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Abstract  

This research presents the development and validation of a machine learning-assisted closed-loop 
control system designed for robotic 3D clay printing, with a particular focus on enhancing print 
quality and structural stability of complex overhang geometries. Unlike traditional open-loop 
manufacturing processes, the proposed framework integrates real-time visual feedback captured by 
dual Raspberry Pi cameras and leverages a multi-objective neural network model to dynamically 
adjust the robotic printing speed. This enables the system to detect and correct extrusion anomalies 
such as over-extrusion and under-extrusion, thereby significantly improving the printability and 
quality of challenging overhang structures. 

Two advanced deep learning architectures, ResNet-56 and a DINOv2-based hybrid network, were 
systematically evaluated to determine their effectiveness in defect detection and prediction of 
overhang success. The system was implemented using a UR5 robotic arm equipped with a clay 
extruder, demonstrating practical feasibility within a laboratory environment. Experimental results 
show that the closed-loop control approach substantially enhances print consistency, reduces 
structural failures, and maintains geometric accuracy compared to baseline open-loop methods. 

This foundational work lays the groundwork for future scaling to construction-scale additive 
manufacturing, highlighting the potential to extend this system to other construction materials such as 
concrete. The study discusses key challenges including material variability, sensor integration, real-
time control complexity, and robotic motion planning, and provides strategic recommendations for 
future research aimed at achieving robust, adaptive, and scalable additive manufacturing systems for 
complex architectural applications. 

 

Keywords: 3D Printing, Additive Manufacturing, Clay, Robotic Fabrication, Machine Learning, 
ResNet-56, DINOv2-based hybrid model, Computer Vision, Real-time closed-loop control, Quality 
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Research Context 

This graduation project is a direct continuation of the previous group research project, MudTracker 
3D, conducted from September 16, 2024, to November 6, 2024. During that group project, I was 
primarily responsible for machine learning model training and fine-tuning. Over the course of nine 
main rounds of fine-tuning, various strategies were explored to improve model performance, 
including adjusting hyperparameters, applying class balancing techniques, extracting balanced 
datasets from initially imbalanced data, refining the labeling standards for greater accuracy, 
redesigning prototypes, modifying print board colors, and adjusting lighting conditions during image 
collection. 

Despite these efforts, the machine learning model predictions remained unstable and inconsistent. Key 
findings from that phase indicated that class balancing techniques are critical for model accuracy and 
generalization. Balanced datasets yielded the best results, while upsampling and downsampling 
techniques were more effective than simple class weighting when perfect balance could not be 
achieved. Training on imbalanced datasets without proper adjustment significantly reduced accuracy, 
especially for minority classes. Additionally, consistent lighting conditions were found essential 
during data collection to ensure reliable training outcomes. Incorporating diverse lighting conditions 
into the dataset was also recognized as a potential way to improve model robustness in real-world 
scenarios. 

The motivation behind continuing this topic is to overcome the limitations encountered in the 
MudTracker 3D project, particularly the instability of ML predictions and the open-loop nature of the 
system. MudTracker 3D was an open-loop calibration system implemented on a WASP printer, using 
a single side-view camera for image collection. In contrast, the current graduation project develops a 
closed-loop control system integrated with robotic fabrication and enhanced visual feedback from 
dual top-view cameras. This setup comprehensively captures geometric features and focuses more on 
architectural geometry characteristics. By employing more advanced neural network architectures, the 
project seeks to enable precise and robust 3D clay printing of complex overhang structures, ultimately 
contributing to more efficient and automated construction processes. 
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1. Introduction  

1.1 Background 

Additive manufacturing (AM), widely known as 3D printing (3DP), allows to construct complex 
geometries by depositing material layer by layer according to digital models (Lee & Park, 2025). 
Recent advancements in AM are pushing the boundaries of real-world design possibilities, 
allowing for mass customization, the fabrication of intricate structures, and the reduction of 
material waste, while also enabling rapid prototyping (Delgado Camacho et al., 2018). AM 
technologies are increasingly being applied across diverse scales and industrial fields including 
healthcare (Placone & Engler, 2018), medical devices (Haghiashtiani et al., 2020), robotics 
(López-Valdeolivas et al., 2018), aerospace (Froes et al., 2019), engineering (Singh et al., 2020), 
and construction. As noted by Ngo et al. (2018), a diverse range of materials is utilized in 3DP, 
including metals, concrete, ceramics and polymers. Among polymers, Acrylonitrile Butadiene 
Styrene (ABS) and Polylactic Acid (PLA) are commonly used for composite 3DP, while 
advanced alloys and metals are favored in aerospace applications due to the limitations of 
traditional manufacturing processes. Ceramics are often used for 3DP scaffolds, and concrete is 
primarily used in 3DP for construction.  

Although 3DP has obtained significant attention in recent years, it is still in the early stages of 
adoption for construction industry (Wu et al., 2018). Nonetheless, there has been a rapid growth 
in case studies focused on production of full-scale houses and structures (Parkes, 2021a, 2021b; 
Teizer et al., 2016). These studies highlight several advantages of 3DP, including the ability to 
create complex, custom geometries without the need for molds (Delgado Camacho et al., 2018), 
reducing errors during the building process, and minimizing construction time, material waste 
and cost (Nematollahi et al., 2017). As a result, 3DP has become increasingly relevant in the 
construction industry, particularly for its potential to revolutionize how buildings are designed 
and constructed. 

Several AM processes are already in use, including Stereolithography (SLA), Fused Deposition 
Modeling (FDM), and Selective Laser Sintering (SLS) (Fastermann, 2016). These processes 
differ based on the material used and the deposition technique. One method within this field, 
Liquid Deposition Modeling (LDM), involves extruding viscous material through a nozzle to 
build structures in a continuous, layered approach. LDM is currently being explored in several 
manufacturing applications(Delgado Camacho et al., 2018; Jang et al., 2020; Klug et al., 2022; 
Rosenthal et al., 2018). When this process is applied to clay or other earthen materials, it is 
referred to as 3D Clay Printing (3DCP). 3DCP is emerging as a promising solution for 
overcoming the intrinsic limitations of ceramics, for example, formability and processability 
(Jang et al., 2020). Clay, a naturally malleable and adaptable material, serves as the primary 
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medium in LDM (Yang et al., 2023). Due to its low embodied energy and recyclability, clay is 
increasingly considered a viable material for sustainable construction (Oti, 2010). Its malleability 
and plastic behavior facilitate the formation of continuous, organic geometries, which are 
increasingly relevant in the design of biophilic and non-standard architectural forms (Grigoriadis 
& Lee, 2024). The benefits of clay in construction are further amplified by its availability, cost-
effectiveness, and sustainability when employed in an LDM system (Kontovourkis & Tryfonos, 
2020; Wolf et al., 2022). 

However, clay is also a highly variable material. Its performance depends heavily on water 
content, mixture consistency, and environmental conditions such as temperature and humidity. 
These factors can lead to extrusion instability, weak layer adhesion, and deformation during 
printing (Ding et al., 2025; Gürsoy, 2018; Witte, 2022). As a result, 3DCP presents unique 
challenges, particularly in terms of material consistency and the need for constant monitoring 
of printing parameters (Așut et al., 2025). These challenges can result in printing anomalies 
such as perforations and material overhangs, which can compromise print quality, lead to 
failures, or require the use of extensive support structures that must be manually removed after 
printing (Gürsoy, 2018). The need for such support structures restricts design freedom and 
limits the ability to experiment with form and geometry, which needs to be carefully 
considered in design process (Bhooshan et al., 2018). Therefore, unsupported overhangs 
present a significant challenge in maintaining both structural integrity and aesthetic quality 
during the printing process. 

1.2 State of the Art 
Machine learning (ML) has become an integral part of the AM field, enabling significant 
advancements in defect detection, process optimization, and real-time error correction (Jiang et 
al., 2022; Khan et al., 2021; Li et al., 2019; Ramiah & Pandian, 2023; Zhang et al., 2019). There 
is growing research on the use of ML for quality monitoring and adaptive control in AM 
(references). Most of the existing work has focused on materials with relatively stable properties, 
such as thermoplastics, resins, and metals, where defect detection and parameter optimization are 
more predictable (references). 

Most research focuses on correcting under-extrusion and over-extrusion issues to improve print 
quality. Brion and Pattinson (2022) developed a real-time defect detection and correction system 
for extrusion-based 3DP using a multi-head residual attention neural network named Resnet 56. 
Trained on over 1.2 million automatically labeled images collected in thermoplastics 3DP 
process, the model predicted deviations in parameters including flow rate, Z-offset, lateral speed, 
and hotend temperature. An overall classification accuracy of 84.3% is obtained, with individual 
parameter accuracies exceeding 85%, and demonstrated robust performance even on unseen 
materials like ketchup.  
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Building on similar ideas, Fu et al. (2025) proposed a real-time feedback system combining 
EfficientNetB0, a lightweight Resnet 56 network, with camera-equipped extruders, which only 
predicts and adjusts two printing parameters including flow rate and nozzle offset to correct 
extrusion defects during printing process, improving print quality for polylactic acid (PLA) 
materials. Avro et al. (2024) developed a deep learning framework that integrates YOLO (You 
Only Look Once) and VGG-16 for detecting under-extrusion anomalies in Fused Filament 
Fabrication (FFF) for thermoplastics, achieving a 97% detection accuracy. Similarly, Goh et al. 
(2022) introduced a YOLOv3 and YOLOv4-Tiny ML models for extrusion defect detection 
system in PLA printing with 89.8% accuracy, enabling real-time correction of over- and under-
extrusion issues. Jin et al. (2021) employed YOLOv3 and DeepLabv3 for semantic segmentation 
of over- and under-extrusion zones for PLA materials in FFF, enabling layer-wise quality 
assessment and correction. Point cloud data was utilized by Akhavan et al. (2024), who 
established a hybrid convolutional autoencoder (HCAE) to classify under- and over-printed 
regions in PLA and dynamically modified G-code to improve subsequent layers.  

In parallel, some studies focused on improving surface roughness in 3DP. Lee and Park (2025) 
introduced a Variational Autoencoder (VAE) to detect surface defects in additive-lathe printing 
for PLA and applied corrective strategies such as ironing and speed tuning, significantly 
enhancing surface quality in situ. Toorandaz et al. (2024) used Random Forest (RF) and 
XGBoost with photodiode sensors to predict surface roughness in titanium alloy prints, achieving 
high accuracy at microscale resolution. In bioprinting, Jin et al. (2023) used convolutional neural 
networks (CNNs) for anomaly detection in hydrogel-based systems, achieving an F1-score of 
0.955 by classifying discontinuities and irregularities layer-by-layer. 

Addressing misalignment in prints in 3DP, Zubayer et al. (2024) applied YOLOv8 to detect fiber 
misalignments in carbon fiber-reinforced polymer (CFRP) 3DP, integrating nozzle temperature 
adjustments for closed-loop correction, and reaching 94% detection accuracy. Kim and Park 
(2023) combined a VAE for anomaly detection with Proximal Policy Optimization (PPO), a 
reinforcement learning algorithm, to adjust print speed for polyvinyl alcohol (PVA) filament. The 
system achieved over 99% accuracy in detecting defects such as layer shift, and successfully 
optimized speed to minimize deflection and improve productivity, enabling the reliable 
fabrication of unsupported high-aspect-ratio and overhang geometries. Lu et al. (2023) also used 
YOLOv4 in a real-time feedback system for CFRP printing to detect misalignment and abrasion, 
achieving real-time adjustment of printing parameters to improve surface finish. 

Surface deformation has also been a key focus in 3DP. Ansari et al. (2022) developed a CNN 
model for identifying surface deformation defects including distortion and warping in laser 
powder bed fusion (LPBF) of AlSi10Mg metal with 99.3% accuracy. Brion et al. (2022) 
integrated YOLOv3 with heuristics corrections to detect and correct warping in extrusion-based 
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AM for Acrylonitrile Butadiene Styrene (ABS), adjusting bed temperature and print speed to 
reduce deformation. Gunasegaram et al. (2021) proposed Digital Twin integration with 
surrogated model in metal AM, using ML-driven sensor feedback to optimize process parameters 
and ensure consistent part quality and reduced defects. Finally, Paraskevoudis et al. (2020) used 
Single Shot Detector (SSD) networks for real-time video-based detection of stringing defects in 
PLA prints, achieving notable improvements in material efficiency and print quality. 

Together, these studies reflect a diverse and rapidly evolving body of work demonstrating the 
potential of ML-based frameworks, ranging from object detection (e.g., YOLO, SSD) to 
generative modeling (e.g., VAE), for improving print reliability, surface quality, and adaptive 
parameter control across a variety of AM materials and systems. 

Despite these advancements, a major gap remains in applying ML for real-time error correction 
in 3DCP. Existing studies have focused primarily on materials such as thermoplastics, metals, 
and composites, which exhibit more predictable behaviors during the printing process. Clay, on 
the other hand, presents unique challenges for its unpredictability due to its highly variable 
properties, such as viscosity, malleability, and moisture content, making 3DCP more prone to 
printing issues. Although ML techniques from other materials provide valuable insights, they 
need significant adaptation to suit clay material behavior. 

Because of the inherent variability and ununiform clay mixture due to non-standard mixing 
process of clay, the printing issues are amplified during 3DCP than other predictable materials. 
Variations in printing quality can occur across different layers due to changes in the clay mixture 
even within a single prototype. Traditional fixed-parameter methods fail to adequately 
accommodate these rapid and unpredictable shifts in material state, typically requiring human 
intervention during the printing process, which is not always possible or effective enough. 
Traditional open-loop approaches operate based on pre-set parameters without real-time 
feedback, assuming constant material properties and environmental condition (Ding et al., 2025). 
Așut et al. (2025) developed a computer vision-based open-loop system for pre-printing 
parameter calibration in 3DCP, aiming to address material variability and printing defects. The 
system employs a two-head Attention-56 model (based on ResNet-56) to predict optimal layer 
height and extrusion settings. The study demonstrated the effectiveness of automatic parameter 
calibration compared to manual calibration, showing improved efficiency in pre-printing 
preparation. However, this open-loop system cannot dynamically adjust to fluctuations in 
extrusion consistency and inter-layer adhesion during real-object printing processes, which 
makes formal printing process especially prone to printing errors caused by the natural variability 
of the material. Without real-time sensing and adjustment, these systems struggle to compensate 
for changes in material behavior and it often leads to inconsistent results and defects (Ding et al., 
2025). 
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Unlike open-loop systems, closed-loop systems can process sensory data by recognizing changes 
in material properties, environmental disturbances, and calibration errors in real-time. They can 
continuously update the printing parameters and allow real-time correction of extrusion 
inconsistencies and printing errors (Zhu et al., 2021, as cited in Ding et al., 2025). Thus, a 
notable gap remains in the application of closed-loop calibration systems for 3DCP. 

Furthermore, layer adhesion and overhang structures continue to present significant challenges in 
3DP from architectural and engineering aspects, especially in materials like clay that have 
limited interlayer bonding due to cold extrusion. Successful printing of overhangs with minimal 
layer contact requires optimizing the print parameters to ensure stability. While ML models have 
been used to optimize print errors in simpler geometries, there is limited research on their 
architectural application to complex geometries with minimal contact areas, such as overhangs in 
clay-based 3DP. 

In summary, this literature review underlines the potential of ML models in advancing AM, 
particularly in defect detection, error correction, and process optimization. However, there is a 
clear gap in research regarding the application of ML in real-time adjustment systems for 3DCP, 
where material-specific challenges need to be addressed. This research aims to fill this gap by 
exploring methods for achieving stable, accurate overhang structures in 3DCP without the need 
for excessive support materials, and with minimal manual adjustments to the printing parameters. 
This will involve addressing the inherent variability of clay and developing strategies to enable 
the automatic calibration of printing parameters in real-time, thereby reducing the reliance on 
manual intervention during the printing process. 

 

1.3 Problem Statement 
The use of clay in AM presents unique difficulties that are not well addressed by current systems. 
Most 3DP workflows rely on open-loop control, where printing parameters are set before the 
process begins and remain unchanged (Așut et al., 2025). This method assumes that material 
properties and environmental conditions stay constant, which is rarely the case in 3DCP. As a 
result, deviations such as layer shifting, over-extrusion, or incomplete bonding are common, 
especially in geometrically complex features like overhangs. 

Manual adjustments can sometimes compensate for these issues, but they are time-consuming 
and difficult to scale (Gürsoy, 2018). For construction-scale applications, such delays or 
inconsistencies can lead to structural weaknesses or even failed builds. Therefore, a more 
adaptive system is needed, which can detect problems as they arise and automatically adjust 
printing parameters in response during printing process. 

However, the method is largely focused on thermoplastic materials, where extrusion consistency 
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is more predictable, making its application to clay, which has a highly variable viscosity, less 
straightforward. 

 

1.4 Objectives 
Real-time monitoring allows continuous acquisition and analysis of p process data during 
manufacturing, allowing immediate adjustments to printing parameters in response to material 
variability. This is particularly important in 3DCP, where fluctuations in clay consistency can 
significantly affect print quality. A closed-loop control system builds on this by using feedback 
from sensors or vision systems to automatically modify process parameters such as extrusion rate 
or nozzle speed in real time, thereby reducing defects and maintaining print consistency (Zhu et 
al., 2021, cited in Ding et al., 2025). 

ML is a subset of Artificial Intelligence (AI) that has an increasing potential to develop the 
capabilities and efficiency of AM, and it can handle the challenges and optimize the various 
aspects of AM processes by extracting patterns, learning from data, and building effective 
predictions (Ukwaththa et al., 2024, cited in Ding et al., 2025). As outlined in the literature 
review, ML can play a crucial role in real-time defect detection, process optimization, and 
adaptive control in 3DP and help to ensure more precise and reliable printing outcomes. In deep 
learning-based image classification (a subset of ML), models such as Residual Attention 
Networks such as ResNet 56 and DINO v2 can enhance defect detection by focusing on relevant 
image regions while minimizing background noise. So, they can be particularly effective for 
identifying fine-grained defects in 3DP (Wang et al., 2017; Zhao et al., 2017, cited in Ding et al., 
2025). 

Robotic 3DP utilizes industrial robotic arms equipped with specialized extruders to enable 
flexible, multi-axis motion control during material deposition (Farahbakhsh et al., 2021). Such 
systems integrate advanced toolpath planning and robotic control algorithms within parametric 
design environments such as Grasshopper, allowing the digital translation of 3D models into 
optimized robotic motions for material extrusion (Kontovourkis & Tryfonos, 2020).  

Compared to conventional 3-axis clay printers such as the WASP system, robotic arms offer 
significantly more spatial flexibility. This enables the fabrication of complex geometries such as 
overhangs and freeform curves, without extensive reliance on support structures. The multi-
degree-of-freedom movement enables non-planar layer deposition and dynamic toolpaths that are 
difficult or impossible to achieve with fixed-axis systems. This capacity for real-time trajectory 
updates allows in-process correction strategies, such as modifying toolpaths in response to 
detected anomalies. However, this project will focus specifically on adjusting printing speed to 
correct failures in overhangs using a UR5 robot due to time constraints. Furthermore, current 
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robotic arm-based 3DP serves as a scalable prototype system for future construction-scale 
manufacturing using 6-axis gantry systems, providing a more compatible and transferable 
workflow compared to desktop-scale 3-axis WASP printers. This makes it a more suitable 
platform for developing adaptive, closed-loop fabrication techniques aimed at architectural-scale 
applications. 

Thus, this research aims to develop such a real-time, ML-assisted closed-loop control system 
specifically for robotic 3DCP, with a focus on challenging overhang structures. Overhangs are 
structural elements that extend horizontally without direct vertical support. It poses a particular 
challenge in 3DCP due to the limited interlayer adhesion and the deformable nature of clay. 
Printing such structures requires precise control of printing speed and extrusion to prevent 
sagging or collapse. By targeting overhangs, this research intends to address a critical barrier in 
expanding the design freedom and structural stability of 3DCP in construction applications. 

A comparison will be conducted between two deep learning models, ResNet-56 and DINO v2, to 
determine which is more effective in detecting failure. The goal is to achieve automatic and 
dynamic calibration of printing speed during fabrication, ensuring stable extrusion and 
improving the overall quality and reliability of clay-based overhang structures. 

The key objectives are: 

• Robotic 3DP 

- Set up a UR5 robotic 3D clay printing system integrated with Raspberry Pi cameras for 
visual monitoring. 

- Establish real-time communication between the UR5 robot, the Raspberry Pi modules, 
and the main control computer. 

• ML: 

- Collect a dataset of overhang prints with varying inclination angles and extrusion 
conditions. 

- Develop a multi-objective ML model capable of detecting extrusion anomalies and 
predicting overhang printability in real time. 

- Compare ResNet-56 and DINO v2 in terms of prediction accuracy, reliability under 
3DCP conditions. 

• Close-loop  

- Integrate the selected ML model into a closed-loop system that continuously adjusts 
printing speed based on live visual feedback. 

• Validation  



Page 15 

 

- Test and evaluate the system’s performance across various geometries and material 
conditions to verify its effectiveness in maintaining consistent, high-quality clay prints. 

1.5 Research Questions & Sub-questions 
Main Research Question: 
How can a machine learning-assisted closed-loop system enable real-time anomaly detection 
and correction in robotic 3D clay printing of overhang structures? 

Sub-questions: 

1. How can real-time visual data be used to detect extrusion anomalies, such as under-
/over- extrusion, or deformation, during the printing of overhang structures in 3DCP? 

2. Between ResNet-56 and DINO v2, which machine learning model performs more 
effectively in classifying extrusion failures and predicting the printability of overhang 
geometries in 3DCP? 

3. How can a trained ML model be integrated into a closed-loop system that dynamically 
adjusts robotic printing parameters, such as nozzle speed, based on continuous visual 
feedback? 

4. How can a live communication link between the PC, ML model, and UR5 robotic arm be 
established to support real-time control and feedback exchange? 

5. How can the movement speed of the robotic arm be smoothly and safely adjusted in real 
time via the PC, without disrupting the continuity of the toolpath? 

6. What are the implementation constraints and scalability considerations when applying 
this closed-loop robotic system to construction-scale 3D clay printing using multi-axis 
platforms? 

1.6 Methodology  
To address the limitations of current open-loop 3DCP systems and to enable responsive adaptation to 
material variability, this research proposes a data-driven, closed-loop control system integrating ML 
and robotic fabrication. The methodology builds upon established approaches in computer vision-
based feedback control (Așut et al., 2025; Brion & Pattinson, 2022; Fu et al., 2025), adapting them to 
the unique challenges of clay extrusion and overhang geometry in robotic 3DP. 

Specifically, the methodology shown in Figure 1.1 follows a five-step framework aimed at 
developing, training, and validating a real-time feedback loop that can detect extrusion anomalies and 
automatically adjust robotic movement speed to maintain consistent print quality. The system is built 
around the use of a UR5 robotic arm equipped with Raspberry Pi cameras and a WASP clay extruder, 
enabling synchronized image capture, parameter logging, and dynamic control updates. 
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The full workflow ranges from prototype fabrication and dataset generation, to machine learning 
model comparison and final system validation. It is designed to establish a replicable and scalable 
pipeline for adaptive control in 3DCP.

Figure 1.1: the workflow diagram of methodology  
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Step 1: Data Collection through Prototype Printing 
A series of overhang prototypes are printed at varying speeds using a WASP LDM extruder (3 mm 
nozzle diameter) mounted on a UR5 robotic arm as dataset. Two Raspberry Pi Camera Module 3 units 
are mounted on either side of the extruder, focusing on the nozzle to capture pairs of top-view images 
at regular intervals as shown in Figure 1.2.  

 

Figure 1.2: Experiment setting of 3DCP. 

To generate a diverse dataset, two parameters were systematically varied during printing: the robotic 
arm’s movement speed (RAMS) and the overhang inclination angle (Table 1). The speed was adjusted 
to 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10% of the base speed. For each speed 
setting, overhangs were printed at angles of 130°, 140°, 150°, and 160°. These combinations resulted 
in a various extrusion outcomes, including both successful and failed prints, which were used to train 
the ML model. 
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Figure 1.3: A dataset that needs to be collected with varied printing speeds and inclined angles. 

Step 1.1: Evaluation and Benchmarking 
The printed prototypes are evaluated based on two criteria: extrusion quality and overhang success. 
Key indicators include shell thickness and the horizontal interlayer contacting area.  

Extrusion quality was assessed by shell thickness (Figure 1.4). It was classified into three categories: 
under extrusion (label 0), good extrusion (label 1), over extrusion (label 2). The prototypes that 
matched the nozzle diameter (3 mm) were used as the standard benchmark and labeled as the 
optimum (good extrusion) extrusion. The remaining ones were sorted from very thin (under 
extrusion) to very thick (over extrusion) (Ding et al., 2025).

Figure 1.4: Extrusion label categories demonstration according to shell thickness (Top view) 
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Figure 1.5: Extrusion label categories demonstration according to general quality (elevation view) 

Overhang success was evaluated based on the printing completeness and form accuracy of the printed 
prototypes (Figure 1.6). The outcomes were also categorized into three classes. A print was labeled as 
safe (label: 0) if it completed successfully and maintained its intended shape without noticeable 
deformation. Prints that were completed but showed signs of sagging or visible distortion in overhang 
curvature were classified as at risk (label: 1). If the structure collapsed during the printing process or 
failed shortly after completion, it was labeled as unsafe (label: 2). This qualitative classification 
helped differentiate overhang performance levels based on observable physical outcomes. 

Figure 1.6: Overhang label categories demonstration  
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To refine this classification and support the visual evaluation, the horizontal interlayer contacting area 
served as a key visual indicator of overhang success. This area, defined as the horizontal overlap 
between two adjacent layers, especially in the unsupported segments of the inclined overhangs. It is 
expected that the ML model will rely on such visual cues to distinguish between safe, at-risk, and 
unsafe overhang categories. Based on visual estimation and cross-referencing with physical printing 
outcomes, the classification is further guided by the ratio between the horizontal interlayer contacting 
area and the shell thickness. When this ratio falls below 50%, the print is typically categorized as 
unsafe due to insufficient bonding between layers. Ratios between 50% and 60% indicate a higher risk 
of deformation, placing the print in the at-risk category. A ratio exceeding 60% generally suggests 
sufficient interlayer adhesion, corresponding to a safe and stable overhang print. 

Step 1.2: Image and data Collection 
During the printing process, images from both cameras are recorded and synchronized with relevant 
G-code parameters, printing speed. Image pairs are corrected for perspective distortion and merged 
into single composite images. These are then augmented using techniques such as rotation, mirroring, 
scaling, brightness variation, and normalization (Figure 1.7). Corresponding CSV files store the 
synchronized visual data and G-code settings. 

 

Figure 1.7: Examples of images after augmentation 

Step 2: Dataset Labelling 
The resulting dataset is labeled according to extrusion quality (three classes: under-extruded, well-
extruded, and over-extruded) and overhang safety (three classes: safe, at risk and unsafe). These labels 
are derived from physical measurements and visual assessments performed in Step 1.1. 

Step 3: ML Model Training and Evaluation 

Two ML models are trained on the labeled dataset from Step 2 and evaluated to identify the most 
suitable approach for defect detection in clay-based overhang printing. 

The first model is based on the ResNet-56 architecture with integrated residual attention modules 
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(Wang et al., 2017), previously used in AM for flow control (Brion & Pattinson, 2022). The second 
model is a hybrid architecture that replaces the front portion of ResNet-56 with a pre-trained DINOv2 
ViT-S/14 vision transformer backbone from Meta AI, retaining the original ResNet structure for the 
final layers. Both models are trained using identical datasets to ensure a fair comparison in 
performance. 

To support multi-objective learning, both models adopt a two-head neural network architecture, in 
which a shared feature extractor branches into two separate output heads. One head is trained to 
classify extrusion quality (under-, good-, or over-extrusion), while the other predicts overhang success 
(safe, at risk, or unsafe). This structure allows the model to jointly optimize predictions for both 
extrusion and overhang performance based on shared image features. 

To enhance ML model’s interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM) is 
applied. This visualization tool focuses the most influential regions in each image used for prediction. 
It provides transparency in the model’s decision-making process and enables users to understand 
whether the system is focusing on relevant visual cues. 

In this context, extrusion quality directly impacts overhang stability. Excessive extrusion can lead to 
sagging or a bloated overhang shape with inaccurate curvature. While it may increase the horizontal 
contact area between layers, it also raises the risk of deformation or even collapse due to the added 
weight and uncontrolled material spread. Conversely, under-extrusion results in insufficient material 
deposition, weakening interlayer adhesion. In extreme cases, this leads to premature failure, as freshly 
extruded material can no longer adhere to the preceding layer. Therefore, maintaining an appropriate 
extrusion rate is critical not only for achieving good surface quality, but also for ensuring the 
structural integrity of inclined or unsupported overhangs. 

The ultimate goal of the ML model is to identify visual features for both shell thickness and horizontal 
interlayer contacting area, which can then be used to infer whether the print parameters need 
adjustment. The contacting area is influenced by both shell thickness and the inclined angle of the 
overhang. To simplify real-time correction during actual printing, this study limits the number of 
controllable variables by keeping both the layer height and the inclined angle constant. Under the 
assumption that both the extruder motor speed and the air pressure also remain constant, the shell 
thickness becomes a function of the extruder nozzle movement speed, which is the RAMS. The 
relationship is defined as follows: 

 

Where: 
V = volume of extruded material per unit time 
Q = extrusion rate (constant) 
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Δt = unit printing time 
h = layer height (constant) 
w = shell thickness 
L= v⋅Δt = print length in unit time 
v = robotic arm movement speed (RAMS)  
 

Rearranging the equation yields: 

 

This shows that shell thickness w is inversely proportional to the RAMS v, assuming a fixed extrusion 
rate Q and layer height h. However, in real-world printing scenarios, the effective volume of deposited 
material also depends on material intensity, which is a property affected by clay density, viscosity, and 
moisture content. A denser or more viscous clay mixture may reduce the actual spread or deposition 
volume even if the extrusion rate remains constant. To account for this conceptually, a material-

dependent correction factor ρm could be introduced, yielding a more general form: 

 

Where ρm represents the material intensity factor. 

Nevertheless, due to the absence of real-time tools for measuring this factor in the current 
experimental setup, this study adopts a simplified model by assuming ρm = 1. This allows shell 
thickness to serve as a reliable visual proxy for deposition performance. Therefore, the ML model is 
trained to learn the visual relationship between RAMS and shell thickness. This enables the system to 
adaptively adjust RAMS in real time based solely on image-based feedback, thus maintaining print 
quality and overhang structural printability. 

Step 4: Implementation of a Closed-Loop System 
Based on the trained model’s predictions, a real-time correction mechanism is developed to 
dynamically overwrite the RAMS within the URScript.  

URScript is the scripting language used by Universal Robots to control robotic arms. It manages 
movement commands, I/O operations, and basic logic execution. In this study, URScript is used to 
modify the RAMS in real time based on feedback. Its flexibility allows speed adjustments to be 
applied directly during the printing process, which is essential for implementing responsive control.  

The core logic of this closed-loop control system is built around maintaining an appropriate shell 
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thickness, which serves as a proxy for ensuring both structural stability and material efficiency. When 
the ML model detects extrusion anomalies, such as over-extrusion or under-extrusion, it sends 
adjustment commands to update the RAMS accordingly, allowing the system to correct the print in 
real time without manual intervention. 

To enable such real-time corrections, the system must establish stable and low-latency communication 
between three key components: 

• Vision System: Two Raspberry Pi Camera Module 3 units are responsible for capturing top-
view images during printing. These units continuously stream image data to PC via Ethernet. 

• ML Model Host (PC): A local PC receives the image data, performs inference using the 
trained ML model, and determines whether a correction in speed is needed based on detected 
deviations in shell thickness or interlayer contact. 

• Robotic Control Environment (UR5 Teach Pendant): The teach pendant runs the URScript 
and interfaces directly with the UR5 robotic arm. It receives updated RAMS values from the 
PC via TCP/IP socket communication. 

To support this closed-loop workflow, the communication pipeline is implemented using TCP/IP 
socket programming. Initially, the PC sends the URScript to the UR5 controller to initiate printing. 
During the print, images are captured approximately every 10 seconds and sent to the PC. The ML 
model processes each image on PC, and if necessary, sends updated velocity commands from PC to 
the robot controller. A wired LAN network connects all components, optimized to reduce latency and 
packet loss to ensure reliable operation. 

Together, this setup forms the foundation of the real-time closed-loop calibration system, allowing 
visual feedback to directly influence robotic motion in a continuous and responsive manner. 

Step 5: Final Validation 
Once the closed-loop system is in place, its effectiveness will be validated by printing a new overhang 
prototype and, later, applying the method to different overhang design or larger-scale geometries. This 
step will verify whether the adaptive model can generalize to different design configurations and 
maintain reliable performance under changing conditions. 
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2. Research by design and experimentation  

2.1 Experiment setup  
This study was conducted using a robotic 3DCP setup composed of a Universal Robots UR5 arm 
integrated with a WASP LDM extruder (3 mm nozzle diameter). A custom Grasshopper-based slicing 
workflow was used to generate printing path, which were executed by the UR5 robot via TCP sockets 
through URScript commands.  

A custom slicing tool was developed in Grasshopper, a visual programming environment embedded 
within Rhinoceros 3D software. The printing path generated by slicing tool was converted into 
URScript commands and executed on the UR5 via TCP socket communication. TCP sockets provide a 
reliable protocol for data exchange over local networks, allowing the PC to communicate directly with 
the UR controller by sending movement commands real time. 

For visual monitoring and dataset generation, two Raspberry Pi Camera Module 3 units (max 
resolution: 4606 × 2592 pixels) were mounted on a lightweight, adjustable frame positioned on either 
side of the extruder at an angle of approximately 10° from the horizontal. The cameras were 
connected to a Raspberry Pi 5 and synchronized to capture images at fixed 0.7-second intervals. The 
PC is used to download logged data for database construction and transfer real-time images during the 
calibration process. All devices are interconnected via a local network through a router as shown in 
Figure 2.1. The entire setup, including extruder mount and camera frame system, was custom 
fabricated by PLA 3DP to ensure adaptability for experimental control (Figure 2.2). The setup design 
emphasized experimental flexibility, allowing quick adjustments to camera angles, camera height, or 
mounting positions.

 

Figure 2.1: Diagram of the hardware connection architecture. 
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Figure 2.2: extruder mount and camera frame system, custom-fabricated by PLA 3DP 

2.1.1 Hardware setup  

2.1.1.1 Material 
Clay Preparation and Moisture Control 

In this study, the preparation of clay was a crucial step directly affecting the stability and quality of 
the 3DCP process. The clay material used was PRAI 3D (a stoneware formulated for AM), supplied in 
5 kg packages with a manufacturer-indicated water content of approximately 22% by weight. Despite 
this nominal ratio (equivalent to 1.1 kg of water per 3.9 kg of dry clay), the actual moisture level 
required further adjustment based on its extrudability under the specific conditions of my printing 
setup. 

To improve consistency and flow through the extruder, additional water was incrementally added 
following guidelines provided in the LAMA Lab in-house manual (LAMA lab is a laboratory for 
Additive Manufacturing in Architecture within the Faculty of Architecture and the Built Environment 
in Delft University of Technology). In general, adding 100g of water to the base mixture proved 
effective in enhancing the material's workability. However, precise moisture control remained a 
persistent challenge throughout the experiment. Due to the clay’s natural variability and sensitivity to 
environmental factors (such as ambient humidity and storage duration), it was nearly impossible to 
replicate identical mixture conditions across different batches (Figure 2.3). 
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Figure 2.3: clay preparation with manual mixing process  

Small deviations in the water ratio had noticeable effects on the printing process (Figure 2.4). When 
the clay mixture was too dry, it resulted in increased internal resistance, leading to clogging of the 
extrusion nozzle and occasional motor stalls due to excessive backpressure. Conversely, an overly wet 
mixture reduced the material’s shape stability, causing the printed layers to collapse or deform under 
their own weight. These failures often required disassembling and cleaning the extruder, manually 
remixing the material, and re-calibrating the system—operations that were both labor-intensive and 
time-consuming. 

 

Figure 2.4: clay extrusion changes in one prototype printing due to slight clay mixture changes  

Through empirical testing, it was determined that an optimal water-to-clay ratio ranged between 23% 
and 24% by weight, depending on environmental conditions and time since packaging. This range 
corresponded to an additional 100–150 grams of water per 5 kg batch (Figure 2.5) and provided a 
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balance between ease of extrusion and shape stability after deposition. Therefore, maintaining an 
optimal water-to-clay ratio was identified as a key parameter for achieving reliable and high-quality 
prints. While efforts were made to keep this ratio as consistent as possible, the inherently variable 
nature of clay posed ongoing limitations to repeatability and process control. 

 

Figure 2.5: Clay mixture package information 

2.1.1.2 Robots selection & Connection  
A key component of the methodology is the selection and configuration of suitable hardware to 
support the intended system responsiveness, adaptability, and scalability. 

Printer Selection: Delta WASP 40100 LDM printer vs. Robotic Arm 3DP 
Initial experiments were conducted using the WASP 40100 Delta printer (Figure 2.6), a three-axis 
LDM 3D printer, due to its ease of setup and adequate build volume for early-stage prototyping.  

However, this system imposed significant limitations during the transition toward real-time parameter 
control. Specifically, the WASP’s closed firmware, which refers to proprietary software that cannot be 
modified or accessed. This issue prevented direct intervention in print parameters such as printing 
speed during runtime, making integration with an external feedback system unfeasible.  

Additionally, the WASP printer operates with only three degrees of freedom (DOF), allowing 
movement along fixed X, Y, and Z axes without any rotational control. This restriction limits toolpath 
customization and dynamic nozzle orientation. As a result, the nozzle cannot be reoriented in response 
to complex geometries or toolpath requirements, which reduces the system's flexibility and 
monitoring accuracy, particularly in printing overhangs or curved features.  
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Figure 2.6: WASP 40100 Delta printer (left) & printing set up (right) 

To overcome these constraints, the research transitioned to a six-degree-of-freedom UR5 robotic arm 
paired with the WASP LDM extruder. This setup allows for both translational and rotational motion, 
providing greater freedom to adapt the toolpath and nozzle orientation dynamically. The ability to 
control nozzle orientation helps maintain tangency along complex circular paths, which is critical for 
monitoring curved overhang printing. This strategy will be discussed further in Section 2.1.2.2. 

Although the UR5 system does not increase the physical print volume, it offers motion capabilities 
that closely resemble those of future construction-scale 3DCP systems, such as six-axis gantry robots. 
This makes the current setup a more scalable and forward-compatible platform for developing closed-
loop fabrication workflows. 

Robot Selection: COMAU NJ60 vs. UR5 

COMAU NJ60: 

Initially, the COMAU NJ60-2.2 industrial robot was selected for its robust load capacity and extended 
reach, suitable for medium-to-large-scale prototypes.  

(1) Extruder frame design for COMAU 

A custom clay tank frame was designed in four configurations as shown in Figure 2.7, with the final 
version utilizing a dual-metal plate connection, fabricated through the Maquettehal workshop (The 
model hall with model-making facilities in the Faculty of Architecture and the Built Environment in 
Delft University of Technology). 
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Figure 2.7: Four frame designs and related connection designs for clay extruder 

 

  

Figure 2.8: Extruder frame design and real-life setup for COMAU 

(2) Robot Control for COMAU in 3DP 

A custom slicing script built in Grasshopper was used to convert overhang geometries into 6-axis 
toolpaths. The slicing workflow begins with defining the overhang geometry and layer height as input 
parameters. The model is then sliced horizontally to generate contour lines along the Z-axis. Using the 
Termite plug-in, these contour lines are converted into a continuous spiral path to avoid layer seams, 
meanwhile exporting this spiral path into G-code (Figure 2.9). G-code is a standardized numerical 
control language used to instruct the 3D printer or robot on precise movements, speeds, and toolpath 
trajectories during the printing process. 
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Figure 2.9: A custom slicing script built in Grasshopper to generate G-code 

The G-code file was then imported into RoboDK, which generated corresponding motion trajectories 
and converted them into COMAU-compatible PDL2 code for execution by the robot controller 
(Figure 2.10). PDL2 code, is the native language required by COMAU controllers. 

 

Figure 2.10: Diagram of the proposed connection and data exchange workflow 

Attempt to Enable Closed-Loop Real-Time Speed Control 

To enable a closed-loop control system with real-time speed adjustment, it was necessary to establish 
a stable, two-way communication channel between the PC and the COMAU C5G controller. An 
Ethernet cable connected the user’s computer to the internal PC of the COMAU controller, 
specifically through the ETH2 port located on the Advanced Processing Controller (APC) module. 
However, establishing this live connection for dynamic speed adjustment proved to be a complex and 
ultimately unresolvable challenge. Three attempts were made to solve this problem, but all ultimately 
failed due to the constraints of the available hardware and software. 

Plan 1: RoboDK + TCP/IP Communication 

The first method involved using RoboDK as the communication interface between the PC and the 
COMAU controller. The system was configured by setting the robot's IP address (192.168.0.130) 
within RoboDK and matching it with the settings accessed via the Teach Pendant. The default port 
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used was 21 (FTP), and the remote path was set as /UD:/usr, using apicomau.py as the driver script. A 
successful ping confirmed that the network configuration was correctly established as shown in Figure 
2.11. 

 

Figure 2.11: the screenshot from Robo DK shows successfully connection via port 21 

While FTP-based file transfer allowed for uploading and downloading .PDL and .COD files, it did not 
support real-time control or feedback. More advanced capabilities—such as live position tracking and 
motion override—require connection via a TCP/IP control port (typically port 1301 or 5025), which 
utilizes the DV_CNTRL API for command execution. 

Attempts to activate this functionality using RoboDK’s provided service driver failed. Running the 
driver resulted in the following error on the Teach Pendant: 

40040/4: RoboDKdriver(101)/; DV_CNTRL operation error 30971 

According to RoboDK’s technical support and documentation, this error indicates that the controller 
does not have the required network communication license to use DV_CNTRL. This is a hardware-
locked feature that cannot be enabled by the user and requires assistance from COMAU technical 
representatives. Communication with COMAU support confirmed that the controller did not support 
real-time DV control in its current configuration. Their internal tests also confirmed that remote 
control via RoboDK was not available unless the controller was upgraded with a new cabinet (C5G+) 
and the relevant software license—a process estimated to cost approximately €13,000 for the 
hardware and an additional €2,500 for the software. 

As a result, while FTP-based deployment was successful (i.e., programs could be saved directly to 
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/UD:/usr), the workflow still required manual loading of the files into RAM (Prog environment) via 
the Teach Pendant. This manual step can’t meet the requirements for real-time, programmatic control 
necessary for a closed-loop system. 

Plan 2: Direct PDL2 Programming with TCP/IP 

The second approach explored the use of native PDL2 scripting with TCP/IP communication, 
bypassing RoboDK entirely. This method involved writing custom routines in PDL2 that leveraged 
the DV_CNTRL function to open and manage TCP sockets for live data exchange. 

The following sample code illustrates the intended communication logic: 

 

Despite the simplicity of the routine, successful execution again depended on the DV_CNTRL 
function being available. As with Plan 1, this function was disabled on the current C5G cabinet, and 
activation required additional licensing. Without the ability to open TCP connections natively, this 
method was also deemed infeasible. 

Plan 3: COMAU Open Controller Software 

A third option involved using COMAU’s proprietary Open Controller software, which is specifically 
designed to support external real-time control and advanced robot-program interaction. However, 
after consultation with the local COMAU representative, it was confirmed that the existing cabinet 
(C5G) was too outdated to support the Open Controller platform. Upgrading to the compatible C5G+ 
cabinet, along with the purchase of the Open Controller license, would require substantial financial 
investment, beyond the available budget. 

Given the consistent failure of all three methods to enable real-time control on the COMAU system 
within the available resources and timeline, the project switched to use a UR5 robotic arm. Although 
it has a smaller reach and payload capacity compared to COMAU (which limits the size of printed 
geometry), the UR5 offers built-in support for remote TCP/IP communication, easier manual control 
via teach pendant, and real-time script execution compatibility, making it more suitable for research 
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and iterative testing. 

UR5: 

(1) Extruder frame design for UR5 

A fully customized, lightweight frame was 3D printed in PLA to mount the clay tank and camera 
system. The frame includes an adjustable sliding hook mechanism that enables flexible tuning of the 
camera angle and height to accommodate the need for initial adjustment based on nozzle position. 

(2) Robot Control for UR5 to 3DCP 

To implement robotic 3DCP with real-time process control, a customized workflow (Figure 2.12) was 
developed based on the Universal Robots UR5 robotic arm. 

 

Figure 2.12: Diagram of the real-time calibration system program structure with hardware setting. 

The slicing of prototype geometries was performed using a custom Grasshopper script (Figure 2.13). 
The generated paths are then segmented into motion planes and converted into URScript commands 
using the Robots Plugin. The final output is a .script file in URScript format, which defines a series of 
Move j instructions that govern the movement trajectory of the UR5 robot during the printing task. To 
implement real-time control of the robot's speed during execution, three strategies were investigated 
in combination with TCP/IP socket communication between the PC and the robot controller. 
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Figure 2.13: Workflow diagram showing custom slicing and URScript generation in Grasshopper 

Challenges and Real-Time Control Solutions 
(1) Challenge 1: URScript Size Limitation 

During initial testing, short programs written in UR Script containing a limited number of Move j 
commands could be successfully transmitted and executed by the UR5. However, once the number of 
motion commands exceeded approximately 2,500 lines, the robot stopped responding without 
displaying any error, giving the false impression that the script had been uploaded and initiated 
correctly. 

Two primary causes are suspected: (1) the total script size may exceed the UR5’s internal buffer 
capacity (estimated at ~75 KB), and (2) the number of sequential Move j instructions may exceed the 
permitted execution queue size, especially when streamed over Port 30003.  

To address this issue, two script optimization strategies were explored: 

Plan 1: Use of a For Loop 

This approach aimed to reduce the script size by using a for loop inside the URScript. Rather than 
sending each motion command individually, all target positions were stored as a list in a CSV file, and 
then iterated using a for loop structure. This significantly reduced the number of lines in the script 
while preserving full control of the printing geometry. 

However, this method was unsuccessful. The script still failed to upload properly, and the UR5 
remained unresponsive. It is suspected that the for loop is processed on the PC (Python) side before 
the entire script is transmitted to the UR controller, meaning the UR still receives a long script in full, 
defeating the purpose of the loop-based optimization. 

Plan 2: Script Chunking with Delayed Transmission 
The successful method involved breaking the script into smaller chunks and transmitting each one 
with a brief delay in between. This kept the size of each transmitted segment within a few kilobytes 
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and allowed the robot sufficient time to receive and process each chunk before the next one arrived. 

The delay was introduced to give the UR5 controller adequate time to parse and buffer the script 
content, avoiding packet loss or timeouts caused by overwhelming the system with large scripts all at 
once. This reduced both network and processing loads by transmitting the script gradually and 
smoothly, rather than overwhelming the controller with a large file in a single burst. 

Importantly, this delay was implemented only on the Python client side and had no impact on 
URScript execution timing. The robot begins execution only after receiving the complete script along 
with the program end marker. Even when transmitted in chunks, the UR5 caches the entire script 
before execution begins. 

Therefore, this chunked transmission method, which executed successfully in the experiment and does 
not affect the continuity of 3D printing, was adopted as the final and effective solution. 

(2) Challenge 2: Real-Time Speed Control 

A series of methods were tested to achieve real-time adjustment of the robot’s movement speed during 
the printing process. In the field of robotics, particularly with Universal Robots (UR), real-time 
control of robot velocity has been explored in several domains beyond AM, including surgery, 
polishing, and human–robot interaction (HRI). 

For example, Fontúrbel et al. (2023) used URScript’s speedL command to send velocity vectors to a 
UR3e robotic surgical assistant at 125 Hz, allowing smooth real-time TCP speed adaptation based on 
force feedback. Similarly, Muñoz et al. (2021) demonstrated that speedJ (joint-space) and speedL 
(Cartesian-space) commands were effective for real-time control in an endoscopic surgery assistant. 
They streamed velocity updates every 8 ms to achieve adaptive motion. 

In the HRI domain, Van Oosterwyck (2018) adjusted a UR10’s speed in real time via the speed slider 
rather than resending Movej commands, which could cause abrupt motion. By programmatically 
setting the speed slider fraction between 0 and 1, smooth transitions were achieved without 
interrupting the trajectory. In a polishing task on a UR3, Pérez-Ubeda et al. (2020) used velocity-
mode control with periodic updates to maintain stable force contact, showing how speed can be 
adapted mid-process for continuous material processing. 

These examples suggest that frequent velocity updates, either by direct speedL/speedJ commands or 
by adjusting the global speed scaling, are effective approaches for maintaining smooth and responsive 
robot motion in real time, a principle this study adopts. 

Plan 1: Speed Control via Grasshopper-Robots Plugin 
In this approach, the printing script was generated and executed using the Robots Plugin within 
Grasshopper. Speed values were defined as variables within the toolpath generation, and could 
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theoretically be adjusted in real time during printing. However, due to latency in command 
transmission from the PC to the UR controller, each speed update caused the robot to revert to a 
previous waypoint and restart the movement with the new speed. This unexpected behavior resulted in 
overlapping motion and damaged printed layers, making this method unsuitable for continuous 
printing. 

Plan 2: Python Script + Socket Communication (speed_slider_set_override) 
To avoid dependency on Grasshopper’s plugin, a new method was implemented using Python 
scripting. The entire Move j toolpath, initially generated in Grasshopper, was exported into a .script 
file. This URScript file was loaded and executed by the UR controller via TCP port 30003. In parallel, 
a Python script on the PC was connected to the robot via dashboard port 30002, from which real-time 
speed adjustment commands were sent using the speed_slider_set_override() function. 

Although the script executed successfully and the PC could send and receive basic commands (e.g., 
stop), the robot did not respond to the dynamic speed change signals. This indicated that while the 
connection was established, the command interface lacked the authority or synchronization to update 
the controller’s internal state mid-execution. 

Plan 3: Real-Time Script Segment Streaming 
A third method attempted to bypass static script uploading by streaming smaller script segments to the 
robot in real time, thereby allowing updated speed values to be embedded directly before each motion 
instruction. However, this approach conflicted with UR’s internal motion planning mechanism, which 
requires pre-loading a complete trajectory for smooth execution. As a result, the robot exhibited jerky, 
intermittent motion, pausing between each new command batch, which is incompatible with the 
smooth, continuous motion required for AM. 

Plan 2+: Python Script + Socket Communication via runSlow() 

As a final and successful method, the system retained the basic structure of Plan 2 but modified the 
speed control mechanism. Instead of using the dashboard speed_slider_set_override() function, the 
control was shifted to the Teach Pendant interface, where the Python script sent the runSlow(speed) 
function via TCP port 30002. This function directly controls the speed slider on the pendant, allowing 
real-time adjustments to the robot's velocity during program execution. 

 
This method proved effective. When the user changes the speed percentage in the Python script 
running on the PC, the robot controller’s speed slider reflects the updated value instantaneously, and 
the UR5 adjusts its motion speed accordingly without interrupting the ongoing print. This solution 
was ultimately adopted as the core mechanism for implementing the closed-loop real-time calibration 
system in the UR5-based clay printing workflow. 
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Challenge 3: Joint motion Mode Selection for Consistent TCP Speed & circular path  

In robotic 3DCP, the selection of Joint motion mode in URScript plays a critical role in maintaining 
consistent tool center point (TCP) speed and path fidelity, These are both essential for ensuring high-
quality extrusion and avoiding defects such as over-extrusion or under-extrusion. Unlike other robotic 
tasks, 3DCP requires smooth, uninterrupted motion at a constant speed to guarantee even material 
deposition and layer adhesion. Therefore, evaluating different UR motion modes was a key step in 
developing a reliable printing workflow. URScript supports several motion types, including Movej 
(joint motion), Movel (linear Cartesian motion), Movep (constant-speed Cartesian process motion), 
and Movec (circular Cartesian motion), each with distinct characteristics. 

Plan 1: Movej (Joint Motion) 
The Movej command moves the robot by interpolating joint angles. It defines robot poses via six joint 
positions and moves the robot through a nonlinear path between waypoints.  

Syntax: 

movej(q, a, v, r=0) 

q: list of 6 joint angles [rad] 

a: joint acceleration [rad/s²] 

v: joint speed [rad/s] 

r: blending radius [m] (optional, for smoothing) 

It is the fastest and most commonly used motion type, suitable for free-space movement. While it 
does not guarantee a constant TCP velocity, Movej was adopted in this project due to its robustness 
and execution reliability. 

To improve path smoothness, the project used a “Move Arch” strategy, applying Movej with blend 
radii between waypoints.  

Syntax: 

movej(joints, a, v, r=blend) 

This allowed the robot to create smoothed transitions between points, emulating arc-like curves 
without switching to Cartesian motion modes. Among all tested methods, this plan consistently 
produced successful prints. 

Importantly, Movej does not maintain a constant TCP speed by default, with slight speed change 
between certain segments. However, it was considered the most reliable option under current time and 
system constraints in this project. 
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Plan 2: Movep (Process Motion) 
The Movep command is designed for applications where the robot must maintain a fixed TCP speed 
through a series of Cartesian waypoints, which is ideal for 3DP. 

Syntax: 

movep(pose_to, a, v, r) 

pose_to: target TCP pose [x, y, z, rx, ry, rz] 

a: Cartesian acceleration [m/s²] 

v: Cartesian speed [m/s] 

r: blend radius [m] for smoothing transitions 

 

However, movep requires Cartesian pose inputs (not joint angles), so a forward kinematics model 
using UR5's Denavit–Hartenberg (DH) parameters was implemented in Python to convert joint angle 
CSV files into [x, y, z, rx, ry, rz] poses. 

Despite the technical setup, this plan failed during execution. The converted paths often rotated out of 
the desired print plane or collided with the print surface, indicating either misalignment of coordinate 
frames or incorrect TCP offset transformations. These issues prevented successful deployment of 
Movep under project time constraints. 

Plan 3: Movec (Circular Motion) 
Movec enables circular path interpolation between two TCP poses (via and to). It’s ideal for drawing 
arcs or curved paths with a constant TCP speed. 

Syntax: 

movec(pose_via, pose_to, a, v, r) 

pose_via: intermediate TCP pose [x, y, z, rx, ry, rz] 

pose_to: target TCP pose [x, y, z, rx, ry, rz] 

a: Cartesian acceleration [m/s²] 

v: Cartesian speed [m/s] 

r: blend radius [m] for smooth transition 

 

Similar to Movep, it requires Cartesian input and relies on accurate spatial alignment. A Python 
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function was developed to pair waypoints and output movec(via, to) commands with specified speed 
and blend radius. 

However, testing revealed unexpected behavior: the robot's tool rotated incorrectly or followed 
circular paths in the wrong orientation. This likely stemmed from inconsistent pose transformations or 
extruder frame offsets, making the method impractical within the available timeframe. 

Conclusion and Adopted Strategy 
After evaluating all options, Movej with blend radius (Move Arch) was selected for this project. It 
offered sufficient control and smoothness while avoiding the Cartesian conversion errors encountered 
with Movep or Movec. However, the disadvantage of slight change in TCP speed still remains.  

If time permits in future work, future development should revisit Movep or Movec with a refined 
kinematics pipeline, allowing the robot to follow accurate Cartesian paths with true constant velocity, 
which remains the ideal approach for high-fidelity AM. 

2.1.1.3 Camera setup  
Two Raspberry Pi Camera Module 3 units were simultaneously connected to a Raspberry Pi 5 and 
synchronized to capture images at the same timestamp. Additionally, data of the robotic arm's 
movement speed during image capture was recorded, ensuring accurate matching between image 
timestamps and movement data. 

The cameras were mounted on a custom-designed PLA arm fabricated using FDM 3DP. Each camera 
was angled from above to view the printing area on either side of the nozzle tip (Figure 2.14), 
enabling coverage of both left and right sides of the printing process. 

This top-down, oblique mounting configuration was intentionally selected to ensure that at least one 
camera maintains visibility of the freshly printed structure regardless of the nozzle’s direction of 
movement. Specifically, to monitor interlayer adhesion and overhang characteristics, a top-down view 
is essential. Side-view configurations would result in visual blocking when the nozzle moves behind 
the printed part, obstructing critical regions of interest during extrusion. 
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Figure 2.14: A comparison between the experimental setups and the images captured during the pre-
research (up) and current research (down), showing side and top views respectively. 

2.1.2 Software setup  

2.1.2.1 Camera Calibration and Image Rectification 
To ensure the consistency and generalizability of the dataset used for training ML models, the two 
images captured simultaneously by the raspberry pi camera system were geometrically transformed 
and merged into a unified overhead view with corrected perspective distortion. This rectification 
process standardizes all collected data into a consistent spatial layout, compensating for the original 
tilt angles and mounting positions of the cameras to be approximate a top-down orthographic view 
(Figure 2.15). It minimizes perspective effects that could otherwise bias feature detection and 
geometric interpretation. 
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Figure 2.15: explanation of top-down view rectification  

Such transformation is essential for reproducibility. If raw perspective images were used directly, any 
future replication of the system would require the cameras to be placed in exactly the same positions 
and orientations to maintain visual consistency across datasets, which is hard to achieve. By contrast, 
applying homography-based rectification ensures that new users can reproduce the dataset structure 
by simply applying the same calibration parameters, without needing to replicate the exact physical 
setup. This approach significantly enhances the portability and reusability of the trained ML model 
across slightly different position and angle of camera setup.  

To achieve pixel-level alignment of dual-camera images captured from top and bottom views, a 
custom calibration procedure was implemented using OpenCV library(OpenCV). A physical 
checkerboard pattern with known geometry (7×3 inner corners, with each square measuring 50 mm) 
was used as the calibration target. Calibration images were taken simultaneously from both Raspberry 
Pi cameras. 

Chessboard Corners finding and image Warping 
To geometrically align images captured from different viewpoints, a homography-based calibration 
was conducted. First, subpixel-accurate checkerboard corners were detected using OpenCV’s 
findChessboardCorners and cornerSubPix. For each camera view, a homography matrix H was 
estimated via cv2.getPerspectiveTransform, mapping the detected 2D image points to an ideal 
rectified plane. This homography defines a projective transformation between two planes, expressed 
as: 
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To ensure that the rectified image occupied a valid region in the output coordinate system, the warped 
boundary was computed and shifted using a translation matrix. The combined homography was then 
applied to the full image using cv2.warpPerspective, followed by cropping based on the warped 
checkerboard region. This calibration step yields a consistent transformation matrix and scale factor 
(Figure 2.16), which are later reused to process new images without checkerboards by warping, 
scaling, aligning, and merging them into a unified top-down view. 

Image Cropping 
To isolate the region containing only the checkerboard, a second perspective transform was applied 
based on extended corner points, estimated by shifting the outermost corners outward by one grid 
width. This crop ensured that only the valid, rectified region was retained. 

Image Aligning 
The grid size in pixels was then computed for both views, and the left image was scaled accordingly 
to match the grid size of the right image. The two cropped and scaled images were finally merged into 
a single top-down composite by aligning a reference point (nozzle tip point coordinate) between the 
two views. 

Save Calibration parameters 
This calibration procedure yields not only rectified and aligned images but also reusable 
transformation parameters (.npz file), including homography matrices, crop regions, and scale factors. 
These parameters were subsequently applied to new images without checkerboards, enabling 
consistent alignment across the dataset. 

Figure 2.16: Demonstration of the steps for stitching images 
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In this study, two calibration target patterns and OpenCV detection methods were evaluated to 
determine the most robust approach under the specific imaging conditions produced by the Raspberry 
Pi Camera Module 3. 

Grid Pattern Selection and Detection Method Evaluation 

Two calibration target types were tested: a standard checkerboard grid (square corners) and a circular 
dot grid. Correspondingly, two OpenCV functions: cv2.findChessboardCorners and 
cv2.HoughCircles, were compared. In initial trials, the findChessboardCorners function failed to 
consistently detect all corners in images captured by the Raspberry Pi camera. In many cases, only a 
partial grid (e.g., 3×3) could be detected, while full pattern detection was only successful in images 
taken with a mobile phone camera under similar lighting conditions. Conversely, when using a 
circular dot grid, the HoughCircles function reliably detected all circle centers in Raspberry Pi 
images. 

 

Figure 2.17: comparison of corner detection accuracy between cv2.HoughCircles(left) and 
cv2.findChessboardCorners (right) with detection color circles/ lines generated by code 

This discrepancy likely stems from the inherent robustness of circular feature detection, which 
depends on approximate parameters such as circle diameter and spacing. In contrast, checkerboard 
detection relies on precise localization of corner intersections and the regularity of grid geometry. 
While the circle grid allowed for more consistent detection, the geometrical accuracy of the detected 
points was relatively low, leading to unacceptable distortions in the rectified images. Despite 
incomplete detection in some cases, the checkerboard provided higher positional accuracy for 
detected points, which is essential for accurate warping. Therefore, cv2.findChessboardCorners was 
ultimately selected for the calibration and rectification pipeline. 
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Image Quality Comparison and Hardware Limitations 

Substantial variation was observed between images taken by the Raspberry Pi camera (right image in 
Figure 2.18) and those captured by a smartphone (left image in Figure 2.18). Smartphone images 
consistently produced better results due to their superior sharpness, higher contrast between black and 
white squares, reduced glare, and more even lighting. These advantages stem from the smartphone’s 
optical and image processing hardware: high-quality lenses with anti-reflective coatings, advanced 
ISP modules, dynamic exposure control, and high-dynamic-range (HDR) techniques. By contrast, the 
Raspberry Pi Camera Module 3 is a low-cost component with limited lens coating, basic image signal 
processing, and a global exposure system. As a result, its images frequently suffer from glare 
(particularly in the upper portion of the checkerboard), shallow depth of field, and image deformation 
due to skewed perspectives, especially when the camera is placed close to the checkerboard. 

 

Figure 2.18: corner detection test images taken by iphone(left) and by raspberry pi(right) with 
detection color lines generated by code 

Attempts to compensate for these issues included image sharpening, use of CLAHE (Contrast Limited 
Adaptive Histogram Equalization), lighting adjustments, and autofocus/focal length tuning (e.g., using 
AfModeEnum.Continuous and LensPosition). However, these modifications provided only marginal 
improvements, and in some cases (e.g., over-sharpening), they caused the sub-pixel refinement step 
(cornerSubPix) in the OpenCV pipeline to fail entirely. Additionally, hardware constraints limited 
further enhancements, as the Raspberry Pi camera’s native resolution (4608 × 2592 pixels) had 
already been set to its maximum. 
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Rectification Strategy and Experimental Adjustments 

Despite hardware limitations, adjustments to the experimental setup improved detection consistency. 
It was observed that portrait-oriented images provided better detection results than landscape ones, 
due to the reduction of extreme perspective distortion at the image bottom, where deformation is most 
severe. Moreover, reducing the checkerboard’s cell size and positioning the pattern in the center-upper 
region of the frame further mitigated issues with lens distortion and field-of-view compression. 

By carefully controlling the camera angle to minimize tilt and keeping the nozzle tip visible, it was 
possible to ensure detection of at least a 3×3 corner grid. While using only a small portion of the 
checkerboard may reduce rectification accuracy—since the perspective transform is calculated based 
on a limited number of reference points—our experiments showed that 4×4 corner detection was 
sufficient to achieve acceptable top-down warping (see Figure 2.19). 

Figure 2.19: Corner point visualization and debugging on the image taken by raspberry pi 

Implications for Multi-Camera Image Stitching and ML Integration 

The stereo camera system introduces additional complexity for ML applications. Images captured 
from the left and right cameras must be accurately aligned and stitched to form a single top-down 
view. However, any inconsistency in rectification, especially at the seam between the two views, may 
affect the quality of the visual features used by ML models. This becomes critical if the stitched image 
is adopted as the input for a trained model, as the performance is highly dependent on maintaining 
consistency in camera positioning and transformation parameters. 

Thus, while the current stitched image approach provides good spatial coverage and nozzle visibility, 
it introduces a potential domain shift problem if the system is replicated under different physical or 
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geometric configurations. This may affect model generalization and suggests that additional 
robustness measures, such as domain adaptation techniques or spatially aware data augmentation, may 
be required for future deployments. 

Vibration-Induced Image Misalignment and Merging Errors 

During image preprocessing, motor-induced vibrations were identified as a significant factor affecting 
image clarity and consistency (Figure 2.20), which in turn influenced the accuracy of image merging 
from the two Raspberry Pi cameras. Although the cameras were calibrated correctly using a flat 
checkerboard target, periodic vibration, particularly during nozzle movement, caused minor shifts in 
camera position and focus. 

 

Figure 2.20: Example of a blurred image caused by motor vibration 

Initial attempts to stabilize the camera system included several strategies: 

1. Mount relocation: Cameras were relocated from the clay tank (PLA frame) to the robot arm to 
reduce direct vibration from the extruder motor. 

 
Figure 2.21: Demonstration of different camera arm mounting configurations. 
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2. Foam insulation: Foam padding was added between the motor and its frame and between camera 

joints to dampen mechanical resonance. 

 

Figure 2.22: Foam padding position 

3. Counterweights: Additional mass was added to both camera arms to absorb vibration. 

 

Figure 2.23: Additional mass position  

4. Motor tuning: The extruder motor’s rotational speed was carefully adjusted to minimize vibration; 
interestingly, some higher speeds led to reduced vibration depending on resonance behavior. 

5. Motor replacement: Finally, the original self-built motor was replaced with a commercial WASP 
extruder motor, which provided significantly better mechanical stability and reduced vibration. 
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Figure 2.24: Motor change comparison   

While solutions 1–4 contributed to partial improvement, it was the implementation of solution 5 that 
led to a major reduction in image distortion. However, some residual periodic vibration remained, 
occasionally leading to small vertical misalignments between the two camera views. This resulted in 
occasional inconsistencies in the merged images. 

Figure 2.25: Good example of calibration parameters applied to dataset image 
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Figure 2.26: Bad example of calibration parameters applied to dataset image 

    

Figure 2.27: Example of a series of misalignment caused by vertical position change  

Figure 2.25 shows a good example of successful image rectification, where the warped and cropped 
images from both cameras align correctly to produce a unified top-down view. In contrast, Figure 2.26 
shows a bad example where overlapping content appears in the merged output, suggesting 
misalignment between the two input frames. This typically occurred when the extruder vibrated 
during image capture, slightly altering the apparent vertical position of the nozzle or print geometry 
(Figure 2.27). Although rare, these misalignments compromise dataset consistency and can affect ML 
training if not handled. 
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Camera Reassembly Sensitivity 
One recurring issue in the experimental workflow is that each time the setup is reassembled, the 
position of the cameras may shift slightly. Such variations, though minor, can affect the accuracy of 
the image-stitching process, potentially degrading the quality of the merged top-view image used for 
monitoring and model inference. Therefore, camera calibration must be repeated prior to each print 
session following reassembly, using the procedure described in Section 2.1.2.1. 
In future iterations, a more precise method could be implemented by calibrating the camera-to-nozzle 
tip distance using laser range sensors or similar depth-measuring tools. This spatial data, in 
combination with the known TCP coordinates, could be incorporated as auxiliary input to the machine 
learning model. By doing so, the model would be able to compensate for geometric discrepancies 
caused by reassembly or mechanical variation, thereby improving the model's robustness and 
reducing the reliance on manual calibration or alignment procedures. 

 

2.1.2.2 Robot program  
Two nozzle control strategies were tested to evaluate the effect of tool center point (TCP) orientation 
on both printability and image acquisition quality: 

 

Figure 2.28: Option (2) Demonstration Left, Option (1) Demonstration Right 
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(1) Nozzle Movement Without TCP Rotation 
In this strategy, the nozzle follows the toolpath while maintaining a fixed orientation. Since the 
camera is rigidly mounted along the nozzle axis, its viewing direction shifts relative to the print as 
the nozzle progresses along curved paths, especially in circular or helical toolpaths. This results in 
inconsistent top-view angles, which may affect ML model performance (Figure 2.28 right). 
 

(2) Nozzle Movement With TCP Rotation 
This strategy involves synchronizing the nozzle orientation with the toolpath curvature (Figure 
2.28 left). At each waypoint, the UR5 robot is programmed to rotate the nozzle such that its axis 
remains tangential to the circular path. This ensures that the nozzle continuously points toward the 
center of curvature. Consequently, the camera maintains a consistent angle relative to the printed 
geometry throughout the motion (Figure 2.29). 

     

Figure 2.29: Demonstration of the sliced 3D printing path in Grasshopper (left), and comparison of 
the TCP with and without rotation (right) 

Benefits: 
The consistent tangential orientation results in a stable camera viewing angle throughout the 
printing process. As a result, this strategy may enhance the performance of ML models used for 
calibration, as it preserves a consistent spatial relationship between the camera and the printed 
geometry. 
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Figure 2.30: Explanation of sudden rotations between layers 

Challenges: 

In practice, the robot encounters a significant discontinuity in orientation when transitioning 
between layers. Specifically, a 180° rotation (Figure 2.30) is observed at the start of each new layer, 
despite identical end-effector poses being provided at the end of the previous layer. This leads to 
abrupt posture changes that can disrupt the printing process and introduce surface defects at layer 
junctions. 

This is not a limitation of URScript itself, but rather a result of the inverse kinematics (IK) solver 
and internal motion planning algorithm used by the UR5 controller. The robot selects joint 
configurations based on optimization heuristics, and without explicit control over pose continuity, 
may choose mirrored solutions that cause sudden rotations between layers. 

 
To diagnose the source of this issue, I verified that the end-effector poses (position and orientation) 
supplied to the robot were identical at the end of one layer and the start of the next. Additionally, all 
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waypoint planes extracted in Grasshopper were confirmed to have consistent upward-pointing 
normal vectors, ruling out errors in the input geometry. These findings point to the robot’s internal 
IK solver as the source of the issue. Due to time constraints, a full resolution of this issue was not 
implemented. 

 

2.2 Investigation of overhang print 
An initial investigation was conducted on the current robotic 3DP setup with Self-made Motor to 
evaluate its performance and make preparation for dataset creation. The first step involved tuning 
several key printing parameters to match and sync with each other, aiming to ensure consistent and 
smooth clay extrusion: tank pressure was set to 1 bar, the extruder motor speed was adjusted to 27–28 
revolutions per minute (RPM), the robotic arm movement speed was tested within the range of 6–13 
mm/s, and the clay moisture content was optimized accordingly. Subsequently, the printing level 
height was calibrated within the Grasshopper script before initiating any test prints. 

Through initial experimentation with the self-made motor setup, RAMS was systematically varied 
from 6 mm/s to 13 mm/s to identify the optimal range that synchronizes material extrusion rate and 
robotic motion, as shown in the Figure 2.31 below. At lower speeds (6–7 mm/s), the extrusion process 
exhibited slight over-extrusion, where the clay material was deposited faster than the robot’s 
movement, resulting in thicker shell layers than intended. In contrast, higher speeds (11–13 mm/s) 
resulted in under-extrusion and discontinuities in the printed paths, indicating that the extrusion rate 
could not keep pace with the arm movement.  

The investigation pinpointed the optimal arm movement speed range between 8 mm/s and 10 mm/s, 
where extrusion quality was most consistent. In this range, the extrusion rate closely matched the 
RAMS, resulting in stable shell thickness that aligned with the nozzle diameter and produced 
continuous, high-fidelity prints.  

This finding highlights the delicate interplay between mechanical motion control and material flow 
speed in robotic 3DCP. Maintaining this synchronization is fundamental to producing structurally 
sound and dimensionally accurate prints, especially when printing overhangs and complex 
geometries. 
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Figure 2.31: Image of the initial test prints produced at RAMS values ranging from 6 mm/s to 13 
mm/s. 

 

2.3 Machine learning  
As introduced in the methodology section, the current dataset collection primarily focuses on two key 
printing quality parameters: extrusion quality and overhang success. Both parameters are critical for 
assessing the structural integrity and visual fidelity of 3DCP prototypes.

 

Figure 2.32: Influencing factors of ML two parameters 

Extrusion Quality is directly related to the shell thickness, which depends mainly on the nozzle 
movement speed and is indirectly influenced by the robotic arm movement speed. Achieving the 
optimal shell thickness ensures sufficient material deposition for robust layer adhesion without 
causing excessive deformation from over-extrusion. 

Overhang Success evaluates the stability and accuracy of printed overhang structures, and it is 
affected by both the shell thickness and the interlayer contacting area, specifically the horizontal 
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overlap between adjacent layers. The inclined angle of the overhang plays a crucial role here; larger 
angles reduce the contacting area, making the structure more prone to sagging or collapse if the shell 
thickness or adhesion is insufficient. 

In this study, several parameters including inclined angle, layer height, air pressure, and motor speed, 
are maintained as constants during real-time calibration and printing correction. By controlling these 
variables as constants, the study can focus on investigating the multi-objective relationship between 
extrusion quality and overhang success, optimizing the printing parameters within a constrained time 
frame. 

The ML model is expected to leverage visual cues related to shell thickness and interlayer adhesion, 
reflected in extrusion quality and overhang success labels, to predict and optimize these multi-
dimensional printing outcomes. 

2.3.1 Dataset generation  
A real dataset was generated using the robotic 3DP setup equipped with a WASP motor, which 
produces less vibration and thus improves image clarity. Key printing parameters were again tuned for 
consistent and smooth clay extrusion: tank pressure was set to 0.24 MPa, the extruder motor speed 
was set at an unknown constant value (extruder cleaning mode), and robotic arm movement speed 
was tested across a range from 1 % to 10 % of base speed. 

Printing issues during experiments that may influence the data consistency:  

 Due to the small 1L clay tank, printing 2–3 prototypes required refilling the clay material, which 
involved reassembling the tank to the frame. This process could slightly change the nozzle and 
camera locations, necessitating camera calibration before each print. 

 The 1L clay tank lacked perfect airtightness, sometimes causing air leaks and extrusion failures. 
Air pressure had to be increased and adjusted to approximate normal extrusion conditions, 
though slight deviations persisted, possibly affecting data accuracy. 

 An unexpected issue occurred when one of the Raspberry Pi camera cables broke during 
printing. A shorter spare cable was used, requiring replacement of the Raspberry Pi and 
potentially altering the camera position. 

  

2.3.1.1 Dataset collection 
An extensive series of experiments (Figure 2.33) was performed to evaluate the robotic 3DCP 
system's performance over four overhang angles (130°, 140°, 150°, and 160°) and a range of RAMS 
from 1 % to 10 %. 

For each condition, prints were evaluated based on extrusion quality and overhang success. Extrusion 
was categorized into three classes (under, good, and over) based on observed shell thickness. 
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Overhang success was classified as safe, at risk, or unsafe, according to form accuracy and structural 
stability (refer to Section 1.1 for evaluation standards). 

A total of 31,153 image pairs were initially collected. 

 

Figure 2.33: Full dataset collection  

2.3.1.2 Data filtering 
Of the 31,153 image pairs, 12 prototypes printed using the self-made motor produced 12,633 strongly 
blurred images caused by vibration; these were removed first. From the remaining 18,520 pairs, 
approximately 470 images taken before printing start and after printing end (without fresh print 
information) were discarded. In the remaining 18,050 pairs, 517 additional images with slight blurring 
from WASP motor vibration were also excluded. 

Ultimately, 17,553 image pairs were retained for machine learning model training. 
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2.3.1.3 Data rating (labelling standard) 

 

Figure 2.34: Results of dataset labeling for two parameters: extrusion quality and overhang 
printability  

In this study, each image pair was labeled using a two-dimensional classification scheme, where the 
first digit indicates extrusion quality, categorized as under extrusion (0), good extrusion (1), or over 
extrusion (2). The second digit represents overhang success, classified as unsafe (0), at risk (1), or safe 
(2).  

The labeling criteria were derived from dataset collection conducted across four overhang inclined 
angles (130°, 140°, 150°, and 160°) and varying RAMS ranging from 1% to 10% of base speed. Table 
1 below presents example data from the Angle 1 prototype print collection. Data for Angles 2, 3, and 4 
are provided in Appendix 10.2. 
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Table 1: Prototype data collection and labelling example for Angle 1. More data are shown in the 
appendix  

By analyzing the print collection, distinct extrusion behaviors emerged, with over extrusion occurring 
at speeds between 1% and 3%, characterized by shell thickness significantly exceeding the nozzle 
diameter (3 mm), resulting in excessive material deposition, geometric deformation, and spreading, 
although these prints generally remained structurally sound.  

Good extrusion, observed at speeds between 4% and 6%, produced shell thickness approximately 
equal to the nozzle diameter, yielding prints with strong structural integrity and accurate form, 
particularly at lower inclined angles.  

Under extrusion, prevalent at speeds from 7% to 10%, was associated with shell thickness thinner 
than the nozzle diameter, insufficient material deposition, poor layer adhesion, structural weakness, 
and frequent print failures, especially at higher overhang angles. 

Overhang success was assessed based on printing completeness and structural stability, where safe 
prints were completed successfully with minimal deformation and strong adhesion. At-risk prints 
showed noticeable sagging or distortion, and unsafe prints failed during or shortly after printing due to 
collapse or adhesion failure.  
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Figure 2.35: Example of Angle 1 print collection including under-, good-, over extrusion with safe, at 
risk and unsafe situations 

The distribution of label combinations (Table 2) demonstrated that the 130° angle produced the 
broadest spectrum of successful prints, frequently achieving the optimal combination of good 
extrusion with safe overhang, whereas higher angles (140°, 150°, and 160°) exhibited progressively 
more at-risk and unsafe classifications, reflecting the increased geometric challenges and reduced 
interlayer contact. Notably, the combination of over extrusion with unsafe overhang (label 2,0) was 
absent, indicating that while over extrusion induces geometric deformation, it effectively prevents 
adhesion-related failures.  

Label Description 

0,0 Under extrusion, overhang failure: prints easily collapse or have poor adhesion to the base 
or previous layer. 

0,1 Under extrusion, overhang at risk: very few successes, but thin shell overhang shows holes 
(mainly at low angles). (Figure 2.36) 

0,2 Under extrusion, overhang success (rare): occasional success but mostly failure. 

1,0 Good extrusion, large-angle overhang failure: failures mainly caused by excessive 
overhang angle. 

1,1 Good extrusion, large-angle overhang at risk: risk mainly due to insufficient contact area. 

1,2 Good extrusion, overhang success: typical successful combination, stable especially at 
smaller angles. 
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2,0 Over extrusion, overhang failure (none): almost nonexistent because over extrusion 
ensures adhesion. 

2,1 Over extrusion, overhang at risk: over-extrusion causes deformation and sagging of upper 
layers. (Figure 2.37) 

2,2 Over extrusion, overhang success: slightly over-extruded but overall successful with good 
form. 

Table 2: The distribution of label combinations analysis 

Figure 2.36: Example of overhang part under-extrusion 

Figure 2.37: Examples of overhang sagging without collapse 
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A detailed examination of the label combinations revealed that failure modes involving under 
extrusion (0,0; 0,1; 0,2) are primarily driven by insufficient material deposition, resulting in thin shell 
thickness, weak structural bonding, and subsequent collapse or print instability, with limited influence 
from overhang angle. Conversely, prints exhibiting good extrusion but failure or risk (1,0; 1,1; 1,2) 
predominantly failed due to geometric constraints posed by larger overhang angles, where reduced 
layer contact area compromised structural stability. Over extrusion cases (2,0; 2,1; 2,2) rarely resulted 
in outright failure. Instead, they displayed excessive material buildup and deformation, with extrusion 
quantity exerting a stronger influence on print quality than the overhang angle. 

Overall, the majority of successful prints were categorized as (1,2), representing optimal conditions of 
good extrusion coupled with safe overhang performance. Failures clustered mainly around under 
extrusion or high overhang angles with compromised layer contact.  

Calculation of Dominant Factor Proportion 

Following a general analysis of label combinations, it is insightful to examine the dominant factor 
between the two parameters across the print collection. 

The dominant factor proportion was calculated by analyzing the dataset labels that describe the 
combined effects of shell thickness decided by extrusion amount and overhang inclined angle (OIA) 
on print success. For each printing speed (the direct factor affects the shell thickness in current 
experiment set up) and OIA pair, the dataset samples were classified according to whether extrusion 
quality or OIA was the primary influence on the printing outcome. This classification was based on a 
detailed review of the label combinations (e.g., 0,0; 1,2; 2,1, etc.) and their corresponding print quality 
notes. The proportion of samples dominated by extrusion or by OIA was then computed by dividing 
the number of samples primarily influenced by each factor by the total samples within that speed-
angle group. This yielded two proportion values per speed and angle combination, representing the 
relative dominance of extrusion and overhang in determining print success. A demonstration of the 
calculation formula is shown below: 

 

 

Analysis of Dominant Factors Affecting Print Success 
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Figure 2.38: Dominant Factor Proportion Analysis for printing speed 

 

Figure 2.39: Dominant Factor Proportion Analysis for Overhang inclined angle 

An interesting finding from the dataset is the dynamic shift in dominant factors influencing print 
success, observed both as a function of printing speed (the direct influence factor of shell thickness) 
and overhang inclined angle (OIA). The first analysis (Figure 2.38) illustrates how the dominance 
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between extrusion quality and OIA changes with printing speed. At lower speeds (0.01 to 0.03), shell 
thickness, controlled by extrusion quality, overwhelmingly governs print success. This aligns with 
observations that excessive extrusion at slow speeds enhances layer adhesion and structural stability, 
even if some deformation in shape occurs. 

As printing speed increases into the mid-range (0.04 to 0.06), the influence between extrusion and 
OIA balances out. This transitional regime reflects a complex interplay where both material flow and 
geometric constraints critically determine print quality. Beyond 0.07 speed, OIA emerges as the 
primary limiting factor, with under-extrusion causing weaker interlayer adhesion and the geometric 
challenges of steeper overhangs leading to frequent print failures. 

Complementing this, the second analysis (Figure 2.39) shows the variation of dominant factor 
proportion across different OIA. It reveals that at lower inclined angles (130°, 140°), extrusion quality 
plays a more significant role in print success, whereas at steeper angles (150°, 160°), the geometric 
challenges posed by the OIA increasingly dominate. This trend highlights that printability is not solely 
governed by material deposition but is highly sensitive to the geometry of the printed feature. 

From these findings, it is concluded that extrusion amount is the fundamental factor controlling print 
success, as insufficient extrusion causes the majority of failures, while overhang inclined angle acts as 
a secondary but critical limiting factor, particularly under good extrusion conditions where steep 
angles reduce interlayer adhesion and increase defect risk. Over extrusion generally mitigates 
adhesion failures but compromises geometric accuracy and surface quality through deformation. This 
nuanced understanding informs parameter optimization and highlights the interplay between material 
deposition and geometric constraints in achieving reliable robotic 3DCP. 

2.3.1.4 Data preprocessing 
The raw images, initially captured at a resolution of 3500 × 4608 pixels, are first paired and undergo a 
series of preprocessing steps including warping, cropping, and merging based on the established 
calibration parameters (Details described in Section 2.1.2.1). After merging, the images are further 
cropped to a size of 224 × 224 pixels, which corresponds to the input dimensions required by the 
machine learning model used in subsequent analysis. 

To account for variations in lighting conditions during dataset collection, brightness adjustment 
factors are applied to each sample’s set of images. This normalization step helps reduce the impact of 
lighting inconsistencies, which, as demonstrated in preliminary research, can significantly affect 
prediction accuracy due to the inherent sensitivity of computer vision-based models to illumination 
changes. 

Further image augmentation techniques are applied to the cropped images to improve dataset 
robustness. These augmentations include rotation, scaling, mirroring, brightness modifications, and 
normalization. Such data augmentation enhances the model’s generalization capability by simulating 
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diverse imaging conditions and perspectives. 

Finally, for each processed image, a corresponding CSV file is generated to serve as input labels for 
the machine learning training. The CSV files contain the updated image paths, following the format 
'dataset_filtered/{renamed_image}.jpg', alongside the associated parameter labels, facilitating 
organized and consistent dataset management. 

 

2.3.1.5 Imbalanced Distribution and Underlying Reasons 

 

Figure 2.40: Printing count distribution by label combinations  

The dataset exhibits noticeable imbalance, which stems primarily from the complex interaction 
between printing parameters and geometric factors as mentioned before. 

This uneven label distribution presents challenges during machine learning model training, as models 
may become biased towards majority classes, reducing sensitivity to minority but important cases. To 
address this, training on a balanced subset of the dataset, constructed around the minority label (2,2), 
is implemented to improve model robustness and fairness. 

Figure 2.41 illustrates the label distribution of the full dataset, highlighting the imbalance, while 
Figure 2.42 shows a balanced subset distribution where samples are evenly represented across label 
classes. 
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Figure 2.41: label Distribution of full dataset 

 

Figure 2.42: label distribution of balanced dataset 

For future work, it is proposed to compare model performance between training on this balanced 
subset and training on the full dataset with advanced techniques such as class weighting, upsampling, 
and downsampling. These strategies aim to mitigate class imbalance effects by either assigning higher 
importance to underrepresented classes during training or adjusting sample counts to create a more 
uniform label distribution. 
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2.3.2 Model architecture, training and performance 

2.3.2.1 Model architecture  

(1) Resnet 56 

 

Figure 2.43: Resnet 56 architecture  

The defect detection model used in this project is based on the Residual Attention Network (ResNet-
56) architecture, originally proposed by Wang et al. (2017) and later applied to anomaly detection in 
PLA AM by Brion and Pattinson (2022). This architecture combines deep residual learning with 
attention mechanisms to enhance its capacity for distinguishing different focus areas of extrusion 
features in complex visual data. Each attention module in the network comprises a trunk branch for 
feature propagation and a mask branch that adaptively generates attention maps. These maps modulate 
the trunk features, allowing the network to emphasize salient regions while suppressing noise and 
irrelevant background information. By integrating this attention structure within a residual framework, 
the model maintains efficient gradient flow and prevents degradation across layers, even in deeper 
networks. During training, the model learns to identify deviations in print quality by capturing spatial 
and contextual relationships between extrusion parameters and visual cues. To support model 
interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM) is utilized. Grad-CAM 
produces class-specific localization maps that emphasize the regions most influential to the model’s 
output, thereby providing visual insight into the network’s reasoning. This transparency facilitates the 
identification of which image regions the model attends to after each residual block, enabling 
evaluation of its attention focus and refinement of the dataset collection strategy accordingly. 

Preliminary Findings from ResNet-56 Training on Pre-Study Dataset 

Initial experiments using the ResNet-56 architecture on a pre-research dataset have yielded several 
important observations. First, the network successfully extracts and highlights key features related to 
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extrusion variability and layer height, demonstrating notable potential for enhancing real-time 
anomaly detection in AM processes. However, prediction accuracy remains inconsistent across 
different conditions, indicating the need for further refinement. 

Moreover, residual attention mechanisms embedded within the architecture prove effective in 
directing the model’s focus to relevant spatial regions, thereby improving interpretability and 
responsiveness to subtle changes in material deposition. Multi-head learning structures, where the 
model simultaneously predicts multiple interrelated parameters, have shown superior performance 
compared to single-head configurations. This suggests that the full representational capacity of the 
ResNet-56 model is better leveraged when handling multi-task outputs. 

The consistency of environmental conditions during data collection, such as lighting, background, and 
substrate color, has emerged as a critical factor. Uniform experimental settings help minimize domain 
shifts that may otherwise compromise the model's generalizability. In situations where such 
consistency cannot be maintained for real-world deployment, a substantially larger and more diverse 
dataset would be required to ensure robust performance. 

Additionally, clear and systematic labeling of the dataset is essential. Ambiguities or inconsistencies 
in manual labeling can introduce noise, leading to increased prediction errors and diminished model 
reliability. Lastly, maintaining uniform image dimensions between training and calibration datasets 
has proven to significantly enhance prediction accuracy. Variations in image size can distort the 
model’s attention, particularly when cameras are reinstalled or repositioned, making spatial 
consistency a key consideration for ongoing model deployment and validation. 

(2) DINOv2-Based Hybrid Network Architecture 

In the previous section, I discussed the design and performance of the ResAttNet-56 architecture 
applied to dual-task classification of 3D-printed clay object. Although the model exhibited reasonable 
convergence on the training set, its performance on validation process showed limited generalization. 
Despite several rounds of tuning, the learned weights from the ResNet-56-based model did not yield 
satisfactory prediction accuracy, particularly for more subtle variations in print quality. 
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Figure 2.44: demonstration of DINOv2-Based Hybrid Network architecture 

To address this, I hypothesized that the earlier layers in ResAttNet-56, especially the convolutional 
and shallow attention stages, might not be learning sufficiently discriminative or abstract features 
from the input images. As an alternative, I propose replacing the front-end feature extractor of 
ResAttNet-56 with the DINOv2 ViT-S/14 model, a state-of-the-art self-supervised vision transformer. 

 

Figure 2.45: demonstration of DINOv2-Based Hybrid Network architecture 

DINOv2 is a self-supervised vision transformer pretrained on large-scale unlabeled image datasets 
using the DINOSAUR pipeline developed by Meta AI (Maxime Oquab, 2024). It is known for 
capturing semantic-rich visual representations across scales. Its output patch tokens are spatially 
attentive, making them particularly well-suited for downstream tasks requiring fine-grained 
classification. 

Motivations for replacing image feature extractor with DINOv2  

Improved feature abstraction: DINOv2 uses transformer-based attention mechanisms across patch 
tokens, enabling it to capture more global and semantically aligned image features than shallow 
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convolutional layers. 

Self-supervised pretraining advantage: Unlike supervised models trained on limited labels, DINOv2 
learns general-purpose visual features from diverse image corpora without human annotation, 
increasing its transferability. 

Architectural Integration 

Since the reference DINOv2 codebase is optimized for single-head binary classification tasks and 
does not directly support multi-task or multi-class learning, I constructed a new model module, 
DINO2ResAttClassifier, which integrates DINOv2 as a fixed front-end feature extractor and connects 
its outputs to the backbone of a two-head ResNet56. 

To build the hybrid model DINO2ResAttClassifier, the model modification involves the following key 
stages: 

1. Token Extraction and Projection: The input image is passed through DINOv2, and patch-level 
tokens (excluding the class token) are extracted from the last attention layer 
(x_norm_patchtokens). These are reshaped into a spatial feature map and projected from 384 
to 1024 channels using a 1×1 convolution to match the expected input dimensions of 
ResNet56. 

2. Backbone Integration: Instead of using the full ResNet56, I selectively retain only its later 
residual blocks (res4, res5, res6) and its classification structure. This segment performs deeper 
reasoning over the feature maps provided by DINOv2, enabling hierarchical refinement. 

3. Dual Prediction Heads: To accommodate the multi-label classification task, predicting both 
layer_height and extrusion classes, the architecture is equipped with two separate linear 
heads, each producing a 3-class output. 

4. Training Strategy: The model is trained via a dual cross-entropy loss function, one for each 
label. Optimization is conducted using AdamW with learning rate scheduling via 
ReduceLROnPlateau. To ensure modularity and clarity, we implemented the model in 
PyTorch Lightning with clear separation of training, validation, and test steps. 

This integration leverages the pretrained attention-rich representations of DINOv2 while preserving 
the effective residual learning of ResNet56. By replacing the original ResNet56's early convolutional, 
pooling, and attention layers with DINOv2's transformer-based extractor, the new hybrid model is 
expected to improve generalization and expressiveness in downstream multi-class prediction tasks. 
Importantly, it is supposed to enable more efficient learning with limited labeled data, benefiting from 
DINOv2’s large-scale pretraining. 

In conclusion, this hybrid architecture combines the best of both paradigms: DINOv2’s rich pretrained 
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semantics and ResNet56’s effective spatial encoding, leading to improved multi-head classification 
performance and a structured basis for future architectural comparisons. 

Differences between ResNet-56 and DINOv2-based hybrid model  

ResNet-56 is a convolutional network that excels at extracting local features through hierarchical 
filters and attention modules but relies on supervised learning with labeled data. It may lack the ability 
to capture high-level semantic information without large datasets. In contrast, DINOv2 uses a 
transformer architecture with self-attention over image patches, enabling it to capture global context 
and more abstract features. Pretrained in a self-supervised manner on vast unlabeled data, DINOv2 
learns rich, generalizable visual representations that improve robustness to subtle variations. By 
combining DINOv2’s powerful feature abstraction with ResNet-56’s spatial reasoning and 
classification layers, the hybrid model leverages the strengths of both approaches to enhance accuracy 
and generalization in multi-label classification tasks.  

2.3.2.2 Training ML models 
This study evaluates two neural network architectures, ResNet-56 and a DINOv2-based hybrid model, 
for defect detection and quality prediction in robotic 3DCP with the two datasets trained and tested 
separately: one pre-research dataset and one newly generated dataset. 

The pre-research side-view old dataset consisted of 3,000 training images with a three-class 
classification scheme for both layer height and extrusion quality. These 3,000 images were randomly 
selected from the full old dataset by sampling equally from each label combination to obtain a 
balanced dataset. To evaluate the impact of incorporating DINOv2 as a feature extractor, two training 
pipelines were developed using the same dataset and label standards. The training time for the 
DINOv2-Based Hybrid Network was approximately 2 hours and 34 minutes, compared to 1 hour and 
11 minutes for ResNet-56. 

The new top-view dataset for current research comprised 9,584 images with balanced label 
combinations. Training on this larger dataset took 11 hours and 34 minutes for the DINOv2 model and 
1 hour and 55 minutes for ResNet-56. 

Both models were trained and tested on balanced datasets with consistent data preprocessing and 
training parameters, enabling a fair comparison of performance and robustness. 

ResNet-56 Model Hyperparameters 

Parameter Value 

Number of Hidden 
Layers 

Residual blocks: res4, res5, res6 (backbone later stages) 



Page 72 

 

Activation Functions ReLU (with BatchNorm + ReLU in residual blocks) 

Nodes / Channels Input channels: 1024 (after 1×1 conv projection), Output features: 2048 

Epochs 50 

Batch Size 32 

Optimizer AdamW 

Learning Rate 0.001 

Learning Rate 
Scheduler 

ReduceLROnPlateau (monitor: val_loss, factor=0.1, patience=3) 

Loss Function CrossEntropyLoss (dual-head classification: layer_height and extrusion 
losses summed) 

The ResNet-56 model was configured with a preprocessing pipeline that included resizing input 
images to 224×224 pixels, tensor conversion, and normalization with mean and standard deviation 
values calculated from the dataset. Training employed a batch size of 32 and a learning rate of 0.001 
with a maximum of 50 epochs. The dataset used for training was a balanced labeled set, with 
corresponding CSV metadata for supervision. The model leverages deep residual connections and 
attention mechanisms to focus on spatial features relevant to extrusion defects and layer height 
variations. Training was accelerated on GPU hardware to ensure efficient convergence. 

 

DINOv2-Based Hybrid Model Hyperparameters 

Parameter Value 

Number of Hidden 
Layers 

Residual blocks: res4, res5, res6 (backbone later stages) + frozen 
DINOv2 frontend 

Activation Functions ReLU + BatchNorm + AdaptiveAvgPool 

Nodes / Channels DINOv2 output: 384-dim projected to 1024 channels; final ResNet output 
features: 2048 

Epochs 50 

Batch Size 32 

Optimizer AdamW 
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Learning Rate 0.001 

Learning Rate 
Scheduler 

ReduceLROnPlateau (monitor: val_loss, factor=0.1, patience=3) 

Loss Function CrossEntropyLoss (dual-head classification: extrusion and overhang 
success losses summed) 

The DINOv2-based hybrid model uses a similar preprocessing pipeline for consistency. It 
incorporates the self-supervised pretrained DINOv2 vision transformer as a fixed feature extractor, 
outputting 384-dimensional embeddings, which are then reshaped and passed through residual blocks 
and multi-head linear classifiers. The same training hyperparameters—batch size 32, learning rate 
0.001, and up to 50 epochs—were applied. The balanced labeled dataset with identical normalization 
parameters ensured comparability with the ResNet-56 results. This model architecture aims to capture 
semantically rich and global visual features from the transformer backbone, complemented by the 
residual network’s hierarchical reasoning capabilities. 

 

2.3.3 Model Performance Comparison 

2.3.3.1 Grad-CAM – Result Comparison 
To better understand how each model learns to extract visual features during training, I employed 
Gradient-weighted Class Activation Mapping (Grad-CAM) and Grad-CAM++ to visualize the 
attention focus of two distinct image classification models: a ResNet-56-based Residual Attention 
Network and a DINOv2-based vision transformer. 

I initially applied visualization techniques to the pre-research old dataset images. After evaluating 
different methods, Grad-CAM++ was chosen for its superior localization and clarity. Using this 
method, I subsequently visualized samples from the new top-view dataset to analyze model attention 
behavior. 

ResNet-56 Attention Analysis 

I first applied Grad-CAM to the ResNet-56-based model at different residual blocks (res1 to res4). 
The generated heatmaps reveal how the model’s spatial attention progressively shifts across the 
network depth, from focusing on low-level geometric edges, layer texture and nozzle tip to capturing 
higher-level contextual patterns such as the backgrounds. At each stage, Grad-CAM operates by 
extracting the forward feature maps (activations) and the corresponding gradients during 
backpropagation: 

• For res1, the tensor shape was torch.Size([1, 256, 56, 56]). 

• For res2, torch.Size([1, 512, 28, 28]). 
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• For res3, torch.Size([1, 1024, 14, 14]). 

• For res4, torch.Size([1, 2048, 7, 7]). 

Grad-CAM computes the importance of each channel using the average of its gradients and then 
linearly combines the feature maps using these weights. This yields a 2D attention map that is resized 
to 224×224 and overlaid onto the input image. The resulting heatmaps clearly highlight nozzle 
regions, deposition paths, and other discriminative areas relevant for prediction (Figure 2.46). 

 

Figure 2.46: original image for old dataset from pre-research (side view), heatmap for Resnet 56 after 
res1, res2, res3, res4 (from left to right) 

To improve spatial precision, I further adopted Grad-CAM++ (Figure 2.47), which introduces higher-
order derivatives to better capture pixel-level importance in overlapping object regions. This 
technique yielded more focused heatmaps, especially in deeper blocks such as res4 and res6, 
reinforcing the idea that deeper features encode abstract representations. 

 

Figure 2.47: original image for old dataset from pre-research (side view), heatmap for Resnet 56 after 
res1, res2, res3, res4, res6 (from left to right) 

After training with the new dataset, a random selection of 10 images was visualized using Grad-
CAM++ to inspect how spatial attention evolves through the network. The results (Figure 2.48) 
demonstrate that as convolutional layers deepen and the attention mechanism refines, the model 
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increasingly concentrates its focus on regions surrounding the nozzle tip. This focus remains 
consistent and robust across different samples, highlighting the nozzle area and deposition paths as the 
primary discriminative features for classification. This localization is crucial because it reflects the 
model’s ability to identify fine-grained geometric and textural cues associated with extrusion quality 
and overhang success. The heatmaps also reveal subtle distinctions in layer textures and structural 
edges, underpinning the model's interpretability and targeted attention on physically relevant print   
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Figure 2.48: original image for new dataset (top view), heatmap for Resnet 56 after res1, res2, res3, 
res4, res6 (from left to right) 

DINOv2 Transformer Attention Analysis 

Unlike ResNet, the DINOv2-based model is not trained end-to-end in our pipeline. Instead, it is used 
solely as a frozen feature extractor to compute 384-dimensional embeddings, which are then fed into a 
small multi-head MLP classifier predicting two discrete labels: layer_height_class and 
extrusion_class. 

Due to this architectural separation, Grad-CAM cannot be directly applied to the MLP classifier: the 
embedding vectors lack spatial dimensions and activations, making them unsuitable for gradient-
based spatial attribution. 

Therefore, to inspect DINOv2’s internal attention, I applied Grad-CAM to the transformer backbone 
itself during the embedding extraction stage. Attention was visualized by targeting the last norm layer 
of the final transformer block. Since Vision Transformers do not naturally generate convolutional 
feature maps, I used the reshape_transform utility to reshape the flattened patch tokens into a 2D 
spatial format. 

The generated Grad-CAM heatmaps (Figure 2.49) illustrate that DINOv2 tends to attend more 
broadly across the nozzle region and printing material, yet the attention is diffused compared to 
ResNet’s strongly localized response. While these activations still reveal semantically meaningful 
regions, they lack the crisp boundaries observed in residual blocks of convolutional networks. The 
choice of colormap also affects visual interpretation—jet or plasma can be misleadingly saturated; I 
adopt viridis or custom RGB mapping to better highlight local attention patterns. 

Figure 2.49: Heatmap visualization of different samples for the DINO v2-based model for old dataset 
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The Grad-CAM visualization results from the new dataset for the DINOv2-based model resemble 
those obtained with the old dataset. The generated heatmaps (Figure 2.50) illustrate that DINOv2 
attends more broadly across the nozzle region and printing material. However, compared to the highly 
localized and focused attention maps of ResNet-56, DINOv2’s attention is more diffused and spread 
out over larger areas. This is consistent with the transformer’s global attention mechanism, which 
captures more contextual and semantic information but with less spatial precision. The diffuse 
activations still correspond to semantically meaningful regions relevant to the task but lack the sharp 
boundaries and crisp localization seen in convolutional networks.

 

Figure 2.50: Heatmap visualization of different samples for the DINO v2-based model for new dataset 

Conclusion 
Grad-CAM results demonstrate that the ResNet-56 model progressively learns localized, hierarchical 
attention from res1 to res4, making it well-suited for tasks involving spatially structured patterns such 
as 3DP layer analysis. In contrast, DINOv2's pre-trained transformer backbone offers broader 
contextual attention but lacks fine-grained spatial specificity when used purely as a feature encoder. 

This analysis highlights a key trade-off in model design: convolutional networks provide explicit 
spatial bias that enhances attention localization, while transformers excel in global context modeling 
at the cost of spatial interpretability when used without fine-tuning. 

2.3.3.2 Learning Curves Comparison 
As illustrated in Figures 2.51 and 2.52 (old dataset), and Figures 2.53 and 2.54 (new dataset), both 
models demonstrated steady improvements in training and validation accuracy. However, the 
DINOv2-based model consistently exhibited faster convergence and superior combined accuracy 
across both datasets. 

• Training Accuracy: On the old dataset, the DINOv2 hybrid model achieved over 96% 
combined training accuracy after approximately 1,500 steps, with individual parameter 
accuracies exceeding 97%. In comparison, ResNet-56 required more iterations to reach 
similar accuracy levels but tended to plateau with slightly lower extrusion accuracy. On the 
new dataset, both models reached a final training accuracy of approximately 97%, with the 
DINOv2 model maintaining a slight edge in convergence speed. 
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• Validation Accuracy: For the old dataset, the hybrid model’s validation accuracy exceeded 
94% for each prediction head, stabilizing around 88% combined accuracy. ResNet-56 reached 
comparable layer height accuracy (~95%) but exhibited lower extrusion accuracy (often 
below 90%), leading to reduced combined accuracy (~81%). On the new dataset, validation 
accuracy stabilized around 95% for DINOv2 and 96% for ResNet-56, with the DINOv2 
model showing more consistent stability. 

• Loss: Across both datasets, the DINOv2-based model maintained lower training and 
validation losses, reflecting improved generalization and more stable optimization compared 
to ResNet-56. 

Figure 2.51: Learning curves from DINOv2-Based Hybrid Network Architecture for old dataset 

 

Figure 2.52: Learning curves from Resnet 56 Architecture for old dataset 
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Figure 2.53: Learning curves from DINOv2-Based Hybrid Network Architecture for new dataset 

(Note: The training process was unexpectedly interrupted at epoch 11 and later resumed, which is 
reflected in the learning curves as two distinct lines.) 

 

Figure 2.54: Learning curves from Resnet 56 Architecture for new dataset 

2.3.3.3 Prediction Accuracy Matrices 
Figures 2.55 and 2.56 (old dataset), alongside Figures 2.57 and 2.58 (new dataset), present the 
normalized confusion matrices for the two architectures. 

Old Dataset: 

• Parameter 1 (Layer Height): 
The DINOv2-based hybrid network achieved nearly perfect classification, with almost all 
predictions aligned on the diagonal, indicating excellent distinction among "Low," "Good," 
and "High" classes. The ResNet-56 model showed more confusion between "Good" and 
"High" classes, with several misclassifications. 

• Parameter 2 (Extrusion Quality): 
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The DINOv2 model showed better performance, producing fewer misclassifications and more 
consistent predictions across classes. ResNet-56 exhibited significant confusion, often 
misclassifying "Good" and "High" labels as "Low," highlighting difficulty distinguishing 
extrusion quality levels. 

Figure 2.55: Prediction accuracy matrix from DINOv2-Based Hybrid Network Architecture for old 
dataset 

Figure 2.56: Prediction accuracy matrix from Resnet 56 Architecture for old dataset 

New Dataset: 

• Parameter 1 (Extrusion Quality): 
The DINOv2 model maintained strong classification consistency, with fewer off-diagonal 
errors compared to ResNet-56. The ResNet-56 model again showed more frequent 
misclassifications, especially between "Good" and "High" extrusion classes. 

• Parameter 2 (Overhang Success): 
DINOv2 achieved better discrimination of "Low," "Good," and "High" overhang success 
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levels, with limited confusion primarily between adjacent classes. ResNet-56's predictions 
were less reliable, with notable confusion particularly between "Good" and "Low" classes. 

Figure 2.57: Prediction accuracy matrix from DINOv2-Based Hybrid Network Architecture for new 
dataset 

Figure 2.58: Prediction accuracy matrix from Resnet 56 Architecture for new dataset 

Overall, the confusion matrices confirm that the DINOv2-Based Hybrid Network surpasses ResNet-
56 in prediction accuracy and class separability for both datasets and parameters, demonstrating 
stronger feature extraction and classification capabilities. 

2.3.3.4 Conclusion 
Integrating DINOv2 as a feature extractor in the hybrid network architecture substantially improves 
training efficiency and final prediction accuracy compared to the ResNet-56 baseline. The powerful 
self-supervised patch token representations from DINOv2 enhance early-stage feature extraction, 
while retaining the spatial aggregation and dual-head classification design of ResNet-56. This design 
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achieves faster convergence, superior generalization, and more stable optimization on both the smaller 
old dataset (layer height and extrusion) and the larger new dataset (extrusion and overhang success). 

Although the DINOv2 model requires longer training times (approximately double that of ResNet-
56), the gains in accuracy and robustness, especially in distinguishing subtle class differences in 
extrusion and overhang success, justify the increased computational cost. These results indicate that 
hybrid architectures combining pretrained vision transformers with customized CNN heads provide a 
promising framework for complex multi-label image classification tasks in quality assessment 
applications. 
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3. Validation – Real-time correction pipeline  

Figure 3.1: the workflow of real-time correction 

As illustrated in Figure 3.1, the close loop begins by processing the captured images through the 
designated ML model (either Resnet 56 or DINO v2 based model) to identify deviations in shell 
thickness (resulting from low or high extrusion) as well as overhang failures. These predictions are 
continuously monitored within a specified time window (Pm). If a deviation from the desired shell 
thickness and/or a reduction in the interlayer contact area below the safe threshold is detected for more 
than 10 seconds, corrective action is executed. 

In such cases, the system sends a command to the UR5 controller to adjust the speed slider, modifying 
the remaining robot program by overwriting the RAMS parameter. This controls the printing speed by 
either increasing or decreasing its value based on the observed conditions.  

 

Control Logic for Real-Time Speed Adjustment Based on ML Predictions 

To implement real-time correction during the robotic 3DCP process, a heuristic control strategy was 
developed to dynamically adjust RAMS based on ML predictions of two key quality indicators: 
extrusion quality and overhang success. 

Extrusion quality is classified into three levels: low, good, and high, while overhang success is evaluated 
as safe, at risk, or unsafe. The control logic prioritizes extrusion quality as the dominant factor 
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influencing structural integrity, with overhang condition serving as a secondary modifier to fine-tune 
the speed adjustment, according to conclusion of the label combination and dominant factor analysis in 
Section 2.3.1.3.   

The decision rules are summarized as follows: 

• When extrusion quality is low, the system consistently reduces the printing speed, as 
insufficient material flow compromises interlayer bonding and structural formation: 

o 25% reduction if overhang is unsafe – a significant drop is necessary to prevent print 
failure caused by both material insufficiency and structural instability. 

o 20% reduction if overhang is at risk – this moderate reduction seeks to increase 
deposition without sudden changes that might cause instability. 

o 15% reduction if overhang is safe – even if overhang is stable, under-extrusion needs 
correction to restore intended wall thickness. 

• When extrusion quality is good, the system applies corrections only in response to overhang 
issues: 

o 15% reduction if overhang is unsafe – while extrusion is adequate, overhang failure 
likely results from poor bonding at curvature, so a moderate reduction is used. 

o 10% reduction if overhang is at risk – early signs of overhang issues are corrected with 
a slight speed decrease. 

o No adjustment if overhang is safe – both indicators are within acceptable ranges. 

• When extrusion quality is high, over-deposition may lead to excessive wall thickness or bulging: 

o 10% increase if overhang is unsafe – a faster movement reduces deposition and helps 
regain shape fidelity. 

o 5% increase if overhang is at risk – a moderate correction prevents further material 
buildup. 

o 5% increase if overhang is safe – a minor adjustment is used to slowly return to optimal 
extrusion levels. 

Justification of Adjustment Magnitudes 

The selected speed adjustment percentages (ranging from 5% to 25%) are based on empirical testing 
and observed system sensitivity. Larger changes (e.g., ±25%) are applied only in critical scenarios to 
rapidly correct severe deviations, while smaller adjustments (e.g., ±5% or ±10%) are used in more stable 
or borderline conditions to avoid overcompensation or sudden transitions that may cause mechanical 
jitter or deposition errors. These values were chosen to strike a balance between responsiveness and 
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system stability, especially considering the inherent lag in material flow response and mechanical inertia 
in clay-based 3DP. 

Logic table 
Extrusion 
Quality 

Overhang 
Success 

Action on 
RAMS 

Rationale 

Low Unsafe Decrease 
by 25% 

Critical failure in both metrics. Speed must be 
substantially reduced to compensate for poor material 
flow and overhang instability. 

Low At Risk Decrease 
by 20% 

Low extrusion requires correction; overhang is nearing 
failure—moderate-to-high reduction helps stabilize. 

Low Safe Decrease 
by 15% 

Extrusion insufficient, but structure is holding. A 
moderate reduction improves deposition without 
overcorrecting. 

Good Unsafe Decrease 
by 15% 

Adequate extrusion but overhang is failing—slightly 
stronger correction to improve bonding at curvature. 

Good At Risk Decrease 
by 10% 

Minor instability in overhang—moderate reduction 
may help improve bonding while maintaining print 
flow. 

Good Safe No change Optimal condition—no adjustment necessary. 

High Unsafe Increase by 
10% 

Over-deposition is likely the cause of overhang sagging 
or collapse—moderate speed increase reduces material 
input. 

High At Risk Increase by 
5% 

Slight over-extrusion and approaching instability—
small correction can help avoid future defects. 

High Safe Increase by 
5% 

Excess extrusion but stable—small increase helps 
restore ideal wall thickness gradually. 

Table 5: Logic table for speed adjustment strategy  

After each execution of adjustment, the system enters a 40-second monitoring pause to allow printing 
for stabilization before resuming real-time monitoring and potential further correction. 

Comparison & evaluation 
Comparison and Evaluation of Default Printing versus Real-Time Closed-Loop Printing with 
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Curved Shell 

To evaluate the effectiveness of the real-time closed-loop control system, three prototypes were printed 
using the same geometry and initial RAMS but under different printing conditions, as shown in the 
Figure 3.2 below. 

 

Figure 3.2: Comparison of Default Printing (1,2) and Real-Time calibration printing (3) 

The first two prototypes on the left (Prototype 1 and Prototype 2) were printed using the default process 
without any intervention or parameter adjustment during printing. All prints began at 3% of the base 
speed, corresponding to a slight under-extrusion condition. Prototype 1 exhibited significant under-
extrusion, resulting in poor structural integrity. The base collapsed, and weak layer adhesion in the 
midsection caused fresh layers to fail to bond with previous layers, leading to premature termination of 
the print. Prototype 2 managed to complete printing, but once the printing reached the region with a 
large inclined overhang angle, substantial sagging and layer shifts occurred. These defects altered the 
intended curvature of the overhang and compromised the print quality. 

In contrast, Prototype 3 was printed using the same geometry and initial speed but with the real-time 
closed-loop correction system active. This system dynamically adjusted the RAMS at the large inclined 
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overhang region to optimize layer adhesion. Specifically, the speed was reduced at the steep overhang 
to increase the interlayer contacting area. While this resulted in slight over-extrusion locally, enhancing 
shell thickness beyond the nominal target, it effectively prevented sagging and maintained the designed 
outer contour of overhang curvature by strengthening the structural stability. Subsequently, the system 
increased the speed to reduce extrusion and optimize print quality. 

However, a limitation was observed near the final layers. The system continued increasing speed 
adjustments, causing a transition into an under-extrusion state, which is undesirable for print quality 
and structural integrity. This was attributed to instability in the trained ML model guiding the control 
adjustments. Despite this drawback, the real-time closed-loop system demonstrated clear advantages in 
maintaining geometric fidelity and structural performance compared to the default printing approach. 
The main improvement needed is to expand the dataset and train a more stable and robust ML model. 
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4. Prototype and Final Product Design 

4.1 Prototype Design for Dataset Collection 

Figure 4.1: the design for validation prototypes 

 

Figure 4.2: the dataset intended to be printed with different inclined angle of overhang  

To construct a ML model that can detect detection and process correction in real time, a series of 
overhang prototypes (shown in Figure 4.2) were designed to serve as the training dataset. 
However, due to time constraints, only a selection of overhang angles (130°, 140°, 150°, and 
160°) were chosen for printing as the dataset (Figure 4.3). The aim of this selection was to 
include both shallow overhang angles that print can successfully with good extrusion, as well as 
high-risk steep angles to evaluate the effect of reduced layer contact area.     
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Figure 4.3: the selected overhang geometry to print 

The initial geometry (referred to as Form A(1) in Figure 4.1) was deliberately kept simple in 
form of overhang tower. This choice was motivated by the need to isolate and observe two key 
visual features during the printing process: shell thickness and interlayer contact area. The 
assumption is that a simplified geometry, compared to a highly intricate overhang, may allow the 
model to more clearly learn the correlation between geometric conditions and printing quality, 
including successful overhang formation. 

4.2 Prototype Scale and Printability Constraints 
The ultimate goal of this research is to develop a robust real-time defect detection and correction 
system tailored for construction-scale AM using clay materials. In this context, construction-scale 
refers to directly building structures on-site, eliminating the need for transporting prefabricated 
components and reducing traditional complex construction processes.  
However, it is noted that construction-scale AM is a long-term goal, not the immediate focus of 
this project. The current research focuses on developing a foundational framework, covering 
dataset collection, ML model training, and real-time closed-loop control at a smaller laboratory 
scale. This groundwork is essential for ensuring reliability and accuracy before advancing to full 
construction-scale printing, which will involve addressing larger workspace, material handling, 
and environmental challenges. 
As such, the experimental prototypes were designed to be as large as possible within the 
constraints of the laboratory setup. These constraints include the working envelope of the UR5 
robotic arm, the fixed volume of the clay tank (1 L), and the desire to complete a full print cycle 
without mid-process refilling. 
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Figure 4.4: the largest prototype can be printed within the constraints of the laboratory setup 
 
Given these limitations, the chosen dimensions for Form A(1) with a height of 110 mm represent 
the maximum viable print size that avoids the need to refill the clay tank during printing, even 
under conditions of over-extrusion. This size ensures uninterrupted printing while still offering 
enough geometric complexity to observe meaningful deviations in overhang performance. A layer 
height of 1.5 mm was adopted throughout the experiments to balance print resolution with time 
efficiency and to maintain adequate interlayer adhesion. 

4.3 Final Product Design and Validation Strategy 
During the validation phase, two types of test forms will be printed to assess the scalability and 
generalizability of the trained ML model. 
• Validation with Known Geometry (Form A): 

The first step involves printing the same basic form used during dataset collection (Form 
A(1)). This allows direct evaluation of the model’s predictive accuracy under familiar 
geometric and scale conditions. 

• Validation with Upscaled Geometry (Form A(2)): 
Next, an enlarged version of the same form (Form A(2), height 265 mm) will be printed to 
examine the model's scalability. This prototype occupies the full vertical reach of the UR5 
arm and represents the maximum print size currently achievable. Successful predictions in 
this case would indicate the model's capacity to maintain accuracy across different scales of 
the same geometry. 

• Validation with Complex Geometry (Form B): 
Finally, a more intricate design (Form B), featuring multiple curvatures and overhangs, will 
be printed to test the model’s generalization ability. This form was not included in the training 
dataset, so it provides a critical benchmark for evaluating whether the ML system can adapt to 
previously unseen overhang configurations. Positive results here would validate the 
robustness of the system for diverse clay-based architectural components. 

Note on Validation with Upscaled and Complex Geometries 

Due to time constraints within the scope of the current project, the implementation and testing of 
validation using Upscaled Geometry (Form A(2)) and Complex Geometry (Form B) have not yet 
been completed. These steps are planned for future work and are essential for fully assessing the 
scalability and generalizability of the trained ML model beyond the initial prototype scale and 
simplified geometries. 
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4.4 Slicing and Toolpath Generation 
As discussed in previous section 2.1.1.2, all prototype geometries were sliced using a customized 
Grasshopper script that divides the volume into discrete layers and generates continuous helical 
toolpaths. The script outputs machine-readable URScript files containing Move j commands 
aligned with the robot’s kinematics. Each toolpath is carefully generated to maintain a consistent 
nozzle-substrate distance and orientation, particularly in regions of overhang, where maintaining 
tangency and shell thickness is critical to structural success. 
This strategy, combining procedural form generation, real-time monitoring, and data-driven 
calibration, is designed to ensure that both the methodology (ML-based correction) and the 
material system (clay-based LDM printing) are applied meaningfully, with consideration for 
scale, fabrication feasibility, and architectural relevance. 
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5. Conclusion  

The experimental setup utilized a UR5 robotic arm, which was successfully configured to 
establish a foundational platform for implementing real-time speed adjustments. This research 
developed and validated a ML-based closed-loop control system for robotic 3DCP, enabling real-
time detection and correction of extrusion defects, particularly in overhang structures. By 
integrating visual data and a multi-objective neural network model, the system dynamically 
adjusts printing speed to maintain optimal shell thickness and interlayer adhesion, significantly 
improving print quality and structural integrity. Among the evaluated models, DINOv2-Based 
Hybrid Network demonstrated strong capability in capturing spatial features relevant to printing 
defects. 
 

The closed-loop feedback system showed promising robustness at the laboratory scale, laying 
groundwork for scaling up to construction-scale 3DP. Future research should emphasize 
expanding dataset diversity, improving model stability, and extending applicability to other 
materials such as concrete. Additionally, refining robotic arm motion control remains crucial to 
achieve more reliable and stable printing performance. 

 

Overall, this study represents an important step towards automated, intelligent 3DCP, with 
potential to support complex architectural geometries and more efficient fabrication workflows. 
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6. Discussion 

Follow-Up Questions and Future Research Directions 

Building on the foundation established in this research, several critical questions remain to be 
addressed to further advance real-time defect detection and correction in robotic 3DCP. 

One key challenge is how to balance the competing influences of layer self-weight and extrusion 
quality to ensure successful overhang printing. As layers accumulate, their own weight can cause 
deformation or sagging, especially at steep overhang angles. Future research could explore 
predictive models that estimate the evolving stress and load during printing, enabling preemptive 
adjustments in extrusion rate or print speed to mitigate structural instability. 
Another important area is the integration of predictive stress and load analysis into the printing 
process. Current real-time control relies primarily on visual feedback; however, incorporating 
physical simulations or ML-based prediction models could allow for anticipatory corrections, 
improving print fidelity and reducing the need for reactive interventions. This approach might 
involve combining pre-print optimization with real-time adjustments to balance print quality and 
structural integrity dynamically. 
The correction methodology that simultaneously optimizes multiple objectives, such as 
maximizing both extrusion quality and overhang success, can be further improved. Since these 
objectives often conflict, there is a set of optimal trade-off solutions rather than a single best 
solution. Techniques like Pareto optimization can be applied to explore this solution space, 
enabling designers to select configurations based on specific performance priorities. Alternatively, 
weighted sum methods offer a simpler approach by combining multiple objectives into a single 
scalar score, though proper normalization is essential to prevent bias due to differing scales. More 
advanced strategies, including multi-objective Bayesian optimization and reinforcement learning, 
can be possible solutions for intelligently navigating complex control scenarios and discovering 
effective parameter settings. 
Finally, an essential consideration is how to balance necessary parameter adjustments during 
printing with the overall consistency and appearance of the final product. Excessive or frequent 
corrections may cause visual artifacts or unintended deformation. Future work should investigate 
strategies that optimize correction frequency and magnitude. 

 

Future Application:  

(1) Potential For Material Change: Concrete 
Previously, I engaged in discussions with the concrete 3DP technicians at BouwLab (a leading 
Dutch company specializing in digitalization and industrialization across the entire construction 
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chain). During these exchanges, we studied the requirements and feasibility of applying the 
current real-time closed-loop correction system to concrete 3DP. 
Concrete shares many similarities with clay as a cementitious material in AM. However, concrete 
as a construction material, presents greater challenges due to its complex rheology, faster setting, 
curing behavior, and higher sensitivity to environmental factors, increasing the need for real-time 
monitoring and correction in 3DP. 
As noted by concrete 3DP technicians, continuous adjustments are crucial in concrete 3DP to 
handle fluctuations in moisture, mixture consistency, and temperature. These adjustments often 
involve modifying pumping speed, rotor-stator settings, or applying heat to accelerate curing. 
Multi-head machine learning models that integrate sensor data (e.g., water flow, temperature, 
pressure) with real-time imaging shows potential to predictively optimize printing quality and 
reduce defects without manual intervention 
However, this requires extensive data collection and tailored training. It remains to be seen if the 
current system can evolve into a robust, scalable solution managing multiple variables 
simultaneously for high-quality, construction-scale concrete additive manufacturing. 
 
(2) Nozzle Size Change to Test Scale-Up Possibility of ML 
Scaling the 3DP process by varying nozzle size can be an essential step to assess the adaptability 
and robustness of the developed ML model before applying it to larger scale 3DP. 
Investigating the model’s performance across multiple nozzle sizes will help determine the ML 
model’s scalability and whether transfer learning strategies are needed. This line of inquiry will 
pave the way for a more flexible correction system, which is crucial for practical deployment in 
industrial or construction contexts where nozzle sizes increase and extrusion shapes may vary. 
 
(3) Scaling Up to Construction-Scale AM Using a 6-Axis Gantry System 
As mentioned in previous sections, the broader aim of this research is to create a closed-loop 
control system capable of supporting construction-scale AM with clay and potentially other 
materials. Moving from the laboratory-scale UR5 robotic arm setup to a full-scale 6-axis gantry 
system introduces significant challenges such as managing larger workspaces, delivering 
materials at higher volumes, and ensuring stable environmental conditions throughout extended 
printing processes. Construction-scale AM involves on-site fabrication of architectural or 
structural elements, which can reduce reliance on prefabrication, lower manual labor, decrease 
construction waste, and enhance overall sustainability. This paradigm shift has the potential to 
transform traditional building methods by enabling more efficient workflows and complex design 
possibilities. 
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7. Reflection 

7.1 Introduction 
This reflection provides a critical review of the graduation process and explores the potential real-
world impact of my thesis in the broader context of the architectural and construction industries. 

My thesis focuses on intelligent manufacturing, aiming to develop an AI-assisted calibration system 
for clay robotic 3DP. This interdisciplinary research integrates robotics, computer science, artificial 
intelligence, and AM. It combines robotic programming and computational design from the Design 
Informatics department in the Faculty of Architecture with experimental innovation from the Shaping 
Matter Lab in the Faculty of Aerospace Engineering, which focuses on bio-inspired, sustainable, and 
intelligent materials through AM. Ultimately, this research applies advanced AI-assisted robotic 3DP 
techniques to the field of architecture. 

From my point of view, architecture, as a traditionally slow-to-adapt field, is hard to engage deeply 
with cutting-edge technologies such as artificial intelligence at the practical level. However, when I 
set foot in the realm of computational design and intelligent manufacturing, I realized that it is the 
invention of tools and fabrication methods, rather than certain design concepts, that has historically 
driven iteration and progress in this industry. Automation improves the productivity, precision, and 
sustainability of architectural projects while reducing dependency on manual labor, which further 
pushes the whole industry to evolve beyond its comfort zone. Intelligent manufacturing is therefore an 
intermediary for building technologists to rethink the boundaries of the architecture industry and 
embrace cross-disciplinary innovations that can propel the field forward. 

Thus, the ambition of this thesis is to fully automate the AM of construction materials. Rather than 
relying on manual observation and adjustment, artificial intelligence takes over this redundant task 
with higher accuracy and less material waste. As a long-term goal, this research serves as a foundation 
for scaling the system, from small-scale robotic arms to 6-axis gantry systems for on-site, mold-free 
construction 3DP, with potential adaptation from clay to concrete, laying the foundation for fully 
automated, construction-scale AM. 

7.2 Research Journey & Personal Development 

7.2.1 Starting Point 

This research journey has involved continuous learning, technical challenges, and a growing sense of 
resilience. It began with inspiration from the CORE electives. In the CORE project, our team 
developed an open-loop calibration system for clay 3DP using computer vision and ML. I 
implemented the Attention-56 deep learning network and real-time material flow control for adaptive 
pre-print calibration. However, the system showed limitations in automation and accuracy, and the 
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unpredictable behavior of clay revealed the need for a more robust solution. 

Building on this foundation, my graduation thesis focused on a closed-loop calibration system, with a 
greater emphasis on architectural and structural design. Switching from a WASP clay printer to a 6-
axis robotic arm equipped with a clay extruder allowed for more dynamic control. The prototype 
evolved into an overhang structure, allowing exploration of architectural expression. To improve ML 
performance, I trained and compared a second model, DINOv2, to evaluate its effectiveness against 
Attention-56. 

7.2.2 Evolution of the Topic 
While the research direction remained consistent, its scope narrowed significantly with guidance from 
my mentors. Initially (P1), the objectives were: 

• Closed-loop calibration 

• ML integration 

• Construction-scale 3DP 

• Structural stability monitoring 

• Robotic arm integration 

Due to time and resource limitations, P2 refined the focus to: 

• Closed-loop calibration with a balance between local and global design coherence 

• Multi-objective ML for extrusion quality and structural adhesion optimization 

• Robotic 3DP 

• Robotic arm integration 

At this stage, the gantry system and structural stability validation were excluded, as both the extruder 
and feeding system for the gantry had to be developed from scratch, which was an unrealistic goal 
within the timeframe of a master's thesis. 

By P3, the focus had narrowed to: 

• Closed-loop calibration 

• Multi-objective ML for extrusion quality optimization and overhang success 

• Robotic 3DP 

Although this narrowing process was lengthy, it allowed me to frame my project within a larger 
research context. The original idea from P1 was a complete workflow for automated on-site 3DP 
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calibration. However, to make the project feasible for a master’s thesis, I had to select and implement 
the most critical parts. 

7.2.3 Learning Process 
My background in Building Technology helped me design the workflow and experiments from a 
designer’s perspective. For example, I was able to design and fabricate the frame needed for the 
experiment using PLA 3DP. My prior experience with the UR5 robotic arm in the Design Informatics 
course also made it easier to generate robotic printing programs using Grasshopper. 

However, my coding experience was limited. Aside from a two-week crash course during the CORE 
project, I had no background in Python. This project demanded extensive programming, requiring me 
to self-learn and debug continuously. Tasks like setting up Raspberry Pi cameras, writing scripts to 
take synchronized photos, logging data to CSV files, correcting image perspectives, merging images, 
training ML models, and generating a complete real-time correction workflow all required coding. 
Each step presented new, unexpected challenges and took considerable time to resolve. 

A significant technical hurdle was establishing real-time control between my PC and the robotic arm. 
Despite two weeks of attempts, including scripting, consulting manuals, forums, and COMAU 
technicians, I discovered that the COMAU controller was outdated and incompatible. Budget 
limitations prevented upgrading the hardware, so I switched to the UR5 robotic arm in the end, which 
supports real-time connectivity. 

Connecting the Raspberry Pi, UR5 robotic arm, and PC involved IP address reconfiguration, which 
took a long time to align the devices on the same frequency band. Adjusting the UR5 movement speed 
also required numerous troubleshooting attempts, as code that ran successfully on my PC did not 
always elicit a response from the robot. Eventually, through persistence, I resolved these issues. 

7.2.4 Delays and Adaptation 
The switch to UR5 brought additional delays. It was already scheduled for use in the Design 
Informatics course and by another graduate student, which meant I couldn’t access it for a month. 
Compounding the issue, I experienced a sudden health problem and had to return to my home country 
for recovery. During this time, I adjusted my workflow, setting aside tasks that required the UR5 and 
focusing on other aspects: training DINOv2, generating Grad-CAM visualizations, and developing the 
Raspberry Pi camera system. 

Meanwhile, preparing the clay extruder setup for both COMAU and UR5 took considerable time, as it 
needed to be designed, fabricated, and installed from scratch. 

Hardware integration was particularly unpredictable. For instance, improper clay consistency often 
led to clogging in the extruder, stopping the internal blades and halting extrusion. Excess internal 
pressure caused similar blockages. Resolving these issues required manually remixing clay, 
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disassembling, and cleaning the extruder repeatedly. These failures were time-consuming and 
physically demanding. 

Despite these setbacks, this intense problem-solving process allowed me to develop a wide range of 
skills: coding, robotic control, ML, system setup, and hardware integration. I learned to design 
experiments methodically, troubleshoot effectively, and construct a coherent, goal-oriented workflow. 
Additionally, these obstacles taught me the importance of adaptability, patience, and building in time 
buffers. Most importantly, I cultivated a persistent, solution-driven mindset and developed resilience 
that will benefit me in future research and practice. 

7.3 Societal Impact 
The completion of this thesis will not mark an end, but the opening chapter of a much broader and 
ongoing research journey. Future work could focus on scaling the system for construction-scale 
applications using a gantry setup and adapting the ML model for different materials, such as concrete. 
If successful, this would significantly reduce printing errors and human labor in real-world 
construction projects, while also minimizing material and time waste. 

Once implemented in on-site 3DP, this system could promote the use of naturally sourced extrudable 
materials and reduce reliance on traditional, resource-heavy methods. With minimal or no human 
intervention, the printing process would become safer and more efficient, enhancing the feasibility of 
digitally fabricated architecture. 

Another bold idea: a fully automated, error-free 3DP process could enable space-based construction. 
For example, using a mixture of moon soil and binders, the calibration system could autonomously 
3D print habitats on the moon with minimal human input. 

7.4 Future Direction 
Motivated by the challenges and fulfillment of this research, I am highly motivated to pursue a PhD in 
intelligent construction. I am eager to deepen my knowledge of robotic operating systems (ROS), ML, 
and real-world applications of robotics in architecture. Discussions with professionals in the field 
confirmed that there is strong interest in applying such systems to large-scale concrete printing. The 
practical relevance of this research excites me, and I hope to contribute meaningfully to the 
development of intelligent robotic systems that advance sustainable construction and architectural 
innovation. 

7.5 Conclusion 
The most valuable takeaway from this thesis is not a specific technical skill but the ability to approach 
complex problems creatively and persistently. This journey has strengthened my confidence, 
expanded my interdisciplinary skill set, and inspired a long-term commitment to intelligent 
construction and sustainable architectural practices. 
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10. Appendix 

10.1 Potential research questions  
This report investigates the use of ML models within a closed-loop system to detect, interpret, and 
correct errors during construction-scale 3DP. Based on a synthesis of existing literature, experimental 
findings, and theoretical analysis, the following potential research directions have been identified: 

1. Structural Stability During Printing 
How can the system ensure that partially completed structures remain stable during 
fabrication, particularly when the toolpath interacts with unsupported or unfinished regions? 

2. Geometry-Aware Prediction 
Can ML models be trained to distinguish between geometric contexts—such as corners, 
straight paths, and freeform curves—from top or sectional views, and associate them with 
printing outcomes? For example, how do image-based features differ between long, linear 
paths and curvilinear shapes, and how does this affect deposition performance? 

3. Ridges from Toolpath Overlaps 
How can ridges caused by infill and outer layer intersections be detected and minimized? 
Could ML dynamically adjust toolpaths or extrusion rates to either reduce or aesthetically 
integrate these features? 

4. Balancing Aesthetics and Function 
Can ML be optimized to distinguish between aesthetic and structural needs, especially when 
retaining or modifying surface ridges is contextually important? 

5. Layer Weight Distribution 
How can the system ensure that lower layers are printed with higher material density for 
stability, while upper layers remain lighter? This may involve adjusting extrusion rates, speed, 
or path curvature dynamically. 

6. Layer Adhesion and Overhang Performance 
What is the minimum required interlayer contact area for overhang stability? Can ML models 
be trained to optimize print paths to maintain adhesion even under minimal overlap 
conditions? 

7. Contact Area vs. Stability 
How should the system balance contact area and print stability, and which parameters are 
most effective for controlling this relationship? 

8. Discontinuous Toolpaths 
How can discontinuities from multi-directional printing be avoided—particularly at layer 
junctions—through optimized parameter transitions and path planning? 

9. Outward vs. Inward Overhangs 
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Why are outward overhangs typically more stable than inward ones, and how should printing 
parameters be adjusted accordingly? 

10. Support Material Strategy 
Under what conditions is the use of support material (e.g., soft clay molds or adaptive 
scaffolds) necessary, and how should it be integrated with the base material? 

11. Real-Time Shape Deviation Control 
Can ML respond to early-stage geometric deviations in unsupported spans by adjusting 
printing parameters before failure propagates? 

12. Consistency Despite Identical Conditions 
Why do prints with identical paths, clay, and parameters yield different results? What 
environmental or system-level factors contribute, and how can real-time feedback be used to 
improve consistency? 

13. Environmental Adaptation 
Can the system detect environmental changes (e.g., rising temperature or humidity) and adapt 
accordingly—such as slowing extrusion or modifying paths—to preserve print quality? 

14. Anticipating Environmental Effects 
How quickly do environmental shifts affect clay behavior, and can the system predict and 
preemptively adjust before the next layer is printed? 

15. Moisture Management in Large Prints 
How can uneven drying be mitigated in large-scale, multi-layer prints to ensure proper 
adhesion and structural performance? 

16. Self-Correction via Material Properties 
Can the natural viscosity and malleability of clay be leveraged to self-correct uneven surfaces 
or layer inconsistencies during printing? 

17. Critical Parameter Identification for Overhang Success 
Which parameters most directly influence overhang stability, and how can the system adjust 
them during fabrication? 

18. Defect Detection and Compensation 
How can ML detect defects such as under-extrusion or layer shifting in real time and 
implement corrective actions without interrupting the print? 

19. Inclination-Based Parameter Adjustment 
What parameter changes are necessary for overhangs of varying inclinations, and can this be 
mapped as a function of angle? 

20. Post-Detection Recovery 
How should the system respond after a defect is detected to continue printing successfully 
while minimizing material waste? 

21. Cross-Scale Anomaly Management 
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Can ML segment localized defects without compromising global form coherence? For 
example, if a ridge or gap is detected in a curved shell structure, how can the model 
compensate locally while preserving the overall geometry and stability? 

 
Given the complexity of integrating all these variables simultaneously, the current research 
focuses primarily on: 
(6) Layer Adhesion and Overhang Performance, and (18) Defect Detection and Compensation, 
as the most immediate and feasible directions for implementing a functional ML-driven closed-
loop correction system. 
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10.2 Dataset labelling summary 
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Dataset sample count by label 
parameter class Angle1 Angle2 Angle3 Angle4 total 

extrusion  
Under 1594 1587 1581 56 4818 
Good 2537 5069 617 242 8465 
Over 1412 898 794 1166 4270 

overhang 
success 

safe 3651 4292 0 0 7943 
at risk 1168 1675 794 1166 4803 
unsafe 724 1587 2198 298 4807 
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label combination count 
0,0 3948 
0,1 424 
0,2 446 
1,0 859 
1,1 1675 
1,2 5931 
2,0 0 
2,1 2704 
2,2 1566 
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10.3 Dataset Example 
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10.4 Prototype Collection     
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10.5 Real-time Correction Workflow Codes 
# ================================  

# Real-time 3D Printing Calibration Loop 

# Author: Xiaochen Ding 

# Purpose: Closed-loop ML-based UR5 speed control for 3D clay printing 

# ================================ 

import os 

import time 

import socket 

import threading 

import torch 

import numpy as np 

import pandas as pd 

import cv2 as cv 

from PIL import Image 

from scipy import stats 

from glob import glob 

import paramiko 

from scp import SCPClient 

from model.network_module_DINOv2 import DINO2ResAttClassifier 

from data.data_module_wholeworkflow import ParametersDataModule 

from train_config import preprocess 
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from datetime import datetime 

import matplotlib.pyplot as plt 

import shutil 

 

# UR Configuration 

UR_IP = "192.168.1.100" 

SCRIPT_PORT = 30003 

DASH_PORT = 30002 

INITIAL_SCALE = 0.5 

 

# Paths 

DATA_DIR = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation 

project\test_print_photo" 

INPUT_FOLDER = os.path.join(DATA_DIR, "Image_detection") 

OUTPUT_FOLDER = os.path.join(DATA_DIR, "Image_for_preprocess") 

PREDICTION_FOLDER = os.path.join(DATA_DIR, "Image_for_prediction") 

SAVE_FOLDER1 = os.path.join(DATA_DIR, "Image_for_save_raw") 

SAVE_FOLDER2 = os.path.join(DATA_DIR, "Image_for_save_prediction") 

DATA_CSV = os.path.join(DATA_DIR, "test_print.csv") 

CHECKPOINT_PATH = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation 

project\ML\checkpoints\23042025\1234\DINO2ResAtt-model6.3_balanced_DINOv2-23042025-epoch=38-

val_loss=0.35-val_acc=0.00.ckpt" 

WAYPOINTS_CSV = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation 

project\ML\UR5\movej_positions.csv" 

DATASET_NAME = "closeloop_test_v1" 

 

# Raspberry Pi Configuration 

PI_IP = "192.168.1.185"   

PI_USER = "user" 

PI_PASS = "toi'sLAMA" 

PI_IMAGE_DIR = "/home/user/Image_detection" 

PI_TIMELAPSE_SCRIPT = "/home/user/camera_project/take_timelapse_xc.py" 

 

# Constants 

DATASET_MEAN = [0.2915257, 0.27048784, 0.14393276] 

DATASET_STD = [0.066747, 0.06885352, 0.07679665] 

BATCH_SIZE = 18 

MONITOR_PAUSE = 20 #40 

 

# SSH and SCP clients 

ssh = None 

scp = None 
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# Load model 

model = DINO2ResAttClassifier.load_from_checkpoint( 

    checkpoint_path=CHECKPOINT_PATH, 

    num_classes=3, 

    gpus=1, 

) 

model.eval() 

 

def connect_pi(): 

    global ssh, scp 

    ssh = paramiko.SSHClient() 

    ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) 

    ssh.connect(PI_IP, username=PI_USER, password=PI_PASS) 

    scp = SCPClient(ssh.get_transport()) 

 

def start_timelapse(): 

    print("📷📷 Starting timelapse on Raspberry Pi...") 

    ssh.exec_command(f"python3 {PI_TIMELAPSE_SCRIPT} &") 

 

def stop_timelapse(): 

    print("🛑🛑 Stopping timelapse on Raspberry Pi...") 

    ssh.exec_command("pkill -f take_timelapse.py") 

 

def sync_images_from_pi(): 

    print("⬇ Transferring images from Raspberry Pi...") 

    scp.get(PI_IMAGE_DIR, DATA_DIR, recursive=True) 

    print("✅ Images transferred to PC.") 

 

def clear_remote_folder(remote_path): 

    delete_cmd = f"rm -rf {remote_path}/*" 

    stdin, stdout, stderr = ssh.exec_command(delete_cmd) 

    exit_status = stdout.channel.recv_exit_status()   

    if exit_status == 0: 

        print(f"🧹🧹 Cleared all contents from remote folder: {remote_path}") 

    else: 

        err = stderr.read().decode().strip() 

        print(f"❌ Error deleting remote directory: {err}") 

 

def backup_images_to_timestamped_folder(input_folder, save_root_folder): 

    # 1. Check if input directory exists 

    if not os.path.isdir(input_folder): 

        raise ValueError(f"Input folder does not exist or is not a directory: {input_folder}") 
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    # 2. Create a timestamped subfolder under save_root_folder 

    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") 

    destination_folder = os.path.join(save_root_folder, timestamp) 

    os.makedirs(destination_folder, exist_ok=True) 

 

    # 3. Iterate over all files in input_folder and copy images 

    copied_count = 0 

    for filename in os.listdir(input_folder): 

        name_lower = filename.lower() 

        _, ext = os.path.splitext(name_lower) 

 

        src_path = os.path.join(input_folder, filename) 

        dst_path = os.path.join(destination_folder, filename) 

        shutil.copy2(src_path, dst_path)  # Copy preserving metadata 

        copied_count += 1 

         

    print(f"📁📁 Created subfolder '{timestamp}' under '{save_root_folder}'") 

    print(f"✅ Successfully copied {copied_count} images to: {destination_folder}") 

    return destination_folder  

 

def clear_folder(folder_path): 

    if not os.path.isdir(folder_path): 

        print(f"⚠ Path does not exist or is not a directory: {folder_path}") 

        return 

     

    for entry in os.listdir(folder_path): 

        entry_path = os.path.join(folder_path, entry) 

        try: 

            if os.path.isfile(entry_path) or os.path.islink(entry_path): 

                os.remove(entry_path)                     

        except Exception as e: 

            print(f"Error deleting: {entry_path} -> {e}") 

 

    print(f"🧹🧹 Cleared all contents from: {folder_path}") 

 

def set_speed_override(scale: float): 

    msg = f"set speed {scale:.3f}\n".encode("ascii") 

    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: 

        s.connect((UR_IP, DASH_PORT)) 

        s.sendall(msg) 

 

def load_waypoints(path): 

    waypoints = [] 
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    with open(path, 'r', encoding='utf-8-sig', newline='') as f: 

        reader = pd.read_csv(f) 

        for row in reader.itertuples(index=False): 

            waypoints.append(list(row)) 

    return waypoints 

 

def build_urscript_joint_arc(waypoints, acc=3.1416, vel=0.07, blend=0.01): 

    lines = [ 

        "def Program():", 

        "  Clay_extruderTcp  = p[0, 0.1765, 0.058, -1.5708, 0, 0]", 

        "  Clay_extruderWeight = 1.78", 

        "  Clay_extruderCog= [0, 0.1765, 0.058]", 

        "  set_tcp(Clay_extruderTcp)", 

        "  set_payload(Clay_extruderWeight, Clay_extruderCog)", 

        f"  movej({waypoints[0]}, a={acc}, v={vel}, r=0)" 

    ] 

    for wp in waypoints[1:]: 

        lines.append(f"  movej({wp}, a={acc}, v={vel}, r={blend})") 

    lines.append("end") 

    return "\n".join(lines) 

 

def send_script(script: str, chunk_size=2084, delay=0.01): 

    data = script + "\n" 

    total = len(data) 

    sent = 0 

     

    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: 

        s.connect((UR_IP, SCRIPT_PORT)) 

        # Send in chunks 

        while sent < total: 

            end = min(sent + chunk_size, total) 

            block = data[sent:end].encode('utf8') 

            s.sendall(block) 

            sent = end 

            time.sleep(delay) 

    print("✅ URScript uploaded and executed.") 

 

def suggest_speed_change(extrusion, overhang): 

    if extrusion == 0: 

        return -0.1 if overhang <= 1 else -0.2 

    elif extrusion == 1: 

        return +0.1 if overhang == 0 else (0 if overhang == 1 else -0.1) 

    elif extrusion == 2: 
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        return +0.2 if overhang == 0 else +0.1 

    return 0 

 

def preprocess_images(input_folder, output_folder): 

    param = np.load(r"E:\OneDrive - Delft University of Technology\TUD Master\graduation 

project\dataset\cali_images\calibration_parameters0.npz") 

    H_up = param['H_up'] 

    H_down = param['H_down'] 

    crop_up = param['crop_pts_up'] 

    crop_down = param['crop_pts_down'] 

    scale = param['scale_factor'] 

    warp_size_up = tuple(param['warp_size_up']) 

    warp_size_down = tuple(param['warp_size_down']) 

    output_size = tuple(param['output_size']) 

 

    def crop_img(img, crop_pts, output_size): 

        pts_dst = np.array([[0, 0], [output_size[0]-1, 0], [output_size[0]-1, output_size[1]-1], [0, 

output_size[1]-1]], dtype=np.float32) 

        H_crop = cv.getPerspectiveTransform(crop_pts, pts_dst) 

        return cv.warpPerspective(img, H_crop, output_size) 

 

    def crop_to_center(img, crop_size): 

        h, w = img.shape[:2] 

        center_x, center_y = w // 2, h // 2 

        left = max(center_x - crop_size[0] // 2, 0) 

        top = max(center_y - crop_size[1] // 2, 0) 

        right = min(center_x + crop_size[0] // 2, w) 

        bottom = min(center_y + crop_size[1] // 2, h) 

        cropped = img[top:bottom, left:right] 

        return cv.resize(cropped, crop_size, interpolation=cv.INTER_LINEAR) 

 

    def add_black_border(img, border_size): 

        return cv.copyMakeBorder(img, border_size[1], border_size[1], border_size[0], border_size[0], 

cv.BORDER_CONSTANT, value=(0, 0, 0)) 

 

    os.makedirs(output_folder, exist_ok=True) 

    img_list = glob(os.path.join(input_folder, "*.jpg")) 

    cam0, cam1 = {}, {} 

    for path in img_list: 

        name = os.path.basename(path) 

        if name.startswith("cam0_"): 

            cam0[name[5:-4]] = path 

        elif name.startswith("cam1_"): 
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            cam1[name[5:-4]] = path 

 

    timestamps = sorted(set(cam0.keys()) & set(cam1.keys())) 

    for ts in timestamps: 

        img_up = cv.imread(cam0[ts]) 

        img_down = cv.imread(cam1[ts]) 

        if img_up is None or img_down is None: 

            continue 

 

        warp_up = cv.warpPerspective(img_up, H_up, warp_size_up) 

        warp_down = cv.warpPerspective(img_down, H_down, warp_size_down) 

        crop_u = crop_img(warp_up, crop_up, output_size) 

        crop_d = crop_img(warp_down, crop_down, output_size) 

        crop_u = cv.rotate(crop_u, cv.ROTATE_90_COUNTERCLOCKWISE) 

        crop_d = cv.rotate(crop_d, cv.ROTATE_90_COUNTERCLOCKWISE) 

        new_w = int(crop_u.shape[1] * scale) 

        new_h = int(crop_u.shape[0] * scale) 

        crop_u_scaled = cv.resize(crop_u, (new_w, new_h)) 

        x_up_center = new_w // 2 

        x_down_center = crop_d.shape[1] // 2 

        offset_x = x_down_center - x_up_center 

        left = max(-offset_x, 0) 

        x_up = left + max(offset_x, 0) 

        x_down = left + max(-offset_x, 0) 

        canvas_w = max(x_up + new_w, x_down + crop_d.shape[1]) 

        canvas_h = new_h + crop_d.shape[0] 

        canvas = np.zeros((canvas_h, canvas_w, 3), dtype=np.uint8) 

        canvas[0:new_h, x_up:x_up+new_w] = crop_u_scaled 

        canvas[new_h:new_h+crop_d.shape[0], x_down:x_down+crop_d.shape[1]] = crop_d 

        orig_h, orig_w = canvas.shape[:2] 

        bordered = add_black_border(canvas, (1500, 1500)) 

        resized = cv.resize(bordered, (orig_w, orig_h)) 

        cropped_merge_img = crop_to_center(resized, (224, 224)) 

        output_path = os.path.join(output_folder, f"cropped_{ts}.jpg") 

        cv.imwrite(output_path, cropped_merge_img) 

        print(f"✅ Saved processed image to: {output_path}") 

 

def update_csv_paths(): 

    df = pd.read_csv(DATA_CSV) 

    # Find all cropped images in OUTPUT_FOLDER named cropped_{ts}.jpg 

    cropped_files = sorted([ 

        fname for fname in os.listdir(OUTPUT_FOLDER) 

        if fname.startswith("cropped_") and fname.endswith(".jpg") 
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    ]) 

    new_paths = [os.path.join(OUTPUT_FOLDER, fname) for fname in cropped_files] 

 

    if len(new_paths) != len(df): 

        print(f"⚠ Warning: Number of cropped images ({len(new_paths)}) does not match CSV rows 

({len(df)}), possible error.") 

 

    min_len = min(len(new_paths), len(df)) 

    df.loc[:min_len-1, "img_path"] = new_paths[:min_len] 

    df.to_csv(DATA_CSV, index=False) 

    print(f"✅ Updated img_path in CSV file '{DATA_CSV}' with cropped image paths.") 

 

def make_dirs(path): 

    try: 

        os.makedirs(path) 

    except: 

        pass 

# Custom function to visualize and save images 

def visualize_batch(batch, df, save_dir, dataset_std, dataset_mean): 

    images, labels = batch 

    batch_size = len(images) 

    # Adjust image paths according to the total dataset, not just the batch 

    image_filenames = df['img_path'].values[:len(images)] 

    for i, (img, label) in enumerate(zip(images, labels)): 

        print(f"Processing image {i+1}/{batch_size}") 

        img = img.permute(1, 2, 0)  # Permute to (H, W, C) format for plotting 

        img = img * torch.tensor(dataset_std) + torch.tensor(dataset_mean)  # Denormalize 

        img = img.clamp(0, 1) 

        # Convert to numpy for saving 

        img_np = img.numpy() 

        # Save each image individually 

        output_filename = os.path.basename(image_filenames[i]) 

        output_path = os.path.join(save_dir, f"{output_filename}") 

        plt.imsave(output_path, img_np) 

        print(f"Saved image: {output_path}") 

def Label_predict(): 

    data_module = ParametersDataModule( 

        batch_size=BATCH_SIZE, 

        data_dir=DATA_DIR, 

        csv_file=DATA_CSV, 

        dataset_name=DATASET_NAME, 

        mean=DATASET_MEAN, 

        std=DATASET_STD, 
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        load_saved=False, 

        transform=True 

    ) 

    # Load the CSV file and check paths 

    df = pd.read_csv(DATA_CSV) 

 

    # Setup data module, skip dataset split 

    data_module.setup(stage="test", save=False, test_all=True) 

 

    # Get dataloader (shuffle can be False or True as needed) 

    test_dataloader = data_module.test_dataloader() 

 

    # Process each batch to ensure all images are processed 

    for batch_idx, batch in enumerate(test_dataloader): 

        print(f"Processing batch {batch_idx + 1}") 

        visualize_batch(batch, df, PREDICTION_FOLDER, DATASET_STD, DATASET_MEAN) 

 

    print("All images processed.") 

 

    img_paths = [ 

        os.path.join(PREDICTION_FOLDER, img) 

        for img in os.listdir(PREDICTION_FOLDER) 

        if os.path.splitext(img)[1] == ".jpg" 

    ] 

    # Step 3: Preprocess and predict labels 

    print("********* MudTracker3D sample predictions *********") 

    print("Layer_height | Extrusion") 

    print("*********************************************") 

    layer_height_preds = [] 

    extrusion_preds = [] 

 

    for img_path in img_paths: 

        pil_img = Image.open(img_path) 

        x = preprocess(pil_img).unsqueeze(0) 

        y_hats = model(x) 

        y_hat0, y_hat1 = y_hats 

        _, preds0 = torch.max(y_hat0, 1) 

        _, preds1 = torch.max(y_hat1, 1) 

        preds = torch.stack((preds0, preds1)).squeeze() 

        preds_str = str(preds.numpy()) 

        img_basename = os.path.basename(img_path) 

        print("Input:", img_basename, "->", "Prediction:", preds_str) 

        # Collect predictions 
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        layer_height_preds.extend(preds0.numpy()) 

        extrusion_preds.extend(preds1.numpy()) 

 

    mode_result0 = stats.mode(layer_height_preds)    

    mode_result1 = stats.mode(extrusion_preds) 

 

    final_layer_height_label = mode_result0.mode.item() 

    final_extrusion_label     = mode_result1.mode.item() 

 

    print(f"Layer Height: {final_layer_height_label}, Extrusion: {final_extrusion_label}") 

    return final_layer_height_label, final_extrusion_label 

 

def monitor_loop(): 

    scale = INITIAL_SCALE 

    print(f"Initial speed: {scale}") 

    connect_pi() 

    clear_remote_folder(PI_IMAGE_DIR) 

    while True: 

        print("📷📷 Starting timelapse on Raspberry Pi...") 

        start_timelapse() 

        print("🕒🕒 Waiting for 10 pairs of images on Raspberry Pi...") 

 

        # Wait for Raspberry Pi to generate new photo files 

        time.sleep(2) 

        stdin, stdout, stderr = ssh.exec_command(f"ls -t {PI_IMAGE_DIR}") 

 

        # Check if there are already 10 pairs of images 

        while True: 

            stdin, stdout, stderr = ssh.exec_command(f"ls {PI_IMAGE_DIR} | grep cam0_ | wc -l") 

            count_cam0 = int(stdout.read().decode().strip()) 

            stdin, stdout, stderr = ssh.exec_command(f"ls {PI_IMAGE_DIR} | grep cam1_ | wc -l") 

            count_cam1 = int(stdout.read().decode().strip()) 

            if min(count_cam0, count_cam1) >= 10: 

                break 

            time.sleep(2) 

 

        stop_timelapse() 

        sync_images_from_pi() 

        clear_remote_folder(PI_IMAGE_DIR) 

        preprocess_images(INPUT_FOLDER, OUTPUT_FOLDER) 

        update_csv_paths() 

        final_layer_height_label, final_extrusion_label = Label_predict() 
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        if final_layer_height_label == 1 and final_extrusion_label == 1: 

            break 

 

        delta = suggest_speed_change(final_extrusion_label, final_layer_height_label) 

        new_scale = min(1.0, max(0.1, scale + delta)) 

        set_speed_override(new_scale) 

        scale = new_scale 

        print(f"Adjusted new speed: {scale}") 

        print(f"⏸ Pausing {MONITOR_PAUSE}s...") 

        time.sleep(MONITOR_PAUSE) 

        backup_images_to_timestamped_folder(INPUT_FOLDER, SAVE_FOLDER1) 

        clear_folder(INPUT_FOLDER) 

        clear_folder(OUTPUT_FOLDER) 

        backup_images_to_timestamped_folder(PREDICTION_FOLDER, SAVE_FOLDER2) 

        clear_folder(PREDICTION_FOLDER)        

    stop_timelapse() 

    scp.close() 

    ssh.close() 

    # Reset scale to 0.5 before exit 

    set_speed_override(0.5) 

 

def main(): 

    print("🚀🚀 Uploading URScript and starting printing...") 

    waypoints = load_waypoints(WAYPOINTS_CSV) 

    script = build_urscript_joint_arc(waypoints) 

    send_script(script) 

    clear_folder(INPUT_FOLDER) 

    clear_folder(OUTPUT_FOLDER) 

    clear_folder(PREDICTION_FOLDER) 

    print("⏳ Waiting 10s before monitoring...") 

    time.sleep(10) 

    monitor_loop() 

    print("🎉🎉 Print complete. Workflow finished.") 

 

if __name__ == "__main__": 

    main() 

 

 

10.6 Slicing and URScript Generation Script   
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