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We present a pseudopotential lattice Boltzmann method to simulate liquid–liquid emulsions with a slightly soluble surfac-
tant. The model is investigated in 2-D, over a wide parameter space for a single, stationary, immiscible droplet, and sur-
face tension reduction by up to 15% is described in terms of a surfactant strength Λ (which roughly follows a Langmuir
isotherm). The basic surfactant model is shown to be insufficient for arresting phase segregation—which is then achieved
by changing the liquid–liquid interaction strength locally as a function of the surfactant density. 3-D spinodal decomposi-
tion (phase separation) is simulated, where the surfactant is seen to adapt rapidly to the evolving interfaces. Finally, for
pendent droplet formation in an immiscible liquid, the addition of surfactant is shown to alter the droplet-size distribution
and dynamics of newly formed droplets. © 2018 The Authors. AIChE Journal published by Wiley Periodicals, Inc. on
behalf of American Institute of Chemical Engineers. AIChE J, 00: 000–000, 2018
Keywords: multiphase flow, lattice Boltzmann, pseudopotential, surfactants, emulsions

Introduction

During the last two decades or so, computer aided process engi-
neering tools have started playing an important role in designing,
debottlenecking, and optimizing both individual process devices
and complete process plants. Part of this development is due to
the evolution of computational fluid dynamics (CFD) for both
single-phase and multiphase systems including various transport
processes and chemical reactions. This, along with computational
power rocketing according to Moore’s law1 has made massively
parallel simulations possible, bridging the gap between detailed
flow dynamics and designing for large-scale equipment.
Despite the diverse advances in the development of flow simu-

lation techniques, conventional Finite Volume (FV) based solvers,
introduced as early as the 1970s (see Patankar and Spalding2), still

dominate the field to an extent that virtually all commercial CFD
software is rooted in FV. Much to its disadvantage, the chemical
engineering community seems to keep overlooking the promises
of the lattice Boltzmann (LB) method, a strong alternative to FV.

LB is a mesoscopic approach to continuum fluid mechanics,
which can be used to simulate flows obeying the Navier–
Stokes equations at a fraction of the computational cost of FV,
particularly for (massively) parallel flow simulations. Eggels3

and Derksen and Van den Akker4,5 introduced the LB tech-
nique into the realm of engineering fluid mechanics. The result
was a long series of papers reporting about LB based Large
Eddy Simulations (LESs) in various flow devices. Most of
these simulations, as well as some Direct Numerical Simula-
tions (DNSs) see6,7 were simply impossible using the conven-
tional FV technique (on the platforms of the time and under
the pertinent conditions).

Multiphase simulation methods can be broadly classified as
Euler–Euler or Euler-Lagrangian methods. In the Euler–Euler
method, fluids and particles are all treated as continua and are
represented by their respective volume fractions at each grid
cell of the simulation. These simulations do not resolve phase
interfaces. Euler–Lagrangian methods, confined to dilute parti-
cle systems, track the individual particles which can be either
point particles or finite sized. In the case of RANS-based sim-
ulations or LESs, the flow between these particles is not
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resolved. DNS simulations, such as Ten Cate et al.8 for solid
particles in a turbulent liquid flow, and Derksen and Van Den
Akker9 for a turbulent emulsion, do resolve the flow between
the particles. LB also emerges as a robust technique for simu-
lating multiphase flows, at par with FV based solvers.10-12

While particle laden flows like fluidized beds, suspensions,
and colloids have their own dedicated LB models exploiting
immersed boundary conditions for reproducing the detailed
interaction of fluid and moving and revolving particles,8,13-16

we will focus here on liquid–liquid systems.

Emulsions

This article aims at simulating the hydrodynamic behavior
of emulsions which are crucial to various industries, ranging
from cosmetics, biotechnology, and food processing to the oil
and gas industry. Most (FV) simulations of dense droplet sys-
tems incorporate Population Balance modeling17 which relies
heavily on empirical relations drawn from experimental data.
Although useful, this method suffers from the strong limita-
tions of experimentally studying emulsions, due to their highly
3-D spatio-temporal flow characteristics around evolving inter-
faces; in addition, emulsions are inherently opaque to optical
measurement techniques. Here, the unprecedented details unra-
veled by flow resolving simulation techniques can be telling.
Due to a dense droplet population, emulsions have a multi-

tude of interfaces separating the two liquids, and the stability
of these interfaces is crucial to the stability of the emulsion—
that is, if they rupture leading to droplet coalescence, the two
fluids would entirely separate. Emulsion stability is greatly
altered by the presence of surfactants, which are surface active
molecules preferentially adhering to interfaces. For instance,
in enhanced oil recovery, steam is often used to mobilize the
oil, which can cause emulsification facilitated by the presence
of naturally occurring18 or artificially added surfactants.19 Sur-
factant stabilized emulsions are also used to transport highly
viscous crude oils, whereafter these emulsions need to be
destabilized to separate the oil and water phases.20

Surfactant induced phenomena include drag enhancement
on droplets, inhibition of coalescence, modification of interfa-
cial boundary conditions, and Marangoni flow due to (flow
induced) surface tension gradients. None of these effects are
present in commercial multiphase flow solvers, while various
academic attempts have been made to account for these as
shall be described below. While it is rare to encounter pure
fluids in real life, it is exceedingly difficult to turn numerical
fluids impure. Bridging the divide between real fluid mixtures
and simulations is the main goal of the research described in
this article which focuses on LB based detailed simulations of
emulsions allowing for deformation, coalescence, and breakup
of droplets while accounting for surfactants.
Simulating surfactant dynamics along with hydrodynamics is

a complex problem, aggravated by the fact that the surfactant
adsorption and desorption kinetics occurs at the microscale.
Ionic surfactants interact directly with the electric double layer
formed at the interface, also called the Debye layer, the thick-
ness of which is O 10−10−10−7 m

� �
.21 Surfactants can also

form complex aggregates like micelles and lamellae above a
critical concentration. These phenomena at the microscale can
influence the dynamics of droplets and bubbles, which can be
of the scale O 10−6 m

� �
in emulsions, or of larger scales

around O 10−3−10−1 m
� �

in bubble columns. These scales,
when dealing with a physically relevant flow, are separated by
8 − 10 orders of magnitude. This poses an immense difficulty

that has to be overcome when simulating such systems. Prior
research has sought to resolve this by making reductionist
assumptions regarding the nature of a surfactant, limiting its
essential features. After all, simulating surfactant molecules
explicitly while resolving flow is not feasible, nor necessary if
surfactant behavior is aptly modeled when one is solely inter-
ested in the macroscopic hydrodynamics. Below, we briefly
highlight some work done in this direction.

FV based techniques

Among the FV based techniques, Stone and Leal22 and
Eggleton et al.23 used a boundary integral method to study the
breakup of a single surfactant-laden droplet. Several studies
employed the Volume of Fluid (VOF) method with an insolu-
ble surfactant confined to the interface, see for example,
Renardy et al.,24 Drumright-Clarke and Renardy,25 James and
Lowengrub ,26 Martin and Blanchette.27 Xu et al.28 followed a
similar approach with the Level-Set (LS) method, also used
recently by De Langavant et al.29 and applied to sheared drop-
let breakup. Other methods include the front tracking for
interfacial and bulk surfactant transport,30 and the arbitrary-
Euler–Lagrangian approach for interface tracking by Dieter-
Kissling et al.31 applied to droplet formation in the presence
of surfactant mixtures. These techniques are well suited for
the particular problems being studied, and can give very accu-
rate predictions.

The domain of single droplet dynamics, however, is far
from the typical systems encountered in emulsion research.
Further, there is no simple extrapolation from the idealized
problems studied here to dynamic multiple droplet flows. The
constant interface tracking and reconstruction used in these
methods becomes challenging once multiple bubbles and drop-
lets are simulated, more so when they can undergo coales-
cence and breakup, when these techniques become
prohibitively expensive and complicated, if not completely
unfeasible. We do not discredit these techniques at all, for they
can very accurately simulate single droplets, even at very high
density and viscosity ratios. However, when looking at realis-
tic emulsions, the capabilities offered by LB far outweight the
FV state-of-the-art.

LB based techniques

A few LB techniques have also been introduced, and these
seem more aptly suited for simulating emulsions than the FV
techniques as shall become evident. In the Pseudopotential
(PP) LB model, introduced by Shan and Chen,32,33 adding molec-
ular interactions between particle distributions at the meso-scale
can simulate spontaneous phase separation. Many researchers
embarked on this concept with the view of describing two-phase
systems,34 also in our research group.35-37 As multiple interfaces
do not need to be tracked, captured and/or reconstructed, the PP-
LB method is computationally very attractive.12

Contrary to the bottom–up PP method, there is the top–down
free-energy method for simulating multiphase flows in LB.38,39

Simulations using this approach start with a free-energy func-
tional with the intended thermodynamics, which is then used to
derive other physical quantities, making these methods thermo-
dynamically consistent by definition.40 This method has the
advantage that certain properties like surface tension and inter-
face width can be predefined. A drawback is that the method
has been found to be almost three times more computationally
expensive than other comparable LB methods.41

Focusing on emulsion like systems with two immiscible
fluid components, Chen et al.,42 Nekovee et al.43 introduced a
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multicomponent PP-LB approach where the surfactant is incor-
porated as a third additional component, coupled to an idealized
point dipole. The dipole moment and surfactant distribution
both follow the LB streaming and collision algorithm. The sur-
factant concentration, however, is of the same order as the other
fluids, which is not always the case in physical systems. Using
this model, Nekovee et al.43 go on to confirm arrested phase
segregation for high resolution 2-D simulations on the addition
of an active surfactant. They also observe the formation of
lamellae above the critical micellar concentration (CMC), not
seen in past simulations, which they ascribe to the inclusion of
the dipole orientation in their model. Skartlien et al.44 demon-
strated the dynamic surface tension behavior of this model and
show how the parameters can be tuned to resemble a physical
surfactant like Exxsol D80 and Span 80.
Furtado and Skartlien45 derived the free energy form of the

Chen et al.42 model from underlying kinetic theory principles.
Including short and long range interactions, they also show an
inhibition of coalescence. Note that coalescence inhibition alone
can also be simulated without surfactants using alternate tech-
niques (like charge on the droplets46 or mid-range repulsive inter-
action forces47), but Marangoni flows cannot. Skartlien et al.48

used this model to study surfactant stabilized emulsions in a quasi-
turbulent flow which is induced by the conversion of surface
energy to kinetic energy during phase segregation and Skartlien
et al.49 investigated droplet-size distribution in weakly turbulent
surfactant laden emulsions. Free-energy method based models to
simulate surfactant stabilized dispersions have also been proposed.
Lamura et al,50 used a Ginzburg-Landau based model to show the
spontaneous formation of lamellae in surfactant laden oil–water
systems due to surface tension reduction. A similar approach was
used by Van der Sman and Van der Graaf51 to show Ward-Tordai
like kinetics of surfactant adsorption. This method was further
developed by Tóth and Kvamme52 to show slowed down phase
segregation due to the presence of surfactants, and applied to oil,
water, and asphaltene systems.53 A thorough review of models for
ionic surfactants has been presented by van der Sman and
Meinders,54 which also gives model taxonomy, distinguishing
between Eulerian and Lagrangian approaches, with the various
ways of simulating surfactants with different degrees of complex-
ity that have been developed so far.
A lot of the studies using the Chen et al.,42 Nekovee et al.43

model have focused on the formation of exotic gyroidal struc-
tures, complex aggregates and emergent behavior in ternary
systems,55-59 which makes the model quite unique. However,
the model has not been used for a wide range of multiphase flow
problems where surfactant laden simulations find application.
Its complexity and the extensive parameter space perhaps
obscure its utility, whereby arises the need for simplification.
In this article, we propose the simplest method to incorpo-

rate soluble surfactants in a two fluid mixture by implementing
a doubly repelled third surfactant component. We retain sur-
factant effects like surface tension reduction, and present an
analysis through the corresponding parameter space. Our
approach combines several other PP-LB developments, mak-
ing it easy to simulate a wide range of density ratios
O 1−103
� �

, different viscosity ratios between the fluids and
the surfactant (which has been recently demonstrated to be an
important parameter60), and a possibility of extension to multi-
ple surfactants and components if required. There are several
differences between our model and those suggested previously
in literature,45,52,54,57 apart from that we use the pseudopoten-
tial method while the latter employ the free-energy method.
First, we ignore the dipole orientation of the surfactant (and

consequently aggregate-like behavior). Further, we simulate
realistic fluids by modeling the components using nonideal
equations of state. This approach allows for a wider range of
density ratios between components, which shall allow for sim-
ulations of surfactant laden droplets and bubbles. We also pro-
pose modifications to our simplified surfactant model that can
help simulate more complex surfactant behavior like the spon-
taneous formation of microemulsions which has not been pre-
sented before using LB.

Numerical Method
The lattice Boltzmann method

In this study, we use the lattice Boltzmann method (LBM),
first proposed in their seminal paper by McNamara and
Zanetti.61 The Boltzmann equation, with a simplified collision
term (BGK62), is discretized up to second order in time, space
and momentum, and consequently solved on a lattice that
comprises the discretization of space D and momentum Q in
i and j directions respectively, and which is named DiQj. The
velocity space is reduced to a finite number of discrete values
(i.e., Qj), and one must have sufficient velocity directions to
obey the conservation laws. Yet, for a very wide range of 2-D
flows, a nine velocity set is sufficient to recover the macro-
scopic hydrodynamics, and 19 velocities in 3-D.40

As the Boltzmann equation solves for the particle distribution
function, it falls within the mesoscopic compendium of fluid
solvers. Consequently, it is well suited to bridge the gap between
the microscopic particle scale and the macroscopic continuum
scale of fluid flow by invoking mesoscopic particle interactions.
This makes modeling multiphase flow phenomena conceptually
simple, as with the Pseudopotential method (described shortly),
and phenomena like spontaneous phase segregation, bottom–up
surface tension effects and evolving interfaces are automatically
captured. The spatio-temporal locality of the computations
involved makes the method easily parallelizable over distributed
computational units unlike conventional FV based solvers where
distant units need to communicate for the pressure and velocity
coupling of an iterative Navier–Stokes solver. Given these fac-
tors, the LB method has gained widespread popularity over the
past decades, for both single phase and multiphase flows.34,40

The LB equation reads

f σi x+ ceiΔt,t +Δtð Þ− f σi x, tð Þ¼ 1
τs

f σ,eqi x, tð Þ− f σi x, tð Þ� �
+ Sσi

ð1Þ

where f σi is the particle (or density) distribution function for
some component σ in the discrete velocity direction i. The lat-
tice speed c is defined as c = Δx/Δt = 1, implying constant
kinetic energy for all equal mass particles and τ is the lattice
relaxation time towards local equilibrium. Sσi is a source term
which incorporates body forces. Most simulations in this arti-
cle were carried out on a D2Q9 lattice, using the standard nine
lattice velocities in two dimensions, ei, as defined below

ei ¼

0,0ð Þ, i¼ 0

cos
i−1ð Þπ
2

� �
, sin

i−1ð Þπ
2

� �� �
c, i¼ 1,2,3,4

ffiffiffi
2

p
cos

i−5ð Þπ
2

+
π

4

� �
, sin

i−5ð Þπ
2

+
π

4

� �� �
c, i¼ 5,6,7,8

8>>>><
>>>>:

ð2Þ
The D3Q19 simulations similarly utilize the standard

19 velocity 3-D lattice, which can be found described in
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Krüger et al.40 The discretized equilibrium distribution func-
tion follows from a multiscale expansion in the incompressible
(low Mach number) limit of the Maxwellian63:

f σ,eqi ¼wiρσ 1 +
ei�uσ
RT

+
ei�uσð Þ2
2 RTð Þ2 −

u2σ
2RT

( )
ð3Þ

The weight factors are w0 = 4/9, w1 ! 4 = 1/9 and w5 ! 8

= 1/36. ρσ is the component density and follows from the
zeroth moment of the distribution function:

ρσ ¼
X
i

f σi ð4Þ

uσ is the bare component velocity40 and follows from the first
moment of the distribution function:

ρσu¼
X
i

eif σi +
FiΔt
2

ð5Þ

where Fi is the force term. The lattice viscosity is related to
the lattice relaxation time by

ν¼ c2s τ−1=2ð Þ ð6Þ

where the pseudosound-speed cs ¼
ffiffiffiffiffiffi
RT

p
has the value 1=

ffiffiffi
3

p
for the D2Q9 lattice. Details regarding the derivation of these
quantities can be found in Succi.64

Multicomponent multiphase (MCMP) modeling

Various multiphase and multicomponent models have been
proposed within the LB framework.33,65,66 In this article, we
make use of the PP-LB model. This is a bottom–up approach,
where multiphase hydrodynamics emerges from particle inter-
actions based on a mean field interparticle force. Characteristic
parameters of multiphase systems like interfacial tension and
the density ratio of coexisting phases, naturally emerge from
the interaction between the respective fluid components. This
obviates the usual requirement of solving additional equations
to capture or track the interface as one has to with traditional
FV methods like the Volume of Fluid, LS and so forth, and
the method can be made thermodynamically consistent.37

In this article, we simulate three components, which are
labeled as α, the high density liquid, β the low density liquid,
and s the surfactant. In general, the total force F on a compo-
nent σ is the sum of the intracomponent force Fσσ (which is
based upon an equation-of-state) and a sum of intercomponent
repulsion forces Fσσ that can be interpreted as the force on σ
due to σ. Together these can be written as

Fσ x, tð Þ¼Fσσ x, tð Þ +
X
σ 6¼σ

Fσσ x, tð Þ ð7Þ

(for instance Fα = Fαα + Fαβ + Fαs). The intercomponent
interaction force Fσσ takes the classical Shan-Chen form.32

Fσσ x, tð Þ¼ −Gσσϕσ x, tð Þc2s
XN
i¼0

w eij j2
	 


ϕσ x+ eiΔt, tð Þei ð8Þ

where we sum over the nearest neighbors (i = 0 ! 8). Here ϕ
is the pseudopotential function, and we use the component
density as ϕ, while other definitions are possible. Further, c2s ¼
1=3 is the lattice speed of sound, and G is the interaction
strength. This force is incorporated in the source term in

Eq. 1. Note that its magnitude should not be disproportion-
ately large, which can lead to numerical instabilities, as its
upper bounds are set roughly by the magnitude of the compo-
nent densities which comprise the left hand side of Eq. 1.

Table 1 gives the different interaction strengths, where a
negative value gives attraction between the two components
(miscibility), whereas a positive value gives repulsion (immis-
cibility). The surfactant is repelled by both the fluid compo-
nents, and consequently is driven toward the interface. This is
a highly simplified picture of the interaction of a surfactant
with the two fluids. In reality, each surfactant molecule has a
finite length, with a hydrophilic head and a hydrophobic tail,
and it is this amphiphilic nature that drives it to seek out fluid
interfaces. At a mesoscopic level, surfactants are treated as
point particles, where it would seem that both fluids repel the
surfactant. This approach does allow simulation of surfactants
collecting at the interfaces, and reducing surface tension of the
droplets as will be demonstrated. Finite size effects like steric
repulsion, or formation of and interaction with electric double
layers are not taken into account in the model yet. We further
ignore the orientation of these molecules, also linked to the
finite surfactant molecule sizes, which can lead to charge
based repulsion between approaching surfactant laden inter-
faces. This simplified model can be used to successively incor-
porate features that can simulate more complex effects that are
currently out of scope. We want to emphasize that the differ-
ent components stream and collide on their own respective lat-
tices such that there is no excluded volume effect, and the
components only interact by means of the interaction force.

We keep the concentration of the surfactant three orders of
magnitude lower than the liquid densities. This is because in
real systems, the surfactant volume fraction is very low com-
pared to the liquid components in the entire domain. Only at
the interfaces, the surfactant can have high volume fractions,
even close to unity at high surfactant loading. A higher aver-
age surfactant density in the domain can also cause the surfac-
tant to also form droplets, which is not desired. However, a
very low surfactant density introduces another caveat. The
liquid-to-surfactant forces (i.e., Fsα, Fsβ) which are based upon
the liquid densities become much larger than the counter act-
ing intracomponent hard-sphere like repulsion modeled in the
nonideal EOS. To overcome these instabilities, a factor S is
used to scale the liquid-to-surfactant forces, as done by Skar-
tlien et al.,44 which makes the total force on the surfactant

Fs ¼Fss +
1
S

Fsα +Fsβ
� � ð9Þ

Note that this scaling factor can effect momentum conserva-
tion as pair-wise momentum between the liquids and

Table 1. The six intracomponent and intercomponent
interaction strengths coupling the three components to each
other. The exact choice of the intracomponent interaction
strengths, Gσσ, is not important as the term cancels out

following Eqs. 10 and 11, with the only requirement that it be
negative to keep the argument of the square root positive,
hence these is fixed to −1.0. The intercomponent interaction

strengths Gσσ > 0

α β s

α Gαα Gαβ Gαs

β Gβα Gββ Gβs

s Gsα Gsα Gss
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surfactant is not conserved when S 6¼ 1. However, in this arti-
cle all simulations are performed on fully periodic domains,
due to which the sum of all interparticle interactions cancels
out such that global momentum is conserved, which was
found to be true for all S values used in this article . Alterna-
tives to the scaling factor would be using a higher surfactant
density (while somehow avoiding the formation of surfactant
droplets), or using the surfactant distribution to influence other
parameters of the simulation, as will be discussed in the
section on coalescence inhibition under results.
The intracomponent interaction force, Fσσ, is calculated by

means of the β-Scheme.67

Fσσ x, tð Þ¼ −βGσσΨσ x, tð Þc2s
XN
i¼0

w eij j2
	 


Ψσ x+ eiΔt, tð Þei−

1−β
2

Gσσ

XN
i¼0

w eij j2
	 


Ψσ x+ eiΔt, tð Þ2ei

ð10Þ
With the proper choice of the weighting parameter β, the

spurious velocities occurring at curved interfaces can be
reduced significantly.37 For this research, we set the weighting
factor β to 1.25, as suggested by Zarghami et al.37

Phase separation is achieved by implementing the
Carnahan-Starling (CS) equation of state (EOS). The interac-
tion term then becomes

Ψσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

Gσσ
ρσRT

1 + bσρσ=4 + bσρσ=4ð Þ2− bσρσ=4ð Þ3
1−bσρσ=4ð Þ3 −aσρ2σ −ρc

2
s

 !vuut
ð11Þ

where aσ and bσ are respectively the repulsion and attraction
parameters, characteristic of the different fluid components,
and are set to a¼ 0:4963R2T2

c =pc and b = 0.18727RTc/pc, R is
the universal gas constant and here set to 1,37 and Tc and pc
are respectively the critical temperature and the critical pres-
sure of the component of interest. For T > Tc, only one phase
exists, while for T < Tc, two phases coexist with a density
ratio determined by the reduced temperature Tr = T/Tc, where
the corresponding liquid and vapor densities can be calculated
by means of the Maxwell construction. The physical tempera-
ture is kept the same for all components by ensuring T ¼
T σ
c × T σ

r has the same value.
The force is implemented in the source term Sσi in Eq. 1

using the exact differencing method (EDM),68 given as
follows

Sσi ¼ f eqi ρ,u+
FσΔt
ρ

� �
− f eqi ρ,uð Þ ð12Þ

The pressure in the system is calculated as a sum of the
individual fluid component contributions based upon their
EOS, and the non ideal contributions due to intercomponent
interactions.69

P¼ c2s
X

ρσ +
1
2
c2s
X

GσσΨ2
σ +

1
2
c2s
X
σ 6¼σ

Gσσϕσϕσ ð13Þ

Note that all quantities in this study are nondimensional,
though when simulating flow problems they can be mapped to
physical units by keeping some nondimensional numbers
(such as a Reynolds number) constant. Such a mapping was
presented in Mukherjee et al.12 for simulations of falling

droplets. Lastly, we have used the massively parallel, open
source lattice-Boltzmann solver Palabos in this study.70

Results
Validation

To validate our computer code and numerical model, we
perform two sets of simulations. In the first study, we validate
the thermodynamic consistency of a single component multi-
phase system when simulated by means of the Carnahan-
Starling EOS. Within a (square) periodic box, a droplet of
component α is initialized as a diffused circular region
defined as

ρ x,yð Þ¼ ρl + ρv
2

+
ρl−ρv
2

tanh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xið Þ2 + y−yið Þ2

q
−R0

W

0
@

1
A

2
4

3
5

ð14Þ

where W = 6 is the interface thickness, R the droplet radius, ρl
and ρv are the densities of component α in the liquid and vapor
phases, respectively. The domain size is Nx = Ny = 601 and
xi = yi = 301 is the position of the center of the droplet. The
respective values of the initial densities inside and outside the
droplet are estimated from the Maxwell curve. The Maxwell
curve dictates the coexisting densities for a component at a
given reduced temperature Tr. The EOS parameters are
a = 1.0 and b = 4.0, and the weighting parameter β of the
β-scheme is 1.25.

All stationary droplet simulations have been performed for
20,000 iterations, to ensure that equilibrium is attained. After
reaching equilibrium, the liquid and vapor densities corre-
sponding to inside and outside of the droplet are shown in
Figure 1 for various Tr values. At high Tr, where the strength
of the phase separation is only moderate, we find excellent
agreement with the Maxwell curve. For lower reduced temper-
atures, our numerical results start to deviate from the analytical
curve, however only slightly. The lowest reduced temperature
we can obtain is Tr = 0.4, with ρ? = ρl/ρv = O(103). The thick-
ness of the interface varies from roughly 8–3 lattice units
[lu] as Tr is reduced from 0.96 to 0.4. These results are identi-
cal to recent literature.12,37

Next, we add an ideal lighter component β to validate the
multicomponent, multiphase model with the Laplace law

Figure 1. Analysis of thermodynamic consistency of the
model by comparing simulation results to
analytical solution of the Maxwell coexistence
curve that gives the two fluid densities exist-
ing together at a given reduced temperature.
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(Eq. 15). A stationary droplet of the non-ideal heavy compo-
nent α, suspended in a quiescent lighter ideal component β is
simulated in a periodic 2D domain. The initial densities for
component α are ρl = 0.45, ρv = 0.00007, initialized using
Eq. 14. Component β is uniformly initialized with density,
ρ = 0.00025. Further, Tα

r ¼ 0:52, β¼ 1:0, a = 1.0 and b = 4.0.
Note that the presence of component β strongly affects the
phase separation of component α, such that for the same
reduced temperature Tr, we find a different ρl/ρv internally
within α, as compared to Figure 1. After the system has come
to a steady state, we calculate the pressure difference between
the center of the droplet and the edge of the domain. This is
successively done for five different droplet radii R, plotted in
Figure 2. Here, R is taken to be the radius of the contour level
defined by ρα/2, which is a point that lies inside the diffused
interface at about half the interface width. It could also be
defined as the distance between the center of the droplet and the
point where ρα = ρβ. The exact position of R is uncertain any-
how by about half the interface thickness δint (while δint for a
droplet of radius 50 [lu] could be around 5 − 10%). The inset
in Figure 2 shows the pressure profile along a diametric line
across the droplet. The jumps seen in the pressure profile at the
interfaces are due to the local definition of P in Eq. 13, and can
be remedied using the extended pressure tensor given by Sbra-
gaglia and Belardinelli.71 We observe a clear linear increase in
ΔP with 1/R, where the slope of the line gives the value of sur-
face tension, and an axis cutoff close to the origin, indicating a
convincing agreement with the Laplace law, Eq. 15.

ΔP¼ σ

R
ð15Þ

Addition of the surfactant

The surfactant component s is now introduced, which is
repelled by both liquid components α and β. The values of

Gαs and Gβs are chosen such that the repulsive force on the
surfactant from both liquids is equal, which is ensured by
maintaining Gαs/Gβs ≈ ρβ/ρα. The miscibility of the surfactant
in either fluid can be changed by altering this ratio. All simula-
tions in this section are performed in 2-D on a 200 × 200 peri-
odic lattice, which is a smaller domain facilitating a wide
exploration of the parameter space while keeping the computa-
tional cost modest. The following results do not depend on the
domain size.

The droplet is initialized at the center with a radius of
30 [lu] and the surfactant is uniformly distributed throughout
the domain. The liquid–liquid density ratio is chosen to be
ρ?αβ � 1:44 (where ρ?αβ ¼ ρα=ρβ) while ρ?αβ values from O 1ð Þ to
O 1000ð Þ are possible, and the liquid-surfactant density
ratio ρ?αs � 1000.

The EOS parameters have been fixed to the values men-
tioned in Table 2. These values are chosen such that the physi-
cal temperature of the system T = Tc × Tr is constant for all
components, while Tr can vary. As we simulate a liquid–liquid
system, the values of a and b for components α and β are
rather similar. We did not use exactly the same values for both
as we let component α undergo internal phase segregation in
our modeling approach while maintaining the same tempera-
ture for all components. These values should also be consid-
ered in relation to those for the surfactant component, where
a and b for component s are much larger than for α and β.
This is because a larger value of b means a larger internal hard
sphere like repulsion between surfactant molecules (due to the
EOS). This is required to ensure that the surfactant does not
form droplets, and in the absence of repulsive forces from
components α and β the surfactant remains uniformly distrib-
uted. In the presence of repulsion, the surfactant migrates to
the interface and redistributes uniformly around it. Here, there
is again an optimum, as a very strong internal repulsion (larger
b) would result in a very small amount of surfactant to collect
at the interface. So the EOS values were chosen by finding an
optimal value for b, while a is calculated such that the temper-
ature remains the same as for components α and β. The value
of β = 1.25 in Eq. 10, and all fluid relaxation times τ are set
to 1.

Figure 3a shows the steady-state density fields of the three
components for a quiescent droplet, where the surfactant is
seen to collect at the interface. The normalized density fields
ρ̂¼ ρ−ρminð Þ= ρmax−ρminð Þ where ρ 2 {ρα, ρβ, ρs} show how
the component densities vary across the interface and the sur-
factant collects between the α and β components. The interface
is seen to be roughly 10 [lu] here, which is wider than it is
when simulating a pure liquid–liquid droplet (~5 [lu]) using
the same parameters (i.e., if we set Gαs = Gβs = 0). This is
due to the surfactant which accumulates between the two
fluids and pushes on them. The interface region can in

Figure 2. Laplace law validation for a multicomponent
system is shown where, ΔP is the pressure
difference between the center of the droplet
and the edge of the domain.
Surface tension is the slope of the linear fit to ΔP over
1/R, and is found to be σ = 0.028. The inset shows a typ-
ical pressure profile (calculated using Eq. 13) across the
droplet diameter as indicated.

Table 2. EOS parameters (refer to Eq. 11) for the three
components that have been fixed for this parameter study.
Gσσ, the intracomponent interaction parameter for each
parameter, is set to −1 and R = 1 for all components. The
physical temperature T = Tc × Tr is the same for each
component, that is, they form an isothermal system

Component a b Tr Tc

α 0.0068755878 0.18727 0.8 0.01385369
β 0.007343 0.25 1 0.01108295
s 17.62311 600.0 1 0.01108295
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principle be made narrower by changing the surfactant EOS
parameters such that it has a lower internal repulsion and a
larger amount of surfactant can collect within a small region.
It is useful, also with the view of the discussion further on, to
conceptually define this ratio of internal surfactant repulsion
and external liquid-surfactant repulsion as

Rs �Finternal=Fexternal ð16Þ

So the interface width δint could be proportional to Rs,
though Rs cannot assume arbitrarily large or small values. Also
note that LB being a diffused interface method, there is a min-
imum interface thickness (roughly 5 − 6 [lu]) below which
the droplet becomes unstable and can dissolve away.
Interface widening is an issue faced by all diffuse interface

methods. In the multicomponent PP-LB method, a higher
repulsion strength between the liquid components (Gαβ in our
case), leads to a stronger phase separation and hence sharper
interfaces as well as to a higher surface tension. It is difficult

to manipulate these three effects independently. Typically,
one would want to have a large enough separation between
the droplet radius and the interface width, that is, the ratio
ζ = R/δint should be as large as possible, ideally more than
50 or 100. The diffuse interface in such a case can be
expected to have little influence on the results. Such simula-
tions, however, will be very computationally demanding in
practice, as one also requires a large enough separation
between the droplet radius R and the domain size L. To have
both the ratios R/L and ζ high is generally not feasible and
one has to compromise the resolution on either or both of
these. This is a crucial aspect to be considered when formu-
lating a physical problem to be simulated with any diffuse
interface method. With proper scaling of these ratios, the
shortcoming of a finite interface width can be overcome to
meaningfully simulate the physics. We now use this station-
ary droplet as a test problem to perform a parameter space
investigation of our model. The results presented in this
section deal with equilibrium behavior of the model like

(a)

(b) (c)

Figure 3. Equilibrium component densities from stationary droplet simulations are shown in: Figure 3a as normalized
densities in the domain and across the droplet diameter with ρ̂¼ ρ−ρminð Þ= ρmax−ρminð Þ where ρ 2 {ρα, ρβ, ρs}.
Figure 3b shows the surfactant distribution for increasing values of the liquid-surfactant repulsion strength
Gαs (Gβs = 2Gαs as ρ?αβ ¼ 2), where the peak concentration increases with increasing Gαs as the surfactant is
more strongly repelled by both liquids. Figure 3c shows the same for increasing values of the surfactant
reduced temperature Ts

r , where ρeqs decreases due to an increased internal surfactant repulsion.
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interfacial concentrations, surface tension and so forth, which
should not be expected to be very sensitive to ζ.
Influence of the Liquid-Surfactant Repulsion Parameter

Gαs. The parameters Gαs and Gβs determine how strongly the
components α and β repel the surfactant s. They also deter-
mine the extent of immiscibility of s in α and β, and since we
keep these values such that s is equally immiscible
(or repelled), we discuss this effect in terms of Gαs only (while
Gβs ¼Gαs × ρ?αβ). In all simulations, we keep the value of the
liquid to surfactant force scaling parameter Sαs ≥ 100 (see
Eq. 8) to ensure stability. The equilibrium surfactant concen-
tration across a diametric line through the droplet is shown in
Figure 3b for increasing Gαs.
When starting with the same uniform initial surfactant con-

centration ρ0s , for increasing Gαs, the equilibrium density of
the surfactant at the droplet interface obtains a higher peak.
The surfactant concentration outside the droplet falls to a suc-
cessively lower value showing the conservation of surfactant
mass in the system. The final liquid–liquid density ratio ρ?αβ ¼
1:42 while the ratio between the repulsion strengths Gβs/Gαs =
1.44. This difference reflects in the surfactant being slightly
more miscible in the α component and its concentration inside
the droplet increases with Gαs. For larger repulsion strengths,
the interface becomes slightly wider as the surfactant pushes
on the two liquids more strongly. It should be noted that for
each fluid configuration (i.e., liquid EOS parameters, and den-
sity ratio between α, β & s), there is a sensitive upper
bound to Gαs, beyond which the repulsive pseudopotential
force becomes too large and simulations are unstable. Here, it
is seen that around Gαs~4.5 the simulations become unstable
(with the minimum bounds on the liquid to surfactant force
scaling factor being Sαs = 100 to ensure stability).
We also look into the migration of the surfactant from the

bulk towards the interface in Figure 4 for increasing Gαs,
which is done by monitoring the maximum surfactant concen-
tration in the domain (which happens to be at the interface).
On increasing Gαs, at early times the amount of surfactant at
the interface increases as the simulation proceeds. However,
within around 200 iterations, the maximum concentration for
each simulation is attained and the value oscillates around it
until equilibrium is attained. This at first seems counter intui-
tive, as increasing the force acting on the surfactant should
result in its faster migration to the interface. Here two things
are worth noting, first is that increasing Gαs reduces Rs (refer
to Eq. 16), and hence a larger amount ρs will collect at the
interface. Secondly, regarding the rate of migration of ρs for a
stationary droplet, there is no physical timescale for interpret-
ing the number of iterations for approach to equilibrium, and
each iteration simply means a single collision and streaming
step. An increasing repulsion force on the surfactant will trans-
late to an increased change in momentum, but since velocities
in LB are fixed, this change can only be achieved by stream-
ing a larger density fraction of the surfactant within a time
step. Figure 4 is consistent with this reasoning, and all the
cases attain their individual maximum surfactant densities after
the same number of iterations. Further, the inset shows the
density evolution normalized with the final density, and all the
cases collapse to a single evolution curve.
A last point to note here is the wiggles in the evolution pro-

file. These are caused by the generation of pressure (sound)
waves in the system due to two factors—first the relaxation of
the droplet from its initialized profile to an equilibrium profile,
and second the sudden addition of the surfactant repulsion

forces. These wiggles completely disappear after 20,000 itera-
tions, and are present only during the initialization phase. In simu-
lations of incompressible flow, pressure waves are undesirable,
and hence these simulations must be performed over a timescale
much longer than any initial transient phenomena that may be pre-
sent, like approach to local equilibrium in LB. Further, it should
be ensured that the flowMach number is reasonably small (where
typicallyMa < 0.1 is desired). Once the initial phase of relaxation
to equilibrium is over, any further changes in the component den-
sity distributions is due to the hydrodynamics, which proceeds
over a longer timescale than the acoustic timescale. Hence our
simulations do not suffer from pressure waves.

Influence of the Reduced Temperature Tr
s. Increasing the

reduced temperature Ts
r for the surfactant component to values

greater than 1.0 increases the internal molecular repulsion
within the component, which is similar to the pressure in a gas
rising when it is heated as the molecules become more ener-
getic. At higher Ts

r , the force ratio Rs will increase, and the
maximum equilibrium density of the surfactant that can collect
at the interface will decrease. This is shown in Figure 3c
where Gαβ = 0.02, Sαs = 100 and Gαs = 4.0. To ensure that
the surfactant is still at the same temperature as the other two
components when Ts

r > 1 (i.e., the surfactant is at a supercriti-
cal temperature), the EOS parameter a is scaled with 1=Ts

r as
Tc = 0.3773322a/Rb. Note that Ts

r could also be reduced to
values lower than 1.0, but that could initiate internal phase
segregation within the surfactant component and is not
desired.

Indeed, at higher Ts
r the surfactant feels a stronger internal

repulsion and Rs increases, consequently a smaller amount of
surfactant collects at the interface. This also leads to the inter-
face becoming slightly narrower (as was discussed earlier after
Figure 3a) as a lower surfactant density has a lower repulsion
strength acting on the two components on either side of the
interface.

Influence of the Surfactant Viscosity τs. The surfactant vis-
cosity νs, which is related to τs according to Eq. 6, has been
shown to strongly influence the dynamics.60 The surfactant
concentration at a point on the interface is shown in Figure 5

Figure 4. Surfactant migration to the interface increases
for increasing repulsion strengths Gαs, where
Sαs = 100 and Gαβ = 0.02.
It is seen that the maximum surfactant concentration for
each configuration is attained within 200 iterations. The
inset shows the normalized density (also from 0 to 5000
Iter), where all cases is seen to follow the same evolution
profile.
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for varying τs. For the quiescent system studied here, only a
slight influence is seen in the approach to equilibrium concen-
tration, where the more viscous surfactant migrates slower.
The surfactant viscosity can be expected to influence the
dynamics when the characteristic time of the flow is compara-
ble to the diffusion timescale, or for more dynamic problems
like falling droplets and so forth. With the current setup, the
viscosity ratio between components cannot have very high
values, which requires further modifications to the LB method
for instance as proposed by Meng and Guo.72

Strength of the surfactant

The strength of a real surfactant varies greatly depending on
a number of microscopic effects like the extent of ionic disso-
lution, adsorption of ions at the interface, etc.21 So far in our
modeling approach, the strength of the surfactant depends only
on the surfactant density (ρs) at the interface and how strongly
it repels the liquid components, which is given by the repul-
sion strength parameters Gαs and Gβs. While still keeping the
discussion in terms of Gαs only, we define surfactant strength
Λ as

Λ¼Gαs

X
int

ρs ð17Þ

in which the summation is carried out over the entire interface.
Since the interface is diffused, we take this sum within the
region bounded by two radii corresponding to the lower and
upper bounds on the density of component α, given as
1:1× ρmin

α < ρα < 0:99× ρmax
α . The values 1.1 and 0.99 are

somewhat arbitrary, though they accurately capture the inter-
face width, and slightly changing these numbers does not
influence the following results. Defining Λ in this way facili-
tates comparison between simulations even upon varying mul-
tiple parameters.
We now investigate the equilibrium surface tension of a sta-

tionary droplet in a quiescent periodic domain for increasing
surfactant strength. The surface tension is calculated using the
Laplace law at steady state where ΔP = σ/R, ΔP being the
pressure difference (where P is calculated according to Eq. 13)
between the center of the droplet and edge of the domain and
R is the droplet radius. Figure 6 shows the equilibrium surface

tension over the strength Λ, for two cases of the clean droplet
surface tension which was varied by changing the liquid–
liquid repulsion strength Gαβ. Sets of simulations of varying Λ
are performed by varying 0 < Gαs < 4.0 and 100 < Sαs < 800,
of which only the Sαs = 100 cases are shown.

The surface tension reduces with increasing Λ, and the two
sets of simulations follow individual σ reduction curves. A
maximum σ reduction of around 15% is observed. In our
parameter space investigation, we varied the various interac-
tion strengths (Gαβ, Gβs, Gαs), the inner repulsion of the sur-
factant (which depends on the surfactant EOS parameters
a and b, cf. Eq. 11), the reduced temperature Ts

r of the surfac-
tant component and the surfactant viscosity νs. The results
obtained from all these simulations are shown together in
Figure 7, where the y axis shows the relative reduction in sur-
face tension σ/σ0 (where σ0 is the surface tension of the clean
droplet for a particular value of Gαβ), and the x axis shows Λ.

A maximum reduction in surface tension of about 15% is
achieved, and the largest value of Λ we could simulate with
this model is around 25. Higher values of Λ might be possible
with suitable extensions to this model which stabilize the sys-
tem for higher repulsion strengths. Using the multirange inter-
action method,71 a different EOS for the components or
another collision operator like the MRT73 could help achiev-
ing this, although we have not explored those possibilities in
this article. Generally a higher reduction in σ comes at a cost
of a wider interface (which goes from roughly 7.5–22.5 [lu]).
This is a consequence of a higher concentration of the surfac-
tant repelling the two components at the interface more
strongly. The solid black line indicates a Langmuir type of fit
of the form

σ

σ0
¼ 1 +

c

σ0
RT log 1−

Λ
Λmax

� �
ð18Þ

where c is a constant fitting factor, and Λmax is taken to be
40 for this fit. The scatter in Figure 7 is due to the use of very
different model parameters between cases. Upon varying just
one of these parameters while keeping the remaining constant,

Figure 5. Evolution of the interfacial surfactant concen-
tration ρs|int for varying surfactant relaxation
times τs (related to the surfactant viscosity νs
according to Eq. 6). Here, Gαβ = 0.02, Gαs =
4.0, and Sαs = 100.

Figure 6. Reduction of the equilibrium surface tension σ
for two cases of a clean droplet surface ten-
sion which is varied by changing the liquid–
liquid repulsion parameter Gαβ. Λ is increased
by varying 0 < Gαs < 4.0, and Sαs = 100 for the
cases shown.
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the pertinent points follow a single curve. Using this model, a
few simplified calibration simulations would be required to
ascertain the particular isotherm behavior of the parameters
under consideration, as surface tension reduction emerges
from simplified pseudopotential particle interactions. In alter-
nate techniques like the free-energy method, the desired iso-
therm is preset into the model thermodynamics, which is in
stark contrast to our approach.
In practice, the surfactant layer at a liquid–liquid interface

has a thickness of the order of microns, and a reduction in sur-
face tension of 50% or greater is possible. In LB, the interface
is diffuse and even at its sharpest, it will be smeared over
5 − 7 [lu], which also determines the minimum thickness of
the surfactant layer, and is also observed in previous work on
this problem using the LB method.43,45,48,49 The interface
width here should, however, be valued in comparison to the
domain size L, and if L � δint, theoretically the 5 − 7 [lu] δint
can be scaled to a small enough physical length scale. This
can of course be limiting as larger domains will begin to have
prohibitive computational costs, particularly in regards to
memory considering a three component system.

Spinodal Decomposition

Moving to a dynamic setting, we investigate the influence
of the surfactant on spinodal decomposition,74 or phase segre-
gation of the two fluid components. To briefly review this phe-
nomenon, consider a single fluid component initialized in a
metastable state at a sub critical temperate (or Tr < 1.0). Ran-
dom density fluctuations are added to this component to initi-
ate internal phase segregation where the fluid separates
spontaneously into liquid and vapor states with densities deter-
mined by its EOS. The fluid initially forms localized droplet-
like structures that coalesce and grow over time until the two
phases are completely separated. This process, which is rather
similar to Ostwald ripening in crystallization, is also denoted
by the term “coarsening dynamics.”

Additionally, as in our system, a second fluid component
may also be present. This second component can also undergo
internal phase segregation if it is modeled as a nonideal com-
ponent by being placed at a sub critical temperature
(i.e., Tr < 1.0). Or more simply, repulsion from the first com-
ponent can make the second component collect in liquid-like
and vapor-like phases (the liquid and vapor densities here
deviate from the Maxwell construction, as these are now
formed due to the repulsive interaction with the first compo-
nent, so that the bulk of the second component exists in
regions where the first component exists as vapor). In our
work, we model all components as non ideal. The first compo-
nent, α, is allowed to undergo internal phase segregation by
keeping it at Tr < 1.0, while the second component β and the
surfactant s are kept at Tr = 1.0. This ensures that there are no
regions in the domain where both components α and β exist in
vapor phases, and a truly liquid–liquid configuration is
achieved. Distinction between the terms phases and compo-
nents is crucial, as a single component may exist in two
phases, and yet overall the system is liquid–liquid, due to the
presence of another liquid component.

Due to phase segregation interfaces emerge, and depending
on the initial density of the components, either a symmetric or
an asymmetric composition is achieved, the latter of which
may result in nucleation or droplet phase separation based
upon the initial density distribution.75 Many studies76-80 have
reported scaling laws that give the temporal evolution of the
characteristic domain length of the fluid regions growing due
to coalescence over short and long times, for different binary
fluid mixtures in both two and three dimensional systems. The
addition of surfactants is expected to inhibit the growth rate of
this characteristic domain length, which was also observed by
Nekovee et al.43

To quantify spinodal decomposition, a commonly studied
parameter is the structure factor Ŝ k, tð Þ which is obtained by
performing a Fourier transform on the instantaneous density
correlation function q(x, t), and contains information of the
evolution of various length scales in the system.42 It is calcu-
lated as

Ŝ k, tð Þ¼ 1
N

X
x

q x, tð Þ−q tð Þ½ �eik�x
 !2

ð19Þ

where q(x, t) = ρα(x, t) − ρβ(x, t) denotes the density differ-
ence between the two components at location x at time t, q tð Þ
is the spatial average of q at each time step and N is the num-
ber of grid points (i.e. Nx × Ny). Here k is a 2-D wavenumber,
as the Fourier transform yields a 2-D matrix of values. To con-
vert this to a single spatial wavenumber k, the structure factor
is averaged over shells in k space to yield the spherically aver-
aged quantity Ŝ k, tð Þ as

Ŝ k, tð Þ¼
P

k Ŝ k, tð Þ
Nk

ð20Þ

where the sum
P

k is over circular shells defined by

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x + k

2
y

q
, and Nk is the number of all kx and ky pairs cor-

responding to each k shell.42 The wavenumber corresponding
to any length ℒ is defined as k = 2π/ℒ. Considering the
domain length to be Nx [lu] in each direction, the smallest
non-zero wavenumber (largest scale) is kmin = 2π/Nx, while
the largest wavenumber (smallest scale) is given by kmax = 2
π/2 = π (which is similar to a Nyquist frequency). Further, the

Figure 7. Reduction in the equilibrium surface tension
σ/σ0 for a stationary droplet over the surfac-
tant strength Λ shown for all the cases
simulated.
The legend shows the range each parameter was varied
over in a simulation set and the solid black line represents
a Langmuir EOS fit (refer to Eq. 18). Surface tension
reduction seems to be spread around this curve. A larger
reduction in surface tension also results in a thickening of
the interface.
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domain growth represented by the characteristic length R(t)
can be calculated using the first moment of Ŝ k, tð Þ as

R tð Þ¼ 2π

P
k Ŝ k, tð ÞP
k kŜðk, tÞ

 !
ð21Þ

For asymmetric phase fractions of the two fluids, R(t) is
expected to follow a t1/3 power law79,81 in the inertial regime
where capillary forces are minor.
In our simulations, all three components are initialized with

a uniform density field, where the density ratios are ρ?αβ � 1:44

and ρ?αs � 103, Gαβ ¼ 0:02 and Sαs = 100. The denser compo-
nent α is at a reduced temperature Tα

r ¼ 0:8 and random den-
sity fluctuations (with zero mean) are added to initiate internal
phase segregation, the lighter fluid and surfactant both are kept
at Tβ

r ¼ Ts
r ¼ 1. The domain size is 512 × 512 [lu]. The evolu-

tion of the α component and the surfactant is shown in
Figure 8, for the case with Gαs = 4.0. It is seen that small
localized regions of the heavy component form within a short
time which then coalesce and grow, while the surfactant
adheres to the evolving interfaces.
Next, the structure factor Ŝ k, tð Þ is presented as a spectral

density map in Figure 9 for Gαs = 0.0, 2.0, 4.0 from top to
bottom. Here, Ŝ k, tð Þ has been further normalized by the maxi-
mum value at each time step to highlight the relative growth
of different scales over time.
Two distinct evolution regimes can be seen, first being a

region of fast growth where within 1500 iterations small scale
structures are formed and there are several contributing length
scales to Ŝ k, tð Þ, which evolve from around k~0.25 to k~0.12.
From iteration 1500 to 10,000, a second regime of slow
dynamics is observed and the system proceeds towards a dom-
inant length scale (as is seen from the spectral density showing
strongly concentrated modes, as the spread over k becomes
narrower). Over longer times, it is seen that the dominant
wavenumbers are more or less similar for the clean and surfac-
tant laden cases (k~0.05 − 0.025), with only slight variation in
the evolution profiles.
At steady state, we observe that the volume fractions of

component α and β are 0.4 and 0.6 approximately, showing
that our initial conditions lead to an asymmetric composition.
The situation obtained is that of liquid droplets of the heavier
fluid forming the dispersed phase while the lighter fluid forms
the continuous medium. On changing the initial densities, the
reverse was also observed but this has been excluded from this
article.
Lastly, the evolution of the characteristic length R(t) has

been shown in Figure 10 for cases with increasing Gαs. No
change in the expected t1/3 exponent is found for increasing
surfactant strength. Even though the highest surfactant strength
reduces surface tension by 15% for a stationary droplet, this
has little influence on the coalescence behavior in a dynamic
setting. This is not entirely surprising, as currently our surfac-
tant model does not contain a mechanism for explicitly shield-
ing coalescence, which we shall shortly discuss.
One of the benefits of the LB method and our modeling

approach is the ease of extension to 3-D, with efficient paralle-
lization. We extend our multicomponent approach to a D3Q19
lattice to simulate spinodal decomposition in a 2563 3-D peri-
odic domain. The same parameters as in the 2-D case are
taken. Figure 11 shows the density evolution of component α
as the white contours in the column a, along with the surfac-
tant density field thresholded at 75% of the maximum value in

column b. These results correspond to the Gαs = 2.0 case,
while Gαβ = 0.04. The rows correspond to iterations
600, 1000, and 2000 from top to bottom. The surfactant adapts
very well to the three dimensional evolving interfaces, in a
decaying quasiturbulent field which is generated by the con-
version of the large initial surface energy (driven by interfacial
tension) to kinetic energy (on droplet coalescence). It is worth-
while to note the computational cost of such a simulation. The
domain consists of more than 16 million lattice nodes, and the
three component modeling approach with 19 velocity direc-
tions in 3-D requires one to store 19 × 3 density distribution
values (f σi ) at each lattice unit which in double precision
amounts to around 8 GB of memory. Simulating 10,000 itera-
tions took approximately 10 h of wall-clock time on 24 proces-
sors. A further resolution doubling would make the memory
requirements eight times and computation time 16 times
larger, soon becoming prohibitively expensive.

Figure 8. Normalized density field of component α and
surfactant s (with blue to red representing
minimum to maximum value) at Iterations
100, 500, 1000, 2500, 5000, and 10,000 for
phase segregation, with Gαβ = 0.02 and Gαs =
4.0. The final volume fractions of α and β are
0.4 and 0.6.
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Figure 11 column c shows composite density fields, with
contours of component α over half the domain and the surfac-
tant density thresholded at 75% of the maximum value at itera-
tion 1000, for Gαs = 2.0 (above) and Gαs = 4.0 (below). Some
qualitative difference can be seen between the two figures,
particularly that the local concentrations of the surfactant are
higher (a larger predominance of yellow–green regions). The
α contours, however, are rather similar between the two cases.

Coalescence inhibition

Previous research on surfactant laden emulsions has
included an additional aspect capable of abetting inhibition of
coalescence. Chen et al.,42 Furtado and Skartlien,45 and Skar-
tlien et al.44 consider a dipole orientation of the surfactant that
responds to a mean field generated by surrounding dipole dis-
tributions. This might make it energetically favorable for
dipoles to orient in certain manners that prevent droplet coa-
lescence. In addition, a long range intracomponent repulsive
interaction force, in addition to the short range attraction has
been demonstrated to shield droplets in approach from coa-
lescing without the need of a surfactant component.47,82,83

However, such a method does not truly represent surfactant
dynamics, as it cannot give rise to Marangoni effects or mod-
ify interfacial boundary conditions.

As was seen from the spinodal decomposition studies,
increasing surfactant strength did not prevent coalescence of
droplets in our model. This is because despite the accumula-
tion of the surfactant at the interface, there is no mechanism
for preventing coalescence from taking place, the components
α and β still repel each other to the same degree as in the
absence of the surfactant, such that the resulting film drainage
between approaching droplets still causes them to coalesce.
Following this reasoning, we propose an extension of the cur-
rent model, that is, to make Gαβ a function of the local surfac-
tant density. When the surfactant now collects at the interface,
it can alter how strongly α repels β, in turn influencing the
drainage of component β when two droplets of α approach
each other.

We implement this in our model as

Gαβ ¼G0
αβ 1−c

ρs
ρmax
s

� �p� �
ð22Þ

where Gαβ now varies over the domain, G0
αβ is the maximum

repulsion value (corresponding to the case when no surfactant
is present), ρs is the surfactant density at a local lattice node
which is normalized by the instantaneous maximum surfactant
density anywhere in the domain ρmax

s . Alternatively, the sur-
factant density could also be normalized by a prefixed value
that is large enough to yield a fraction between 0 and 1, though
if the chosen value is too large, the dynamics would not be
significantly altered, which we observed in some unreported
simulations. The exponent p = 1 creates a linear variation in
the Gαβ profile, which might not be optimal, as immiscibility
between α and β is desired to reduce more rapidly when ρs
approaches ρmax

s than when ρs assumes smaller values. We set
p = 3 after some preliminary testing. Further, c sets the mini-
mum bounds on the reduction in Gαβ, and a few values were
tested, whereafter, we set it to c = 0.5. A similar treatment is
done to Gαα with p = 3 and c = 0.1, so as not to drastically
alter the intracomponent attraction in α to an extent that drop-
lets of α begin to dissolve away. To demonstrate the influence
of this technique, we redo the 2-D spinodal decomposition
cases presented earlier on a 512 × 512 domain, with Gαs =
2.0, and the evolution of R(t) is shown in Figure 12.
The cases with varying Gαβ and Gαα show a flattening of R

(t) at a lower value within 5000 iterations with a clear

Figure 10. Growth of the characteristic length scale R(t)
for increasing Gαs is shown.
No influence of an increasing surfactant strength is
observed on the growth rate of R(t), which follows a
roughly t1/3 scaling as reported in literature.79,81

Figure 9. Spectral density map of the spherically aver-
aged structure function Ŝ k,tð Þ (normalized by
the total spectral density at each timestepP

k Ŝ k,tð Þ), with the spatial wavenumber k on
the y axis (showing only the first 50 values out
of the total 256), and the iteration number on
the x axis which goes from 1 to 10,000.
The cases shown from top to bottom correspond to Gαs =
0.0, 2.0 and 4.0. Initially the distribution peaks around
k~0.25, that it, small dispersed droplets which then grow
rapidly up to iteration 1500 to k~0.12, after which the
evolution is slow. We do not observe any influence of the
surfactant on the evolution of Ŝ k, tð Þ.
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deviation from the t1/3 scaling, as compared to the case with
constant parameters. This shows that inhibition of coalescence
can be achieved, though it should be noted that varying Gαβ and
Gαα also influences the surfactant density through the intercom-
ponent interactions - the dynamics is hence rather complicated.
It was observed (not included in this paper) that using larger
values of c (for instance c = 2) can result in a change in the sign
of Gαβ, whereby droplets of α can spontaneouly rip apart into
smaller droplets. The growth of R(t) in such simulations is also
arrested in a similar way as for the case shown in Figure 12.
These simulations did not exhibit an approach to steady state,
and the spontaneous generation of small droplets is qualitatively
similar to the formation of microemulsions. Also with this modi-
fication, the force scaling factor in Eq. 8 is not required. The sur-
factant density, despite being low and interacting weakly with
the other components, is sufficient information as a scalar field
that is used to influence other model parameters governing mis-
cibility. This would ensure momentum conservation in nonperio-
dic domains as well.

Droplet Formation

Finally, we apply our model to a well known multiphase
flow problem, the formation of a pendent droplet, a phenome-
non ubiquitous in nature and many industrial processes. It

involves the formation of a droplet at an aperture driven by a
pressure difference (here due to the action of gravity),
whereby the droplet grows under the pull of its own weight,

Figure 11. Spinodal decomposition in three dimensions is shown, with the contours of component α in column a and sur-
factant density thresholded at 75% of themaximum value in column b. The three rows correspond to iterations
600, 1000, and 2000. The third column, c, shows composite density fields: the bulk surfactant density (again
thresholded at 75% of the maximum value) in the entire domain along with contours of component α (in white)
in only half of the domain—all at iteration 1000. The value ofGαs = 2.0 (above) andGαs = 4.0 (below).

Figure 12. Growth of the characteristic length scale R(t)
for two cases of variable and constant Gαβ

and Gαα values is shown.
The case with varying parameters shows a clear devia-
tion from the t1/3 scaling, with R(t) flattening at a lower
value within 5000 iterations.
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eventually pinching off and falling away—reminiscent of a
leaky faucet. This is a complex dynamical process, the crucial
moment being the pinch-off, when the droplet breaks away
from the reservoir fluid jet, and the process repeats until the
reservoir is depleted. We simulate this for clean and surfactant
laden cases, mainly focused on illustrating how the surfactant
dynamics is captured by our model. Note that we do not inves-
tigate the physics here in detail—which can form a study of
its own, and use this section as a preliminary demonstration.
We simulate this problem in 2-D, where a pocket of a high

density fluid consisting of component α in its liquid phase is
initialized above an aperture. The surrounding domain is occu-
pied by a lower density fluid β, also in its liquid phase. The
density ratio between the components is ρ?αβ � 1:4, while ρ?αβ
up to O 100ð Þ is possible. The surfactant component is initial-
ized uniformly throughout the entire domain, with ρ?αs � 1000.
All components are nonideal and modeled by means of the CS
EOS, the relevant EOS parameters being presented in Table 3.
Because we simulate three components, we are increasingly
restricted by memory limitations, and to keep computational
cost modest the size of the domain is kept to Nx × Ny = 400 ×
900 [lu], with the aperture placed at a height of 600 [lu] at
the center of the horizontal axis, and has a size of 30 [lu ] × 40
[lu] (width × height).
Once the system achieves equilibrium in a stationary config-

uration, a gravitational force is applied to components α and β
as F = gρσ with jg j = 6 × 10−6 [lu] to initiate droplet forma-
tion in the dripping regime in the absence of an imposed
velocity. This strategy resembles the production of droplets by
a push-mode piezoelectric Droplet-on-Demand ink jet print
head. Dong et al.84 describe such a drop formation process in
terms of three stages: a first stage, in which the droplet gradu-
ally grows while pending, followed by a second stage of
stretching and necking, after which the droplet is released and
the elongated neck contracts and forms the start of a new
droplet. The domain is periodic in all directions, which
ensures a continuous production of droplets, and the simula-
tions are run for 2 million iterations, while collecting droplet
statistics every 200 iterations. These simulations take roughly
48 h of wall-clock time when run in parallel on 15 processors.
The cases simulated are presented in Table 4. For the

“Clean” case DF1, there is no interaction between the surfac-
tant component and the two liquid components, such that this
is effectively a two component system. For the surfactant-
laden cases, we turn on interaction between the surfactant and
the fluid components, the strengths of which are presented in
Table 4. The cases DF2 and DF3 are formulated such that the
surfactant is slightly more soluble in component α and β,
respectively. This is to first demonstrate how such a miscibil-
ity can be achieved, as it is often found in real systems. Sec-
ond, this alters the modification of surface tension by
changing the pressure drop across the droplet interface, due to

the presence of the surfactant. To the best of the authors’
knowledge, this is also the first study to simulate the formation
of a droplet for a multicomponent multiphase system with
non-ideal fluids and a non-unity density ratio.

Figure 13 shows the droplet formation process, with compo-
nent α (in red) suspended in component β (in blue), for the
clean case (DF1) in the top row. We observe the formation of
a stretching neck that pinches off droplets which eventually
fall off. The periodic boundaries of our domain in the direction
of the body force causes the exiting droplets to re-enter the
domain above the aperture (not shown here) and merge with
the heavy fluid reservoir. The middle panel shows the same
for case DF2, while the bottom panel shows the surfactant
density field normalized with the maximum value for DF2.

Several features here are worth noting. Qualitatively, we
can see that at iteration 18,000 while the droplet is still
attached to the jet for the Clean case, for the DF2 case the
droplet already breaks off, which may be attributed to the
reduced surface tension in DF2. Further, in the surfactant den-
sity evolution, vacuous blue regions with very little surfactant
density are formed when the droplet breaks off, forming tem-
porary surfactant depletion regions. Transport from the bulk
and the internal surfactant repulsion replenishes these regions
over time. Also, the surfactant density is higher at the trailing
edge of the droplet interface, as the surfactant is swept back-
wards by the flow.

Around 1200 droplet formation instances have been identi-
fied during the entire simulation, which are then used to calcu-
late the probability distribution of the equivalent droplet radii
Req (found by equating the droplet area to a circle with equal
area), droplet major axis L, duration between successive drop-
let formation instances ΔIt and the droplet center of mass posi-
tion in the lateral direction Xcm (which shows how much the
droplet oscillates from the central vertical line, where it was
produced). The PDFs of these quantities are shown in the first
four panels of Figure 14. The PDF of req shows that the clean
case (black curve) has a strong peak at Req = 29. The DF2
case does not drastically alter the PDF, though the peak shifts
to around Req = 32 which could be due to a slight thickening
of the interface with the presence of the surfactant (as was also
encountered in previous sections). For DF3, where the surfac-
tant is slightly more soluble in the surrounding fluid, the peak
drops significantly, and a larger number of droplets with Req <
30 are formed. This trend is similar for the droplet major axis
L, which is the lateral extent of the droplet when it is not per-
fectly circular. Note that with the interface width being around
6–7 [lu], statistics below Req = 15 and L = 15 would not be
meaningful.

The PDF of the interval between droplet formation shows a
few interesting features of the dynamics governing the prob-
lem. For the clean case, a strong peak is seen around ΔIt ≈
3500, and a slightly smaller peak around ΔIt ≈ 1750. The
first one corresponds to a primary droplet break-off event, fol-
lowing which the depleted fluid jet retracts slightly towards
the aperture due to surface tension, and it slowly begins to
grow again as more fluid flows through the aperture. After

Table 3. EOS parameters used for the droplet formation
simulations. Here, ρl and ρv represent the component densities
in the individual liquid and vapor phases, respectively, and

are values used to initialize the simulation

α β s

a 0.006875 0.0073429 17.623
b 0.18727 0.25 600.0
Tr 0.8 1 1
ρl 7.7 5.3 0.002
ρv 0.05 0.05 0.002

Table 4. Interaction strengths for the various cases

DF1 DF2 DF3

G αβ 0.0085 0.0085 0.0085
Gαs 0.0 4.2 4.0
Gβs 0.0 7.5 5.6
Sαs – 100.0 100.0
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some of the droplet pinch-off events following this dominant
mode, there is a secondary pinch-off of a smaller droplet,
which is also reflected in the PDF of Req. For the DF3 case,
the PDF appears flattened as droplet formation becomes more
irregular due to the intermittent presence of the surfactant
(as seen in Figure 13), resulting in the smaller droplets pinch-
ing off over a shorter timescale, and larger droplets taking lon-
ger to do so.
The PDF of Xcm − X0 normalized by the domain width

W, (with X0 the center of the domain in the horizontal direc-
tion), is very similar for all three cases, with some qualita-
tive differences. Generally, we expect droplets to fall along
the central axis without oscillations in the lateral direction as
there is perfect symmetry across the central axis. This is true
for the initial stages of the simulation (upto the formation of

≈150 droplets and t < 200000 Δt). As we use vertical peri-
odicity to ensure a continuous and steady supply of the
droplet fluid, the droplets coalesce with the small reservoir
above the aperture after re-entering the domain. This in turn
generates some long wavelength oscillations in the free sur-
face, which are sustained due to frequent droplet coales-
cence. The vertical extent of the reservoir is not sufficiently
large to completely damp these perturbations out and they
later begin to weakly interact with the fluid jet at the aper-
ture. As these free surface oscillations are not perfectly sym-
metrical across the central axis at longer times
t > 200000 Δt (where even machine level inaccuracies
might amplify over time due to the inherent non-linearity of
the process), the liquid jet begins to swing with a low fre-
quency and low amplitude oscillation which causes a slight
spread in the center of mass location of the newly formed
droplets. This could be remedied by having a much larger
reservoir above the aperture, and the behavior may be less
prominent at higher density ratios where the gravitational
pull will dominate any lateral lift forces. Notwithstanding,
this effect is minor in our simulations, and even the maxi-
mum lateral shift (≈9% of W) is slightly larger than the
aperture width, that is, 7.5% of W.

A critical Capillary and Reynolds number can be ascribed
to the droplet just after pinch off as

Recr ¼ ρvL

μ

Cacr ¼ μv

σ
ð23Þ

where L is the lateral droplet extent, σ is the surface tension,
and ρ and μ are the density and dynamic viscosity of compo-
nent β (the surrounding fluid). Here, v is taken to be the char-
acteristic droplet velocity calculated as the mean vertical
velocity inside the droplet as

v¼
PN
i¼1

vi

N
ð24Þ

where i goes over all the N points comprising the interior of
the droplet region. From the Figure 14, it was seen that in case
DF3, the droplet characteristics change more significantly as
compared to the clean case. We show the PDFs of the critical
Re and Ca numbers for the clean and DF3 case in the last two
panels of Figure 14. The surfactant significantly alters Recr,
and the distribution shifts to a wider range of lower Recr
values, between 6 and 10 for the DF3 case. The surfactant also
shifts the peak of the Cacr PDF from a value of Cacr ≈ 0.4 to
Cacr ≈ 0.2. The presence of the surfactant reduces surface ten-
sion, but also causes the formation of smaller droplets which
typically have a lower fall velocity. These changes together
influence Cacr, which is found to reduce here. If μ and v are
kept constant, surfactant induced surface tension reduction
would increase Ca. Controlling these effects individually,
however, requires much more precise problem formulation
and further investigation. In future work, we intend to test the
model for realistic flow problems, along with validation and
comparison to existing literature—which was not yet done
during this developmental period and parameter space investi-
gation we present in this article, as that can comprise a work
unto itself.

Figure 13. Density fields from droplet formation simula-
tions at various time steps show the liquid α
in red (β in blue) for a clean case (top row),
liquid α for a surfactant laden case (middle
row) and the surfactant density s (bottom row).
The black bands represent the aperture. It can be seen that
the surfactant laden case accelerates droplet breakup in
the initial period (due to a reduction in surface tension).
The surfactant is seen to closely follow the evolving inter-
faces, with a higher concentration at the trailing edge of
the droplet.
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Conclusions

We have presented a pseudopotential lattice-Boltzmann
method to simulate liquid–liquid emulsions with a slightly solu-
ble surfactant component. This is a step towards simulating
realistic fluid mixtures which are inevitably surfactant laden,
while numerical simulations of multiphase flows have tradition-
ally dealt with pure fluids owing to the complexity involved in
simulating surfactant dynamics while resolving fluid motion.
The novelty of our work is that we use a simplified model for
the surfactant in comparison to previous papers. More specifi-
cally, our approach is a simplification of the Chen et al.,42

Nekovee et al.43 model, as we ignored orientational effects of
the surfactant—an assumption we allowed ourselves to make as
we did not intend to study complex aggregate behavior attrib-
uted to dipole dynamics. We think that a simplification is also
welcome as the original model is quite complex—and has
hence not found widespread application. Further, we wish to
see how well a simplified model compares to existing methods
and what kind of physics it can simulate.
First, a single component pseudopotential LB model was

validated for a non-ideal fluid component against the Maxwell
reconstruction of coexisting phases. After adding a second
fluid component to the system, the model was validated

against the Laplace law for surface tension of a stationary
droplet. While simplifying the model for the surfactant, we
indeed used a slightly more complicated model for the fluids.
Using nonideal equations of state to model the fluids is a con-
tinuation of our previous work where we intend to simulate
realistic fluids. Additionally, this method allows for simulating
flows with a wide range of density ratios, which is not feasible
with the classic Shan-Chen based models, and neither has it
been reported in other work cited in this paper.

Thereafter, a third surfactant component was added to the
system in such a way that it is repelled by the two fluid com-
ponents, hence aggregating at the interfaces. A parameter
study was performed on a stationary, surfactant laden droplet
in 2-D to demonstrate the influence of varying the model
parameters like the various repulsion strengths, the surfactant
viscosity, EOS parameters and the reduced temperature of the
surfactant. On defining a surfactant strength parameter Λ, sur-
face tension reductions with respect to a clean interface up to
15% were found to vary with Λ according to, roughly, a Lang-
muir type of isotherm. To the best of our knowledge, we are
the first to demonstrate surface tension reduction for a surfac-
tant laden droplet following Langmuir-like kinetics from
purely pseudopotential particle interactions. All other models

Figure 14. Probability distribution of the droplet equivalent radius P(req), droplet major axis length L, duration between
successive droplet formation events ΔIt and the droplet center of mass in the lateral direction Xcm is shown
for the clean (DF1) and two surfactant laden (DF2, DF3) cases for the droplet formation problem in the first
four panels. The bottom two panels show the critical Reynolds and Capillary number just after droplet
pinch-off for DF1 and DF3, where the presence of the surfactant is seen to significantly alter the dynamics.
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addressing this problem work with preset thermodynamics
(where an isotherm is fixed), whereby in our approach this
emerges from more fundamental interactions.
This simplistic surfactant model, despite the surface tension

reduction, was found incapable of arresting phase segregation
in 2-D and 3-D spinodal decomposition, achieving which
requires an additional mechanism. We proposed varying the
liquid–liquid repulsion parameter depending on the local sur-
factant density, which achieved this effect to some extent.
Additional mechanisms like longer-range interaction forces
have also been proposed in existing literature to achieve a sim-
ilar effect. We also performed 3-D spinodal decomposition,
where the surfactant was shown to closely follow the dynamic,
complex interfaces, making the model viable for future appli-
cations to more realistic droplet laden systems in 3-D.
Finally, the model was demonstrated for a well-known physical

problem—the formation of a pendant droplet in a liquid–liquid
system for both clean and surfactant laden cases, in 2-D. The den-
sity ratio simulated was ρ? ≈ 1.4, as we focus on emulsion-like
systems. The surfactant was capable of greatly altering the droplet
distribution, abetting the formation of more numerous smaller
droplets, which we ascribe to the reduced surface tension in the
surfactant laden system. The critical Capillary and Reynolds num-
ber distributions were also significantly altered. We have also
found local differences in the surfactant density between the nose
and rear side of pendant and falling droplets.
Our model could also be applied to simulate liquid–gas sys-

tems in the presence of a surfactant, and is one of the first
studies to simulate three nonideal fluid components. In future
work, we shall investigate the currently observed surfactant
effects more closely to see whether the model can simulate
Marangoni flows, which remains to be ascertained. Further,
we intend to more quantitatively compare our model to flow
problems, like shear induced breakup of surfactant laden drop-
lets and droplets in turbulent flows.
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