
Page 1

Page 2

Page 3

Abstract

This research presents the development and validation of a machine learning-assisted closed-loop
control system designed for robotic 3D clay printing, with a particular focus on enhancing print
quality and structural stability of complex overhang geometries. Unlike traditional open-loop
manufacturing processes, the proposed framework integrates real-time visual feedback captured by
dual Raspberry Pi cameras and leverages a multi-objective neural network model to dynamically
adjust the robotic printing speed. This enables the system to detect and correct extrusion anomalies
such as over-extrusion and under-extrusion, thereby significantly improving the printability and
quality of challenging overhang structures.

Two advanced deep learning architectures, ResNet-56 and a DINOv2-based hybrid network, were
systematically evaluated to determine their effectiveness in defect detection and prediction of
overhang success. The system was implemented using a UR5 robotic arm equipped with a clay
extruder, demonstrating practical feasibility within a laboratory environment. Experimental results
show that the closed-loop control approach substantially enhances print consistency, reduces
structural failures, and maintains geometric accuracy compared to baseline open-loop methods.

This foundational work lays the groundwork for future scaling to construction-scale additive
manufacturing, highlighting the potential to extend this system to other construction materials such as
concrete. The study discusses key challenges including material variability, sensor integration, real-
time control complexity, and robotic motion planning, and provides strategic recommendations for
future research aimed at achieving robust, adaptive, and scalable additive manufacturing systems for
complex architectural applications.

Keywords: 3D Printing, Additive Manufacturing, Clay, Robotic Fabrication, Machine Learning,
ResNet-56, DINOv2-based hybrid model, Computer Vision, Real-time closed-loop control, Quality
Monitoring, Defect detection, Overhang structures

Page 4

Research Context

This graduation project is a direct continuation of the previous group research project, MudTracker
3D, conducted from September 16, 2024, to November 6, 2024. During that group project, I was
primarily responsible for machine learning model training and fine-tuning. Over the course of nine
main rounds of fine-tuning, various strategies were explored to improve model performance,
including adjusting hyperparameters, applying class balancing techniques, extracting balanced
datasets from initially imbalanced data, refining the labeling standards for greater accuracy,
redesigning prototypes, modifying print board colors, and adjusting lighting conditions during image
collection.

Despite these efforts, the machine learning model predictions remained unstable and inconsistent. Key
findings from that phase indicated that class balancing techniques are critical for model accuracy and
generalization. Balanced datasets yielded the best results, while upsampling and downsampling
techniques were more effective than simple class weighting when perfect balance could not be
achieved. Training on imbalanced datasets without proper adjustment significantly reduced accuracy,
especially for minority classes. Additionally, consistent lighting conditions were found essential
during data collection to ensure reliable training outcomes. Incorporating diverse lighting conditions
into the dataset was also recognized as a potential way to improve model robustness in real-world
scenarios.

The motivation behind continuing this topic is to overcome the limitations encountered in the
MudTracker 3D project, particularly the instability of ML predictions and the open-loop nature of the
system. MudTracker 3D was an open-loop calibration system implemented on a WASP printer, using
a single side-view camera for image collection. In contrast, the current graduation project develops a
closed-loop control system integrated with robotic fabrication and enhanced visual feedback from
dual top-view cameras. This setup comprehensively captures geometric features and focuses more on
architectural geometry characteristics. By employing more advanced neural network architectures, the
project seeks to enable precise and robust 3D clay printing of complex overhang structures, ultimately
contributing to more efficient and automated construction processes.

Page 5

Contents
1. Introduction ... 8

1.1 Background ... 8

1.2 State of the Art .. 9

1.3 Problem Statement .. 12

1.4 Objectives ... 13

1.5 Research Questions & Sub-questions ... 15

1.6 Methodology ... 15

2. Research by design and experimentation .. 25

2.1 Experiment setup .. 25

2.1.1 Hardware setup .. 26

2.1.2 Software setup .. 41

2.2 Investigation of overhang print ... 54

2.3 Machine learning .. 55

2.3.1 Dataset generation .. 56

2.3.2 Model architecture, training and performance ... 67

2.3.3 Model Performance Comparison ... 73

3. Validation – Real-time correction pipeline .. 84

Comparison & evaluation ... 86

4. Prototype and Final Product Design .. 90

4.1 Prototype Design for Dataset Collection .. 90

4.2 Prototype Scale and Printability Constraints... 91

4.3 Final Product Design and Validation Strategy .. 92

4.4 Slicing and Toolpath Generation ... 93

5. Conclusion ... 95

Page 6

6. Discussion ... 97

7. Reflection .. 100

7.1 Introduction ... 100

7.2 Research Journey & Personal Development ... 100

7.2.1 Starting Point ... 100

7.2.2 Evolution of the Topic .. 101

7.2.3 Learning Process .. 102

7.2.4 Delays and Adaptation ... 102

7.3 Societal Impact .. 103

7.4 Future Direction .. 103

7.5 Conclusion .. 103

8. Acknowledgment .. 105

9. Reference ... 107

10. Appendix ... 112

10.1 Potential research questions .. 112

10.2 Dataset labelling summary .. 116

10.3 Dataset Example ... 119

10.4 Prototype Collection ... 121

10.5 Real-time Correction Workflow Codes ... 123

10.6 Slicing and URScript Generation Script ... 133

Page 7

Page 8

1. Introduction

1.1 Background

Additive manufacturing (AM), widely known as 3D printing (3DP), allows to construct complex
geometries by depositing material layer by layer according to digital models (Lee & Park, 2025).
Recent advancements in AM are pushing the boundaries of real-world design possibilities,
allowing for mass customization, the fabrication of intricate structures, and the reduction of
material waste, while also enabling rapid prototyping (Delgado Camacho et al., 2018). AM
technologies are increasingly being applied across diverse scales and industrial fields including
healthcare (Placone & Engler, 2018), medical devices (Haghiashtiani et al., 2020), robotics
(López-Valdeolivas et al., 2018), aerospace (Froes et al., 2019), engineering (Singh et al., 2020),
and construction. As noted by Ngo et al. (2018), a diverse range of materials is utilized in 3DP,
including metals, concrete, ceramics and polymers. Among polymers, Acrylonitrile Butadiene
Styrene (ABS) and Polylactic Acid (PLA) are commonly used for composite 3DP, while
advanced alloys and metals are favored in aerospace applications due to the limitations of
traditional manufacturing processes. Ceramics are often used for 3DP scaffolds, and concrete is
primarily used in 3DP for construction.

Although 3DP has obtained significant attention in recent years, it is still in the early stages of
adoption for construction industry (Wu et al., 2018). Nonetheless, there has been a rapid growth
in case studies focused on production of full-scale houses and structures (Parkes, 2021a, 2021b;
Teizer et al., 2016). These studies highlight several advantages of 3DP, including the ability to
create complex, custom geometries without the need for molds (Delgado Camacho et al., 2018),
reducing errors during the building process, and minimizing construction time, material waste
and cost (Nematollahi et al., 2017). As a result, 3DP has become increasingly relevant in the
construction industry, particularly for its potential to revolutionize how buildings are designed
and constructed.

Several AM processes are already in use, including Stereolithography (SLA), Fused Deposition
Modeling (FDM), and Selective Laser Sintering (SLS) (Fastermann, 2016). These processes
differ based on the material used and the deposition technique. One method within this field,
Liquid Deposition Modeling (LDM), involves extruding viscous material through a nozzle to
build structures in a continuous, layered approach. LDM is currently being explored in several
manufacturing applications(Delgado Camacho et al., 2018; Jang et al., 2020; Klug et al., 2022;
Rosenthal et al., 2018). When this process is applied to clay or other earthen materials, it is
referred to as 3D Clay Printing (3DCP). 3DCP is emerging as a promising solution for
overcoming the intrinsic limitations of ceramics, for example, formability and processability
(Jang et al., 2020). Clay, a naturally malleable and adaptable material, serves as the primary

Page 9

medium in LDM (Yang et al., 2023). Due to its low embodied energy and recyclability, clay is
increasingly considered a viable material for sustainable construction (Oti, 2010). Its malleability
and plastic behavior facilitate the formation of continuous, organic geometries, which are
increasingly relevant in the design of biophilic and non-standard architectural forms (Grigoriadis
& Lee, 2024). The benefits of clay in construction are further amplified by its availability, cost-
effectiveness, and sustainability when employed in an LDM system (Kontovourkis & Tryfonos,
2020; Wolf et al., 2022).

However, clay is also a highly variable material. Its performance depends heavily on water
content, mixture consistency, and environmental conditions such as temperature and humidity.
These factors can lead to extrusion instability, weak layer adhesion, and deformation during
printing (Ding et al., 2025; Gürsoy, 2018; Witte, 2022). As a result, 3DCP presents unique
challenges, particularly in terms of material consistency and the need for constant monitoring
of printing parameters (Așut et al., 2025). These challenges can result in printing anomalies
such as perforations and material overhangs, which can compromise print quality, lead to
failures, or require the use of extensive support structures that must be manually removed after
printing (Gürsoy, 2018). The need for such support structures restricts design freedom and
limits the ability to experiment with form and geometry, which needs to be carefully
considered in design process (Bhooshan et al., 2018). Therefore, unsupported overhangs
present a significant challenge in maintaining both structural integrity and aesthetic quality
during the printing process.

1.2 State of the Art
Machine learning (ML) has become an integral part of the AM field, enabling significant
advancements in defect detection, process optimization, and real-time error correction (Jiang et
al., 2022; Khan et al., 2021; Li et al., 2019; Ramiah & Pandian, 2023; Zhang et al., 2019). There
is growing research on the use of ML for quality monitoring and adaptive control in AM
(references). Most of the existing work has focused on materials with relatively stable properties,
such as thermoplastics, resins, and metals, where defect detection and parameter optimization are
more predictable (references).

Most research focuses on correcting under-extrusion and over-extrusion issues to improve print
quality. Brion and Pattinson (2022) developed a real-time defect detection and correction system
for extrusion-based 3DP using a multi-head residual attention neural network named Resnet 56.
Trained on over 1.2 million automatically labeled images collected in thermoplastics 3DP
process, the model predicted deviations in parameters including flow rate, Z-offset, lateral speed,
and hotend temperature. An overall classification accuracy of 84.3% is obtained, with individual
parameter accuracies exceeding 85%, and demonstrated robust performance even on unseen
materials like ketchup.

Page 10

Building on similar ideas, Fu et al. (2025) proposed a real-time feedback system combining
EfficientNetB0, a lightweight Resnet 56 network, with camera-equipped extruders, which only
predicts and adjusts two printing parameters including flow rate and nozzle offset to correct
extrusion defects during printing process, improving print quality for polylactic acid (PLA)
materials. Avro et al. (2024) developed a deep learning framework that integrates YOLO (You
Only Look Once) and VGG-16 for detecting under-extrusion anomalies in Fused Filament
Fabrication (FFF) for thermoplastics, achieving a 97% detection accuracy. Similarly, Goh et al.
(2022) introduced a YOLOv3 and YOLOv4-Tiny ML models for extrusion defect detection
system in PLA printing with 89.8% accuracy, enabling real-time correction of over- and under-
extrusion issues. Jin et al. (2021) employed YOLOv3 and DeepLabv3 for semantic segmentation
of over- and under-extrusion zones for PLA materials in FFF, enabling layer-wise quality
assessment and correction. Point cloud data was utilized by Akhavan et al. (2024), who
established a hybrid convolutional autoencoder (HCAE) to classify under- and over-printed
regions in PLA and dynamically modified G-code to improve subsequent layers.

In parallel, some studies focused on improving surface roughness in 3DP. Lee and Park (2025)
introduced a Variational Autoencoder (VAE) to detect surface defects in additive-lathe printing
for PLA and applied corrective strategies such as ironing and speed tuning, significantly
enhancing surface quality in situ. Toorandaz et al. (2024) used Random Forest (RF) and
XGBoost with photodiode sensors to predict surface roughness in titanium alloy prints, achieving
high accuracy at microscale resolution. In bioprinting, Jin et al. (2023) used convolutional neural
networks (CNNs) for anomaly detection in hydrogel-based systems, achieving an F1-score of
0.955 by classifying discontinuities and irregularities layer-by-layer.

Addressing misalignment in prints in 3DP, Zubayer et al. (2024) applied YOLOv8 to detect fiber
misalignments in carbon fiber-reinforced polymer (CFRP) 3DP, integrating nozzle temperature
adjustments for closed-loop correction, and reaching 94% detection accuracy. Kim and Park
(2023) combined a VAE for anomaly detection with Proximal Policy Optimization (PPO), a
reinforcement learning algorithm, to adjust print speed for polyvinyl alcohol (PVA) filament. The
system achieved over 99% accuracy in detecting defects such as layer shift, and successfully
optimized speed to minimize deflection and improve productivity, enabling the reliable
fabrication of unsupported high-aspect-ratio and overhang geometries. Lu et al. (2023) also used
YOLOv4 in a real-time feedback system for CFRP printing to detect misalignment and abrasion,
achieving real-time adjustment of printing parameters to improve surface finish.

Surface deformation has also been a key focus in 3DP. Ansari et al. (2022) developed a CNN
model for identifying surface deformation defects including distortion and warping in laser
powder bed fusion (LPBF) of AlSi10Mg metal with 99.3% accuracy. Brion et al. (2022)
integrated YOLOv3 with heuristics corrections to detect and correct warping in extrusion-based

Page 11

AM for Acrylonitrile Butadiene Styrene (ABS), adjusting bed temperature and print speed to
reduce deformation. Gunasegaram et al. (2021) proposed Digital Twin integration with
surrogated model in metal AM, using ML-driven sensor feedback to optimize process parameters
and ensure consistent part quality and reduced defects. Finally, Paraskevoudis et al. (2020) used
Single Shot Detector (SSD) networks for real-time video-based detection of stringing defects in
PLA prints, achieving notable improvements in material efficiency and print quality.

Together, these studies reflect a diverse and rapidly evolving body of work demonstrating the
potential of ML-based frameworks, ranging from object detection (e.g., YOLO, SSD) to
generative modeling (e.g., VAE), for improving print reliability, surface quality, and adaptive
parameter control across a variety of AM materials and systems.

Despite these advancements, a major gap remains in applying ML for real-time error correction
in 3DCP. Existing studies have focused primarily on materials such as thermoplastics, metals,
and composites, which exhibit more predictable behaviors during the printing process. Clay, on
the other hand, presents unique challenges for its unpredictability due to its highly variable
properties, such as viscosity, malleability, and moisture content, making 3DCP more prone to
printing issues. Although ML techniques from other materials provide valuable insights, they
need significant adaptation to suit clay material behavior.

Because of the inherent variability and ununiform clay mixture due to non-standard mixing
process of clay, the printing issues are amplified during 3DCP than other predictable materials.
Variations in printing quality can occur across different layers due to changes in the clay mixture
even within a single prototype. Traditional fixed-parameter methods fail to adequately
accommodate these rapid and unpredictable shifts in material state, typically requiring human
intervention during the printing process, which is not always possible or effective enough.
Traditional open-loop approaches operate based on pre-set parameters without real-time
feedback, assuming constant material properties and environmental condition (Ding et al., 2025).
Așut et al. (2025) developed a computer vision-based open-loop system for pre-printing
parameter calibration in 3DCP, aiming to address material variability and printing defects. The
system employs a two-head Attention-56 model (based on ResNet-56) to predict optimal layer
height and extrusion settings. The study demonstrated the effectiveness of automatic parameter
calibration compared to manual calibration, showing improved efficiency in pre-printing
preparation. However, this open-loop system cannot dynamically adjust to fluctuations in
extrusion consistency and inter-layer adhesion during real-object printing processes, which
makes formal printing process especially prone to printing errors caused by the natural variability
of the material. Without real-time sensing and adjustment, these systems struggle to compensate
for changes in material behavior and it often leads to inconsistent results and defects (Ding et al.,
2025).

Page 12

Unlike open-loop systems, closed-loop systems can process sensory data by recognizing changes
in material properties, environmental disturbances, and calibration errors in real-time. They can
continuously update the printing parameters and allow real-time correction of extrusion
inconsistencies and printing errors (Zhu et al., 2021, as cited in Ding et al., 2025). Thus, a
notable gap remains in the application of closed-loop calibration systems for 3DCP.

Furthermore, layer adhesion and overhang structures continue to present significant challenges in
3DP from architectural and engineering aspects, especially in materials like clay that have
limited interlayer bonding due to cold extrusion. Successful printing of overhangs with minimal
layer contact requires optimizing the print parameters to ensure stability. While ML models have
been used to optimize print errors in simpler geometries, there is limited research on their
architectural application to complex geometries with minimal contact areas, such as overhangs in
clay-based 3DP.

In summary, this literature review underlines the potential of ML models in advancing AM,
particularly in defect detection, error correction, and process optimization. However, there is a
clear gap in research regarding the application of ML in real-time adjustment systems for 3DCP,
where material-specific challenges need to be addressed. This research aims to fill this gap by
exploring methods for achieving stable, accurate overhang structures in 3DCP without the need
for excessive support materials, and with minimal manual adjustments to the printing parameters.
This will involve addressing the inherent variability of clay and developing strategies to enable
the automatic calibration of printing parameters in real-time, thereby reducing the reliance on
manual intervention during the printing process.

1.3 Problem Statement
The use of clay in AM presents unique difficulties that are not well addressed by current systems.
Most 3DP workflows rely on open-loop control, where printing parameters are set before the
process begins and remain unchanged (Așut et al., 2025). This method assumes that material
properties and environmental conditions stay constant, which is rarely the case in 3DCP. As a
result, deviations such as layer shifting, over-extrusion, or incomplete bonding are common,
especially in geometrically complex features like overhangs.

Manual adjustments can sometimes compensate for these issues, but they are time-consuming
and difficult to scale (Gürsoy, 2018). For construction-scale applications, such delays or
inconsistencies can lead to structural weaknesses or even failed builds. Therefore, a more
adaptive system is needed, which can detect problems as they arise and automatically adjust
printing parameters in response during printing process.

However, the method is largely focused on thermoplastic materials, where extrusion consistency

Page 13

is more predictable, making its application to clay, which has a highly variable viscosity, less
straightforward.

1.4 Objectives
Real-time monitoring allows continuous acquisition and analysis of p process data during
manufacturing, allowing immediate adjustments to printing parameters in response to material
variability. This is particularly important in 3DCP, where fluctuations in clay consistency can
significantly affect print quality. A closed-loop control system builds on this by using feedback
from sensors or vision systems to automatically modify process parameters such as extrusion rate
or nozzle speed in real time, thereby reducing defects and maintaining print consistency (Zhu et
al., 2021, cited in Ding et al., 2025).

ML is a subset of Artificial Intelligence (AI) that has an increasing potential to develop the
capabilities and efficiency of AM, and it can handle the challenges and optimize the various
aspects of AM processes by extracting patterns, learning from data, and building effective
predictions (Ukwaththa et al., 2024, cited in Ding et al., 2025). As outlined in the literature
review, ML can play a crucial role in real-time defect detection, process optimization, and
adaptive control in 3DP and help to ensure more precise and reliable printing outcomes. In deep
learning-based image classification (a subset of ML), models such as Residual Attention
Networks such as ResNet 56 and DINO v2 can enhance defect detection by focusing on relevant
image regions while minimizing background noise. So, they can be particularly effective for
identifying fine-grained defects in 3DP (Wang et al., 2017; Zhao et al., 2017, cited in Ding et al.,
2025).

Robotic 3DP utilizes industrial robotic arms equipped with specialized extruders to enable
flexible, multi-axis motion control during material deposition (Farahbakhsh et al., 2021). Such
systems integrate advanced toolpath planning and robotic control algorithms within parametric
design environments such as Grasshopper, allowing the digital translation of 3D models into
optimized robotic motions for material extrusion (Kontovourkis & Tryfonos, 2020).

Compared to conventional 3-axis clay printers such as the WASP system, robotic arms offer
significantly more spatial flexibility. This enables the fabrication of complex geometries such as
overhangs and freeform curves, without extensive reliance on support structures. The multi-
degree-of-freedom movement enables non-planar layer deposition and dynamic toolpaths that are
difficult or impossible to achieve with fixed-axis systems. This capacity for real-time trajectory
updates allows in-process correction strategies, such as modifying toolpaths in response to
detected anomalies. However, this project will focus specifically on adjusting printing speed to
correct failures in overhangs using a UR5 robot due to time constraints. Furthermore, current

Page 14

robotic arm-based 3DP serves as a scalable prototype system for future construction-scale
manufacturing using 6-axis gantry systems, providing a more compatible and transferable
workflow compared to desktop-scale 3-axis WASP printers. This makes it a more suitable
platform for developing adaptive, closed-loop fabrication techniques aimed at architectural-scale
applications.

Thus, this research aims to develop such a real-time, ML-assisted closed-loop control system
specifically for robotic 3DCP, with a focus on challenging overhang structures. Overhangs are
structural elements that extend horizontally without direct vertical support. It poses a particular
challenge in 3DCP due to the limited interlayer adhesion and the deformable nature of clay.
Printing such structures requires precise control of printing speed and extrusion to prevent
sagging or collapse. By targeting overhangs, this research intends to address a critical barrier in
expanding the design freedom and structural stability of 3DCP in construction applications.

A comparison will be conducted between two deep learning models, ResNet-56 and DINO v2, to
determine which is more effective in detecting failure. The goal is to achieve automatic and
dynamic calibration of printing speed during fabrication, ensuring stable extrusion and
improving the overall quality and reliability of clay-based overhang structures.

The key objectives are:

• Robotic 3DP

- Set up a UR5 robotic 3D clay printing system integrated with Raspberry Pi cameras for
visual monitoring.

- Establish real-time communication between the UR5 robot, the Raspberry Pi modules,
and the main control computer.

• ML:

- Collect a dataset of overhang prints with varying inclination angles and extrusion
conditions.

- Develop a multi-objective ML model capable of detecting extrusion anomalies and
predicting overhang printability in real time.

- Compare ResNet-56 and DINO v2 in terms of prediction accuracy, reliability under
3DCP conditions.

• Close-loop

- Integrate the selected ML model into a closed-loop system that continuously adjusts
printing speed based on live visual feedback.

• Validation

Page 15

- Test and evaluate the system’s performance across various geometries and material
conditions to verify its effectiveness in maintaining consistent, high-quality clay prints.

1.5 Research Questions & Sub-questions
Main Research Question:
How can a machine learning-assisted closed-loop system enable real-time anomaly detection
and correction in robotic 3D clay printing of overhang structures?

Sub-questions:

1. How can real-time visual data be used to detect extrusion anomalies, such as under-
/over- extrusion, or deformation, during the printing of overhang structures in 3DCP?

2. Between ResNet-56 and DINO v2, which machine learning model performs more
effectively in classifying extrusion failures and predicting the printability of overhang
geometries in 3DCP?

3. How can a trained ML model be integrated into a closed-loop system that dynamically
adjusts robotic printing parameters, such as nozzle speed, based on continuous visual
feedback?

4. How can a live communication link between the PC, ML model, and UR5 robotic arm be
established to support real-time control and feedback exchange?

5. How can the movement speed of the robotic arm be smoothly and safely adjusted in real
time via the PC, without disrupting the continuity of the toolpath?

6. What are the implementation constraints and scalability considerations when applying
this closed-loop robotic system to construction-scale 3D clay printing using multi-axis
platforms?

1.6 Methodology
To address the limitations of current open-loop 3DCP systems and to enable responsive adaptation to
material variability, this research proposes a data-driven, closed-loop control system integrating ML
and robotic fabrication. The methodology builds upon established approaches in computer vision-
based feedback control (Așut et al., 2025; Brion & Pattinson, 2022; Fu et al., 2025), adapting them to
the unique challenges of clay extrusion and overhang geometry in robotic 3DP.

Specifically, the methodology shown in Figure 1.1 follows a five-step framework aimed at
developing, training, and validating a real-time feedback loop that can detect extrusion anomalies and
automatically adjust robotic movement speed to maintain consistent print quality. The system is built
around the use of a UR5 robotic arm equipped with Raspberry Pi cameras and a WASP clay extruder,
enabling synchronized image capture, parameter logging, and dynamic control updates.

Page 16

The full workflow ranges from prototype fabrication and dataset generation, to machine learning
model comparison and final system validation. It is designed to establish a replicable and scalable
pipeline for adaptive control in 3DCP.

Figure 1.1: the workflow diagram of methodology

Page 17

Step 1: Data Collection through Prototype Printing
A series of overhang prototypes are printed at varying speeds using a WASP LDM extruder (3 mm
nozzle diameter) mounted on a UR5 robotic arm as dataset. Two Raspberry Pi Camera Module 3 units
are mounted on either side of the extruder, focusing on the nozzle to capture pairs of top-view images
at regular intervals as shown in Figure 1.2.

Figure 1.2: Experiment setting of 3DCP.

To generate a diverse dataset, two parameters were systematically varied during printing: the robotic
arm’s movement speed (RAMS) and the overhang inclination angle (Table 1). The speed was adjusted
to 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10% of the base speed. For each speed
setting, overhangs were printed at angles of 130°, 140°, 150°, and 160°. These combinations resulted
in a various extrusion outcomes, including both successful and failed prints, which were used to train
the ML model.

Page 18

Figure 1.3: A dataset that needs to be collected with varied printing speeds and inclined angles.

Step 1.1: Evaluation and Benchmarking
The printed prototypes are evaluated based on two criteria: extrusion quality and overhang success.
Key indicators include shell thickness and the horizontal interlayer contacting area.

Extrusion quality was assessed by shell thickness (Figure 1.4). It was classified into three categories:
under extrusion (label 0), good extrusion (label 1), over extrusion (label 2). The prototypes that
matched the nozzle diameter (3 mm) were used as the standard benchmark and labeled as the
optimum (good extrusion) extrusion. The remaining ones were sorted from very thin (under
extrusion) to very thick (over extrusion) (Ding et al., 2025).

Figure 1.4: Extrusion label categories demonstration according to shell thickness (Top view)

Page 19

Figure 1.5: Extrusion label categories demonstration according to general quality (elevation view)

Overhang success was evaluated based on the printing completeness and form accuracy of the printed
prototypes (Figure 1.6). The outcomes were also categorized into three classes. A print was labeled as
safe (label: 0) if it completed successfully and maintained its intended shape without noticeable
deformation. Prints that were completed but showed signs of sagging or visible distortion in overhang
curvature were classified as at risk (label: 1). If the structure collapsed during the printing process or
failed shortly after completion, it was labeled as unsafe (label: 2). This qualitative classification
helped differentiate overhang performance levels based on observable physical outcomes.

Figure 1.6: Overhang label categories demonstration

Page 20

To refine this classification and support the visual evaluation, the horizontal interlayer contacting area
served as a key visual indicator of overhang success. This area, defined as the horizontal overlap
between two adjacent layers, especially in the unsupported segments of the inclined overhangs. It is
expected that the ML model will rely on such visual cues to distinguish between safe, at-risk, and
unsafe overhang categories. Based on visual estimation and cross-referencing with physical printing
outcomes, the classification is further guided by the ratio between the horizontal interlayer contacting
area and the shell thickness. When this ratio falls below 50%, the print is typically categorized as
unsafe due to insufficient bonding between layers. Ratios between 50% and 60% indicate a higher risk
of deformation, placing the print in the at-risk category. A ratio exceeding 60% generally suggests
sufficient interlayer adhesion, corresponding to a safe and stable overhang print.

Step 1.2: Image and data Collection
During the printing process, images from both cameras are recorded and synchronized with relevant
G-code parameters, printing speed. Image pairs are corrected for perspective distortion and merged
into single composite images. These are then augmented using techniques such as rotation, mirroring,
scaling, brightness variation, and normalization (Figure 1.7). Corresponding CSV files store the
synchronized visual data and G-code settings.

Figure 1.7: Examples of images after augmentation

Step 2: Dataset Labelling
The resulting dataset is labeled according to extrusion quality (three classes: under-extruded, well-
extruded, and over-extruded) and overhang safety (three classes: safe, at risk and unsafe). These labels
are derived from physical measurements and visual assessments performed in Step 1.1.

Step 3: ML Model Training and Evaluation

Two ML models are trained on the labeled dataset from Step 2 and evaluated to identify the most
suitable approach for defect detection in clay-based overhang printing.

The first model is based on the ResNet-56 architecture with integrated residual attention modules

Page 21

(Wang et al., 2017), previously used in AM for flow control (Brion & Pattinson, 2022). The second
model is a hybrid architecture that replaces the front portion of ResNet-56 with a pre-trained DINOv2
ViT-S/14 vision transformer backbone from Meta AI, retaining the original ResNet structure for the
final layers. Both models are trained using identical datasets to ensure a fair comparison in
performance.

To support multi-objective learning, both models adopt a two-head neural network architecture, in
which a shared feature extractor branches into two separate output heads. One head is trained to
classify extrusion quality (under-, good-, or over-extrusion), while the other predicts overhang success
(safe, at risk, or unsafe). This structure allows the model to jointly optimize predictions for both
extrusion and overhang performance based on shared image features.

To enhance ML model’s interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM) is
applied. This visualization tool focuses the most influential regions in each image used for prediction.
It provides transparency in the model’s decision-making process and enables users to understand
whether the system is focusing on relevant visual cues.

In this context, extrusion quality directly impacts overhang stability. Excessive extrusion can lead to
sagging or a bloated overhang shape with inaccurate curvature. While it may increase the horizontal
contact area between layers, it also raises the risk of deformation or even collapse due to the added
weight and uncontrolled material spread. Conversely, under-extrusion results in insufficient material
deposition, weakening interlayer adhesion. In extreme cases, this leads to premature failure, as freshly
extruded material can no longer adhere to the preceding layer. Therefore, maintaining an appropriate
extrusion rate is critical not only for achieving good surface quality, but also for ensuring the
structural integrity of inclined or unsupported overhangs.

The ultimate goal of the ML model is to identify visual features for both shell thickness and horizontal
interlayer contacting area, which can then be used to infer whether the print parameters need
adjustment. The contacting area is influenced by both shell thickness and the inclined angle of the
overhang. To simplify real-time correction during actual printing, this study limits the number of
controllable variables by keeping both the layer height and the inclined angle constant. Under the
assumption that both the extruder motor speed and the air pressure also remain constant, the shell
thickness becomes a function of the extruder nozzle movement speed, which is the RAMS. The
relationship is defined as follows:

Where:
V = volume of extruded material per unit time
Q = extrusion rate (constant)

Page 22

Δt = unit printing time
h = layer height (constant)
w = shell thickness
L= v⋅Δt = print length in unit time
v = robotic arm movement speed (RAMS)

Rearranging the equation yields:

This shows that shell thickness w is inversely proportional to the RAMS v, assuming a fixed extrusion
rate Q and layer height h. However, in real-world printing scenarios, the effective volume of deposited
material also depends on material intensity, which is a property affected by clay density, viscosity, and
moisture content. A denser or more viscous clay mixture may reduce the actual spread or deposition
volume even if the extrusion rate remains constant. To account for this conceptually, a material-

dependent correction factor ρm could be introduced, yielding a more general form:

Where ρm represents the material intensity factor.

Nevertheless, due to the absence of real-time tools for measuring this factor in the current
experimental setup, this study adopts a simplified model by assuming ρm = 1. This allows shell
thickness to serve as a reliable visual proxy for deposition performance. Therefore, the ML model is
trained to learn the visual relationship between RAMS and shell thickness. This enables the system to
adaptively adjust RAMS in real time based solely on image-based feedback, thus maintaining print
quality and overhang structural printability.

Step 4: Implementation of a Closed-Loop System
Based on the trained model’s predictions, a real-time correction mechanism is developed to
dynamically overwrite the RAMS within the URScript.

URScript is the scripting language used by Universal Robots to control robotic arms. It manages
movement commands, I/O operations, and basic logic execution. In this study, URScript is used to
modify the RAMS in real time based on feedback. Its flexibility allows speed adjustments to be
applied directly during the printing process, which is essential for implementing responsive control.

The core logic of this closed-loop control system is built around maintaining an appropriate shell

Page 23

thickness, which serves as a proxy for ensuring both structural stability and material efficiency. When
the ML model detects extrusion anomalies, such as over-extrusion or under-extrusion, it sends
adjustment commands to update the RAMS accordingly, allowing the system to correct the print in
real time without manual intervention.

To enable such real-time corrections, the system must establish stable and low-latency communication
between three key components:

• Vision System: Two Raspberry Pi Camera Module 3 units are responsible for capturing top-
view images during printing. These units continuously stream image data to PC via Ethernet.

• ML Model Host (PC): A local PC receives the image data, performs inference using the
trained ML model, and determines whether a correction in speed is needed based on detected
deviations in shell thickness or interlayer contact.

• Robotic Control Environment (UR5 Teach Pendant): The teach pendant runs the URScript
and interfaces directly with the UR5 robotic arm. It receives updated RAMS values from the
PC via TCP/IP socket communication.

To support this closed-loop workflow, the communication pipeline is implemented using TCP/IP
socket programming. Initially, the PC sends the URScript to the UR5 controller to initiate printing.
During the print, images are captured approximately every 10 seconds and sent to the PC. The ML
model processes each image on PC, and if necessary, sends updated velocity commands from PC to
the robot controller. A wired LAN network connects all components, optimized to reduce latency and
packet loss to ensure reliable operation.

Together, this setup forms the foundation of the real-time closed-loop calibration system, allowing
visual feedback to directly influence robotic motion in a continuous and responsive manner.

Step 5: Final Validation
Once the closed-loop system is in place, its effectiveness will be validated by printing a new overhang
prototype and, later, applying the method to different overhang design or larger-scale geometries. This
step will verify whether the adaptive model can generalize to different design configurations and
maintain reliable performance under changing conditions.

Page 24

Page 25

2. Research by design and experimentation

2.1 Experiment setup
This study was conducted using a robotic 3DCP setup composed of a Universal Robots UR5 arm
integrated with a WASP LDM extruder (3 mm nozzle diameter). A custom Grasshopper-based slicing
workflow was used to generate printing path, which were executed by the UR5 robot via TCP sockets
through URScript commands.

A custom slicing tool was developed in Grasshopper, a visual programming environment embedded
within Rhinoceros 3D software. The printing path generated by slicing tool was converted into
URScript commands and executed on the UR5 via TCP socket communication. TCP sockets provide a
reliable protocol for data exchange over local networks, allowing the PC to communicate directly with
the UR controller by sending movement commands real time.

For visual monitoring and dataset generation, two Raspberry Pi Camera Module 3 units (max
resolution: 4606 × 2592 pixels) were mounted on a lightweight, adjustable frame positioned on either
side of the extruder at an angle of approximately 10° from the horizontal. The cameras were
connected to a Raspberry Pi 5 and synchronized to capture images at fixed 0.7-second intervals. The
PC is used to download logged data for database construction and transfer real-time images during the
calibration process. All devices are interconnected via a local network through a router as shown in
Figure 2.1. The entire setup, including extruder mount and camera frame system, was custom
fabricated by PLA 3DP to ensure adaptability for experimental control (Figure 2.2). The setup design
emphasized experimental flexibility, allowing quick adjustments to camera angles, camera height, or
mounting positions.

Figure 2.1: Diagram of the hardware connection architecture.

Page 26

Figure 2.2: extruder mount and camera frame system, custom-fabricated by PLA 3DP

2.1.1 Hardware setup

2.1.1.1 Material
Clay Preparation and Moisture Control

In this study, the preparation of clay was a crucial step directly affecting the stability and quality of
the 3DCP process. The clay material used was PRAI 3D (a stoneware formulated for AM), supplied in
5 kg packages with a manufacturer-indicated water content of approximately 22% by weight. Despite
this nominal ratio (equivalent to 1.1 kg of water per 3.9 kg of dry clay), the actual moisture level
required further adjustment based on its extrudability under the specific conditions of my printing
setup.

To improve consistency and flow through the extruder, additional water was incrementally added
following guidelines provided in the LAMA Lab in-house manual (LAMA lab is a laboratory for
Additive Manufacturing in Architecture within the Faculty of Architecture and the Built Environment
in Delft University of Technology). In general, adding 100g of water to the base mixture proved
effective in enhancing the material's workability. However, precise moisture control remained a
persistent challenge throughout the experiment. Due to the clay’s natural variability and sensitivity to
environmental factors (such as ambient humidity and storage duration), it was nearly impossible to
replicate identical mixture conditions across different batches (Figure 2.3).

Page 27

Figure 2.3: clay preparation with manual mixing process

Small deviations in the water ratio had noticeable effects on the printing process (Figure 2.4). When
the clay mixture was too dry, it resulted in increased internal resistance, leading to clogging of the
extrusion nozzle and occasional motor stalls due to excessive backpressure. Conversely, an overly wet
mixture reduced the material’s shape stability, causing the printed layers to collapse or deform under
their own weight. These failures often required disassembling and cleaning the extruder, manually
remixing the material, and re-calibrating the system—operations that were both labor-intensive and
time-consuming.

Figure 2.4: clay extrusion changes in one prototype printing due to slight clay mixture changes

Through empirical testing, it was determined that an optimal water-to-clay ratio ranged between 23%
and 24% by weight, depending on environmental conditions and time since packaging. This range
corresponded to an additional 100–150 grams of water per 5 kg batch (Figure 2.5) and provided a

Page 28

balance between ease of extrusion and shape stability after deposition. Therefore, maintaining an
optimal water-to-clay ratio was identified as a key parameter for achieving reliable and high-quality
prints. While efforts were made to keep this ratio as consistent as possible, the inherently variable
nature of clay posed ongoing limitations to repeatability and process control.

Figure 2.5: Clay mixture package information

2.1.1.2 Robots selection & Connection
A key component of the methodology is the selection and configuration of suitable hardware to
support the intended system responsiveness, adaptability, and scalability.

Printer Selection: Delta WASP 40100 LDM printer vs. Robotic Arm 3DP
Initial experiments were conducted using the WASP 40100 Delta printer (Figure 2.6), a three-axis
LDM 3D printer, due to its ease of setup and adequate build volume for early-stage prototyping.

However, this system imposed significant limitations during the transition toward real-time parameter
control. Specifically, the WASP’s closed firmware, which refers to proprietary software that cannot be
modified or accessed. This issue prevented direct intervention in print parameters such as printing
speed during runtime, making integration with an external feedback system unfeasible.

Additionally, the WASP printer operates with only three degrees of freedom (DOF), allowing
movement along fixed X, Y, and Z axes without any rotational control. This restriction limits toolpath
customization and dynamic nozzle orientation. As a result, the nozzle cannot be reoriented in response
to complex geometries or toolpath requirements, which reduces the system's flexibility and
monitoring accuracy, particularly in printing overhangs or curved features.

Page 29

Figure 2.6: WASP 40100 Delta printer (left) & printing set up (right)

To overcome these constraints, the research transitioned to a six-degree-of-freedom UR5 robotic arm
paired with the WASP LDM extruder. This setup allows for both translational and rotational motion,
providing greater freedom to adapt the toolpath and nozzle orientation dynamically. The ability to
control nozzle orientation helps maintain tangency along complex circular paths, which is critical for
monitoring curved overhang printing. This strategy will be discussed further in Section 2.1.2.2.

Although the UR5 system does not increase the physical print volume, it offers motion capabilities
that closely resemble those of future construction-scale 3DCP systems, such as six-axis gantry robots.
This makes the current setup a more scalable and forward-compatible platform for developing closed-
loop fabrication workflows.

Robot Selection: COMAU NJ60 vs. UR5

COMAU NJ60:

Initially, the COMAU NJ60-2.2 industrial robot was selected for its robust load capacity and extended
reach, suitable for medium-to-large-scale prototypes.

(1) Extruder frame design for COMAU

A custom clay tank frame was designed in four configurations as shown in Figure 2.7, with the final
version utilizing a dual-metal plate connection, fabricated through the Maquettehal workshop (The
model hall with model-making facilities in the Faculty of Architecture and the Built Environment in
Delft University of Technology).

Page 30

Figure 2.7: Four frame designs and related connection designs for clay extruder

Figure 2.8: Extruder frame design and real-life setup for COMAU

(2) Robot Control for COMAU in 3DP

A custom slicing script built in Grasshopper was used to convert overhang geometries into 6-axis
toolpaths. The slicing workflow begins with defining the overhang geometry and layer height as input
parameters. The model is then sliced horizontally to generate contour lines along the Z-axis. Using the
Termite plug-in, these contour lines are converted into a continuous spiral path to avoid layer seams,
meanwhile exporting this spiral path into G-code (Figure 2.9). G-code is a standardized numerical
control language used to instruct the 3D printer or robot on precise movements, speeds, and toolpath
trajectories during the printing process.

Page 31

Figure 2.9: A custom slicing script built in Grasshopper to generate G-code

The G-code file was then imported into RoboDK, which generated corresponding motion trajectories
and converted them into COMAU-compatible PDL2 code for execution by the robot controller
(Figure 2.10). PDL2 code, is the native language required by COMAU controllers.

Figure 2.10: Diagram of the proposed connection and data exchange workflow

Attempt to Enable Closed-Loop Real-Time Speed Control

To enable a closed-loop control system with real-time speed adjustment, it was necessary to establish
a stable, two-way communication channel between the PC and the COMAU C5G controller. An
Ethernet cable connected the user’s computer to the internal PC of the COMAU controller,
specifically through the ETH2 port located on the Advanced Processing Controller (APC) module.
However, establishing this live connection for dynamic speed adjustment proved to be a complex and
ultimately unresolvable challenge. Three attempts were made to solve this problem, but all ultimately
failed due to the constraints of the available hardware and software.

Plan 1: RoboDK + TCP/IP Communication

The first method involved using RoboDK as the communication interface between the PC and the
COMAU controller. The system was configured by setting the robot's IP address (192.168.0.130)
within RoboDK and matching it with the settings accessed via the Teach Pendant. The default port

Page 32

used was 21 (FTP), and the remote path was set as /UD:/usr, using apicomau.py as the driver script. A
successful ping confirmed that the network configuration was correctly established as shown in Figure
2.11.

Figure 2.11: the screenshot from Robo DK shows successfully connection via port 21

While FTP-based file transfer allowed for uploading and downloading .PDL and .COD files, it did not
support real-time control or feedback. More advanced capabilities—such as live position tracking and
motion override—require connection via a TCP/IP control port (typically port 1301 or 5025), which
utilizes the DV_CNTRL API for command execution.

Attempts to activate this functionality using RoboDK’s provided service driver failed. Running the
driver resulted in the following error on the Teach Pendant:

40040/4: RoboDKdriver(101)/; DV_CNTRL operation error 30971

According to RoboDK’s technical support and documentation, this error indicates that the controller
does not have the required network communication license to use DV_CNTRL. This is a hardware-
locked feature that cannot be enabled by the user and requires assistance from COMAU technical
representatives. Communication with COMAU support confirmed that the controller did not support
real-time DV control in its current configuration. Their internal tests also confirmed that remote
control via RoboDK was not available unless the controller was upgraded with a new cabinet (C5G+)
and the relevant software license—a process estimated to cost approximately €13,000 for the
hardware and an additional €2,500 for the software.

As a result, while FTP-based deployment was successful (i.e., programs could be saved directly to

Page 33

/UD:/usr), the workflow still required manual loading of the files into RAM (Prog environment) via
the Teach Pendant. This manual step can’t meet the requirements for real-time, programmatic control
necessary for a closed-loop system.

Plan 2: Direct PDL2 Programming with TCP/IP

The second approach explored the use of native PDL2 scripting with TCP/IP communication,
bypassing RoboDK entirely. This method involved writing custom routines in PDL2 that leveraged
the DV_CNTRL function to open and manage TCP sockets for live data exchange.

The following sample code illustrates the intended communication logic:

Despite the simplicity of the routine, successful execution again depended on the DV_CNTRL
function being available. As with Plan 1, this function was disabled on the current C5G cabinet, and
activation required additional licensing. Without the ability to open TCP connections natively, this
method was also deemed infeasible.

Plan 3: COMAU Open Controller Software

A third option involved using COMAU’s proprietary Open Controller software, which is specifically
designed to support external real-time control and advanced robot-program interaction. However,
after consultation with the local COMAU representative, it was confirmed that the existing cabinet
(C5G) was too outdated to support the Open Controller platform. Upgrading to the compatible C5G+
cabinet, along with the purchase of the Open Controller license, would require substantial financial
investment, beyond the available budget.

Given the consistent failure of all three methods to enable real-time control on the COMAU system
within the available resources and timeline, the project switched to use a UR5 robotic arm. Although
it has a smaller reach and payload capacity compared to COMAU (which limits the size of printed
geometry), the UR5 offers built-in support for remote TCP/IP communication, easier manual control
via teach pendant, and real-time script execution compatibility, making it more suitable for research

Page 34

and iterative testing.

UR5:

(1) Extruder frame design for UR5

A fully customized, lightweight frame was 3D printed in PLA to mount the clay tank and camera
system. The frame includes an adjustable sliding hook mechanism that enables flexible tuning of the
camera angle and height to accommodate the need for initial adjustment based on nozzle position.

(2) Robot Control for UR5 to 3DCP

To implement robotic 3DCP with real-time process control, a customized workflow (Figure 2.12) was
developed based on the Universal Robots UR5 robotic arm.

Figure 2.12: Diagram of the real-time calibration system program structure with hardware setting.

The slicing of prototype geometries was performed using a custom Grasshopper script (Figure 2.13).
The generated paths are then segmented into motion planes and converted into URScript commands
using the Robots Plugin. The final output is a .script file in URScript format, which defines a series of
Move j instructions that govern the movement trajectory of the UR5 robot during the printing task. To
implement real-time control of the robot's speed during execution, three strategies were investigated
in combination with TCP/IP socket communication between the PC and the robot controller.

Page 35

Figure 2.13: Workflow diagram showing custom slicing and URScript generation in Grasshopper

Challenges and Real-Time Control Solutions
(1) Challenge 1: URScript Size Limitation

During initial testing, short programs written in UR Script containing a limited number of Move j
commands could be successfully transmitted and executed by the UR5. However, once the number of
motion commands exceeded approximately 2,500 lines, the robot stopped responding without
displaying any error, giving the false impression that the script had been uploaded and initiated
correctly.

Two primary causes are suspected: (1) the total script size may exceed the UR5’s internal buffer
capacity (estimated at ~75 KB), and (2) the number of sequential Move j instructions may exceed the
permitted execution queue size, especially when streamed over Port 30003.

To address this issue, two script optimization strategies were explored:

Plan 1: Use of a For Loop

This approach aimed to reduce the script size by using a for loop inside the URScript. Rather than
sending each motion command individually, all target positions were stored as a list in a CSV file, and
then iterated using a for loop structure. This significantly reduced the number of lines in the script
while preserving full control of the printing geometry.

However, this method was unsuccessful. The script still failed to upload properly, and the UR5
remained unresponsive. It is suspected that the for loop is processed on the PC (Python) side before
the entire script is transmitted to the UR controller, meaning the UR still receives a long script in full,
defeating the purpose of the loop-based optimization.

Plan 2: Script Chunking with Delayed Transmission
The successful method involved breaking the script into smaller chunks and transmitting each one
with a brief delay in between. This kept the size of each transmitted segment within a few kilobytes

Page 36

and allowed the robot sufficient time to receive and process each chunk before the next one arrived.

The delay was introduced to give the UR5 controller adequate time to parse and buffer the script
content, avoiding packet loss or timeouts caused by overwhelming the system with large scripts all at
once. This reduced both network and processing loads by transmitting the script gradually and
smoothly, rather than overwhelming the controller with a large file in a single burst.

Importantly, this delay was implemented only on the Python client side and had no impact on
URScript execution timing. The robot begins execution only after receiving the complete script along
with the program end marker. Even when transmitted in chunks, the UR5 caches the entire script
before execution begins.

Therefore, this chunked transmission method, which executed successfully in the experiment and does
not affect the continuity of 3D printing, was adopted as the final and effective solution.

(2) Challenge 2: Real-Time Speed Control

A series of methods were tested to achieve real-time adjustment of the robot’s movement speed during
the printing process. In the field of robotics, particularly with Universal Robots (UR), real-time
control of robot velocity has been explored in several domains beyond AM, including surgery,
polishing, and human–robot interaction (HRI).

For example, Fontúrbel et al. (2023) used URScript’s speedL command to send velocity vectors to a
UR3e robotic surgical assistant at 125 Hz, allowing smooth real-time TCP speed adaptation based on
force feedback. Similarly, Muñoz et al. (2021) demonstrated that speedJ (joint-space) and speedL
(Cartesian-space) commands were effective for real-time control in an endoscopic surgery assistant.
They streamed velocity updates every 8 ms to achieve adaptive motion.

In the HRI domain, Van Oosterwyck (2018) adjusted a UR10’s speed in real time via the speed slider
rather than resending Movej commands, which could cause abrupt motion. By programmatically
setting the speed slider fraction between 0 and 1, smooth transitions were achieved without
interrupting the trajectory. In a polishing task on a UR3, Pérez-Ubeda et al. (2020) used velocity-
mode control with periodic updates to maintain stable force contact, showing how speed can be
adapted mid-process for continuous material processing.

These examples suggest that frequent velocity updates, either by direct speedL/speedJ commands or
by adjusting the global speed scaling, are effective approaches for maintaining smooth and responsive
robot motion in real time, a principle this study adopts.

Plan 1: Speed Control via Grasshopper-Robots Plugin
In this approach, the printing script was generated and executed using the Robots Plugin within
Grasshopper. Speed values were defined as variables within the toolpath generation, and could

Page 37

theoretically be adjusted in real time during printing. However, due to latency in command
transmission from the PC to the UR controller, each speed update caused the robot to revert to a
previous waypoint and restart the movement with the new speed. This unexpected behavior resulted in
overlapping motion and damaged printed layers, making this method unsuitable for continuous
printing.

Plan 2: Python Script + Socket Communication (speed_slider_set_override)
To avoid dependency on Grasshopper’s plugin, a new method was implemented using Python
scripting. The entire Move j toolpath, initially generated in Grasshopper, was exported into a .script
file. This URScript file was loaded and executed by the UR controller via TCP port 30003. In parallel,
a Python script on the PC was connected to the robot via dashboard port 30002, from which real-time
speed adjustment commands were sent using the speed_slider_set_override() function.

Although the script executed successfully and the PC could send and receive basic commands (e.g.,
stop), the robot did not respond to the dynamic speed change signals. This indicated that while the
connection was established, the command interface lacked the authority or synchronization to update
the controller’s internal state mid-execution.

Plan 3: Real-Time Script Segment Streaming
A third method attempted to bypass static script uploading by streaming smaller script segments to the
robot in real time, thereby allowing updated speed values to be embedded directly before each motion
instruction. However, this approach conflicted with UR’s internal motion planning mechanism, which
requires pre-loading a complete trajectory for smooth execution. As a result, the robot exhibited jerky,
intermittent motion, pausing between each new command batch, which is incompatible with the
smooth, continuous motion required for AM.

Plan 2+: Python Script + Socket Communication via runSlow()

As a final and successful method, the system retained the basic structure of Plan 2 but modified the
speed control mechanism. Instead of using the dashboard speed_slider_set_override() function, the
control was shifted to the Teach Pendant interface, where the Python script sent the runSlow(speed)
function via TCP port 30002. This function directly controls the speed slider on the pendant, allowing
real-time adjustments to the robot's velocity during program execution.

This method proved effective. When the user changes the speed percentage in the Python script
running on the PC, the robot controller’s speed slider reflects the updated value instantaneously, and
the UR5 adjusts its motion speed accordingly without interrupting the ongoing print. This solution
was ultimately adopted as the core mechanism for implementing the closed-loop real-time calibration
system in the UR5-based clay printing workflow.

Page 38

Challenge 3: Joint motion Mode Selection for Consistent TCP Speed & circular path

In robotic 3DCP, the selection of Joint motion mode in URScript plays a critical role in maintaining
consistent tool center point (TCP) speed and path fidelity, These are both essential for ensuring high-
quality extrusion and avoiding defects such as over-extrusion or under-extrusion. Unlike other robotic
tasks, 3DCP requires smooth, uninterrupted motion at a constant speed to guarantee even material
deposition and layer adhesion. Therefore, evaluating different UR motion modes was a key step in
developing a reliable printing workflow. URScript supports several motion types, including Movej
(joint motion), Movel (linear Cartesian motion), Movep (constant-speed Cartesian process motion),
and Movec (circular Cartesian motion), each with distinct characteristics.

Plan 1: Movej (Joint Motion)
The Movej command moves the robot by interpolating joint angles. It defines robot poses via six joint
positions and moves the robot through a nonlinear path between waypoints.

Syntax:

movej(q, a, v, r=0)

q: list of 6 joint angles [rad]

a: joint acceleration [rad/s²]

v: joint speed [rad/s]

r: blending radius [m] (optional, for smoothing)

It is the fastest and most commonly used motion type, suitable for free-space movement. While it
does not guarantee a constant TCP velocity, Movej was adopted in this project due to its robustness
and execution reliability.

To improve path smoothness, the project used a “Move Arch” strategy, applying Movej with blend
radii between waypoints.

Syntax:

movej(joints, a, v, r=blend)

This allowed the robot to create smoothed transitions between points, emulating arc-like curves
without switching to Cartesian motion modes. Among all tested methods, this plan consistently
produced successful prints.

Importantly, Movej does not maintain a constant TCP speed by default, with slight speed change
between certain segments. However, it was considered the most reliable option under current time and
system constraints in this project.

Page 39

Plan 2: Movep (Process Motion)
The Movep command is designed for applications where the robot must maintain a fixed TCP speed
through a series of Cartesian waypoints, which is ideal for 3DP.

Syntax:

movep(pose_to, a, v, r)

pose_to: target TCP pose [x, y, z, rx, ry, rz]

a: Cartesian acceleration [m/s²]

v: Cartesian speed [m/s]

r: blend radius [m] for smoothing transitions

However, movep requires Cartesian pose inputs (not joint angles), so a forward kinematics model
using UR5's Denavit–Hartenberg (DH) parameters was implemented in Python to convert joint angle
CSV files into [x, y, z, rx, ry, rz] poses.

Despite the technical setup, this plan failed during execution. The converted paths often rotated out of
the desired print plane or collided with the print surface, indicating either misalignment of coordinate
frames or incorrect TCP offset transformations. These issues prevented successful deployment of
Movep under project time constraints.

Plan 3: Movec (Circular Motion)
Movec enables circular path interpolation between two TCP poses (via and to). It’s ideal for drawing
arcs or curved paths with a constant TCP speed.

Syntax:

movec(pose_via, pose_to, a, v, r)

pose_via: intermediate TCP pose [x, y, z, rx, ry, rz]

pose_to: target TCP pose [x, y, z, rx, ry, rz]

a: Cartesian acceleration [m/s²]

v: Cartesian speed [m/s]

r: blend radius [m] for smooth transition

Similar to Movep, it requires Cartesian input and relies on accurate spatial alignment. A Python

Page 40

function was developed to pair waypoints and output movec(via, to) commands with specified speed
and blend radius.

However, testing revealed unexpected behavior: the robot's tool rotated incorrectly or followed
circular paths in the wrong orientation. This likely stemmed from inconsistent pose transformations or
extruder frame offsets, making the method impractical within the available timeframe.

Conclusion and Adopted Strategy
After evaluating all options, Movej with blend radius (Move Arch) was selected for this project. It
offered sufficient control and smoothness while avoiding the Cartesian conversion errors encountered
with Movep or Movec. However, the disadvantage of slight change in TCP speed still remains.

If time permits in future work, future development should revisit Movep or Movec with a refined
kinematics pipeline, allowing the robot to follow accurate Cartesian paths with true constant velocity,
which remains the ideal approach for high-fidelity AM.

2.1.1.3 Camera setup
Two Raspberry Pi Camera Module 3 units were simultaneously connected to a Raspberry Pi 5 and
synchronized to capture images at the same timestamp. Additionally, data of the robotic arm's
movement speed during image capture was recorded, ensuring accurate matching between image
timestamps and movement data.

The cameras were mounted on a custom-designed PLA arm fabricated using FDM 3DP. Each camera
was angled from above to view the printing area on either side of the nozzle tip (Figure 2.14),
enabling coverage of both left and right sides of the printing process.

This top-down, oblique mounting configuration was intentionally selected to ensure that at least one
camera maintains visibility of the freshly printed structure regardless of the nozzle’s direction of
movement. Specifically, to monitor interlayer adhesion and overhang characteristics, a top-down view
is essential. Side-view configurations would result in visual blocking when the nozzle moves behind
the printed part, obstructing critical regions of interest during extrusion.

Page 41

Figure 2.14: A comparison between the experimental setups and the images captured during the pre-
research (up) and current research (down), showing side and top views respectively.

2.1.2 Software setup

2.1.2.1 Camera Calibration and Image Rectification
To ensure the consistency and generalizability of the dataset used for training ML models, the two
images captured simultaneously by the raspberry pi camera system were geometrically transformed
and merged into a unified overhead view with corrected perspective distortion. This rectification
process standardizes all collected data into a consistent spatial layout, compensating for the original
tilt angles and mounting positions of the cameras to be approximate a top-down orthographic view
(Figure 2.15). It minimizes perspective effects that could otherwise bias feature detection and
geometric interpretation.

Page 42

Figure 2.15: explanation of top-down view rectification

Such transformation is essential for reproducibility. If raw perspective images were used directly, any
future replication of the system would require the cameras to be placed in exactly the same positions
and orientations to maintain visual consistency across datasets, which is hard to achieve. By contrast,
applying homography-based rectification ensures that new users can reproduce the dataset structure
by simply applying the same calibration parameters, without needing to replicate the exact physical
setup. This approach significantly enhances the portability and reusability of the trained ML model
across slightly different position and angle of camera setup.

To achieve pixel-level alignment of dual-camera images captured from top and bottom views, a
custom calibration procedure was implemented using OpenCV library(OpenCV). A physical
checkerboard pattern with known geometry (7×3 inner corners, with each square measuring 50 mm)
was used as the calibration target. Calibration images were taken simultaneously from both Raspberry
Pi cameras.

Chessboard Corners finding and image Warping
To geometrically align images captured from different viewpoints, a homography-based calibration
was conducted. First, subpixel-accurate checkerboard corners were detected using OpenCV’s
findChessboardCorners and cornerSubPix. For each camera view, a homography matrix H was
estimated via cv2.getPerspectiveTransform, mapping the detected 2D image points to an ideal
rectified plane. This homography defines a projective transformation between two planes, expressed
as:

Page 43

To ensure that the rectified image occupied a valid region in the output coordinate system, the warped
boundary was computed and shifted using a translation matrix. The combined homography was then
applied to the full image using cv2.warpPerspective, followed by cropping based on the warped
checkerboard region. This calibration step yields a consistent transformation matrix and scale factor
(Figure 2.16), which are later reused to process new images without checkerboards by warping,
scaling, aligning, and merging them into a unified top-down view.

Image Cropping
To isolate the region containing only the checkerboard, a second perspective transform was applied
based on extended corner points, estimated by shifting the outermost corners outward by one grid
width. This crop ensured that only the valid, rectified region was retained.

Image Aligning
The grid size in pixels was then computed for both views, and the left image was scaled accordingly
to match the grid size of the right image. The two cropped and scaled images were finally merged into
a single top-down composite by aligning a reference point (nozzle tip point coordinate) between the
two views.

Save Calibration parameters
This calibration procedure yields not only rectified and aligned images but also reusable
transformation parameters (.npz file), including homography matrices, crop regions, and scale factors.
These parameters were subsequently applied to new images without checkerboards, enabling
consistent alignment across the dataset.

Figure 2.16: Demonstration of the steps for stitching images

Page 44

In this study, two calibration target patterns and OpenCV detection methods were evaluated to
determine the most robust approach under the specific imaging conditions produced by the Raspberry
Pi Camera Module 3.

Grid Pattern Selection and Detection Method Evaluation

Two calibration target types were tested: a standard checkerboard grid (square corners) and a circular
dot grid. Correspondingly, two OpenCV functions: cv2.findChessboardCorners and
cv2.HoughCircles, were compared. In initial trials, the findChessboardCorners function failed to
consistently detect all corners in images captured by the Raspberry Pi camera. In many cases, only a
partial grid (e.g., 3×3) could be detected, while full pattern detection was only successful in images
taken with a mobile phone camera under similar lighting conditions. Conversely, when using a
circular dot grid, the HoughCircles function reliably detected all circle centers in Raspberry Pi
images.

Figure 2.17: comparison of corner detection accuracy between cv2.HoughCircles(left) and
cv2.findChessboardCorners (right) with detection color circles/ lines generated by code

This discrepancy likely stems from the inherent robustness of circular feature detection, which
depends on approximate parameters such as circle diameter and spacing. In contrast, checkerboard
detection relies on precise localization of corner intersections and the regularity of grid geometry.
While the circle grid allowed for more consistent detection, the geometrical accuracy of the detected
points was relatively low, leading to unacceptable distortions in the rectified images. Despite
incomplete detection in some cases, the checkerboard provided higher positional accuracy for
detected points, which is essential for accurate warping. Therefore, cv2.findChessboardCorners was
ultimately selected for the calibration and rectification pipeline.

Page 45

Image Quality Comparison and Hardware Limitations

Substantial variation was observed between images taken by the Raspberry Pi camera (right image in
Figure 2.18) and those captured by a smartphone (left image in Figure 2.18). Smartphone images
consistently produced better results due to their superior sharpness, higher contrast between black and
white squares, reduced glare, and more even lighting. These advantages stem from the smartphone’s
optical and image processing hardware: high-quality lenses with anti-reflective coatings, advanced
ISP modules, dynamic exposure control, and high-dynamic-range (HDR) techniques. By contrast, the
Raspberry Pi Camera Module 3 is a low-cost component with limited lens coating, basic image signal
processing, and a global exposure system. As a result, its images frequently suffer from glare
(particularly in the upper portion of the checkerboard), shallow depth of field, and image deformation
due to skewed perspectives, especially when the camera is placed close to the checkerboard.

Figure 2.18: corner detection test images taken by iphone(left) and by raspberry pi(right) with
detection color lines generated by code

Attempts to compensate for these issues included image sharpening, use of CLAHE (Contrast Limited
Adaptive Histogram Equalization), lighting adjustments, and autofocus/focal length tuning (e.g., using
AfModeEnum.Continuous and LensPosition). However, these modifications provided only marginal
improvements, and in some cases (e.g., over-sharpening), they caused the sub-pixel refinement step
(cornerSubPix) in the OpenCV pipeline to fail entirely. Additionally, hardware constraints limited
further enhancements, as the Raspberry Pi camera’s native resolution (4608 × 2592 pixels) had
already been set to its maximum.

Page 46

Rectification Strategy and Experimental Adjustments

Despite hardware limitations, adjustments to the experimental setup improved detection consistency.
It was observed that portrait-oriented images provided better detection results than landscape ones,
due to the reduction of extreme perspective distortion at the image bottom, where deformation is most
severe. Moreover, reducing the checkerboard’s cell size and positioning the pattern in the center-upper
region of the frame further mitigated issues with lens distortion and field-of-view compression.

By carefully controlling the camera angle to minimize tilt and keeping the nozzle tip visible, it was
possible to ensure detection of at least a 3×3 corner grid. While using only a small portion of the
checkerboard may reduce rectification accuracy—since the perspective transform is calculated based
on a limited number of reference points—our experiments showed that 4×4 corner detection was
sufficient to achieve acceptable top-down warping (see Figure 2.19).

Figure 2.19: Corner point visualization and debugging on the image taken by raspberry pi

Implications for Multi-Camera Image Stitching and ML Integration

The stereo camera system introduces additional complexity for ML applications. Images captured
from the left and right cameras must be accurately aligned and stitched to form a single top-down
view. However, any inconsistency in rectification, especially at the seam between the two views, may
affect the quality of the visual features used by ML models. This becomes critical if the stitched image
is adopted as the input for a trained model, as the performance is highly dependent on maintaining
consistency in camera positioning and transformation parameters.

Thus, while the current stitched image approach provides good spatial coverage and nozzle visibility,
it introduces a potential domain shift problem if the system is replicated under different physical or

Page 47

geometric configurations. This may affect model generalization and suggests that additional
robustness measures, such as domain adaptation techniques or spatially aware data augmentation, may
be required for future deployments.

Vibration-Induced Image Misalignment and Merging Errors

During image preprocessing, motor-induced vibrations were identified as a significant factor affecting
image clarity and consistency (Figure 2.20), which in turn influenced the accuracy of image merging
from the two Raspberry Pi cameras. Although the cameras were calibrated correctly using a flat
checkerboard target, periodic vibration, particularly during nozzle movement, caused minor shifts in
camera position and focus.

Figure 2.20: Example of a blurred image caused by motor vibration

Initial attempts to stabilize the camera system included several strategies:

1. Mount relocation: Cameras were relocated from the clay tank (PLA frame) to the robot arm to
reduce direct vibration from the extruder motor.

Figure 2.21: Demonstration of different camera arm mounting configurations.

Page 48

2. Foam insulation: Foam padding was added between the motor and its frame and between camera

joints to dampen mechanical resonance.

Figure 2.22: Foam padding position

3. Counterweights: Additional mass was added to both camera arms to absorb vibration.

Figure 2.23: Additional mass position

4. Motor tuning: The extruder motor’s rotational speed was carefully adjusted to minimize vibration;
interestingly, some higher speeds led to reduced vibration depending on resonance behavior.

5. Motor replacement: Finally, the original self-built motor was replaced with a commercial WASP
extruder motor, which provided significantly better mechanical stability and reduced vibration.

Page 49

Figure 2.24: Motor change comparison

While solutions 1–4 contributed to partial improvement, it was the implementation of solution 5 that
led to a major reduction in image distortion. However, some residual periodic vibration remained,
occasionally leading to small vertical misalignments between the two camera views. This resulted in
occasional inconsistencies in the merged images.

Figure 2.25: Good example of calibration parameters applied to dataset image

Page 50

Figure 2.26: Bad example of calibration parameters applied to dataset image

Figure 2.27: Example of a series of misalignment caused by vertical position change

Figure 2.25 shows a good example of successful image rectification, where the warped and cropped
images from both cameras align correctly to produce a unified top-down view. In contrast, Figure 2.26
shows a bad example where overlapping content appears in the merged output, suggesting
misalignment between the two input frames. This typically occurred when the extruder vibrated
during image capture, slightly altering the apparent vertical position of the nozzle or print geometry
(Figure 2.27). Although rare, these misalignments compromise dataset consistency and can affect ML
training if not handled.

Page 51

Camera Reassembly Sensitivity
One recurring issue in the experimental workflow is that each time the setup is reassembled, the
position of the cameras may shift slightly. Such variations, though minor, can affect the accuracy of
the image-stitching process, potentially degrading the quality of the merged top-view image used for
monitoring and model inference. Therefore, camera calibration must be repeated prior to each print
session following reassembly, using the procedure described in Section 2.1.2.1.
In future iterations, a more precise method could be implemented by calibrating the camera-to-nozzle
tip distance using laser range sensors or similar depth-measuring tools. This spatial data, in
combination with the known TCP coordinates, could be incorporated as auxiliary input to the machine
learning model. By doing so, the model would be able to compensate for geometric discrepancies
caused by reassembly or mechanical variation, thereby improving the model's robustness and
reducing the reliance on manual calibration or alignment procedures.

2.1.2.2 Robot program
Two nozzle control strategies were tested to evaluate the effect of tool center point (TCP) orientation
on both printability and image acquisition quality:

Figure 2.28: Option (2) Demonstration Left, Option (1) Demonstration Right

Page 52

(1) Nozzle Movement Without TCP Rotation
In this strategy, the nozzle follows the toolpath while maintaining a fixed orientation. Since the
camera is rigidly mounted along the nozzle axis, its viewing direction shifts relative to the print as
the nozzle progresses along curved paths, especially in circular or helical toolpaths. This results in
inconsistent top-view angles, which may affect ML model performance (Figure 2.28 right).

(2) Nozzle Movement With TCP Rotation
This strategy involves synchronizing the nozzle orientation with the toolpath curvature (Figure
2.28 left). At each waypoint, the UR5 robot is programmed to rotate the nozzle such that its axis
remains tangential to the circular path. This ensures that the nozzle continuously points toward the
center of curvature. Consequently, the camera maintains a consistent angle relative to the printed
geometry throughout the motion (Figure 2.29).

Figure 2.29: Demonstration of the sliced 3D printing path in Grasshopper (left), and comparison of
the TCP with and without rotation (right)

Benefits:
The consistent tangential orientation results in a stable camera viewing angle throughout the
printing process. As a result, this strategy may enhance the performance of ML models used for
calibration, as it preserves a consistent spatial relationship between the camera and the printed
geometry.

Page 53

Figure 2.30: Explanation of sudden rotations between layers

Challenges:

In practice, the robot encounters a significant discontinuity in orientation when transitioning
between layers. Specifically, a 180° rotation (Figure 2.30) is observed at the start of each new layer,
despite identical end-effector poses being provided at the end of the previous layer. This leads to
abrupt posture changes that can disrupt the printing process and introduce surface defects at layer
junctions.

This is not a limitation of URScript itself, but rather a result of the inverse kinematics (IK) solver
and internal motion planning algorithm used by the UR5 controller. The robot selects joint
configurations based on optimization heuristics, and without explicit control over pose continuity,
may choose mirrored solutions that cause sudden rotations between layers.

To diagnose the source of this issue, I verified that the end-effector poses (position and orientation)
supplied to the robot were identical at the end of one layer and the start of the next. Additionally, all

Page 54

waypoint planes extracted in Grasshopper were confirmed to have consistent upward-pointing
normal vectors, ruling out errors in the input geometry. These findings point to the robot’s internal
IK solver as the source of the issue. Due to time constraints, a full resolution of this issue was not
implemented.

2.2 Investigation of overhang print
An initial investigation was conducted on the current robotic 3DP setup with Self-made Motor to
evaluate its performance and make preparation for dataset creation. The first step involved tuning
several key printing parameters to match and sync with each other, aiming to ensure consistent and
smooth clay extrusion: tank pressure was set to 1 bar, the extruder motor speed was adjusted to 27–28
revolutions per minute (RPM), the robotic arm movement speed was tested within the range of 6–13
mm/s, and the clay moisture content was optimized accordingly. Subsequently, the printing level
height was calibrated within the Grasshopper script before initiating any test prints.

Through initial experimentation with the self-made motor setup, RAMS was systematically varied
from 6 mm/s to 13 mm/s to identify the optimal range that synchronizes material extrusion rate and
robotic motion, as shown in the Figure 2.31 below. At lower speeds (6–7 mm/s), the extrusion process
exhibited slight over-extrusion, where the clay material was deposited faster than the robot’s
movement, resulting in thicker shell layers than intended. In contrast, higher speeds (11–13 mm/s)
resulted in under-extrusion and discontinuities in the printed paths, indicating that the extrusion rate
could not keep pace with the arm movement.

The investigation pinpointed the optimal arm movement speed range between 8 mm/s and 10 mm/s,
where extrusion quality was most consistent. In this range, the extrusion rate closely matched the
RAMS, resulting in stable shell thickness that aligned with the nozzle diameter and produced
continuous, high-fidelity prints.

This finding highlights the delicate interplay between mechanical motion control and material flow
speed in robotic 3DCP. Maintaining this synchronization is fundamental to producing structurally
sound and dimensionally accurate prints, especially when printing overhangs and complex
geometries.

Page 55

Figure 2.31: Image of the initial test prints produced at RAMS values ranging from 6 mm/s to 13
mm/s.

2.3 Machine learning
As introduced in the methodology section, the current dataset collection primarily focuses on two key
printing quality parameters: extrusion quality and overhang success. Both parameters are critical for
assessing the structural integrity and visual fidelity of 3DCP prototypes.

Figure 2.32: Influencing factors of ML two parameters

Extrusion Quality is directly related to the shell thickness, which depends mainly on the nozzle
movement speed and is indirectly influenced by the robotic arm movement speed. Achieving the
optimal shell thickness ensures sufficient material deposition for robust layer adhesion without
causing excessive deformation from over-extrusion.

Overhang Success evaluates the stability and accuracy of printed overhang structures, and it is
affected by both the shell thickness and the interlayer contacting area, specifically the horizontal

Page 56

overlap between adjacent layers. The inclined angle of the overhang plays a crucial role here; larger
angles reduce the contacting area, making the structure more prone to sagging or collapse if the shell
thickness or adhesion is insufficient.

In this study, several parameters including inclined angle, layer height, air pressure, and motor speed,
are maintained as constants during real-time calibration and printing correction. By controlling these
variables as constants, the study can focus on investigating the multi-objective relationship between
extrusion quality and overhang success, optimizing the printing parameters within a constrained time
frame.

The ML model is expected to leverage visual cues related to shell thickness and interlayer adhesion,
reflected in extrusion quality and overhang success labels, to predict and optimize these multi-
dimensional printing outcomes.

2.3.1 Dataset generation
A real dataset was generated using the robotic 3DP setup equipped with a WASP motor, which
produces less vibration and thus improves image clarity. Key printing parameters were again tuned for
consistent and smooth clay extrusion: tank pressure was set to 0.24 MPa, the extruder motor speed
was set at an unknown constant value (extruder cleaning mode), and robotic arm movement speed
was tested across a range from 1 % to 10 % of base speed.

Printing issues during experiments that may influence the data consistency:

 Due to the small 1L clay tank, printing 2–3 prototypes required refilling the clay material, which
involved reassembling the tank to the frame. This process could slightly change the nozzle and
camera locations, necessitating camera calibration before each print.

 The 1L clay tank lacked perfect airtightness, sometimes causing air leaks and extrusion failures.
Air pressure had to be increased and adjusted to approximate normal extrusion conditions,
though slight deviations persisted, possibly affecting data accuracy.

 An unexpected issue occurred when one of the Raspberry Pi camera cables broke during
printing. A shorter spare cable was used, requiring replacement of the Raspberry Pi and
potentially altering the camera position.

2.3.1.1 Dataset collection
An extensive series of experiments (Figure 2.33) was performed to evaluate the robotic 3DCP
system's performance over four overhang angles (130°, 140°, 150°, and 160°) and a range of RAMS
from 1 % to 10 %.

For each condition, prints were evaluated based on extrusion quality and overhang success. Extrusion
was categorized into three classes (under, good, and over) based on observed shell thickness.

Page 57

Overhang success was classified as safe, at risk, or unsafe, according to form accuracy and structural
stability (refer to Section 1.1 for evaluation standards).

A total of 31,153 image pairs were initially collected.

Figure 2.33: Full dataset collection

2.3.1.2 Data filtering
Of the 31,153 image pairs, 12 prototypes printed using the self-made motor produced 12,633 strongly
blurred images caused by vibration; these were removed first. From the remaining 18,520 pairs,
approximately 470 images taken before printing start and after printing end (without fresh print
information) were discarded. In the remaining 18,050 pairs, 517 additional images with slight blurring
from WASP motor vibration were also excluded.

Ultimately, 17,553 image pairs were retained for machine learning model training.

Page 58

2.3.1.3 Data rating (labelling standard)

Figure 2.34: Results of dataset labeling for two parameters: extrusion quality and overhang
printability

In this study, each image pair was labeled using a two-dimensional classification scheme, where the
first digit indicates extrusion quality, categorized as under extrusion (0), good extrusion (1), or over
extrusion (2). The second digit represents overhang success, classified as unsafe (0), at risk (1), or safe
(2).

The labeling criteria were derived from dataset collection conducted across four overhang inclined
angles (130°, 140°, 150°, and 160°) and varying RAMS ranging from 1% to 10% of base speed. Table
1 below presents example data from the Angle 1 prototype print collection. Data for Angles 2, 3, and 4
are provided in Appendix 10.2.

Page 59

Table 1: Prototype data collection and labelling example for Angle 1. More data are shown in the
appendix

By analyzing the print collection, distinct extrusion behaviors emerged, with over extrusion occurring
at speeds between 1% and 3%, characterized by shell thickness significantly exceeding the nozzle
diameter (3 mm), resulting in excessive material deposition, geometric deformation, and spreading,
although these prints generally remained structurally sound.

Good extrusion, observed at speeds between 4% and 6%, produced shell thickness approximately
equal to the nozzle diameter, yielding prints with strong structural integrity and accurate form,
particularly at lower inclined angles.

Under extrusion, prevalent at speeds from 7% to 10%, was associated with shell thickness thinner
than the nozzle diameter, insufficient material deposition, poor layer adhesion, structural weakness,
and frequent print failures, especially at higher overhang angles.

Overhang success was assessed based on printing completeness and structural stability, where safe
prints were completed successfully with minimal deformation and strong adhesion. At-risk prints
showed noticeable sagging or distortion, and unsafe prints failed during or shortly after printing due to
collapse or adhesion failure.

Page 60

Figure 2.35: Example of Angle 1 print collection including under-, good-, over extrusion with safe, at
risk and unsafe situations

The distribution of label combinations (Table 2) demonstrated that the 130° angle produced the
broadest spectrum of successful prints, frequently achieving the optimal combination of good
extrusion with safe overhang, whereas higher angles (140°, 150°, and 160°) exhibited progressively
more at-risk and unsafe classifications, reflecting the increased geometric challenges and reduced
interlayer contact. Notably, the combination of over extrusion with unsafe overhang (label 2,0) was
absent, indicating that while over extrusion induces geometric deformation, it effectively prevents
adhesion-related failures.

Label Description

0,0 Under extrusion, overhang failure: prints easily collapse or have poor adhesion to the base
or previous layer.

0,1 Under extrusion, overhang at risk: very few successes, but thin shell overhang shows holes
(mainly at low angles). (Figure 2.36)

0,2 Under extrusion, overhang success (rare): occasional success but mostly failure.

1,0 Good extrusion, large-angle overhang failure: failures mainly caused by excessive
overhang angle.

1,1 Good extrusion, large-angle overhang at risk: risk mainly due to insufficient contact area.

1,2 Good extrusion, overhang success: typical successful combination, stable especially at
smaller angles.

Page 61

2,0 Over extrusion, overhang failure (none): almost nonexistent because over extrusion
ensures adhesion.

2,1 Over extrusion, overhang at risk: over-extrusion causes deformation and sagging of upper
layers. (Figure 2.37)

2,2 Over extrusion, overhang success: slightly over-extruded but overall successful with good
form.

Table 2: The distribution of label combinations analysis

Figure 2.36: Example of overhang part under-extrusion

Figure 2.37: Examples of overhang sagging without collapse

Page 62

A detailed examination of the label combinations revealed that failure modes involving under
extrusion (0,0; 0,1; 0,2) are primarily driven by insufficient material deposition, resulting in thin shell
thickness, weak structural bonding, and subsequent collapse or print instability, with limited influence
from overhang angle. Conversely, prints exhibiting good extrusion but failure or risk (1,0; 1,1; 1,2)
predominantly failed due to geometric constraints posed by larger overhang angles, where reduced
layer contact area compromised structural stability. Over extrusion cases (2,0; 2,1; 2,2) rarely resulted
in outright failure. Instead, they displayed excessive material buildup and deformation, with extrusion
quantity exerting a stronger influence on print quality than the overhang angle.

Overall, the majority of successful prints were categorized as (1,2), representing optimal conditions of
good extrusion coupled with safe overhang performance. Failures clustered mainly around under
extrusion or high overhang angles with compromised layer contact.

Calculation of Dominant Factor Proportion

Following a general analysis of label combinations, it is insightful to examine the dominant factor
between the two parameters across the print collection.

The dominant factor proportion was calculated by analyzing the dataset labels that describe the
combined effects of shell thickness decided by extrusion amount and overhang inclined angle (OIA)
on print success. For each printing speed (the direct factor affects the shell thickness in current
experiment set up) and OIA pair, the dataset samples were classified according to whether extrusion
quality or OIA was the primary influence on the printing outcome. This classification was based on a
detailed review of the label combinations (e.g., 0,0; 1,2; 2,1, etc.) and their corresponding print quality
notes. The proportion of samples dominated by extrusion or by OIA was then computed by dividing
the number of samples primarily influenced by each factor by the total samples within that speed-
angle group. This yielded two proportion values per speed and angle combination, representing the
relative dominance of extrusion and overhang in determining print success. A demonstration of the
calculation formula is shown below:

Analysis of Dominant Factors Affecting Print Success

Page 63

Figure 2.38: Dominant Factor Proportion Analysis for printing speed

Figure 2.39: Dominant Factor Proportion Analysis for Overhang inclined angle

An interesting finding from the dataset is the dynamic shift in dominant factors influencing print
success, observed both as a function of printing speed (the direct influence factor of shell thickness)
and overhang inclined angle (OIA). The first analysis (Figure 2.38) illustrates how the dominance

Page 64

between extrusion quality and OIA changes with printing speed. At lower speeds (0.01 to 0.03), shell
thickness, controlled by extrusion quality, overwhelmingly governs print success. This aligns with
observations that excessive extrusion at slow speeds enhances layer adhesion and structural stability,
even if some deformation in shape occurs.

As printing speed increases into the mid-range (0.04 to 0.06), the influence between extrusion and
OIA balances out. This transitional regime reflects a complex interplay where both material flow and
geometric constraints critically determine print quality. Beyond 0.07 speed, OIA emerges as the
primary limiting factor, with under-extrusion causing weaker interlayer adhesion and the geometric
challenges of steeper overhangs leading to frequent print failures.

Complementing this, the second analysis (Figure 2.39) shows the variation of dominant factor
proportion across different OIA. It reveals that at lower inclined angles (130°, 140°), extrusion quality
plays a more significant role in print success, whereas at steeper angles (150°, 160°), the geometric
challenges posed by the OIA increasingly dominate. This trend highlights that printability is not solely
governed by material deposition but is highly sensitive to the geometry of the printed feature.

From these findings, it is concluded that extrusion amount is the fundamental factor controlling print
success, as insufficient extrusion causes the majority of failures, while overhang inclined angle acts as
a secondary but critical limiting factor, particularly under good extrusion conditions where steep
angles reduce interlayer adhesion and increase defect risk. Over extrusion generally mitigates
adhesion failures but compromises geometric accuracy and surface quality through deformation. This
nuanced understanding informs parameter optimization and highlights the interplay between material
deposition and geometric constraints in achieving reliable robotic 3DCP.

2.3.1.4 Data preprocessing
The raw images, initially captured at a resolution of 3500 × 4608 pixels, are first paired and undergo a
series of preprocessing steps including warping, cropping, and merging based on the established
calibration parameters (Details described in Section 2.1.2.1). After merging, the images are further
cropped to a size of 224 × 224 pixels, which corresponds to the input dimensions required by the
machine learning model used in subsequent analysis.

To account for variations in lighting conditions during dataset collection, brightness adjustment
factors are applied to each sample’s set of images. This normalization step helps reduce the impact of
lighting inconsistencies, which, as demonstrated in preliminary research, can significantly affect
prediction accuracy due to the inherent sensitivity of computer vision-based models to illumination
changes.

Further image augmentation techniques are applied to the cropped images to improve dataset
robustness. These augmentations include rotation, scaling, mirroring, brightness modifications, and
normalization. Such data augmentation enhances the model’s generalization capability by simulating

Page 65

diverse imaging conditions and perspectives.

Finally, for each processed image, a corresponding CSV file is generated to serve as input labels for
the machine learning training. The CSV files contain the updated image paths, following the format
'dataset_filtered/{renamed_image}.jpg', alongside the associated parameter labels, facilitating
organized and consistent dataset management.

2.3.1.5 Imbalanced Distribution and Underlying Reasons

Figure 2.40: Printing count distribution by label combinations

The dataset exhibits noticeable imbalance, which stems primarily from the complex interaction
between printing parameters and geometric factors as mentioned before.

This uneven label distribution presents challenges during machine learning model training, as models
may become biased towards majority classes, reducing sensitivity to minority but important cases. To
address this, training on a balanced subset of the dataset, constructed around the minority label (2,2),
is implemented to improve model robustness and fairness.

Figure 2.41 illustrates the label distribution of the full dataset, highlighting the imbalance, while
Figure 2.42 shows a balanced subset distribution where samples are evenly represented across label
classes.

Page 66

Figure 2.41: label Distribution of full dataset

Figure 2.42: label distribution of balanced dataset

For future work, it is proposed to compare model performance between training on this balanced
subset and training on the full dataset with advanced techniques such as class weighting, upsampling,
and downsampling. These strategies aim to mitigate class imbalance effects by either assigning higher
importance to underrepresented classes during training or adjusting sample counts to create a more
uniform label distribution.

Page 67

2.3.2 Model architecture, training and performance

2.3.2.1 Model architecture

(1) Resnet 56

Figure 2.43: Resnet 56 architecture

The defect detection model used in this project is based on the Residual Attention Network (ResNet-
56) architecture, originally proposed by Wang et al. (2017) and later applied to anomaly detection in
PLA AM by Brion and Pattinson (2022). This architecture combines deep residual learning with
attention mechanisms to enhance its capacity for distinguishing different focus areas of extrusion
features in complex visual data. Each attention module in the network comprises a trunk branch for
feature propagation and a mask branch that adaptively generates attention maps. These maps modulate
the trunk features, allowing the network to emphasize salient regions while suppressing noise and
irrelevant background information. By integrating this attention structure within a residual framework,
the model maintains efficient gradient flow and prevents degradation across layers, even in deeper
networks. During training, the model learns to identify deviations in print quality by capturing spatial
and contextual relationships between extrusion parameters and visual cues. To support model
interpretability, Gradient-weighted Class Activation Mapping (Grad-CAM) is utilized. Grad-CAM
produces class-specific localization maps that emphasize the regions most influential to the model’s
output, thereby providing visual insight into the network’s reasoning. This transparency facilitates the
identification of which image regions the model attends to after each residual block, enabling
evaluation of its attention focus and refinement of the dataset collection strategy accordingly.

Preliminary Findings from ResNet-56 Training on Pre-Study Dataset

Initial experiments using the ResNet-56 architecture on a pre-research dataset have yielded several
important observations. First, the network successfully extracts and highlights key features related to

Page 68

extrusion variability and layer height, demonstrating notable potential for enhancing real-time
anomaly detection in AM processes. However, prediction accuracy remains inconsistent across
different conditions, indicating the need for further refinement.

Moreover, residual attention mechanisms embedded within the architecture prove effective in
directing the model’s focus to relevant spatial regions, thereby improving interpretability and
responsiveness to subtle changes in material deposition. Multi-head learning structures, where the
model simultaneously predicts multiple interrelated parameters, have shown superior performance
compared to single-head configurations. This suggests that the full representational capacity of the
ResNet-56 model is better leveraged when handling multi-task outputs.

The consistency of environmental conditions during data collection, such as lighting, background, and
substrate color, has emerged as a critical factor. Uniform experimental settings help minimize domain
shifts that may otherwise compromise the model's generalizability. In situations where such
consistency cannot be maintained for real-world deployment, a substantially larger and more diverse
dataset would be required to ensure robust performance.

Additionally, clear and systematic labeling of the dataset is essential. Ambiguities or inconsistencies
in manual labeling can introduce noise, leading to increased prediction errors and diminished model
reliability. Lastly, maintaining uniform image dimensions between training and calibration datasets
has proven to significantly enhance prediction accuracy. Variations in image size can distort the
model’s attention, particularly when cameras are reinstalled or repositioned, making spatial
consistency a key consideration for ongoing model deployment and validation.

(2) DINOv2-Based Hybrid Network Architecture

In the previous section, I discussed the design and performance of the ResAttNet-56 architecture
applied to dual-task classification of 3D-printed clay object. Although the model exhibited reasonable
convergence on the training set, its performance on validation process showed limited generalization.
Despite several rounds of tuning, the learned weights from the ResNet-56-based model did not yield
satisfactory prediction accuracy, particularly for more subtle variations in print quality.

Page 69

Figure 2.44: demonstration of DINOv2-Based Hybrid Network architecture

To address this, I hypothesized that the earlier layers in ResAttNet-56, especially the convolutional
and shallow attention stages, might not be learning sufficiently discriminative or abstract features
from the input images. As an alternative, I propose replacing the front-end feature extractor of
ResAttNet-56 with the DINOv2 ViT-S/14 model, a state-of-the-art self-supervised vision transformer.

Figure 2.45: demonstration of DINOv2-Based Hybrid Network architecture

DINOv2 is a self-supervised vision transformer pretrained on large-scale unlabeled image datasets
using the DINOSAUR pipeline developed by Meta AI (Maxime Oquab, 2024). It is known for
capturing semantic-rich visual representations across scales. Its output patch tokens are spatially
attentive, making them particularly well-suited for downstream tasks requiring fine-grained
classification.

Motivations for replacing image feature extractor with DINOv2

Improved feature abstraction: DINOv2 uses transformer-based attention mechanisms across patch
tokens, enabling it to capture more global and semantically aligned image features than shallow

Page 70

convolutional layers.

Self-supervised pretraining advantage: Unlike supervised models trained on limited labels, DINOv2
learns general-purpose visual features from diverse image corpora without human annotation,
increasing its transferability.

Architectural Integration

Since the reference DINOv2 codebase is optimized for single-head binary classification tasks and
does not directly support multi-task or multi-class learning, I constructed a new model module,
DINO2ResAttClassifier, which integrates DINOv2 as a fixed front-end feature extractor and connects
its outputs to the backbone of a two-head ResNet56.

To build the hybrid model DINO2ResAttClassifier, the model modification involves the following key
stages:

1. Token Extraction and Projection: The input image is passed through DINOv2, and patch-level
tokens (excluding the class token) are extracted from the last attention layer
(x_norm_patchtokens). These are reshaped into a spatial feature map and projected from 384
to 1024 channels using a 1×1 convolution to match the expected input dimensions of
ResNet56.

2. Backbone Integration: Instead of using the full ResNet56, I selectively retain only its later
residual blocks (res4, res5, res6) and its classification structure. This segment performs deeper
reasoning over the feature maps provided by DINOv2, enabling hierarchical refinement.

3. Dual Prediction Heads: To accommodate the multi-label classification task, predicting both
layer_height and extrusion classes, the architecture is equipped with two separate linear
heads, each producing a 3-class output.

4. Training Strategy: The model is trained via a dual cross-entropy loss function, one for each
label. Optimization is conducted using AdamW with learning rate scheduling via
ReduceLROnPlateau. To ensure modularity and clarity, we implemented the model in
PyTorch Lightning with clear separation of training, validation, and test steps.

This integration leverages the pretrained attention-rich representations of DINOv2 while preserving
the effective residual learning of ResNet56. By replacing the original ResNet56's early convolutional,
pooling, and attention layers with DINOv2's transformer-based extractor, the new hybrid model is
expected to improve generalization and expressiveness in downstream multi-class prediction tasks.
Importantly, it is supposed to enable more efficient learning with limited labeled data, benefiting from
DINOv2’s large-scale pretraining.

In conclusion, this hybrid architecture combines the best of both paradigms: DINOv2’s rich pretrained

Page 71

semantics and ResNet56’s effective spatial encoding, leading to improved multi-head classification
performance and a structured basis for future architectural comparisons.

Differences between ResNet-56 and DINOv2-based hybrid model

ResNet-56 is a convolutional network that excels at extracting local features through hierarchical
filters and attention modules but relies on supervised learning with labeled data. It may lack the ability
to capture high-level semantic information without large datasets. In contrast, DINOv2 uses a
transformer architecture with self-attention over image patches, enabling it to capture global context
and more abstract features. Pretrained in a self-supervised manner on vast unlabeled data, DINOv2
learns rich, generalizable visual representations that improve robustness to subtle variations. By
combining DINOv2’s powerful feature abstraction with ResNet-56’s spatial reasoning and
classification layers, the hybrid model leverages the strengths of both approaches to enhance accuracy
and generalization in multi-label classification tasks.

2.3.2.2 Training ML models
This study evaluates two neural network architectures, ResNet-56 and a DINOv2-based hybrid model,
for defect detection and quality prediction in robotic 3DCP with the two datasets trained and tested
separately: one pre-research dataset and one newly generated dataset.

The pre-research side-view old dataset consisted of 3,000 training images with a three-class
classification scheme for both layer height and extrusion quality. These 3,000 images were randomly
selected from the full old dataset by sampling equally from each label combination to obtain a
balanced dataset. To evaluate the impact of incorporating DINOv2 as a feature extractor, two training
pipelines were developed using the same dataset and label standards. The training time for the
DINOv2-Based Hybrid Network was approximately 2 hours and 34 minutes, compared to 1 hour and
11 minutes for ResNet-56.

The new top-view dataset for current research comprised 9,584 images with balanced label
combinations. Training on this larger dataset took 11 hours and 34 minutes for the DINOv2 model and
1 hour and 55 minutes for ResNet-56.

Both models were trained and tested on balanced datasets with consistent data preprocessing and
training parameters, enabling a fair comparison of performance and robustness.

ResNet-56 Model Hyperparameters

Parameter Value

Number of Hidden
Layers

Residual blocks: res4, res5, res6 (backbone later stages)

Page 72

Activation Functions ReLU (with BatchNorm + ReLU in residual blocks)

Nodes / Channels Input channels: 1024 (after 1×1 conv projection), Output features: 2048

Epochs 50

Batch Size 32

Optimizer AdamW

Learning Rate 0.001

Learning Rate
Scheduler

ReduceLROnPlateau (monitor: val_loss, factor=0.1, patience=3)

Loss Function CrossEntropyLoss (dual-head classification: layer_height and extrusion
losses summed)

The ResNet-56 model was configured with a preprocessing pipeline that included resizing input
images to 224×224 pixels, tensor conversion, and normalization with mean and standard deviation
values calculated from the dataset. Training employed a batch size of 32 and a learning rate of 0.001
with a maximum of 50 epochs. The dataset used for training was a balanced labeled set, with
corresponding CSV metadata for supervision. The model leverages deep residual connections and
attention mechanisms to focus on spatial features relevant to extrusion defects and layer height
variations. Training was accelerated on GPU hardware to ensure efficient convergence.

DINOv2-Based Hybrid Model Hyperparameters

Parameter Value

Number of Hidden
Layers

Residual blocks: res4, res5, res6 (backbone later stages) + frozen
DINOv2 frontend

Activation Functions ReLU + BatchNorm + AdaptiveAvgPool

Nodes / Channels DINOv2 output: 384-dim projected to 1024 channels; final ResNet output
features: 2048

Epochs 50

Batch Size 32

Optimizer AdamW

Page 73

Learning Rate 0.001

Learning Rate
Scheduler

ReduceLROnPlateau (monitor: val_loss, factor=0.1, patience=3)

Loss Function CrossEntropyLoss (dual-head classification: extrusion and overhang
success losses summed)

The DINOv2-based hybrid model uses a similar preprocessing pipeline for consistency. It
incorporates the self-supervised pretrained DINOv2 vision transformer as a fixed feature extractor,
outputting 384-dimensional embeddings, which are then reshaped and passed through residual blocks
and multi-head linear classifiers. The same training hyperparameters—batch size 32, learning rate
0.001, and up to 50 epochs—were applied. The balanced labeled dataset with identical normalization
parameters ensured comparability with the ResNet-56 results. This model architecture aims to capture
semantically rich and global visual features from the transformer backbone, complemented by the
residual network’s hierarchical reasoning capabilities.

2.3.3 Model Performance Comparison

2.3.3.1 Grad-CAM – Result Comparison
To better understand how each model learns to extract visual features during training, I employed
Gradient-weighted Class Activation Mapping (Grad-CAM) and Grad-CAM++ to visualize the
attention focus of two distinct image classification models: a ResNet-56-based Residual Attention
Network and a DINOv2-based vision transformer.

I initially applied visualization techniques to the pre-research old dataset images. After evaluating
different methods, Grad-CAM++ was chosen for its superior localization and clarity. Using this
method, I subsequently visualized samples from the new top-view dataset to analyze model attention
behavior.

ResNet-56 Attention Analysis

I first applied Grad-CAM to the ResNet-56-based model at different residual blocks (res1 to res4).
The generated heatmaps reveal how the model’s spatial attention progressively shifts across the
network depth, from focusing on low-level geometric edges, layer texture and nozzle tip to capturing
higher-level contextual patterns such as the backgrounds. At each stage, Grad-CAM operates by
extracting the forward feature maps (activations) and the corresponding gradients during
backpropagation:

• For res1, the tensor shape was torch.Size([1, 256, 56, 56]).

• For res2, torch.Size([1, 512, 28, 28]).

Page 74

• For res3, torch.Size([1, 1024, 14, 14]).

• For res4, torch.Size([1, 2048, 7, 7]).

Grad-CAM computes the importance of each channel using the average of its gradients and then
linearly combines the feature maps using these weights. This yields a 2D attention map that is resized
to 224×224 and overlaid onto the input image. The resulting heatmaps clearly highlight nozzle
regions, deposition paths, and other discriminative areas relevant for prediction (Figure 2.46).

Figure 2.46: original image for old dataset from pre-research (side view), heatmap for Resnet 56 after
res1, res2, res3, res4 (from left to right)

To improve spatial precision, I further adopted Grad-CAM++ (Figure 2.47), which introduces higher-
order derivatives to better capture pixel-level importance in overlapping object regions. This
technique yielded more focused heatmaps, especially in deeper blocks such as res4 and res6,
reinforcing the idea that deeper features encode abstract representations.

Figure 2.47: original image for old dataset from pre-research (side view), heatmap for Resnet 56 after
res1, res2, res3, res4, res6 (from left to right)

After training with the new dataset, a random selection of 10 images was visualized using Grad-
CAM++ to inspect how spatial attention evolves through the network. The results (Figure 2.48)
demonstrate that as convolutional layers deepen and the attention mechanism refines, the model

Page 75

increasingly concentrates its focus on regions surrounding the nozzle tip. This focus remains
consistent and robust across different samples, highlighting the nozzle area and deposition paths as the
primary discriminative features for classification. This localization is crucial because it reflects the
model’s ability to identify fine-grained geometric and textural cues associated with extrusion quality
and overhang success. The heatmaps also reveal subtle distinctions in layer textures and structural
edges, underpinning the model's interpretability and targeted attention on physically relevant print

Page 76

Figure 2.48: original image for new dataset (top view), heatmap for Resnet 56 after res1, res2, res3,
res4, res6 (from left to right)

DINOv2 Transformer Attention Analysis

Unlike ResNet, the DINOv2-based model is not trained end-to-end in our pipeline. Instead, it is used
solely as a frozen feature extractor to compute 384-dimensional embeddings, which are then fed into a
small multi-head MLP classifier predicting two discrete labels: layer_height_class and
extrusion_class.

Due to this architectural separation, Grad-CAM cannot be directly applied to the MLP classifier: the
embedding vectors lack spatial dimensions and activations, making them unsuitable for gradient-
based spatial attribution.

Therefore, to inspect DINOv2’s internal attention, I applied Grad-CAM to the transformer backbone
itself during the embedding extraction stage. Attention was visualized by targeting the last norm layer
of the final transformer block. Since Vision Transformers do not naturally generate convolutional
feature maps, I used the reshape_transform utility to reshape the flattened patch tokens into a 2D
spatial format.

The generated Grad-CAM heatmaps (Figure 2.49) illustrate that DINOv2 tends to attend more
broadly across the nozzle region and printing material, yet the attention is diffused compared to
ResNet’s strongly localized response. While these activations still reveal semantically meaningful
regions, they lack the crisp boundaries observed in residual blocks of convolutional networks. The
choice of colormap also affects visual interpretation—jet or plasma can be misleadingly saturated; I
adopt viridis or custom RGB mapping to better highlight local attention patterns.

Figure 2.49: Heatmap visualization of different samples for the DINO v2-based model for old dataset

Page 77

The Grad-CAM visualization results from the new dataset for the DINOv2-based model resemble
those obtained with the old dataset. The generated heatmaps (Figure 2.50) illustrate that DINOv2
attends more broadly across the nozzle region and printing material. However, compared to the highly
localized and focused attention maps of ResNet-56, DINOv2’s attention is more diffused and spread
out over larger areas. This is consistent with the transformer’s global attention mechanism, which
captures more contextual and semantic information but with less spatial precision. The diffuse
activations still correspond to semantically meaningful regions relevant to the task but lack the sharp
boundaries and crisp localization seen in convolutional networks.

Figure 2.50: Heatmap visualization of different samples for the DINO v2-based model for new dataset

Conclusion
Grad-CAM results demonstrate that the ResNet-56 model progressively learns localized, hierarchical
attention from res1 to res4, making it well-suited for tasks involving spatially structured patterns such
as 3DP layer analysis. In contrast, DINOv2's pre-trained transformer backbone offers broader
contextual attention but lacks fine-grained spatial specificity when used purely as a feature encoder.

This analysis highlights a key trade-off in model design: convolutional networks provide explicit
spatial bias that enhances attention localization, while transformers excel in global context modeling
at the cost of spatial interpretability when used without fine-tuning.

2.3.3.2 Learning Curves Comparison
As illustrated in Figures 2.51 and 2.52 (old dataset), and Figures 2.53 and 2.54 (new dataset), both
models demonstrated steady improvements in training and validation accuracy. However, the
DINOv2-based model consistently exhibited faster convergence and superior combined accuracy
across both datasets.

• Training Accuracy: On the old dataset, the DINOv2 hybrid model achieved over 96%
combined training accuracy after approximately 1,500 steps, with individual parameter
accuracies exceeding 97%. In comparison, ResNet-56 required more iterations to reach
similar accuracy levels but tended to plateau with slightly lower extrusion accuracy. On the
new dataset, both models reached a final training accuracy of approximately 97%, with the
DINOv2 model maintaining a slight edge in convergence speed.

Page 78

• Validation Accuracy: For the old dataset, the hybrid model’s validation accuracy exceeded
94% for each prediction head, stabilizing around 88% combined accuracy. ResNet-56 reached
comparable layer height accuracy (~95%) but exhibited lower extrusion accuracy (often
below 90%), leading to reduced combined accuracy (~81%). On the new dataset, validation
accuracy stabilized around 95% for DINOv2 and 96% for ResNet-56, with the DINOv2
model showing more consistent stability.

• Loss: Across both datasets, the DINOv2-based model maintained lower training and
validation losses, reflecting improved generalization and more stable optimization compared
to ResNet-56.

Figure 2.51: Learning curves from DINOv2-Based Hybrid Network Architecture for old dataset

Figure 2.52: Learning curves from Resnet 56 Architecture for old dataset

Page 79

Figure 2.53: Learning curves from DINOv2-Based Hybrid Network Architecture for new dataset

(Note: The training process was unexpectedly interrupted at epoch 11 and later resumed, which is
reflected in the learning curves as two distinct lines.)

Figure 2.54: Learning curves from Resnet 56 Architecture for new dataset

2.3.3.3 Prediction Accuracy Matrices
Figures 2.55 and 2.56 (old dataset), alongside Figures 2.57 and 2.58 (new dataset), present the
normalized confusion matrices for the two architectures.

Old Dataset:

• Parameter 1 (Layer Height):
The DINOv2-based hybrid network achieved nearly perfect classification, with almost all
predictions aligned on the diagonal, indicating excellent distinction among "Low," "Good,"
and "High" classes. The ResNet-56 model showed more confusion between "Good" and
"High" classes, with several misclassifications.

• Parameter 2 (Extrusion Quality):

Page 80

The DINOv2 model showed better performance, producing fewer misclassifications and more
consistent predictions across classes. ResNet-56 exhibited significant confusion, often
misclassifying "Good" and "High" labels as "Low," highlighting difficulty distinguishing
extrusion quality levels.

Figure 2.55: Prediction accuracy matrix from DINOv2-Based Hybrid Network Architecture for old
dataset

Figure 2.56: Prediction accuracy matrix from Resnet 56 Architecture for old dataset

New Dataset:

• Parameter 1 (Extrusion Quality):
The DINOv2 model maintained strong classification consistency, with fewer off-diagonal
errors compared to ResNet-56. The ResNet-56 model again showed more frequent
misclassifications, especially between "Good" and "High" extrusion classes.

• Parameter 2 (Overhang Success):
DINOv2 achieved better discrimination of "Low," "Good," and "High" overhang success

Page 81

levels, with limited confusion primarily between adjacent classes. ResNet-56's predictions
were less reliable, with notable confusion particularly between "Good" and "Low" classes.

Figure 2.57: Prediction accuracy matrix from DINOv2-Based Hybrid Network Architecture for new
dataset

Figure 2.58: Prediction accuracy matrix from Resnet 56 Architecture for new dataset

Overall, the confusion matrices confirm that the DINOv2-Based Hybrid Network surpasses ResNet-
56 in prediction accuracy and class separability for both datasets and parameters, demonstrating
stronger feature extraction and classification capabilities.

2.3.3.4 Conclusion
Integrating DINOv2 as a feature extractor in the hybrid network architecture substantially improves
training efficiency and final prediction accuracy compared to the ResNet-56 baseline. The powerful
self-supervised patch token representations from DINOv2 enhance early-stage feature extraction,
while retaining the spatial aggregation and dual-head classification design of ResNet-56. This design

Page 82

achieves faster convergence, superior generalization, and more stable optimization on both the smaller
old dataset (layer height and extrusion) and the larger new dataset (extrusion and overhang success).

Although the DINOv2 model requires longer training times (approximately double that of ResNet-
56), the gains in accuracy and robustness, especially in distinguishing subtle class differences in
extrusion and overhang success, justify the increased computational cost. These results indicate that
hybrid architectures combining pretrained vision transformers with customized CNN heads provide a
promising framework for complex multi-label image classification tasks in quality assessment
applications.

Page 83

Page 84

3. Validation – Real-time correction pipeline

Figure 3.1: the workflow of real-time correction

As illustrated in Figure 3.1, the close loop begins by processing the captured images through the
designated ML model (either Resnet 56 or DINO v2 based model) to identify deviations in shell
thickness (resulting from low or high extrusion) as well as overhang failures. These predictions are
continuously monitored within a specified time window (Pm). If a deviation from the desired shell
thickness and/or a reduction in the interlayer contact area below the safe threshold is detected for more
than 10 seconds, corrective action is executed.

In such cases, the system sends a command to the UR5 controller to adjust the speed slider, modifying
the remaining robot program by overwriting the RAMS parameter. This controls the printing speed by
either increasing or decreasing its value based on the observed conditions.

Control Logic for Real-Time Speed Adjustment Based on ML Predictions

To implement real-time correction during the robotic 3DCP process, a heuristic control strategy was
developed to dynamically adjust RAMS based on ML predictions of two key quality indicators:
extrusion quality and overhang success.

Extrusion quality is classified into three levels: low, good, and high, while overhang success is evaluated
as safe, at risk, or unsafe. The control logic prioritizes extrusion quality as the dominant factor

Page 85

influencing structural integrity, with overhang condition serving as a secondary modifier to fine-tune
the speed adjustment, according to conclusion of the label combination and dominant factor analysis in
Section 2.3.1.3.

The decision rules are summarized as follows:

• When extrusion quality is low, the system consistently reduces the printing speed, as
insufficient material flow compromises interlayer bonding and structural formation:

o 25% reduction if overhang is unsafe – a significant drop is necessary to prevent print
failure caused by both material insufficiency and structural instability.

o 20% reduction if overhang is at risk – this moderate reduction seeks to increase
deposition without sudden changes that might cause instability.

o 15% reduction if overhang is safe – even if overhang is stable, under-extrusion needs
correction to restore intended wall thickness.

• When extrusion quality is good, the system applies corrections only in response to overhang
issues:

o 15% reduction if overhang is unsafe – while extrusion is adequate, overhang failure
likely results from poor bonding at curvature, so a moderate reduction is used.

o 10% reduction if overhang is at risk – early signs of overhang issues are corrected with
a slight speed decrease.

o No adjustment if overhang is safe – both indicators are within acceptable ranges.

• When extrusion quality is high, over-deposition may lead to excessive wall thickness or bulging:

o 10% increase if overhang is unsafe – a faster movement reduces deposition and helps
regain shape fidelity.

o 5% increase if overhang is at risk – a moderate correction prevents further material
buildup.

o 5% increase if overhang is safe – a minor adjustment is used to slowly return to optimal
extrusion levels.

Justification of Adjustment Magnitudes

The selected speed adjustment percentages (ranging from 5% to 25%) are based on empirical testing
and observed system sensitivity. Larger changes (e.g., ±25%) are applied only in critical scenarios to
rapidly correct severe deviations, while smaller adjustments (e.g., ±5% or ±10%) are used in more stable
or borderline conditions to avoid overcompensation or sudden transitions that may cause mechanical
jitter or deposition errors. These values were chosen to strike a balance between responsiveness and

Page 86

system stability, especially considering the inherent lag in material flow response and mechanical inertia
in clay-based 3DP.

Logic table
Extrusion
Quality

Overhang
Success

Action on
RAMS

Rationale

Low Unsafe Decrease
by 25%

Critical failure in both metrics. Speed must be
substantially reduced to compensate for poor material
flow and overhang instability.

Low At Risk Decrease
by 20%

Low extrusion requires correction; overhang is nearing
failure—moderate-to-high reduction helps stabilize.

Low Safe Decrease
by 15%

Extrusion insufficient, but structure is holding. A
moderate reduction improves deposition without
overcorrecting.

Good Unsafe Decrease
by 15%

Adequate extrusion but overhang is failing—slightly
stronger correction to improve bonding at curvature.

Good At Risk Decrease
by 10%

Minor instability in overhang—moderate reduction
may help improve bonding while maintaining print
flow.

Good Safe No change Optimal condition—no adjustment necessary.

High Unsafe Increase by
10%

Over-deposition is likely the cause of overhang sagging
or collapse—moderate speed increase reduces material
input.

High At Risk Increase by
5%

Slight over-extrusion and approaching instability—
small correction can help avoid future defects.

High Safe Increase by
5%

Excess extrusion but stable—small increase helps
restore ideal wall thickness gradually.

Table 5: Logic table for speed adjustment strategy

After each execution of adjustment, the system enters a 40-second monitoring pause to allow printing
for stabilization before resuming real-time monitoring and potential further correction.

Comparison & evaluation
Comparison and Evaluation of Default Printing versus Real-Time Closed-Loop Printing with

Page 87

Curved Shell

To evaluate the effectiveness of the real-time closed-loop control system, three prototypes were printed
using the same geometry and initial RAMS but under different printing conditions, as shown in the
Figure 3.2 below.

Figure 3.2: Comparison of Default Printing (1,2) and Real-Time calibration printing (3)

The first two prototypes on the left (Prototype 1 and Prototype 2) were printed using the default process
without any intervention or parameter adjustment during printing. All prints began at 3% of the base
speed, corresponding to a slight under-extrusion condition. Prototype 1 exhibited significant under-
extrusion, resulting in poor structural integrity. The base collapsed, and weak layer adhesion in the
midsection caused fresh layers to fail to bond with previous layers, leading to premature termination of
the print. Prototype 2 managed to complete printing, but once the printing reached the region with a
large inclined overhang angle, substantial sagging and layer shifts occurred. These defects altered the
intended curvature of the overhang and compromised the print quality.

In contrast, Prototype 3 was printed using the same geometry and initial speed but with the real-time
closed-loop correction system active. This system dynamically adjusted the RAMS at the large inclined

Page 88

overhang region to optimize layer adhesion. Specifically, the speed was reduced at the steep overhang
to increase the interlayer contacting area. While this resulted in slight over-extrusion locally, enhancing
shell thickness beyond the nominal target, it effectively prevented sagging and maintained the designed
outer contour of overhang curvature by strengthening the structural stability. Subsequently, the system
increased the speed to reduce extrusion and optimize print quality.

However, a limitation was observed near the final layers. The system continued increasing speed
adjustments, causing a transition into an under-extrusion state, which is undesirable for print quality
and structural integrity. This was attributed to instability in the trained ML model guiding the control
adjustments. Despite this drawback, the real-time closed-loop system demonstrated clear advantages in
maintaining geometric fidelity and structural performance compared to the default printing approach.
The main improvement needed is to expand the dataset and train a more stable and robust ML model.

Page 89

Page 90

4. Prototype and Final Product Design

4.1 Prototype Design for Dataset Collection

Figure 4.1: the design for validation prototypes

Figure 4.2: the dataset intended to be printed with different inclined angle of overhang

To construct a ML model that can detect detection and process correction in real time, a series of
overhang prototypes (shown in Figure 4.2) were designed to serve as the training dataset.
However, due to time constraints, only a selection of overhang angles (130°, 140°, 150°, and
160°) were chosen for printing as the dataset (Figure 4.3). The aim of this selection was to
include both shallow overhang angles that print can successfully with good extrusion, as well as
high-risk steep angles to evaluate the effect of reduced layer contact area.

Page 91

Figure 4.3: the selected overhang geometry to print

The initial geometry (referred to as Form A(1) in Figure 4.1) was deliberately kept simple in
form of overhang tower. This choice was motivated by the need to isolate and observe two key
visual features during the printing process: shell thickness and interlayer contact area. The
assumption is that a simplified geometry, compared to a highly intricate overhang, may allow the
model to more clearly learn the correlation between geometric conditions and printing quality,
including successful overhang formation.

4.2 Prototype Scale and Printability Constraints
The ultimate goal of this research is to develop a robust real-time defect detection and correction
system tailored for construction-scale AM using clay materials. In this context, construction-scale
refers to directly building structures on-site, eliminating the need for transporting prefabricated
components and reducing traditional complex construction processes.
However, it is noted that construction-scale AM is a long-term goal, not the immediate focus of
this project. The current research focuses on developing a foundational framework, covering
dataset collection, ML model training, and real-time closed-loop control at a smaller laboratory
scale. This groundwork is essential for ensuring reliability and accuracy before advancing to full
construction-scale printing, which will involve addressing larger workspace, material handling,
and environmental challenges.
As such, the experimental prototypes were designed to be as large as possible within the
constraints of the laboratory setup. These constraints include the working envelope of the UR5
robotic arm, the fixed volume of the clay tank (1 L), and the desire to complete a full print cycle
without mid-process refilling.

Page 92

Figure 4.4: the largest prototype can be printed within the constraints of the laboratory setup

Given these limitations, the chosen dimensions for Form A(1) with a height of 110 mm represent
the maximum viable print size that avoids the need to refill the clay tank during printing, even
under conditions of over-extrusion. This size ensures uninterrupted printing while still offering
enough geometric complexity to observe meaningful deviations in overhang performance. A layer
height of 1.5 mm was adopted throughout the experiments to balance print resolution with time
efficiency and to maintain adequate interlayer adhesion.

4.3 Final Product Design and Validation Strategy
During the validation phase, two types of test forms will be printed to assess the scalability and
generalizability of the trained ML model.
• Validation with Known Geometry (Form A):

The first step involves printing the same basic form used during dataset collection (Form
A(1)). This allows direct evaluation of the model’s predictive accuracy under familiar
geometric and scale conditions.

• Validation with Upscaled Geometry (Form A(2)):
Next, an enlarged version of the same form (Form A(2), height 265 mm) will be printed to
examine the model's scalability. This prototype occupies the full vertical reach of the UR5
arm and represents the maximum print size currently achievable. Successful predictions in
this case would indicate the model's capacity to maintain accuracy across different scales of
the same geometry.

• Validation with Complex Geometry (Form B):
Finally, a more intricate design (Form B), featuring multiple curvatures and overhangs, will
be printed to test the model’s generalization ability. This form was not included in the training
dataset, so it provides a critical benchmark for evaluating whether the ML system can adapt to
previously unseen overhang configurations. Positive results here would validate the
robustness of the system for diverse clay-based architectural components.

Note on Validation with Upscaled and Complex Geometries

Due to time constraints within the scope of the current project, the implementation and testing of
validation using Upscaled Geometry (Form A(2)) and Complex Geometry (Form B) have not yet
been completed. These steps are planned for future work and are essential for fully assessing the
scalability and generalizability of the trained ML model beyond the initial prototype scale and
simplified geometries.

Page 93

4.4 Slicing and Toolpath Generation
As discussed in previous section 2.1.1.2, all prototype geometries were sliced using a customized
Grasshopper script that divides the volume into discrete layers and generates continuous helical
toolpaths. The script outputs machine-readable URScript files containing Move j commands
aligned with the robot’s kinematics. Each toolpath is carefully generated to maintain a consistent
nozzle-substrate distance and orientation, particularly in regions of overhang, where maintaining
tangency and shell thickness is critical to structural success.
This strategy, combining procedural form generation, real-time monitoring, and data-driven
calibration, is designed to ensure that both the methodology (ML-based correction) and the
material system (clay-based LDM printing) are applied meaningfully, with consideration for
scale, fabrication feasibility, and architectural relevance.

Page 94

Page 95

5. Conclusion

The experimental setup utilized a UR5 robotic arm, which was successfully configured to
establish a foundational platform for implementing real-time speed adjustments. This research
developed and validated a ML-based closed-loop control system for robotic 3DCP, enabling real-
time detection and correction of extrusion defects, particularly in overhang structures. By
integrating visual data and a multi-objective neural network model, the system dynamically
adjusts printing speed to maintain optimal shell thickness and interlayer adhesion, significantly
improving print quality and structural integrity. Among the evaluated models, DINOv2-Based
Hybrid Network demonstrated strong capability in capturing spatial features relevant to printing
defects.

The closed-loop feedback system showed promising robustness at the laboratory scale, laying
groundwork for scaling up to construction-scale 3DP. Future research should emphasize
expanding dataset diversity, improving model stability, and extending applicability to other
materials such as concrete. Additionally, refining robotic arm motion control remains crucial to
achieve more reliable and stable printing performance.

Overall, this study represents an important step towards automated, intelligent 3DCP, with
potential to support complex architectural geometries and more efficient fabrication workflows.

Page 96

Page 97

6. Discussion

Follow-Up Questions and Future Research Directions

Building on the foundation established in this research, several critical questions remain to be
addressed to further advance real-time defect detection and correction in robotic 3DCP.

One key challenge is how to balance the competing influences of layer self-weight and extrusion
quality to ensure successful overhang printing. As layers accumulate, their own weight can cause
deformation or sagging, especially at steep overhang angles. Future research could explore
predictive models that estimate the evolving stress and load during printing, enabling preemptive
adjustments in extrusion rate or print speed to mitigate structural instability.
Another important area is the integration of predictive stress and load analysis into the printing
process. Current real-time control relies primarily on visual feedback; however, incorporating
physical simulations or ML-based prediction models could allow for anticipatory corrections,
improving print fidelity and reducing the need for reactive interventions. This approach might
involve combining pre-print optimization with real-time adjustments to balance print quality and
structural integrity dynamically.
The correction methodology that simultaneously optimizes multiple objectives, such as
maximizing both extrusion quality and overhang success, can be further improved. Since these
objectives often conflict, there is a set of optimal trade-off solutions rather than a single best
solution. Techniques like Pareto optimization can be applied to explore this solution space,
enabling designers to select configurations based on specific performance priorities. Alternatively,
weighted sum methods offer a simpler approach by combining multiple objectives into a single
scalar score, though proper normalization is essential to prevent bias due to differing scales. More
advanced strategies, including multi-objective Bayesian optimization and reinforcement learning,
can be possible solutions for intelligently navigating complex control scenarios and discovering
effective parameter settings.
Finally, an essential consideration is how to balance necessary parameter adjustments during
printing with the overall consistency and appearance of the final product. Excessive or frequent
corrections may cause visual artifacts or unintended deformation. Future work should investigate
strategies that optimize correction frequency and magnitude.

Future Application:

(1) Potential For Material Change: Concrete
Previously, I engaged in discussions with the concrete 3DP technicians at BouwLab (a leading
Dutch company specializing in digitalization and industrialization across the entire construction

Page 98

chain). During these exchanges, we studied the requirements and feasibility of applying the
current real-time closed-loop correction system to concrete 3DP.
Concrete shares many similarities with clay as a cementitious material in AM. However, concrete
as a construction material, presents greater challenges due to its complex rheology, faster setting,
curing behavior, and higher sensitivity to environmental factors, increasing the need for real-time
monitoring and correction in 3DP.
As noted by concrete 3DP technicians, continuous adjustments are crucial in concrete 3DP to
handle fluctuations in moisture, mixture consistency, and temperature. These adjustments often
involve modifying pumping speed, rotor-stator settings, or applying heat to accelerate curing.
Multi-head machine learning models that integrate sensor data (e.g., water flow, temperature,
pressure) with real-time imaging shows potential to predictively optimize printing quality and
reduce defects without manual intervention
However, this requires extensive data collection and tailored training. It remains to be seen if the
current system can evolve into a robust, scalable solution managing multiple variables
simultaneously for high-quality, construction-scale concrete additive manufacturing.

(2) Nozzle Size Change to Test Scale-Up Possibility of ML
Scaling the 3DP process by varying nozzle size can be an essential step to assess the adaptability
and robustness of the developed ML model before applying it to larger scale 3DP.
Investigating the model’s performance across multiple nozzle sizes will help determine the ML
model’s scalability and whether transfer learning strategies are needed. This line of inquiry will
pave the way for a more flexible correction system, which is crucial for practical deployment in
industrial or construction contexts where nozzle sizes increase and extrusion shapes may vary.

(3) Scaling Up to Construction-Scale AM Using a 6-Axis Gantry System
As mentioned in previous sections, the broader aim of this research is to create a closed-loop
control system capable of supporting construction-scale AM with clay and potentially other
materials. Moving from the laboratory-scale UR5 robotic arm setup to a full-scale 6-axis gantry
system introduces significant challenges such as managing larger workspaces, delivering
materials at higher volumes, and ensuring stable environmental conditions throughout extended
printing processes. Construction-scale AM involves on-site fabrication of architectural or
structural elements, which can reduce reliance on prefabrication, lower manual labor, decrease
construction waste, and enhance overall sustainability. This paradigm shift has the potential to
transform traditional building methods by enabling more efficient workflows and complex design
possibilities.

Page 99

Page 100

7. Reflection

7.1 Introduction
This reflection provides a critical review of the graduation process and explores the potential real-
world impact of my thesis in the broader context of the architectural and construction industries.

My thesis focuses on intelligent manufacturing, aiming to develop an AI-assisted calibration system
for clay robotic 3DP. This interdisciplinary research integrates robotics, computer science, artificial
intelligence, and AM. It combines robotic programming and computational design from the Design
Informatics department in the Faculty of Architecture with experimental innovation from the Shaping
Matter Lab in the Faculty of Aerospace Engineering, which focuses on bio-inspired, sustainable, and
intelligent materials through AM. Ultimately, this research applies advanced AI-assisted robotic 3DP
techniques to the field of architecture.

From my point of view, architecture, as a traditionally slow-to-adapt field, is hard to engage deeply
with cutting-edge technologies such as artificial intelligence at the practical level. However, when I
set foot in the realm of computational design and intelligent manufacturing, I realized that it is the
invention of tools and fabrication methods, rather than certain design concepts, that has historically
driven iteration and progress in this industry. Automation improves the productivity, precision, and
sustainability of architectural projects while reducing dependency on manual labor, which further
pushes the whole industry to evolve beyond its comfort zone. Intelligent manufacturing is therefore an
intermediary for building technologists to rethink the boundaries of the architecture industry and
embrace cross-disciplinary innovations that can propel the field forward.

Thus, the ambition of this thesis is to fully automate the AM of construction materials. Rather than
relying on manual observation and adjustment, artificial intelligence takes over this redundant task
with higher accuracy and less material waste. As a long-term goal, this research serves as a foundation
for scaling the system, from small-scale robotic arms to 6-axis gantry systems for on-site, mold-free
construction 3DP, with potential adaptation from clay to concrete, laying the foundation for fully
automated, construction-scale AM.

7.2 Research Journey & Personal Development

7.2.1 Starting Point

This research journey has involved continuous learning, technical challenges, and a growing sense of
resilience. It began with inspiration from the CORE electives. In the CORE project, our team
developed an open-loop calibration system for clay 3DP using computer vision and ML. I
implemented the Attention-56 deep learning network and real-time material flow control for adaptive
pre-print calibration. However, the system showed limitations in automation and accuracy, and the

Page 101

unpredictable behavior of clay revealed the need for a more robust solution.

Building on this foundation, my graduation thesis focused on a closed-loop calibration system, with a
greater emphasis on architectural and structural design. Switching from a WASP clay printer to a 6-
axis robotic arm equipped with a clay extruder allowed for more dynamic control. The prototype
evolved into an overhang structure, allowing exploration of architectural expression. To improve ML
performance, I trained and compared a second model, DINOv2, to evaluate its effectiveness against
Attention-56.

7.2.2 Evolution of the Topic
While the research direction remained consistent, its scope narrowed significantly with guidance from
my mentors. Initially (P1), the objectives were:

• Closed-loop calibration

• ML integration

• Construction-scale 3DP

• Structural stability monitoring

• Robotic arm integration

Due to time and resource limitations, P2 refined the focus to:

• Closed-loop calibration with a balance between local and global design coherence

• Multi-objective ML for extrusion quality and structural adhesion optimization

• Robotic 3DP

• Robotic arm integration

At this stage, the gantry system and structural stability validation were excluded, as both the extruder
and feeding system for the gantry had to be developed from scratch, which was an unrealistic goal
within the timeframe of a master's thesis.

By P3, the focus had narrowed to:

• Closed-loop calibration

• Multi-objective ML for extrusion quality optimization and overhang success

• Robotic 3DP

Although this narrowing process was lengthy, it allowed me to frame my project within a larger
research context. The original idea from P1 was a complete workflow for automated on-site 3DP

Page 102

calibration. However, to make the project feasible for a master’s thesis, I had to select and implement
the most critical parts.

7.2.3 Learning Process
My background in Building Technology helped me design the workflow and experiments from a
designer’s perspective. For example, I was able to design and fabricate the frame needed for the
experiment using PLA 3DP. My prior experience with the UR5 robotic arm in the Design Informatics
course also made it easier to generate robotic printing programs using Grasshopper.

However, my coding experience was limited. Aside from a two-week crash course during the CORE
project, I had no background in Python. This project demanded extensive programming, requiring me
to self-learn and debug continuously. Tasks like setting up Raspberry Pi cameras, writing scripts to
take synchronized photos, logging data to CSV files, correcting image perspectives, merging images,
training ML models, and generating a complete real-time correction workflow all required coding.
Each step presented new, unexpected challenges and took considerable time to resolve.

A significant technical hurdle was establishing real-time control between my PC and the robotic arm.
Despite two weeks of attempts, including scripting, consulting manuals, forums, and COMAU
technicians, I discovered that the COMAU controller was outdated and incompatible. Budget
limitations prevented upgrading the hardware, so I switched to the UR5 robotic arm in the end, which
supports real-time connectivity.

Connecting the Raspberry Pi, UR5 robotic arm, and PC involved IP address reconfiguration, which
took a long time to align the devices on the same frequency band. Adjusting the UR5 movement speed
also required numerous troubleshooting attempts, as code that ran successfully on my PC did not
always elicit a response from the robot. Eventually, through persistence, I resolved these issues.

7.2.4 Delays and Adaptation
The switch to UR5 brought additional delays. It was already scheduled for use in the Design
Informatics course and by another graduate student, which meant I couldn’t access it for a month.
Compounding the issue, I experienced a sudden health problem and had to return to my home country
for recovery. During this time, I adjusted my workflow, setting aside tasks that required the UR5 and
focusing on other aspects: training DINOv2, generating Grad-CAM visualizations, and developing the
Raspberry Pi camera system.

Meanwhile, preparing the clay extruder setup for both COMAU and UR5 took considerable time, as it
needed to be designed, fabricated, and installed from scratch.

Hardware integration was particularly unpredictable. For instance, improper clay consistency often
led to clogging in the extruder, stopping the internal blades and halting extrusion. Excess internal
pressure caused similar blockages. Resolving these issues required manually remixing clay,

Page 103

disassembling, and cleaning the extruder repeatedly. These failures were time-consuming and
physically demanding.

Despite these setbacks, this intense problem-solving process allowed me to develop a wide range of
skills: coding, robotic control, ML, system setup, and hardware integration. I learned to design
experiments methodically, troubleshoot effectively, and construct a coherent, goal-oriented workflow.
Additionally, these obstacles taught me the importance of adaptability, patience, and building in time
buffers. Most importantly, I cultivated a persistent, solution-driven mindset and developed resilience
that will benefit me in future research and practice.

7.3 Societal Impact
The completion of this thesis will not mark an end, but the opening chapter of a much broader and
ongoing research journey. Future work could focus on scaling the system for construction-scale
applications using a gantry setup and adapting the ML model for different materials, such as concrete.
If successful, this would significantly reduce printing errors and human labor in real-world
construction projects, while also minimizing material and time waste.

Once implemented in on-site 3DP, this system could promote the use of naturally sourced extrudable
materials and reduce reliance on traditional, resource-heavy methods. With minimal or no human
intervention, the printing process would become safer and more efficient, enhancing the feasibility of
digitally fabricated architecture.

Another bold idea: a fully automated, error-free 3DP process could enable space-based construction.
For example, using a mixture of moon soil and binders, the calibration system could autonomously
3D print habitats on the moon with minimal human input.

7.4 Future Direction
Motivated by the challenges and fulfillment of this research, I am highly motivated to pursue a PhD in
intelligent construction. I am eager to deepen my knowledge of robotic operating systems (ROS), ML,
and real-world applications of robotics in architecture. Discussions with professionals in the field
confirmed that there is strong interest in applying such systems to large-scale concrete printing. The
practical relevance of this research excites me, and I hope to contribute meaningfully to the
development of intelligent robotic systems that advance sustainable construction and architectural
innovation.

7.5 Conclusion
The most valuable takeaway from this thesis is not a specific technical skill but the ability to approach
complex problems creatively and persistently. This journey has strengthened my confidence,
expanded my interdisciplinary skill set, and inspired a long-term commitment to intelligent
construction and sustainable architectural practices.

Page 104

Page 105

8. Acknowledgment

I would like to express my sincere gratitude to my mentors, Dr. Serdar Așut, for his invaluable
guidance on robotic control, as well as his comprehensive tutoring on the overall workflow and
methodology throughout this project. My sincere thanks also go to Dr. Charalampos Andriotis for his
insightful support and advice regarding machine learning inquiries, which greatly enriched this study.

I am grateful to Prof. mr. dr. M.N. Boeve, the delegate of the Board of Examiners, for her
encouragement and support during my graduation process.

Special thanks are extended to Paul de Ruiter, Vera Laszlo, and Henry Kiksen for their assistance and
contributions during the 3DCP experiments conducted in the LAMA lab. I also wish to acknowledge
Shantha Kilambi and Gustavo Asai, PhD candidates from the Shaping Matter Lab at TU Delft, for
their additional support and valuable discussions on ML methods and overall methodology.

Finally, I deeply appreciate the unwavering encouragement and support from my family and dear
friends throughout this challenging journey.

Page 106

Page 107

9. Reference

Akhavan, J., Lyu, J., & Manoochehri, S. (2024). A deep learning solution for real-time quality
assessment and control in additive manufacturing using point cloud data. Journal of
Intelligent Manufacturing, 35(3), 1389-1406. https://doi.org/10.1007/s10845-023-02121-4

Ansari, M. A., Crampton, A., & Parkinson, S. (2022). A layer-wise surface deformation defect
detection by convolutional neural networks in laser powder-bed fusion images. Materials,
15(20), 7166.

Așut, S., Ding, X., Guha, S., Ryu, S., & Wei, W. (2025, 01-05 September). Enhancing 3D Clay
Printing with Computer Vision and Deep Learning eCAADe Annual Conference 2025,
Ankara, Türkiye. (accepted, in press)

Avro, S. S., Atikur Rahman, S. M., Tseng, T.-L., & Fashiar Rahman, M. (2024). A deep learning
framework for automated anomaly detection and localization in fused filament fabrication.
Manufacturing Letters, 41, 1526-1534.
https://doi.org/https://doi.org/10.1016/j.mfglet.2024.09.179

Bhooshan, S., Mele, T., & Block, P. (2018). Equilibrium-Aware Shape Design for Concrete Printing.
In (pp. 493-508). https://doi.org/10.1007/978-981-10-6611-5_42

Brion, D. A., Shen, M., & Pattinson, S. W. (2022). Automated recognition and correction of warp
deformation in extrusion additive manufacturing. Additive Manufacturing, 56, 102838.

Brion, D. A. J., & Pattinson, S. W. (2022). Generalisable 3D printing error detection and correction
via multi-head neural networks. Nature Communications, 13(1), 4654.
https://doi.org/10.1038/s41467-022-31985-y

Delgado Camacho, D., Clayton, P., O'Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., &
Salamone, S. (2018). Applications of additive manufacturing in the construction industry – A
forward-looking review. Automation in Construction, 89, 110-119.
https://doi.org/https://doi.org/10.1016/j.autcon.2017.12.031

Ding, X., Așut, S., & Andriotis, C. (2025). Closed-Loop Control of 3D Clay Printing Using Machine
Learning. In Digitalisation of the Built Environment: 4th 4TU/14UAS Research Day (pp. 93-
99). Hanze University of Applied Sciences.

Farahbakhsh, M., Kalantar, N., & Rybkowski, Z. (2021). Impact of Robotic 3D Printing Process
Parameters on Bond Strength: A Systematic Analysis Using Clay-Based Materials.

Fastermann, P. (2016). 3D-Drucken (2 ed.). Springer Berlin, Heidelberg.
https://doi.org/https://doi.org/10.1007/978-3-662-49866-8

Fontúrbel, C., Cisnal, A., Fraile-Marinero, J. C., & Pérez-Turiel, J. (2023). Force-based control
strategy for a collaborative robotic camera holder in laparoscopic surgery using pivoting
motion [Original Research]. Frontiers in Robotics and AI, Volume 10 - 2023.
https://doi.org/10.3389/frobt.2023.1145265

Froes, F., Boyer, R., & Rao, J. (2019). Additive manufacturing for the aerospace industry.
https://doi.org/10.1016/C2017-0-00712-7

Fu, T.-H., Huang, T.-Y., & Li, D.-R. (2025). Machine Learning-Enabled Process Monitoring and
Error Detection in Material Extrusion-Based Additive Manufacturing.
https://doi.org/10.1115/IMECE2024-147155

https://doi.org/10.1007/s10845-023-02121-4
https://doi.org/https:/doi.org/10.1016/j.mfglet.2024.09.179
https://doi.org/10.1007/978-981-10-6611-5_42
https://doi.org/10.1038/s41467-022-31985-y
https://doi.org/https:/doi.org/10.1016/j.autcon.2017.12.031
https://doi.org/https:/doi.org/10.1007/978-3-662-49866-8
https://doi.org/10.3389/frobt.2023.1145265
https://doi.org/10.1016/C2017-0-00712-7
https://doi.org/10.1115/IMECE2024-147155

Page 108

Goh, G. D., Hamzah, N. M. B., & Yeong, W. Y. (2022). Anomaly Detection in Fused Filament
Fabrication Using Machine Learning. 3D Printing and Additive Manufacturing, 10(3), 428-
437. https://doi.org/10.1089/3dp.2021.0231

Grigoriadis, K., & Lee, G. (2024). 3D Printing and Material Extrusion in Architecture. DOM
publishers.

Gunasegaram, D. R., Murphy, A. B., Matthews, M., & DebRoy, T. (2021). The case for digital twins
in metal additive manufacturing. Journal of Physics: Materials, 4(4), 040401.

Gürsoy, B. (2018). From Control to Uncertainty in 3D Printing with Clay. In A. Kepczynska-Walczak
& S. Bialkowski (Eds.), 36th International Conference on Education and Research in
Computer Aided Architectural Design in Europe, eCAADe 2018 (pp. 21-30): Education and
research in Computer Aided Architectural Design in Europe.

Haghiashtiani, G. A.-O., Qiu, K. A.-O., Zhingre Sanchez, J. D., Fuenning, Z. J., Nair, P. A.-O.,
Ahlberg, S. E., Iaizzo, P. A., & McAlpine, M. A.-O. (2020). 3D printed patient-specific aortic
root models with internal sensors for minimally invasive applications. (2375-2548
(Electronic)).

Jang, S., Park, S., & Bae, C. J. (2020). Development of ceramic additive manufacturing: process and
materials technology. (2093-985X (Electronic)).

Jiang, J., Xiong, Y., Zhang, Z., & Rosen, D. W. (2022). Machine learning integrated design for
additive manufacturing. Journal of Intelligent Manufacturing, 33(4), 1073-1086.

Jin, Z., Zhang, Z., Ott, J., & Gu, G. X. (2021). Precise localization and semantic segmentation
detection of printing conditions in fused filament fabrication technologies using machine
learning. Additive Manufacturing, 37, 101696.
https://doi.org/https://doi.org/10.1016/j.addma.2020.101696

Jin, Z., Zhang, Z., Shao, X., & Gu, G. X. (2023). Monitoring Anomalies in 3D Bioprinting with Deep
Neural Networks. ACS Biomaterials Science & Engineering, 9(7), 3945-3952.
https://doi.org/10.1021/acsbiomaterials.0c01761

Khan, M. F., Alam, A., Siddiqui, M. A., Alam, M. S., Rafat, Y., Salik, N., & Al-Saidan, I. (2021).
Real-time defect detection in 3D printing using machine learning. Materials Today:
Proceedings, 42, 521-528.

Kim, Y., & Park, S. (2023). Highly Productive 3D Printing Process to Transcend Intractability in
Materials and Geometries via Interactive Machine‐Learning‐Based Technique. Advanced
Intelligent Systems, 5, 2200462. https://doi.org/10.1002/aisy.202200462

Klug, C., Herzog, S., Kaletsch, A., Broeckmann, C., & Schmitz, T. H. (2022). Forming of Additively
Manufactured Ceramics by Magnetic Fields. Ceramics, 5(4), 947-960.

Kontovourkis, O., & Tryfonos, G. (2020). Robotic 3D clay printing of prefabricated non-conventional
wall components based on a parametric-integrated design. Automation in Construction, 110,
103005. https://doi.org/https://doi.org/10.1016/j.autcon.2019.103005

Lee, S.-M., & Park, S.-H. (2025). Autonomous in-situ defect detection and correction in additive-lathe
3D printing process using variational autoencoder model. Additive Manufacturing, 98,
104635. https://doi.org/https://doi.org/10.1016/j.addma.2024.104635

Li, Z., Zhang, Z., Shi, J., & Wu, D. (2019). Prediction of surface roughness in extrusion-based
additive manufacturing with machine learning. Robotics and Computer-Integrated
Manufacturing, 57, 488-495.

https://doi.org/10.1089/3dp.2021.0231
https://doi.org/https:/doi.org/10.1016/j.addma.2020.101696
https://doi.org/10.1021/acsbiomaterials.0c01761
https://doi.org/10.1002/aisy.202200462
https://doi.org/https:/doi.org/10.1016/j.autcon.2019.103005
https://doi.org/https:/doi.org/10.1016/j.addma.2024.104635

Page 109

López-Valdeolivas, M., Liu, D., Broer, D. A.-O., & Sánchez-Somolinos, C. A.-O. (2018). 4D Printed
Actuators with Soft-Robotic Functions. LID - 10.1002/marc.201700710 [doi]. (1521-3927
(Electronic)).

Lu, L., Hou, J., Yuan, S., Yao, X., Li, Y., & Zhu, J. (2023). Deep learning-assisted real-time defect
detection and closed-loop adjustment for additive manufacturing of continuous fiber-
reinforced polymer composites. Robotics and Computer-Integrated Manufacturing, 79,
102431.

Maxime Oquab, T. D., Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas,
Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, Piotr Bojanowski. (2024). DINOv2: Learning Robust Visual Features without
Supervision. Transactions on Machine Learning Research.

Muñoz, V. F., Garcia-Morales, I., Fraile-Marinero, J. C., Perez-Turiel, J., Muñoz-Garcia, A., Bauzano,
E., Rivas-Blanco, I., Sabater-Navarro, J. M., & Fuente, E. d. l. (2021). Collaborative Robotic
Assistant Platform for Endonasal Surgery: Preliminary In-Vitro Trials. Sensors, 21(7), 2320.
https://www.mdpi.com/1424-8220/21/7/2320

Nematollahi, B., Xia, M., & Sanjayan, J. (2017). Current progress of 3D concrete printing
technologies. ISARC. Proceedings of the international symposium on automation and
robotics in construction,

Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing
(3D printing): A review of materials, methods, applications and challenges. Composites Part
B: Engineering, 143, 172-196.
https://doi.org/https://doi.org/10.1016/j.compositesb.2018.02.012

OpenCV. Retrieved May 22 from https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
Oti, J. E. (2010). The development of unfired clay building materials for sustainable building

construction. University of South Wales (United Kingdom).
Paraskevoudis, K., Karayannis, P., & Koumoulos, E. P. (2020). Real-time 3D printing remote defect

detection (stringing) with computer vision and artificial intelligence. Processes, 8(11), 1464.
Parkes, J. (2021a). Joris Laarman's 3D-printed stainless steel bridge finally opens in Amsterdam.

dezeen. Retrieved 09/06/2025 from https://www.dezeen.com/2021/07/19/mx3d-3d-printed-
bridge-stainless-steel-amsterdam/

Parkes, J. (2021b). Tecla house 3D-printed from locally sourced clay. Retrieved 08/06/2025 from
https://www.dezeen.com/2021/04/23/mario-cucinella-architects-wasp-3d-printed-housing/

Pérez-Ubeda, R., Zotovic-Stanisic, R., & Gutiérrez, S. C. (2020). Force Control Improvement in
Collaborative Robots through Theory Analysis and Experimental Endorsement. Applied
Sciences, 10(12), 4329. https://www.mdpi.com/2076-3417/10/12/4329

Placone, J. K., & Engler, A. J. (2018). Recent Advances in Extrusion-Based 3D Printing for
Biomedical Applications. (2192-2659 (Electronic)).

Ramiah, K., & Pandian, P. (2023). Effect of process parameters on the strength of ABS based FDM
prototypes: novel machine learning based hybrid optimization technique. Materials Research
Express, 10(2), 025305.

Rosenthal, M., Henneberger, C., Gutkes, A., & Bues, C.-T. (2018). Liquid Deposition Modeling: a

https://www.mdpi.com/1424-8220/21/7/2320
https://doi.org/https:/doi.org/10.1016/j.compositesb.2018.02.012
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
https://www.dezeen.com/2021/07/19/mx3d-3d-printed-bridge-stainless-steel-amsterdam/
https://www.dezeen.com/2021/07/19/mx3d-3d-printed-bridge-stainless-steel-amsterdam/
https://www.dezeen.com/2021/04/23/mario-cucinella-architects-wasp-3d-printed-housing/
https://www.mdpi.com/2076-3417/10/12/4329

Page 110

promising approach for 3D printing of wood. European Journal of Wood and Wood Products,
76(2), 797-799. https://doi.org/10.1007/s00107-017-1274-8

Singh, T., Kumar, S., & Sehgal, S. (2020). 3D printing of engineering materials: A state of the art
review. Materials Today: Proceedings, 28, 1927-1931.
https://doi.org/https://doi.org/10.1016/j.matpr.2020.05.334

Teizer, J., Blickle, A., King, T., Leitzbach, O., & Guenther, D. (2016). Large scale 3D printing of
complex geometric shapes in construction. ISARC. Proceedings of the International
Symposium on Automation and Robotics in Construction,

Toorandaz, S., Taherkhani, K., Liravi, F., & Toyserkani, E. (2024). A novel machine learning-based
approach for in-situ surface roughness prediction in laser powder-bed fusion. Additive
Manufacturing, 91, 104354. https://doi.org/https://doi.org/10.1016/j.addma.2024.104354

Van Oosterwyck, N. (2018). Real Time Human Robot Interactions and Speed Control of a Robotic
Arm for Collaborative Operations

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., & Tang, X. (2017, 21-26 July
2017). Residual Attention Network for Image Classification. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),

Witte, D. (2022). Clay Printing: The Fourth Generation Brickwork. https://doi.org/10.1007/978-3-
658-37161-6

Wolf, A., Rosendahl, P. L., & Knaack, U. (2022). Additive manufacturing of clay and ceramic
building components. Automation in Construction, 133, 103956.
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103956

Wu, P., Zhao, X., Baller, J. H., & Wang, X. (2018). Developing a conceptual framework to improve
the implementation of 3D printing technology in the construction industry. Architectural
Science Review, 61(3), 133-142.

Yang, H.-Q., Klug, C., & Schmitz, T. H. (2023). Fiber-Reinforced Clay: An Exploratory Study on
Automated Thread Insertion for Enhanced Structural Integrity in LDM. Ceramics, 6(3), 1365-
1383.

Zhang, J., Wang, P., & Gao, R. X. (2019). Deep learning-based tensile strength prediction in fused
deposition modeling. Computers in industry, 107, 11-21.

Zubayer, M. H., Xiong, Y., Wang, Y., & Imdadul, H. M. (2024). Enhancing additive manufacturing
precision: Intelligent inspection and optimization for defect-free continuous carbon fiber-
reinforced polymer. Composites Part C: Open Access, 14, 100451.
https://doi.org/https://doi.org/10.1016/j.jcomc.2024.100451

https://doi.org/10.1007/s00107-017-1274-8
https://doi.org/https:/doi.org/10.1016/j.matpr.2020.05.334
https://doi.org/https:/doi.org/10.1016/j.addma.2024.104354
https://doi.org/10.1007/978-3-658-37161-6
https://doi.org/10.1007/978-3-658-37161-6
https://doi.org/https:/doi.org/10.1016/j.autcon.2021.103956
https://doi.org/https:/doi.org/10.1016/j.jcomc.2024.100451

Page 111

Page 112

10. Appendix

10.1 Potential research questions
This report investigates the use of ML models within a closed-loop system to detect, interpret, and
correct errors during construction-scale 3DP. Based on a synthesis of existing literature, experimental
findings, and theoretical analysis, the following potential research directions have been identified:

1. Structural Stability During Printing
How can the system ensure that partially completed structures remain stable during
fabrication, particularly when the toolpath interacts with unsupported or unfinished regions?

2. Geometry-Aware Prediction
Can ML models be trained to distinguish between geometric contexts—such as corners,
straight paths, and freeform curves—from top or sectional views, and associate them with
printing outcomes? For example, how do image-based features differ between long, linear
paths and curvilinear shapes, and how does this affect deposition performance?

3. Ridges from Toolpath Overlaps
How can ridges caused by infill and outer layer intersections be detected and minimized?
Could ML dynamically adjust toolpaths or extrusion rates to either reduce or aesthetically
integrate these features?

4. Balancing Aesthetics and Function
Can ML be optimized to distinguish between aesthetic and structural needs, especially when
retaining or modifying surface ridges is contextually important?

5. Layer Weight Distribution
How can the system ensure that lower layers are printed with higher material density for
stability, while upper layers remain lighter? This may involve adjusting extrusion rates, speed,
or path curvature dynamically.

6. Layer Adhesion and Overhang Performance
What is the minimum required interlayer contact area for overhang stability? Can ML models
be trained to optimize print paths to maintain adhesion even under minimal overlap
conditions?

7. Contact Area vs. Stability
How should the system balance contact area and print stability, and which parameters are
most effective for controlling this relationship?

8. Discontinuous Toolpaths
How can discontinuities from multi-directional printing be avoided—particularly at layer
junctions—through optimized parameter transitions and path planning?

9. Outward vs. Inward Overhangs

Page 113

Why are outward overhangs typically more stable than inward ones, and how should printing
parameters be adjusted accordingly?

10. Support Material Strategy
Under what conditions is the use of support material (e.g., soft clay molds or adaptive
scaffolds) necessary, and how should it be integrated with the base material?

11. Real-Time Shape Deviation Control
Can ML respond to early-stage geometric deviations in unsupported spans by adjusting
printing parameters before failure propagates?

12. Consistency Despite Identical Conditions
Why do prints with identical paths, clay, and parameters yield different results? What
environmental or system-level factors contribute, and how can real-time feedback be used to
improve consistency?

13. Environmental Adaptation
Can the system detect environmental changes (e.g., rising temperature or humidity) and adapt
accordingly—such as slowing extrusion or modifying paths—to preserve print quality?

14. Anticipating Environmental Effects
How quickly do environmental shifts affect clay behavior, and can the system predict and
preemptively adjust before the next layer is printed?

15. Moisture Management in Large Prints
How can uneven drying be mitigated in large-scale, multi-layer prints to ensure proper
adhesion and structural performance?

16. Self-Correction via Material Properties
Can the natural viscosity and malleability of clay be leveraged to self-correct uneven surfaces
or layer inconsistencies during printing?

17. Critical Parameter Identification for Overhang Success
Which parameters most directly influence overhang stability, and how can the system adjust
them during fabrication?

18. Defect Detection and Compensation
How can ML detect defects such as under-extrusion or layer shifting in real time and
implement corrective actions without interrupting the print?

19. Inclination-Based Parameter Adjustment
What parameter changes are necessary for overhangs of varying inclinations, and can this be
mapped as a function of angle?

20. Post-Detection Recovery
How should the system respond after a defect is detected to continue printing successfully
while minimizing material waste?

21. Cross-Scale Anomaly Management

Page 114

Can ML segment localized defects without compromising global form coherence? For
example, if a ridge or gap is detected in a curved shell structure, how can the model
compensate locally while preserving the overall geometry and stability?

Given the complexity of integrating all these variables simultaneously, the current research
focuses primarily on:
(6) Layer Adhesion and Overhang Performance, and (18) Defect Detection and Compensation,
as the most immediate and feasible directions for implementing a functional ML-driven closed-
loop correction system.

Page 115

Page 116

10.2 Dataset labelling summary

0
500

1000
1500
2000
2500
3000

Under Good Over

Angle1 Extrusion label distribution

0
1000
2000
3000
4000

safe at risk unsafe

Angle1 Overhang success label
distribution

0

2000

4000

6000

Under Good Over

Angle2 Extrusion label
distribution

0
1000
2000
3000
4000
5000

safe at risk unsafe

Angle2 Overhang success label
distribution

Page 117

Dataset sample count by label
parameter class Angle1 Angle2 Angle3 Angle4 total

extrusion
Under 1594 1587 1581 56 4818
Good 2537 5069 617 242 8465
Over 1412 898 794 1166 4270

overhang
success

safe 3651 4292 0 0 7943
at risk 1168 1675 794 1166 4803
unsafe 724 1587 2198 298 4807

0

500

1000

1500

2000

Under Good Over

Angle3 Extrusion label distribution

0

500

1000

1500

2000

2500

safe at risk unsafe

Angle3 Overhang success label
distribution

0

500

1000

1500

Under Good Over

Angle4 Extrusion label
distribution

0

500

1000

1500

safe at risk unsafe

Angle4 Overhang success label
distribution

Dataset size in total 17553

Page 118

label combination count
0,0 3948
0,1 424
0,2 446
1,0 859
1,1 1675
1,2 5931
2,0 0
2,1 2704
2,2 1566

0

2000

4000

6000

8000

10000

Under Good Over

Dataset Extrusion label
distribution

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

safe at risk unsafe

Dataset Overhang success
label distribution

0

1000

2000

3000

4000

5000

6000

0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2

Dataset label combination distribution

Page 119

10.3 Dataset Example

Page 120

Page 121

10.4 Prototype Collection

Page 122

Page 123

10.5 Real-time Correction Workflow Codes
================================

Real-time 3D Printing Calibration Loop

Author: Xiaochen Ding

Purpose: Closed-loop ML-based UR5 speed control for 3D clay printing

================================

import os

import time

import socket

import threading

import torch

import numpy as np

import pandas as pd

import cv2 as cv

from PIL import Image

from scipy import stats

from glob import glob

import paramiko

from scp import SCPClient

from model.network_module_DINOv2 import DINO2ResAttClassifier

from data.data_module_wholeworkflow import ParametersDataModule

from train_config import preprocess

Page 124

from datetime import datetime

import matplotlib.pyplot as plt

import shutil

UR Configuration

UR_IP = "192.168.1.100"

SCRIPT_PORT = 30003

DASH_PORT = 30002

INITIAL_SCALE = 0.5

Paths

DATA_DIR = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation

project\test_print_photo"

INPUT_FOLDER = os.path.join(DATA_DIR, "Image_detection")

OUTPUT_FOLDER = os.path.join(DATA_DIR, "Image_for_preprocess")

PREDICTION_FOLDER = os.path.join(DATA_DIR, "Image_for_prediction")

SAVE_FOLDER1 = os.path.join(DATA_DIR, "Image_for_save_raw")

SAVE_FOLDER2 = os.path.join(DATA_DIR, "Image_for_save_prediction")

DATA_CSV = os.path.join(DATA_DIR, "test_print.csv")

CHECKPOINT_PATH = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation

project\ML\checkpoints\23042025\1234\DINO2ResAtt-model6.3_balanced_DINOv2-23042025-epoch=38-

val_loss=0.35-val_acc=0.00.ckpt"

WAYPOINTS_CSV = r"E:\OneDrive - Delft University of Technology\TUD Master\graduation

project\ML\UR5\movej_positions.csv"

DATASET_NAME = "closeloop_test_v1"

Raspberry Pi Configuration

PI_IP = "192.168.1.185"

PI_USER = "user"

PI_PASS = "toi'sLAMA"

PI_IMAGE_DIR = "/home/user/Image_detection"

PI_TIMELAPSE_SCRIPT = "/home/user/camera_project/take_timelapse_xc.py"

Constants

DATASET_MEAN = [0.2915257, 0.27048784, 0.14393276]

DATASET_STD = [0.066747, 0.06885352, 0.07679665]

BATCH_SIZE = 18

MONITOR_PAUSE = 20 #40

SSH and SCP clients

ssh = None

scp = None

Page 125

Load model

model = DINO2ResAttClassifier.load_from_checkpoint(

 checkpoint_path=CHECKPOINT_PATH,

 num_classes=3,

 gpus=1,

)

model.eval()

def connect_pi():

 global ssh, scp

 ssh = paramiko.SSHClient()

 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 ssh.connect(PI_IP, username=PI_USER, password=PI_PASS)

 scp = SCPClient(ssh.get_transport())

def start_timelapse():

 print("📷📷 Starting timelapse on Raspberry Pi...")

 ssh.exec_command(f"python3 {PI_TIMELAPSE_SCRIPT} &")

def stop_timelapse():

 print("🛑🛑 Stopping timelapse on Raspberry Pi...")

 ssh.exec_command("pkill -f take_timelapse.py")

def sync_images_from_pi():

 print("⬇ Transferring images from Raspberry Pi...")

 scp.get(PI_IMAGE_DIR, DATA_DIR, recursive=True)

 print("✅ Images transferred to PC.")

def clear_remote_folder(remote_path):

 delete_cmd = f"rm -rf {remote_path}/*"

 stdin, stdout, stderr = ssh.exec_command(delete_cmd)

 exit_status = stdout.channel.recv_exit_status()

 if exit_status == 0:

 print(f"🧹🧹 Cleared all contents from remote folder: {remote_path}")

 else:

 err = stderr.read().decode().strip()

 print(f"❌ Error deleting remote directory: {err}")

def backup_images_to_timestamped_folder(input_folder, save_root_folder):

 # 1. Check if input directory exists

 if not os.path.isdir(input_folder):

 raise ValueError(f"Input folder does not exist or is not a directory: {input_folder}")

Page 126

 # 2. Create a timestamped subfolder under save_root_folder

 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

 destination_folder = os.path.join(save_root_folder, timestamp)

 os.makedirs(destination_folder, exist_ok=True)

 # 3. Iterate over all files in input_folder and copy images

 copied_count = 0

 for filename in os.listdir(input_folder):

 name_lower = filename.lower()

 _, ext = os.path.splitext(name_lower)

 src_path = os.path.join(input_folder, filename)

 dst_path = os.path.join(destination_folder, filename)

 shutil.copy2(src_path, dst_path) # Copy preserving metadata

 copied_count += 1

 print(f"📁📁 Created subfolder '{timestamp}' under '{save_root_folder}'")

 print(f"✅ Successfully copied {copied_count} images to: {destination_folder}")

 return destination_folder

def clear_folder(folder_path):

 if not os.path.isdir(folder_path):

 print(f"⚠ Path does not exist or is not a directory: {folder_path}")

 return

 for entry in os.listdir(folder_path):

 entry_path = os.path.join(folder_path, entry)

 try:

 if os.path.isfile(entry_path) or os.path.islink(entry_path):

 os.remove(entry_path)

 except Exception as e:

 print(f"Error deleting: {entry_path} -> {e}")

 print(f"🧹🧹 Cleared all contents from: {folder_path}")

def set_speed_override(scale: float):

 msg = f"set speed {scale:.3f}\n".encode("ascii")

 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((UR_IP, DASH_PORT))

 s.sendall(msg)

def load_waypoints(path):

 waypoints = []

Page 127

 with open(path, 'r', encoding='utf-8-sig', newline='') as f:

 reader = pd.read_csv(f)

 for row in reader.itertuples(index=False):

 waypoints.append(list(row))

 return waypoints

def build_urscript_joint_arc(waypoints, acc=3.1416, vel=0.07, blend=0.01):

 lines = [

 "def Program():",

 " Clay_extruderTcp = p[0, 0.1765, 0.058, -1.5708, 0, 0]",

 " Clay_extruderWeight = 1.78",

 " Clay_extruderCog= [0, 0.1765, 0.058]",

 " set_tcp(Clay_extruderTcp)",

 " set_payload(Clay_extruderWeight, Clay_extruderCog)",

 f" movej({waypoints[0]}, a={acc}, v={vel}, r=0)"

]

 for wp in waypoints[1:]:

 lines.append(f" movej({wp}, a={acc}, v={vel}, r={blend})")

 lines.append("end")

 return "\n".join(lines)

def send_script(script: str, chunk_size=2084, delay=0.01):

 data = script + "\n"

 total = len(data)

 sent = 0

 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

 s.connect((UR_IP, SCRIPT_PORT))

 # Send in chunks

 while sent < total:

 end = min(sent + chunk_size, total)

 block = data[sent:end].encode('utf8')

 s.sendall(block)

 sent = end

 time.sleep(delay)

 print("✅ URScript uploaded and executed.")

def suggest_speed_change(extrusion, overhang):

 if extrusion == 0:

 return -0.1 if overhang <= 1 else -0.2

 elif extrusion == 1:

 return +0.1 if overhang == 0 else (0 if overhang == 1 else -0.1)

 elif extrusion == 2:

Page 128

 return +0.2 if overhang == 0 else +0.1

 return 0

def preprocess_images(input_folder, output_folder):

 param = np.load(r"E:\OneDrive - Delft University of Technology\TUD Master\graduation

project\dataset\cali_images\calibration_parameters0.npz")

 H_up = param['H_up']

 H_down = param['H_down']

 crop_up = param['crop_pts_up']

 crop_down = param['crop_pts_down']

 scale = param['scale_factor']

 warp_size_up = tuple(param['warp_size_up'])

 warp_size_down = tuple(param['warp_size_down'])

 output_size = tuple(param['output_size'])

 def crop_img(img, crop_pts, output_size):

 pts_dst = np.array([[0, 0], [output_size[0]-1, 0], [output_size[0]-1, output_size[1]-1], [0,

output_size[1]-1]], dtype=np.float32)

 H_crop = cv.getPerspectiveTransform(crop_pts, pts_dst)

 return cv.warpPerspective(img, H_crop, output_size)

 def crop_to_center(img, crop_size):

 h, w = img.shape[:2]

 center_x, center_y = w // 2, h // 2

 left = max(center_x - crop_size[0] // 2, 0)

 top = max(center_y - crop_size[1] // 2, 0)

 right = min(center_x + crop_size[0] // 2, w)

 bottom = min(center_y + crop_size[1] // 2, h)

 cropped = img[top:bottom, left:right]

 return cv.resize(cropped, crop_size, interpolation=cv.INTER_LINEAR)

 def add_black_border(img, border_size):

 return cv.copyMakeBorder(img, border_size[1], border_size[1], border_size[0], border_size[0],

cv.BORDER_CONSTANT, value=(0, 0, 0))

 os.makedirs(output_folder, exist_ok=True)

 img_list = glob(os.path.join(input_folder, "*.jpg"))

 cam0, cam1 = {}, {}

 for path in img_list:

 name = os.path.basename(path)

 if name.startswith("cam0_"):

 cam0[name[5:-4]] = path

 elif name.startswith("cam1_"):

Page 129

 cam1[name[5:-4]] = path

 timestamps = sorted(set(cam0.keys()) & set(cam1.keys()))

 for ts in timestamps:

 img_up = cv.imread(cam0[ts])

 img_down = cv.imread(cam1[ts])

 if img_up is None or img_down is None:

 continue

 warp_up = cv.warpPerspective(img_up, H_up, warp_size_up)

 warp_down = cv.warpPerspective(img_down, H_down, warp_size_down)

 crop_u = crop_img(warp_up, crop_up, output_size)

 crop_d = crop_img(warp_down, crop_down, output_size)

 crop_u = cv.rotate(crop_u, cv.ROTATE_90_COUNTERCLOCKWISE)

 crop_d = cv.rotate(crop_d, cv.ROTATE_90_COUNTERCLOCKWISE)

 new_w = int(crop_u.shape[1] * scale)

 new_h = int(crop_u.shape[0] * scale)

 crop_u_scaled = cv.resize(crop_u, (new_w, new_h))

 x_up_center = new_w // 2

 x_down_center = crop_d.shape[1] // 2

 offset_x = x_down_center - x_up_center

 left = max(-offset_x, 0)

 x_up = left + max(offset_x, 0)

 x_down = left + max(-offset_x, 0)

 canvas_w = max(x_up + new_w, x_down + crop_d.shape[1])

 canvas_h = new_h + crop_d.shape[0]

 canvas = np.zeros((canvas_h, canvas_w, 3), dtype=np.uint8)

 canvas[0:new_h, x_up:x_up+new_w] = crop_u_scaled

 canvas[new_h:new_h+crop_d.shape[0], x_down:x_down+crop_d.shape[1]] = crop_d

 orig_h, orig_w = canvas.shape[:2]

 bordered = add_black_border(canvas, (1500, 1500))

 resized = cv.resize(bordered, (orig_w, orig_h))

 cropped_merge_img = crop_to_center(resized, (224, 224))

 output_path = os.path.join(output_folder, f"cropped_{ts}.jpg")

 cv.imwrite(output_path, cropped_merge_img)

 print(f"✅ Saved processed image to: {output_path}")

def update_csv_paths():

 df = pd.read_csv(DATA_CSV)

 # Find all cropped images in OUTPUT_FOLDER named cropped_{ts}.jpg

 cropped_files = sorted([

 fname for fname in os.listdir(OUTPUT_FOLDER)

 if fname.startswith("cropped_") and fname.endswith(".jpg")

Page 130

])

 new_paths = [os.path.join(OUTPUT_FOLDER, fname) for fname in cropped_files]

 if len(new_paths) != len(df):

 print(f"⚠ Warning: Number of cropped images ({len(new_paths)}) does not match CSV rows

({len(df)}), possible error.")

 min_len = min(len(new_paths), len(df))

 df.loc[:min_len-1, "img_path"] = new_paths[:min_len]

 df.to_csv(DATA_CSV, index=False)

 print(f"✅ Updated img_path in CSV file '{DATA_CSV}' with cropped image paths.")

def make_dirs(path):

 try:

 os.makedirs(path)

 except:

 pass

Custom function to visualize and save images

def visualize_batch(batch, df, save_dir, dataset_std, dataset_mean):

 images, labels = batch

 batch_size = len(images)

 # Adjust image paths according to the total dataset, not just the batch

 image_filenames = df['img_path'].values[:len(images)]

 for i, (img, label) in enumerate(zip(images, labels)):

 print(f"Processing image {i+1}/{batch_size}")

 img = img.permute(1, 2, 0) # Permute to (H, W, C) format for plotting

 img = img * torch.tensor(dataset_std) + torch.tensor(dataset_mean) # Denormalize

 img = img.clamp(0, 1)

 # Convert to numpy for saving

 img_np = img.numpy()

 # Save each image individually

 output_filename = os.path.basename(image_filenames[i])

 output_path = os.path.join(save_dir, f"{output_filename}")

 plt.imsave(output_path, img_np)

 print(f"Saved image: {output_path}")

def Label_predict():

 data_module = ParametersDataModule(

 batch_size=BATCH_SIZE,

 data_dir=DATA_DIR,

 csv_file=DATA_CSV,

 dataset_name=DATASET_NAME,

 mean=DATASET_MEAN,

 std=DATASET_STD,

Page 131

 load_saved=False,

 transform=True

)

 # Load the CSV file and check paths

 df = pd.read_csv(DATA_CSV)

 # Setup data module, skip dataset split

 data_module.setup(stage="test", save=False, test_all=True)

 # Get dataloader (shuffle can be False or True as needed)

 test_dataloader = data_module.test_dataloader()

 # Process each batch to ensure all images are processed

 for batch_idx, batch in enumerate(test_dataloader):

 print(f"Processing batch {batch_idx + 1}")

 visualize_batch(batch, df, PREDICTION_FOLDER, DATASET_STD, DATASET_MEAN)

 print("All images processed.")

 img_paths = [

 os.path.join(PREDICTION_FOLDER, img)

 for img in os.listdir(PREDICTION_FOLDER)

 if os.path.splitext(img)[1] == ".jpg"

]

 # Step 3: Preprocess and predict labels

 print("********* MudTracker3D sample predictions *********")

 print("Layer_height | Extrusion")

 print("***")

 layer_height_preds = []

 extrusion_preds = []

 for img_path in img_paths:

 pil_img = Image.open(img_path)

 x = preprocess(pil_img).unsqueeze(0)

 y_hats = model(x)

 y_hat0, y_hat1 = y_hats

 _, preds0 = torch.max(y_hat0, 1)

 _, preds1 = torch.max(y_hat1, 1)

 preds = torch.stack((preds0, preds1)).squeeze()

 preds_str = str(preds.numpy())

 img_basename = os.path.basename(img_path)

 print("Input:", img_basename, "->", "Prediction:", preds_str)

 # Collect predictions

Page 132

 layer_height_preds.extend(preds0.numpy())

 extrusion_preds.extend(preds1.numpy())

 mode_result0 = stats.mode(layer_height_preds)

 mode_result1 = stats.mode(extrusion_preds)

 final_layer_height_label = mode_result0.mode.item()

 final_extrusion_label = mode_result1.mode.item()

 print(f"Layer Height: {final_layer_height_label}, Extrusion: {final_extrusion_label}")

 return final_layer_height_label, final_extrusion_label

def monitor_loop():

 scale = INITIAL_SCALE

 print(f"Initial speed: {scale}")

 connect_pi()

 clear_remote_folder(PI_IMAGE_DIR)

 while True:

 print("📷📷 Starting timelapse on Raspberry Pi...")

 start_timelapse()

 print("🕒🕒 Waiting for 10 pairs of images on Raspberry Pi...")

 # Wait for Raspberry Pi to generate new photo files

 time.sleep(2)

 stdin, stdout, stderr = ssh.exec_command(f"ls -t {PI_IMAGE_DIR}")

 # Check if there are already 10 pairs of images

 while True:

 stdin, stdout, stderr = ssh.exec_command(f"ls {PI_IMAGE_DIR} | grep cam0_ | wc -l")

 count_cam0 = int(stdout.read().decode().strip())

 stdin, stdout, stderr = ssh.exec_command(f"ls {PI_IMAGE_DIR} | grep cam1_ | wc -l")

 count_cam1 = int(stdout.read().decode().strip())

 if min(count_cam0, count_cam1) >= 10:

 break

 time.sleep(2)

 stop_timelapse()

 sync_images_from_pi()

 clear_remote_folder(PI_IMAGE_DIR)

 preprocess_images(INPUT_FOLDER, OUTPUT_FOLDER)

 update_csv_paths()

 final_layer_height_label, final_extrusion_label = Label_predict()

Page 133

 if final_layer_height_label == 1 and final_extrusion_label == 1:

 break

 delta = suggest_speed_change(final_extrusion_label, final_layer_height_label)

 new_scale = min(1.0, max(0.1, scale + delta))

 set_speed_override(new_scale)

 scale = new_scale

 print(f"Adjusted new speed: {scale}")

 print(f"⏸ Pausing {MONITOR_PAUSE}s...")

 time.sleep(MONITOR_PAUSE)

 backup_images_to_timestamped_folder(INPUT_FOLDER, SAVE_FOLDER1)

 clear_folder(INPUT_FOLDER)

 clear_folder(OUTPUT_FOLDER)

 backup_images_to_timestamped_folder(PREDICTION_FOLDER, SAVE_FOLDER2)

 clear_folder(PREDICTION_FOLDER)

 stop_timelapse()

 scp.close()

 ssh.close()

 # Reset scale to 0.5 before exit

 set_speed_override(0.5)

def main():

 print("🚀🚀 Uploading URScript and starting printing...")

 waypoints = load_waypoints(WAYPOINTS_CSV)

 script = build_urscript_joint_arc(waypoints)

 send_script(script)

 clear_folder(INPUT_FOLDER)

 clear_folder(OUTPUT_FOLDER)

 clear_folder(PREDICTION_FOLDER)

 print("⏳ Waiting 10s before monitoring...")

 time.sleep(10)

 monitor_loop()

 print("🎉🎉 Print complete. Workflow finished.")

if __name__ == "__main__":

 main()

10.6 Slicing and URScript Generation Script

Page 134

Page 135

	Abstract
	Research Context
	1. Introduction
	1.1 Background
	1.2 State of the Art
	1.3 Problem Statement
	1.4 Objectives
	1.5 Research Questions & Sub-questions
	1.6 Methodology

	2. Research by design and experimentation
	2.1 Experiment setup
	2.1.1 Hardware setup
	2.1.1.1 Material
	2.1.1.2 Robots selection & Connection
	Printer Selection: Delta WASP 40100 LDM printer vs. Robotic Arm 3DP
	Robot Selection: COMAU NJ60 vs. UR5
	Challenges and Real-Time Control Solutions

	2.1.1.3 Camera setup

	2.1.2 Software setup
	2.1.2.1 Camera Calibration and Image Rectification
	Chessboard Corners finding and image Warping
	Image Cropping
	Image Aligning
	Save Calibration parameters
	Grid Pattern Selection and Detection Method Evaluation
	Image Quality Comparison and Hardware Limitations
	Rectification Strategy and Experimental Adjustments
	Implications for Multi-Camera Image Stitching and ML Integration
	Vibration-Induced Image Misalignment and Merging Errors
	Camera Reassembly Sensitivity

	2.1.2.2 Robot program

	2.2 Investigation of overhang print
	2.3 Machine learning
	2.3.1 Dataset generation
	2.3.1.1 Dataset collection
	2.3.1.2 Data filtering
	2.3.1.3 Data rating (labelling standard)
	2.3.1.4 Data preprocessing
	2.3.1.5 Imbalanced Distribution and Underlying Reasons

	2.3.2 Model architecture, training and performance
	2.3.2.1 Model architecture
	(1) Resnet 56
	(2) DINOv2-Based Hybrid Network Architecture

	2.3.2.2 Training ML models

	2.3.3 Model Performance Comparison
	2.3.3.1 Grad-CAM – Result Comparison
	ResNet-56 Attention Analysis
	DINOv2 Transformer Attention Analysis
	Conclusion

	2.3.3.2 Learning Curves Comparison
	2.3.3.3 Prediction Accuracy Matrices
	2.3.3.4 Conclusion

	3. Validation – Real-time correction pipeline
	Comparison & evaluation

	4. Prototype and Final Product Design
	4.1 Prototype Design for Dataset Collection
	4.2 Prototype Scale and Printability Constraints
	4.3 Final Product Design and Validation Strategy
	4.4 Slicing and Toolpath Generation

	5. Conclusion
	6. Discussion
	7. Reflection
	7.1 Introduction
	7.2 Research Journey & Personal Development
	7.2.1 Starting Point
	7.2.2 Evolution of the Topic
	7.2.3 Learning Process
	7.2.4 Delays and Adaptation

	7.3 Societal Impact
	7.4 Future Direction
	7.5 Conclusion

	8. Acknowledgment
	9. Reference
	10. Appendix
	10.1 Potential research questions
	10.2 Dataset labelling summary
	10.3 Dataset Example
	10.4 Prototype Collection
	10.5 Real-time Correction Workflow Codes
	10.6 Slicing and URScript Generation Script

