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Preface 

This thesis was conducted in collaboration with Intrinsic ID and addresses security mechanisms for 

resource-constrained embedded systems. The work combines protocol design, security analysis, and 

a prototype implementation to evaluate the feasibility of a DICE-rooted, certificate-based asymmetric 

attestation approach on microcontroller-class devices. 

Due to confidentiality constraints associated with the industrial development environment at Intrinsic 

ID, the complete prototype source code and certain implementation-specific artifacts cannot be 

included in this report. To support scientific evaluation, the thesis documents the design through explicit 

assumptions and requirements, protocol flows, pseudocode-level descriptions, and quantitative 

measurements on representative hardware. 
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Abstract 

The evolution of computing systems, particularly in the Internet of Things (IoT), has emphasized 

openness to support innovation, but this same openness introduces critical security challenges. Modern 

cyber-attacks are increasingly sophisticated and persistent, exposing the limitations of traditional 

software-only defenses. IoT devices, often deployed in hostile environments and subject to stringent 

constraints in power, memory, and cost, lack the robust security mechanisms required for trust and 

resilience, especially as the demand for remote software updates grows. 

To address these challenges, this thesis proposes a scalable and cost-effective security architecture 

that supports hardware-rooted identity, remote attestation, and secure device updates for resource-

constrained embedded devices. The design is grounded in modest hardware assumptions compatible 

with commercial IoT platforms. A statistically unique, device-specific secret anchors the root of trust, 

enabling verifiable software identity throughout the device lifecycle. Building on the Device Identifier 

Composition Engine (DICE) standard, an asymmetric attestation protocol is developed specifically for 

constrained environments. 

The architecture is validated through a prototype implementation on an STM32 microcontroller, 

demonstrating secure remote attestation via server communication. Performance measurements, 

including clock cycles and memory utilization, alongside a structured security analysis offer insight into 

the feasibility and resilience of the proposed solution. This work contributes to the advancement of 

DICE-based architectures by providing a practical and secure framework for verifying software 

execution in trusted IoT devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

9 
 

 

List of Figures 

Figure 1.1: Connected IoT Devices Forecast by 2025 [5] 

Figure 2.1: The C.I.A triad of Information Security 

Figure 2.2: Device Security Techniques 

Figure 2.3: Cryptographic Encryption/Decryption 

Figure 2.4: Classification of Cryptographic Algorithms 

Figure 2.5: Symmetric cryptography 

Figure 2.6: Public Key cryptography 

Figure 2.7: User authentication scheme 

Figure 2.8: Message Authentication Code (MAC) usage 

Figure 2.9: Certificate chain of Trust 

Figure 2.10: Hierarchical trust model 

Figure 2.11: TLS Handshake protocol 

Figure 2.12: DICE boot model 

Figure 2.13: Layer code change 

Figure 2.14: DICE Engine 

Figure 2.15: DICE Engine layer and firmware 

Figure 2.16: Malware attack scenario 

Figure 3.1: Waterfall Model for Sequential Software Development 

Figure 3.2: General Testing V-Model for Security-Critical IoT Systems 

Figure 3.3: Layered Boot Process in DICE-Based Architecture 

Figure 3.4: Internal Components of the DICE Engine 

Figure 3.5: Structure of Firmware Layer 1 

Figure 3.6: Protocol Manufacturing Phase Flow 

Figure 4.1: High-level system architecture 

Figure 4.2: Demonstrator scenario 

Figure 4.3: Total CPU cycle cost per cryptographic operation 

Figure 4.4: Internal breakdown of ECC key generation for DeviceID and Layer keys 

Figure 4.5: Stack memory usage for selected cryptographic operations 

Figure 4.6: Cycle breakdown of alias certificate creation using mbedTLS routines 

Figure 4.7: Summary of stack and code memory usage across components 

Figure 4.8: Stack usage across attestation stages (DICE-based prototype) 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

10 
 

 

 

 

 

 

 

 



 
 
 

11 
 

 

List of Tables 

Table 3.1: maps the design phases adopted in this work to the main contributions (MC) introduced in 

Section 1.3: 

Table 3.1: Mapping of Design Phases to Main Contributions 

Table 3.2: System Requirements 

Table 3.3: Security Capability Mapping and Corresponding Requirements 

Table 3.4: Structure of Device and Layer Certificates with FWID Extension 

Table 3.5: Threat matrix using STRIDE 

Table 3.6: Asset protection table 

Table 3.7: Mapping of security capabilities to system requirements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

12 
 

 

Acknowledgments 

I would like to express my sincere gratitude to my academic supervisors and committee members, Dr.ir. 

Mottaqiallah Taouil and Prof.dr. Koen Langendoen, for their guidance, feedback, and support 

throughout this thesis. 

This work was conducted in collaboration with Intrinsic ID. I would particularly like to thank my company 

supervisor, Georgios Selimis, for his mentorship, technical input, and continuous support during the 

implementation and evaluation phases. I also thank my colleagues at Intrinsic ID for the constructive 

discussions and assistance. 

Finally, I would like to thank my family, my friends, and Ifigeneia for their encouragement and support 

throughout my studies. 

 

  



 
 
 

13 
 

 

1 Introduction 

This chapter concerns the motivation around this thesis, presents a summary of research studies that 

constitute the state of the art, describes the main contributions of the work done and provides an outline 

for the rest of the thesis. First, Section 1.1 refers to the importance of the rising sector of the Internet of 

Things (IoT), highlighting the need for effective security strategies against sophisticated attacks and 

threats. This section also describes the security challenges derived from such threats towards 

establishing a robust holistic security solution for end-to-end IoT nodes. Section 1.2 investigates past 

and present security solutions spanning many disciplines from software to hardware, focusing on 

attestation schemes. Section 1.3 describes the main contributions of this study, while Section 1.4 

concludes the chapter with a short description of the other chapters of this thesis. 

1.1 Motivation 

The proliferation of open, autonomous embedded systems connected via the Internet or other networks 

has led to the emergence of the Internet of Things (IoT). The global deployment of IoT devices now 

numbers in billions. According to Gartner, 5.8 billion enterprise and automotive IoT endpoints were 

projected to be in use by the end of 2020 [1]. Forecasts suggest this growth will continue, with IDC 

anticipating that IoT devices will generate 79.4 zettabytes of data annually by 2025 [2]. McKinsey Digital 

further estimates that IoT could contribute up to $11 trillion annually to the global economy by 2025, 

potentially boosting corporate profits by 21% as early as 2022 [3]. These projections have incentivized 

major firms to invest in innovative IoT technologies that enhance business processes and improve 

operational efficiency. In particular, Industrial IoT (IIoT) has gained traction by promoting automation 

and leveraging big data analytics to reduce costs and enhance customer insights. 

The IoT infrastructure is characterized by an openness that facilitates innovation but also 

presents substantial security challenges. This openness makes IoT systems attractive targets for 

cybercriminals, who exploit systemic vulnerabilities [4]. As shown in Figure 1.1, the expected surge in 

connected devices will only increase the attack surface. Ensuring the reliable and secure operation of 

IoT systems has thus become an increasingly complex and challenging task. Common wireless 

communication technologies, such as Bluetooth and Wi-Fi, possess known vulnerabilities that can be 

exploited by adversaries [6]. Further complicating matters are the resource constraints and physical 

inaccessibility of many IoT deployments, which hinder the implementation of robust security protections 

[7]. 

An expanded attack surface increases the risk of system compromise, yet many organizations 

fail to prioritize security due to limited expertise or budget constraints [8]. As a result, device 

manufacturers must prioritize security as a design imperative, not an afterthought. The heterogeneity 

of IoT ecosystems further complicates security: the threats concerning industrial sensors differ 

considerably from those affecting smart appliances or consumer wearables [9]. Privacy violations, 

intellectual property theft, impersonation, and device cloning are among the diverse threats IoT devices 

face. Notably, IoT systems can be compromised even without network connectivity. Security attacks 

span multiple domains, ranging from software-level exploits to direct hardware manipulation targeting 

the device’s physical components. In 2015, security researchers successfully demonstrated remote 

hijacking of vehicle systems, manipulating functions ranging from braking to infotainment [10]. Financial 

and operational damage from such incidents is substantial for major companies, some of which report 

recovery costs exceeding $500,000 per breach [11]. Healthcare institutions have also been targeted, 
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with ransomware attacks encrypting critical patient data and demanding payment for its release [12]. 

High-profile hardware vulnerabilities like Meltdown and Spectre further underscore the risks inherent in 

modern computing architectures [13]. 

 
Figure 1.1 Connected IoT Devices Forecast by 2025 [5] 

As connectivity among IoT devices grows, the risk of malware-based attacks increases 

significantly. A single infected device can spread malware to others in the network, triggering a chain 

reaction that may compromise sensitive system information. The absence of strong security 

mechanisms at the device level can make such infections especially damaging. Although previous 

research has explored the types of malware threats IoT systems face, relatively little attention has been 

given to developing effective countermeasures for infected or compromised IoT devices. 

Preserving privacy and ensuring security in IoT systems entails a range of technical and 

procedural challenges. First, trust must be established across the entire lifecycle of each device, from 

development and manufacturing to deployment and decommissioning [14]. Equally important is the 

protection of secrets within embedded devices. Secure key storage and tamper-resistant provisioning 

mechanisms are essential. Although modern cryptographic algorithms can address many system-level 

vulnerabilities, long-term security remains elusive, particularly in the case of side-channel attacks and 

speculative execution flaws. Firmware updates represent another vector of vulnerability, exposing IoT 

endpoints to attack if not secured properly. Physical tampering and the lack of standardized defenses 

further complicate secure system design. Standardization efforts, while necessary, progress slowly and 

often lag behind emerging threats. To reduce liability and improve resilience, security considerations 

must be integrated into the design phase of IoT products. The next section surveys existing security 

solutions that form the state of the art in protecting embedded IoT systems. 

1.2 State of the Art 

The challenges outlined in the previous section have motivated researchers to explore security 

techniques aimed at preventing malicious adversaries from compromising critical operations in IoT 

systems. This section reviews existing security solutions for protecting IoT endpoint devices, with an 

emphasis on attestation techniques. 

Memory protection is a common hardware-based countermeasure, involving the use of 

Memory Protection Units (MPUs) [15] and Memory Management Units (MMUs) [16] to prevent 

unauthorized access to sensitive memory regions by unprivileged software components. Early 

solutions, such as the segmentation mechanism introduced in Intel’s 80286 architecture, linked memory 

segments to privilege levels, thereby enforcing access restrictions. More recently, Execution-Aware 
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Memory Protection (EA-MPU) [17] has been proposed to associate code segments with specific data 

regions, allowing for finer-grained isolation of software modules within a trusted runtime environment. 

Remote attestation is a foundational technique for verifying the internal state of an untrusted device 

(the prover) by a trusted entity (the verifier) [18]. It enables use cases such as secure firmware updates, 

patch validation, and system integrity checks across embedded platforms. Attestation protocols 

generally fall into three categories: (1) software-based, (2) hardware-based, and (3) hybrid schemes. 

Software-based attestation techniques leverage platform constraints to detect unauthorized 

modifications. One notable example is Pioneer, proposed by Seshadri et al. in 2005 [19], which 

implements a software-based attestation technique by computing memory checksums using a verifier-

specified algorithm. The design introduces intentional timing overhead to detect unauthorized 

modifications, as deviations in execution time can reveal compromise of the attestation code or 

underlying memory state. Similar methods have been adapted for various embedded platforms [20–

23]. Despite their conceptual appeal, software-only attestation schemes remain vulnerable to attacks 

and typically depend on restrictive assumptions about the adversary's capabilities. These include the 

requirement of exclusive one-to-one communication between the verifier and the prover, which 

prohibits third-party attestation and reduces protocol flexibility. Moreover, the lack of persistent secret 

storage on the device necessitates such constraints. To address these shortcomings, some proposals 

introduce minimal hardware extensions for securely storing cryptographic secrets [24], [25]. However, 

even lightweight trust anchors often demand exclusive access to system resources, making it infeasible 

to support multiple trusted execution environments concurrently. As a result, software-based attestation 

schemes are generally unsuitable for deployment in realistic, multi-context IoT scenarios. 

Hardware-based attestation schemes gained early traction with mechanisms such as Secure 

Boot [26], introduced by Arbaugh et al. in 1997. Secure Boot verifies the integrity of system components 

at startup using a trusted bootloader that hashes memory content and compares it with a signed 

reference hash stored in ROM. Another widely adopted mechanism is the Trusted Platform Module 

(TPM) [27], which extends this principle using Platform Configuration Registers (PCRs) for securely 

storing integrity measurements. TPM-enabled systems establish trust through early boot processes, 

supported by the BIOS. Several experimental TPM-based approaches have been studied [28–30]. 

Commercial alternatives, such as ARM TrustZone [31], implement secure execution environments via 

a set of privileged registers and isolated on-chip memory. However, these static root-of-trust models 

do not adequately protect against runtime attacks such as Return-Oriented Programming (ROP) [32]. 

Addressing these threats requires dynamic root-of-trust architectures that provide runtime integrity 

verification [33]. These approaches do not provide dynamic root of trust, while the cost of the TPM 

module is prohibitive for low-end embedded devices. 

Dynamic Root of Trust (DRT) architectures extend TPM specifications and has been 

implemented by vendors such as Intel and AMD [34, 35]. These systems dynamically isolate memory 

regions and use CPU instructions to reset PCRs and measure memory contents during execution. 

While TrustZone is primarily based on secure boot, it has also been repurposed to support DRT 

functionality [36, 37]. McCune et al. introduced Flicker [38], a system architecture that utilizes Intel TXT 

and AMD SVM technologies to establish a dynamic root of trust on commodity computing platforms. 

Flicker ensures the secure execution of a minimal, isolated code segment, referred to as a Piece of 

Application Logic (PAL), even when critical system components such as the BIOS, operating system, 

or DMA subsystems are compromised by an adversary. Building on this foundation, TrustVisor was 

later proposed by McCune et al. [39] as an enhancement that integrates a minimal hypervisor to reduce 

performance overhead while maintaining strong isolation guarantees for PALs. Despite their 

robustness, these architectures rely heavily on platform-specific hardware features and impose 
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significant resource demands, making them impractical for constrained IoT environments. Other 

research efforts have explored trust establishment in remote systems using similar principles [40], [41]. 

To overcome the limitations of pure software and heavyweight hardware schemes, hybrid 

attestation approaches have been proposed. The Software-Protected Module (SPM), introduced by 

Strackx et al. [42], represents an early hardware-supported process isolation mechanism built atop a 

static root of trust. It achieves software compartmentalization by loading and measuring protected 

application logic into designated secure memory regions, referred to as “vaults.” While SPM offers 

strong isolation guarantees, it is primarily designed for high-end platforms equipped with Memory 

Management Units (MMUs) or Memory Protection Units (MPUs), limiting its feasibility on low-cost 

embedded systems. To overcome these constraints, Sancus [43] extends the SPM paradigm for low-

end microcontrollers, achieving secure module isolation without relying on trusted software stacks. It 

supports remote attestation and inter-module message authentication via specialized hardware 

instructions. Similarly, SMART, proposed by El Defrawy et al. [44], introduces a minimalist hardware-

software co-design for dynamic root-of-trust establishment on devices lacking MMUs or TPMs. SMART 

requires modest hardware modifications to the system's microcontroller to achieve attestation and 

memory integrity verification. TrustLite [45] builds upon this concept by integrating an Execution-Aware 

Memory Protection Unit (EA-MPU), enabling fine-grained isolation of lightweight software modules, 

referred to as “trustlets.” The platform also supports secure boot, ensuring the authenticity and 

confidentiality of trustlet code. More recent research has proposed further refinements of these 

lightweight architectures to support remote attestation and secure execution in severely resource-

constrained embedded environments [46-48]. 

England et al. [49] demonstrated that even a minimal feature, such as a hardware-locked 

secret accessible only by boot ROM, can provide sufficient guarantees for boot-time attestation. 

Building on this insight, the Trusted Computing Group introduced the Device Identifier Composition 

Engine (DICE) [50], a lightweight attestation framework tailored for resource-constrained IoT devices. 

Its feasibility has been validated in multiple studies [51, 52]. 

1.3 Main Contributions 

Building on the review of attestation methods in the previous section, this thesis identifies a 

critical gap in existing research: the absence of a unified, lightweight, and hardware-constrained 

security architecture capable of establishing trust across the full IoT device lifecycle. Although prior 

work addresses specific aspects, such as resilient transmission protocols or cryptographic primitives, 

few approaches integrate these into a cohesive end-to-end solution that begins at the silicon level and 

extends to cloud-based service infrastructure. This continuity of trust is essential, particularly for IoT 

environments characterized by limited computational resources, minimal silicon capabilities, and cost-

sensitive deployment constraints. 

This study proposes an end-to-end attestation architecture that maps robust security 

mechanisms onto commercially available hardware, enabling trust establishment from device 

provisioning to remote authentication. A key requirement addressed is the development of a device-

specific authentication mechanism, grounded in a dedicated hardware-derived value, that enables 

secure interaction with remote cloud infrastructures. By combining minimal hardware trust anchors with 

proven cryptographic methods, the proposed design facilitates the creation of a cryptographically strong 

device identity and supports the secure delivery and verification of firmware updates. 
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The primary contributions of this thesis are as follows: 
1. Design of an Asymmetric Attestation Protocol 

A lightweight attestation protocol tailored for resource-constrained IoT nodes is proposed. It 

combines secure boot, proven cryptographic primitives, and the Device Identifier 

Composition Engine (DICE) standard to create an adaptable architecture. At its core, the 

protocol derives a cryptographic identity from a statistically unique hardware root of trust. It 

also incorporates an authentication mechanism for device-to-cloud communication via TLS 

and supports secure, over-the-air firmware updates with integrated data protection. 

2. Security Analysis and Threat Modeling 

A qualitative security evaluation is conducted based on the STRIDE threat modeling 

methodology. The analysis identifies potential threats across system components and 

communication interfaces, characterizing attacker capabilities, risk impact, and attack 

scalability. Based on this assessment, targeted countermeasures are formulated to address 

each identified vulnerability. 

3. Prototype Implementation on Embedded Hardware 

The proposed attestation protocol is implemented on a commercial STM32 Nucleo-74LG 

board, which features a 32-bit ARM Cortex-M4 microcontroller. This prototype serves as a 

proof of concept, demonstrating the feasibility of deploying the security architecture on low-

power embedded platforms. 

4. Quantitative Evaluation and Performance Metrics 

The final implementation is evaluated in terms of runtime performance and memory footprint. 

Metrics such as clock cycle overhead and memory utilization are measured to assess the 

practicality of deploying the protocol on real-world resource-constrained devices. 

1.4 Thesis Outline 

The remainder of this thesis is structured as follows: 

• Chapter 2 presents essential background on security in edge-to-edge IoT systems. It 

introduces core principles and countermeasures against security threats, encompassing 

cryptographic algorithms, resilient communication protocols, hardware security features, and 

attestation techniques. Special attention is given to lightweight and silicon-efficient 

architectures, with a focus on the Device Identifier Composition Engine (DICE) as a 

representative model for cryptographically agile trust anchors. 

• Chapter 3 introduces the design of a security protocol for asymmetric remote attestation 

tailored to resource-constrained IoT devices. It begins with a V-Model-inspired design 

methodology, followed by a structured analysis of the system’s functional, non-functional, and 

security requirements. The chapter details the protocol’s layered architecture, including key 

derivation and operational flows across the device lifecycle. It concludes with a threat modeling 

assessment based on the STRIDE framework to evaluate the design’s resilience against 

adversarial threats. 

• Chapter 4 describes the implementation and evaluation of a prototype that realizes the 

proposed protocol on a commercial STM32 microcontroller. Implementation details, design 

decisions, and performance metrics, such as memory usage and execution overhead, are 

presented to assess the feasibility of the architecture. 

• Chapter 5 summarizes the key findings and contributions of this work. It also discusses 

identified limitations and suggests potential directions for future research. 
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2 Background 

This chapter provides foundational background on security principles, techniques, and technologies 

relevant to embedded systems. Section 2.1 introduces core concepts in embedded systems security, 

distinguishing between information security, which encompasses confidentiality, integrity, and 

authentication, and device security, which pertains to the protection of platforms responsible for 

processing sensitive data. Section 2.2 explores the role of cryptographic techniques in building secure 

systems, emphasizing the evolution and application of modern encryption schemes. Section 2.3 

reviews authentication mechanisms and trust models underpinning Public Key Infrastructure (PKI), 

while Section 2.4 examines the Transport Layer Security (TLS) protocol as a cornerstone for secure 

communication between clients and servers. Finally, Section 2.5 presents the Device Identifier 

Composition Engine (DICE), a lightweight, cryptographically agile attestation framework designed for 

resource-constrained embedded devices. 

2.1 Embedded Systems Security 

An embedded system is a computing system designed for implementing dedicated functions within a 

larger system, electrical or mechanical [53]. It is a combination of computer hardware, software and 

optionally mechanical parts, referring to any computing system other than general purpose or 

mainframe computers [54]. Embedded systems run real-time operating systems (RTOS) that are aiming 

to control device-dedicated applications with real-time computing constraints. The low manufacturing 

cost of embedded systems makes them highly beneficial in a variety of intelligent and industrial 

application domains such as automotive electronics, factory automation, smart homes, transportation, 

commerce and finance, healthcare and many others [55]. Embedded systems are considered either 

closed or open depending on which level they communicate and share information with one another 

[56]. Within a closed system, devices interact only with devices that are part of that system, often 

through protocols and standards designed exclusively for the needs of the closed system. For example, 

modern cars are equipped with smart sensing and control systems that communicate and exchange 

information among these systems. However, the communicated data is not shared with other systems 

or devices outside of the car, for example the car manufacturer. Embedded systems connected with 

other devices or systems through a network are considered open embedded systems. Open embedded 

systems exchange data with other devices and systems using open communication standards and 

protocols for purposes such as information sharing. 

 The increasing number of embedded devices connected to the Internet formulates the Internet 

of Things (IoT). There does not exist only one definition as to what comprises the “Internet of Things”. 

According to [57], the IoT refers to a set of embedded devices or “things” that are embedded with 

software, sensors, and network and are capable of communicating data with one another. The “things” 

can use their communication protocols, although some sort of Internet connection may be necessary 

at some point. The term “Internet” does not necessarily refer to communication via Internet protocols. 

Apart from connecting embedded devices to the Internet, the IoT allows these devices to collect and 

exchange data. Data communication provides the IoT endpoint devices with flexibility minimizing the 

need for physical connectivity and manual intervention. The exchanged data, for example, the raw 

measurements of a humidity sensor are not of great value and do not produce any useful knowledge 

when examined individually. However, the manipulation of these data via filtering and contextualizing 

processes provides in-depth knowledge about the system, its users, the environment, and its 

objectives. Adding context to the exchanged raw information, patterns can be created containing 

information about a particular activity of the device. Categorization and processing of these data also 
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provide information regarding the repetition of certain processes. Finally, the organization of data 

provides valuable information regarding the relationships formulated between different pieces of 

information. 

 The growing deployment of interconnected systems renders necessary the increased 

protection of computer systems, networks and communication data, against sophisticated attacks from 

malicious cybercriminals, ensuring the security and reliability of the information systems. 

Interconnected embedded systems face important security challenges related to their resource 

constrained nature. Their limited processing capabilities, the battery-driven power, the wireless network 

connectivity, and the remote control of their software, render these devices vulnerable against 

attackers. These attacks may compromise important security properties resulting in loss of control of 

embedded systems. Therefore, the security of embedded systems is considered end-to-end, starting 

from the physical endpoint devices that receive and transmit data, to hubs and gateways layer that 

aggregate the edge devices to the large network, to cloud-based systems that store and analyze the 

data provided by the edge nodes. This section focuses on two important types of embedded systems 

security: (1) the information security, and (2) the device or platform security. 

 

2.1.1 Information Security  

The practice of protecting information and the systems that use, store, or transmit that information is 

defined as cybersecurity [58]. Cybersecurity is also known as information security and concerns the 

mitigation of security risks by preventing unauthorized access, use, or modification of information data 

[59]. According to Pipkin in the “Information security: protecting the global enterprise”, information 

security is the process of protecting the intellectual property of a company or organization [60]. The 

primary focus of information security is balancing the security risks by providing information assurances 

and by defining a set of security goals [61]. These goals are the result of a security analysis called risk 

management process and include a variety of security attributes and guidelines that span multiple 

disciplines based on the security model in use. Risk management involves the identification of 

information assets and potential threats, a risk evaluation of the impact of the identifying threats, a valid 

mitigation plan to address these risks, and the selection and implementation of appropriate security 

techniques [62]. 

One of the first security models in information security is the “Guidelines for the Security 

Systems and Networks” that was proposed by the Organization for Economic Cooperation and 

Development (OECD) in 1992. According to this model, there are nine security principles to consider, 

including awareness, responsibility, response, ethics, democracy, risk management, security design 

and implementation, security management and reassessment [63]. In 1998, Donn Parker in his MSc 

thesis with the title “The Parkerian Hexad” proposed the six elements of information [64], while in 2004, 

the National Institute of Standards and Technology (NIST) proposed 33 fundamental principles in their 

study “Engineering Principles for Information Technology Security” [65]. Another suggested security 

model is the information security management maturity standard O-ISM3, published by the Open Group 

[66]. According to this model, a set of management policies is proposed after the definition of the 

required security targets. Information security focuses on the balanced protection of the confidentiality, 

integrity, and availability of data, three of the most important attributes of information [67]. Together 

they formulate the C.I.A. triangle, a well-known and widely accepted security standard for computer 

security (Figure 2.1). The C.I.A. triangle is also referred to as the A.I.C triad to avoid confusion with the 

intelligence agency in the USA. 
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Figure 2.1 The C.I.A triad of Information Security 

Confidentiality 

Confidentiality is a security principle referring to the concealment of valuable information or resources 

in sensitive areas such as governance and industries [68]. Government services often apply 

classification systems that restrict the access to sensitive content to classified personnel [69]. The 

appearance of such systems is traced back in the mid-nineteenth century when the British Government 

published the “Official Secret Art”, a document concerning diplomatic espionage and information 

disclosure [70]. Similar principles apply to the industry sector where companies protect their intellectual 

property by preventing competitors from gaining access to design information regarding their products. 

Confidentiality also refers to the fact that sometimes revealing the information is more important than 

the information itself. For example, the reveal that a company secretly monitors its employees is more 

important than the findings of such an action. Another important aspect of confidentiality is hiding critical 

systems and resources that an entity may not wish to be used without proper authorization. Examples 

of compromised confidentiality are password theft and email phishing. Protection of sensitive 

information concerns the definition of strict access policies that arrange the data into categories, 

according to the type of personnel that has access to it and their sensitivity level. Common 

confidentiality policies include biometric verification, two-factor authentication and traditional Unix-file 

access control lists. However, mechanisms that enforce confidentiality in a system should be trusted 

that they supply the correct verification data. 

 

Integrity 

Integrity constitutes a basic security element of information security that refers to the trustworthiness 

and accuracy of data resources and is responsible for protecting sensitive data against unauthorized 

alterations [71]. Integrity concerns not only the integrity of the data but the integrity of its source, a 

method often referred to as authentication. The reliability of the source of the information plays a vital 

role for a system to gain credibility and trust. For example, the credibility of the source of any news in 

a newspaper or magazine determines if the news is fake or not. Integrity mechanisms can be classified 

into two categories, detection mechanisms and prevention mechanisms. Integrity detection 

mechanisms report whether an information is trusted, or an integrity violation exists. Detection 

mechanisms use analysis tools to detect possible violations and report any corruption that may occur. 

Prevention mechanisms deny any unauthorized attempt to alter sensible data, or any attempt to alter 

data in unauthorized ways. Modifications or deletions from authorized users should be performed with 

caution in order to avoid unintentional or malicious alterations. For example, a company’s authorized 

employee tries to embezzle money instead of moving it into a trusted account. 
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Availability 

Availability refers to the last component of the triad and concerns the ability of data to be present and 

available when needed [72]. Systems with high availability aim to remain available at all times and at 

all costs, preventing failures and disruptions. This requires the design of a statistical model that 

analyzes the patterns of use and the existence of mechanisms able to act on these patterns. Ensuring 

availability involves protection against denial-of-service-attacks. In these kinds of attacks, a malicious 

attacker may deliberately deny access to services or information by making the system unavailable. 

Denial-of-service attacks have proven to be quite challenging to detect. The analyst should be able to 

determine if any unusual change in patterns of use is due to normal malfunctions or deliberate 

manipulation of the system resources by the adversary. 

Although the CIA triad provides notable security policies for the information technology, it is debatable 

whether it can keep up with the latest technological developments and distinguish security from privacy 

[73]. The CIA triad gives the impression of a holistic security solution that is the answer to most of the 

security problems. However, it tends to ignore other equally important factors and therefore it should 

be considered only as a part of a broader security approach. 

 

2.1.2 Device Security  

Designing a trustworthy security approach for interconnected embedded devices goes beyond 

satisfying the basic principles of information security, such as confidentiality, integrity, availability, and 

non-repudiation, and extends to the device itself. Device security involves a range of security solutions 

that protect device resources and sensitive data from physical tampering, network attacks, and 

unauthorized access by malicious adversaries. These solutions vary from software protection 

techniques targeting remotely accessible devices to physical protection mechanisms that secure 

platform sensitive information. The rapid proliferation and deployment of embedded devices renders 

the design of device security solutions quite challenging. This section presents an overview of effective 

device security techniques and methods in a layered fashion, where each layer corresponds to the 

protection of a specific security feature. Figure 2.2 illustrates three device security layers: (1) secure 

storage of key device security components, (2) memory protection and secure boot mechanisms known 

as platform security, and (3) remote attestation authentication schemes that ensure code integrity when 

connecting to a remote cloud provider. 

 

Secure Storage 

Secure storage is an important device security mechanism that stores confidential data and 

cryptographic secret keys, namely the Root of Trust (RoT). The RoT is the basis of the device’s unique 

identity, and it is inherently trusted every time the device is booted or reset [74]. At startup, the 

generation and provisioning of an immutable root secret must be ensured in order to establish reliable 

device authentication and secure communication. The generated root secret is typically encrypted and 

stored in non-volatile memory units, such as One Time Programmable (OTP) memory. One of the main 

benefits of OTP memory units is that they are programmable in a secure environment during device 

manufacturing. However, the provisioning of the root key during manufacturing lurks the risk of potential 

secret leakage to third parties. Physical Unclonable Functions (PUFs) is a flexible key provisioning 

solution aiming to circumvent this limitation. PUFs are electronic design components that exploit the 

unique silicon properties of individual integrated circuits (ICs) to create a statistically unique identity 

bound to the device [75]. The trusted generation and provisioning of the root keys ensures that the key 

material is unique and specific to the device, non-cloneable, non-modifiable by malicious adversaries, 

and unknown to non-authenticated third parties. 
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Figure 2.2 Device Security Techniques 

Platform Security 

The second layer of device security involves the enforcement of access control mechanisms and secure 

booting processes to enhance trustworthiness within the device. The first prevents unauthorized third 

parties from accessing sensitive device resources, while the latter ensures the integrity and authenticity 

of device firmware. It is important that access control mechanisms are implemented at all levels, both 

user and system. On a user level, authentication is ensured using simple methods, such as PIN entry, 

or even biometric identifiers, such as fingerprints or facial patterns [76]. On a system level, it is essential 

to mitigate the risk of unauthorized usage from malicious adversaries by providing protected access to 

System on Chip (SoC) busses and interfaces. The Memory Protection Unit (MPU) is an embedded 

system component that prevents access to confidential data stored in memory, by setting access 

permissions and attributes to specified memory regions [77]. Secure boot is the part of platform security 

responsible for validating the authenticity and integrity of the code running on the device [78]. A secure 

boot process involves trusted bootloaders, strong encryption schemes, and secure storage units, which 

ensure that only authorized firmware is executed when the device powers up. A typical example of code 

authentication is the storage of firmware in flash memory, executed by a trusted bootloader during boot. 

 

Attestation 

The last layer of device security concerns a process that verifies the identity of the internal state of an 

embedded device, namely attestation [79]. Architectures equipped with attestation capabilities provide 

adequate security guarantees of the attested software state of the device to a trusted third party, called 

verifier. Attestation can be classified as local and remote attestation. The first refers to an intra-platform 

mechanism, where application modules running on the same platform verify and authenticate their 

respective software images with one another. An example of local attestation is the Intel SGX Report 

mechanism that provides confidentiality, code integrity, and strong protection within the device [80]. 

Remote attestation involves an external trusted verifier entity for verifying the integrity of the code 

running on the device. Attestation is typically performed by calculating a code measurement of the 

attested software module and by sending it to the trusted third entity during manufacturing. The verifier 

may request the module code measurement at any time verifying its validity. A number of remote and 

local attestation solutions have been proposed by academia including software-based schemes, 

hardware-based protocols, and hybrid techniques. Attestation schemes are useful tools for a variety of 

services related to embedded devices such as over-the-air (OTA) software updates and patches, 

memory reset, and malware replacement. 
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2.2 Cryptography 

This section provides the reader with useful background information regarding the terms and concepts 

behind basic cryptographic methods and techniques. Also, a detailed description of various 

cryptographic algorithms is given along with examples of their applications in numerous areas of 

information security. Cryptographic systems provide solutions towards mitigating the security threats 

and attacks present in embedded systems. 

Cryptography can be described as the method of concealing information during 

communication, in the presence of malicious entities called adversaries [81]. The prefix “crypt-” of the 

term derives from the Greek word “kryptos” and means hidden or secret, while the suffix “-graphy” 

originates from the word “graphein”, which stands for writing or script in Greek [82]. Cryptography is 

closely associated with encryption, a technique of transforming ordinary information, called plaintext, 

into an unintelligible form called ciphertext [83]. Another term for encryption, though less common, is 

encipherment, with decipherment or decryption standing for the opposite procedure. Both encryption 

and decryption rely upon a cipher, a procedure of well-defined steps known as algorithm and a piece 

of information, called key. The key is a secret value known only to the parties that communicate, the 

absence of which makes it impossible to decrypt ciphertext into plaintext and vice-versa (Figure 2.3). 

The communicating parties share the secret key with one another, a cryptographic method called key 

exchange or key establishment [84]. Key exchange together with a finite set of plaintexts, cyphertexts, 

keys, encryption and decryption algorithms constitute a cryptosystem. Cryptosystems can be classified 

into two kinds, symmetric and asymmetric. Symmetric systems use the same key to encrypt and decrypt 

the transmitted message. Asymmetric systems, on the other hand, use a public key to encrypt a 

message and a private secret key to decrypt it. In the crypto field, the common nomenclature for two 

communicating parties is usually “Bob” and “Alice”, while a malicious third party is referred to as 

“Malory”, an eavesdropper as “Eve” and a trusted party as “Trend”. 

 

 
Figure 2.3 Cryptographic Encryption/Decryption 

Cryptography is also related to the terms of cryptology and cryptanalysis. Cryptanalysis refers 

to the science of analyzing a cryptographic scheme aiming to expose possible vulnerabilities. It is 

performed either by searching for loopholes in the mathematical basis of the cipher or by finding logical 

flaws in its design [85]. A famous example of cryptanalysis is the breaking of the Enigma machine, the 

encryption device developed and used for encrypting military operations during the World War II [86]. 

Cryptology refers to a broader term that encompasses both cryptography and cryptanalysis, including 

designing of ciphers, key exchange techniques and cryptanalysis tools [87]. Applications of 

cryptography span multiple disciplines from electronic commerce and wireless payments to military 

communications and digital crypto currencies. Although cryptography has proven a powerful weapon 

against malicious adversaries, it is also being used as a tool for espionage, forcing several governments 

to constrain its use. 
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The attempt to establish message confidentiality in communications dates back to the ancient 

world, where political diplomats and military emissaries understood the necessity of a mechanism 

capable of concealing valuable information from the enemy. Sensitive messages were transported in 

safe boxes and were protected against tampering by armed envoys. The first proof of the use of 

cryptography is an encrypted text curved in stone in the Old Kingdom of Egypt at 1900 B.C. [88]. 

However, the true nature of that message remains a mystery to researchers. Stenography was a well-

known method of information concealment, used by the Ancient Greeks and Persians of the fifth century 

B.C. and involved the use of microdots, invisible ink and merge of words with images [89]. Other 

classical cryptographic methods are transportation ciphers and substitution ciphers. Transportation 

ciphers refer to rearrangement of the order of the letters in a message, while substitution ciphers allow 

the replacement of groups of letters with other letters. The most famous substitution cipher is the 

Caesar cipher, where each letter in the plain text is shifted three positions further down the alphabet 

[90]. Most of these ciphers became vulnerable to cryptanalysis after the discovery of frequency analysis 

by the Arab mathematician Al-Kindi in the 9th century as they were based on the premise that the 

adversary has no knowledge of the cipher itself [91]. It was until the 19th century when Auguste 

Kerckhoffs claimed that a cryptographic scheme should remain secret even in the unwanted case of 

leak to the adversary, formulating the Kerckhoffs’s principle. Kerckhoffs’s principle was restated by the 

founder of information theory, Claude Shannon, formulating the fundamental theory of theoretical 

cryptography, the Shannon’s Maxim [92]. 

By the end of the twentieth century, rapid advancements in telecommunications, electronics 

and computing systems led to revolution in the communications sector. Computing systems have 

become smaller, more powerful and cheaper and are able to communicate and exchange information 

via interconnected networks. Modern Cryptography constitutes a vital aspect of secure communications 

and is related to main principles of information security such as confidentiality, data integrity, system 

availability, authentication and non-repudiation. Modern cryptographic systems are based on 

mathematical algorithms and computer science principles rendering the breaking of such systems 

computationally exhausting and impractical, as it would require unlimited computing power and 

resources. The biggest challenge of these algorithms is the growing concerns regarding the processing 

power of future quantum computing systems and their ability to break many of the current cryptography 

encryption standards. Quantum computing systems make use of the quantum bits capable of 

representing both zero and one and performing two calculations at once, hence being computationally 

more powerful [93]. The cryptographic algorithms of modern cryptography are categorized into three 

types, based on the number of keys used for encryption and decryption, namely secret key of symmetric 

cryptography, public-key or asymmetric cryptography and hash functions (Figure 2.4). 

 

 
Figure 2.4 Classification of Cryptographic Algorithms 
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2.2.1 Symmetric Cryptography  

Symmetric or secret key cryptography refers to information concealing methods where both 

communication entities share a single key for both encryption and decryption providing privacy and 

confidentiality (Figure 2.5). The secure key distribution between the two communicating entities is 

known as the key distribution problem, a limitation of symmetric cryptography [94]. Cryptographic 

schemes that follow this type of cryptography are classified into two categories, namely stream ciphers 

and block ciphers. Stream ciphers encrypt a single bit of plaintext at a time, using a relatively long 

stream of pseudorandom bits as key material. This pseudorandom generator needs to remain 

unpredictable so that the derived key gets to change constantly. Although stream ciphers do not 

propagate transmission errors, their periodic nature causes a repetition of the keystream, a vulnerability 

known to potential attackers [95]. A well-known application stream cipher is One-Time Pad, an ideal 

cipher that performs pure random key generation achieving maximum secrecy [96]. In contrast to 

stream ciphers, block ciphers are encryption schemes using a fixed size block of data for encryption at 

a time. The size of plaintext block is the same as the ciphertext block and varies from 64 bits to 128 

and 256 bits. In cases of shorter size of plaintext bits, padding schemes are used [97]. A well-known 

block cipher is the Feistel cipher, where the encryption and decryption stages are similar causing a 

considerable reduction in size of code. 

 

 
Figure 2.5 Symmetric cryptography 

The majority of symmetric algorithms used today for secure communications are designed by 

cryptographers and mathematicians aiming to render the decryption of ciphertext infeasible without the 

possession of the appropriate encryption key. One of the most well-known and well-studied symmetric 

algorithms is the Data Encryption Standard (DES), designed by the National Bureau of Standards 

(NBS) in 1977 for governmental purposes [98]. The DES algorithm is a complex block cipher with key 

size of 56 bits and block size of 64 bits, designed for fast hardware implementations. In 1998 the NSA 

managed to break the DES algorithm using brute-force attack, exposing a mathematical backdoor in 

its design. This fact motivated the academic community to propose a DES variant called triple-DES that 

made the DES algorithm more robust [99]. However, the security implications of DES led the NSA to 

introduce a new cryptosystem called Advanced Encryption Standard (AES). The AES describes a 128-

bit block cipher that features a key with 128, 192 and 256 bits and became a standard in December 

2001 [100]. Other important symmetric ciphers that are considered secure are ChaCha20 and RC5 

[101]. Although the sufficient key size for a symmetric algorithm to be considered as secure is between 

112 and 128 bits, advances in quantum cryptography come as a threat to the level of security these 

algorithms possess. 

 

2.2.2 Public Key Cryptography  

Public-key cryptography, also referred to as asymmetric key cryptography, is a revolutionary 

cryptographic scheme proposed by Martin Hellman and Whitfield Diffie in 1976 aiming to mitigate the 

shortcomings of symmetric key cryptography regarding key distribution. The basic principle of 

asymmetric cryptography concerns the generation of a cryptographically related key pair consisting of 

a freely distributed part called public key and a secret part called private key, where it is computationally 

infeasible to derive one from the other [102]. While one key is used for plaintext encryption, the other 

is used for decrypting the ciphertext, regardless of which key is applied first (Figure 2.6). Public-key 

cryptography also concerns a user authentication mechanism that proves the identity of the message 
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sender. In essence, one communication entity (“Alice”) encrypts information using its private key, while 

the other entity (“Bob”) is capable of decrypting it, using the freely shared public key of Alice. In the 

described scenario, the sending entity cannot deny the sending of the message satisfying the non-

repudiation security principle. Diffie and Hellman proven the feasibility of asymmetric cryptography by 

introducing the Diffie-Hellman key exchange protocol, where the two communicating parties should first 

agree upon a shared encryption key [103]. 

 

 
Figure 2.6 Public Key cryptography 

The first successful attempt of an asymmetric scheme is the RSA algorithm that took its name 

from the initials of its creators, namely Ronald Rivest, Adi Shamir and Leonard Adleman, three notable 

MIT mathematicians [104]. RSA spans a wide range of uses from key exchange and digital signatures 

to encryption of small data blocks. The derived key pair is the product of two prime numbers with length 

of 100 or more bits each, yielding in a very large number n. Although it is difficult for an attacker to 

determine the prime factors of n, the advancements of modern computing systems to factorιze large 

numbers, are becoming a potential threat to the algorithm. In 2005, a test aiming to factor a 200-digit 

number was performed and took almost 50 years in computation time, while in 2009 Kleinjung claimed 

that factoring a 1024-bit RSA number would require almost one thousand years. Apart from the RSA, 

Diffie and Hellman proposed their own asymmetric cryptography suitable for key exchange. Another 

approach to public key cryptography is the Elliptic-curve Cryptography (ECC) which is based upon 

elliptic curves over finite fields. ECC uses smaller keys in comparison with RSA is suitable for resource 

constrained devices such as endpoint IoT devices [105]. ECC algorithms are suitable for key agreement 

and digital signatures and may be used in combination with symmetric encryption schemes. An 

example of such a scheme is the Elliptic-curve Diffie-Hellman (ECDH) key agreement protocol 

proposed by Diffie and Hellman [106].  Finally, the Digital Signature Algorithm (DSA) refers to digital 

signature capabilities with X.509 standard to be the most used format of this algorithm [107]. 

An important element of public key cryptography is a mathematical scheme for validating the 

authenticity of digital documents and messages, called digital signature. Digital signatures provide 

strong authentication and message integrity capabilities, enhancing the trust between two 

communication entities. Digital signatures are part of cryptographic methods and techniques applied in 

various applications such as online financial transactions, internet banking and software distribution 

[108]. A user authentication example using digital signatures is illustrated in Figure 2.7, where two 

communication parties validate one another. The sender entity “Bob” sends a message to the verifier 

entity “Alice”, together with a digital signature that proves the authenticity of his identity. “Bob” feeds 

the message data to a signature algorithm and signs it with his private key, called encryption key. The 

produced digital signature is appended to the message and then both are sent to the receiver entity. 

The message receiver “Alice” verifies the authenticity of “Bob” by decrypting the received signature with 

the freely distributed public key of “Bob”. This key is called verification key and is adamant towards the 

signature decryption. In case the resulting message value is different, “Alice” may correctly assume 

that the received message has been forged by a malicious adversary. On the contrary, if the signature 

gets verified by “Alice”, that means that non-repudiation is provided as only “Bob” could be the sender 

of the message. 
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Figure 2.7 User authentication scheme 

2.2.3 Hash Functions and Message Authentication Codes 

Hash functions constitute the third type of modern cryptographic algorithms known also as one-way 

functions and message digests. Hash functions are capable of encrypting plaintext data irreversibly 

without the use of encryption keys by computing a fixed-length hash value of the plaintext. Any change 

in the message contexts will effectively result in the calculation of a completely different hash value, 

ensuring data integrity [109]. Cryptographic hash functions add a layer of security by verifying the 

authenticity of received data from an unknown source. Hash functions span a wide range of applications 

from digital fingerprints on sensitive file data to deployments in operating systems for password 

encryption purposes. A well-studied family of hash algorithms is the Message Digest (MD) algorithms 

that produce a 128-bit hash value regardless of the message length. MD4 is a well-known example of 

the MD family developed by Rivest for fast processing in software that is now broken [110]. After the 

appearance of vulnerabilities in the MD4 algorithm, an improved cryptographic scheme was introduced 

by Hans Dobbertin in 1996, under the name MD5 in his work “Cryptanalysis of MD5 Compress” [111]. 

The US national Security Agency (NSA) developed another important hash function family, the Secure 

Hash Algorithm standard (SHA) [112]. SHA-1 is the first deployed algorithm of the SHA family that 

produces a 160-bit hash value for data encryption. SHA-2 family was proposed by the NSA as an 

improvement to the SHA-1 family after reports of attacks against it. SHA-2 comprises of five algorithms 

namely SHA-1 plus, SHA-224, SHA-256, SHA-384 and SHA-512. Each one of the aforementioned 

algorithms is able to produce hash values of length 224, 256,384 and 512 respectively. However, 

vulnerabilities in the SHA-2 family led NSA to introduce a third family that is called SHA-3 in 2012 [113]. 

A similar integrity measurement scheme to the hash functions is the Message Authentication 

Codes (MACs). A MAC refers to a symmetric cryptographic technique capable of providing message 

authentication. Similar to hash, a MAC function encrypts an arbitrary long input of data into a fixed 

output using a key. A MAC consists of three algorithms, a key generator algorithm responsible for 

selection of a suitable key, a signing algorithm that returns a tag of the selected key and the message 

and a verifying algorithm that accepts or rejects the message [114]. In the example of Figure 2.8, the 

sending entity “Bob” creates a tag of the message that he wants to communicate with the receiving 

party “Alice”, using a key and a signing mac algorithm. The message together with the generated tag 

are send to “Alice”, who tries to generate her tag of the received message using the same key. The 

data integrity of the message is verified by an algorithm which compares the two tags and validates 

any possible tampering or alteration of the message. A special type of message authentication code is 

the hash-based MAC called HMAC. The HMAC uses a cryptographic hash function and a secret key 

for verifying the integrity of the data and authenticating the message. 
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Figure 2.8 Message Authentication Code (MAC) usage 

2.3 Public Key Infrastructure 

Today an increasing number of companies are using the Internet as a platform to conduct their business 

transactions, including retail sales, marketing, and business-to-business operations. Although e-

commerce has become an important tool for modern companies, it poses significant security and 

integrity issues. Online transactions differ from the traditional face-to-face business model and therefore 

require the development of robust security mechanisms. Symmetric cryptography is an ideal solution 

for data encryption, ensuring the confidentiality and privacy of the transaction data. Public key 

cryptography offers user authentication and non-repudiation, allowing companies and customers to 

validate their respective identities. Finally, hash functions and MACs provide data integrity, enhancing 

confidence between customers and enterprises. However, proper implementation of security requires 

more than sound cryptography. It involves the establishment of trust among the communication entities. 

Public key infrastructure (PKI) is a framework based on public key cryptography, that provides 

trustworthy digital communications over a network [115]. In cryptography, the PKI refers to the binding 

of public keys with digital identities of entities such as people or companies. PKI is an essential 

component of the overall system security strategy and a foundation element of network security. 

 

2.3.1 PKI Components 

This section demonstrates the key components of PKI facilitating trusted communications with 

confidentiality, integrity and non-repudiation among the communication parties. PKI involves public key 

certificates, certificate authorities, registration authorities, registration and insurance certificate policies, 

a centralized certificate management system, certificate chains, and hardware security modules. 

 

Digital Certificates 

In the dynamic environment of e-commerce, online transactions are performed among digital 

representations of physical entities such as people or organizations. These digital entities need to prove 

the authenticity of their identity while communicating with one another over a network. In PKI, digital 

identities are represented by digital documents called public key certificates or identity certificates. 

Public key certificates certify the binding of a digital identity to its public key, allowing another entity to 

validate the identity of the certificate owner. Digital certificates secure confidential information with 

encrypting methods and sign public keys with digital signatures, ensuring tamper protection. Typically, 

a certificate contains the public key of an entity, identifying information regarding the certificate owner, 

the name of the certificate issuer and the expiration date of the certificate. The certificate owner is called 

subject entity and usually differs from the issuer. However, there are certificates called self-issued 

certificates, where the two fields are identical. Additional information included in a digital certificate are 
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the types of cryptographic algorithms used, policies that describe how the certificate may be used, a 

serial number of the certificate, and a digital signature of the issuing entity of the certificate. Perhaps 

the most common used format for digital certificates is described by the IETF X.509 standard in the 

RFC 2459 document [116]. However, there is no single definition of digital certificates which allow 

vendors and users to generate their own version of digital certificates. Public key certificates are widely 

used to authenticate HTTPS-based websites, where web browsers validate the authenticity of a HTTPS 

web server, ensuring that there are no eavesdroppers during the client-server communication. 

However, digital certificates are vulnerable against treats and attacks from malicious adversaries. For 

example, a web browser may not notify a user in case of changes in the certificate provider or expiration 

date. 

 

Certificate Authorities 

The foundation element of PKI is a trusted third party called certificate authority (CA), responsible for 

issuing, signing, and storing digital certificates [117]. Examples of certificate authorities are a company 

that issues certificates to its employees or an internet service issuing certificates to its users. An end-

user requesting a digital certificate from a certificate authority creates a certificate signing request 

(CSR), which contains the public key of the end-user and useful identity information such as the name 

of the certificate owner. The CSR is digitally signed with the private key of the certificate owner and is 

sent to a certificate authority called registration authority (RA). Registration authorities are responsible 

for accepting or rejecting requests for digital certificates and authenticating the subject entities of these 

requests. The authentication process involves the decryption of the end-user signature, incorporated 

in the CSR, using the public key of the end-user. Subsequently, an RA performs due diligence tests on 

the end-entity, examining the subject name, validity date and other important identity information. 

Although RAs constitute an important PKI element, they are not entitled to sign or issue digital 

certificates. After validating the end-user authenticity, a certificate authority signs the certificate request 

with its secret signing key, issuing a digital certificate. The issued certificates should be unique for 

constantly valid maintaining the trustworthiness provided by the CA. The validation mechanism of 

issued certificates is performed by a PKI entity called validation authority (VA). Common validation 

techniques involve the revocation of compromised or lost keys and the protection of public and private 

keys. Revocation information regarding invalid certificates is provided via the Online Certificate Status 

Protocol (OCSP) and Certificate Revocation Lists (CRLs). Prominent certificate authorities currently 

available in the market include DigiCert and Sectigo [118]. Common problems with certificate authorities 

involve purchases of cheap, low quality certificates from end-entities, dropping the quality of the 

certificate chain. Another CA vulnerability is unexpected changes to the built-in list of root-certificates 

provided to all web browsers by certified organizations. Such changes might be performed by 

inexperienced or even malicious developers resulting in erroneous certificates. 

 

Chain of Trust 

Certificate authorities enhance the validation capabilities of their authentication mechanism by 

establishing trust relationships with other CAs. A well-known method to achieve that is the use of 

certificate chain or chain of trust. Chain of trust refers to a list of certificates that authenticate one 

another in a hierarchical manner [119]. Starting from an end-entity, certificates are issued and signed 

by certificates higher in the certificate hierarchy, using the secret key corresponding to the next 

certificate in the chain. The authentication process involves the verification of the signature of the target 

certificate using the corresponding public key of the next certificate, until the last certificate in the chain 

is reached. The last certificate in the chain is a self-signed certificate which is inherently trusted by 

users. This certificate is called root certificate and is the trust anchor of the chain of trust. In case the 
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root certificate gets compromised by a malicious adversary, then all certificates issued by the root CA 

will be affected, resulting in re-issuing of new certificates, the validity of which will be questionable. 

Therefore, it is important for root CAs to use intermediate authorities to sign and issue end-entity 

certificates. A useful schema representing a chain of trust between three certificates is illustrated in 

Figure 2.9. 

 

Figure 2.9 Certificate chain of Trust 

Hardware Security Module 

The trustworthiness of a Certificate Authority (CA) critically depends on the secure generation, storage, 

and usage of its private keys, operations typically performed within a Hardware Security Module 

(HSM). An HSM is a tamper-resistant cryptographic processor that generates, stores, and executes 

cryptographic functions, such as digital signing and key management, entirely within its secure 

hardware perimeter, ensuring that private keys never leave the protected environment [120]. These 

devices are often certified under standards like FIPS 140-2/3 and are widely used in environments 

requiring high assurance, including internet banking, Public Key Infrastructure (PKI) applications, and 

cryptocurrency systems. 

 

2.3.2 Trust Models 

The public key infrastructure involves security policies and methods equipped with authentication 

capabilities, in order to establish trust within a system. The trust relationships developed in the PKI 

framework are a result of a collection of rules known as trust models. In this section an overview of 

three well-known examples of trust models is presented. 

 

Hierarchical Model 

The most common implementation of the PKI is the hierarchical trust model. It refers to a tree model 

consisting of a number of certificate authorities and end-entities, arranged in a hierarchical manner 

[121]. The root node of the tree is called root CA, while the inner nodes are referred to as intermediate 

or subordinate CAs and the leaves as end-entities. The root CA is the PKI trust anchor and usually 

issues a self-signed certificate containing the public key used to verify certificates issued by the root 

CA. in the hierarchical model, trust is established via a certification path. This path consists of a 

sequence of certificates that authenticate certificates next in the hierarchy based on information 

provided from certificates higher in the tree. An example user authentication is described in Figure 2.10. 
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In this PKI framework, “Alice”, “Bob” and “Carl” are certified end-entities from different CAs. The end-

entities “Alice” and “Bob” trust each other as they share a common issuing CA. Although “Alice” and 

“Carl” have different issuing certificate entities, they share a common root CA. In order for “Alice” to 

establish trust relationship with “Carl”, she needs to verify the certification path of “Carl”. The 

certification path consists of a self-signed certificate of the root CA, a signed certificate of the 

intermediate CA2 by the root CA, and the end-entity certificate of “Carl” signed by CA2. Since “Alice” 

inherently trusts the root CA, she subsequently trusts the intermediate CA2 and the end-entity “Carl”. 

 

 
Figure 2.10 Hierarchical trust model 

A tiered hierarchy with multiple CAs offers a high level of control mitigating the risk of trust violation. 

However, the number of intermediate CAs increases the administrative effort required to maintain the 

hierarchy and thus increases the risk. This can be very practical in the Internet environment where 

multiple users are connected to a web server. If the trustworthiness of the server gets compromised, 

all users are notified at once and refused access. However, this can be very impractical in e-commerce 

transactions where communication is on a one-on-one basis. On the other hand, a flat hierarchy using 

a single CA as trust anchor is more flexible and requires less administrative effort. The drawback of this 

hierarchy type is corruption of the entire certificate chain, in case of a failure in the root CA. 

 

Peer-to-peer Model 

The most basic PKI trust model is the direct or peer-to-peer model. In this model, there is no 

intermediate trusted third party and end-entities establish trust with one another on a direct manner 

[122]. Each end-entity relies on a local CA to issue its certificate, creating a local trust domain. In the 

local domain, the end-entity can verify the validity of the local CA signature, using the public key of that 

CA. The direct connection between the end-entity and the local CA ensures the secure provisional of 

the CA’s public key to the end-entity. An example of a direct communication within a trust domain is the 

installation of software updates form a Linux server located on the Internet to a local machine. The 

server public key in usually provisioned either in the Linux distribution or in a CD or DVD, ensuring 

protection against theft from a malicious adversary. This model offers flexibility, making the extension 

of trust domain quite convenient. However, the increasing number of local CAs makes the 

manageability of the system quite challenging. Therefore, the peer-to-peer trust model is not an ideal 

candidate for e-commerce or web browsing. A variation of the peer-to-peer trust model is the cross-

certification model. This model allows the CAs of two different trust domains to authenticate the public 

key to one another, creating a bidirectional trust. 

 

Web of Trust 

In cryptography, the term web of trust refers to decentralized systems where end-entities authenticate 

one another without using trusted third parties. Contrary to the hierarchical PKI model, no third party 

ensures the integrity and authenticity of an end-entity. End-entities are allowed to specify the validity of 

their certificate by indicating the number of trusted signatures placed on that certificate. The web of 
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trust works better with small groups of end-entities who have preexisting trust relationships. However, 

it does not scale well with big numbers of end nodes being unsuitable for e-commerce transactions 

[123]. The web of trust is applicable to a variety of well-known systems such as the PGP, GnuPG and 

other OpenPGP-related systems. Pretty Good Privacy (PGP) is a private e-mail scheme based on 

public key methods. A communication entity maintains a list of all trusted public keys of the entities that 

the entity trusts, formulating a web of trustworthy users. For example, the user “Bob” may obtain the 

public key of user “Alice” via an e-mail or a server containing the public key of “Alice”. “Bob” is not aware 

of the validity of the stored key and therefore assumes that it is valid. Trust among users is established 

on a one-to-one basis. For example, the fact that user “Carol” claims that he has a copy of “Alice’s” key 

in his database, does not necessarily mean that “Bob” should trust that key, even though he trusts 

“Alice”. An important characteristic of this model is that trust establishment is not transitional and there 

is no chain of trust among the users of the web. 

2.4 Transport layer Security 

Secure communication is essential for internet-based applications to ensure data integrity, 

confidentiality, and mutual authentication between endpoints. The Transport Layer Security (TLS) 

protocol is the predominant solution at the transport layer, designed to prevent eavesdropping, 

tampering, and unauthorized data access [124]. TLS facilitates the establishment of an encrypted 

channel between a client and a server, enabling secure data exchange after connection negotiation. 

Originally developed by Netscape as the Secure Sockets Layer (SSL) in the mid-1990s, version 1.0 

was never publicly released due to significant vulnerabilities, prompting the release of SSL 2.0 in 1995 

and a complete redesign in SSL 3.0 by 1996. The Internet Engineering Task Force (IETF) later 

standardized the protocol under the TLS name, starting with TLS 1.0 in 1999 and evolving through 

versions 1.1 and 1.2. 

The most recent iteration, TLS 1.3, was published as RFC 8446 in August 2018, introducing several 

key improvements: streamlined handshake with one round-trip, removal of obsolete and insecure 

cipher suites, mandatory forward secrecy, and enhanced privacy through encrypted handshake 

metadata [125]. Today, TLS is widely deployed across protocols such as HTTPS, SMTP, FTPS, VPNs, 

and VoIP, forming a cornerstone of. Clients and servers may support multiple TLS versions, negotiating 

the highest mutually supported version during handshake. While TLS 1.3 is now the default in modern 

browsers and servers, earlier versions remain in use for compatibility, though many deprecated 

versions carry known security risks. 

The TLS protocol comprises two core components: (1) the Handshake Protocol, responsible for 

negotiating cryptographic parameters, mutual authentication, and key material exchange; and (2) the 

Record Protocol, which secures application data using keys and algorithms established during the 

handshake. The handshake proceeds through several defined steps to establish a secure session 

between client and server [126]. 
1. The client initiates the handshake with a ClientHello message, specifying supported cipher 

suites (for key exchange, authentication, encryption, and integrity), TLS versions, session 

identifiers, compression methods, and a 32-bit random nonce used in subsequent key 

derivation. 

2. The server responds with a ServerHello message, selecting the protocol version, cipher suite, 

and compression method from the client’s list and providing its own random nonce. 

3. The negotiation concludes with the server sending a ServerHelloDone message, indicating 

readiness to proceed with the key establishment and authentication exchange. 
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Handshake Continuation and Key Exchange 

Upon selecting the cipher suite, the server proves its identity to the client using the agreed 

authentication mechanism. Typically, this involves the server sending an X.509 certificate; client 

authentication is optional and initiated only if required by the server. When requested, the client similarly 

provides its certificate. Next, the handshake enters the key exchange phase, where both parties 

collaboratively derive the “master secret key”, which subsequently generates session encryption 

keys. The process typically proceeds as follows: 
1. The client generates a “pre-master secret” using the negotiated key exchange algorithm. 

2. This pre-master secret is encrypted with the server’s public key (from its certificate) and sent 

to the server. 

3. The server decrypts the message using its private key. 

4. Both client and server then derive the master secret key from the pre-master secret and the 

nonces (random values) exchanged during the initial ClientHello and ServerHello steps. 

5. Session keys are derived from the master secret; the client notifies readiness via the 

ChangeCipherSpec message and then sends a “ClientFinished” message. 

6. The server echoes with its own ChangeCipherSpec and “ServerFinished” messages, 

confirming handshake completion. 

Upon receipt of "ServerFinished", both client and server begin encrypted and authenticated data 

exchange. This protocol flow is summarized in Figure 2.11. 

 
Figure 2.11 TLS Handshake protocol 

TLS Record Protocol 

The TLS Record Protocol ensures secure transmission of application data by providing confidentiality, 

integrity, and authenticity, all based on the cryptographic parameters negotiated during the handshake 

[127]. Each message is divided into discrete units known as records, which undergo the following 

processing steps: 
1. Fragmentation: Messages are segmented into appropriately sized records. 

2. Compression (optional): Data is compressed if negotiated. 
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3. MAC Application: A Message Authentication Code (MAC) is computed and appended to each 

record to ensure integrity. 

4. Encryption: The record (including the MAC) is encrypted using the session key. 

5. Transmission: The encrypted records are transmitted over the secure channel. 

On the receiving end, the entity reverses these steps: decrypting each record, verifying the MAC to 

confirm integrity, decompressing if needed, and reassembling the data for delivery to higher-layer 

protocols. The Record Protocol operates in conjunction with upper-layer mechanisms such as 

ChangeCipherSpec and alert protocols to manage security state transitions and error handling. 

 

TLS Vulnerabilities and Known Attacks 

Although TLS is the de facto standard for transport-layer security, multiple vulnerabilities remain in older 

versions and implementations. Notably, the POODLE (“Padding Oracle On Downgraded Legacy 

Encryption”) attack, disclosed in October 2014, exploits fallback mechanisms to compel clients and 

servers to negotiate SSL 3.0 connections. Because SSL 3.0 does not validate CBC-mode padding 

correctly, attackers can perform decryption via a man-in-the-middle approach [128]. Another significant 

vulnerability is Heartbleed (CVE-2014-0160), which emerged in April 2014 in OpenSSL’s heartbeat 

extension. By sending malformed heartbeat requests with inflated payload lengths, attackers could trick 

servers into leaking up to 64 KB of sensitive memory, potentially exposing private keys, passwords, 

and confidential session data [129]. These cases underscore the persistent risk borne by deprecated 

protocol versions and flawed implementations, reinforcing the importance of rigorous version checks, 

secure library updates, and deprecation of obsolete features. 

2.5 Device Identifier Composition Engine 

The Device identifier Composition Engine (DICE) is a security standard developed by the Trusted 

Computing Group (TCG) within the DICE Architectures Work Group, in order to address the need for 

increased security in the IoT [130]. The TCG spans a wide range of security standards and resilient 

technologies aiming to provide critical security and privacy capabilities to the embedded world. The 

most notable among these technologies is the Trusted Platform Module (TPM) that provides a hardware 

root of trust for secure boot. However, the TPM is a heavyweight solution for systems with constraints 

related to cost, size and energy such as the end-to-end IoT devices [131]. Therefore, DICE is proposed 

as a lightweight and robust security solution that establishes trust within deployed IoT systems. The 

simple silicon requirements of DICE [132] together with software techniques form a foundation for 

important security capabilities such as attestation, strong device identity, verified firmware updates and 

secure device recovery. The ability of DICE to integrate into existing hardware infrastructure and being 

compatible with existing security standards makes it adaptable to the majority of systems and 

components at almost zero cost. A major benefit of DICE is that it is based on sound security principles, 

developed and tested by industry experts, such as hash functions and integrity measurements. 

The key concept behind DICE is that with only a unique device-specific secret and a one-way 

cryptographic function rooted in hardware, a device is capable of verifying its state. Firmware, divided 

into layers, is running on top of the DICE engine and creates keys for multiple purposes enhancing the 

foundational trust services within the device. Those trust services include the formulation of a 

cryptographically strong device identity based on a robust hardware root-of-trust. The device is able to 

authenticate its identity and the identity of its software when connecting to cloud provider services, an 

operation known as attestation. Attestation ensures that only authenticated code is running on the 

device attesting this way to the trustworthiness of the device itself. Furthermore, DICE protects data by 

preventing access to old software versions. Other trust services offered by DICE include secure data 
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storage (sealing), data integrity and safe deployment and verification of software updates, a frequent 

source of malware attacks. 

An important feature that distinguishes DICE from other software-only solutions is its approach 

towards the device boot process. In a DICE architecture, the boot process breaks up into layers that 

communicate with one another by passing secret values that are unique not only to the device itself, 

but to each layer respectively. The first layer of the booting process is immutable, meaning that is not 

subjected to alterations. This layer contains a unique, device-dedicated initial secret value that is the 

root of trust for the identity of the targeted system. The immutable DICE code is stored in an NV-memory 

and cannot be altered. For this purpose, an access preventing mechanism is preferably implemented. 

The generation of secrets is performed by one-way functions starting from the initial secret value. The 

secret of the previous layer together with configuration data or code measurement from the next layer 

in the hierarchy, are cryptographically mixed in a way that is infeasible to derive one secret from 

another. The code measurement of a layer refers typically to a cryptographic hash of the code or data 

of the layer. The derived secret is provided to the next layer in the boot chain after all remnants of its 

creation are erased. Secret confidentiality is of paramount importance and thus secrets should remain 

strictly confidential within their respective layer. The secret derivation process continues during startup, 

resulting in a measurement chain that is rooted in the device’s identity and is based on measured code. 

The boot model of DICE is illustrated in the Figure 2.12. 

 

 
Figure 2.12 DICE boot model 

The secrets that are used for establishing device identity or data sealing may leak if the code 

used for their manipulation gets compromised by an adversary attack. The process of secure re-keying 

such compromised devices may be a difficult task. ARM’s TrustZone establishes a Trusted Execution 

Environment (TEE) where only trusted applications run [133]. The secrets are stored in one-time 

programmable memories with limited access from run-time software. This way the risk for secrets to 

get compromised is considerably reduced. However, most TEEs contain thousands of lines of code 

retaining the high risk of compromise.  

Resilient cyber-attacking systems create malformed programs aiming to steal the device 

identity. Therefore, all data structures processed in early boot should be simple in order to minimize the 

chances of exploitable bugs. File systems should not be used in early boot code due to their complexity. 

Also, vendors should deploy technologies to guard against hardware attacks such as glitching. DICE 

standard tackles these problems by providing techniques that minimize the amount of code that gets 

access to the device secret. The uniqueness of device secrets and keys in each layer of the DICE 

architecture ensures that if new layer code or configuration is modified, the derived secret changes for 

the corresponding layer. Changing of a secret in one-layer results in changing of all the following secrets 

in the chain change as well. If a vulnerability exists and a secret is disclosed, patching the code 

automatically creates a new secret, effectively re-keying the device. In other words, when malware is 

present, the device is automatically re-keyed, and secrets are protected. An example of layer code 

change is illustrated in Figure 2.13. 
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The DICE engine is the first code that is executed unconditionally by the device after it is 

powered or reset. The DICE boot code for simple devices is read-only and preferably one time 

programmable during manufacture. An updatable implementation is possible for more complex systems 

and requires a vendor-certified secure update mechanism. Ideally DICE is implemented by silicon 

vendors in ROM firmware. In DICE specification the device secret is an uncorrelated and statistically 

unique identity value called Unique Device Secret (UDS). It is generated intrinsically in a trusted 

environment every time the device powers on or resets. The access to UDS should be limited by a 

hardware access preventing mechanism incorporated in DICE hardware. This mechanism should 

disable read-access privileges to UDS before transferring control to the firmware. A system reset should 

ensure that malware that arrives later in boot or at runtime cannot have access to the UDS. Also, storing 

the UDS in a NV-memory or Read-only memory (ROM) further strengthens confidentiality of the device 

secret, ensuring that the UDS is only available to DICE at boot time.  

Although such a mechanism can protect access to the UDS, boot code can still be 

compromised if an adversary makes a copy of it in RAM. Using a one-way cryptographic function to 

transform the UDS, mitigates the problem to a later state. One-way function or message digest is a 

function designed in such way that even a slight change in the input string should cause the hash value 

to change drastically. Even if one bit is flipped in the input string, at least half of the bits in the hash 

value will flip as a result. In this way, if the derived cryptographic identity value gets compromised, the 

original UDS is still secure. In addition to the lockout mechanism, DICE needs to ensure that no data is 

left in the registers or cache memory that might assist an attacker extracting the UDS.  

The cryptographic identity value derived from the UDS is called Compound Device Identifier (CDI) and 

is provided to the early boot code of the device. The CDI is a combination of the UDS and a 

cryptographic representation of the early boot code running on the device, called First Mutable code. It 

can optionally include hardware state measurements and configuration data that affect the execution 

of the First Mutable code. A simple one-way function for the derivation of CDI is a secure hash algorithm 

used to hash the concatenation of the two values. Another approach is the use of an HMAC for higher 

level of protection.  

𝐶𝐷𝐼 = 𝐻(𝑈𝐷𝑆 ∥ 𝐻(𝐹𝑖𝑟𝑠𝑡 𝑀𝑢𝑡𝑎𝑏𝑙𝑒 𝑐𝑜𝑑𝑒)) 

 

 

 

 

 

Figure 2.13 Layer code change 
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The general process of the DICE Engine is illustrated in the Figure 2.14. 

 

 
Figure 2.14 DICE Engine 

Based on the CDI, keys in the form of secrets are generated for attestation and other purposes. 

These keys are bound to both UDS and the firmware. A change in either of them would result in a 

different CDI effectively re-keying the device. For example, if the First Mutable code is replaced by 

malware (Figure 2.16), the attacking program gets a different hash and thus obtains a different CDI key 

than the authorized program. In case the application accidentally discloses the CDI, the device must 

be re-keyed. Flashing a patched firmware will result in creating a new CDI value restoring trust within 

the device. The CDI value is provided to the First Mutable Code and can be stored in memory or 

registers. The First Mutable code should be able to read the CDI and then use it to create keys for 

attestation and other purposes. However, disclosure of the CDI to a latter executing code may 

compromise the First Mutable code. Therefore, the CDI value should be hidden or deleted maintaining 

it confidential within the First Mutable code. 

 

 

 

 

 

 

 

 

Figure 2.15 DICE Engine 
layer and firmware Figure 2.16 Malware attack scenario 
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3 System Architecture and Protocol 
Design 

This chapter presents the design of a security protocol that enables asymmetric remote attestation for 

resource-constrained IoT devices. The proposed architecture builds upon the Device Identifier 

Composition Engine (DICE) standard, which provides cryptographically verifiable device identity and 

firmware integrity using a hardware-based trust anchor. Section 3.1 introduces the design methodology, 

motivating the choice of a V-Model to organize development and validation activities. Section 3.2 

defines the system’s functional, non-functional, and security requirements, establishing the objectives 

and constraints guiding the protocol’s development. Section 3.3 describes the protocol architecture in 

detail, including its layered components, key derivation mechanisms, and operational flows across the 

device lifecycle. Finally, Section 3.3.3 provides a structured security analysis of the protocol using the 

STRIDE threat modeling framework, evaluating how the design mitigates common attack vectors 

across the defined trust boundaries. Together, these sections form the basis for the implementation 

and evaluation presented in the following chapter. 

3.1 Design Approach 

System design in software engineering is the disciplined process of shaping an IT artifact from a set of 

interconnected components [134]. Offerman et al. classify such artifacts as systems, methods, 

algorithms, requirements and metrics [135]. Aligned with the design-science research (DSR) 

methodology of Peffers et al. [136], this thesis adopts a Systems Development Life Cycle (SDLC) 

approach [137], which structures development into sequential stages that transforms an abstract 

problem into a verified and maintainable implementation. 

Among various SDLC models, the waterfall model, originally proposed by Royce [138] and 

later adopted by the U.S. Department of Defense [139], divides development into six cascading phases 

(Figure 3.1). Each phase begins only after the deliverables of its predecessor phase have been 

completed and reviewed, providing clarity of scope, explicit milestones, and predictable cost control. 

Although the waterfall approach suits tightly scoped projects with stable requirements, security-critical 

systems demand an even stronger emphasis on early and systematic verification and validation. 

The V-Model, an extension of the waterfall paradigm, integrates verification and validation 

activities in every design phase [140]. Its left branch contains development activities (requirements 

analysis, architecture design, module design, and here security requirement analysis), while the right 

branch mirrors them with corresponding test activities (unit, integration, and system validation). The 

vertical axis denotes the abstraction level, whereas the horizontal axis denotes project time. Verification 

confirms that artefacts comply with specifications, whereas validation ensures that the final system 

satisfies stakeholder needs [141], [142]. Widely used instantiations include the German V-Modell XT 

used by the federal government [143], the U.S. Department of Transportation standard [144], and the 

general testing V-Model adopted in commercial software engineering. 
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Figure 3.1 Waterfall Model for Sequential Software Development 

Design approach 
This study adopts a general testing V-Model approach (Figure 3.2) because it  

1. offers straightforward deliverables at each stage 

2. associates clear validation criteria with every design decision 

3. embeds review processes that facilitate early fault detection, essential for IoT hardware where 

rework is costly 

4. remains lightweight for projects with clearly defined goals 

Its main limitations are i) reduced flexibility with late-changing requirements and ii) suitability for small-

to-medium-scale projects. However, these limitations are acceptable within the context of a security 

mechanism targeted at constrained IoT devices. The selected V-Model offers a disciplined yet 

pragmatic framework that aligns with the iterative nature of security engineering: every design decision 

is paired with an explicit verification activity, ensuring that the resulting architecture meets both 

functional and non-functional. 

In the proposed model (Figure 3.2): 

• Requirement-analysis defines the system’s functional and non-functional requirements as 

well as the security goals that drive architecture design. 

• Architecture design produces a high-level overview of the protocol, identifies candidate 

cryptographic primitives, and assesses feasibility for resource-constrained platforms (high-

level design). 

• Module design refines the architecture into discrete components with well-defined interfaces, 

enabling isolated implementation and unit testing (low-level design). 

• Security requirements analysis conducts a list of potential threats and attacks after careful 

investigation of the system’s main components and interfaces. Several attributes that span 

multiple disciplines are examined for the accessibility risk and the potential reward to the 

attacker. These attributes vary from the cost of the attacking equipment to the scalability of the 

performed attack. A counter-measurement list is conducted to protect the system against 

malicious attackers. 

• Code implementation realizes all system components on actual hardware. 

• Integration and implementation testing verify end-to-end functionality and feasibility of the 

proposed security architecture. is performed during the prototype implementation 

(demonstrator) to  

• Performance validation measures execution time (clock cycles) and memory footprint (code 

size) to validate that the prototype satisfies the original set constraints. 
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Figure 3.2 General Testing V-Model for Security-Critical IoT Systems 

Table 3.1 maps the design phases adopted in this work to the main contributions (MC) introduced in 

Section 1.3: 

 
Table 3.1 Mapping of Design Phases to Main Contributions 

Design phase Main contribution 

Requirement analysis MC1 – Asymmetric attestation protocol design 

Architecture design MC1 – Asymmetric attestation protocol design 

Module design MC1 – Asymmetric attestation protocol design 

Security requirements analysis  MC3 – Qualitative security analysis 

Prototype implementation MC3 – Demonstration prototype 

Prototype evaluation MC4 – Qualitative performance analysis 

3.2 Design Objectives and Requirements 

This section establishes the security objectives and system constraints that shape the protocol 

architecture presented in this section 3.3.1. The target deployment scenario involves resource-

constrained IoT devices, characterized by limitations in size, power, and computational capability. While 

these constraints reduce design flexibility, they pose the compelling challenge to deliver robust security 

guarantees on minimal hardware. 

Section 3.2.1 outlines the high-level design objectives that the protocol must fulfil, including 

secure identification, authentication, remote attestation, and software update capabilities. Section 3.2.2 

analyzes the different types of requirements involved in achieving these objectives, distinguishing 

between functional, non-functional, and security requirements, while defining assumptions that limit the 

design. 

 

3.2.1 Design Objectives 

The overarching goal of the design is to embed a hardware-rooted trust mechanism into commercial 

IoT nodes. Achieving this objective requires equipping constrained IoT devices with robust security 

capabilities based on cutting-edge cryptographic principles and protocols. To this end, the architecture 

is designed to: 
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• Generate a device-unique asymmetric key pair at boot to establish a unique digital identity. 

• Ensure firmware integrity and confidentiality by preventing the execution of unauthorized or 

outdated software. 

• Support mutual authentication with cloud infrastructure through a remote attestation 

mechanism. 

• Offer a lightweight solution with minimal silicon footprint, enabling secure deployment and 

verification of software updates. 

3.2.2 Requirement Analysis 

Once the design goals have been established, a requirement analysis is conducted to identify the 

technical solutions the system must satisfy to meet its objectives. 

 

General Requirements and Classifications 

According to Brennan [145], a requirement is a premise necessary for a design to achieve its objective 

or satisfy a functional need. Requirements must conform to formally defined standards or specifications, 

and play a central role in the verification process, serving as reference points for evaluating the 

correctness and completeness of system testing. In both system and software engineering, 

requirements are typically formulated prior to implementation and ensure that the final product is robust, 

maintainable, and free of critical flaws. Early-stage requirement analysis contributes directly to 

eliminating exploitable bugs and aligning developer efforts with end-user expectations and constraints. 

As Hay [146] notes, requirements define the foundational functions and properties needed by a system, 

and must be documented in a clear, consistent, and unambiguous manner. However, this process can 

be lengthy and complex, especially in large-scale designs where the number of system requirements 

can grow rapidly [147]. 

The IEEE Standard Glossary of Software Engineering Terminology [148] classifies system 

requirements into two main categories: 
1. Functional Requirements. Define what a system should do, describing the relationship 

between inputs and expected outputs [149]. 

2. Non-Functional Requirements. Define how a system should behave, imposing quality 

constraints such as performance, reliability, flexibility, and security [150]. 

Functional requirements are typically considered mandatory (“must-do”), whereas non-functional 

requirements, though equally important, are often classified as conditional or qualitative constraints 

(“shall-do”) [151]. 

These categories form the foundation for specifying the system- and security-level 

requirements in the remainder of this section. They directly inform the design of the proposed attestation 

protocol, where both functional and non-functional properties are critical. 

 

System Requirements 

The proposed architecture relies on a set of well-defined requirements that are modest and applicable 

to the majority of targeted IoT platforms. Together with a small set of basic assumptions, these 

requirements define the core principles that guide the system’s design and implementation. In the 

context of software engineering, an assumption is typically defined as “a thing accepted as true or 

certain to happen, without proof” [152] or “a fact or statement taken for granted” [153]. While 

assumptions are often necessary for practical reasons, they can introduce potential risks. If an 

assumption proves false in a given deployment, it may lead to software faults, misconfigurations, or 

even security vulnerabilities. For this reason, the number of assumptions made in this design are 

intentionally kept to a minimum. Fewer assumptions increase the breadth of verification and testing 

scenarios that can be applied to the system and reduce the likelihood of errors. 
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The proposed design is based on a set of six concrete requirements (R1–R6) defined to 

balance security strength with practical deployment constraints (Table 3.2). These requirements are 

deliberately minimal and portable to commercially available IoT platforms. Together with a set of limited 

assumptions, they serve as the foundation for protocol design. 

 
Table 3.2 System Requirements 

ID Requirement 

R1 The device must have enough power to derive asymmetric key-pairs and generate digital signatures. 

R2 The private key must remain confidential. The public key may be freely disseminated. 

R3 The device must be able to establish a connection and communication with a network infrastructure. 

R4  
The device should use the Transport Layer Security (TLS) to communicate with a cloud server 

provider. 

R5 The device shall use client certificates for mutual authentication (including certificate chaining). 

R6 The design should require minimal silicon overhead. 

 

Security Requirements 

Within this study, requirements are further examined from a security perspective, where protection 

against misuse, and unauthorized access is paramount. Security requirements can originate from 

multiple points in the design process, and they represent the explicit security goals of the application. 

To be effective, security requirements must be clear, measurable, consistent, and formally verified. A 

particularly useful methodology is architecture risk analysis [154], which helps identify vulnerabilities 

that may be exploitable in deployed software. 

The Open Security Architecture (OSA) framework [155] classifies IT security requirements into four 

types: 

• Secure Functional Requirements. State what shall not happen and are embedded within 

traditional functional requirements. 

• Functional Security Requirements. Define the specific system behavior that enforces 

security. Examples include authentication mechanisms, access control, and data integrity 

enforcement. 

• Non-Functional Security Requirements. Describe the quality attributes the system must 

meet to remain secure (e.g. encryption strength, fault tolerance). 

• Secure Development Requirements. Ensure that development practices and tooling reduce 

vulnerability exposure. 

Capability Mapping 

This thesis defines four core security capabilities summarized in Table 3.3: 

 
Table 3.3 Security Capability Mapping and Corresponding Requirements 

Capability Security Objectives 
Functional 

Requirements 

Non-Functional 

Requirements 

Linked 

Requirement(s) 

Device Identity 

Cryptographically 

verifiable, device-

unique identity 

On-device key 

pair derivation 

Confidential private 

key storage 
 

R1, R2, R6 
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Capability Security Objectives 
Functional 

Requirements 

Non-Functional 

Requirements 

Linked 

Requirement(s) 

Device 

Authentication 

Mutual verification 

between device and 

server 
 

TLS with client 

certificates 

Resistance to 

impersonation 
R4, R5 

Remote 

Attestation 

Firmware integrity 

and freshness 
 

Certificate-based 

reporting 

Tamper/replay 

protection 
R1, R2, R4, R5 

Secure Software 

Update 

Authenticated and 

authorized firmware 

updates 

Update 

enforcement 
 

Rollback protection, 

minimal silicon 

overhead 

R1, R3, R6 

 

Each of these capabilities is supported by a subset of the system requirements and collectively they 

fulfill the architecture's security objectives. Some of the previously defined requirements are strict, while 

others offer more flexibility depending on the deployment context. For example, a modest increase in 

silicon area may significantly improve performance or strengthen security guarantees—highlighting the 

need for careful trade-offs. As a result, the design must strike a balance between competing objectives 

such as resource constraints, security, and operational efficiency. 

With the system objectives and constraints now defined, the next section introduces a DICE-

based attestation protocol. It outlines the protocol’s structure, involved entities, and adversarial 

assumptions, showing how the identified requirements are translated into a layered boot and attestation 

framework suitable for resource-constrained IoT devices. 

3.3 Protocol Design 

This section presents a DICE-based protocol tailored to the constraints and operational requirements 

of resource-constrained IoT devices. The protocol is designed to achieve four foundational security 

capabilities: device identity, device authentication, remote attestation, and secure software 

updates. These capabilities are essential for establishing trust in distributed IoT ecosystems, 

particularly in scenarios where devices are physically exposed, and secure interaction with cloud 

infrastructures is critical. 

The design builds upon two key industry specifications: the Hardware Requirements for a 

Device Identifier Composition Engine (DICE), developed by the Trusted Computing Group (TCG) 

[130], and the Device Identity with DICE and RIoT architecture, proposed by Microsoft Corporation 

[49]. DICE introduces a hardware-rooted mechanism for deriving cryptographically strong identities that 

are tightly bound to both the device’s hardware and the integrity of its software state. This facilitates not 

only unique device identification, but also effective tamper detection. 

Compared to traditional hardware security modules such as the Trusted Platform Module 

(TPM), DICE offers a light-weight and more scalable alternative. TPMs, while powerful, often demand 

significant silicon area and power resources, making them impractical for constrained environments 

such as embedded sensors, microcontroller-based devices, or low-cost IoT platforms. In contrast, DICE 

is explicitly designed to operate with minimal hardware footprints, relying on immutable boot code and 

simple cryptographic operations that fit well within the capabilities of modern microcontrollers. 
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Building on this foundation, the proposed protocol incorporates asymmetric cryptography, public 

key infrastructure (PKI) digital certificates, and a lightweight attestation flow compatible with TLS-

based cloud infrastructures. By integrating these elements, the protocol ensures that devices can: 

• Establish cryptographically verifiable identity. 

• Authenticate securely to external services. 

• Attest their current software configuration. 

• Securely receive, verify, and install firmware updates. 

These objectives are achieved through a layered protocol flow described in the sections that follow. 

 

Scope 

The protocol is defined within a clearly bounded scope to ensure its feasibility for constrained platforms, 

while still offering enough generality for practical deployment, verification, and extension. These 

boundaries are shaped by a modest set of assumptions, which reduce complexity without 

compromising the protocol’s security or its relevance to real-world use cases. 

 

Assumptions 

• DICE Support: Devices implement the DICE specification, including the generation of a 

Compound Device Identifier (CDI) during the boot process. 

• Computational Capabilities: Devices are capable of generating asymmetric key pairs, 

signing operations, and basic certificate handling. 

• Network Capability: Devices are equipped with network interfaces that allow them to establish 

secure connections to remote servers. This is a prerequisite for remote attestation and 

software update delivery. 

• Manufacturer-Cloud Separation: The cloud service provider does not require prior 

knowledge of the device internals. Any critical provisioning, such as key enrollment or 

metadata registration, is assumed to occur during manufacturing in a secure, trusted 

environment. 

• Hardware Capabilities: The proposed architecture can be implemented by a variety of IoT 

nodes that feature a micro-processor with basic hardware-based security capabilities. 

3.3.1 System Architecture 

DICE-based architecture provides four foundational security capabilities—device identity, 

authentication, remote attestation, and secure software updates—by segmenting the device's boot 

process into discrete, layered stages (Figure 3.3 a). Each layer generates a unique secret using a one-

way key derivation function (KDF), combining the prior layer’s secret with either configuration data or a 

cryptographic hash of the subsequent layer. These secrets are cryptographically isolated: deriving one 

from another is computationally infeasible. Each secret is securely erased after use, ensuring 

confidentiality throughout the boot sequence and forming a cryptographic measurement chain rooted 

in device identity. 

As illustrated in Figure 3.3 (b), architecture separates the immutable DICE Engine from the 

layered mutable firmware. The DICE Engine executes immediately upon power-on and resides in ROM 

or equivalent non-writable memory to enforce immutability. It derives a Compound Device Identifier 

(CDI) from a unique device secret (UDS) and a measurement of the first mutable firmware layer. The 

UDS serves as the hardware root of trust while the CDI becomes the first cryptographic anchor handed 

off to subsequent firmware layers. 
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Figure 3.3  Layered Boot Process in DICE-Based Architecture 

(a) Secret derivation and isolation across layers (b) DICE Engine and firmware layer segmentation 

The layered firmware uses CDI to derive keys for identification, authentication, and attestation. 

This design ensures that device identity persists through firmware updates. The first firmware layer 

derives a persistent device identity key (KeyID) directly from the CDI and a second key (KeyLayer1) using 

the CDI and a descriptor of the next layer. These are passed to the second firmware layer, which 

connects to a cloud (remote) server, authenticates the device, verifies the firmware integrity, and 

enables secure software updates. 

The system architecture consists of three major components: 
1. DICE Engine (First Major Component) 

2. Firmware Layer 1 (Second Major Component) 

3. Firmware Layer 2 (Third Major Component) 

Each major component comprises smaller, well-defined system units. The next sections describe these 

components in detail. 

 

DICE Engine (First Major Component) 

The DICE Engine is the root of the trust chain and adheres to the "Hardware Requirements for a 

Device Identifier Composition Engine" specification [130]. It is the first code executed after a system 
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reset, operating from ROM or equivalent non-volatile memory to ensure immutability. Its role is to derive 

a unique CDI using a one-way function from the UDS and a deterministic cryptographic digest (e.g., 

SHA-256) of the firmware layer 1 code. 

The UDS serves as a hardware-bound identity anchor, while the firmware measurement 

captures the initial execution state. Any modification to either input yields a new CDI, thus invalidating 

any previous trust anchors. For example, firmware modification by malware will trigger CDI 

regeneration, invalidating derived keys. While valid patches restore trust, compromise of the UDS 

results in a permanent loss of device identity. 

To ensure trustworthiness, the DICE Engine must meet these requirements: 

• One-time Programmable UDS: At least 256 bits, statistically unique, and securely stored in 

non-volatile memory or ROM. 

• Exclusive Access: The UDS must be readable only by DICE; no external access is permitted. 

• Debug Interface Lockdown: Debug ports must be disabled or configured to prevent UDS 

access during CDI generation. 

• Immutable Boot Code: Must execute from read-only or one-time programmable memory. 

• Memory: All sensitive data, including UDS and CDI remnants, must be cleared from memory 

and registers post-execution. 

Although newer drafts describe “updatable” DICE models, this design assumes a strictly immutable 

DICE implementation. The UDS may be generated intrinsically during boot or securely provisioned 

during manufacturing (see Section 3.3.2 for provisioning options). Figure 3.4 illustrates the internal 

structure of this component. 

 
Figure 3.4 Internal Components of the DICE Engine 

This architecture adopts a two-layer firmware model for simplicity, though it can be extended. This 

approach is consistent with principles from the “RIoT: A Foundation for Trust in the Internet of 

Things” specification [49]. 

 

Firmware Layer 1 (Second Major Component) 

Firmware Layer1 continues the chain of trust as the first mutable code executed after the DICE Engine. 

Its design and function are shown in Figure 3.5. This layer must remain small, simple, and auditable to 

reduce attack surfaces. Updates to this layer trigger regeneration of the CDI and all derived keys. As 

such, it should remain static and updated only under secure, manufacturer-controlled conditions. 

Using the CDI, Firmware Layer1 deterministically derives an asymmetric key pair (KeyID) during 

manufacture in a secure environment. Device key is used to achieve device identity. The public portion 

is certified by the manufacturer in a PKI certificate and linked to a trusted root authority. The private key 

remains securely contained within this layer and is never exposed externally. Due to limited computing 

resources in IoT devices, ECC-based key derivation is favored over RSA for its smaller keys and 

computational efficiency. Chapter 4 details the selection of ECC curves for this implementation. 

This layer also derives a second asymmetric key pair, KeyLayer1, from the CDI and a 

measurement or descriptor of the next firmware layer. KeyLayer1 is signed by the private portion of KeyID, 

producing a Layer1 certificate. The private key and certificate are securely passed to Firmware Layer2, 

supporting attestation without compromising the device identity. 



 
 
 

47 
 

 

To prevent misuse, the firmware descriptor for Layer2—including version, size, and 

cryptographic hash—is embedded in the Layer 1 certificate as a Firmware Identity (FWID). This value 

may be encrypted using authenticated symmetric encryption for confidentiality. External verifiers can 

then validate firmware integrity without exposing sensitive implementation details. Table 3.4 illustrates 

a possible structure for the layer and device certificates Including the FWID extension). 

 
Figure 3.5 Structure of Firmware Layer 1 

Table 3.4 Structure of Device and Layer Certificates with FWID Extension 

Field Description 

Version Certificate format 

Serial Number Unique identifier from the issuing Certificate Authority 

Signature Algorithm Algorithm used for signing (e.g., ECDSA) 

Issuer Distinguished Name (DN) of the Certificate Authority 

Validity Period Timestamps defining certificate lifetime 

Subject DN of the certificate subject (e.g., device or vendor) 

Subject Public Key Info Public key and algorithm (e.g., ECC) 

Extensions FWID and optional fields such as usage constraints 

Signature 
Digital signature from the issuer over the certificate 

contents 

 

Firmware Layer 2 (Third Major Component) 

Firmware Layer2 is the third major component that acts as the application layer, interfacing with external 

systems. After taking control from Layer1, it is responsible for: 
1. Authenticating the device 
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2. Attesting firmware integrity 

3. Establishing secure communication with a cloud service 

Network connectivity is assumed as a design requirement. Depending on the platform, secure 

communication can be implemented using TLS (for TCP-based transport), DTLS (for UDP-based 

environments), or OSCORE (for application-layer object security in CoAP-based systems). For 

constrained environments, DTLS with raw public keys or CoAP secured by OSCORE is preferred. 

Protocol selection is explored in Section 3.3.2 and implemented in Chapter 4. 

Firmware Layer 2 performs authentication and attestation using: 
1. The device certificate (public portion of KeyID). 

2. The KeyLayer1 key pair. 

3. The Layer1 certificate (signed by KeyID). 

Once connected to a cloud server, the device presents a certificate chain from Layer1 to the trusted 

manufacturer root. The Layer1 certificate contains the FWID of Layer2, which the cloud server uses to 

verify firmware integrity. A mismatch (e.g., caused by malware) invalidates the chain and may prompt 

a secure update. Crucially, the device identity (KeyID) remains unchanged. This architecture supports 

cloud-agnostic deployments. While the cloud service and manufacturer may be distinct, all necessary 

metadata (device certificates, FWIDs) are assumed to be securely distributed by the manufacturer to 

trusted cloud platforms, supporting multi-cloud and vendor-agnostic trust infrastructures. 

 

3.3.2 Protocol Functional Flows 

Having established the layered architectural components of the DICE-based protocol, this section 

describes the functional behavior of the system across its lifecycle. It distinguishes between a 

manufacturing phase, where device identities are securely provisioned and certified in a controlled 

environment, and a deployment phase, which governs the device’s behavior once deployed in the 

field. These functional flows examine how each core security capability (device identity, device 

authentication, remote attestation and secure software updates) is achieved in each stage. 

 

3.3.2.1 Manufacturing Phase 

Initial enrollment (also known as device provisioning) is a crucial step during IoT device manufacturing, 

where the device is prepared to securely identify itself and communicate with cloud services or other 

trusted systems. This process establishes the device’s identity, trust anchor, and optionally, its 

cryptographic credentials [156]. This section focuses on the tasks performed during the initial 

provisioning of the device in a secure and trusted manner, while considering the foundation security 

capabilities and design requirements set in section 3.2. 

The scope is defined by a limited set of assumptions that maintain generality for practical deployments. 

These assumptions include: 

• Trusted Environment: The manufacturing environment is secure and under the control of a 

trusted entity. 

• Network Capability: Access to a network is not required. 

• UDS Provisioning: The Unique Device Secret (UDS) is securely injected into the device. 

The key functions of the manufacturing phase include: 
1. Unique device identity establishment. 

2. Cryptographic key generation. 

3. Secure storage of private keys. 

4. Initial device certificate enrollment. 

5. Secure boot and attestation configuration. 
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Figure 3.6 shows the manufacturing phase of the protocol, highlighting key interactions between the 

device and the manufacturer. 

 
Figure 3.6 Protocol Manufacturing Phase Flow 

Functionality Flow 

The process begins with the manufacturer loading the firmware onto the device in a secure 

environment. A trusted environment ensures the confidentiality, integrity, and authenticity of the 

provisioned data, while minimizing exposure to untrusted entities, including personnel and software. 

The UDS is injected into the device and stored in read-only memory (ROM). Upon boot, the DICE 

Engine executes first and uses the UDS and a cryptographic hash (SHA-256) of the first firmware layer 

to compute the CDI. A recommended mechanism for CDI derivation is a HMAC-based key derivation 

function (HKDF) using SHA-256, which ensures that the UDS cannot be derived from the CDI 

The device then uses elliptic curve cryptography (ECC) to generate its asymmetric key pair 

(KeyID) securely within a microcontroller unit (MCU) or secure element. The private portion of this key 

remains confined to the device. To certify its identity, the device generates a certificate signing request 

(CSR), which includes the public key and is signed using the corresponding private key. This CSR is 

transmitted securely to the manufacturer’s certificate authority (CA) over an authenticated and 

encrypted channel. 

The manufacturer’s CA verifies the CSR and signs it, creating the device certificate. This 

certificate binds the device’s public key to its identity and includes the CA’s digital signature. The signed 

certificate is then securely installed on the device in flash or non-volatile memory. To reduce risk, 

debugging interfaces such as JTAG and UART should be either disabled or access-controlled to 

prevent unauthorized modification after provisioning. 

The manufacturer also installs its own CA certificate (root or intermediate) on the device to 

support authentication once the device is in the field. Finally, the firmware identities (FWIDs) of the 

device’s software layers are extracted and stored in a local database or backend cloud. This process 

implicitly initializes secure boot, as the measurement of the first firmware layer is cryptographically 

bound to the CDI. The recorded FWID then serves as a reference for future attestation, enabling remote 

verifiers to detect firmware tampering or unauthorized updates. 
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At the end of the manufacturing phase, the device undergoes final mechanical assembly. 

Firmware, device identity credentials, and UDS are written to protected storage. The device holds a 

signed certificate that authenticates its public key, and the manufacturer’s CA retains the corresponding 

certificate chain for use in later authentication and attestation processes. A final integrity check confirms 

the correctness of the installed software and configuration, after which the device is flagged in the 

manufacturer's backend system as eligible for deployment. Manufacturing functional flow fulfills the first 

design requirement (see Section 3.2) by enabling the derivation of an asymmetric device key pair 

(KeyID). It also satisfies the second requirement, ensuring that the private portion of the key remains 

protected through secure manufacturing practices. 

 

3.3.2.2 Deployment Phase 

Following secure provisioning during the manufacturing phase, the deployment of an IoT device marks 

its transition from a controlled environment to its operational state in the field [26]. Deployment refers 

to the physical installation of the device at its intended location, initialization with network-specific 

parameters, and integration into a live infrastructure. This phase not only activates communication 

interfaces but also initiates secure connectivity with external services, particularly cloud infrastructure. 

During deployment, the device must authenticate its identity using the cryptographic 

credentials established during manufacturing and validate its software integrity through secure boot 

and remote attestation. Proper deployment ensures that the device integrates into a larger system 

architecture while preserving the security guarantees established during provisioning, particularly with 

respect to identity, data confidentiality, and resistance to tampering. 

Transport Layer Security (TLS) is the protocol selected for secure communication and 

authentication in this design. Its widespread adoption, standardized interoperability, and proven 

security guarantees make TLS particularly suitable for embedded systems with constrained resources 

[157]. The use of TLS in this context satisfies system requirement R4, as defined in Section 3.2. 

The remainder of this section analyzes the functional steps involved in the deployment process, as 

illustrated in Figure 3.7. These steps form the operational flow of the device as it transitions into the 

production environment: 
1. Network configuration 

2. TLS handshake with a cloud server 

3. Device authentication 

4. Remote Attestation 

5. End of TLS Handshake 

Step 1 - Network configuration 

Upon initial power-up, the device configures its network stack, thereby satisfying system requirement 

R3 (see Section 3.2). It activates the appropriate communication interface and retrieves network 

parameters using DHCP and DNS or relies on static configuration if required. Parameters include IP 

addresses, subnet masks, default gateways, and port numbers. 

 

Step 2 - TLS handshake with the cloud server 

To establish a secure and authenticated communication channel, the IoT device initiates a TLS 

handshake by sending a ClientHello message to the cloud server. This message includes the supported 

TLS version (e.g., 1.2 or 1.3), a list of preferred cipher suites, and relevant extensions such as Server 

Name Indication (SNI), enabling virtual server selection. A client-generated nonce is also included to 

contribute to session key derivation. 
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The server responds with a ServerHello, confirming the negotiated parameters: selected TLS 

version, cipher suite, and a server nonce. Depending on the TLS version and configuration, session-

specific parameters such as session IDs or resumption tickets may also be included. 

Following the negotiation, both parties exchange ephemeral key shares and compute a shared 

secret using the Elliptic Curve Diffie-Hellman (ECDH) key exchange. This enables the derivation of 

symmetric session keys without directly transmitting them, thereby ensuring confidentiality and forward 

secrecy. 

 

Step 3 - Device authentication 

Once the TLS channel is established, mutual authentication proceeds using X.509 certificates. The 

server first sends its certificate to the device, which validates it against a trusted root certificate installed 

during manufacturing. This step ensures the device communicates with a trusted and authorized 

infrastructure. 

The device then authenticates itself to the server. It computes a digital signature over the entire 

handshake transcript using SHA-256 and signs it with its private key, derived from the final stage of its 

DICE-based key hierarchy. This signature cryptographically binds the device’s identity to the 

handshake process. 

Next, the device transmits its certificate chain, which includes its own certificate and any 

intermediate certificates linking it to a trusted manufacturer root. The server validates the chain by 

verifying digital signatures, confirming the chain terminates at a trusted authority, and checking 

certificate validity periods. If all checks succeed, the device is authenticated, and a mutually trusted 

session is established. 

 

Step 4 – Remote attestation 

After authentication, the cloud server attests to the integrity of the device's software by verifying 

firmware identities embedded in the certificate chain exchanged during the TLS handshake. In the 

DICE-based architecture (see Section 3.3.1), each certificate corresponds to a firmware layer and 

includes a structured extension field containing its firmware identifier (FWID). 

The server extracts these FWIDs and compares them against a trusted database of known-

good reference hashes registered during manufacturing. A match confirms that the corresponding 

firmware layer remains unaltered and authorized. If all FWIDs align with the expected values, the 

device's software stack is validated as genuine, completing the attestation process and establishing a 

high-assurance root of trust for secure operation. 

 

Step 5 - End of TLS handshake 

Following successful authentication and attestation, the TLS handshake proceeds to its final stage: 

confirming session integrity and transitioning to secure communication. The device initiates this phase 

by sending a ChangeCipherSpec message, indicating that subsequent traffic will be encrypted using 

the negotiated symmetric session keys. It then transmits a Finished message containing a hash-based 

Message Authentication Code (MAC) over the entire handshake transcript, binding all prior messages, 

certificates, and parameters to a single cryptographic context. 

The server validates the MAC by computing its own version from the handshake transcript and 

comparing it to the device’s. If verified, the server responds with its own ChangeCipherSpec and 

Finished messages, completing the mutual authentication and key confirmation. The device performs 

a final MAC verification, after which the session transitions to encrypted and authenticated 

communication. At this point, application data may be exchanged securely between the device and the 

cloud server. 
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3.3.3 Protocol Security Analysis 

With the protocol’s functional flows now established, it is essential to assess its resilience against 

potential security threats. This section presents a qualitative security analysis of the proposed design, 

guided by established threat modeling practices. The analysis evaluates the protocol's capacity to 

maintain device trustworthiness by identifying relevant threats, outlining key assets, and mapping them 

to the system and security requirements defined in Section 3.2. Special attention is given to the 

protocol’s ability to support trusted device identity, remote attestation, and secure update mechanisms 

within the constraints of IoT environments. In doing so, this section provides a structured foundation for 

understanding the protocol’s robustness throughout its lifecycle. 

 

Threat Model 

This section presents a structured security analysis of the proposed asymmetric attestation protocol for 

constrained IoT devices. To ensure methodological rigor and alignment with best practices in security 

engineering, the analysis adopts the STRIDE threat modeling framework developed by Microsoft [158]. 

STRIDE evaluates six threat categories, Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service, and Elevation of Privilege, each mapped to relevant system assets, 

trust boundaries, and security requirements identified in Section 3.2. 

 

System Scope and Assumptions 

The attestation protocol operates in a potentially adversarial environment, where attackers may 

intercept communication, access devices physically, or attempt firmware manipulation. The protocol 

assumes: 

• Secure on-device derivation and protection of asymmetric keys (R1, R2). 

• Network availability with TLS-based mutual authentication (R3, R4, R5). 

• Hardware support for minimal isolation mechanisms, such as secure boot and protected 

memory regions (R6). 

Adversarial Capabilities 

The attacker is assumed to be resourceful and persistent, with the following capabilities: 

• Network-level control: interception, modification, or replay of messages. 

• Physical access: attempts to extract secrets or modify firmware. 

• Software-level exploitation: injection of malicious firmware or use of vulnerable code paths. 

• Side-channel attacks: extraction of secrets via power analysis, fault injection, or timing-based 

techniques. 

The attacker is assumed unable to break standard cryptographic primitives (e.g., ECC, SHA-256) or 

compromise immutable hardware roots of trust (e.g., ROM-based bootloaders or one-time 

programmable secrets). 

 

Trust Boundaries  
The protocol defines three primary trust boundaries: 

• DICE Layer 0 (ROM): generates the Compound Device Identifier (CDI). 

• Secure Bootloader: verified, integrity-protected code that anchors mutable trust. 

• TLS Stack and crypto libraries: perform mutual authentication and remote attestation. 

All other software, including application and update code, is untrusted until verified through attestation. 

To systematically evaluate the protocol’s resilience against common attack vectors, Table 3.5 

organizes the identified threats using the STRIDE model, linking each threat category to relevant 

system components and the mitigation measures implemented through design choices and 

requirements. 
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Table 3.5 Threat matrix using STRIDE 

Threat Description 
Relevant 

Components 
Mitigation Strategy 

Spoofing 

Attacker 

impersonates a 

legitimate device or 

server 

Device credentials, 

identity keys, TLS 

Unique key derivation from UDS (R1, 

R2), mutual authentication via TLS 

client certificates (R4, R5) 

Tampering 

Modification of 

firmware or 

messages in transit 

Firmware, 

attestation tokens, 

TLS sessions 

Secure boot (R1), signed firmware 

updates, TLS encryption and integrity 

protection (R4) 

Repudiation 
Entities deny having 

performed actions 

Logs, attestation 

results 

Digital signatures on reports (R1, R2), 

authenticated logging (optional) 

Information 

Disclosure 

Unauthorized access 

to confidential 

information 

Private keys, 

firmware, TLS 

session data 

Confidential storage of keys (R2, R6), 

use of secure memory, TLS with strong 

cipher suites, debug interfaces disabled 

Denial of 

Service 

Disruption of device 

operation 

Network stack, 

update logic 

Input validation, timeout mechanisms, 

TLS rate limiting (optional), minimal 

attack surface 

Elevation of 

Privilege 

Unauthorized 

escalation of access 

rights 

Bootloader, 

firmware update 

routines 

Memory isolation (R6), debug lockout, 

layered trust via secure boot, 

separation of responsibilities across 

firmware components 

Each STRIDE category corresponds to a specific class of system vulnerability. By systematically 

addressing each through architectural and cryptographic controls, the proposed design provides strong 

protections against both remote and physical attackers. The countermeasures derive directly from the 

system requirements defined in Section 3.2.2, ensuring consistency between the threat model and the 

protocol’s trust anchors. 

 

Asset Analysis 

To maintain a trustworthy system state throughout the device lifecycle, the protocol design carefully 

identifies critical assets involved in identity derivation, remote attestation, and secure software updates. 

Each asset plays a distinct role within the security architecture and requires tailored protection 

strategies to mitigate potential threats. 

The table below summarizes the key assets, their function within the protocol, and the associated 

storage or protection mechanisms. 

 
Table 3.6 Asset protection table 

Asset Description / Role Storage / Protection Mechanism 

UDS Entropy 
Source of device-specific entropy 

used for unique key derivation 

Volatile memory accessed during boot; 

cleared post-boot to prevent leakage 

Private Key(s) 
Device-unique asymmetric signing 

keys 

Write-protected memory region or secure 

hardware vault; never exposed externally 
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Asset Description / Role Storage / Protection Mechanism 

Public Key(s) 
Used in TLS mutual authentication 

and certificate chaining 

Stored in non-volatile memory (NVM), 

protected by memory access restrictions 

Bootloader & FW 

Layer 1 

Verifies integrity of firmware and 

performs initial measurements 

Write-protected flash; subject to secure boot 

verification 

Certificates 
Assert device identity and software 

integrity to remote verifiers 

Issued and anchored during provisioning; 

validated during TLS handshake 

Firmware Layer 

2 

Executes main application logic; 

subject to integrity checks 

Validated at boot using cryptographic 

measurements; updates require signature 

The asset management strategy follows a defense-in-depth principle, beginning with identity derivation 

from hardware-resident secrets during the initial boot stage. Through DICE-based layering, each 

successive stage propagates trust via cryptographic bindings, verified certificates, and authenticated 

execution. Protecting the generation, storage, and validation of these assets is central to ensuring the 

confidentiality, integrity, and authenticity of the device across its operational lifecycle. 

 

Assumptions and Security Requirements 

The security guarantees of the proposed protocol rest on a set of well-defined assumptions and a 

minimal, yet essential, set of system and security requirements. These foundations are critical for 

interpreting the threat landscape defined in the previous subsection and for ensuring that the 

architectural protections described throughout Chapter 3 remain valid under real-world deployment 

conditions. 

 

Design Assumptions 

As established in Section 3.2.2, the protocol makes a small number of explicit assumptions regarding 

the operational environment and hardware platform. These assumptions are intentionally minimized to 

enhance portability and reduce reliance on external conditions: 

• A1 – Cryptographic Trust Primitives: The underlying cryptographic algorithms (ECC, SHA-

256) are assumed secure and not vulnerable to feasible mathematical or implementation-

based attacks. 

• A2 – Hardware Root of Trust: The immutable boot ROM is trusted and cannot be modified 

or bypassed by an attacker. 

• A3 – Secure Key Storage: The platform provides sufficient memory protection to prevent 

unauthorized access to confidential key material. 

• A4 – Secure Communication Stack: The TLS stack used for device-server communication 

is assumed to be correctly implemented and configured with strong cipher suites. 

• A5 – Debug Interfaces Disabled: Post-provisioning, all hardware debug interfaces (e.g., 

JTAG, SWD) are disabled or locked to prevent physical exploitation. 

These assumptions correspond to realistic capabilities of commercially available IoT microcontrollers 

and reflect common industry practices in secure embedded systems design. 

 

Mapping Requirements to Security Capabilities 

The security goals outlined in the protocol design, device identity, device authentication, remote 

attestation, and secure software update, each impose distinct protection requirements. Table 3.7 in 

Section 3.2 maps these capabilities to system requirements R1-R6. This section further clarifies how 
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those requirements, together with the assumptions above, contribute to mitigating the threats identified 

in the STRIDE-based model. 

 
Table 3.7 Mapping of security capabilities to system requirements 

Security 

Capability 
Required Protections Supported By 

Device Identity 
Secure generation and storage of asymmetric 

keys; uniqueness and non-reproducibility 

A1, A2, A3; Requirements 

R1, R2, R6 

Device 

Authentication 

Mutual TLS authentication with certificate validation 

and chain-of-trust anchoring 
A4; Requirements R4, R5 

Remote 

Attestation 

Integrity-protected firmware measurements and 

authenticated attestation reports 

A1, A2, A3, A4; 

Requirements R1, R2, R4, 

R5 

Secure Updates 

Verification of firmware signatures, rollback 

protection, and controlled access to update 

interfaces 

A2, A5; Requirements R1, 

R3, R6 

Each security capability is thus grounded in both a set of implementation safeguards and protocol-level 

design principles, ensuring layered defense against a wide range of threat vectors. 

 

Security Design Rationale 

By explicitly enumerating both assumptions and requirements, this design promotes clarity in the 

system’s trust boundaries and facilitates rigorous validation. Moreover, it aligns with best practices in 

security engineering by: 

• Minimizing the Trusted Computing Base (TCB) to only essential components such as the 

bootloader, cryptographic primitives, and certificate store. 

• Constraining assumptions to industry-standard conditions that are auditable and testable. 

• Ensuring coverage of all STRIDE threat categories through direct architectural mitigations. 

This structured security baseline allows the protocol to maintain consistent trust guarantees across the 

device lifecycle, from provisioning to field operation, even under adversarial conditions. 
This security analysis demonstrates that the proposed asymmetric attestation protocol 

incorporates a robust set of architectural protections, grounded in formal threat modeling and aligned 

with best practices for embedded systems. By leveraging a minimal yet sufficient Trusted Computing 

Base, enforcing layered cryptographic validation, and maintaining clear security boundaries, the 

protocol mitigates a wide spectrum of realistic threat scenarios. The use of the STRIDE framework has 

enabled systematic reasoning about adversarial behavior and validation of defense mechanisms at 

each critical stage of the boot and update process. Ultimately, the design achieves a balance between 

security assurance and resource efficiency, fulfilling the protocol’s objectives under constrained IoT 

deployment conditions. 
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4 Implementation and Results 

This chapter presents the implementation and evaluation of the asymmetric attestation protocol 

introduced in Chapter 3. The main objective is to demonstrate the feasibility of realizing the protocol on 

a constrained embedded platform while preserving its core security goals. To this end, a structured 

implementation strategy was adopted, consisting of a software/hardware co-design on an STM32-

based embedded system. Section 4.1 introduces the system architecture, mapping the protocol’s 

layered trust model to the physical and logical structure of an embedded microcontroller. It details the 

design rationale for each subsystem, including the ECC and symmetric cryptographic units, memory 

layout, and power and debug interfaces. Section 4.2 describes the development and testing of two 

complementary prototypes: a software-only proof of concept and a hardware-backed demonstration on 

an STM32 Nucleo board. This section walks through the implementation of manufacturing and 

enrollment phases, integration of cryptographic components, and setup of a demonstrator environment 

for live validation. Section 4.3 reports the empirical evaluation results, quantifying cycle counts, memory 

usage, and protocol execution timings using hardware instrumentation. It also reflects on measurement 

challenges, design trade-offs, and potential improvements for future iterations. Together, these 

implementation efforts validate the practical feasibility of the attestation protocol under real-world 

constraints and lay the groundwork for further system integration and deployment. The outcomes also 

support the broader evaluation and future considerations discussed in Chapter 5. 

4.1 System Architecture and Design Exploration 

To demonstrate the practical feasibility of the attestation protocol introduced in Section 3.3, its abstract 

design must be realized through a concrete implementation on an embedded platform. This translation 

from theoretical protocol behavior to operational system behavior allows for validation of the protocol’s 

core security guarantees under realistic platform constraints. The chosen implementation targets a 

resource-constrained IoT device, representative of edge environments where memory, computational 

power, and energy efficiency are highly limited. To support this mapping, a well-structured system 

architecture is needed—one that clearly organizes both hardware and software elements involved in 

the attestation flow and aligns with the trust and layering principles defined in the protocol design. 
The architectural design presented in this chapter is guided by the functional and security 

requirements established in Section 3.2.1. To satisfy these objectives, the system must deliver four 

essential capabilities: (1) derivation of a unique device identity anchored in a hardware-protected 

secret, (2) authentication with a remote server through PKI-based credentials over a secure TLS 

channel, (3) attestation of the integrity of the installed firmware, and (4) validation and application of 

software updates in a manner that preserves the authenticity and integrity of the device. The following 

sections elaborate on the system architecture developed to support these capabilities and examine the 

design choices made across hardware platforms, cryptographic libraries, and communication interfaces 

 

4.1.1 High-Level Architecture 

Implementing the asymmetric attestation protocol introduced in Section 3.3 on a physical IoT device 

necessitates a secure and modular system architecture. This section introduces the fundamental 

components required to realize the protocol and explains how these elements interact within the 

constraints of a resource-limited embedded environment. The architecture builds upon the Device 

Identifier Composition Engine (DICE) framework, and each system component is tailored to meet 
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specific requirements for secure identity derivation, cryptographic processing, and controlled internal 

and external communication. 

The proposed system architecture instantiates the layered DICE-based protocol architecture 

by mapping each of its conceptual stages directly onto the embedded memory layout of the target 

device. Execution begins with the immutable DICE layer, implemented in ROM, which is triggered 

immediately upon system reset. This initial layer has exclusive access to the Unique Device Secret 

(UDS) and generates the Compound Device Identifier (CDI) by applying a cryptographic one-way 

function to both the UDS and a measurement of the first mutable firmware. The first mutable layer, 

located in Flash memory, uses the resulting CDI to derive the device's asymmetric identity key pair. It 

also generates a layer-specific key used for authentication and attestation. A second mutable layer, 

loaded into SRAM, hosts runtime services such as network communication, remote attestation, and 

secure firmware updates. This tiered memory organization enforces a one-way trust chain, whereby 

each successive stage inherits and builds upon the cryptographic trust established by its predecessor. 

The system architecture, illustrated in Figure 4.1, is composed of the following functional components: 

 

ECC Scalar Multiplication Unit 

Elliptic Curve Cryptography (ECC) plays a foundational role in the proposed attestation protocol, 

particularly in establishing a cryptographically verifiable device identity. During the manufacturing and 

enrollment phases, the device executes scalar multiplication to derive asymmetric key pairs, one 

forming the core identity of the device, and others serving layer-specific purposes such as attestation 

and authentication. Given the computational intensity and security sensitivity of scalar multiplication, 

careful consideration is given to how this operation is implemented. Whether executed in software or 

supported by hardware acceleration, the performance and correctness of this unit are critical. Section 

4.1.2 provides further details on the selected ECC curve and implementation choices. Notably, this unit 

supports key system requirements such as R1 (identity rooted in hardware) and R2 (cryptographic 

flexibility within constrained environments). 

 

Symmetric Cryptographic Unit 

Symmetric cryptographic functions play a supporting role in the protocol’s security architecture, 

particularly in the efficient handling of encryption and key derivation tasks. The Advanced Encryption 

Standard (AES) is utilized to ensure confidentiality and data integrity where needed. Moreover, AES 

may serve within a Key Derivation Function (KDF) to produce layer-specific keys in a resource-efficient 

manner, aligning with the design constraints of embedded platforms. 

 

One-Way Function Unit 

The one-way function is responsible for deriving the Compound Device Identifier (CDI) from two inputs: 

the Unique Device Secret (UDS), which serves as the hardware-based root of trust, and a cryptographic 

measurement of the first mutable firmware layer. This function must ensure strong pre-image 

resistance, making it computationally infeasible to reconstruct the UDS from the resulting CDI. This 

cryptographic irreversibility enforces a strict isolation between immutable hardware secrets and 

software-derived identities, in accordance with the DICE hardware requirements outlined in Section 

3.3.1. The derivation process is embedded in the ROM-based root layer, ensuring that the integrity and 

confidentiality of the root-of-trust are preserved from the earliest stage of system execution. More 

details about the selection of a proper one-way function are provided in Section 4.1.2. 
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Non-Volatile Memory (NVM) Unit 

The root layer of the DICE architecture, along with its early boot logic, is stored in non-volatile memory 

to ensure that system initialization begins from a stable and tamper-resistant baseline. ROM or Flash 

memory is used to persist the logic responsible for accessing the UDS and deriving the CDI. By 

anchoring these routines in immutable storage, the design establishes a reliable hardware-based root 

of trust that underpins the device’s security lifecycle. 

 

Test and Debug Unit 

Test and debug interfaces are essential during system development, enabling low-level inspection, 

validation, and troubleshooting of embedded software and hardware behavior. However, in the context 

of secure deployments, especially within the DICE framework, these interfaces pose serious risks if left 

active. During the execution of the DICE root layer, all debugging features, such as JTAG, SWD, and 

serial wire interfaces, must be strictly disabled to prevent any possibility of exposing the UDS or leaking 

side-channel information that could aid in reconstructing the CDI. This requirement extends to the 

execution of the first firmware layer, where cryptographic keys derived from the CDI are initialized. To 

uphold the integrity of the trust chain, the system must enforce permanent deactivation or rigorous 

access control of debug ports in production environments. 

 

Power Management Unit 

Energy efficiency is a critical consideration in embedded and IoT systems, where long-term deployment 

often depends on constrained power sources. The system must incorporate features such as low-power 

operation modes, clock gating, and peripheral shutdown to minimize unnecessary energy consumption 

during inactive periods. These mechanisms help ensure that the introduction of cryptographic protocols 

and security monitoring does not compromise the device’s operational lifetime or violate its energy 

constraints. 

 

Control Unit 

The control unit embodies the logical core responsible for orchestrating the execution of the attestation 

protocol and managing both internal coordination and external communication. Conceptually, it 

encompasses all control functionality required to implement the protocol, including device 

manufacturing, identity enrollment, integrity attestation, and secure firmware updates. While 

conceptually abstracted here, this functionality is typically realized on the MCU hardware in a concrete 

implementation. When implemented on a constrained embedded platform, the control unit must operate 

within strict limits on processing power, memory, and energy consumption. Despite these constraints, 

it must uphold the security and performance objectives defined in Section 3.2.1. 

 

Optional: Register File Analog (RFA) and Register File Digital (RFD) 

In certain configurations, auxiliary subsystems such as Register File Analog (RFA) and Register File 

Digital (RFD) may be integrated to streamline peripheral coordination and manage internal state 

transitions. While not essential to the attestation protocol itself, these units can contribute to 

deterministic execution behavior, particularly in systems operating under tight timing or resource 

constraints. Their inclusion depends on the intended application profile and may provide improved 

control over low-level system dynamics. 



 
 
 

59 
 

 

 
Figure 4.1 High-level system architecture 

The architecture presented here represents a deliberate integration of the protocol’s security goals with 

the practical constraints of embedded IoT systems. As illustrated in Figure 4.1, the design organizes 

the essential functional components, such as cryptographic engines, memory regions, and 

communication interfaces, into a cohesive framework that supports layered trust establishment. The 

figure reinforces the hierarchical structure discussed above and provides a visual summary of how the 

attestation protocol is distributed across boot stages. Building on this foundation, the next section 

examines available implementation paths and the rationale behind key design decisions in both 

hardware and software domains. 

 

4.1.2 Design Space Exploration 

Developing a secure embedded system, such as the architecture introduced in Section 4.1.1, requires 

careful navigation through a wide array of design choices. From hardware platforms and cryptographic 

primitives (e.g., ECC or AES accelerators) to memory hierarchies and communication protocols, each 

decision entails trade-offs in computational efficiency, security assurance, and development 

complexity. The challenge lies in selecting a coherent set of subsystems that not only meets the 

functional and security requirements set forth in Section 3.2.1 but also ensures practical feasibility on 

a resource-constrained IoT platform. Achieving this balance is vital to ensure that the final 

implementation remains both resilient and efficient within the embedded system’s constraints. 

A structured design space exploration (DSE) was conducted to identify viable combinations of 

hardware platforms, cryptographic libraries, and communication interfaces compatible with the system 

architecture presented in Figure 4.1. In this context, DSE refers to a systematic evaluation of 

implementation alternatives, constrained by factors such as memory footprint, power efficiency, 

cryptographic support, integration complexity, and development overhead [159]. This method is well-

suited for secure embedded systems, which demand both correctness and cost-effectiveness. The goal 

of this exploration was to identify a prototype setup that both fits the hardware constraints and remains 

consistent with the protocol design from Chapter 3. 

The design space exploration considered three implementation strategies: software-only 

designs, hardware-dedicated architectures, and software/hardware co-designs. A software-based 

implementation provides flexibility for rapid prototyping and streamlined debugging. For instance, the 

attestation protocol can be emulated as a user-space application on a general-purpose processor 
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(GPP), such as a desktop-class CPU. This abstraction reduces integration effort by isolating 

implementation from hardware dependencies. However, such implementations do not accurately reflect 

the constraints of embedded IoT platforms, particularly in memory availability, energy efficiency, and 

execution latency. In addition, critical platform-level security properties, such as physical isolation of 

secrets and immutable root-of-trust enforcement, cannot be reliably modeled in a purely software 

environment. 

A hardware-only implementation, such as one based on a custom ASIC or an FPGA 

architecture, was ultimately deemed impractical for the scope of this thesis. Although such solutions 

can offer excellent performance, physical isolation, and tight integration of cryptographic functions, they 

present significant barriers in terms of design flexibility, development time, and tooling complexity. In 

particular, implementing the DICE protocol entirely in hardware would require low-level control over key 

derivation and attestation flows, tasks that are better suited for iterative software development in early-

stage prototypes. While commercial embedded platforms with built-in DICE support do exist, they are 

often tightly coupled to proprietary toolchains or vendor-specific implementations. As such, a hardware-

only path is considered more appropriate for mature industrial deployments, where long-term 

maintainability and certification justify the engineering overhead. 

A software/hardware co-design presents a more practical model for implementing security 

protocols in embedded environments. In this approach, computationally intensive operations, such as 

elliptic curve scalar multiplication and symmetric encryption, are delegated to dedicated hardware 

modules, while system control logic, attestation routines, and communication flows are managed in 

software. This architecture achieves a balance between efficiency and adaptability: hardware 

acceleration improves performance and reduces energy consumption, while software remains flexible 

for future updates or protocol refinements. Several modern microcontroller platforms support this 

design paradigm by integrating cryptographic engines, secure key storage, and low-power processing 

features within a compact and cost-effective footprint. 

Given these factors, this thesis adopts a software/hardware co-design, deploying it on a 

commercially available microcontroller. This approach provides a practical balance between efficiency, 

adaptability, and system realism. It enables end-to-end validation of asymmetric attestation introduced 

in Chapter 3 under realistic deployment conditions, while remaining compatible with the resource 

limitations and deployment scenarios typical of embedded IoT systems. Following this design choice, 

the next task was to evaluate practical implementation options for each system component. 

Implementing the architecture depicted in Figure 4.1 necessitates a careful selection of 

hardware and software components that meet the system requirements established in Chapter 3. Each 

functional block, whether focused on cryptographic operations, secure data retention, or 

communication, must perform reliably within the stringent constraints of low-power, low-memory 

embedded environments. To this end, a comparative evaluation of candidate microcontrollers, libraries, 

and protocols was carried out, with each option weighed against specific trade-offs in computational 

efficiency, memory usage, platform support, and compliance with the protocol’s design principles. 

The following subsections detail the selected design solutions for each system component, 

providing rationale for their inclusion and assessing their suitability for the embedded attestation 

prototype. 

 

Hardware Platform Selection. 

A range of embedded platforms was evaluated for their suitability as hosts for the prototype, including 

Arduino-based boards (e.g., Uno, Mega), ESP32 variants, Nordic Semiconductor’s nRF52 series, 

Microchip’s SAMD and SAM L11 secure MCUs, NXP’s i.MX RT series, and STMicroelectronics STM32 

Nucleo line. The evaluation criteria spanned computational performance, availability of hardware 



 
 
 

61 
 

 

cryptographic modules, secure storage features, power efficiency, and ecosystem maturity. After 

comparative analysis, the STM32L4 Nucleo board was selected for its strong balance between 

processing capability and low-power operation. It offers hardware-accelerated AES, a built-in true 

random number generator (TRNG), and a comprehensive set of low-power modes, features aligned 

with protocol objectives. Furthermore, its integration with ST’s development ecosystem simplifies 

firmware development, debugging, and deployment in constrained environments [160]. 

 

ECC Scalar Multiplication Unit. 

Elliptic curve scalar multiplication serves as the foundation for all asymmetric key derivation operations 

in the attestation protocol, including both the device identity key (KeyID) and firmware-specific layer keys 

(KeyLayerₙ). Several cryptographic libraries were considered for this task, namely micro-ecc, wolfSSL, 

and mbedTLS, each offering different trade-offs in terms of footprint, portability, and standards 

compliance. The mbedTLS library was selected due to its modular architecture, comprehensive 

standards support, and seamless integration with STM32 Cortex-M platforms. Unlike micro-ecc, which 

is minimal but lacks certain protocol-level primitives, or wolfSSL, which introduces additional licensing 

and integration overhead, mbedTLS provides a balanced cryptographic stack tailored for embedded 

applications [161] – [163]. 

For elliptic curve operations, the SECP256R1 curve (also referred to as NIST P-256) was 

chosen. This decision reflects its widespread use in TLS-based infrastructures and its established role 

in standardized public-key authentication schemes. While alternatives such as Curve25519 offer 

performance benefits and stronger resistance to certain side-channel attacks, SECP256R1 aligns more 

closely with certification pathways and platform compatibility requirements. To ensure correct ECC key 

generation, a deterministic HMAC-based random number generator is used, enabling reproducibility in 

test scenarios while maintaining cryptographic integrity. On the STM32L4 platform, ECC scalar 

multiplication is further optimized by leveraging hardware-assisted floating-point and DSP instructions, 

enabling secure and efficient key generation within the computational constraints of the embedded 

system. 

 

One-Way Function Unit. 

The One-Way Function Unit is responsible for deriving the CDI from the hardware-protected UDS, a 

critical step in establishing the device’s root of trust. The transformation must guarantee strong pre-

image resistance, ensuring that knowledge of the CDI does not compromise the confidentiality of the 

UDS. Several cryptographic constructions are suitable for this purpose, particularly Message 

Authentication Codes (MACs), which offer robust key protection and are well-suited to iterative 

processing of structured input data [164]. Among MAC-based options, HMAC constructions are 

especially attractive due to their proven resistance against collision and pre-image attacks, even when 

the underlying hash function exhibits moderate cryptographic weaknesses [165]. Alternative schemes, 

such as MACs built on block ciphers (e.g. CBC-MAC) can offer computational advantages in resource-

constrained environments, particularly when paired with hardware-accelerated AES support [166]. 

 For this prototype, an HMAC based on SHA-256 was selected to realize the one-way 

transformation. This design balances security strength, implementation simplicity, and compatibility with 

widely adopted cryptographic frameworks. The STM32L4 platform’s support for hardware AES could 

potentially support CBC-MAC constructions in future versions, but HMAC-SHA256 was prioritized due 

to its broader tooling support and cryptographic maturity. The implementation leverages the mbedTLS 

cryptographic library, which offers a lightweight and modular interface for embedded systems and 

allows integration of the one-way function as part of the DICE initialization flow. 
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Symmetric Cryptographic Unit. 

The Symmetric Cryptographic Unit is responsible for deriving the layer-specific keys required in the 

attestation protocol. Specifically, it employs a HMAC-based Key Derivation Function (HKDF) to expand 

the entropy provided by the Compound Device Identifier (CDI) into cryptographic key material. The key 

material is subsequently used by the ECC unit to generate asymmetric key pairs unique to each 

firmware layer (KeyLayerN). While the underlying HMAC primitive is also used in the One-Way Function 

Unit for CDI derivation, its role here is distinct and aligned with symmetric key expansion. The HKDF 

implementation is provided by the mbedTLS library, which supports compact and reliable integration 

on Cortex-M microcontrollers. This setup ensures that key derivation remains efficient, modular, and 

secure under the resource constraints of the STM32L4 platform. 

 

Non-Volatile Memory Unit. 

The DICE root layer, comprising early boot logic, UDS access routines, and CDI derivation functions, 

is stored in the STM32L476’s internal Flash memory (1 MB). This non-volatile storage provides the 

immutability required to satisfy the DICE model’s trust anchor requirements, ensuring that execution 

begins from a consistent and tamper-resistant state. On the Nucleo-L476RG board, this Flash is 

mapped to a fixed memory region with read-only protection options available through hardware fuses 

and option bytes. These features reinforce the assumption of an immutable root of trust and allow for 

secure storage of the boot-critical firmware segment. 

 

Test and Debug Unit. 

During development, the Nucleo board’s integrated ST-Link/V2-1 interface was used for real-time 

debugging, code stepping, and logging over UART. GPIOs were also configured for simple logic 

probing and external instrumentation. While such interfaces are essential for validation and early-stage 

testing, they represent significant security liabilities in a production context. If left active, debug 

pathways may expose sensitive memory contents or allow bypassing of attestation checks. To mitigate 

these risks, STM32 devices support disabling debug access through option byte configuration and 

Read-Out Protection (RDP) levels. In a deployment scenario, these features must be explicitly enabled 

to ensure the integrity of the trust establishment process. 

 

Power Management Unit. 

Power efficiency is a critical consideration for resource-constrained IoT platforms, particularly when 

executing cryptographic routines that demand sustained processing. The STM32L476 microcontroller 

supports several low-power operational modes, Sleep, Stop, and Standby, each offering progressive 

reductions in power consumption while preserving essential system functionality. These modes are 

configured via dedicated power control registers and allow the system to dynamically scale energy 

usage based on activity state. Stop mode was selected during idle phases of attestation execution to 

balance energy savings with acceptable wake-up latency. Integrated voltage regulators and a low-

power real-time clock (RTC) enable timed wake-ups and state retention across suspend intervals. 

Power was supplied via USB or external 3.3 V/5 V sources, with current consumption profiled during 

runtime to assess the feasibility of cryptographic operations under realistic energy constraints. These 

features contribute to meeting the energy-efficiency goals outlined in Section 3.2.1. 

 

Control Unit. 

The Cortex-M4 microcontroller acted as the central orchestrator of protocol execution, coordinating 

interactions among system components and managing communication with external entities such as 

the manufacturer and verifier. Its rich peripheral set—including UART, I²C, SPI, and USB Full-
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Speed—facilitated versatile data exchange between internal cryptographic units and external 

interfaces. Depending on deployment requirements, the CAN interface could also be leveraged to 

enable fault-tolerant communication in noisy or distributed environments. While abstracted here as a 

system control module, this functionality was concretely realized through the STM32 platform’s MCU, 

which operated under strict power and memory constraints in accordance with the system goals 

defined in Section 3.2.1. 

4.2 Prototype Development 

Building on the architectural framework and component-level design choices outlined in Section 4.1, 

this section presents the development of two complementary implementations of the attestation 

protocol introduced in Chapter 3. The previous section identified the key hardware and software 

subsystems necessary to realize the DICE-based architecture on a constrained embedded platform. It 

further explored architectural trade-offs and justified the adoption of a software/hardware co-design. 

The present section transitions from architectural planning to practical realization, describing how the 

proposed design was instantiated in both a host-based simulation environment and a hardware-based 

embedded prototype. 

The first implementation is a software-only proof of concept developed on a general-purpose 

processor. This initial stage aims to validate the core security functionality of the protocol, particularly 

the DICE-based identity derivation and layered key hierarchy, without the constraints of embedded 

hardware. It provides early validation of the protocol logic, facilitates debugging and testing, and 

enables rapid exploration of cryptographic operations such as key generation and attestation token 

creation. The second implementation builds upon this foundation by deploying the protocol on an 

STM32-based microcontroller system, as defined in the system architecture of Figure 4.1. This 

software/hardware co-design prototype demonstrates the protocol’s practical feasibility under resource-

constrained conditions. In the final part of this section, measurements are presented to evaluate the 

prototype’s area and performance characteristics, thereby providing empirical evidence to support the 

robustness and deploy ability of the design. 

 

4.2.1 Proof of Concept Implementation 

To bridge the gap between the protocol design outlined in Chapter 3 and a practical embedded 

deployment, an early-stage proof-of-concept implementation was developed. This intermediate step 

serves multiple purposes. First, it provides a safe and controlled environment for validating the 

functional flows described in Section 3.3.2, including key derivation, attestation message structure, and 

verification logic. Second, it allows protocol behavior to be tested independently of hardware-specific 

limitations, enabling rapid iteration and debugging of security-critical components. A software-only 

setup thus facilitates timely feedback on architectural decisions, ensures that cryptographic primitives 

and their composition behave as intended, and confirms the interoperability of protocol elements within 

a realistic host environment. This early validation step is critical for reducing integration risk in later 

hardware deployment stages, while also substantiating the protocol’s feasibility from an engineering 

and academic standpoint. 

 To implement and test the proposed attestation protocol in a controlled environment, a 

software-only prototype was developed using Python 3.x and auxiliary Bash scripts. The primary 

development was conducted in the PyCharm integrated development environment (IDE), which 

provided structured debugging, version control integration, and support for interactive testing. At the 

cryptographic core of the prototype lies a proprietary software library provided by Intrinsic ID (version 

iidtvg-17.2.0). This library implements a suite of security primitives, including random number 
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generation, elliptic curve key derivation, HMAC construction, key derivation functions (KDFs), and 

standard hash functions. Due to confidentiality agreements, the internal implementation details and 

source code of the library are not disclosed in this report. In addition to the proprietary library, OpenSSL 

was used as an auxiliary tool for generating certificate signing requests (CSRs), verifying digital 

signatures, and handling X.509 public-key certificates. This modular stack allows for rapid prototyping 

and early validation of the cryptographic flows defined in Chapter 3 without dependency on embedded 

hardware limitations. 

 Due to confidentiality constraints, the source code of the proof-of-concept implementation 

cannot be disclosed. Nevertheless, the functionality of the prototype is documented through system-

level descriptions. This abstraction enables a clear understanding of the implementation logic while 

preserving the proprietary nature of the underlying cryptographic library. The proof-of-concept 

simulates a DICE-based architecture composed of three layers: an immutable DICE root, a first 

firmware layer, and a second firmware layer, reflecting the protocol architecture defined in Section 

3.3.1. As described in Chapter 3, this layered architecture delivers four foundational security 

capabilities: (1) device identity, (2) device authentication, (3) remote attestation, and (4) secure software 

updates. The goal of this implementation is to verify the feasibility of realizing these capabilities within 

a software-only testbench. 

 The prototype focuses on emulating the manufacturing and enrollment phases, wherein a 

unique device identity is generated and validated according to the protocol directives. In particular, the 

flow includes key steps such as generation of a Unique Device Secret (UDS), derivation of the 

Compound Device Identifier (CDI), generation of asymmetric key-pairs, and creation of a device 

certificate signing request (CSR). These steps are implemented in alignment with the functional flows 

introduced in Section 3.3.2 and provide early evidence that the cryptographic and architectural 

principles of the protocol are practical and interoperable. 

 

Manufacturing Phase 

To establish the foundational trust anchors required by the DICE-based architecture, the manufacturing 

phase initiates the creation of the manufacturer’s asymmetric key pair and its corresponding self-signed 

root certificate. This operation is a prerequisite for enabling secure device enrollment and authentication 

within the broader Public Key Infrastructure (PKI) of the system. As the source code of the prototype is 

confidential, the implementation is described through structured explanations. The manufacturer 

employs OpenSSL, an open-source cryptographic toolkit widely used for TLS and X.509 operations, to 

perform these tasks. Specifically, an elliptic curve (EC) private key is generated using the prime256v1 

(SECP256R1) curve, a standard supported by most TLS implementations. This key is then used to 

create a certificate signing request (CSR), which is self-signed to yield the root certificate. The root 

certificate serves as the ultimate trust anchor for subsequent device certificate chains. This procedure, 

while simple, represents a critical step in provisioning a trusted enrollment infrastructure, ensuring that 

all subsequent device identities can be verified by a recognized and cryptographically bound authority. 

 

Enrollment Phase 

DICE Layer 

The Enrollment Phase begins with the execution of the DICE root layer, which is responsible for deriving 

a cryptographic anchor for the device identity. This is achieved through a series of deterministic 

operations that simulate the behavior of a real DICE engine, emulated here in a software-only 

environment. 

The first step involves computing a cryptographic measurement of the first mutable firmware 

region, referred to as Layer 1. In the prototype, this is modeled as a 5,000-byte block of pseudo-random 
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data generated using a deterministic seed, ensuring repeatability across simulations. This emulates the 

behavior of a firmware hashing operation typically performed by a DICE hardware component. Next, a 

Unique Device Secret (UDS) is generated. This UDS simulates a device-embedded root secret, 

typically provisioned during manufacturing and permanently fused into hardware. In this proof-of-

concept, a 32-byte UDS is generated using a seeded random number generator to emulate 

deterministic behavior for testing. 

The core of the DICE process lies in the derivation of the Compound Device Identifier (CDI). 

This is implemented via an HMAC operation, where the UDS acts as the cryptographic key and the 

Layer 1 code measurement as the message. SHA-256 is used as the digest function, in line with DICE 

recommendations for cryptographic strength. The result, a 32-byte CDI, acts as a root secret for all 

subsequent identity derivation steps. In accordance with DICE principles, the UDS is not reused beyond 

this point and access to it is programmatically restricted. 

This software emulation of the DICE layer successfully demonstrates that CDI derivation logic 

can be implemented in a modular and testable manner, offering a reliable cryptographic foundation for 

downstream identity and attestation flows. 

 

First Firmware Layer – Device Identity 

Following successful CDI derivation by the DICE root layer, control transitions to the first mutable 

firmware region, Layer 1, which is responsible for establishing the device identity. This stage 

demonstrates how a unique asymmetric key pair can be deterministically derived from the CDI, and 

how that identity is formally enrolled into the system via a manufacturer-signed certificate. 

In the implementation, the CDI produced by the DICE layer is used directly as the private key 

input to an elliptic curve key generation routine. Specifically, the CDI serves as the d parameter in the 

instantiation of an EC key object based on the SECP256R1 curve (also known as prime256v1). This 

operation yields a public/private key pair deterministically bound to the UDS and the first firmware 

measurement, in accordance with the DICE key derivation model. 

To enable authentication and establish trust within the system's public key infrastructure (PKI), 

the device generates a Certificate Signing Request (CSR) for its newly derived public key. This CSR 

is formatted using OpenSSL tooling and contains identifying information as well as the public key 

material. The request is then submitted to the manufacturer, who acts as the root Certificate Authority 

(CA). The manufacturer signs the CSR using its private EC key (created during the Manufacturing 

Phase), thereby issuing a valid X.509 device certificate. This certificate serves as a formal endorsement 

of the device identity and enables external verifiers to validate its authenticity during attestation. 

This portion of the Enrollment Phase confirms that identity derivation, CSR creation, and PKI-

based enrollment can be successfully implemented in a modular, interoperable fashion using standard 

cryptographic tools and deterministic protocol inputs. 

 

First Firmware Layer – Layer Identity 

Once the device identity has been established, the protocol proceeds to derive a second asymmetric 

key pair associated with the Layer 2 firmware. This additional key serves to reinforce the layered trust 

model central to DICE-based architectures, where each firmware layer is cryptographically bound to 

both its predecessor and the underlying device identity. 

As with the previous layer, the process begins by generating a measurement of the Layer 2 

code. In the proof-of-concept, this measurement is modeled as a random byte sequence and is 

computed using a deterministic random seed to emulate a stable hash of the firmware contents. The 

private component of the layer key (Keylayer1) is then deterministically derived by applying an HMAC-

based construction to the previously computed CDI and the Layer 2 code measurement. The resulting 
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256-bit output acts as the private key input to an ECC key object using the SECP256R1 curve. A 

corresponding public key is derived, and the complete key pair forms the cryptographic basis for Layer 

2. 

To enable this new key to be integrated into the device's certificate chain, the device generates 

a Certificate Signing Request (CSR) for the Layer Key using OpenSSL tooling. Unlike the device 

certificate, which is signed by the manufacturer, the Layer Key’s CSR is signed by the device private 

key, thus creating a cryptographic delegation within the device’s internal certificate hierarchy. This 

demonstrates both key isolation between layers and secure delegation of trust, as described in the 

layered attestation protocol of Section 3.3. 

Through these operations, the proof-of-concept successfully validates a key architectural 

requirement of the protocol: the ability to derive and authenticate firmware-layer-specific identities in a 

chained, verifiable, and deterministic manner, without exposing underlying secrets or requiring external 

input beyond initial enrollment. 

 

Discussion 

Despite the successful demonstration of identity derivation and cryptographic key flows in a software-

only environment, the proof-of-concept implementation lacks real-world constraints such as memory 

limitations, peripheral interactions, and runtime performance bottlenecks. As such, it does not assess 

the practical viability of the protocol under deployment conditions. Moreover, critical features such as 

secure boot, interrupt-handling, and resistance to physical tampering require hardware-level 

integration. These limitations motivate the development of a microcontroller-based prototype, which is 

presented in the following subsection to further validate the protocol’s deployability and efficiency. 

 

4.2.2 Embedded Implementation 

To complement the software-only proof of concept presented earlier, a hardware-based prototype was 

developed using an STM32 Nucleo development board. This implementation instantiates the 

attestation protocol in a resource-constrained embedded environment, validating the feasibility of key 

derivation, certificate handling, and attestation flows under realistic deployment conditions. This section 

articulates the development and evaluation of a proof-of-concept prototype that validates the four core 

security objectives of the proposed protocol, device identity, device authentication, remote attestation, 

and secure software updates. The prototype builds upon the high-level system architecture presented 

in Figure 4.1 and represents a software/hardware co-design tailored to embedded constraints. The 

implementation includes a practical setup involving an STM32-based microcontroller, a layered 

firmware structure, and a supporting software stack for communication and cryptographic operations. 

The demonstrator scenario emulates realistic deployment conditions, culminating in a live execution of 

the attestation protocol and validation against a remote verifier. The interaction of system entities, 

certificate provisioning workflow, and TLS-based verification are summarized in Figure 4.2. 

 

Test Platform 
The embedded prototype is based on the STM32L476 Nucleo board, a Cortex-M4 development 

platform selected for its relevance to industrial IoT applications and its support for low-power operation, 

hardware security primitives, and flexible peripheral interfaces. The microcontroller features 1 MB of 

Flash memory and 128 KB of SRAM, allowing for layered firmware deployment and secure storage of 

cryptographic materials. Its boot sequence is configurable via hardware boot pins, enabling the 

separation of a DICE root layer, first firmware (Layer 1), and second firmware (Layer 2) as defined in 

the protocol architecture. 

The STM32Cube HAL was used to manage low-level hardware interactions, while the cryptographic 

operations were implemented using the mbedTLS library. Notably, hardware RNG capabilities were 
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leveraged to support key generation and secure seed material, consistent with protocol requirements 

for entropy sourcing. The software stack was structured into a minimal bootloader, two sequential 

firmware images, and a secure communication module interfacing with external Python and Bash 

scripts. These scripts facilitated certificate signing, UART communication, and TLS message parsing 

on the host side. 

 

Demonstration Procedure 
The demonstration begins with the STM32 device powering up and executing its DICE-based 

initialization routine. Upon reset, the DICE root layer computes the Compound Device Identifier (CDI) 

from the Unique Device Secret (UDS) and a measurement of Layer 1. Using the CDI, the first firmware 

layer derives the device key-pair and generates a certificate signing request (CSR). This CSR is 

transmitted to a local Certificate Authority (CA) hosted on a connected PC via UART. The PC uses 

Python scripts and OpenSSL to sign the CSR and return the signed X.509 certificate to the device. 

Once the device certificate is installed, Layer 2 generates its own key-pair based on a hash of 

its firmware and the CDI. A second CSR is issued and signed internally by the device using the Layer 

1 private key, completing the internal certificate hierarchy. With both certificates in place, the device 

initiates a secure TLS connection to a cloud-based verifier. During handshake, the device presents its 

certificate chain and a static firmware identifier (FWID). The verifier performs chain validation, 

authenticates the device identity, and checks the FWID value against known-good references to 

complete remote attestation. 

This real-time demonstration validates the full lifecycle of identity enrollment and remote 

verification. The TLS session was successfully established using mbedTLS, and FWID values were 

correctly verified by the server. The entire process is represented in Figure 4.2, which depicts the 

communication flow, cryptographic tasks, and exchanged values. 

 
Figure 4.2 Demonstrator scenario 

 

Adversarial Validation Scenario 
To evaluate the protocol’s resilience against malicious firmware manipulation, an adversarial test was 

conducted in which the firmware image for Layer 2 was intentionally modified. This tampering altered 

the measurement used in the CDI-based key derivation and led to a mismatch in the derived alias key. 

When the device attempted to generate a valid certificate for the altered Layer 2, the resulting signature 

verification failed during attestation. 
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The cloud verifier detected the inconsistency in the certificate chain and rejected the connection 

attempt, effectively preventing unauthorized access. This scenario confirms that the binding between 

firmware measurements and cryptographic identities—enforced through deterministic key derivation—

acts as a reliable mechanism for detecting unauthorized changes. Although not exhaustive, this attack 

simulation reinforces the importance of measurement-based identity in preserving system integrity 

under adversarial conditions. 

4.3 Empirical Evaluation and Discussion 

To assess the feasibility of the attestation protocol under resource-constrained conditions, an empirical 

evaluation was conducted using the STM32L4 Nucleo-based prototype described in Section 4.2. The 

evaluation focuses on profiling the computational cost of the protocol’s cryptographic building blocks in 

terms of CPU cycle counts and stack usage, using instrumentation around representative mbedTLS 

routines. These measurements offer insight into the practicality and efficiency of the layered protocol 

when implemented in a real embedded environment. 

 

4.3.1 Measurement Limitations and Challenges 

Obtaining accurate performance metrics in deeply embedded systems presents several challenges. 

The STM32L4 platform offers limited real-time debugging visibility, and some timing measurements are 

susceptible to jitter introduced by peripheral latency or interrupt-driven behavior. Moreover, the lack of 

dedicated cycle counters or tracing tools necessitated the insertion of instrumentation code to estimate 

execution time in CPU cycles. 

To mitigate these limitations, the evaluation relied on internal timers and benchmarking 

instrumentation placed around key cryptographic routines. While this approach provides reasonable 

estimates of computational cost, it does not account for hardware noise, caching effects, or 

asynchronous events that may arise during execution. Additionally, measurements were conducted in 

a non-interfered, single-threaded environment, and communication delays over UART or TLS were 

assumed to be deterministic. Consequently, the results presented should be interpreted as lower-bound 

approximations rather than absolute timings. 

 

4.3.2 Cycle Count and Stack Usage Analysis 

The prototype’s performance evaluation was structured around the critical building blocks of the 

protocol: hashing, HMAC computation, ECC key generation, and X.509 certificate creation. All 

operations were implemented using the mbedTLS cryptographic library. 

• SHA-256 Hashing of Firmware Layers 

The SHA-256 measurements reflect the profiled call sequence around the mbedTLS SHA-

256 routine (init/start/update/finish/free) used by the prototype. In this setup, the cost is 

dominated by the mbedtls_sha256_finish() routine (≈72 cycles), with minimal overhead from 

initialization and cleanup. 

• CDI Derivation via HMAC-SHA256 

CDI derivation required ≈330 cycles. The most expensive component was 

mbedtls_md_hmac_finish() at 218 cycles, with smaller contributions from setup (20 cycles) 

and initialization (80 cycles). These results confirm that one-way key derivation is 

computationally lightweight. 

• ECC Key Generation (Device Identity) 

The generation of the DeviceID key pair was by far the most intensive operation, taking 

approximately 352,400 cycles for mbedtls_ecp_gen_keypair(). Additional overhead for 
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random seeding, group initialization, and PEM formatting brings the total above 354,000 

cycles. 

• ECC Key Generation (Layer Key) 

Layer key derivation follows the same path and was measured at ≈353,500 cycles. The 

negligible difference reflects minor variability in the input entropy. 

• X.509 Certificate Creation (Alias Certificate) 

The creation of the alias certificate was the most expensive individual operation. The total 

cost, including parsing, subject/issuer handling, and PEM encoding, exceeded 376,000 

cycles. Stack usage for this function peaked at 2616 bytes, highlighting the resource burden 

of standard certificate handling on constrained devices. 

Figure 4.3 below summarizes total cycle counts across key cryptographic operations: 

 
Figure 4.3 Total CPU cycle cost per cryptographic operation 

The next figure 4.4 further decomposes ECC key generation steps for both DeviceID and Layer keys: 

 
Figure 4.4 Internal breakdown of ECC key generation for DeviceID and Layer keys 
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Figure 4.5 shows stack usage of selected cryptographic operations, highlighting memory constraints: 

 
Figure 4.5 Stack memory usage for selected cryptographic operations 

Figure 4.6 presents a detailed breakdown of the alias certificate creation process: 

 
Figure 4.6 Cycle breakdown of alias certificate creation using mbedTLS routines 
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Figure 4.3.5 aggregates stack and memory usage for critical flows: 

 
Figure 4.7 Summary of stack and code memory usage across components 

4.3.3 Analysis and Discussion 

These measurements confirm that while the DICE-based attestation protocol is viable on a 

microcontroller-class device, its feasibility hinges on judicious use of computational resources. 

Lightweight primitives such as hashing and HMAC can be executed efficiently, even in real-time 

contexts. However, public-key operations, particularly ECC key generation and certificate formatting, 

introduce substantial latency and memory overhead. These operations collectively consume 

hundreds of thousands of cycles and require over 2 KB of stack memory. 

 

 
Figure 4.8 Stack usage across attestation stages (DICE-based prototype) 

From a security perspective, the implementation fulfills all critical requirements established in Section 

3.2.1. Unique device identities are derived from a hardware-bound secret (R1), attestation flows are 

cryptographically bound and verifiable (R3), and layered key isolation is successfully demonstrated 
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(R5). However, the reliance on host-side tooling (e.g., OpenSSL for certificate signing) introduces 

partial external dependencies that must be resolved in future fully self-contained implementations. 

Despite these constraints, the prototype demonstrates key engineering strengths: 

• Modularity: The codebase is logically partitioned into identity derivation, attestation logic, 

and secure update routines. 

• Feasibility: All essential flows, including device identity derivation and certificate generation, 

execute successfully within the STM32’s processing envelope. 

• Robustness: Deterministic behavior was achieved using seeded random number generation 

and reproducible cryptographic operations. 

Some limitations remain. Debug visibility was constrained by the platform’s peripheral limitations. 

Confidentiality restrictions also precluded direct sharing of the source code and prevented full 

transparency in performance instrumentation. These constraints affected both reproducibility and 

collaborative validation. 

Future Work should prioritize tighter hardware integration, including dedicated ECC and X.509 

accelerators, and transition away from host-assisted components such as Python scripts and manual 

OpenSSL commands. Additional steps may include dynamic attestation over the network, integration 

of secure boot, and real-time update negotiation. 
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5 Conclusions 

This chapter concludes the thesis by summarizing the main outcomes of the work and reflecting on the 

implications of a DICE-rooted, certificate-based asymmetric attestation approach for resource-

constrained IoT devices. Section 5.1 consolidates the key results across the background, protocol 

design, STRIDE-based security analysis, and the prototype implementation and measurements. 

Section 5.2 outlines focused directions for future work, including hardware-backed key protection, 

update hardening (anti-rollback and recovery), clearer evidence semantics and freshness, and 

considerations for fleet-scale deployment and deeper validation. 

5.1 Thesis Summary 

This thesis investigated the design and security of a lightweight asymmetric attestation protocol tailored 

for resource-constrained IoT devices. The primary objective was to enable verifiable device identity, 

firmware integrity, and secure software updates by leveraging a hardware-rooted trust anchor compliant 

with the Device Identifier Composition Engine (DICE) standard. By establishing this foundation, the 

work addressed the need for scalable and standards-aligned remote attestation mechanisms that 

remain feasible on distributed embedded systems. 

Chapter 1 motivated the work by outlining the security challenges that arise when low-cost, 

network-connected embedded devices are deployed at scale. It reviewed representative threats and 

prior attestation techniques, and it positioned the thesis goal as the development of an end-to-end 

approach that can establish device trustworthiness across the device lifecycle. 

Chapter 2 provided the background necessary to ground the design choices, including 

embedded security fundamentals, cryptographic primitives, public key infrastructure concepts, and the 

role of TLS in mutual authentication and secure transport. This background clarifies how certificate-

based authentication and chain validation integrate naturally with the DICE-derived identity and 

attestation mechanisms. 

Chapter 3 presented the core design of the proposed solution. Section 3.1 described the 

engineering approach, grounded in a V-Model, to structure development and validation activities. 

Section 3.2 defined the design objectives and derived six concrete system requirements (R1–R6), 

spanning device identity derivation, authenticated communication, attestation, and update-related 

constraints, while keeping hardware assumptions explicit and minimal. These requirements were 

organized using functional, non-functional, and security classifications, and refined through the Open 

Security Architecture (OSA) framework. 

Based on these requirements, Section 3.3 introduced a layered protocol architecture built on 

DICE. The device lifecycle was captured through manufacturing and deployment phases, including 

provisioning and enrollment steps where certificates and firmware identities (FWIDs) are anchored into 

a verifiable chain of trust. The resulting functional flows describe how device identity is established from 

hardware-resident secrets, how attestation evidence is conveyed through the certificate chain, and how 

authenticated updates are supported. The protocol was then assessed using a STRIDE-based threat 

model, with an accompanying threat matrix, asset analysis, and explicit assumptions. Together, these 

elements link the identified threats to concrete mitigations and to the requirements defined in Section 

3.2. 

Chapter 4 translated the protocol design into an executable prototype and evaluation on a 

commercial microcontroller platform. It documented the selection of an STM32L4 Nucleo target, the 
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choice of cryptographic building blocks and libraries (notably mbedTLS for ECC, hashing, and X.509 

handling), and the integration of the protocol’s layered key derivation and certificate generation steps. 

A demonstrator validated the intended flows, and empirical measurements quantified feasibility under 

constrained conditions, reporting cycle counts and stack usage for SHA-256 hashing, HMAC-based 

CDI derivation, ECC key generation, and X.509 certificate creation. The results indicate that lightweight 

primitives incur modest cost, while public-key operations and certificate processing dominate runtime 

and memory overhead. 

Overall, the thesis shows that a DICE-rooted, certificate-based asymmetric attestation protocol 

can be implemented on microcontroller-class devices when the trusted computing base is carefully 

constrained and the lifecycle flows are explicitly mapped to requirements. The resulting design provides 

a standards-aligned basis for device identity, attestation, and authenticated updates, and the prototype 

results offer practical evidence of feasibility and clear directions for engineering hardening in future 

work. 

5.2 Future Work 

 The work in this thesis demonstrates that a DICE-rooted, certificate-based asymmetric attestation 

protocol can be realized on constrained microcontrollers with modest hardware assumptions. At the 

same time, the protocol and prototype were intentionally scoped to remain feasible within the thesis 

timeframe and the available tooling. The following directions outline next steps that would strengthen 

the architecture and improve its deployability without changing its core design principles. 

 

Hardware-backed key protection. 

The protocol assumes that long-term secrets are protected on-device and that debug access is disabled 

after provisioning. A practical extension is to make these assumptions explicit in the implementation by 

using hardware-enforced key isolation rather than relying primarily on software-based containment. 

This can be achieved by storing long-term secrets, such as UDS/CDI-derived private keys and 

intermediate key material, in protected storage with enforced access control. Suitable mechanisms 

include a secure element, a vendor key store, or microcontroller security features such as readout 

protection and privilege separation. In addition, debug interfaces (e.g., SWD/JTAG) should be 

permanently disabled or irreversibly locked on fielded devices. 

 Where supported, the root secret can be strengthened further by deriving the UDS 

intrinsically on the device. This reduces provisioning sensitivity and improves resistance to device 

cloning because the root secret is not injected but originates from device-specific physical properties. 

One concrete direction is to use an SRAM PUF-based approach, such as Intrinsic ID’s solution, as the 

source for UDS generation. In this setting, the UDS is reconstructed from device-unique behavior at 

boot, aligning with the DICE expectation of a high-entropy, statistically unique secret. Removing explicit 

UDS injection also reduces supply-chain exposure and narrows the set of manufacturing steps that 

require strict protection. 

 

Anti-rollback and update recovery. 

While the protocol defines authenticated updates through signature and certificate validation, a 

deployable system must also prevent rollback to older, vulnerable firmware versions. This requires an 

explicit anti-rollback policy, for example by enforcing monotonically increasing firmware versions using 

a protected version counter or an equivalent mechanism. In addition, the update process should be 

resilient to failures. Interrupted or invalid updates must not leave the device unbootable. A practical 
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approach is to include a well-defined fallback image and to report update outcomes to the backend for 

monitoring and recovery. 

 

Attestation evidence and validation. 

The current approach represents the attested firmware state through firmware identities (FWIDs) 

conveyed via the certificate chain. A practical next step is to specify this evidence model more explicitly 

for both manufacturing and field operation by defining how FWIDs are encoded in certificates, what 

each FWID represents (for example, which firmware layer and measurement basis), and which verifier-

side validation steps are mandatory. In addition, freshness and session binding should be enforced 

explicitly by incorporating verifier-provided challenges into the attestation exchange and ensuring that 

the presented evidence is cryptographically bound to the authenticated session context. 

 

Deployment and scalability. 

The thesis validates the protocol through a single-device flow. Future work should therefore evaluate 

the operational aspects that emerge when the same approach is deployed on a scale. Key aspects 

include validating enrollment and provisioning workflows under operational constraints, such as failure 

handling, re-enrollment, and clear authorization boundaries for associating devices with specific 

deployments. In addition, deployments in which devices authenticate to infrastructure not operated by 

the manufacturer require careful trust-domain separation, for example to support multi-tenant operation 

without weakening verification guarantees. Addressing these topics is primarily an engineering effort 

focused on defining lifecycle states, interfaces, and operational procedures, rather than modifying the 

cryptographic core of the protocol. 

 

Validation and evaluation 

While Chapter 3 provides a structured STRIDE-based analysis with explicit assumptions and adversary 

capabilities, future work should strengthen assurance through targeted empirical validation aligned with 

the identified attacker classes. This includes practical testing that exercises debug misuse attempts, 

firmware and update-path tampering, and leakage-oriented adversaries informed by timing, power, or 

fault behavior. In addition, the evaluation can be expanded beyond cycle counts and memory footprint 

by quantifying energy consumption and end-to-end latency during authentication and attestation. 

Finally, the security guarantees can be expressed more explicitly as properties tied to the stated 

assumptions, improving both confidence in the results and comparability with related designs. 
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