaded into SRAM, hosts runtime services such as network communication, remote attestation, and
secure firmware updates. This tiered memory organization enforces a one-way trust chain, whereby
each successive stage inherits and builds upon the cryptographic trust established by its predecessor.
The system architecture, illustrated in Figure 4.1, is composed of the following functional components:

ECC Scalar Multiplication Unit

Elliptic Curve Cryptography (ECC) plays a foundational role in the proposed attestation protocol,
particularly in establishing a cryptographically verifiable device identity. During the manufacturing and
enrollment phases, the device executes scalar multiplication to derive asymmetric key pairs, one
forming the core identity of the device, and others serving layer-specific purposes such as attestation
and authentication. Given the computational intensity and security sensitivity of scalar multiplication,
careful consideration is given to how this operation is implemented. Whether executed in software or
supported by hardware acceleration, the performance and correctness of this unit are critical. Section
4.1.2 provides further details on the selected ECC curve and implementation choices. Notably, this unit
supports key system requirements such as R1 (identity rooted in hardware) and R2 (cryptographic
flexibility within constrained environments).

Symmetric Cryptographic Unit

Symmetric cryptographic functions play a supporting role in the protocol’'s security architecture,
particularly in the efficient handling of encryption and key derivation tasks. The Advanced Encryption
Standard (AES) is utilized to ensure confidentiality and data integrity where needed. Moreover, AES
may serve within a Key Derivation Function (KDF) to produce layer-specific keys in a resource-efficient
manner, aligning with the design constraints of embedded platforms.

One-Way Function Unit

The one-way function is responsible for deriving the Compound Device Identifier (CDI) from two inputs:
the Unique Device Secret (UDS), which serves as the hardware-based root of trust, and a cryptographic
measurement of the first mutable firmware layer. This function must ensure strong pre-image
resistance, making it computationally infeasible to reconstruct the UDS from the resulting CDI. This
cryptographic irreversibility enforces a strict isolation between immutable hardware secrets and
software-derived identities, in accordance with the DICE hardware requirements outlined in Section
3.3.1. The derivation process is embedded in the ROM-based root layer, ensuring that the integrity and
confidentiality of the root-of-trust are preserved from the earliest stage of system execution. More
details about the selection of a proper one-way function are provided in Section 4.1.2.

57

Non-Volatile Memory (NVM) Unit

The root layer of the DICE architecture, along with its early boot logic, is stored in non-volatile memory
to ensure that system initialization begins from a stable and tamper-resistant baseline. ROM or Flash
memory is used to persist the logic responsible for accessing the UDS and deriving the CDI. By
anchoring these routines in immutable storage, the design establishes a reliable hardware-based root
of trust that underpins the device’s security lifecycle.

Test and Debug Unit

Test and debug interfaces are essential during system development, enabling low-level inspection,
validation, and troubleshooting of embedded software and hardware behavior. However, in the context
of secure deployments, especially within the DICE framework, these interfaces pose serious risks if left
active. During the execution of the DICE root layer, all debugging features, such as JTAG, SWD, and
serial wire interfaces, must be strictly disabled to prevent any possibility of exposing the UDS or leaking
side-channel information that could aid in reconstructing the CDI. This requirement extends to the
execution of the first firmware layer, where cryptographic keys derived from the CDI are initialized. To
uphold the integrity of the trust chain, the system must enforce permanent deactivation or rigorous
access control of debug ports in production environments.

Power Management Unit

Energy efficiency is a critical consideration in embedded and loT systems, where long-term deployment
often depends on constrained power sources. The system must incorporate features such as low-power
operation modes, clock gating, and peripheral shutdown to minimize unnecessary energy consumption
during inactive periods. These mechanisms help ensure that the introduction of cryptographic protocols
and security monitoring does not compromise the device’s operational lifetime or violate its energy
constraints.

Control Unit

The control unit embodies the logical core responsible for orchestrating the execution of the attestation
protocol and managing both internal coordination and external communication. Conceptually, it
encompasses all control functionality required to implement the protocol, including device
manufacturing, identity enroliment, integrity attestation, and secure firmware updates. While
conceptually abstracted here, this functionality is typically realized on the MCU hardware in a concrete
implementation. When implemented on a constrained embedded platform, the control unit must operate
within strict limits on processing power, memory, and energy consumption. Despite these constraints,
it must uphold the security and performance objectives defined in Section 3.2.1.

Optional: Register File Analog (RFA) and Register File Digital (RFD)

In certain configurations, auxiliary subsystems such as Register File Analog (RFA) and Register File
Digital (RFD) may be integrated to streamline peripheral coordination and manage internal state
transitions. While not essential to the attestation protocol itself, these units can contribute to
deterministic execution behavior, particularly in systems operating under tight timing or resource
constraints. Their inclusion depends on the intended application profile and may provide improved
control over low-level system dynamics.

58

Memory

[Non-Volatile] [S]
[

DICE Layer

Scalar

Mult. Control Unit

4

Symmetric ’ y
Crypto Unit | Test Unit I

[Power Managemenﬂ

Figure 4.1 High-level system architecture

The architecture presented here represents a deliberate integration of the protocol’s security goals with
the practical constraints of embedded loT systems. As illustrated in Figure 4.1, the design organizes
the essential functional components, such as cryptographic engines, memory regions, and
communication interfaces, into a cohesive framework that supports layered trust establishment. The
figure reinforces the hierarchical structure discussed above and provides a visual summary of how the
attestation protocol is distributed across boot stages. Building on this foundation, the next section
examines available implementation paths and the rationale behind key design decisions in both
hardware and software domains.

4.1.2 Design Space Exploration

Developing a secure embedded system, such as the architecture introduced in Section 4.1.1, requires
careful navigation through a wide array of design choices. From hardware platforms and cryptographic
primitives (e.g., ECC or AES accelerators) to memory hierarchies and communication protocols, each
decision entails trade-offs in computational efficiency, security assurance, and development
complexity. The challenge lies in selecting a coherent set of subsystems that not only meets the
functional and security requirements set forth in Section 3.2.1 but also ensures practical feasibility on
a resource-constrained loT platform. Achieving this balance is vital to ensure that the final
implementation remains both resilient and efficient within the embedded system’s constraints.

A structured design space exploration (DSE) was conducted to identify viable combinations of
hardware platforms, cryptographic libraries, and communication interfaces compatible with the system
architecture presented in Figure 4.1. In this context, DSE refers to a systematic evaluation of
implementation alternatives, constrained by factors such as memory footprint, power efficiency,
cryptographic support, integration complexity, and development overhead [159]. This method is well-
suited for secure embedded systems, which demand both correctness and cost-effectiveness. The goal
of this exploration was to identify a prototype setup that both fits the hardware constraints and remains
consistent with the protocol design from Chapter 3.

The design space exploration considered three implementation strategies: software-only
designs, hardware-dedicated architectures, and software/hardware co-designs. A software-based
implementation provides flexibility for rapid prototyping and streamlined debugging. For instance, the
attestation protocol can be emulated as a user-space application on a general-purpose processor

59

(GPP), such as a desktop-class CPU. This abstraction reduces integration effort by isolating
implementation from hardware dependencies. However, such implementations do not accurately reflect
the constraints of embedded loT platforms, particularly in memory availability, energy efficiency, and
execution latency. In addition, critical platform-level security properties, such as physical isolation of
secrets and immutable root-of-trust enforcement, cannot be reliably modeled in a purely software
environment.

A hardware-only implementation, such as one based on a custom ASIC or an FPGA
architecture, was ultimately deemed impractical for the scope of this thesis. Although such solutions
can offer excellent performance, physical isolation, and tight integration of cryptographic functions, they
present significant barriers in terms of design flexibility, development time, and tooling complexity. In
particular, implementing the DICE protocol entirely in hardware would require low-level control over key
derivation and attestation flows, tasks that are better suited for iterative software development in early-
stage prototypes. While commercial embedded platforms with built-in DICE support do exist, they are
often tightly coupled to proprietary toolchains or vendor-specific implementations. As such, a hardware-
only path is considered more appropriate for mature industrial deployments, where long-term
maintainability and certification justify the engineering overhead.

A software/hardware co-design presents a more practical model for implementing security
protocols in embedded environments. In this approach, computationally intensive operations, such as
elliptic curve scalar multiplication and symmetric encryption, are delegated to dedicated hardware
modules, while system control logic, attestation routines, and communication flows are managed in
software. This architecture achieves a balance between efficiency and adaptability: hardware
acceleration improves performance and reduces energy consumption, while software remains flexible
for future updates or protocol refinements. Several modern microcontroller platforms support this
design paradigm by integrating cryptographic engines, secure key storage, and low-power processing
features within a compact and cost-effective footprint.

Given these factors, this thesis adopts a software/hardware co-design, deploying it on a
commercially available microcontroller. This approach provides a practical balance between efficiency,
adaptability, and system realism. It enables end-to-end validation of asymmetric attestation introduced
in Chapter 3 under realistic deployment conditions, while remaining compatible with the resource
limitations and deployment scenarios typical of embedded loT systems. Following this design choice,
the next task was to evaluate practical implementation options for each system component.

Implementing the architecture depicted in Figure 4.1 necessitates a careful selection of
hardware and software components that meet the system requirements established in Chapter 3. Each
functional block, whether focused on cryptographic operations, secure data retention, or
communication, must perform reliably within the stringent constraints of low-power, low-memory
embedded environments. To this end, a comparative evaluation of candidate microcontrollers, libraries,
and protocols was carried out, with each option weighed against specific trade-offs in computational
efficiency, memory usage, platform support, and compliance with the protocol’s design principles.

The following subsections detail the selected design solutions for each system component,
providing rationale for their inclusion and assessing their suitability for the embedded attestation
prototype.

Hardware Platform Selection.

A range of embedded platforms was evaluated for their suitability as hosts for the prototype, including
Arduino-based boards (e.g., Uno, Mega), ESP32 variants, Nordic Semiconductor's nRF52 series,
Microchip’s SAMD and SAM L11 secure MCUs, NXP’s i.MX RT series, and STMicroelectronics STM32
Nucleo line. The evaluation criteria spanned computational performance, availability of hardware

60

cryptographic modules, secure storage features, power efficiency, and ecosystem maturity. After
comparative analysis, the STM32L4 Nucleo board was selected for its strong balance between
processing capability and low-power operation. It offers hardware-accelerated AES, a built-in true
random number generator (TRNG), and a comprehensive set of low-power modes, features aligned
with protocol objectives. Furthermore, its integration with ST's development ecosystem simplifies
firmware development, debugging, and deployment in constrained environments [160].

ECC Scalar Multiplication Unit.

Elliptic curve scalar multiplication serves as the foundation for all asymmetric key derivation operations
in the attestation protocol, including both the device identity key (Keyip) and firmware-specific layer keys
(KeyLayern). Several cryptographic libraries were considered for this task, namely micro-ecc, wolfSSL,
and mbedTLS, each offering different trade-offs in terms of footprint, portability, and standards
compliance. The mbedTLS library was selected due to its modular architecture, comprehensive
standards support, and seamless integration with STM32 Cortex-M platforms. Unlike micro-ecc, which
is minimal but lacks certain protocol-level primitives, or wolfSSL, which introduces additional licensing
and integration overhead, mbedTLS provides a balanced cryptographic stack tailored for embedded
applications [161] — [163].

For elliptic curve operations, the SECP256R1 curve (also referred to as NIST P-256) was
chosen. This decision reflects its widespread use in TLS-based infrastructures and its established role
in standardized public-key authentication schemes. While alternatives such as Curve25519 offer
performance benefits and stronger resistance to certain side-channel attacks, SECP256R1 aligns more
closely with certification pathways and platform compatibility requirements. To ensure correct ECC key
generation, a deterministic HMAC-based random number generator is used, enabling reproducibility in
test scenarios while maintaining cryptographic integrity. On the STM32L4 platform, ECC scalar
multiplication is further optimized by leveraging hardware-assisted floating-point and DSP instructions,
enabling secure and efficient key generation within the computational constraints of the embedded
system.

One-Way Function Unit.

The One-Way Function Unit is responsible for deriving the CDI from the hardware-protected UDS, a
critical step in establishing the device’s root of trust. The transformation must guarantee strong pre-
image resistance, ensuring that knowledge of the CDI does not compromise the confidentiality of the
UDS. Several cryptographic constructions are suitable for this purpose, particularly Message
Authentication Codes (MACs), which offer robust key protection and are well-suited to iterative
processing of structured input data [164]. Among MAC-based options, HMAC constructions are
especially attractive due to their proven resistance against collision and pre-image attacks, even when
the underlying hash function exhibits moderate cryptographic weaknesses [165]. Alternative schemes,
such as MACs built on block ciphers (e.g. CBC-MAC) can offer computational advantages in resource-
constrained environments, particularly when paired with hardware-accelerated AES support [166].

For this prototype, an HMAC based on SHA-256 was selected to realize the one-way
transformation. This design balances security strength, implementation simplicity, and compatibility with
widely adopted cryptographic frameworks. The STM32L4 platform’s support for hardware AES could
potentially support CBC-MAC constructions in future versions, but HMAC-SHA256 was prioritized due
to its broader tooling support and cryptographic maturity. The implementation leverages the mbedTLS
cryptographic library, which offers a lightweight and modular interface for embedded systems and
allows integration of the one-way function as part of the DICE initialization flow.

61

Symmetric Cryptographic Unit.

The Symmetric Cryptographic Unit is responsible for deriving the layer-specific keys required in the
attestation protocol. Specifically, it employs a HMAC-based Key Derivation Function (HKDF) to expand
the entropy provided by the Compound Device Identifier (CDI) into cryptographic key material. The key
material is subsequently used by the ECC unit to generate asymmetric key pairs unique to each
firmware layer (KeyLayern). While the underlying HMAC primitive is also used in the One-Way Function
Unit for CDI derivation, its role here is distinct and aligned with symmetric key expansion. The HKDF
implementation is provided by the mbedTLS library, which supports compact and reliable integration
on Cortex-M microcontrollers. This setup ensures that key derivation remains efficient, modular, and
secure under the resource constraints of the STM32L4 platform.

Non-Volatile Memory Unit.

The DICE root layer, comprising early boot logic, UDS access routines, and CDI derivation functions,
is stored in the STM32L476’s internal Flash memory (1 MB). This non-volatile storage provides the
immutability required to satisfy the DICE model’s trust anchor requirements, ensuring that execution
begins from a consistent and tamper-resistant state. On the Nucleo-L476RG board, this Flash is
mapped to a fixed memory region with read-only protection options available through hardware fuses
and option bytes. These features reinforce the assumption of an immutable root of trust and allow for
secure storage of the boot-critical firmware segment.

Test and Debug Unit.

During development, the Nucleo board’s integrated ST-Link/V2-1 interface was used for real-time
debugging, code stepping, and logging over UART. GPIOs were also configured for simple logic
probing and external instrumentation. While such interfaces are essential for validation and early-stage
testing, they represent significant security liabilities in a production context. If left active, debug
pathways may expose sensitive memory contents or allow bypassing of attestation checks. To mitigate
these risks, STM32 devices support disabling debug access through option byte configuration and
Read-Out Protection (RDP) levels. In a deployment scenario, these features must be explicitly enabled
to ensure the integrity of the trust establishment process.

Power Management Unit.

Power efficiency is a critical consideration for resource-constrained IoT platforms, particularly when
executing cryptographic routines that demand sustained processing. The STM32L476 microcontroller
supports several low-power operational modes, Sleep, Stop, and Standby, each offering progressive
reductions in power consumption while preserving essential system functionality. These modes are
configured via dedicated power control registers and allow the system to dynamically scale energy
usage based on activity state. Stop mode was selected during idle phases of attestation execution to
balance energy savings with acceptable wake-up latency. Integrated voltage regulators and a low-
power real-time clock (RTC) enable timed wake-ups and state retention across suspend intervals.
Power was supplied via USB or external 3.3 V/5V sources, with current consumption profiled during
runtime to assess the feasibility of cryptographic operations under realistic energy constraints. These
features contribute to meeting the energy-efficiency goals outlined in Section 3.2.1.

Control Unit.

The Cortex-M4 microcontroller acted as the central orchestrator of protocol execution, coordinating
interactions among system components and managing communication with external entities such as
the manufacturer and verifier. Its rich peripheral set—including UART, I1°C, SPI, and USB Full-

62

Speed—facilitated versatile data exchange between internal cryptographic units and external
interfaces. Depending on deployment requirements, the CAN interface could also be leveraged to
enable fault-tolerant communication in noisy or distributed environments. While abstracted here as a
system control module, this functionality was concretely realized through the STM32 platform’s MCU,
which operated under strict power and memory constraints in accordance with the system goals
defined in Section 3.2.1.

4.2 Prototype Development

Building on the architectural framework and component-level design choices outlined in Section 4.1,
this section presents the development of two complementary implementations of the attestation
protocol introduced in Chapter 3. The previous section identified the key hardware and software
subsystems necessary to realize the DICE-based architecture on a constrained embedded platform. It
further explored architectural trade-offs and justified the adoption of a software/hardware co-design.
The present section transitions from architectural planning to practical realization, describing how the
proposed design was instantiated in both a host-based simulation environment and a hardware-based
embedded prototype.

The first implementation is a software-only proof of concept developed on a general-purpose
processor. This initial stage aims to validate the core security functionality of the protocol, particularly
the DICE-based identity derivation and layered key hierarchy, without the constraints of embedded
hardware. It provides early validation of the protocol logic, facilitates debugging and testing, and
enables rapid exploration of cryptographic operations such as key generation and attestation token
creation. The second implementation builds upon this foundation by deploying the protocol on an
STM32-based microcontroller system, as defined in the system architecture of Figure 4.1. This
software/hardware co-design prototype demonstrates the protocol’s practical feasibility under resource-
constrained conditions. In the final part of this section, measurements are presented to evaluate the
prototype’s area and performance characteristics, thereby providing empirical evidence to support the
robustness and deploy ability of the design.

4.21 Proof of Concept Implementation

To bridge the gap between the protocol design outlined in Chapter 3 and a practical embedded
deployment, an early-stage proof-of-concept implementation was developed. This intermediate step
serves multiple purposes. First, it provides a safe and controlled environment for validating the
functional flows described in Section 3.3.2, including key derivation, attestation message structure, and
verification logic. Second, it allows protocol behavior to be tested independently of hardware-specific
limitations, enabling rapid iteration and debugging of security-critical components. A software-only
setup thus facilitates timely feedback on architectural decisions, ensures that cryptographic primitives
and their composition behave as intended, and confirms the interoperability of protocol elements within
a realistic host environment. This early validation step is critical for reducing integration risk in later
hardware deployment stages, while also substantiating the protocol’'s feasibility from an engineering
and academic standpoint.

To implement and test the proposed attestation protocol in a controlled environment, a
software-only prototype was developed using Python 3.x and auxiliary Bash scripts. The primary
development was conducted in the PyCharm integrated development environment (IDE), which
provided structured debugging, version control integration, and support for interactive testing. At the
cryptographic core of the prototype lies a proprietary software library provided by Intrinsic ID (version
iidtvg-17.2.0). This library implements a suite of security primitives, including random number

63

generation, elliptic curve key derivation, HMAC construction, key derivation functions (KDFs), and
standard hash functions. Due to confidentiality agreements, the internal implementation details and
source code of the library are not disclosed in this report. In addition to the proprietary library, OpenSSL
was used as an auxiliary tool for generating certificate signing requests (CSRs), verifying digital
signatures, and handling X.509 public-key certificates. This modular stack allows for rapid prototyping
and early validation of the cryptographic flows defined in Chapter 3 without dependency on embedded
hardware limitations.

Due to confidentiality constraints, the source code of the proof-of-concept implementation
cannot be disclosed. Nevertheless, the functionality of the prototype is documented through system-
level descriptions. This abstraction enables a clear understanding of the implementation logic while
preserving the proprietary nature of the underlying cryptographic library. The proof-of-concept
simulates a DICE-based architecture composed of three layers: an immutable DICE root, a first
firmware layer, and a second firmware layer, reflecting the protocol architecture defined in Section
3.3.1. As described in Chapter 3, this layered architecture delivers four foundational security
capabilities: (1) device identity, (2) device authentication, (3) remote attestation, and (4) secure software
updates. The goal of this implementation is to verify the feasibility of realizing these capabilities within
a software-only testbench.

The prototype focuses on emulating the manufacturing and enroliment phases, wherein a
unique device identity is generated and validated according to the protocol directives. In particular, the
flow includes key steps such as generation of a Unique Device Secret (UDS), derivation of the
Compound Device Identifier (CDI), generation of asymmetric key-pairs, and creation of a device
certificate signing request (CSR). These steps are implemented in alignment with the functional flows
introduced in Section 3.3.2 and provide early evidence that the cryptographic and architectural
principles of the protocol are practical and interoperable.

Manufacturing Phase

To establish the foundational trust anchors required by the DICE-based architecture, the manufacturing
phase initiates the creation of the manufacturer’'s asymmetric key pair and its corresponding self-signed
root certificate. This operation is a prerequisite for enabling secure device enroliment and authentication
within the broader Public Key Infrastructure (PKI) of the system. As the source code of the prototype is
confidential, the implementation is described through structured explanations. The manufacturer
employs OpenSSL, an open-source cryptographic toolkit widely used for TLS and X.509 operations, to
perform these tasks. Specifically, an elliptic curve (EC) private key is generated using the prime256v1
(SECP256R1) curve, a standard supported by most TLS implementations. This key is then used to
create a certificate signing request (CSR), which is self-signed to yield the root certificate. The root
certificate serves as the ultimate trust anchor for subsequent device certificate chains. This procedure,
while simple, represents a critical step in provisioning a trusted enrollment infrastructure, ensuring that
all subsequent device identities can be verified by a recognized and cryptographically bound authority.

Enroliment Phase
DICE Layer
The Enrollment Phase begins with the execution of the DICE root layer, which is responsible for deriving
a cryptographic anchor for the device identity. This is achieved through a series of deterministic
operations that simulate the behavior of a real DICE engine, emulated here in a software-only
environment.

The first step involves computing a cryptographic measurement of the first mutable firmware
region, referred to as Layer 1. In the prototype, this is modeled as a 5,000-byte block of pseudo-random

64

data generated using a deterministic seed, ensuring repeatability across simulations. This emulates the
behavior of a firmware hashing operation typically performed by a DICE hardware component. Next, a
Unique Device Secret (UDS) is generated. This UDS simulates a device-embedded root secret,
typically provisioned during manufacturing and permanently fused into hardware. In this proof-of-
concept, a 32-byte UDS is generated using a seeded random number generator to emulate
deterministic behavior for testing.

The core of the DICE process lies in the derivation of the Compound Device Identifier (CDI).
This is implemented via an HMAC operation, where the UDS acts as the cryptographic key and the
Layer 1 code measurement as the message. SHA-256 is used as the digest function, in line with DICE
recommendations for cryptographic strength. The result, a 32-byte CDI, acts as a root secret for all
subsequent identity derivation steps. In accordance with DICE principles, the UDS is not reused beyond
this point and access to it is programmatically restricted.

This software emulation of the DICE layer successfully demonstrates that CDI derivation logic
can be implemented in a modular and testable manner, offering a reliable cryptographic foundation for
downstream identity and attestation flows.

First Firmware Layer — Device ldentity

Following successful CDI derivation by the DICE root layer, control transitions to the first mutable
firmware region, Layer 1, which is responsible for establishing the device identity. This stage
demonstrates how a unique asymmetric key pair can be deterministically derived from the CDI, and
how that identity is formally enrolled into the system via a manufacturer-signed certificate.

In the implementation, the CDI produced by the DICE layer is used directly as the private key
input to an elliptic curve key generation routine. Specifically, the CDI serves as the d parameter in the
instantiation of an EC key object based on the SECP256R1 curve (also known as prime256v1). This
operation yields a public/private key pair deterministically bound to the UDS and the first firmware
measurement, in accordance with the DICE key derivation model.

To enable authentication and establish trust within the system's public key infrastructure (PKI),
the device generates a Certificate Signing Request (CSR) for its newly derived public key. This CSR
is formatted using OpenSSL tooling and contains identifying information as well as the public key
material. The request is then submitted to the manufacturer, who acts as the root Certificate Authority
(CA). The manufacturer signs the CSR using its private EC key (created during the Manufacturing
Phase), thereby issuing a valid X.509 device certificate. This certificate serves as a formal endorsement
of the device identity and enables external verifiers to validate its authenticity during attestation.

This portion of the Enroliment Phase confirms that identity derivation, CSR creation, and PKI-
based enrollment can be successfully implemented in a modular, interoperable fashion using standard
cryptographic tools and deterministic protocol inputs.

First Firmware Layer — Layer Identity

Once the device identity has been established, the protocol proceeds to derive a second asymmetric
key pair associated with the Layer 2 firmware. This additional key serves to reinforce the layered trust
model central to DICE-based architectures, where each firmware layer is cryptographically bound to
both its predecessor and the underlying device identity.

As with the previous layer, the process begins by generating a measurement of the Layer 2
code. In the proof-of-concept, this measurement is modeled as a random byte sequence and is
computed using a deterministic random seed to emulate a stable hash of the firmware contents. The
private component of the layer key (Keyiayer1) is then deterministically derived by applying an HMAC-
based construction to the previously computed CDI and the Layer 2 code measurement. The resulting

65

256-bit output acts as the private key input to an ECC key object using the SECP256R1 curve. A
corresponding public key is derived, and the complete key pair forms the cryptographic basis for Layer
2.

To enable this new key to be integrated into the device's certificate chain, the device generates
a Certificate Signing Request (CSR) for the Layer Key using OpenSSL tooling. Unlike the device
certificate, which is signed by the manufacturer, the Layer Key’s CSR is signed by the device private
key, thus creating a cryptographic delegation within the device’s internal certificate hierarchy. This
demonstrates both key isolation between layers and secure delegation of trust, as described in the
layered attestation protocol of Section 3.3.

Through these operations, the proof-of-concept successfully validates a key architectural
requirement of the protocol: the ability to derive and authenticate firmware-layer-specific identities in a
chained, verifiable, and deterministic manner, without exposing underlying secrets or requiring external
input beyond initial enroliment.

Discussion

Despite the successful demonstration of identity derivation and cryptographic key flows in a software-
only environment, the proof-of-concept implementation lacks real-world constraints such as memory
limitations, peripheral interactions, and runtime performance bottlenecks. As such, it does not assess
the practical viability of the protocol under deployment conditions. Moreover, critical features such as
secure boot, interrupt-handling, and resistance to physical tampering require hardware-level
integration. These limitations motivate the development of a microcontroller-based prototype, which is
presented in the following subsection to further validate the protocol’s deployability and efficiency.

4.2.2 Embedded Implementation

To complement the software-only proof of concept presented earlier, a hardware-based prototype was
developed using an STM32 Nucleo development board. This implementation instantiates the
attestation protocol in a resource-constrained embedded environment, validating the feasibility of key
derivation, certificate handling, and attestation flows under realistic deployment conditions. This section
articulates the development and evaluation of a proof-of-concept prototype that validates the four core
security objectives of the proposed protocol, device identity, device authentication, remote attestation,
and secure software updates. The prototype builds upon the high-level system architecture presented
in Figure 4.1 and represents a software/hardware co-design tailored to embedded constraints. The
implementation includes a practical setup involving an STM32-based microcontroller, a layered
firmware structure, and a supporting software stack for communication and cryptographic operations.
The demonstrator scenario emulates realistic deployment conditions, culminating in a live execution of
the attestation protocol and validation against a remote verifier. The interaction of system entities,
certificate provisioning workflow, and TLS-based verification are summarized in Figure 4.2.

Test Platform

The embedded prototype is based on the STM32L476 Nucleo board, a Cortex-M4 development
platform selected for its relevance to industrial loT applications and its support for low-power operation,
hardware security primitives, and flexible peripheral interfaces. The microcontroller features 1 MB of
Flash memory and 128 KB of SRAM, allowing for layered firmware deployment and secure storage of
cryptographic materials. Its boot sequence is configurable via hardware boot pins, enabling the
separation of a DICE root layer, first firmware (Layer 1), and second firmware (Layer 2) as defined in
the protocol architecture.

The STM32Cube HAL was used to manage low-level hardware interactions, while the cryptographic
operations were implemented using the mbedTLS library. Notably, hardware RNG capabilities were

66

leveraged to support key generation and secure seed material, consistent with protocol requirements
for entropy sourcing. The software stack was structured into a minimal bootloader, two sequential
firmware images, and a secure communication module interfacing with external Python and Bash
scripts. These scripts facilitated certificate signing, UART communication, and TLS message parsing
on the host side.

Demonstration Procedure
The demonstration begins with the STM32 device powering up and executing its DICE-based
initialization routine. Upon reset, the DICE root layer computes the Compound Device Identifier (CDI)
from the Unique Device Secret (UDS) and a measurement of Layer 1. Using the CDI, the first firmware
layer derives the device key-pair and generates a certificate signing request (CSR). This CSR is
transmitted to a local Certificate Authority (CA) hosted on a connected PC via UART. The PC uses
Python scripts and OpenSSL to sign the CSR and return the signed X.509 certificate to the device.
Once the device certificate is installed, Layer 2 generates its own key-pair based on a hash of
its firmware and the CDI. A second CSR is issued and signed internally by the device using the Layer
1 private key, completing the internal certificate hierarchy. With both certificates in place, the device
initiates a secure TLS connection to a cloud-based verifier. During handshake, the device presents its
certificate chain and a static firmware identifier (FWID). The verifier performs chain validation,
authenticates the device identity, and checks the FWID value against known-good references to
complete remote attestation.

This real-time demonstration validates the full lifecycle of identity enrollment and remote
verification. The TLS session was successfully established using mbedTLS, and FWID values were
correctly verified by the server. The entire process is represented in Figure 4.2, which depicts the
communication flow, cryptographic tasks, and exchanged values.

e Instal local CA cert
5 corthalnventeston O Entities to be connected
e build JS for connection
B e TLS authentication [0 Tasks to be performed
(e FWID verification
Cloud Sty <=, Connections between entities
Server
J —> Exchanged values
/\
Cert chain for
authentication
i LS
FWID values
for verification
(Local CA)
(h UART I
ST-device & >
-~ U J
d devid CSR
e create devld key-pair ciabiahich create CA key-pair
e create alias key-pair create CA sel};-gi n cert
e create alias cert send devld cert + CA cert sign devld CSR d
e create devld CSR & cr%ate dovidcort
e static FWID values (in Python + OpenSSL)
(in Embedded C + mbedTLS) Y P
~ ,\\-‘//7 \\\ - ~

Figure 4.2 Demonstrator scenario

Adversarial Validation Scenario

To evaluate the protocol’s resilience against malicious firmware manipulation, an adversarial test was
conducted in which the firmware image for Layer 2 was intentionally modified. This tampering altered
the measurement used in the CDI-based key derivation and led to a mismatch in the derived alias key.
When the device attempted to generate a valid certificate for the altered Layer 2, the resulting signature
verification failed during attestation.

67

The cloud verifier detected the inconsistency in the certificate chain and rejected the connection
attempt, effectively preventing unauthorized access. This scenario confirms that the binding between
firmware measurements and cryptographic identities—enforced through deterministic key derivation—
acts as a reliable mechanism for detecting unauthorized changes. Although not exhaustive, this attack
simulation reinforces the importance of measurement-based identity in preserving system integrity
under adversarial conditions.

4.3 Empirical Evaluation and Discussion

To assess the feasibility of the attestation protocol under resource-constrained conditions, an empirical
evaluation was conducted using the STM32L4 Nucleo-based prototype described in Section 4.2. The
evaluation focuses on profiling the computational cost of the protocol’s cryptographic building blocks in
terms of CPU cycle counts and stack usage, using instrumentation around representative mbedTLS
routines. These measurements offer insight into the practicality and efficiency of the layered protocol
when implemented in a real embedded environment.

4.3.1 Measurement Limitations and Challenges

Obtaining accurate performance metrics in deeply embedded systems presents several challenges.
The STM32L4 platform offers limited real-time debugging visibility, and some timing measurements are
susceptible to jitter introduced by peripheral latency or interrupt-driven behavior. Moreover, the lack of
dedicated cycle counters or tracing tools necessitated the insertion of instrumentation code to estimate
execution time in CPU cycles.

To mitigate these limitations, the evaluation relied on internal timers and benchmarking
instrumentation placed around key cryptographic routines. While this approach provides reasonable
estimates of computational cost, it does not account for hardware noise, caching effects, or
asynchronous events that may arise during execution. Additionally, measurements were conducted in
a non-interfered, single-threaded environment, and communication delays over UART or TLS were
assumed to be deterministic. Consequently, the results presented should be interpreted as lower-bound
approximations rather than absolute timings.

4.3.2 Cycle Count and Stack Usage Analysis
The prototype’s performance evaluation was structured around the critical building blocks of the
protocol: hashing, HMAC computation, ECC key generation, and X.509 certificate creation. All
operations were implemented using the mbedTLS cryptographic library.
e SHA-256 Hashing of Firmware Layers
The SHA-256 measurements reflect the profiled call sequence around the mbedTLS SHA-
256 routine (init/start/update/finish/free) used by the prototype. In this setup, the cost is
dominated by the mbedtls_sha256_finish() routine (=72 cycles), with minimal overhead from
initialization and cleanup.

e CDI Derivation via HMAC-SHA256
CDI derivation required =330 cycles. The most expensive component was
mbedtls_md_hmac_finish() at 218 cycles, with smaller contributions from setup (20 cycles)
and initialization (80 cycles). These results confirm that one-way key derivation is
computationally lightweight.

e ECC Key Generation (Device Identity)
The generation of the DevicelD key pair was by far the most intensive operation, taking
approximately 352,400 cycles for mbedtls_ecp_gen_keypair(). Additional overhead for

68

random seeding, group initialization, and PEM formatting brings the total above 354,000
cycles.

o ECC Key Generation (Layer Key)
Layer key derivation follows the same path and was measured at =353,500 cycles. The
negligible difference reflects minor variability in the input entropy.

o X.509 Certificate Creation (Alias Certificate)
The creation of the alias certificate was the most expensive individual operation. The total
cost, including parsing, subject/issuer handling, and PEM encoding, exceeded 376,000
cycles. Stack usage for this function peaked at 2616 bytes, highlighting the resource burden
of standard certificate handling on constrained devices.

Figure 4.3 below summarizes total cycle counts across key cryptographic operations:
Total Cycle Count per Major Operation Group

350000 -

300000 4

250000 A

200000

Cycles

150000 +

100000 -

50000 4

0 T T
< C
& bc,'ﬂ‘ “3. & ‘bg,“
5 0& & ¥
il © & il
P A v

ow.-
Figure 4.3 Total CPU cycle cost per cryptographic operation

The next figure 4.4 further decomposes ECC key generation steps for both DevicelD and Layer keys:
ECC Key Generation Cost Comparison

350000 1

300000 -

250000 -

150000 -

100000 1

50000 -

0 -

Device ECC Alias ECC

Figure 4.4 Internal breakdown of ECC key generation for DevicelD and Layer keys

Figure 4.5 shows stack usage of selected cryptographic operations, highlighting memory constraints:

Stack Usage by Component

2500 A

2000 A

1500 A

1000 ~

500 A

Q-

Alias Certificate

Figure 4.5 Stack memory usage for selected cryptographic operations

Figure 4.6 presents a detailed breakdown of the alias certificate creation process:

Alias Certificate Creation - Cycle Breakdown

Set Extension
Set Validity

Set Serial A

Set Issuer Name -
Set Subj Name -
Parse Pub Key -
Parse Key

MPI Read -

Seed Buf |

T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000
Cycles

Figure 4.6 Cycle breakdown of alias certificate creation using mbedTLS routines

70

Figure 4.3.5 aggregates stack and memory usage for critical flows:
ROM and RAM Usage per Firmware Component

50 | HEE ROM Usage (KB)
s RAM Usage (KB)

g

Memory Usage (KB)

;¥
[=]
1

10 4

Bootloader Firmware A Firmware B

Figure 4.7 Summary of stack and code memory usage across components

4.3.3 Analysis and Discussion

These measurements confirm that while the DICE-based attestation protocol is viable on a
microcontroller-class device, its feasibility hinges on judicious use of computational resources.
Lightweight primitives such as hashing and HMAC can be executed efficiently, even in real-time
contexts. However, public-key operations, particularly ECC key generation and certificate formatting,
introduce substantial latency and memory overhead. These operations collectively consume
hundreds of thousands of cycles and require over 2 KB of stack memory.

Stack Usage During Attestation Phase

2616

2500 2400

2000

1500 4

Stack Usage (Bytes)

1000 4

o AMeC ety ation e Aot cner axion

e pias ¥ et

piias CF

Figure 4.8 Stack usage across attestation stages (DICE-based prototype)

From a security perspective, the implementation fulfills all critical requirements established in Section
3.2.1. Unique device identities are derived from a hardware-bound secret (R1), attestation flows are
cryptographically bound and verifiable (R3), and layered key isolation is successfully demonstrated

71

(R5). However, the reliance on host-side tooling (e.g., OpenSSL for certificate signing) introduces
partial external dependencies that must be resolved in future fully self-contained implementations.

Despite these constraints, the prototype demonstrates key engineering strengths:
e Modularity: The codebase is logically partitioned into identity derivation, attestation logic,
and secure update routines.

o Feasibility: All essential flows, including device identity derivation and certificate generation,
execute successfully within the STM32’s processing envelope.

¢ Robustness: Deterministic behavior was achieved using seeded random number generation
and reproducible cryptographic operations.

Some limitations remain. Debug visibility was constrained by the platform’s peripheral limitations.
Confidentiality restrictions also precluded direct sharing of the source code and prevented full
transparency in performance instrumentation. These constraints affected both reproducibility and
collaborative validation.

Future Work should prioritize tighter hardware integration, including dedicated ECC and X.509
accelerators, and transition away from host-assisted components such as Python scripts and manual
OpenSSL commands. Additional steps may include dynamic attestation over the network, integration
of secure boot, and real-time update negotiation.

72

5 Conclusions

This chapter concludes the thesis by summarizing the main outcomes of the work and reflecting on the
implications of a DICE-rooted, certificate-based asymmetric attestation approach for resource-
constrained IoT devices. Section 5.1 consolidates the key results across the background, protocol
design, STRIDE-based security analysis, and the prototype implementation and measurements.
Section 5.2 outlines focused directions for future work, including hardware-backed key protection,
update hardening (anti-rollback and recovery), clearer evidence semantics and freshness, and
considerations for fleet-scale deployment and deeper validation.

5.1 Thesis Summary

This thesis investigated the design and security of a lightweight asymmetric attestation protocol tailored
for resource-constrained IoT devices. The primary objective was to enable verifiable device identity,
firmware integrity, and secure software updates by leveraging a hardware-rooted trust anchor compliant
with the Device Identifier Composition Engine (DICE) standard. By establishing this foundation, the
work addressed the need for scalable and standards-aligned remote attestation mechanisms that
remain feasible on distributed embedded systems.

Chapter 1 motivated the work by outlining the security challenges that arise when low-cost,
network-connected embedded devices are deployed at scale. It reviewed representative threats and
prior attestation techniques, and it positioned the thesis goal as the development of an end-to-end
approach that can establish device trustworthiness across the device lifecycle.

Chapter 2 provided the background necessary to ground the design choices, including
embedded security fundamentals, cryptographic primitives, public key infrastructure concepts, and the
role of TLS in mutual authentication and secure transport. This background clarifies how certificate-
based authentication and chain validation integrate naturally with the DICE-derived identity and
attestation mechanisms.

Chapter 3 presented the core design of the proposed solution. Section 3.1 described the
engineering approach, grounded in a V-Model, to structure development and validation activities.
Section 3.2 defined the design objectives and derived six concrete system requirements (R1-R6),
spanning device identity derivation, authenticated communication, attestation, and update-related
constraints, while keeping hardware assumptions explicit and minimal. These requirements were
organized using functional, non-functional, and security classifications, and refined through the Open
Security Architecture (OSA) framework.

Based on these requirements, Section 3.3 introduced a layered protocol architecture built on
DICE. The device lifecycle was captured through manufacturing and deployment phases, including
provisioning and enroliment steps where certificates and firmware identities (FWIDs) are anchored into
a verifiable chain of trust. The resulting functional flows describe how device identity is established from
hardware-resident secrets, how attestation evidence is conveyed through the certificate chain, and how
authenticated updates are supported. The protocol was then assessed using a STRIDE-based threat
model, with an accompanying threat matrix, asset analysis, and explicit assumptions. Together, these
elements link the identified threats to concrete mitigations and to the requirements defined in Section
3.2.

Chapter 4 translated the protocol design into an executable prototype and evaluation on a
commercial microcontroller platform. It documented the selection of an STM32L4 Nucleo target, the

73

choice of cryptographic building blocks and libraries (notably mbedTLS for ECC, hashing, and X.509
handling), and the integration of the protocol’s layered key derivation and certificate generation steps.
A demonstrator validated the intended flows, and empirical measurements quantified feasibility under
constrained conditions, reporting cycle counts and stack usage for SHA-256 hashing, HMAC-based
CDI derivation, ECC key generation, and X.509 certificate creation. The results indicate that lightweight
primitives incur modest cost, while public-key operations and certificate processing dominate runtime
and memory overhead.

Overall, the thesis shows that a DICE-rooted, certificate-based asymmetric attestation protocol
can be implemented on microcontroller-class devices when the trusted computing base is carefully
constrained and the lifecycle flows are explicitly mapped to requirements. The resulting design provides
a standards-aligned basis for device identity, attestation, and authenticated updates, and the prototype
results offer practical evidence of feasibility and clear directions for engineering hardening in future
work.

5.2 Future Work

The work in this thesis demonstrates that a DICE-rooted, certificate-based asymmetric attestation
protocol can be realized on constrained microcontrollers with modest hardware assumptions. At the
same time, the protocol and prototype were intentionally scoped to remain feasible within the thesis
timeframe and the available tooling. The following directions outline next steps that would strengthen
the architecture and improve its deployability without changing its core design principles.

Hardware-backed key protection.

The protocol assumes that long-term secrets are protected on-device and that debug access is disabled
after provisioning. A practical extension is to make these assumptions explicit in the implementation by
using hardware-enforced key isolation rather than relying primarily on software-based containment.
This can be achieved by storing long-term secrets, such as UDS/CDI-derived private keys and
intermediate key material, in protected storage with enforced access control. Suitable mechanisms
include a secure element, a vendor key store, or microcontroller security features such as readout
protection and privilege separation. In addition, debug interfaces (e.g., SWD/JTAG) should be
permanently disabled or irreversibly locked on fielded devices.

Where supported, the root secret can be strengthened further by deriving the UDS
intrinsically on the device. This reduces provisioning sensitivity and improves resistance to device
cloning because the root secret is not injected but originates from device-specific physical properties.
One concrete direction is to use an SRAM PUF-based approach, such as Intrinsic ID’s solution, as the
source for UDS generation. In this setting, the UDS is reconstructed from device-unique behavior at
boot, aligning with the DICE expectation of a high-entropy, statistically unique secret. Removing explicit
UDS injection also reduces supply-chain exposure and narrows the set of manufacturing steps that
require strict protection.

Anti-rollback and update recovery.

While the protocol defines authenticated updates through signature and certificate validation, a
deployable system must also prevent rollback to older, vulnerable firmware versions. This requires an
explicit anti-rollback policy, for example by enforcing monotonically increasing firmware versions using
a protected version counter or an equivalent mechanism. In addition, the update process should be
resilient to failures. Interrupted or invalid updates must not leave the device unbootable. A practical

74

approach is to include a well-defined fallback image and to report update outcomes to the backend for
monitoring and recovery.

Attestation evidence and validation.

The current approach represents the attested firmware state through firmware identities (FWIDs)
conveyed via the certificate chain. A practical next step is to specify this evidence model more explicitly
for both manufacturing and field operation by defining how FWIDs are encoded in certificates, what
each FWID represents (for example, which firmware layer and measurement basis), and which verifier-
side validation steps are mandatory. In addition, freshness and session binding should be enforced
explicitly by incorporating verifier-provided challenges into the attestation exchange and ensuring that
the presented evidence is cryptographically bound to the authenticated session context.

Deployment and scalability.

The thesis validates the protocol through a single-device flow. Future work should therefore evaluate
the operational aspects that emerge when the same approach is deployed on a scale. Key aspects
include validating enroliment and provisioning workflows under operational constraints, such as failure
handling, re-enrollment, and clear authorization boundaries for associating devices with specific
deployments. In addition, deployments in which devices authenticate to infrastructure not operated by
the manufacturer require careful trust-domain separation, for example to support multi-tenant operation
without weakening verification guarantees. Addressing these topics is primarily an engineering effort
focused on defining lifecycle states, interfaces, and operational procedures, rather than modifying the
cryptographic core of the protocol.

Validation and evaluation

While Chapter 3 provides a structured STRIDE-based analysis with explicit assumptions and adversary
capabilities, future work should strengthen assurance through targeted empirical validation aligned with
the identified attacker classes. This includes practical testing that exercises debug misuse attempts,
firmware and update-path tampering, and leakage-oriented adversaries informed by timing, power, or
fault behavior. In addition, the evaluation can be expanded beyond cycle counts and memory footprint
by quantifying energy consumption and end-to-end latency during authentication and attestation.
Finally, the security guarantees can be expressed more explicitly as properties tied to the stated
assumptions, improving both confidence in the results and comparability with related designs.

75

Bibliography

[1] Gartner. (2019). Gartner Says 5.8 Billion Enterprise and Automotive loT Endpoints Will Be in Use in
2020. [Online] Available at: https://www.gartner.com/en/newsroom/press-releases/2019-08-29-
gartner-says-5-8-billion-enterprise-and-automotive-io [Accessed 27 Feb. 2020].

[2] The Growth in Connected loT Devices Is Expected to Generate 79.4ZB of Data in 2025, According
to a New IDC Forecast. (2019). Retrieved 27 February 2020, from
https://www.idc.com/getdoc.jsp?containerld=pruS45213219.

[3] McKinsey & Company. (n.d.). Unlocking the potential of the Internet of Things. [online] Available at:
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-
value-of-digitizing-the-physical-world [Accessed 28 Feb. 2020].

[4] Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy, 9(3), 49-
51.

[5] IoT: number of connected devices worldwide 2012-2025 | Statista. (2020). Retrieved 27 February
2020, from https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/.
[6] Cope, P., Campbell, J., & Hayajneh, T. (2017, January). An investigation of Bluetooth security
vulnerabilities. In 2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC) (pp. 1-7). IEEE.

[7]1 Serpanos, D. N., & Voyiatzis, A. G. (2013). Security challenges in embedded systems. ACM
Transactions on embedded computing systems (TECS), 12(1s), 1-10.

[8] O'Donnell, L. (2018). lIoT Security Concerns Peaking — With No End In Sight. Retrieved 9 March
2020, from https://threatpost.com/iot-security-concerns-peaking-with-no-end-in-sight/131308/.

[91 Roman-Castro, R., Loépez, J., & Gritzalis, S. (2018). Evolution and trends in iot
security. Computer, 51(7), 16-25.

[10] Greenberg, A., Barrett, B., & Newman, L. (2015). Hackers Remotely Kill a Jeep on the Highway—
With Me in It. Retrieved 9 March 2020, from https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/.

[11] Kaspersky Lab. (2015). Damage Control: The Cost of Security Breaches IT Security Risks Special
report Series. [online] Available at: https://media.kaspersky.com/pdfit-risks-survey-report-cost-of-
security-breaches.pdf [Accessed 7 Mar. 2020].

[12] Micro, T., 2018. SAMSAM Ransomware Hits US Hospital, Management Pays $55K Ransom -
Security News - Trend Micro MY. [online] Trendmicro.com. Available at:
<https://lwww.trendmicro.com/vinfo/my/security/news/cyber-attacks/samsam-ransomware-hits-us-
hospital-management-pays-55k-ransom> [Accessed 10 March 2020].

[13] G. U. of Technology. Meltdown and Spectre - Vulnerabilities in modern computers leak passwords
and sensitive data. Retrieved 10 March 2020, from https://meltdownattack.com

[14] D. N. Migwi and R. Romaniuk, “Trusted Computing in the Internet of Things: Securing the Edge
through Hardware-Enforced Trust,” *IEEE Trans. Emerging Topics in Computing®, vol. XX, no. YY, pp.
77-77, May 2025.

[15] B. Madabhushi, C. S. Mummidi, S. Kundu, and D. Holcomb, “Resurrection Attack: Defeating Xilinx
MPU’s Memory Protection,” arXiv:2405.13933, May 2024.

[16] C. Heinz and A. Koch, “DD-MPU: Dynamic and Distributed Memory Protection Unit for Embedded
System-on-Chips,” in *Proc. SAMOS '23*, 2023.

[17]1 T. Hoang *et al.*, “TrustLite: A Security Architecture for Tiny Embedded Devices,” in *Proc.
ESWEEK?*, 2013, pp. 23—28.

76

https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://meltdownattack.com/

[18] A. S. Banks, M. Kisiel, and P. Korsholm, “Remote attestation: A literature review,” arXiv preprint
arXiv:2105.02466, May 2021.

[19] Seshadri, A., Luk, M., Shi, E., Perrig, A., Van Doorn, L., & Khosla, P. (2005, October). Pioneer:
verifying code integrity and enforcing untampered code execution on legacy systems. In Proceedings
of the twentieth ACM symposium on Operating systems principles (pp. 1-16).

[20] Seshadri, A., Luk, M., & Perrig, A. (2008, June). SAKE: Software attestation for key establishment
in sensor networks. In International Conference on Distributed Computing in Sensor Systems (pp. 372-
385). Springer, Berlin, Heidelberg.

[21] Yang, Y., Wang, X, Zhu, S., & Cao, G. (2007, October). Distributed software-based attestation for
node compromise detection in sensor networks. In 2007 26th IEEE International Symposium on
Reliable Distributed Systems (SRDS 2007) (pp. 219-230). IEEE.

[22] Li, Y., McCune, J. M., & Perrig, A. (2011, October). VIPER: verifying the integrity of PERipherals'
firmware. In Proceedings of the 18th ACM conference on Computer and communications security (pp.
3-16).

[23] Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., & Butterworth, J. (2012, May). New
results for timing-based attestation. In 2012 IEEE Symposium on Security and Privacy (pp. 239-253).
IEEE.

[24] Jakobsson, M., & Johansson, K. A. (2010). Retroactive Detection of Malware with Applications to
Mobile Platforms. HotSec, 10, 1-13.

[25] Strackx, R., Piessens, F., & Preneel, B. (2010, September). Efficient isolation of trusted
subsystems in embedded systems. In International Conference on Security and Privacy in
Communication Systems (pp. 344-361). Springer, Berlin, Heidelberg.

[26] Arbaugh, W. A., Farber, D. J., & Smith, J. M. (1997, May). A secure and reliable bootstrap
architecture. In Proceedings. 1997 |IEEE Symposium on Security and Privacy (Cat. No.
97CB36097) (pp. 65-71). IEEE.

[27] Level, T. M. S. (2). Version 1.2, Revision 103 (Trusted Computing Group).

[28] Pearson, S., Mont, M. C., & Crane, S. (2005, May). Persistent and dynamic trust: analysis and the
related impact of trusted platforms. In International Conference on Trust Management (pp. 355-363).
Springer, Berlin, Heidelberg.

[29]Kil, C., Sezer, E. C., Azab, A. M., Ning, P., & Zhang, X. (2009, June). Remote attestation to dynamic
system properties: Towards providing complete system integrity evidence. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks (pp. 115-124). IEEE.

[30] Sailer, R., Zhang, X., Jaeger, T., & Van Doorn, L. (2004, August). Design and Implementation of a
TCG-based Integrity Measurement Architecture. In USENIX Security symposium (Vol. 13, No. 2004,
pp. 223-238).

[31] ARM CORPORATION. Building a secure system using TrustZone technology. Publication number:
PRD29- GENC-009492C.

[32] Shacham, H. (2007, October). The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer and
communications security (pp. 552-561).

[33] G. Klein et al., “seL4: Formal verification of an OS kernel,” in Proc. 22nd ACM SIGOPS Symp.
Operating Systems Principles (SOSP), Big Sky, MT, USA, Oct. 2009, pp. 207-220.

[34] INTEL CORPORATION. Intel Trusted Execution Technology (Intel TXT) — Software Development
Guide, December 2009. Document Number: 315168-006.

[35] Virtualization, A. (2005). Secure virtual machine architecture reference manual. AMD
Publication, 33047.

77

[36] Costan, V., Sarmenta, L. F., Van Dijk, M., & Devadas, S. (2008, September). The trusted execution
module: Commaodity general-purpose trusted computing. In International Conference on Smart Card
Research and Advanced Applications (pp. 133-148). Springer, Berlin, Heidelberg.

[37] Kostiainen, K., Dmitrienko, A., Ekberg, J. E., Sadeghi, A. R., & Asokan, N. (2010, June). Key
attestation from trusted execution environments. In International Conference on Trust and Trustworthy
Computing (pp. 30-46). Springer, Berlin, Heidelberg.

[38] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., & Isozaki, H. (2007). An execution infrastructure
for TCB minimization.

[39] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., & Perrig, A. (2010, May). TrustVisor:
Efficient TCB reduction and attestation. In 2010 IEEE Symposium on Security and Privacy (pp. 143-
158). IEEE.

[40] Nie, C. (2007). Dynamic root of trust in trusted computing. In TKK T1105290 Seminar on Network
Security.

[41] Parno, B., McCune, J. M., & Perrig, A. (2010, May). Bootstrapping trust in commodity computers.
In 2010 IEEE Symposium on Security and Privacy (pp. 414-429). |IEEE.

[42] Strackx, R., Piessens, F., & Preneel, B. (2010, September). Efficient isolation of trusted
subsystems in embedded systems. In International Conference on Security and Privacy in
Communication Systems (pp. 344-361). Springer, Berlin, Heidelberg.

[43] J. Noorman et al., “Sancus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base,” in Proc. 22nd USENIX Security Symp. (USENIX Security ’13),
Washington, D.C., USA, Aug. 2013, pp. 479-498.

[44] Eldefrawy, K., Tsudik, G., Francillon, A., & Perito, D. (2012, February). Smart: secure and minimal
architecture for (establishing dynamic) root of trust. In Ndss (Vol. 12, pp. 1-15).

[45] Koeberl, P., Schulz, S., Sadeghi, A. R., & Varadharajan, V. (2014, April). TrustLite: A security
architecture for tiny embedded devices. In Proceedings of the Ninth European Conference on
Computer Systems (pp. 1-14).

[46] Eldefrawy, K., Rattanavipanon, N., & Tsudik, G. (2017, July). HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In Proceedings of the 10th ACM Conference on
Security and Privacy in wireless and Mobile Networks (pp. 99-110).

[47] Brasser, F., Rasmussen, K. B., Sadeghi, A. R., & Tsudik, G. (2016, June). Remote attestation for
low-end embedded devices: the prover's perspective. In 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC) (pp. 1-6). IEEE.

[48] Schulz, S., Schaller, A., Kohnhauser, F., & Katzenbeisser, S. (2017, September). Boot attestation:
Secure remote reporting with off-the-shelf iot sensors. In European Symposium on Research in
Computer Security (pp. 437-455). Springer, Cham.

[49] England, P., Marochko, A., Mattoon, D., Spiger, R., Thom, S., & Wooten, D. (2016). Riot-a
foundation for trust in the internet of things. Microsoft Research.

[50] DICE | Trusted Computing Group. (2016). Retrieved 15 April 2020, from
https://trustedcomputinggroup.org/work-groups/ dice-architectures/

[51] Jager, L., Petri, R., & Fuchs, A. (2017, August). Rolling dice: Lightweight remote attestation for cots
iot hardware. In Proceedings of the 12th International Conference on Availability, Reliability and
Security (pp. 1-8).

[52] Hristozov, S., Heyszl, J., Wagner, S., & Sigl, G. (2018, February). Practical runtime attestation for
tiny iot devices. In Proceedings of the 2018 Workshop on Decentralized loT Security and Standards,
San Diego, CA, USA (Vol. 18).

[53] Heath, S. (2002). Embedded systems design. Elsevier.

78

[54] Vahid, F., & Givargis, T. (1999). Embedded system design: A unified hardware/software
approach. Department of Computer Science and Engineering University of California.

[55] Marwedel, P. (2017). Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems, and the Internet of Things. Springer.

[56] Cai, L. Z., & Zuhairi, M. F. (2017, September). Security challenges for open embedded systems.
In 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T) (pp. 1-
6). IEEE.

[57] Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.

[58] Schatz, D., Bashroush, R., & Wall, J. (2017). Towards a more representative definition of cyber
security. Journal of Digital Forensics, Security and Law, 12(2), 53-74.

[59] Whitman, M. E., & Mattord, H. J. (2011). Principles of information security. Cengage Learning.
[60] Pipkin, D. L. (2000). Information security: protecting the global enterprise. Prentice-Hall, Inc.

[61] Cherdantseva, Y., & Hilton, J. (2015). Information security and information assurance: discussion
about the meaning, scope, and goals. In Standards and Standardization: Concepts, Methodologies,
Tools, and Applications (pp. 1204-1235). IGI Global.

[62] Newsome, B. (2013). A practical introduction to security and risk management. SAGE Publications.
[63] Organization for Economic Cooperation and Development (OECD). (2002). Guidelines for the
Security of Information Systems and Networks: Towards a Culture of Security.

[64] Pender-Bey, G. (2013). The Parkerian hexad: The CIA triad model expanded. Master of Science
in Information Security at Lewis University, 1-31.

[65] Stoneburner, G., Hayden, C., & Feringa, A. (2001). Engineering principles for information
technology security (a baseline for achieving security). Booz-Allen and Hamilton Inc Mclean VA.

[66] Open Group. (2017). Open Information Security Management Maturity Model (O-ISM3), Version
2.0.

[67] Fenrich, K. (2008). Securing your control system: the" CIA triad" is a widely used benchmark for
evaluating information system security effectiveness. Power Engineering, 112(2), 44-49.

[68] Andress, J. (2014). The basics of information security: understanding the fundamentals of InfoSec
in theory and practice. Syngress.

[69] Beckers, K., Heisel, M., & Hatebur, D. (2015). Pattern and Security Requirements. Pattern Secur.
Requir. Eng. Establ. Secur. Stand, 1-474.

[70] Thomas, R. (2016). Espionage and Secrecy (Routledge Revivals): The Official Secrets Acts 1911-
1989 of the United Kingdom. Routledge.

[71] Boritz, J. E. (2005). IS practitioners' views on core concepts of information integrity. International
Journal of Accounting Information Systems, 6(4), 260-279.

[72] Loukas, G., & Oke, G. (2010). Protection against denial of service attacks: A survey. The Computer
Journal, 53(7), 1020-1037.

[73] Samonas, S., & Coss, D. (2014). THE CIA STRIKES BACK: REDEFINING CONFIDENTIALITY,
INTEGRITY AND AVAILABILITY IN SECURITY. Journal of Information System Security, 10(3).

[74] What is Root of Trust? | Thales. Retrieved from https://cpl.thalesgroup.com/fag/hardware-security-
modules/what-root-trust

[75] Flexible Key Provisioning with SRAM PUF white paper landing page - Intrinsic ID | Home of PUF
Technology. Retrieved from https://www.intrinsic-id.com/resources/white-papers/white-paper-flexible-
key-provisioning-sram-puf/

[76] Biometric Access Control Systems: Everything You Should Know. Retrieved 16 October 2020,
from https://keyo.co/biometric-news/biometric-access-control-systems-101-everything-you-should-
know

[77] Bai, Y. (2016). ARM® Memory Protection Unit (MPU).

79

[78] Arbaugh, W. A., Farber, D. J., & Smith, J. M. (1997, May). A secure and reliable bootstrap
architecture. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.
97CB36097) (pp. 65-71). IEEE.

[79] G. Coker et al., “Principles of remote attestation,” Int. J. Inf. Security, vol. 10, no. 2, pp. 63-81,
2011.

[80] Costan, V., & Devadas, S. (2016). Intel SGX Explained. IACR Cryptol. ePrint Arch., 2016(86), 1-
118.

[81] Smart, N. P. (2016). Cryptography made simple. Springer.

[82] Liddell, H. G., & Scott, R. (1897). A greek-english lexicon. New York: American Book Company.
[83] Kahn, D. (1996). The Codebreakers: The comprehensive history of secret communication from
ancient times to the internet. Simon and Schuster.

[84] Dulaney, E., & Easttom, C. (2017). CompTIA Security+ Study Guide: Exam SY0-501. John Wiley
& Sons.

[85] Goldreich, O. (2007). Foundations of cryptography: volume 1, basic tools. Cambridge university
press.

[86] Hayler, W. B., & Sebag-Montefiore, H. (2001). Enigma: The Battle for the Code. Naval War College
Review, 54(4), 26

[87] Cryptology. (2020). Retrieved 30 November 2020, from
https://www.britannica.com/topic/cryptology

[88] Singh, S., 2000. The Code Book: The Science of Secrecy from Ancient Egypt To Quantum
Cryptography. New York: Anchor Books.

[89] Petitcolas, F. A., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding-a survey. Proceedings
of the IEEE, 87(7), 1062-1078.

[90] Suetonius Tranquillus, G. and Edwards, C., 2008. Lives of The Caesars. Oxford [etc.]: Oxford
University Press, p.28.

[91] Leaman, O. (Ed.). (2015). The Biographical Encyclopedia of Islamic Philosophy. Bloomsbury
Publishing.

[92] Shannon, C. E. (1949). Communication theory of security. Bell System Technical Journal, 28, 656-
715.

[93] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (2018). Handbook of applied cryptography.
CRC press.

[94] Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE transactions on Information
Theory, 22(6), 644-654.

[95] Rueppel, R. A. (2012). Analysis and design of stream ciphers. Springer Science & Business Media.
[96] Rubin, F. (1996). One-time pad cryptography. Cryptologia, 20(4), 359-364.

[97] Chakraborty, D., & Henriquez, F. R. (2009). Block cipher modes of operation from a hardware
implementation perspective. In Cryptographic Engineering (pp. 321-363). Springer, Boston, MA.

[98] Coppersmith, D. (1994). The Data Encryption Standard (DES) and its strength against attacks. IBM
journal of research and development, 38(3), 243-250.

[99] Karn, P., Metzger, P., & Simpson, W. (1995). The ESP triple DES transform. RFC1851.

[100] Rijmen, V., & Daemen, J. (2001). Advanced encryption standard. Proceedings of Federal
Information Processing Standards Publications, National Institute of Standards and Technology, 19-22.
[101] Rivest, R. L. (1994, December). The RC5 encryption algorithm. In International Workshop on Fast
Software Encryption (pp. 86-96). Springer, Berlin, Heidelberg.

[102] Diffie, W., & Hellman, M. E. (1976, June). Multiuser cryptographic techniques. In Proceedings of
the June 7-10, 1976, national computer conference and exposition (pp. 109-112).

80

[103] Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE transactions on
Information Theory, 22(6), 644-654.

[104] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2), 120-126.

[105] Lopez, J., & Dahab, R. (2000). An overview of elliptic curve cryptography.

[106] Haakegaard, R., & Lang, J. (2015). The elliptic curve diffie-hellman (ecdh). Online at
https://koclab. cs. ucsb. edu/teaching/ecc/project/2015Projects/Haakegaard+ Lang. pdf.

[107] Bruce, S. (1996). Applied cryptography. 2nd John Wiley and Sons, Inc.

[108] Katz, J. (2010). Digital signatures. Springer Science & Business Media.

[109] Rogaway, P., & Shrimpton, T. (2004, February). Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and collision
resistance. In International workshop on fast software encryption (pp. 371-388). Springer, Berlin,
Heidelberg.

[110] Rivest, R. L. (1990, August). The MD4 message digest algorithm. In Conference on the Theory
and Application of Cryptography (pp. 303-311). Springer, Berlin, Heidelberg.

[111] Rivest, R. (1992). RFC1321: The MD5 message-digest algorithm.

[112] Burrows, J. H. (1995). Secure hash standard. Department of Commerce Washington DC.

[113] Boutin, C. (2012). NIST selects winner of Secure Hash Algorithm (SHA-3) Competition. Press
release., October 2.

[114] Bellare, M., Canetti, R., & Krawczyk, H. (1996, August). Keying hash functions for message
authentication. In Annual international cryptology conference (pp. 1-15). Springer, Berlin, Heidelberg.
2.3 Public Key Infrastructure

[115] Buchmann, J. A., Karatsiolis, E., & Wiesmaier, A. (2013). Introduction to public key infrastructures.
Springer Science & Business Media.

[116] Housley, R., Ford, W., Polk, W., & Solo, D. (1999). RFC2459: Internet X. 509 public key
infrastructure certificate and CRL profile.

[117] What Are CA Certificates?: Public Key; Security Services. Retrieved 15 November 2020, from
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-
2003/cc778623(v=ws.10)?redirectedfrom=MSDN

[118] DigiCert FAQ | DigiCert. Retrieved 15 November 2020, from
https://www.websecurity.digicert.com/en/us/digicert-and-symantec-faq

[119] Retrieved 12 November 2020, from http://open.ninetlabs.nl/downloads/publications/CSI-
report.pdf

[120] M. Sommerhalder, *Hardware Security Module*, in *Trends in Data Protection and Encryption
Technologies*, Springer Nature Switzerland, 2023.

[121] Trust Model implementation by PKI. Retrieved 9 November 2020, from
https://medium.com/@meghdadshamsaei/trust-model-implementation-by-pki-7cddcdb72513

[122] Retrieved 10 November 2020, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7257&rep=rep1&type=pdf

[123] Tanwar, S., & Prema, K. V. Trust Models in Public Key Infrastructure.

[124] C. J. Mitchell, "Transport Layer Security (TLS)," in Encyclopedia of Cryptography and Security,
2nd ed., H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer, 2011, pp. 1330—-1333. [Online].
Available: https://doi.org/10.1007/978-1-4419-5906-5_520

[125] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446, Aug. 2018.
[Online]. Available: https://doi.org/10.17487/RFC8446

[126] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
Aug. 2008.

81

[127] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” RFC 8446, Aug. 2018.
[128] CISA, “SSL 3.0 Protocol Vulnerability and POODLE Attack,” Cybersecurity Advisory, Oct. 17,
2014. [Online]. Available: (link elided)

[129] “Heartbleed Bug,” heartbleed.com, 2014. [Online]. Available: (link elided)

[130] Trustedcomputinggroup.org. 2005. Design, Implementation, And Usage Principles Version 2.0.
[online] Available at: <https://www.trustedcomputinggroup.org/wp-
content/uploads/Best_Practices_Principles_Document_V2_0.pdf> [Accessed 22 November 2020].
[131] Trusted Platform Module 2.0: A Brief Introduction | Trusted Computing Group. (2019). Retrieved
22 November 2020, from https://trustedcomputinggroup.org/resource/trusted-platform-module-2-0-a-
brief-introduction/ []

[132] Ronald Aigner, Nicolai Kuntze, David Wooten, and Graeme Proudler. 2016. Trusted Platform
Architecture - Hardware Requirements for a Device Identifier Composition Engine. Technical Report.
Trusted Computing Group. https://trustedcomputinggroup.org/wp-content/uploads/Hardware-
Requirements-for-Device-ldentifier-Composition-Engine-r78_For-Publication.pdf.

[133] ARM Limited, *Building a Secure System using TrustZone Technology*, White Paper
PRD29-GENC-009492C, 2009.

[134] Orlikowski, W. J., & lacono, C. S. (2001). Research commentary: desperately seeking the “IT” in
IT research. A call to theorizing the IT artifact. Information Systems Research, 12(2), 121-134.

[135] Offermann, P., Blom, S., Schonherr, M., & Bub, U. (2010). Artifact types in information systems
design science — a literature review. In R. Winter, J. L. Zhao & S. Aier (Eds.), Global Perspectives on
Design Science Research (Vol. 6105, pp. 77-92): Springer Berlin Heidelberg.

[136] Peffers, K., Tunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research
methodology for information systems research. Journal of Management Information Systems, 24(3),
45-77.

[137] Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35(3), 8-13.

[138] Royce, Winston (1970). Managing the Development of Large Systems, Proceedings of IEEE
WESCON, 26 August: 1-9.

[139] Military Standard Defense System Software Development

[140] Forsberg, K., Mooz, H. (1998). System Engineering for Faster, Cheaper, Better. Centre of
Systems Management. Archived from the original on April 20, 2003.

[141] IEEE. IEEE Guide--Adoption of the Project Management Institute (PMI) Standard A Guide to the
Project Management Body of Knowledge (PMBOK Guide) -Fourth Edition.

[142] Forsberg, K., Mooz, H. The Relationship of System Engineering to the Project Cycle, in
Proceedings of the First Annual Symposium of National Council on System Engineering, October 1991:
57-65.

[143] German Directive 250, Software Development Standard for the German Federal Armed Forces,
V-Model, Software Lifecycle Process Model, August 1992.

[144] Systems Engineering for Intelligent Transportation Systems. US Dept. of Transportation. p. 10.
[145] Brennan, K. (2009). A guide to the Business analysis body of knowledge (BABOK guide). Version
2.0. International Institute of business analysis.

[146] Hay, David C. (2003). Requirements Analysis: From Business Views to Architecture (1st ed.).
Upper Saddle River, NJ: Prentice Hall.

[147] McConnell, Steve (1996). Rapid Development: Taming Wild Software Schedules (1st ed.).
Redmond, WA: Microsoft Press. ISBN 1-55615-900-5.

[148] IEEE Standard Glossary of Software Engineering Terminology," in IEEE Std 610.12-1990 , vol.,
no., pp.1-84, 31 Dec. 1990.

82

http://www.product-lifecycle-management.com/download/DOD-STD-2167A.pdf
https://web.archive.org/web/20030420130303/http:/www.incose.org/sfbac/welcome/fcb-csm.pdf
http://www.incose.org/sfbac/welcome/fcb-csm.pdf
https://en.wikipedia.org/wiki/IEEE
http://ieeexplore.ieee.org/servlet/opac?punumber=6086683
http://ieeexplore.ieee.org/servlet/opac?punumber=6086683
http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf
https://books.google.com/books/about/Requirements_analysis.html?id=Qy6j2PemE8QC
https://archive.org/details/rapiddevelopment00mcco
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55615-900-5

[149] Fulton R, Vandermolen R (2017). "Chapter 4: Requirements - Writing Requirements". Airborne
Electronic Hardware Design Assurance: A Practitioner's Guide to RTCA/DO-254. CRC Press. pp. 89—
93.

[150] Chung, L., Nixon, B. A, Yu, E., & Mylopoulos, J. (2012). Non-functional requirements in software
engineering (Vol. 5). Springer Science & Business Media.

[151] Loucopoulos, P., & Karakostas, V. (1995). System requirements engineering. McGraw-Hill, Inc..
[152] Stellman, A., & Greene, J. (2005). Applied software project management. " O'Reilly Media, Inc.".
[153] Opensecurityarchitecture.org. (2020). [online] Available at:
https://www.opensecurityarchitecture.org/cms/definitions/it_security_requirements [Accessed 16 Feb.
2020].

[154] Ali, M. S., Babar, M. A,, Chen, L., & Stol, K. J. (2010). A systematic review of comparative
evidence of aspect-oriented programming. Information and software Technology, 52(9), 871-887.
[155] Chen, L., Babar, M. A., & Zhang, H. (2010, April). Towards an evidence-based understanding of
electronic data sources. In 14th International Conference on Evaluation and Assessment in Software
Engineering (EASE) (pp. 1-4).

[156] C. W. Schmitt, M. Kupreev, and S. Nirnberger, “Securing the loT supply chain: On the
effectiveness of secure elements and hardware-based roots of trust,” 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 2020, pp. 100—109.

[157] H. Tschofenig, T. Fossati, and M. Richardson, “TLS/DTLS 1.3 Profiles for the Internet of Things,”
IETF Internet-Draft draft-ietf-uta-tls13-iot-profile-14, May 2025.

[158] Microsoft, “The STRIDE Threat Model,” MSDN, 2002. [Online]. Available:
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

[159] G. Martin and G. Smith, “High-Level Design: A Survey of Current Practices,” in Proc. IEEE/ACM
Int. Conf. Computer-Aided Design, Nov. 2009, pp. 303-310.

[160] STMicroelectronics, STM32L4x6 advanced ARM®-based 32-bit MCUs: ultra-low-power with
FPU, DSP, and analog features, Reference Manual, RM0351, Rev 7, Mar. 2024. [Online]. Available:
https://www.st.com/resource/en/reference_manual/dm00151940-stm32I4x6-advanced-armbased-
32bit-mcus-stmicroelectronics.pdf

[161] "micro-ecc: A small ECDH and ECDSA library,” [Online]. Available:
https://github.com/kmackay/micro-ecc

[162] "wolfSSL Embedded SSL/TLS Library," [Online]. Available: https://www.wolfssl.com

[163] "mbedTLS Documentation,” Arm Ltd., [Online]. Available: https://github.com/Mbed-TLS/mbedtls
[164] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message Authentication,” in
Advances in Cryptology — CRYPTO’ 96, vol. 1109, N. Koblitz, Ed. Berlin, Heidelberg: Springer, 1996,
pp. 1-15.

[165] National Institute of Standards and Technology, The Keyed-Hash Message Authentication Code
(HMAC), FIPS PUB 198-1, Jul. 2008. [Online]. Available:
http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

[166] M. Bellare, J. Kilian, and P. Rogaway, “The Security of the Cipher Block Chaining Message
Authentication Code,” in Advances in Cryptology — CRYPTO’ 94, vol. 839, Y. Desmedt, Ed. Berlin,
Heidelberg: Springer, 1994, pp. 341-358.

83

https://books.google.com/books?id=ZQMvDwAAQBAJ&pg=PA89
https://books.google.com/books?id=ZQMvDwAAQBAJ&pg=PA89
https://www.st.com/resource/en/reference_manual/dm00151940-stm32l4x6-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00151940-stm32l4x6-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://github.com/kmackay/micro-ecc
https://www.wolfssl.com/
https://github.com/Mbed-TLS/mbedtls
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

