
 
 

Delft University of Technology

Stochastic model predictive control of an irrigation canal with integrated performance-
driven path planning of a measurement robot

Ranjbar, Roza; García Martín, J.; Maestre, José María; Etienne, Lucien; Duviella, Eric; Camacho, Eduardo
F.
DOI
10.2166/hydro.2025.300
Publication date
2025
Document Version
Final published version
Published in
Journal of Hydroinformatics

Citation (APA)
Ranjbar, R., García Martín, J., Maestre, J. M., Etienne, L., Duviella, E., & Camacho, E. F. (2025). Stochastic
model predictive control of an irrigation canal with integrated performance-driven path planning of a
measurement robot. Journal of Hydroinformatics, 27(4), 740-754. https://doi.org/10.2166/hydro.2025.300

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2166/hydro.2025.300
https://doi.org/10.2166/hydro.2025.300


Stochastic model predictive control of an irrigation canal with integrated performance-

driven path planning of a measurement robot

Roza Ranjbar a, Javier G. Martin b,*, Jose M. Maestre c, Lucien Etienne d, Eric Duviella d

and Eduardo F. Camacho c

a Department of Economics, University of Waterloo, Waterloo, Canada
b Department of Maritime and Transport Technology, TU Delft, Delft, The Netherlands
c Department of Systems Engineering and Automation, University of Seville, Seville, Spain
d Department of CERI Digital Systems, IMT-Nord Europe, Lille, France
*Corresponding author. E-mail: j.garciamartin@tudelft.nl

RR, 0000-0003-2596-8897; JGM, 0000-0002-0362-5554; JMM, 0000-0002-4968-6811; LE, 0000-0003-0931-843X; ED, 0000-0002-1622-0994;
EFC, 0000-0002-9636-5666

ABSTRACT

This work proposes a stochastic model predictive control for an irrigation canal with uncertainties where a moving robot takes measure-

ments across the canal considering criteria such as the robot’s velocity, energy consumption, and distances between the measuring

spots. Tightened constraints are applied over the prediction horizon to the optimization so that the controller selects the optimal route

for the robot from a control viewpoint. The simulations compare three different approaches, demonstrating that the proposed technique

achieves superior results by reducing constraints violations and operational costs and ensuring more precise and reliable water level

management across the canal compared to other methods.

Key words: automation, irrigation canal, moving robot, optimization, stochastic MPC

HIGHLIGHTS

• It proposes a control strategy that optimizes the operation of the water canal by considering predictive modeling and addressing

uncertainties and constraints.

• The method employs a moving robot to take measurements at important spots of the irrigation canal.

• It involves planning the movement of the robot.

• The approach is useful in case of the low price of the deployment and maintenance of such a network.

GRAPHICAL ABSTRACT

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-ND 4.0), which permits copying and
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© 2025 The Authors Journal of Hydroinformatics Vol 00 No 0, 1 doi: 10.2166/hydro.2025.300

Downloaded from http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2025.300/1557796/jh2025300.pdf
by guest
on 16 April 2025

https://orcid.org/0000-0003-2596-8897
https://orcid.org/0000-0002-0362-5554
https://orcid.org/0000-0002-4968-6811
https://orcid.org/0000-0003-0931-843X
https://orcid.org/0000-0002-1622-0994
https://orcid.org/0000-0002-9636-5666
mailto:j.garciamartin@tudelft.nl
http://orcid.org/
http://orcid.org/0000-0003-2596-8897
http://orcid.org/0000-0002-0362-5554
http://orcid.org/0000-0002-4968-6811
http://orcid.org/0000-0003-0931-843X
http://orcid.org/0000-0002-1622-0994
http://orcid.org/0000-0002-9636-5666
http://creativecommons.org/licenses/by-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/hydro.2025.300&domain=pdf&date_stamp=2025-04-02


1. INTRODUCTION

Water systems must allocate the available water resources to provide farmers with water while keeping the level of each pool
close to the set points (Segovia et al. 2019; Ranjbar et al. 2022; Shahverdi et al. 2022).

In this regard, there are challenges as the uncertainties arising from external disturbances, e.g., the inflows and human
activities (Van Overloop et al. 2008), the errors of water level or flow measurements (Alam & Bhutta 2004), and modeling

potential inaccuracies (Muleta & Nicklow 2005).
Many automation strategies have been proposed for water systems, e.g., model predictive controllers (MPCs), PID control-

lers, and linear quadratic regulators (LQRs) (Lozano et al. 2010; Kakouei et al. 2019; Hosseini Jolfan et al. 2020). In
particular, MPC has demonstrated significant performance in the field of water systems management compared to other
methods (Fele et al. 2014; Rodríguez et al. 2017; Segovia Castillo et al. 2018; Segovia et al. 2019; Pour et al. 2022). It is
an optimization-based control strategy that uses a process model to predict the future behavior of a system for a certain pre-

diction horizon while managing challenging issues such as constraints and delays (Figueiredo et al. 2013). In the case of
irrigation canals, this approach requires a model of the canal dynamics and a forecast of future water demands. The
model is employed to formulate an optimization problem, yielding the most efficient series of actions applicable to the

system, guided by a performance index that aligns with operational objectives, such as maintaining the water level close
to the designated set points (Ouarda & Labadie 2001; Geletu et al. 2013; Grosso et al. 2014; Velarde et al. 2019). Also, to
deal with random disturbances in the system evolution, stochastic MPC (SMPC) has been introduced (Van Overloop
2006; Cannon et al. 2010; Nasir et al. 2017). One particular approach within the SMPC family is that of Chance-Constraint

(Schwarm &Nikolaou 1999), which uses probabilistic information about additive disturbances to achieve a trade-off between
constraint satisfaction and control performance (Cannon et al. 2012). Considering the stochastic features of the uncertainties,
the method can set the frequency of constraint violations to be lower than a specified threshold (Dai et al. 2016).

To operate irrigation canals, sensors are needed to provide measurements, e.g., of water levels and flows (van de Wiel et al.
2020; Hamdi et al. 2021). Maintaining these sensors is costly and requires effort as they are prone to deterioration due to
extreme weather conditions (Maestre 2021). In this regard, this work considers using a robot as a substitute for sensors.

In particular, it is assumed that the robot can move freely around the system to capture measurements at different spots
and transmit this information back to the controller. In areas where the robot is absent, the system model is used to provide
the values following an unknown input observer (UIO) approach (Chen & Saif 2006; Conde et al. 2021). Additionally, the
MPC algorithm also needs to consider the robot’s velocity, battery, energy consumption, recharge, and the maximum distance

between the spots to determine the robot routes.
Several studies have explored the use of robotic data collection methods. In the agricultural field, Tokekar et al. (2016)

employed small and affordable unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) together to col-

lect soil data. Another study investigated the allocation of measurement tasks to multiple robots in a solar thermal plant
(Martin et al. 2021a). Furthermore, in the same domain, Martin et al. (2021b) studied how the robot sensor network
(RSN) can be managed to collect information for the control system while also updating the probability of coverage in

specific areas of the solar field to direct the robots to locations where information collection was maximized. In Wang
et al. (2016), a solution is proposed including a mobile robot and a path generation system to direct the robot’s movements,
taking into account the robot’s expected deployment time, expected measurement value at each location, and the last time

each location was visited. Most of the previous research regarding using mobile robots to monitor the water systems has
focused on managing water quality (Von Borstel et al. 2013; Shademani et al. 2017; Anderson et al. 2022a, 2022b); how-
ever, the main contribution of this paper is employing a moving robot in a water canal that takes measurements of water
levels at specific locations and the focus is exclusively on the water regulation problem. The fact that irrigation canals are

exposed to external disturbances and retain random uncertainty motivated the development of a stochastic MPC to plan
the movement of the robot. The objective can be achieved by reducing constraint violations through tighter constraints and
improved control performance.

Preliminary research of the current work has been presented in Ranjbar et al. (2023). By addressing the identified gaps and
limitations of this paper, the new study contributes to novel perspectives in this field. We apply the existing strategy to an
extended model of the canal, rather than a portion of it. Additionally, the functional features of the robot have been taken

into account, enhancing the practicality of our work. The current investigation incorporates parameters such as battery
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level and maximum velocity, which impose restrictions on the robot’s possible routes. Furthermore, the consideration of idle

time necessitates an energy recharging period as an additional limiting factor. Finally, the current work updates the compu-
tation of uncertainty propagation along the prediction horizon.

The rest of the paper is organized as follows: Section 2 describes the system and the problem statement. In Section 3, the

stochastic MPC framework and its interaction with the moving robot are explained. Simulation and results are presented in
Section 4, followed by concluding remarks in Section 5.

2. PROBLEM STATEMENT

In this work, the Integrator-Delay (ID) model (Litrico & Fromion 2004) is employed to represent the dynamics of open-chan-
nel irrigation canals. This simplified model captures key hydraulic processes such as flow propagation, attenuation, and
backwater effects, providing an accurate approximation of the Saint-Venant equations in both frequency and time domains.

The ID model explicitly incorporates the influence of canal geometry, hydraulic structures, and physical parameters, enabling
effective control design. The model accounts for variations in water levels Dh(k) based on upstream and downstream flow
rates qu(k� tR) and qd(k), the backwater surface area (As), and the delay time (tR), critical for managing irrigation systems.

The simple discrete-time linear model for each canal pool is given by Arauz et al. (2020) as:

Dh(k) ¼ Ts

As
[qu(k� tR)� qd(k)], (1)

Note that this model establishes a canal pool featuring an initial section with regular depth, followed by the remaining sec-
tion experiencing backwater conditions. Model parameters are computed by performing tests with the system starting in a
steady-state condition, leading to the following general discrete-time linear model integrating the aspects of the hydrologi-
cal cycle, such as rainfall and evaporation, as well as operational impacts from irrigation demand and agricultural

withdrawals:

x(kþ 1) ¼ A � x(k)þ B � u(k)þD �w(k), (2)

y(k) ¼ C(k) � x(k), (3)

where x(k) [ Rnx stands for the state vector comprising water levels and flows within the canal relative to their respective

set points; u(k) [ Rnu denotes the input vector representing the changes in water flows, e.g., when there are operations in
the hydraulic infrastructure such as gates; w(k) [ Rnw stands for disturbances such as rainfalls, evaporation, agricultural
activities, etc; and y(k) [ Rny is an output variable measured by a robot at time k from one of the designated measurement
locations. Matrices derived from the ID model have the following dimensions: A [ Rnx�nx , B [ Rnu�nx , C(k) [ R1�nx , and

D [ Rnx�nw .
Note that supplementary components involving delayed flow measurements are present in the state to address the impact

of the time it takes for water to traverse the canals within a discrete-time controller. For instance, a canal system featuring

three pools and factoring in these additional elements might possess a state vector denoted as x(k) in the following manner:

x(k) ¼

De1(k)
Du1(k� 2)
Du1(k� 1)
De2(k)

Du2(k� 1)
De3(k)

e1(k� 1)
e2(k� 1)
e3(k� 1)

2
6666666666664

3
7777777777775

(4)

where Dei(k) for i ¼ 1, . . . , 3 refer to fluctuations in water-level discrepancy at time step k in pools 1, 2 and 3, respectively;
ei(k) for i ¼ 1, . . . , 3 are water-level errors at time step k in pools 1, 2 and 3, respectively; and Dui(k� 1) and Dui(k� 2) for
i ¼ 1, 2 are control actions performed at the previous time step in pools 1 and 2, respectively.
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The control objective is to minimize the following stage cost:

‘(k) ¼ xT(kþ 1) �Q � x(kþ 1)þ uT(k) � R � u(k), (5)

with weighting matrices Q [ Rnx�nx , Q � 0, and R [ Rnu�nu , R � 0, respectively. By minimizing ‘(k) along a certain horizon
(Np), MPC can find the optimal sequence of inputs to apply to the system (2). The goal of this optimization is to minimize the

fluctuations in water levels and flows with respect to their set point.
To this end, the optimization is performed considering that the states and inputs of the system are each subject to constraint

sets as:

x [ X ¼
YN
i¼1

X i, u [ U ¼
YM
i¼1

U i,

which contain the origin in their interior. These sets represent the physical boundaries of the respective values in each section
of the canal, such as upper and lower limits for water levels and flows, for instance. In this regard,
X i ¼ {xi [ R : ximin

, xi , ximax }, and U i ¼ {ui [ R :uimin
, ui , uimax }.

2.1. Stochastic disturbances and constraints

The amount of water in the canal system is affected by uncertain factors and modeling errors such as precipitation and hydro-
logical run-off process parameters (Van Overloop et al. 2008), increasing the probability of constraint.

In this work, disturbances are assumed to follow normal distribution so that wi(k) � N (mi, si
2), where mi and si

2 are the

corresponding mean and variance of disturbance i [ {1, 2, . . . , nw}. Thus, x(k) will also become a vector of normal variables
that can be computed as Camacho & Alba (2013):

x(k) ¼ Ak � x(0)þ
Xk
i¼1

Ai � B � u(k� i)þ
Xk
i¼1

Di � B �w(k� i), (6)

with

xi(k) ¼ N (mxi(k), sxi
2(k)), i [ {1, 2, . . . , nx}: (7)

In this context, the mean and variance are provided as follows:

mxi(kþ 1) ¼
Xnx

j¼1

aij � mxj(k)þ
Xnw

r¼1

dir � mwr(k)þ
Xnu

s¼1

bis � us(k)

sxi(kþ 1)2 ¼
Xnx

j¼1

a2ij � sxj(k)
2 þ

Xnw

r¼1

d2
ir � swr(k)

2

8>>>><
>>>>:

(8)

Here, aij, bis, and dir denote the corresponding component of matrices A, B, and D, respectively. As can be seen, mxi is influ-

enced by present control actions, the initial state variable value and the noise mean m, and sxi grows due to the uncertainty of
the disturbance swi; however, if the robot takes a measurement of the corresponding variable, the value of sxi is reset to zero.
Likewise, it is important to emphasize that when computing the variance, it is assumed that the random variables involved
are independent. However, if they are not independent, the proposed calculation becomes an approximation as it overlooks

the effects of covariance. In general, we have operated under the assumption that comprehensive data related to rainfall dur-
ation, evaporation levels, and farming activities are at our disposal. This crucial assumption forms the foundation for
computing both the mean and variance of disturbances.

To preserve performance while ensuring a certain level of constraint satisfaction we follow a stochastic approach. Also,
such an approach is preferable to the overly cautious min-max control which often leads to sub-optimal results. Since xi is
a Gaussian random variable, the probability of P(xi(k) [ X i) � g can be enforced, where g is a predefined probability
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threshold. In particular, this probabilistic constraint can be implemented by setting new tightened bounds on xi, i.e.,

ximin
� xi , xi(k) , xi � ximax , (9)

where xi and xi represent the lower and upper limits on the corresponding state, respectively, and ximin
and ximax are the minimum

and maximum boundaries in X i and U i, in sequence. It should be noted that states corresponding to water flows are not the target
of the robot’s measurement, although they are part of state vector x(k). In this regard, the model matrices simply implement a

delay mechanism for the representation of water flows, resulting in the inclusion of delayed inputs within the state vector.
The so-called chance constraints formulation takes the form:

P[xi(k) , xi] � 1� gx,i
P[xi , xi(k)] � 1� gx,i

�
8 i [ Nnx , 8 k (10)

That is, chance constraints guarantee that the constraints will be met with a minimum probability of 1� [g]x,i. In other words,
Equation (10) restricts to [g]x,i which is the probability of violating the linear state constraint i at future time kþ1 by knowing
the state xk at time k (Grosso et al. 2014). The SMPC controller solves the following optimization problem (Nasir et al. 2019):

min
x

J(x(k) (11)

s: t:

Pk{w(k) [ Dk j xi , xi(k) , xi, ð2Þ} � 1� gx,i,
(12)

where the constraint must be satisfied with a probability of 1� gx,i concerning the stochastic aspects of the uncertain demand
forecast (Dk, Pk).

2.2. Planning the robot’s movement

The system is considered as a graph G ¼ (V, E) with V ¼ {1, 2, . . . , N} a set of measurement spots (where N is the last spot)
and E representing a set of edges such that (vi, vj) [ E when there exists a direct route between vi and vj. To employ a robot to

take measurements of water level at different spots, a route r has to be calculated from location vi [ V. A route is a sequence
of edges {(vi, vj), (vj, vk), . . . } connecting a set of vertices to each other (Van Overloop et al. 2015). If the robot visits location
vi at time step k, a measurement is sent to the controller, so that sxi(k) ¼ 0; otherwise, sxi(k) keeps growing, ultimately com-

pelling the robot to return to the specified location at a later time through the tightening of the constraints.
Let us defineRvi(n) as the set of all routes within the graph G, with a length of n and commencing from the spot vi. The most

straightforward approach to creating the routes between these spots involves an exhaustive exploration of all possible com-
binations. This entails estimating the combinations of variables a total of 2n � 1 ¼ nvi þ nvj þ � � � þ nvk þ � � � þ nvn times,

where nvk represents the number of estimations required for combinations of k spots. This approach is referred to as the
Exhaustive Search (ES) method in literature (Igarashi et al. 2016). While precise techniques such as ES offer optimal sol-
utions, they inevitably incur significant computational complexity, which can pose challenges for real-time systems.

Assuming that the robot can go from one spot to another during one sampling time, Rvi(Np) becomes the combination of
set V with repetitions. Any route r [ Rvi(Np) requires accounting for the issues of the robot. As the value of Np increases,
managing the computational demands of the ES method becomes progressively more challenging. Thus, to mitigate the com-

putational burden, a reduced prediction horizon can be introduced as Figure 1 such that Nred , Np, and

r [ Rvi (Np �Nred jNred) (13)

This way, the exhaustive search among the routes is limited to the first Np �Nred time instants, that is Rvi(Np �Nred jNred),
which are then extended for Nred time steps assuming that the robot follows a deterministic route, visiting each measuring

spot sequentially until the horizon ends (Igarashi et al. 2018). While the use of a reduced horizon helps reduce computational
complexity, further optimizations are needed to ensure the approach remains feasible for real-time systems, especially as the
problem size scales up.

To compute the tightening parameters, the Gaussian variable xi is converted into a normalized Gaussian Z ¼ N (0, 1).
Then, its Cumulative Distribution Function (CDF) is employed to set how each limit is updated. Finally, let us denote the
set of tightened constraints that correspond to route r by X r(k).
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3. PROPOSED ALGORITHM

In this section, the design of an SMPC and its interaction with the moving robot is presented. In this respect, it is important to
take into account all the potential routes of the robot, followed by determining the optimal route. To do so, the optimization

problem is formulated for each instance the robot sends a measurement from any spot v [ V as:

min
u(k :kþNp�1),r

J ¼
XNp

l¼0

‘(x(kþ lþ 1), u(kþ l)), (14)

s: t:

x(lþ 1) ¼ A � x(l)þ B(l)þw(l),
(15)

r [ Rvi (Np �Nred jNred) (16)

u(l) [ U, (17)

x(l) [ X r(l) ¼ f(x(k), r, g) 8 l [ [1, Np] (18)

Therefore, the optimization problem is solved at every time step considering the reduced prediction horizon, obtaining the

inputs that are provided to the system u(k :kþNp � 1) (17) and the best of the possible routes considered for the robot
according to (16). However, only the first input is applied and the rest of the components are disregarded according to
the receding horizon philosophy.

Remark 1. Equation (18) emphasizes that the state constraints depend on the route by the fact that uncertainty grows with the
number of time steps elapsed since the robot’s last visit.

The proposed approach followed at each time instant takes the form of Algorithm 1.

Require: The robot's initial position, distance to the next segment, the robot's initial battery, the robot's energy consumption
for each unit of distance, the robot's battery recharge for each sampling time, and the robot's fixed velocity.

Ensure: the current state x(k) in (6)
1: Compute the current robot's battery
2: Compute the set of possible routes Rvi

3: for each r [ Rvi do
4: Define the set of tightened constraints X rðkþ1:kþlþ1Þ according to g and s

5: Update the robot's battery
6: Compute J through MPC in (14)

7: end for
8: Select the optimum routes with the minimum J
9: Apply uðkÞ ¼ u�ðkÞ
10: Recompute MPC for the next time steps.

Algorithm 1 Online Calculations, Executed at Every Time Step k, k∈Np During the Sampling Time Ts

Figure 1 | Reduced prediction horizon.
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Initially, the desired segment (reach) from which the robot should start traveling is selected. The starting spot for the robot

may be arbitrarily chosen, with the option to commence from the beginning, middle, or end of the canal to undertake the
measurements. This decision can be made based on various factors, such as the nature of the canal, accessibility, and the
specific objectives of the measurement.

Following this, the system incorporates noise in the form of a vector containing the mean of each reach, denoted by mi, and
the variance of disturbance represented by si. Thus, by having the disturbances following the normal distribution, the current
state x(k) is computed by employing Equation (6).

After specifying the robot’s velocity, the maximum distance it can traverse is calculated asD ¼ V :Ts, whereD represents the

distance limit that the robot can cover, V denotes the velocity of the robot, and Ts corresponds to the sampling time. Next, the
battery of the robot can be calculated for each route. To do so, the new battery level is determined by adding the current
amount of battery to the amount of battery recharged and then subtracting the energy consumed during the distance traveled,

which is multiplied by the energy consumption rate. As mentioned in Section 2.2, the robot’s features play a crucial role in
determining the total number of feasible routes for the robot. Consequently, the set of possible routes Rvi is computed by
taking into account the robot’s restrictions and conducting an exhaustive search with the reduced prediction horizon Nred.

Once all the possible routes have been identified, for each route, the constraints on states get tightened based on the
selected g and the variable si and there becomes a set of tightened constraints X r(k). Additionally, at each sampling time,
the robot’s battery gets updated and the cost J is computed through the MPC formulation.

When the costs are determined for all available routes, the routes containing the minimum cost are deemed as the optimal
choice. Subsequently, the updated inputs are incorporated into the MPC framework, triggering the recomputation of the pro-
cess for subsequent time steps until the end of the prediction horizon.

4. RESULTS AND DISCUSSION

The proposed strategy is validated using a reference model, the case introduced in Clemmens et al. (1998), by the ASCE Task
Committee on Canal Automation Algorithms as a standard case on canals with practical and realistic properties. This canal

consists of eight different reaches and a schematic view of it is displayed in Figure 2. Since the distance between reaches 1 and

Figure 2 | Longitudinal profile of the ASCE Test Canal 1.
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2 is too small, they are combined as a single node in our model. Furthermore, the canal has a total length of 9,500m, and the

size of each pool is depicted in the figure. The water levels are set above the normal depth.
For this research, a DJI-based drone, a type of unmanned aerial vehicle (UAV) known for its advanced capabilities and

versatility, has been selected as the robot for the study. Given the total length of the canal, and the number of trips the

robot is expected to make, its velocity is set to 15m=s, as higher velocities result in greater energy consumption. The
energy consumption for each unit of distance is considered to be the 0.003 state of charge (SoC), where SoC is a crucial indi-
cator of battery condition determined by calculating the ratio between the remaining capacity and the total capacity of the
battery (Sun et al. 2021). To this end, the initial battery of the robot is 40 SoC and the battery recharge is set to 2.5 SoC

for each sampling time (Aguilar-López et al. 2022). Based on the fact that energy consumption is the product of distance tra-
veled and energy consumed per unit distance, the total energy consumption for the drone can be calculated by multiplying the
9.5 km distance by the energy consumption rate of 0.003 SoC per meter. The flight time is determined by dividing the total

distance by the drone’s velocity, resulting in an approximately 20-min duration for a round trip of 19 km. The energy recharge
rate also gives the drone a good amount of energy recovery during the trip. Considering these factors – the energy consump-
tion for the round trip, the drone’s flight time, and its recharge capabilities – the initial battery life of 40 SoC appears sufficient

to successfully traverse the length of the canal. This setup ensures that the drone can complete multiple round trips while
maintaining a reasonable margin of battery life for continued operation.

The robot is considered to start from the beginning of the canal in the first reach. The set point is x ¼ 0 with an initial upper

and lower bound equal to x ¼ þ1m and x ¼ �1m, for all eight reaches. The prediction horizon and the reduced prediction
horizon are set to Np ¼ 10 and Nred ¼ 7, respectively. The sampling time is selected as Ts ¼ 30min. For the stochastic disturb-
ances, the variance is set to be a column vector of size nw, where each element has a value of 0:3, and the mean is assigned a
matrix with elements in the range of (��0:6, þ 0:4) as in Figure 3.

The MPC optimization problem is solved for every route of the robot applying quadratic programming (QP). Matrix Q has
ones in the states corresponding to water levels and zeros elsewhere, while matrix R is likewise diagonal, assigning a value
of 0.2 to each control action (each reach of the canal that the measurements are taken from). The constraints are tightened

by assuming a maximum probability violation of 0.01 (g is selected to be 0.99). In order to assess the suggested methodology,
two alternative algorithms are implemented in the system.One includes anMPC controller with a robot thatmoves sequentially

Figure 3 | The mean assigned to each disturbance of the canal.
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following a predefined route that includes measuring all spots from the initial to the final point and then returning from the final

point to the initial one (referred to as PR-MPC). The other method involves employing an MPC controller with classic con-
straints incorporating full system information (referred to as C-MPC). Our proposal is called the Optimal Route with
Stochastic Constraints Model Predictive Control (SC-OR- MPC).

The water levels presented in the following figures correspond to the levels at seven reaches across the canal. The blue lines
account for the states, the green lines are the belief states of the system, and the constraints (hard and soft tightened) are shown in
dashed blue/green lines, respectively. As shown, advanced control schemes like MPC can suffer when the estimate of the real
state of the system differs. In the context of this case study, with the robot providing updates of the state vector, there is a sig-

nificant loss of performance and stability as demonstrated by the results of the PR-MPC method with hard constraints (in

Figure 4 | Water levels without stochastic constraints: PR-MPC.
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Figure 4). Likewise, when the constraints are not tightened , the uncertainty in the system evolution is not adequately accounted

for by the controller’s internal model. In Reach 1, applying only theMPCwith a predefined route (PR-MPC) led to a violation of
the constraints for 30 out of a 100 time instant period. However, when constraints were designed to tighten dynamically based
on the time elapsed since the last measurement (in SC-PR-MPC), the violation durationwas reduced to just 5 seconds (Figure 5),

representing an %83.3 reduction. Furthermore, when smart movement was incorporated into the robot’s strategy (Figure 6),
constraint violations were nearly eliminated, with only negligible violations observed. A similar trend was observed in Reach
2 and Reach 3, where the introduction of stochastic constraints (SCs) and smart movement significantly improved the system’s
performance. Although the specific durations of violations varied, the overall outcomes showed a substantial reduction in con-

straint violations.

Figure 5 | Water levels with stochastic constraints in PR-MPC (SC-PR-MPC).
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Thus the proposed method for tightening the constraints enhances the controller’s ability to focus on the most uncertain
states of the system. By tightening these constraints, the controller becomes more sensitive to potential deviations from
the desired performance, which allows it to better prioritize areas of the system where uncertainty is the highest. As a

result, the overall performance improves, as illustrated in Figure 5, where the PR-MPC method with tightened soft constraints
(referred to as SC-PR-MPC) is shown. The tightening method reduces the discrepancy between the controller’s predicted and
actual states, leading to fewer violations of the system’s constraints. However, despite this improvement, there is still signifi-

cant room for further optimization. A key opportunity for enhancing performance lies in allowing the controller to
autonomously select the measurement locations for the robot. By enabling the controller to decide where to gather data, it
can maximize the utility of the robot’s measurement capacity and available battery life. This approach would ensure that

Figure 6 | Water levels with stochastic constraints in proposed method (SC-OR-MPC).
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the robot visits the most critical locations – such as gates or reaches that significantly impact the system’s overall

performance – thereby optimizing the use of resources and improving the controller’s efficiency.
This concept is clearly demonstrated in Figure 6, which shows the results of the closed-loop system using the proposed SC-

OR-MPC method. The figure highlights a notable improvement: While the two other methods assessed in the study result in

multiple violations of constraints, the SC-OR-MPC approach reduces these violations to a single minor breach of a soft con-
straint (not a hard constraint) around time instant 70 at Reach 1 (x1). Furthermore, there is a much closer alignment between
the belief states and the actual states, indicating that the controller is better able to estimate the system’s real-time conditions.
The closer correspondence underscores the effectiveness of the tightened soft constraints and the optimized measurement

strategy in improving overall system performance.
Table 1 presents the accumulated cost of the three assessed methods over the 100 time instants of the simulation. It also

includes the results of a conventional MPC (C-MPC) controller with full state information, providing a reference of the loss of

performance due to the absence of a fixed sensor network. Table 1 demonstrates that the proposed SC-OR-MPCmethod effec-
tively compensates for the lack of a fixed sensing infrastructure. Despite not relying on a permanent sensor network, the
proposed approach maintains performance close to that of the C-MPC controller.

Finally, Figure 7 displays the segments visited by SC-OR-MPC and PR-MPC methods and shows the evolution of the robot’s
battery over time. Unlike the sequential, predetermined visits of the PR-MPC method, the SC-OR-MPC allows for more flex-
ible scheduling of the robot’s visits to the segments. This flexibility is based on the robot’s velocity and remaining battery

capacity. As expected, the robot prioritizes the initial segments of the canal, as these are more critical for effective control

Table 1 | Accumulated cost in the assessed approaches vs. conventional MPC with full state information

Cost

Approach Accumulated cost Relative cost to C-MPC (%)

C-MPC 26.68 –

SC-OR-MPC 27.64 3.6

SC-PR-MPC 100.02 274.9

PR-MPC 441.84 1556.1

Figure 7 | Visited segments and robot battery in SC-OR-MPC and PR-MPC.
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due to the canal’s sequential structure. The system’s performance is more sensitive to the initial reaches, meaning that early

adjustments are crucial for maintaining optimal conditions throughout the canal. This explains why the robot makes repeated
visits to the early segments, ensuring that the control objectives are met in a timely and efficient manner. The ability of the
proposed algorithm to dynamically allocate visits based on real-time conditions, such as velocity and battery status, enhances

the overall effectiveness of the system, allowing for more targeted interventions where they are most needed.

5. CONCLUSION

In this work, a moving robot in combination with a stochastic MPC is applied to the ASCE test canal. The canal is considered
to have uncertainties and the moving robot is planned to move along the reaches and take measurements right at reaches. To
do so, the movement of the robot is limited to its battery, velocity, energy consumption, and the distances it can travel. The

controller selects the optimal routes for the robot by tightening the constraints at every sampling time of the prediction hor-
izon. The performance has been evaluated by comparing the proposed algorithm with a classic MPC with no uncertainty and
another proposal that assigns a robot moving through predefined routes. The outcome of this work highlights the favorable

control performance of the proposed approach, in terms of economic efficiency compared to other approaches. Moreover,
the method effectively compensates for the lack of a fixed sensor network infrastructure by providing essential information
to the controller to minimize constraints violations. Considering the price of the deployment and maintenance of such a net-

work, the proposed alternative based on a controlled robot that retrieves water level measurements should be fully taken into
account in water management projects.

Future work will explore how this robot can be integrated with operators in the loop, enabling the benefits of model pre-
dictive control to be realized without the need for installing fixed actuators and sensors in the irrigation canal. Additionally,

we aim to investigate reinforcement learning-based approaches and other methods like neural network-based controllers to
enhance the adaptability and robustness of the control strategy, providing a richer comparative framework and deeper
insights into the proposed method’s performance. Moreover, to address the computational complexity of the Exhaustive

Search (ES) method, we plan to explore optimizations such as reducing the prediction horizon further and using heuristic
methods to make the search more efficient for real-time applications.
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