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ABSTRACT

The recent emergence of Light Detection And Ranging (LiDAR) scanning
technology has resulted in the availability of very large three dimensional
point cloud data sets. These LiDAR data sets have become a main source for
the modeling and reconstruction of both ground surface as well as above-
ground objects such as buildings and vegetation.

For the Netherlands, the second version of the Algemeen Hoogtebestand
Nederland (AHN) is a country-wide high-resolution point cloud data set
comprising the nation’s terrain by measuring heights, obtained by LiDAR,
using Airborne Laser Scanning (ALS). None of the currently available raster-
based products based on the AHN2 data set can be considered as being good:
height maps contain holes, unintentional dynamic objects are present and
more. Causes for errors can be found in deviations during the collection of
the point cloud data as well as the applied methodology to process the data.

This thesis will identify the possibilities to improve the quality of raster-
based height map products based on the AHN2 data set with respect to cur-
rently available products. Quality will be determined with respect to the Ge-
ographic Information Quality principles standard, introduced by the International
Organization for Standardization (ISO).

A five-step methodology is proposed in order to generate raster-based
height data from massive LiDAR point cloud samples from the AHN2 data
set. In the first step, the massive LiDAR point cloud data will be split up in
overlapping tiles in order to pipeline subsets of data in order to feed data
sequentially to the computers’ main memory. In the second step filtering
of different classes takes place in order to filter specific information within
the point cloud data. In the third step, for each filtered class specific inter-
polation methods will be applied in order to achieve raster-based data from
the point cloud data that fits best for a certain class of data. In the fourth
step some post-processing steps will be applied in order to optimize the
raster data and a composition of the tiles that were decomposed in the first
step. In the fifth step raster visualization will be applied in order to support
visual inspection of the data.

Quality assessment shows that the methodology proposed within this
thesis is capable to process data with a completeness rate of 100%. Po-
sitional accuracy is determined with respect to currently available raster-
based height maps since no reference data is available. For Digital Elevation
Model (DEM)s low positional errors are measured where for Digital Sur-
face Model (DSM)s higher positional errors are measured due to erroneous
data within current DSM products. Thematic accuracy is defined for a larger
amount of classes in comparison with currently available raster-based height
maps with a sensitivity rate between 56∼100% ± 5%.
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1 INTRODUCT ION

1.1 motivation
The recent emergence of LiDAR scanning technology has resulted in the avail-
ability of very large three dimensional point cloud data sets [Wouda, 2011].
These LiDAR data sets have become a main source for the modeling and re-
construction of both ground surface as well as above-ground objects such
as buildings and vegetation. In case of a reconstruction of a ground surface
often is referred to the terms Digital Terrain Model (DTM) (vector-based) or
DEM (raster-based), where in case of a reconstruction of both ground sur-
face as well as above-ground objects is often referred to a DSM (raster-based,
see Figure 1). Both models provide high resolution information about a
terrain’s surface and can be used as input for many applications such as
3-dimensional visualization [Döllner and Hinrichs, 2000], modeling water
flows [Li et al., 2008], precision farming [Senay et al., 1998], forestry [Akay
et al., 2009], intelligent transportation systems [Li et al., 2014] and many
more.

In comparison with traditional land surveys and photgrammetry it is pos-
sible with LiDAR technology to obtain data with centimeter level accuracy
[Hu, 2001] in a cost-effective way [Lohr, 1998]. The production of DEM and
DSM products using LiDAR is faster, can be more automated and coupled
with the high density of point measurements it can offer greater definition
of urban features. These factors encouraging research into the automated
extraction and characterization of surface features [Priestnall et al., 2000].

However, the effective processing of LiDAR data and the generation of
efficient and high-quality DEMs and DSMs remain big challenges [Liu, 2008a].
Compared with developed LiDAR hardware techniques for capturing data,
LiDAR data processing techniques such as modeling of systematic errors,
filtering, feature detection and thinning are very important to application
[Sithole and Vosselman, 2005].

Figure 1: Digital Surface Model [Tukay Mapping]
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2 introduction

DEMs and DSMs can be stored both in a vector-based and a raster-based
file format, scope of this thesis is focused on the generation of raster-based
DEM and DSM. Podobnikar and Vrečko [2012] state that the process of gener-
ating raster-based DEMs and DSMs from LiDAR point cloud data is complex:
results depend on chosen methods, algorithms, parameters and on different
aspects of data quality. During the rasterization process, a conversion from
3-dimensional LiDAR data into 2.5-dimensional raster-based data will take
place: data is stored in a 2-dimensional grid of raster cells, better known as
a height map. By storing a height value for each raster cell a 2.5-dimensional
representation is achieved, the model is embedded in 3-dimensional space
but is not able to represent all 3-dimensional shapes. Only one height value
is stored for a raster cell, e.g. the highest or lowest height value.

For the Netherlands, the second version of the AHN is a country-wide
high-resolution point cloud data set comprising the nation’s terrain by mea-
suring heights, obtained by LiDAR, using ALS. The average point density
of the data set is on average between 6 and 10 points per square meter
[Van der Zon, 2011]. Such a high point density makes the AHN2 data set
large; it contains approximately 640 billion point records [Kadaster, 2014c].
The initiative for the AHN2 data set is taken by the 26 Dutch water boards
and Rijkswaterstaat, the executive directorate general for public works and
water management of the Dutch government. The collection of the AHN2

data set was finished in 2012 and the point cloud data is publicly avail-
able as open data since 2014 via the Dutch Spatial Data Infrastructure (SDI)
PDOK. Also raster-based height maps, generated by interpolation of the
point cloud data by Inverse Distance Weighting (IDW), are available at 0.5
and 5.0 meter resolution.

Van der Zon [2011] indicates that the Dutch water boards and Rijkswater-
staat make use of the AHN2 raster-based height maps for nearly all water
management tasks. In general the 0.5 meter resolution data is used, for
some applications data is processed further. Most water boards do not use
the point cloud data because most users are far more familiar with working
with raster-based grids and the hard- and software environment do not al-
ways accommodate the convenient use of point data. In addition a lack of
knowledge, communication and documentation hampers the potential use
of point cloud data.

The usage of raster-based products is surprising since none of the cur-
rently available raster products based on the AHN2 data set can be consid-
ered as being good: height maps contain ’holes’ (raster cells with a no-data
values), unintentional dynamic objects are present within the data, wrongly
applied interpolation methods and more (Figure 2). Cause for these errors
are deviations during the collection of the point cloud data as described by
Van der Zon [2011] and the applied methodology to process the LiDAR data.

Kramer et al. [2014] introduce a methodology in order to fill holes within
the raster-based height maps from PDOK by making use of external open
2-dimensional geodata sets. This approach is somehow limited in its pos-
sibilities: filtering of erroneous data that should not be present within the
raster-based height maps cannot not take place. In order to solve the errors
within the raster-based height maps from PDOK just filling the holes within
the raster data is not enough; additional steps in the processing of LiDAR

data are essential before generating raster data. This leaves space for an ap-
proach where it could be possible to solve some or even all of the problems
introduced in this section that occur within currently available raster-based
height maps.
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(a) (b)

Figure 2: Faculty of Architecture and the build Environment, Delft (a) A digital el-
evation model, containing holes located at building envelops, water sur-
faces, and small urban objects. (b) A digital surface model, containing
holes within buildings (gray) and water (blue) surfaces, presence of small
urban objects which temporarily perturb the scene (white) [PDOK, 2014].

1.2 research question
This thesis will identify the possibilities to improve the quality of raster-
based height map products based on the AHN2 data set with respect to
currently available products. The main research question of this thesis is:

What quantitative degree of quality can be achieved for raster-based height maps
generated from AHN2 point cloud data by the application of an automated process?

To answer the main research question the following sub-questions are
relevant:

• What kinds of errors are most common within currently existing raster-
based height maps based on the AHN2 data set?

• What strategy is appropriate for the processing of large amounts of
point cloud data to raster-based height maps?

• Given a point cloud sample, which algorithm or methodology is best
filter out different classes of information?

• What interpolation technique is most appropriate to estimate a height
at a given location for different classes of objects?

• To which extent can external 2D geodata sets help to improve the qual-
ity of raster-based height maps?

This research will investigate the possibilities to develop an automated method
for the generation of raster-based height maps from high-resolution LiDAR

point cloud data. The advantages and disadvantages of different steps
within the process will be discussed and a validation and quality assess-
ment of the output will be performed.
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1.3 scope
Vosselman and Maas [2010] distinguish four main steps within the process-
ing procedure of point cloud data to raster-based height maps:

1. Data acquisition

2. Registration of strips and geo-referencing of the point cloud

3. Filtering the point cloud

4. Interpolation and also sometimes smoothing of output data

For the AHN2 data set the data acquisition, registration of strips and geo-
referencing of the LiDAR data already has taken place. One assumption in
this thesis is that both steps are executed properly. Nevertheless, Van der
Zon [2011] indicates possibilities to increase the quality during the data
acquisition of the AHN2 data set. In Sande et al. [2010] it has been proved
that the quality registration of strips and geo-referencing of the AHN2 data
set leaves space for improvement.

This research will mainly focus on the possibilities to improve the other
steps as introduced by Vosselman and Maas [2010]; filtering, interpolation
and smoothing of the data. Focus will be on quality of the outcome of the
algorithm, not on performance of the algorithm itself. Computation time of
the algorithm is something that comes secondary.

1.4 outline
In chapter 2 basic concepts and terminology related to digital terrain mod-
eling and LiDAR will be introduced and defined. In the second part of chap-
ter 2 the AHN2 data set and its derivative products will be introduced and
discussed.

In chapter 3 an overview of related work for the generation of DEMs and
DSMs will be introduced. Related work with respect to five components
within the work flow will be introduced: pipeline generation, filtering, spa-
tial interpolation, post processing and raster visualization. Parameters will
be introduced in order to assess quality of geographic information. In the
final part of this chapter a discussion will take place where the components
introduced in this section which are interrelated with each other in order
for usage within an integral strategy.

In chapter 4 a methodology for the automatic generation of raster-based
height maps is proposed which consist of the generation of three classes
of data: ground, buildings and vegetation. For all classes a description is
provided of the applied steps, specific issues for each class and the decisions
made in order to solve them.

In chapter 5 an validation and assessment of the outcome of the method-
ology proposed in chapter 4 will take place. Therefore a number of test data
sets will be introduced. They will be validated and assessed with respect to
currently available raster-based height maps in order to measure the degree
of improvement.

In chapter 6 main- and sub-research questions will be answered, the devel-
oped methodology will be discussed and suggestions for future work will
be given.



2 STATE OF THE ART IN AHN2
PRODUCT DEVELOPMENT

In this chapter a overview will be given of the different AHN2 products. First,
in section 2.1 related terminology with respect to digital terrain modeling
will be introduced. As second, an introduction of the basic concepts of LiDAR

will be introduced in section 2.2. In section 2.3 a deeper introduction will be
given of the AHN2 data set. Finally, in section 2.4 derivative products based
on the AHN2 data set will be introduced and discussed.

2.1 digital terrain modeling
In order to make the modeled data usable for Geographic Information Sys-
tems (GIS) conversion of the point cloud datasets into a geographical data
format is needed. In the context of GIS there exist two file formats to store
geographical data:

• Raster-based

• Vector-based

DEMs and DSMs can be represented both in a vector-based as well in a raster-
based way.

In case of a vector-based method data is stored in a Triangular Irregular
Network (TIN). This is a 2.5-dimensional triangulation based on the work of
Peucker et al. [1978].

In case of a raster-based method data is stored in a grid of squares, bet-
ter known as a height map. By storing a height value for each raster cell
separately the data can be qualified as 2.5-dimensional, where the term 2.5-
dimensional refers to a model that is embedded in 3-dimensional space, but
is not able to represent all 3-dimensional shapes but only one height value
for each raster cell. The resolution of a raster cell is the size related to a real
world width in ground units.

Both file formats have their advantages and disadvantages with respect
to each other. By conversion raster-based data can be transformed to vector-
based data and vice versa; within this conversion process a loss of data
quality needs to be taken into account. The vector-based TIN DEM data set is
also referred to a primary and measured DEM, whereas a raster-based DEM

is referred to a secondary and computed DEM [Toppe, 1987].
In section 1.1 the relevance of DEMs and DSMs is introduced. Since these

models could be used for multiple applications, not all information is rel-
evant for all applications: in case of an application as forestry information
about buildings is probably irrelevant. For this reason it might happen that
not all the information is necessarily needed within a model; different kinds
of models can be generated that contain different kinds of information.

There are no official standards that describe the format of digital terrain
models. This has led to a situation where terms are used synonymously
and different models containing different kinds of information are called
similarly.

5
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Behrendt [2012] distinguish three different digital models, Wichmann [2012]
adds a fourth one:

DTM

The first model is a DTM, a vector-based bare-earth representation with ir-
regular spaces between points stored in a 2.5D TIN (Figure 3).

DEM

The second model is a DEM, a raster-based representation of the DTM (see Fig-
ure 2a). The conversion from vector-based to raster-based data is performed
by the application of spatial interpolation (section 3.4).

DSM

The third model is a raster-based DSM representing the first echo/return the
laser received for each laser pulse sent out. It represents the building roofs,
treetops, and tops of other objects or the ground, if unobstructed (Figure 4).

nDSMs, CHMs and DBMs

The fourth model is a normalized Digital Surface Model (nDSM) containing
above-ground objects as buildings and vegetation. Height data is deter-
mined with respect to the underlaying ground (see Figure 4). A canopy
height model (CHM) is subset from the nDSM that only contains information
about vegetation, a Digital Building Model (DBM) is a subset from the nDSM

that only contains information with respect to buildings.

These definitions will be applied in the remainder of this thesis in order to
express different models.

Figure 3: A digital terrain model stored as a triangular irregular network [Pudelko,
2007].
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Figure 4: The difference between a DSM, DEM and a nDSM.

2.2 lidar
LiDAR is an active remote sensing technology that measures distance by illu-
minating a target with a laser and analyzing the reflected light. These light
pulses combined with other data recorded by the airborne system generate
precise 3-dimensional point-based information with respect to the shape of
the Earth and its surface characteristics. Wehr and Lohr [1999] distinguish
four main components within LiDAR systems:

• The laser

• The scanner and optical system

• The receiver and processing system

• Inertial Navigation System (INS) and Global Positioning System (GPS)
for the correction and geo-referencing of the collected data

INS measures roll, pitch, and heading of the LiDAR system. GPS measures
the position and time that the recording took place (Figure 5a). The raw
data is post-processed after the data collection survey into high-accurate
geo-referenced 3-dimensional coordinates by analyzing the laser time range,
laser scan angle, GPS position and INS information.

Wehr and Lohr [1999] distinguish two different types of LiDAR: topo-
graphic and bathymetric LiDAR. Topographic LiDAR typically uses a Near
Infrared (NIR) laser to map the land, while bathymetric LiDAR uses water-
penetrating green light to also measure sea floor and riverbed elevations.
Both systems are complementary; due to the characteristics of topographic
LiDAR water is penetrated much more, so not reflected, the amount of re-
turns is low on water surfaces.

One emitted laser pulse can return to the LiDAR sensor as one or many
returns but LiDAR systems commonly record multiple returns; these returns
are separate measurements for the light returning from discrete elevation
layers (earth, vegetation, buildings) [Fancher, 2012]. Figure 5b shows that
any emitted laser pulse that encounters multiple reflection surfaces as it
travels toward the ground is split into as many returns as there are reflective
surfaces.
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(a) (b)

Figure 5: Visualization of two LiDAR concepts. (a) Different components of a Li-
DAR system [Fancher, 2012]. (b) When a LiDAR beam hits vegetation this
can lead to multiple returns of point data [Fancher, 2012].

2.2.1 The LAS format

Main goal of this section is to introduce relevant parts of the LASer (LAS)
format. For a complete description of the LAS format see [ASPRS, 2013].
The LAS format is a public and industry-standard file format for the storage,
distribution and interchange of 3-dimensional LiDAR data between users. A
LAS file consists out of three parts:

• A public header block;

• Variable Length Record (VLR) and;

• Point data records.

The public header block contains information about the name of generating
software, version number, and statistics like minimum and maximum values
of XYZ are stored in the public header block. The VLR defines the content of
a LAS file:

• Number of variable length records

• Offset to the start of the points

• Type and size of each point

• Number of points

• Offsets and scale factors for point coordinates

• Bounding box describing the XYZ extends of all point records within
the LAS file
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For point data records the following meta data can be stored:

• XYZ coordinate

• Intensity

• Return Number

• Number of Returns of Pulse

• Scan Direction Flag

• Edge of Flight Line

• Classification

• Scan Angle Rank

• User data

• Point Source ID

Figure 6 shows an example of a public header block and a VLR.

Figure 6: Example of a public header block and Variable Length Records informa-
tion of an AHN2 tile

2.3 the ahn2 data set
In this section the AHN2 data set will be introduced. In the first part of
this section different point cloud products will be introduced and linked to
the different models as introduced in section 2.1. In the second part of this
section the distribution of the AHN2 point cloud data will be treated. In the
third part of this section a deeper look in the point cloud data will take place
in order to see what information is available within the AHN2 point cloud
data.
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2.3.1 AHN2 point cloud products

The AHN2 point cloud data is available in two products:

• A filtered product containing ground points

• A unfiltered product containing all remaining non-ground points

The reason for this classification is because the original purpose for collect-
ing the AHN2 point cloud data was to collect information about the earth’s
surface for purposes such as dike management and mapping [Swart, 2010].
Rijkswaterstaat and the Dutch water boards were originally only interested
in point data related to the ground.

AHN2 filtered

For the generation of the filterded AHN2 point cloud a filtering procedure is
developed based on the height, slope and multipath in order to filter out
all points that are classified as non-ground points [Swart, 2009]. Automati-
cally separating ground and non-ground points from LiDAR point clouds has
proven to be difficult, especially for large areas of varied terrain characteris-
tics [Liu, 2008b]. For that reason the filtering procedure is done only partly
automated for the AHN2 data set. Additional manual filtering is applied in
order to deliver a product that meets the requirements defined by the Dutch
water boards and Rijkswaterstaat [Van der Zon, 2011].

This point cloud product can be classified being a DTM. The product could
be used as input for the generation of a DEM; a raster-based representation
of a terrain’s surface (see section 2.1). Figure 7a shows that the AHN2 data
set contains bare ground points including slope-based objects like infras-
tructural dikes. Above-ground objects such as vegetation and buildings are
filtered out properly.

AHN2 unfiltered

The unfiltered AHN2 point cloud product contains all remaining LiDAR points.
Figure 7b shows clearly that all above-ground objects like buildings, vegeta-
tion and infrastructural objects like bridges are present within this product.
Also outliers are included, these are points which have significantly higher
or lower elevations with respect to elevations expected for ground, buildings
and vegetation.

Points reflected on thin clouds, birds and other (dynamic) above-ground
objects will result in measured point elevations that are significantly higher
with respect to other neighboring points. Multiple returns from structures
and vegetation (multipath) can result in returns with an excessively longer
travel time and thus point elevations that are significantly lower with respect
to other neighboring points.

After the generation of a DEM it is possible to calculate the normalized
height of the above-ground points with respect to the DEM. In that way it
is possible to use this product as input for the generation of a nDSM (sec-
tion 2.1).
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(a) (b)

Figure 7: Visualization of AHN2 point cloud products. (a) Filtered AHN2 point
cloud. (b) Unfiltered AHN2 point cloud.

Distribution of the AHN2 data set

The AHN2 data set is available as open data via the web portal of the Dutch
SDI PDOK1. The whole AHN2 data set contains in total approximately 640

billion points. This makes the data set is large in file size. In order to
improve the accessibility and distribution of smaller parts of the AHN2 data
set it has been decided to split up the AHN2 data set into non-overlapping
tiles. The point cloud products are distributed in 1 372 tiles each covering
an area of 5 x 6.25 kilometers (Figure 8). The naming system for the tiles is
based on the TOP10NL data set (Appendix B).

Figure 8: Tiles of the AHN2 data set covering the Netherlands [PDOK, 2014]

Available meta data within the AHN2 data set

As introduced in section 2.2, the LAS format has the capability to store meta
data for a point record. Hence, potential relevant meta data such as intensity,
number of returns, flight line information and classification are not available
within the AHN2 data set (Figure 6). According to the product specifications,
defined by the Dutch water boards and Rijkswaterstaat, there was no need
to share or publish these meta data within the LiDAR files. As acquisition
and quality control is performed by other contractors then the company that
collected the LiDAR data quality has to define explicitly by the companies
that collected the data. After acceptance of the point cloud data by the
clients the quality control products are archived; they are not distributed
and cannot be ordered [Swart, 2010].

1 https://www.pdok.nl/nl/producten/pdok-downloads/atomfeeds/a
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2.4 existing products
In this section relevant products based on the AHN2 data set will be intro-
duced and analyzed in order to get more insight in their advantages and dis-
advantages. In subsection 2.4.1 and subsection 2.4.2 two raster-based height
maps based on the AHN2 data set will be introduced. In subsection 2.4.3 an
oversight of further research with respect to the generation of raster-based
products from the AHN2 data set is given.

2.4.1 PDOK raster-based height maps

Based on the AHN2 point cloud data also raster-based height maps derived
from the AHN2 data set are available as open data via the Dutch SDI PDOK2.
The filtered AHN2 point cloud data is processed in order to generate two
types of DEM:

1. The not-filled DEM contains height data only determined by point
records located within a raster cell.

2. The filled DEM fills incidental holes in case of a combination of local
low point density and distribution [Van der Zon, 2011].

Figure 9 shows the difference between the two types of DEMs.

(a)

(b) (c)

Figure 9: Difference between the not-filled and filled digital elevation model. (a)
Aerial photograph. (b) Not-filled digital elevation model (own image,
based on PDOK [2014]). (c) Filled digital elevation model (own image,
based on PDOK [2014]).

2 https://www.pdok.nl/nl/producten/pdok-downloads/atomfeeds/a
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A raster-based DSM is generated similarly as the not-filled DEM; a raster
cell does only have a height value when there is at least one point record
located within the raster cell.

Both the raster-based DEM products as well the DSM are available in two
spatial resolutions:

• 0.5 meter

• 5.0 meter

Height values within the raster data at 0.5 meter resolution are determined
using IDW interpolation the point records. For the estimation of a height
value for a raster cell only those points are involved located within the raster
cell (Figure 10).

The application of IDW interpolation results in the visibility of small ob-
jects like speed bumps and curbs. Van der Zon [2011] states that it is ad-
vantageous using IDW interpolation because it averages the stochastic error,
by averaging the number of LiDAR points for each raster cell. For the AHN2

data set the stochastic error is calculated at 0.05 meter. The concept of IDW

will be introduced more extensive in section 3.4.
For the 5 meter grid the height will be calculated by averaging the 0.5

meter grid within each 5 meter grid cell [Van der Zon, 2011].

Errors and holes within the raster-based DEM products from PDOK

Given a point density between 6 and 10 points/m2 for the AHN2 data set
Arcadis [2012] calculated that the average distance between two points at
land even in the most pessimistic situation is 0.46 meter at maximum; theo-
retical a height value should be available for each raster cell covering land.
In practice the theory does not work out; Figure 11 shows a random sample
of the not-filled DEM product, a number of holes can be detected. Multiple
causes for their occurrence can be distinguished:

• No ground point records are available for raster cells covering build-
ings. The methodology does not provide any solution to estimate a
height value for such raster cells.

• Within the applied filtering procedure dynamic objects (e.g. cars) are
most often not present within the filtered AHN2 point cloud data. In
case that no point record hitting the ground is available this results in
raster cells having no height data covering streets and parking lots.

• Almost no points records are available for raster cells covering water
due to the characteristics of topographic LiDAR (see section 2.2). This
results in raster cells covering water having no height data.

• It happens that LiDAR beams cannot penetrate through vegetation re-
sulting in the unavailability of point records that hit the ground in case
of dense vegetation (Figure 12).

During the generation of raster-based height data from AHN2 point cloud
data no solution is provided for the estimation of a height value for a raster
cell in the above described scenarios within the raster-based not-filled DEM

and the filled DEM height map.
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Figure 10: Inverse distance weighting as applied for the generation of raster-based
height maps from AHN2 point cloud data [Rijkswaterstaat Meetkundige
Dienst].

(a) (b)

Figure 11: Errors in PDOK digital elevation model. (a) Aerial photograph. (b) Not-
filled digital elevation model containing holes near water, buildings and
cars (own image, based on PDOK [2014]).

(a) (b)

Figure 12: Errors in the PDOK digital elevation model. (a) Aerial photograph. (b)
Not-filled digital elevation model containing holes due to dense vegeta-
tion (own image, based on PDOK [2014]).
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Errors and holes within the raster-based DSM product from PDOK

In case of the generation of a DSM both the filtered and unfiltered point
cloud products are simply merged before applying local IDW interpolation.
Within the raster-based DSM product the following errors occur:

• For vegetation, it can be assumed that a LiDAR pulse will have multiple
returns from multiple branches and eventuelly even from the ground
(section 2.2). Estimating the height from these returns by IDW interpo-
lation will determine an average weighted height: this value is lower
than the first return and higher then the last return which will be
somewhere in between the ground and a treetop.

• In urban areas multiple records might return from vertical structures
like building facades and balconies. These records are obtained due
to the angle of the emitted laser beam with respect to the lower world
over time. Interpolation of these point records using IDW results in
fuzzy height data that is the weighted average of these ’unwanted’
point records. Similar as for vegetation, the determined height will be
somewhere in between the ground and a building roof (Figure 13).

• On the other side, shadows within the LiDAR data will result in missing
raster data besides building structures (Figure 13). These shadows are
caused due to angle of the emitted laser beam with respect to the lower
world when the laser beam does not look ’backwards’.

• Multipath occurs when the laser reflects from a wall to the ground
(outside the building) before it reflects back to the sensor. This mul-
tipath effect results in a point record with a measured distance as if
it is directly to an object but based on the direction of the point it is
located inside an object (subsection 2.3.1). Interpolation of these point
records using IDW results in raster data with lower height values with
respect to the true height and adjacent raster cells within buildings.

• No LiDAR point records within the AHN2 data set are excluded for the
generation of a DSM. This leads to the presence of noise within the
raster-based DSM: small urban objects which temporarily perturb the
scene such as cars, roof antennas, cranes and other objects (Figure 13).

(a) (b)

Figure 13: Errors in PDOK digital surface model. (a) Aerial photograph. (b) Digital
surface model containing cars, fuzzy height data near building edges and
LiDAR shadowing (own image, based on PDOK [2014]).
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It can be concluded that the applied methodology for the generation of
both DEM as well the DSM is erroneous and leaves space for improvement.

2.4.2 ESRI raster-based height maps

The Dutch department of the GIS company ESRI provides a number of raster-
based height maps based on the AHN2 data set. Two maps are generated by
interpolating a TIN that is constructed with AHN2 point cloud data. Ap-
plication of the same methodology creates near-similar output (Figure 14).
Interpolation based on a TIN will be introduced in subsection 3.4.2.

Figure 15 shows two samples of a raster-based DEM (Figure 14a) and DSM

height maps (Figure 14b). Similar problems can be determined with respect
to the height maps from PDOK (subsection 2.4.1). For this reason it can
be assumed that the AHN2 point cloud data is interpolated directly without
filtering of the point cloud data. In order to improve the visualization of the
height maps a hill shading effect is added, a visual effect that provides an
optical relief for cartography (section 3.6).

(a) (b)

Figure 14: Comparison between ESRI [2014] digital surface model and a raster-
based height map generated by interpolation based on a triangular ir-
regular network that is constructed from AHN2 point cloud data. (a)
ESRI digital surface model (own image, based on ESRI [2014]). (b) Digi-
tal surface model generated by the interpolation of a triangular irregular
network that is constructed from AHN2 point cloud data.

(a) (b)

Figure 15: Impression of two raster-based height maps from ESRI [2014]. (a) Digital
elevation model (own image, based on ESRI [2014]). (b) Digital surface
model (own image, based on ESRI [2014]).

https://www.arcgis.com/home/user.html?user=Esri_NL_Content
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2.4.3 Related work

In section 1.1 it has been introduced how DEMs and DSMs can be used as
input for many applications. The quality of the output for these applications
is dependent on the quality of the generated input DEMs and DSMs. In this
subsection different research projects will be introduced that are related to
improvement and/or the extraction of features from the AHN2 data set.

Object Hoogte Nederland

Kramer et al. [2014] propose a methodology for the filling of holes within the
raster-based DEM and DSM height maps from PDOK (subsection 2.4.1). A set
of rules are designed to fill holes by making use of external 2D geodata sets
(TOP10NL and Basisregistraties Adressen en Gebouwen (BAG)) and aerial
photographs. For the filling of holes within the raster-based DEM height
maps the following rules are defined:

• Water bodies are detected with polygon data from the TOP10NL data
set (see Appendix B). The minimum height within each polygon is
determined and assigned to all raster cells within the polygon. Smaller
water that is stored as line in the TOP10NL data set is not taken into
account in the methodology.

• Building footprints are detected by polygonal data3 in the BAG data set
(see Appendix B). For each building footprint an (unknown) buffer is
determined and the average height is estimated using all the known
height values of raster cells located within the buffered polygon.

• All other holes are filled using IDW interpolation (see section 3.4).

For the raster-based DSM height maps the following rules are defined:

• For holes within build objects the average height is estimated from
neighboring raster cells located within the representing building poly-
gon from the BAG data set.

• Vegetation is detected by calculating a Normalized Difference Vegeta-
tion Index (NDVI) using aerial photography. Holes within vegetation
are filled based on the average height of the detected vegetation.

A nDSM is generated by subtraction of the raster based DEM height map
from the raster-based DSM height map.

This approach is somehow limited in its possibilities: filtering of erro-
neous data that are present in one of the raster-based products is not pos-
sible. Just filling holes within the raster-based height maps is not enough,
processing of LiDAR data is essential before generating raster data.

Another problem is the temporal difference when combining different
geodata sets. When two geodata sets have a different source date the infor-
mation within both data sets might differ. Additional, a difference in defi-
nitions and the positional accuracy between geodata sets could be a source
for errors. Figure 16d shows an example where do to a misunderstanding
of the definitions of external 2D geodata sets the height value of raster cells
is adjusted wrongly because they are located within a polygon representing
water from the TOP10NL data set.

3 The smallest functional and architectural-constructive, self contained unit that is directly and
permanently connected to the ground which is enter-able and lockable [BAO, 2013].
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(a) (b)

(c) (d)

Figure 16: Errors within the methodology of Kramer et al. [2014]. (a) Aerial pho-
tograph. (b) TOP10NL polygon data (blue) defining water bodies. (c)
Not-filled digital elevation model containing holes near water and build-
ings (own image, based on PDOK [2014]). (d) Digital elevation model
containing raster cells having a height value that is overwritten by a false
height value because they are located within a polygon representing wa-
ter from the TOP10NL data set. (own image, based on Kramer et al.
[2014], copyright Alterra, Wageningen UR).

Tree detection

Volkova [2014] developed a tree database using the AHN2 data set. This
database included information about tree locations, tree crown projection
parameters and several tree shape parameters. Aim of the study was to
find a new way of delineating trees and deriving their parameters using the
AHN2 data set. The quality of tree parameters derived from raster-based
height maps generated from the AHN2 data set and point data was assessed
using parameters derived from Terrestial Laser Scanning (TLS).

The positional accuracy of determined tree locations is 0.23 meter. Result
are not very much reliable since only 63.07% of the tree locations derived
from the AHN2 data set was correctly predicted. It has been concluded that
the positional accuracy of the raster data is low due too low point densities
in order to create raster data at a 0.5 meter resolution.
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Shadow analysis

Geodan [2014] developed a raster-based map using the AHN2 data set called
Dynamic Holland Shading Map4. Goal of this map is to detect and visualize
the amount of direct sunlight through the year from day to day for individ-
ual raster cells at a spatial resolution of 0.5 meter.

Heights of above-ground objects are extracted from the BAG data set for
buildings (see Appendix B) and information with respect to the height of
vegetation is derived from the tree database of Volkova [2014].

Shadows are determined by a technique called dynamic hill shading. Cal-
culation of hill shade data using different input parameters for the vector
representing the illumination direction of the sun generates shadow infor-
mation for each moment of the day (Figure 17). Hill shade calculations take
place at a local scale where slope is determined based on adjacent raster
cells (see subsection 3.6.2). For that reason hill-shading does not simulate
real shadows.

Figure 17: Dynamic Holland Shading Map (own image, based on Geodan [2014])

Usage of AHN2 products by Dutch water boards and Rijkswaterstaat

Van der Zon [2011] indicates that the Dutch water boards and Rijkswater-
staat use the AHN2 raster-based products for almost all water management
tasks. In general the full 0.5 meter resolution is used but for some applica-
tions data is processed to a higher resolution. The point cloud data is used
only for mapping purposes and this is mainly left to external contractors.

Most water boards do not use the point cloud data, mainly because most
users are far more familiar with working with grids. Also the software and
hardware environment do not accommodate the convenient use of the point
data. A lack of knowledge, communication and documentation hampers the
potential use of point cloud data.

4 http://research.geodan.nl/sites/ahn/
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2.4.4 Evaluation

After the introduction of a number of raster-based products based on the
AHN2 data set it can be concluded that all of them contain errors and that
proposed solutions solve problems partly or even not at all. None of the
products can be considered as being good: data contains holes, uninten-
tional dynamic objects, wrongly applied interpolation methods and more.
Cause for these errors can be found in deviations during the collection of
the point cloud data as described by Van der Zon [2011] and the applied
methodologies to process the point cloud data.

This thesis will identify the possibilities to improve the quality of raster-
based height maps based on the AHN2 data set. In order to do so, it is
necessarily needed to go back to point cloud level in order to solve current
errors that occur on raster level.



3 RELATED WORK

In this chapter related work regarding the generation of raster-based DEMs
and DSMs from point cloud samples will be introduced. It is not impossible
to process the AHN2 data set at once for current computers; pipelining is
needed first in order to feed massive point cloud data data sequentially to
the computers’ main memory [MacDonald et al., 2004]. Once that step is
taken it is possible to filter and interpolate the point cloud data. Final steps
are post processing and visualization in order to improve the quality and
visibility of the raster data. Figure 18 shows a flowchart of the different
processing steps that will be introduced in this chapter:

• Pipeline generation (section 3.2)

• Filtering of the point cloud (section 3.3)

• Spatial interpolation (section 3.4)

• Post processing (section 3.5)

• Raster visualization (section 3.6)

PipeliningMassive point
cloud data

Filtering

Spatial
interpolation

Post processing

Raster visu-
alization

Raster-based
height map

Figure 18: Work flow for the generation of a raster-based height map from massive
point cloud data.
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3.1 related projects
In section 2.4 the state of the art in product development regarding the AHN2

data set has been introduced. The Netherlands is not the only country in
the world developing a national point cloud data sets. In this section related
projects in other countries will be introduced.

Switzerland

Luethya and Stengeleb [2005] describe the different steps (e.g airborne data
acquisition, preprocessing, filtering) that were taken in order to generate a
national DEM and DSM for Switzerland. The average point density is 1 point
per square meter with a vertical accuracy of approximately 0.3 meter.

For preprocessing, the different products need special attention because
of their size, their importance for subsequent processes or a combination of
both. Before interpolation point cloud data is merged from different flight
lines and split up in tiles, smaller subsets of the massive point cloud. In
order to reduce artifacts along the borders of these tiles a buffer of 30 to 50

meters is applied when processing the data.
For data filtering an automatic classification algorithm based on adaptive

triangulation (see Axelsson [1999]) was applied to filter ground points from
non-ground points. The error rate differs between 0% and 10% of all points,
where zero percent of defects are often detected in flat areas. For the gener-
ation of a DSM only the first returns are used for a classification into ground,
vegetation and buildings points. A higher degree of manual classification
and editing was necessary: due to the specification only permanent objects
were allowed in the data set which means that recognizable objects like
trains or annually changing vegetation had to be removed [Luethya and
Stengeleb, 2005]. A combination of an automatic classification algorithm
(based on adaptive triangulation, see Axelsson [1999]) and making use of
external 2D geodata regarding building footprints from cadastral surveying
are used in order to distinguish buildings. No further details regarding the
applied interpolation methods and post processing are provided.

Denmark

Geodatastyrelsen, the Danish geodata agency, is in the process of gathering
LiDAR point cloud data set for the generation of a new and better elevation
model since spring 2014 [Geodatastyrelsen, 2013]. The data set does have a
point density of about 4 points/m2 which is lower than the point density of
the AHN2 data set. Nevertheless, this data set contains information that is
not available for the AHN2 data set:

• For each point is the Red, Green and Blue (RGB) colors are detected
of the returned laser signal for each LiDAR point. The registered RGB

colors can be used for enhanced visualization and improving the au-
tomation process for object identification and point classification.

• Full waveform data is available, not only the first and last return of
the laser pulse is registered, but the full waveform. Currently, full
waveform data is mainly used in scientific studies such as forestry
[Geodatastyrelsen, 2013].
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Septima [2014] used a part of this data set in order to produce a raster-
based height map with a raster resolution of 0.4 meter applying interpola-
tion based on a TIN (Figure 19). Claimed is that the map is just a represen-
tation of raw point cloud data: errors are not filtered [Septima, 2014] and
no constraints are applied within the interpolation process. This resulted in
a number of errors like holes due to noise that is present within the data
(Figure 19b). Since no constraints are applied this strategy leads to the oc-
currence of artifacts where point density is low or in areas where point data
is missing, for example near water bodies and building footprints in DEMs
(Figure 19c).

Interesting about the raster-based height map generated by Septima [2014]
is the applied methodology for visualization. With respect to the raster-
based height maps based on the AHN2 data set a higher raster resolution is
applied and the visualization is more clear for human eye while the input
data set does have a lower point density.

Developments worldwide in relation to the Netherlands

Most development regarding the collection of national LiDAR data sets take
place within Europe and North America currently. When looking at devel-
opments regarding the collection of nationwide LiDAR point cloud data at
a country level, no other country provides or will provide a LiDAR data set
with such a high point density as the Netherlands in the near future.

The AHN2 data set does not contain much meta data (section 2.3), where
the Danish point cloud data provides interesting futures such as RGB colors
and full waveform data. The successor of the AHN2 data set, the AHN3 data
set, is expected to be published as open data starting from 2015 and will
contain more meta data (see section 6.3). Nevertheless, it can be concluded
that the situation regarding the collection of a national LiDAR data set for the
Netherlands is unique currently. For that reason it is interesting to research
the possibilities to generate derivative products such as raster-based DEMs
and DSMs from the AHN2 data set.

3.2 pipeline generation

The developments in LiDAR data acquisition technologies resulted in an ex-
plosive increase in volume of spatial data. This create new challenges in the
design of algorithms to process point clouds. Point clouds can be defined
as massive when the data size of the point cloud is larger then a computers’
main memory; the transfer of the data between external storage and main
memory becomes a performance bottleneck. In order to deal with this prob-
lem pipelining is the most common strategy for feeding data sequentially
into the memory [Guan and Wu, 2010]. A pipeline is a stream of data that
flows consecutively through all of the stages and can be processed step-by-
step [MacDonald et al., 2004]. Isenburg et al. [2006a] detects different types
of algorithms to process massive LiDAR point cloud data subsequently. All
types of algorithms try to exploit or create spatial coherence; a correlation
between the proximity in space of geometric entities and the proximity of
their representations in the data.
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(a)

(b)

(c)

Figure 19: Danish raster-based height map. (a) Preview of Denmark’s digital surface
model (own image, based on Septima [2014]). (b) Holes in the ground
due to noise in the data (own image, based on Septima [2014]). (c) Occur-
rence of artifacts at building locations in a digital elevation model (own
image, based on Septima [2014]).
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Divide-and-conquer algorithms

Divide-and-conquer algorithm recursively breaking down a complex prob-
lem into multiple sub-problems (divide) until these become simple enough
to be solved directly (conquer). The solutions to the sub-problems are then
combined to give a solution to the original problem.

Tiling is the common term for the process of decomposing LiDAR point
cloud data into smaller subsets of data. In section 2.3 it has been introduced
that the AHN2 point cloud data is distributed in tiles in order to increase
the accessibility of smaller parts of the data set. When processing tiled data
sets directly after dividing the data, errors will appear near tile edges due
to spatial decomposition. In order to give a solution to the original problem
a buffered version of the tiled data can be generated. By generating some
degree of overlap the results of the divided data are equal to that of the
original data set.

The buffered divide-and-conquer strategy including is a often applied
strategy for the generation of large-scale raster-based height maps from
massive LiDAR point cloud data sets. Selection of a proper buffer size is
key: the buffer size should be large enough in order to guarantee that the
solution of the divided tiles are similar to the solution of the original data
set. The overlap should not be too large since a larger overlap means more
redundant memory usage [Guan and Wu, 2010]. Mitas and Mitasova [1999]
discovered that from the perspective of empirical statistics that the number
of points involved in interpolation is around a maximum of 10–30 meters in
order to converge the final estimated value, so a proper buffer size should
be around this size. For the generation of a 0.5 meter resolution raster-based
height map for Switzerland, tiles are processed with a buffer size between
30-50 meters based on an input point cloud data set with an average point
density of 1 point/m2 [Luethya and Stengeleb, 2005]. Khosravipour et al.
[2014] apply a buffer size of 25 meter for the generation of a 0.5 meter reso-
lution raster-based CHM height map based on an input point cloud data set
with an average point density of 160 points/m2.

External memory algorithms

External memory algorithms use disks for temporary storage of data struc-
tures that do not fit in the computers’ main memory and explicitly control
data movement and data layout on disk with the goal of minimizing the
number of disk accesses [Vitter, 2001]. Agarwal et al. [2006] presents a main
memory efficient algorithm for the construction of DEMs, in which an out-
of-core sorting algorithm is designed to minimize the total main memory
time. The applied methodology consist of three steps. First, a quad-tree is
constructed based on a set of points to partition the point set into a set of
non-overlapping tiles. As second, for each tile and all adjacent tiles the set
of points is calculated. Finally each segment is interpolated independently
using points within the segment and its neighboring segments.

Basically this strategy uses adjacent tiles in a similar way as the buffers
in the buffered divide-and-conquer strategy described in the previous para-
graph. Comparable external memory algorithms are applied by Agarwal
et al. [2005] for the construction of massive TINs and by Vitter [2001] for
multiple geometric operations on massive data sets.
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Streaming algorithms

Streaming algorithms are akin to external memory algorithms but do no
swap at all in the meantime as they only use the external memory for input
and output [Isenburg et al., 2006a]. Instead of loading a complete tile and
all its neighboring tiles into the computers’ main memory, only a part of the
data is loaded into the main memory and when that part is finished it is
written to the output file and removed from the computers’ main memory.
Therefore it is important to know what part of the point cloud data are
finished and which ones not.

Isenburg et al. [2006a] applies the concept of spatial finalization for this
as part of a three-step methodology for the generation of DEMs and DSMs via
streaming TINs. First, bounding information is detected within the public
header block of the input LAS file (see section 2.2). As second, the input file
is decomposed in non-overlapping tiles and the points is count within each
tile. This count is used as a finalization tag in order to indicate if all points
are triangulated within a tile. As third, a triangulation algorithm certifies
triangles as being Delaunay (see section 3.4) when the finalization tag shows
it is safe to do so. In this way it is possible to write triangles to the output
stream and so they can be removed from the computers’ main memory in
order to read more from the input stream. Only not-finalized parts within
the triangulation process are resident in memory and for that reason, the
memory footprint remains relatively small.

3.3 filtering
LiDAR records are more or less evenly distributed over the reflected surface,
but no direct information about what type of surface was hit by each shot
is available. In order to derive elevation models that only represent certain
types of surfaces, it is needed that the different surfaces hit by LiDAR pulses
are recognized and distinguished with respect to each other. Filtering is the
process of assigning individual LiDAR records to surface classes so that in
subsequent processing surface and object modeling may be based only on
the points from relevant surfaces [Hug et al., 2004]. Effective and precise
filtering of a point cloud is crucial to achieve high quality DEMs and DSMs
[Liu, 2008b].

3.3.1 Point classification

First step in the filtering process is the definition of a classification sys-
tem. The LAS standard provides the possibility for the storage of 32 filtered
classes: 10 predefined, 22 reserved for future definitions [ASPRS, 2013]. A
basic classification system often consist of the following classes:

• Ground

• Buildings

• Vegetation

• Noise
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The ground class refers to all points which are related to bare ground,
where the building class refers to all points which are related to buildings.
In the vegetation class all trees with a non negligible size at a city scale (i.e.
with a height of several meters) will be represented. All remaining points
corresponds with outliers in the data and are classified as noise. Such points
are reflected on small urban objects which temporarily perturb the scene
(e.g. cars, roof antennas, cranes) and vertical structures like facades.

3.3.2 Filtering methods

Charaniya et al. [2004] qualifies two categories for the filtering of LiDAR point
data:

• Filtering of LiDAR point cloud data into ground and non-ground points.

• Filtering of non-terrain LiDAR point cloud data into features as vegeta-
tion and buildings.

Current AHN2 point cloud products are filtered according to the first filtering
category.

For both filtering categories different approaches exist. Most of them use
geometrical relations between neighboring points in order to assign a classi-
fication. A number of tests and comparisons of different filtering algorithms
have been performed but not many appropriate measures for the quality of
filtering algorithms have been invented yet [Vosselman and Maas, 2010]. A
comprehensive comparison of point cloud filters is compiled by Sithole and
Vosselman [2005], more recent ones are made by Meng et al. [2010], Tin-
kham et al. [2011] and Podobnikar and Vrečko [2012]. General conclusion
is that no point cloud filtering algorithm scores significantly best in general,
different filtering algorithms score better in the filtering of certain objects
and/or circumstances. It has to be taken into account that there does not
exist any method that can guarantee a 100% correct classification of LiDAR

points and also that results of classification algorithms strongly differ be-
cause of the characteristics of the point cloud data and the characteristics of
the terrain.

Podobnikar and Vrečko [2012] concludes that the software package LAS-
tools, containing multiple LiDAR processing tools gave appropriate results in
general. In the remainder of this section two classification algorithms will
be introduced that are part of LAStools; in subsection 3.3.3 an algorithm
will be introduced for the classification of LiDAR point data into terrain and
non-terrain points. In subsection 3.3.4 an algorithm will be introduced for
feature classification of non-terrain LiDAR points.

3.3.3 Classification into terrain and non-terrain points

For the extraction of a bare-earth model a classification algorithm is needed
that distinguish ground points from non-ground points. In this subsection
a discrimination will be given of such a classification algorithm used by the
LASground tool, part of the software package LAStools. Since there is no
proper documentation available of the LASground classification algorithm
no description can be provided.
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Evaluation

In the technical description of the LASground tool it is stated that this algo-
rithm has proven to work very well with a large variety of surfaces includ-
ing mountainous areas with steep slopes and sharp ridges that often pose
challenges to conventional approaches.

Podobnikar and Vrečko [2012] tested the LASground algorithm using the
standard settings. The provided results were better compared to other filter-
ing algorithms, the LASground algorithm performs worse near river beds
in the used test data sets.

3.3.4 Feature classification of non-terrain points

Hug et al. [2004] provide a theoretical description of an automatic con-
tour/segmentation based object-oriented classification algorithm for the fil-
tering of point cloud data into above-ground features as vegetation and
buildings. This algorithm is implemented within the LASclassify tool, as
part of LAStools.

Object-oriented contouring

Main concept of this algorithm is the creation of horizontal segments by
contouring; within a top-down approach contour lines are defined every 0.5
meter and for each elevation level new closed contours are searched.

Starting from each new found closed contour, a segment is defined: a co-
herent planimetric area delineated by one closed contour. For each defined
segment, searched will be for segments at lower levels until the ground is
reached. On subsequent (lower) levels, the number of segments will grow
and grouped in objects, Hug et al. [2004] distinguished two kinds of objects:

• Primitive objects are defined by the lowest contour and all contours
above that contain at most one contour at the next higher level.

• Complex objects are defined when multiple segments merge on a
higher level, e.g. a building with two towers (Figure 20). Within this
concept complex segments are the parents of their primitive children.

At the lowest elevation (root) level, one complex parent segment exists that
contains all objects (both primitive and complex) within the entire point
cloud (Figure 20). The objects can be defined as abstract entities repre-
senting hierarchies of enclosed contours. Although they do not have any
real meaning with respect to the real-world objects they represent, the hi-
erarchical description of objects facilitates searching for real-world objects
significantly.

Object analysis

The next step is a top-down analysis of the object family tree from top level
to root in order to determine if an object is part of a terrain structure or if
it is an artificial structure that should be considered as belonging to terrain
(e.g. dams). This analysis takes place by analyzing the shape of the objects
and the growing behavior of its segments from level to level.
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Figure 20: Object hierarchy [Hug et al., 2004]

In the same way a similar analysis is applied on above-ground objects.
For example, a simple rectangular real-world house could be analyzed as:
a small contour is detected that grows quadratically in an area from level
to level into a rectangular shape. The object stops growing for several lev-
els and suddenly grows again in large but random steps. The analysis is
completed at root level where the segment starts growing randomly. Hug
et al. [2004] introduce a number of potential criteria to determine real-world
objects and on which elevation level they start:

• Object geometry

– Area growth

– Contour/segment shape

– Relationship of area size and contour length

– Relationship of volume (height) and area size

• Object context

– Shape

– Sizes

– Growth behavior of adjacent objects and the parents and grand-
parents of multiple objects in the object tree

• Object attributes

• Several others

A fuzzy-logic-based classification that can be parameterized by training is
used in order to detect real-world objects based on these criteria.
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Evaluation

Hug et al. [2004] indicate that discrimination of artificial structures like
dams and ramps that are usually considered as belonging to the ground
class are reliable classified such while other structures of almost any size
and shape are reliably identified as non-ground objects.

Besides distinguishing surface objects from ground, contour based object
detection generates comprehensive information about the surface objects
that can readily be used for further classification. Different types of above-
ground objects can be identified and geometrical object descriptions (e.g.
building geometry, roof shape, ridge orientation) can be derived with lit-
tle additional effort by just evaluating the geometry of the abstract object.
Complex buildings, for example are represented in the object tree as a par-
ent object with multiple child objects representing building primitives. The
geometries of parent and child objects structure the building and describe
its geometry in detail.

3.4 spatial interpolation
Spatial interpolation in digital elevation modeling is used to determine
heights of neighboring locations where no height information is available.
Two implicit assumptions here are that the terrain surface is continuous and
smooth and that there is a high spatial coherence between the neighboring
data points [Li et al., 2004].

LiDAR point clouds are not acquired on a uniform grid, they can be seen
as a set S of n arbitrary points in 2-dimensional raster R2 with an associated
elevation function h : S → R. To construct a raster-based DEM h has to
be extended via interpolation to a uniform grid G ⊂ R2 at the desired
resolution [Beutel, 2011]. The height value for each raster cell represents
the height in the middle of a raster cell.

3.4.1 Raster resolution

Before interpolation can take place it is important to determine an appropri-
ate raster resolution for the output of interpolated data. The term resolution
is often used for a pixel count in digital imaging. In case of DEMs and DSMs
the term resolution refers to the grid size of the model with respect to the
ground distance. The smaller this ground distance the higher is the resolu-
tion, representing a surface in more detail.

According to Liu [2008b] an appropriate raster resolution depends on
source data density, terrain complexity and applications. McCullagh [1988]
suggests that the number of grid cells should be correlated to the number
of data points of an area. Hu [2004] introduced a formula to estimate the
raster resolution as:

S =

√
A
n

(1)

Where n is the number of data points and A is the covered area. In this
scenario each grid cell should contain one point on average. An appropriate
grid size is ≈ 0.41 meter, based on an average minimal point density of at
least 6 points/m2 for the AHN2 data set.
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Hengl [2006] introduced a formula for calculating the raster resolution
based on the terrain complexity. According to this concept the raster res-
olution should be at least half the average spacing between the inflection
points:

S =
L

2 ∗ Np
(2)

Where L is the length of the transect and Np is the number of inflection
points as observed. Arcadis [2012] has calculated that the theoretical dis-
tance between two points for the AHN2 data set is 0.46 meter in the most
pessimistic situation, based on a Voronoi method. In this scenario an appro-
priate grid size should be ≈ 0.23 meter.

Another criterion for the selection of an appropriate raster resolution is
the application [Liu, 2008b]. A high raster resolution might significantly
improve the predictive ability of terrain attributes, the choice of raster reso-
lution for terrain based environmental modeling depends on the output of
interest.

3.4.2 Spatial interpolation methods

A wide range of interpolation methods exist; in the next paragraphs the
most often used interpolation methods in GIS will be introduced. Li et al.
[2004] defines two classes of interpolation methods for the generation of
DEMs or DSMs from LiDAR point cloud data:

• Deterministic interpolation methods

• Geo-statistical interpolation methods

Deterministic interpolation methods assume that each LiDAR point has a
local influence. Values at different unsampled points are computed by func-
tions with different parameters and the condition of continuity between
these functions is defined only for some approaches. The method of point
selection used for the computation of the interpolator differs among the
various methods and their concrete implementations. The following deter-
ministic interpolation methods will be introduced in this subsection:

• IDW

• Natural Neighbor interpolation (NNI)

• Interpolation based on a TIN

• Splines

Kriging is a geo-statistical interpolation method taking both the distance
and the degree of auto-correlation (the statistical relationship among the
sample points) into account.

Inverse Distance Weighting

IDW explicitly implements the assumption that things located close to each
other are more alike than those that are farther apart. This assumption is
better known as the first law of geography as introduced by Tobler [1970].
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In case of IDW interpolation the assigned values for unknown points are
calculated with a weighted average where the applied weight is based on
the distance to a known point; measurements close to the prediction loca-
tion will have a higher influence on the predicted value than those farther
away. Given a set of known LiDAR points IDW is a deterministic method
for multivariate interpolation; interpolation takes place with more than one
variable in a function:

• Power function

• Search radius

• Maximum number of points

The weight value of LiDAR points is proportional to the inverse distance
raised to the power function: as the distance increase the weight decrease.
The extend to which that takes place is dependent of the value of the power
function. In case of a power value 1 there is no decrease in weight when
distance increases and the calculated value will be the average (smoothed)
of all measured points (Figure 21a). Figure 21 shows that an increasing
power value the influence of farther away located points the weighting value
decreases. A typical power value u = 2 [Watson, 2013].

(a) (b) (c)

Figure 21: The influence of different power values regarding inverse distance
weighting. (a) Power value = 1. (b) Power value = 2. (c) Power value
= 3.

Increasing point densities will increase the processing time. When dis-
tance di increases, the weight value of a point will have a lower relationship
with the prediction location. A search radius di can select only those points
that are within a Cartesian distance di,max, having a significant influence on
the prediction value f1P at point P. Another variable is a maximum number
of i LiDAR points that might be taken into account for the prediction of the
value f1 at location f1(P); only the closest i points will be used. After deter-
mining these variables a height value f1 at location P is calculated using the
following expression:

f1(P) =


∑N

i=1 (di)
−uzi

∑N
i=1 (di)

−u if di 6= 0 for all Di(u > o)

zi if di = 0 for some Di

(3)

Where f1 is the value for point P, u is the power function and zi is the value
at data point Di. di is the Cartesian distance between P and D, d[P, Di] [Shep-
ard, 1968].
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Natural Neighbor interpolation

NNI applies a weighted average from local data (neighbors) based on the cre-
ation of Thiessen (or Voronoi) polygons out of a discrete set of spatial points
and assign a height value from each point to its corresponding Thiessen
polygon.

Estimation of a height value at unsampled locations takes place by calcu-
lating the weighted average of nearby values where the weight of each value
is determined by the area of the Thiessen polygon that is covered. Where
IDW uses distance as a parameter for allocating a weight to a local value,
NNI determines the weight of influence of nearby points based on their cor-
responding Thiessen polygon area. The basic equation for a bivariate 2D
NNI function is:

G(x, y) =
N

∑
i=1

wi f (xi, yi) (4)

Where G(x, y) is the estimate at location (x, y), f (xi, yi) are values nearby
location (x, y) and wi are weights of the nearby values based on their cor-
responding Thiessen polygons [Sibson, 1981]. Interpolation functions such
as IDW and NNI might take into account the influence of close by points re-
sulting in a different interpolated height, even at the location of a known
point.

Interpolation based on a Triangulated Irregular Network

As introduced in section 2.1 it is possible to generate a secondary computed
DEM of a primary measured DTM by gridding a TIN DTM.

First step in this process is to generate a TIN; a 2.5D triangulation based on
the work of Peucker et al. [1978]. A common method for the construction of
triangles within TINs is based on Delaunay Triangulation (DT), named after
Delaunay [1934] for his work on this topic. Basic principle of DT is that given
a set of P points in a plane, a triangular mesh, surface or triangular planes
connecting the data points in a triangulation DT(P) so that there will be
no point P inside the circumcircle of any triangle in DT(P) (see Figure 22b).
For any set of points in two dimensions a DT is possible. A DT is always
unique as long as no four points in the point set are co-circular.

DT is considered being a desirable approach for creating natural-looking
surfaces because minimum interior angles of all triangles are maximized
and triangles are as equiangular as possible, thus avoiding long and thin
triangles [Pearlstone, 2010]. In this way the determined height at a certain
point will be calculated by height sample points that are relatively close
by. Given no other information but the sample points and assuming that
the height at the sample points is correct, all triangulations can be equally
good.

In situations with (steep) vertical elements (e.g. building walls) a TIN

representation might give artifacts having no LiDAR points available both
on top and down the vertical element. Due to the characteristics of topo-
graphic LiDAR near water bodies less points will be detected (section 2.2).
Also in case of a DEM it might happen that locally less points are available
where non-ground points are filtered (e.g. buildings). This might lead to
the creation of triangles with long edges.

For both introduced problems a constrained DT might be a solution by gen-
eralizing the DT that forces certain required segments into the triangulation.
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Given a set of points P and a set of segments S a constrained DT tries to
achieve a triangulation of into the triangulation [Chew, 1989]. Given a set
of points P a constrained DT is a triangulation that is as close to a DT under
the constraint that all line segments in S become part of the DT as edges of
the triangulation Figure 22c. Whereas a constrained DT contains edges that
do not meet the Delaunay condition a constrained DT is often not a DT itself.

By subdividing a segment in multiple edges by adding extra vertices
(Steiner points) to the original segment it is possible to construct a con-
forming DT. A conforming DT contains constraints and does also meet the
condition of being Delaunay.

(a) (b) (c)

Figure 22: (a) A set of points P and a segment S. (b) A Delauney triangulation of
point set P. (c) A constrained Delaunay triangulation of point set P and
segment S [Agarwal et al., 2005].

Based on one of the TIN a grid can be derived using a bivariate function
for each triangle in order to estimate height values at unsampled locations.
Linear interpolation fits planar faces to each triangle individual. This might
give a jagged appearance where it is visually possible to distinguish individ-
ual triangles. This is caused by discontinuous slopes at the triangle edges
and sample data points (Figure 23).

Non-linear blended functions (e.g. polynomials) use additional informa-
tion in first order (or both first- and second order) to derive a more smooth
connection of triangles. After the generation of a TIN it is possible to ras-
terize the TIN into a regular grid regardless of the grid cell size or grid
placement (Figure 24).

(a) (b)

Figure 23: Digital terrain model generated by interpolation based on a triangulated
irregular network. (a) An aerial photograph representing a harbor area
(own image, based on Septima [2014]). (b) A digital terrain model repre-
senting the same area with clearly visually distinguishable triangles (own
image, based on Septima [2014]).
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Figure 24: A regular grid overlain on a Delaunay surface to produce a raster file of
height values [Pearlstone, 2010]

Kriging

Kriging estimates height values for locations with an unknown height using
geo-statistical interpolation, derived from statistics. The interpolated values
are modeled by a Gaussian process governed by prior covariances, as op-
posed to a piecewise-polynomial spline chosen to optimize smoothness of
the fitted values. Explanation of this interpolation method is complex, infor-
mation can be found in [Agterberg, 1974; Cressie, 1990].

3.4.3 Selection of a proper interpolation method

After introducing multiple interpolation methods, the question is what in-
terpolation method is most appropriate in different contexts. Mitas and
Mitasova [1999] poses several challenges for the selection of an appropriate
spatial interpolation method:

• The modeled fields are usually very complex

• Data are spatially heterogeneous and often based on far from optimal
sampling

• Significant noise or discontinuities can be present

• Data sets can be very large

Additional Mitas and Mitasova [1999] introduce a set of demands for a reli-
able interpolation tool should satisfy, suitable for GIS applications:

• Accuracy and predictive power

• Robustness and flexibility in describing various types of phenomena

• Smoothing for noisy data

• D-dimensional formulation

• Direct estimation of derivatives (gradients, curvatures)

• Applicability to large data sets

• Computational efficiency

• Ease of use

There does not exist any product that satisfy all these conditions for a wide
range of geo-referenced data. Therefore the selection of a good interpolation
method with appropriate parameters is the best possible.
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3.4.4 Digital Elevation Model interpolation

Evaluation of performance of different interpolation methods has been as-
sessed on DEM accuracy by Zimmerman et al. [1999]; Ali [2004]; Blaschke
et al. [2004]; Lloyd and Atkinson [2002]; Chaplot et al. [2006]; Podobnikar
[2005]. Zimmerman et al. [1999] showed that Kriging yielded better estima-
tions of elevation than IDW did, especially when sampling density of points
becomes sparse [Lloyd and Atkinson, 2002]. The result is probably due
to the ability of Kriging to take into account the spatial structure of data
[Chaplot et al., 2006]. However, if the sampling density is high, there is
no significant difference between IDW and Kriging methods [Chaplot et al.,
2006]. Ali [2004]; Blaschke et al. [2004]; Podobnikar [2005] pointed out that
the IDW method performs well if sampling data density is high, even for
more complex terrains. Liu et al. [2007] states that LiDAR data does have
high sampling density in general, and so the IDW approach is suitable for
the generation of DEMs from point data.

It is inappropriate to generate a high resolution DEM with sparsely dis-
tributed LiDAR data: any surface generated in such a way is more likely to
represent the shape of the specific interpolator used than that of the target
terrain because interpolation artifacts will abound [Liu and Zhang, 2008],
this might lead to erroneous interpolated data. Kraus and Otepka [2005]
showed the benefits of using a hybrid model for DEMs. This approach em-
ployed a vector-based TIN model for complex geomorphologic areas and a
raster-based model for simple areas. The degree of complexity of the ter-
rain could be determined based on the length of the edges within the TIN

model. Isenburg et al. [2006b] introduce with the las2dem tool, as part
of LAStools, a method to generate a raster-based DEMs via TIN streaming,
this hybrid methodology combines the advantages of both vector-based and
raster-based methods to store and process information.

Sink filling

In flat areas the accuracy of the single point is critical for water management
and flood risk modeling. But due to the characteristics of topographic LiDAR

a correlation can be detected between water bodies and sparser distributions
of LiDAR data. Hydrological conditioned DEMs are required in situations
in which a sound representation of the flow network for calculating flow-
related quantities is necessary [Bailly et al., 2006; Davies et al., 2008]. Mark
and Aronson [1984] performed a moving average window to remove small
depressions. This approach, fails in eliminating larger sinks because it alters
the entire DEM and may even generate new sinks along drainage pathways
with steep side walls [Reuter et al., 2009].

A variety of different preprocessing techniques to ensure coherent net-
works of water have been developed termed hydrological conditioning. One
of the hydrological conditioning techniques is stream burning which uses
mapped stream locations to artificially lower stream cells in a DEM. Stream
burning is particularly useful for the precise location of streams in low gra-
dient landscapes such as coastal areas [Maidment, 1996] but it requires digi-
tized stream maps which may often be unavailable at the desired map scale.

The most common hydrological conditioning technique is sink filling.
Sink filling elevates pixel values in topographic depressions so that each
pixel in a DEM has at least one neighboring pixel with the same or lower
elevation. Sink filling can create large and contiguous areas of flat water
bodies.
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3.4.5 Digital Surface Model interpolation

A common method to develop a DSM is by interpolating all first returns rep-
resenting a surface elevation [Vögtle and Steinle, 2003; Bartels et al., 2006].
In subsection 2.4.1 and subsection 2.4.2 it was introduced how a similar
method based on the average of all points for each raster cell is applied for
the generation of a raster-based DSM based on the AHN2 data set.

A common error of such a strategy is the presence of data pits within
the generated raster data. These pits are visible as dark holes that are dig-
itally represented by exceptionally lower digital height values than their
neighbors. It is believed that these artifacts are caused by a combination of
factors, from data acquisition to post-processing, though no specific cause
has been defined in the literature [Ben-Arie et al., 2009].

As introduced in subsection 3.4.4, interpolation is based on the assump-
tion that the terrain surface is continuous and smooth, and that there is
a spatial coherence between the neighboring data points [Li et al., 2004].
Where urban features and vegetation have specific characteristics in terms
of both elevation and slope, spatial interpolation will introduce errors in
a DSM. Priestnall et al. [2000] shows that errors near building surfaces are
practically the same for different interpolation methods. For that reason, a
common method is to process above-ground features as building and veg-
etation objects separately after the classification of point records into these
classes (subsection 3.3.1). Research on the generation of DBM from LiDAR

data is been done by Palmer and Shan [2002]; Cho et al. [2004]; Alexander
et al. [2009]. Research on the generation of CHMs from LiDAR data has been
done by Clark et al. [2004]; Popescu et al. [2002]; Khosravipour et al. [2014].

3.4.6 Digital building model interpolation

Different then DEMs which require continuous interpolation, buildings have
irregular shapes and there is no correlation between different buildings; in-
terpolation should take place on building level. Most work on the extraction
of building information is based on the extraction of building data from
raster-based data after interpolation of the point cloud data. Palmer and
Shan [2002]; Cho et al. [2004] state that such methods introduce unwanted
errors into the data by creating incorrectly smoothed heights for the build-
ing edges. Cho et al. [2004] introduces a concept of pseudo-grid (or binning)
into raw laser scanning data to avoid a loss of information and accuracy due
to interpolation, but such a methodology is not capable to distinguish trees
from buildings. Alexander et al. [2009] states that the use of building foot-
print polygons offers a potential solution to these problems; an open data
set regarding buildings is used to determine the presence of buildings and
use them as breaklines.

Interpolation based on a TINs are widely is considered as highly suitable
interpolation method for the interpolation of buildings since data is not
smoothed by definition; this interpolation method is able to represent mul-
tiple segments in a correct way. Another advantage of interpolation based
on a TINs is the possibility to add constraints. Within a constraint DT it pos-
sible to remove redundant edges, a part of which are outside the building
boundary [Hu, 2004].
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3.4.7 Canopy height model interpolation

Similar as for the generation of DBM standard procedures for the generation
of a CHM are focused on the subtraction of a DTM from a DSM. Such a
procedure is described in Clark et al. [2004]; Popescu et al. [2002]. The
disadvantage of this method is that it does not solve the problems regarding
data pits.

The depth and the distribution of pits in a CHM depend on the crown
structure and the diameter of the laser beam as well the sensitivity of the
system processing the returning waveform [Gaveau and Hill, 2003]. Instead
of hitting the highest point of the canopy, the laser pulses may produce their
first return when they hit a lower branch or even after they penetrate all the
way through the crown to the ground [Khosravipour et al., 2014]. Hence,
the depth of different canopy pits varies greatly, making it impossible to
use a fixed threshold to define and potentially remove them [Ben-Arie et al.,
2009].

Khosravipour et al. [2014] proposes a pit-free methodology that height-
normalize filtered vegetation LiDAR points first and then generated a raster-
based CHM by applying interpolation based on a TIN. In order to solve the
problem regarding data pits partial CHMs are created to determine the shape
of the canopy at different heights and merge them finally.

3.5 post processing

Smoothing and resampling of raster-based data are both commonly per-
formed on surfaces before they are suitable for analysis [Bater and Coops,
2009].

3.5.1 Raster resampling

Resampling is the process of transforming a discrete image which is defined
at one set of coordinate locations to a new set of coordinate points [Parker
et al., 1983]. Downsampling is the process of transforming a discrete image
which is defined at one set of coordinate locations to a new set of coordinate
points with a lower resolution.

McInerney and Kempeneers [2015] compare and illustrate different re-
sampling methods by using open source software package Geospatial Data
Abstraction Library (GDAL). Concluded is that the resampling methods bi-
linear and cubicspline result in smoother results for resampling as well as
for downsampling.

3.5.2 Raster smoothing

Smoothing is the process of approximating the capture of important pat-
terns in the data and removing noise. It is often an iterative process, com-
paring a point with nearby points and adjusting its elevation [Tao and Hu,
2001]. Usually a best-fit facet model is computed for a group of points and
the elevation of the center point is adjusted to better match the facet [Wang
et al., 2001]. Since un-autocorrelated errors are the major cause of the nu-
merous small depressions in LiDAR data it appeared that some degree of
smoothing is beneficial [Li et al., 2011].
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Smoothing does not only remove errors but it modifies potentially every
height value. Excessive smoothing could lead to the modification and elim-
ination of real topographic features within a DEM or DSM and should be
avoided. This can be achieved by setting appropriate area and depth thresh-
olds. No single values of area and depth thresholds are best in all cases [Li
et al., 2011].

3.5.3 From small-scale raster data to large-scale raster data

In section 3.2 different methods of spatial decomposition are introduced.
After processing of these smaller subsets they can be composed in order to
regenerate one single raster image, two approaches are distinguished:

• Mosaic images

• Virtual Raster (VRT)

Mosaic Images

Mosaics use two or more input images to create a single output image.

Virtual raster

VRTs do not contain actual pixel values of the raster cells. Instead, these
virtual files describe in a Extensible Markup Language (XML) format the
characteristics of the input raster images. Characteristics that are stored in
a VRT are:

• Name and path of the input raster file

• Number of bands

• Lines and columns

• Projection information

McInerney and Kempeneers [2015] describe the benefits of VRTs over mo-
saic images. VRTs can easily be edited to modify mappings, add attributes
such as color tables and meta data or perform raster operations. In case
of consecutive raster operations, the actual writing of the pixel values can
be postponed until the end. This avoids reading and writing of temporary
files, which increases efficiency. Virtual rasters can also be useful when you
need to access raw binary raster files for which no GDAL driver exists: it is
needed to describe the structure of the binary raster in the VRT file, such
as: length of the header in bytes, data type, band encoding and byte order
(most or least significant bit first). Virtual formats in XML support the de-
scription of algorithms to be applied to the raster data. Finally, a VRT also
saves considerable disk space in comparison to mosaic images.

3.6 raster visualization
Visualization in GIS, better known as Geographic Visualization or Geovisial-
ization, is a set of tools and techniques which support geospatial data anal-
ysis through the use of interactive visualization.
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3.6.1 Hypsometric tinting

Hypsometric tints are colors used to indicate elevation. Ranges of eleva-
tion are indicated by bands of a color, often gradually, or as a color ramp to
contour lines. A typical scheme progresses from dark greens for lower eleva-
tions up through yellows/browns, and on to grays and white at the highest
elevations. Regarding information about underwater heights it is possible
to apply bathymetric tinting in order to visualize depths; lighter shades of
blue indicate shallow water and deeper water are tinted darker. Figure 25a
shows an example of hypsometric tinting.

3.6.2 Hill shading

Hill shading is a hypothetical illumination of a surface according to a spec-
ified azimuth and altitude for the sun based on the work of Horn [1981]. It
creates an effect that provides an optical relief for 2D cartography of terrain
in a three dimensional 3D appearance [Robinson, 1960]. Figure 25b shows
an example of a hill shade map.

(a) (b)

Figure 25: The optical effect of adding hill shade to a raster-based height map (a) A
raster-based digital elevation model visualized using hypsometric tinting.
(b) A hill shade map calculated from the digital elevation model.

Definition of the gray value of each surface unit is determined as the
ratio between the cosine of the angle between a surface normal vector and a
vector representing the illumination direction [Horn, 1981]. Burrough [1986]
provides an explanation to perform a hill shade calculation.

Hill shade values are partially calculated based on the height difference
of adjacent raster cells; for this reason the hill shade effect is determined
on a local scale. No real shadows are determined within a hill shade map.
In order to extend the hill shade to provide real shadows both the effects of
local illumination angle and height data of farther located raster cells should
be considered.

3.6.3 Image overviews and pyramids

In subsection 3.5.3 two approaches have been introduced to compose one
single output raster image from smaller tiles. When the size of raster data
increases the efficiency of data for purposes such as visualization decrease.
Image overviews and pyramids are techniques to view images more effi-
ciently [McInerney and Kempeneers, 2015].
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Image overviews

An image overview is a downsampled version of an original raster image.
The overviews can be located in external files or, for some image formats,
be included within the image file itself. Image overviews are typically used
to display reduced resolution overviews more quickly than could be done
by reading the full resolution data followed by downsampling [McInerney
and Kempeneers, 2015].

Image pyramids

Building image pyramids is a technique that combines image overviews
with tiling for raster images. In this way image pyramids are a predecessor
to scale-space and multi resolution analysis. In Figure 26 an image pyramid
is presented: it contains a raster data set of 4 096 x 4 096 pixels at four
scales. At each scale, the image is divided in a number of tiles, where each
tile has the same number of pixels, in this example 256 x 256 pixels. At
the original spatial resolution (level 0), a maximum of tiles is needed to
represent the entire image. At the coarsest resolution (level 4), the image
can be represented by a single tile.

Figure 26: Low pass pyramid with four levels for an image of 4 096 x 4 096 pixels.
The tile size is 256 x 256 pixels [McInerney and Kempeneers, 2015].

Pyramid generation kernels

When the viewing level (the scale) increase raster data is displayed on a
lower level on the screen it is not needed to show all available details at
once [McInerney and Kempeneers, 2015]. Therefore it is recommended to
apply smoothing kernels during the generation of image pyramids; multiple
height values will be resampled to one new height value by interpolation.

Bilinear interpolation is a good and fast method for continuous data, such
as elevation. This interpolation method uses the weighted average of four
nearest raster cells in the source image to estimate new height values for the
destination image. Where the application of raster pyramids is meant for
alternative representation of the raster data, the data at base level (level 0)
will not be changed.
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3.6.4 Raster visualization for quality assessment

Luethya and Stengeleb [2005] explain the role of raster visualization within
quality assessment after the generation of a countrywide DEM for Switzer-
land. Various raster-based maps were generated for a visual inspection.
Quality control regarding DEMs was done by the generation of multi-resolution
point density maps, contour lines, hill-shaded DEMs, slope grids and the dif-
ference between DSMs and DEMs.

3.7 quality assessment
Data quality is a pillar in any GIS implementation and application of reliable
data are indispensable to allow the user to have meaningful results [Srivas-
tava, 2008]. Since a DEM or DSM is an approximation of the reality, based on
a nominal ground [Podobnikar, 2009], all spatial data are at different levels,
vague, incorrect, old or incomplete [Devillers and Jeansoulin, 2006]. Data
quality refers to the performance of the dataset given the specification of the
data model [Haining, 2003] or the degree of data excellency that satisfy the
given objective [Srivastava, 2008]. Quality is the totality of characteristics of
a product that bear on its ability to satisfy stated and implied needs [ISO,
2013]. In ISO19157: Geographic Information Quality principles five elements for
data quality are described:

• Completeness

• Logical consistency

• Positional accuracy

• Temporal accuracy

• Thematic accuracy

All elements provide quantitative quality information about a data set.

Completeness

Completeness expresses the presence and absence of data, their attributes
and relationships. There are two sub elements: commission (excess data
present) and omission (data absent) [ISO, 2013]. This definition requires a
precise description of the abstract universe since the relationship between
the dataset and the abstract universe cannot be ascertained if the objects in
the universe cannot be described. The abstract universe can be defined in
terms of a desired degree of abstraction and generalization (i.e. a concrete
description or specification for the database). This leads to the realization
that there are in fact two different types of completeness [Veregin, 1999].

’Data completeness’ is a measurable error of omission observed between
the database and the specification. Data completeness is used to assess
data quality, which is application-independent. Even highly generalized
databases can be complete if they contain all of the objects described in the
specification [Veregin, 1999].

‘Model completeness’ refers to the agreement between the data set specifi-
cation and the abstract universe that is required for a particular database ap-
plication [Guptill and Morrison, 2013]. Model completeness is application-
dependent and therefore an aspect of fitness-for-use. It is also a component
of ‘semantic accuracy’ [Salgé, 1995].
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Additional distinctions are required. The definitions of completeness
given above are examples of ‘feature or entity completeness’. In addition
we can identify ‘attribute completeness’ as the degree to which all relevant
attributes of a feature have been encoded. A final type of completeness is
‘value completeness’ which refers to the degree to which values are present
for all attributes [Guptill and Morrison, 2013].

Logical consistency

The logical consistency is a degree of adherence to logical rules of data
structure, attribution and relationships [ISO, 2013]. For geospatial data the
term is used primarily to specify conformance with certain topological rules
[Salgé, 1995]. Spatial relations describe the spatial integrity of a geospatial
data set. Spatial integrity constraints are a tool for improving the internal
quality of spatial data [Devillers and Jeansoulin, 2006].

The identification of an inconsistency does not necessarily imply that it
can be corrected or that it is possible to identify which attribute is in error.
Note also that the absence of inconsistencies does not imply that the data are
accurate. Thus consistency is appropriately viewed as a measure of internal
validity. Despite the potential to exploit redundancies in attributes, tests for
logical consistency are almost never carried out [Veregin, 1999].

Positional accuracy

The ISO [2013] describes accuracy as a closeness of agreement between a
test result and the accepted reference value, in case of positional accuracy it
refers to the accuracy of the spatial component of a dataset. There are three
sub elements:

• absolute or external accuracy

• relative or internal accuracy

• gridded data position accuracy

In case of raster data the latter one, gridded data position accuracy, the close-
ness of provided data position values to values accepted as or being true is
the component of interest. Expression of this accuracy is by calculating the
Root Mean Square Error (RMSE). The RMSE is not the same as the standard
deviation of a statistical sample, because the value of the RMSE is calculated
from a set of check measurements [Huisman and Rolf, 2009]. RMSE is com-
monly used to document vertical accuracy for DEM. RMSE is a measure of
the magnitude of error but it does not incorporate bias since the squaring
eliminates the direction of the error [Veregin, 1999].

Temporal accuracy

Temporal accuracy refers to the agreement between encoded and ’actual’
temporal coordinate system [Veregin, 1999]. It is the discrepancy between
the actual attributes value and coded attribute value. A value is actual if
it is correct in spite of any possible time-related changes in value. Thus
currentness refers to the degree to which a database is up to date [Redman,
1992]
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Another impediment to the measurement of temporal accuracy is that
time is often not dealt with explicitly in geospatial databases. Temporal
information is often omitted, except in databases designed for explicitly
historical purposes. This assumes that observations are somehow ‘timeless’
or temporally invariant. The implications of this omission are potentially
quite significant, especially for features with a high frequency of change
over time [Veregin, 1999].

Thematic accuracy

Thematic (or attribute) accuracy compares the classes assigned to a feature
or their attributes to a reference dataset or ground truth [ISO, 2013]. Quan-
titative attributes can be conceived as statistical surfaces for which accuracy
can be measured in much the same way as for elevation [Veregin, 1999].

The check can be done by making use of a confusion matrix or error ma-
trix. The matrix contains additional information on the frequency of vari-
ous types of misclassification, e.g. which pairs of classes tend most often to
be confused. In addition, the matrix permits assessment of errors of omis-
sion (omission of a location from its ’actual’ class) and errors of commission
(assignment of a location to an incorrect class) [Veregin, 1999].

3.8 discussion
In this chapter related projects and work are identified and introduced with
respect to the different steps for the generation of a raster-based height map
from massive point cloud data.

In section 3.2 different methods for pipelining were introduced. The main
matter is that the different pipelining methods are focused on an efficient
usage of a computers’ main memory. As long the processed data size does
not exceed the size of a computers’ main memory there is no problem re-
garding the processing of massive point cloud data within the scope of this
thesis. Chosen is to adopt a divide-and-conquer tiling algorithm.

In section 4.2 the concepts of filtering and classification of point records
are treated; most packages have capabilities for the filtering of ground, build-
ings and vegetation classes. No filtering algorithm can guarantee a 100%
correct classification. For one software package, LAStools, two algorithms
for the filtering and classification of point records are presented and evalu-
ated.

In section 3.4 theory about the determination of a proper raster resolution
and spatial interpolation methods are introduced. Different objects require
different methods of interpolation; for the generation of DBMs and CHMs
interpolation based on a TIN is a reasonable method. In case of a raster-
based DEM, a hybrid method using interpolation based on a TIN models in
combination with methods for sink filling and IDW interpolation is indicated
as a proper strategy.

In section 3.5 relevant work regarding resampling and smoothing are pro-
vided. In subsection 3.5.3 the advantages of composing tiles into a VRT are
described. In section 3.6 related concepts for the visualization of raster data
are treated. Proper multi-scale raster visualization can be achieved with the
generation of image pyramids, a combination of tiles and image overviews.
In this way the concept of tiling can be applied integrally within the whole
processing chain.



4 METHODOLOGY

In this chapter a methodology will be proposed for the generation of a raster-
based height map from massive point cloud data. Within this methodology,
three models will be generated:

• DEM

• DBM

• CHM

Each model does have an individual procedure, Figure 27 shows the work
flow of the methodology that will be proposed within this chapter. The
different models can be used in an interchangeable way in order to combine
only data of interest.

Figure 27: Work flow for the processing methodology as introduced in this chapter.

45



46 methodology

4.1 pipelining

The first step in the generation of a raster-based height map is the collec-
tion of the input data and the definition of a pipeline in order to feed data
sequentially to the computers’ main memory. Related work with respect to
pipelining is introduced in section 3.2. In section 3.8 it has been evaluated
that the adaption of a divide-and-conquer tiling algorithm is advantageous.

4.1.1 Obtaining the input data

Before pipelining the point cloud data, in this subsection relevant informa-
tion will be provided with respect to the collection and optionally merging
of the input tiles covering the target area and clipping them with respect to
the target area boundary.

Collection and merging the input tiles

First step is the collection of input point cloud tile(s) covering the target area.
One or more tiles might be needed in order to cover the target area which
can be downloaded from the website of the Dutch SDI PDOK1 as open data.
In case of multiple tiles covering a target area the tiles can be merged with
LASmerge, as part of LAStools, via a command prompt line:

$ lasmerge -i input1.las input2.las -o merged.las

Where flag -i defines the input tiles of interest and the flag -o the name and
location defines where the combined tiles will be stored. This step needs
to be applied twice; one time for the filtered tiles and another time for the
unfiltered tiles. In case of a scenario where the target area can be covered
with only one tile this step can be skipped.

Clipping the target area

After collecting and merging of the point cloud data covering the target
area, next step is to clip the point cloud data with respect to the target area.
LASclip, as part of LAStools, can clip all point located outside a predefined
shapefile and store surviving points to a new point cloud file via a command
prompt line:

$ lasclip -i merged.las -poly convexhull.shp -o clipped.las

Where flag -i defines the input point cloud data, the flag -poly defines a
polygon representing the outer boundary of the target area and the flag -o
the name and location defines where the clipped point cloud data will be
stored. Similar as for merging of the tiles, this step needs to be applied
twice; one time for the merged filtered point cloud data and another time
for the unfiltered point cloud data.

It needs to be taken into account that in order to achieve correct data for
the target area, data can be better processed for a larger area rather then
only the target area in order to deal with artifacts near the borders of the
target area. Relevant information with respect to the selection of a proper
buffer size will be introduced in subsection 4.1.2.

1 https://www.pdok.nl/nl/producten/pdok-downloads/atomfeeds/a



4.1 pipelining 47

Figure 28: Decomposition and interpolation of overlapping point cloud tiles [Guan
and Wu, 2010].

4.1.2 Tiling

Tiling is the reorganization and storage of LiDAR point cloud data into con-
tiguous regular tiles. Data is split up into a sequence of discrete overlapping
tiles (Figure 28). While processing a tile there is no involvement of infor-
mation located outside the tile within the remainder of the pipeline. Two
variables have to be determined within the tiling process:

• a tile size t

• a buffer size b

Where tile size t is used to control the granularity of the parallel pipelines
and buffer size b is used in order to guarantee that the results of the spatial
decomposition are equal to that of the massive non-tiled data set. LAStile,
as part of LAStools, is an automatic tiling algorithm that can run via a
command prompt line:
$ lastile -i clipped.las -tile_size t -buffer b -o tile.las

Where flag -i defines the input point cloud data, the flag -tile size defines a
tile size t, the flag -buffer defines a buffer size b and the flag -o the name and
location defines where the tiled point cloud data will be stored.

Tile size

For the selection of a proper tile size just considering the file size of the point
cloud data is not enough. During different steps within the pipeline the file
size might increase, resulting in the possibility that a file size might exceed
the computers’ main memory size in a later stage of the processing pipeline.
Some steps that increase the data size within the processing procedure are:

• Meta data that will be added to the point records (e.g. classification)

• (Post-)processing of raster-based height data

Selection of a proper tile size is strongly dependent on the size of the com-
puters’ main memory and the process that will make use of the computers’
main memory most intensively within the pipeline. For this reason it is im-
possible to define a value for the tile size based on the file size of the input
point cloud data. A trial and error method seems to be the best possible
strategy for the selection of a proper tile size.
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Buffer size

In section 3.2 the need for a buffer within divide-and-conquer strategy is
mentioned; some degree of overlap within the divided point cloud will re-
sult in output data that is equal to that of the original data set.

Considering the buffer distances applied in related work (see section 3.2),
a buffer distance of 25 meters is supposed to provide proper results. When
testing, it can be considered that a buffer distance of 25 meter results in
output data that is near-similar with respect to the original data set, after
application of the remainder of the processing pipeline. Height differences
with respect to raster data interpolated from the original data set are below
millimeter level, both for ground as for above-ground points.

4.2 filtering
Filtering is the process of distinguishing individual 3-dimensional point
records and the assignment to predefined surface classes so that in subse-
quent processing surface and object modeling may be based on points from
relevant classified surfaces [Hug et al., 2004].

In section 3.3 relevant work regarding filtering has been introduced. Main
conclusion of this section is that no method exist that can guarantee a 100%
correct and automatic classification of LiDAR points. The results of filtering
strongly differ based on the characteristics of input data and terrain charac-
teristics.

In this section the potential of an automated filtering algorithm will be
tested; in subsection 4.2.1 an automated filtering procedure for the classifi-
cation of ground points is tested. In respectively subsection 4.2.3 and subsec-
tion 4.2.4 an automated filtering procedure for the classification of buildings
and vegetation is tested.

4.2.1 Ground

For the filtering of ground points it is necessary to apply a classification of
LiDAR point cloud data into ground and non-ground points. The LASground
tool, as part of LAStools, has been introduced in subsection 3.3.3. This
automatic classification algorithm filters ground point records from non-
ground point records via a command prompt line:

$ lasground -i input.las -o classified_terrain.las -step_size

Where flag -i defines the input point cloud data and flag -o defines the name
and location defines where the classified point cloud data will be stored. For
the -step size flag different parameters can be selected representing different
search distances:

• Forest - 5 meters

• Town - 10 meters

• City - 25 meters

• Metropolis - 35 meters
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The LASground tool will be tested for two point cloud products based on
the AHN2 data set:

• Filtered AHN2 point cloud data

• Merged filtered and unfiltered AHN2 point cloud data

For both point cloud products the LASground tool will be tested using mul-
tiple search distances.

Classification of filtered AHN2 point cloud data into ground and non-ground
points

Application of LASground using the forest parameter results in a small per-
centage of point records that are classified as non-terrain, mainly randomly
distributed over the terrain (Figure 29a).

Increasing the step size (town parameter) results in an increase of the
number of point records classified as non-terrain; distribution of these point
records is mainly near areas with some degree of slope (e.g. water and
tunnels, see Figure 29b).

A further increase of the step size (city parameter) will increase the num-
ber of point records classified as non-terrain further. The distribution of
detected non-terrain point records clusters near areas having some degree
of slope in such a way that large parts of dikes are classified as non-ground
points (Figure 29c).

A maximization of the step size (metropolitan parameter) increases the
number of point records classified as non-terrain again. Classified non-
terrain point records cluster further in a way that complete (infrastructural)
dikes are classified as non-ground point records (Figure 29d). Table 1 pro-
vides an oversight of the statistical results for all scenarios.

Classification of filtered and unfiltered AHN2 point cloud data into terrain and
non-terrain points

Combining the filtered and unfiltered AHN2 point cloud data, at first sight
the results appear to be nearly similar with respect the filtering of only the
filtered AHN2 point cloud data: most above-ground point records are filtered
out properly (Figure 30).

A big difference for all scenarios is an increase of the amount of points
classified as ground with approximately 60% (Table 1). When looking at a
higher scale it appears that point records reflected on small buildings and
larger buildings with flat roofs are often falsely classified as ground points
(Figure 31).

Filtered Filtered + unfiltered

Ground Non-ground % Ground Non-ground %

Forest 128 912 113 16 753 0.1 ∗ 10−3
205 230 896 128 435 855 0.38

Town 128 890 519 38 347 0.3 ∗ 10−3
203 882 641 129 784 110 0.39

City 128 632 683 296 183 2.3 ∗ 10−3
202 717 837 130 948 914 0.39

Metropolis 127 315 041 1 613 825 12.5 ∗ 10−3
201 320 742 132 346 009 0.40

Table 1: Points classified as ground and non-ground for both filtered and filtered
+ unfiltered AHN2 point cloud data for a random sample of 128 928 866

filtered points and 204 737 885 unfiltered points.
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(a) (b)

(c) (d)

Figure 29: Points classified as non-ground points by LASground for different
step size parameters. Blue colored points indicate non-ground points
with a relative lower Z-value and red colored points indicates non-
ground points with a relative higher Z-value. The gray colors represent
a gridded interpolation of a triangular irregular network of classified
ground points. (a) Forest parameter. (b) Town parameter. (c) City pa-
rameter. (d) Metropolis parameter.

(a) (b)

(c) (d)

Figure 30: Points classified as non-ground points by LASground for different
step size parameters. Blue colored points indicate non-ground points
with a relative lower Z-value and red colored points indicates non-
ground points with a relative higher Z-value. The gray colors represent
a gridded interpolation of a triangular irregular network of classified
ground points. (a) Forest parameter. (b) Town parameter. (c) City pa-
rameter. (d) Metropolis parameter.
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Figure 31: A digital elevation model stored as a triangular irregular network con-
taining classified ground point records. A number of point records are
wrongly classified as ground while being reflected on buildings.

Evaluation

Application of LASground after combining filtered and unfiltered AHN2

point cloud data does not provide a proper filtering of ground points; LiDAR

points reflected on small buildings and larger buildings with flat roofs are
often classified as ground points (Figure 31).

When using only the filtered AHN2 point cloud data basically two extreme
scenarios can be distinguished:

1. The forest scenario leads to a small amount of points that are classified
as non-ground points without a loss of significant features and;

2. The metropolis scenario leads to a larger amount of points that are
classified as non-ground points; a loss of significant features such as
dikes is the result.

For both extremes there is no significant improvement within the data set;
the forest scenario will lead to the loss of a relatively small amount of LiDAR

points and the metropolis scenario will lead to a loss of significant features
in the filtered AHN2 point cloud data. Two other scenarios (town and city)
are gradual variants in between both extreme scenarios.

LASground provides additional parameters in order to improve local fil-
tering capabilities. It can be expected that additional parameterization can
help in order to improve filtering capabilities at a local scale. The oppo-
site might happen at a lower scale; it can be expected for an one size fits
all-algorithm application of additional parameters might lead to worsened
results.

It can be concluded that none of the filtering procedures provide a sig-
nificant better product representing ground point records. For that reason
chosen is to use the filtered AHN2 point cloud data without filtering as in-
put point cloud data for the remainder of the processing pipeline for the
generation of a raster-based DEM.
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4.2.2 Preprocessing of above-ground objects

Preprocessing is needed in order to normalize of above-ground points with
respect to the underlaying ground before it is possible to classify above-
ground points. First step is the definition of the underlaying ground. With
the las2las tool, as part of LAStools, it is possible to classify the point records
within the filtered data set as ground (classification = 2):

$ las2las -i [filtered.las] -set_classification [2] -o [ground.las]

After assigning a classification to the ground point records, the second step
merges the classified ground point records with the still unclassified unfil-
tered AHN2 point cloud data with LASmerge, as part of LAStools:

$ lasmerge -i [ground.las][ unfiltered.las] -merged -o [merged.las]

With LASheight, as part of LAStools, a TIN will be generated representing
the underlaying ground and for all above-ground point records the nor-
malized height will be determined with respect to the TIN representing the
underlaying ground. This normalized height will be added to the meta data,
the original Z value of the point record will not be changed:

$ lasheight -i [merged.las] -o [normalized.las]

After preprocessing the point cloud data individual methodologies for the
classification of buildings and vegetation will be introduced in respectively
subsection 4.2.3 and subsection 4.2.4.

4.2.3 Buildings

Classification of point records as building takes place using the LASclassify
algorithm, as part of LAStools:

$ lasclassify -i [normalized.las] -planar [standard deviation]

-ground_offset [height] -o [classified.las]

As introduced in subsection 3.3.4, this classification algorithm generates con-
tours in order to define above-ground objects. The user can define which
point are part of each planar contour with the planar flag; this parameter de-
scribes the standard deviation point records can have from the planar region
they share.

Table 2 shows the statistical results for multiple planar settings. Figure 32

shows the correlation between the number of points classified as buildings
and different values of the -planar flag.

Building points Relative increase (%)

Standard deviation = 0.05 21 481 -
Standard deviation = 0.1 28 630 33.0
Standard deviation = 0.2 29 662 3.5
Standard deviation = 1.0 30 353 2.3

Table 2: Points classified as building for a random sample of 967 987 filtered points
and 2 066 287 unfiltered points from the AHN2 data set.

Figure 33 shows that the correlation between the number of building
points and the applied standard deviation is comparable with a infinite
function f (n) = 1

−n . After calculation of the limit L = limx→∞ f (n) for the
infinite function f (n), L is determined as L = 30 353 by using a logarithmic
approximation.
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(a) (b)

(c) (d)

Figure 32: Points classified as building points (yellow) by using the LASclassify tool
applying different parameters. (a) Aerial photograph. (b) Standard devi-
ation = 0.1. (c) Standard deviation = 0.2. (d) Standard deviation = 1.0.

Figure 33: Correlation between the standard deviation and the amount of LiDAR
points being classified as building for a sample data set.
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After calculation of the accessory planar value it appears that vegetation is
falsely classified as building (Figure 32d). Therefor, a 0.95 percentile value
of L is defined as an acceptable value for the classification of building point
records. A Standard deviation (SD) value of 0.1152 meter classifies this
amount of building point records. This planar value is nearly the same
as the standard planar value of the LASclassify algorithm, which is 0.1000
meter.

With the flag -ground offset the user can define an offset with respect to nor-
malized height from which point records are classified as building. Within
LASclassify this parameter is standard set to 2.0 meter what is an appropri-
ate height in most cases.

4.2.4 Vegetation

Similar as for the classification of point records as building, the classification
of point records as vegetation takes place using the LASclassify algorithm,
as part of LAStools. A description of this algorithm is given in subsec-
tion 3.3.4.
$ lasclassify -i [normalized.las] -rugged [standard deviation]

-ground_offset [height] -o [classified.las]

Introduced in subsection 4.2.3, main concept of the classification algorithm
is the generation of contours in order to define objects. Contours are defined
with the -planar flag describing the standard deviation points can have from
the planar region they share.

Table 2 shows the statistical results for multiple planar settings. Figure 32

shows the correlation between the number of points classified as vegetation
and different values of the -planar flag.

Vegetation points Relative increase (%)

Standard deviation = 0.3 1 208 072 -
Standard deviation = 0.4 1 208 071 −1.8 ∗ 10−6

Standard deviation = 0.5 1 208 068 −2.5 ∗ 10−6

Standard deviation = 1.0 1 207 242 −1.7 ∗ 10−3

Table 3: Points classified as vegetation for a random sample of 967 987 filtered points
and 2 066 287 unfiltered points from the AHN2 data set.

Figure 34 shows that there are no big visual differences observable be-
tween the different classified point cloud data products. Table 3 confirms
this; the amount of points is more or less similar using different SD values.
Plotting the correlation between the number of point records classified as
vegetation for different planar values shows that the amount of points is
quite similar up to a standard deviation of 0.8 meter (Figure 35). For larger
values of the standard deviation, the amount of points classified as vege-
tation drops relatively more. Chosen is to adopt the standard value of 0.4
meter for the planar parameter for the classification of vegetation.

With the flag -ground offset the user can define an offset with respect to
normalized height from which points are started to be classified as vegeta-
tion. Within LASclassify this parameter is standard set to 2.0 meter what is
an appropriate height in most cases.
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(a) (b)

(c) (d)

Figure 34: Points classified as vegetation points (in green) by using the LASclassify
tool applying different parameters. (a) Aerial photograph. (b) Standard
deviation = 0.4. (c) Standard deviation = 0.5. (d) Standard deviation =
1.0.

Figure 35: Correlation between the standard deviation and the amount of LiDAR
points being classified as vegetation for a sample data set.
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4.3 spatial interpolation
In section 3.4 related work with respect to spatial interpolation was intro-
duced. In this section methods for spatial interpolation will be introduced
for the individual classes defined within the filtering and classification pro-
cedure in the previous section.

In subsection 4.3.2 a combination of interpolation methods based on a
TIN, sink filling and IDW will be applied for the generation of a raster-based
height map representing a DEM.

In subsection 4.3.5 an interpolation method based on interpolation of a
TIN will be introduced for the generation of a DBM, this is a model that
contains normalized height data with respect to buildings.

In subsection 4.3.6 an interpolation method based on interpolation of a
TIN will be introduced for the generation of a CHM, this is a model that
contains normalized height data with respect to vegetation.

4.3.1 Raster resolution

In subsection 3.4.1 related work has been introduced regarding the selection
of an appropriate raster resolution; theoretically a spatial resolution between
0.23 and 0.41 meter is possible, based on the point density and the average
distance between two points within the AHN2 data set. This is higher then
the spatial resolution of all current raster-based height maps which have a
spatial resolution of 0.5 meter (see section 2.4).

Within the remainder of this section, interpolation of point cloud data to
raster data will take place with an output resolution of 0.25 meter.

4.3.2 Ground

First step for the spatial interpolation of ground data is the generation of a
TIN as described in subsection 3.4.2. The blast2dem tool can generate raster-
based height data by rasterizing a TIN derived from point cloud data via a
command prompt line:

$ blast2dem -i [normalized.las] -step [output resolution] -kill [cut -off

threshold] \\ -o [dem.tif]

Where flag -i defines the normalized point cloud data, the flag -step defines
the output resolution and the flag -o the name and location defines where
the output raster will be stored. The flag -kill defines an optional thresh-
old value based on the longest edge for the triangle; when the longest edge
transcends the value defined for this parameter the triangle will not be ras-
terized. Selection of a proper cut-off threshold is essential when rasterizing
the TIN in order to prevent the occurrence of artifacts. The not filling of
certain raster cells will lead to new holes in the raster-based height map.
In subsection 4.3.3 and subsection 4.3.4 additional procedures will be intro-
duced in order to estimate a height for certain holes.

Cut-off threshold selection

In subsection 3.4.4 it has been introduced that is inappropriate to generate
a high resolution DEM with sparsely distributed LiDAR data: any surface
generated in such a way is more likely to represent the shape of the spe-
cific interpolator used than that of the target terrain because interpolation
artifacts will abound [Liu and Zhang, 2008].
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Rasterization of a vector-based TIN is derived by a bivariate function for
each triangle in order to estimate height values at unsampled locations. Lin-
ear interpolation fits planar faces to each triangle individual leading to a
jagged appearance where it is visually possible to distinguish individual tri-
angles (Figure 36f). This is caused by discontinuous slopes at the triangle
edges and sample data points.

A cut-off threshold could be introduced that will not rasterize triangles
if the length of the longest edge for that triangle transcends a predefined
threshold value. Selection of a proper cut-off threshold value is important
in order to prevent the occurrence of artifacts when applying interpolation
based on a TIN.

Figure 36 shows samples of raster data taking into account different cut-
off threshold values. A too large cut-off threshold leads to interpolation near
building corners (see Figure 36d), where the selection of a too small cut-off
threshold leads to the presence of many small holes within the rasterized
data (see Figure 36a). It cannot be expected that other interpolation methods
will provide a better height approximation of these smaller holes.

Chosen is to apply a cut-off threshold value of 2 meter (Figure 36c). This
cut-off threshold value leads to the disappearance of most artifacts that
would be present without the implementation of a cut-off threshold value
(Figure 36e). The holes that appear when selecting a smaller threshold value
are holes do not have clear artifacts in comparison with a scenario using no
threshold value.

Filling remaining holes

The implementation of a proper cut-off threshold solves the artifacts that
appear by interpolation based on a TIN. After introduction and implementa-
tion of a cut-off threshold value, rather than the occurrence of artifacts, the
interpolated raster-based height maps contains holes (no-data values). In
general, three kinds of sources for the occurrence of holes can be defined
within a point cloud data set of ground points:

• Water bodies

• Building footprints

• Local deviations

Figure 37 shows the correlation between sparser LiDAR point densities lo-
cated near building footprints and water bodies becomes clearly visible.
Van der Zon [2011] describes multiple reasons for local deviations within
the AHN2 data set:

• Missing data next to high buildings and under trees

• Lower point densities due to the reflection properties of LiDAR beams
with respect to on black surfaces like asphalt and roof tiles

These errors are not specific for the AHN2 data set but can be expected for all
point cloud data sets obtained by topographic LiDAR. Within the remainder
of this section methods will be proposed for the filling of holes for water
bodies using sink filling (subsection 4.3.3) and for building footprints and
local deviations using IDW interpolation (subsection 4.3.4).
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(a) (b)

(c) (d)

(e) (f)

Figure 36: Influence of different cut-off threshold values after rasterization a triangu-
lar irregular network constructed from point records classified as ground.
(a) Aerial photograph (b) Cut-off threshold = 0.5 meter. (c) Cut-off thresh-
old = 1 meter. (d) Cut-off threshold = 2 meter. (e) Cut-off threshold = 4

meter. (f) No cut-off threshold.
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(a) (b)

Figure 37: Correlation between sparse point record distributions and the presence
of building footprints and water bodies. (a) Aerial photograph. (b) Point
records classified as ground.

4.3.3 Sink filling

Due to the characteristics of topographic LiDAR it is not possible to extracting
water bodies directly (see section 2.2). A method is applied where potential
water bodies are derived based on determination of slope within the partly
interpolated DEM generated in subsection 4.3.2. This method does not detect
water itself, it detects areas with a high probability of the presence of water.

Slope polygon generation

First step is to generate a slope map based the input DEM generated in sub-
section 4.3.2; this is done with the the GDAL command gdaldem:

$ gdaldem slope [dem.tif] [slope.tif]

Slope is an analysis method to measure the local steepness of a terrain
by comparing the elevation for each pixel with respect to adjacent pixels.
Within this methodology the slope is calculated for each raster cell with a
kernel size of 3 x 3 pixels. The output is a raster file where each pixel value
represents the degree of steepness with its neighboring cells. Figure 38b
shows that slope is a promising parameter that correlates clearly with the
presence of a water body. In order to detect potential areas for the presence
of water three criteria need to be fulfilled:

• An area does a minimum degree of slope

• An area does have a certain size

• An area does have a certain ratio between size and perimeter

For the Netherlands, which can be considered as flat in general, a slope
of 15 degrees can be considered as minimal threshold for the detection of
water bodies. Areas that satisfy all these criteria will be polygonized into
individual slope polygons.
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(a) (b) (c)

Figure 38: Calculating a slope-based raster file from a digital elevation model. (a) A
digital elevation model. (b) A slope-based raster file extracted from the
digital elevation model. White colors represents raster cells with high
slope, black raster cells represent areas with lower degrees of slope. (c)
Slope polygons (red).

Boundary representation

The slope polygons that are created in the previous step will be used to
detect the location and value of the raster cell containing the lowest height
value within each individual slope polygon. A Boundary Representation
(B-REP) will be generated; this is a geometric object that is represented by the
union of a topological model, which describes the topology of the modeled
object and an embedding model, which describes the embedding of the object
in 2D Euclidean space. Application of a B-REP based on the boundaries of
a polygon can be approximated within a raster file by ’masking’; this is
a process that transforms polygon coordinates to pixel locations. Given a
masked raster it is possible to determine the location and value of the raster
cells of interest. It can happen that multiple raster cells have the same value;
if so, then all raster cell locations with such a value will be stored.

When masking raster data, the masked data will be stored in a it local
coordinate system. Where the locations of the raster cells of interest are in
real world coordinates it is needed to store extra parameters for each mask:

• Scale

• Grid dimension

• Raster resolution

• Translation values

The scale defines the size of the grid which is determined by the largest
length of the model in either the XY direction, the grid dimension defines
the number of raster cells needed to fill the length of the model scale and the
raster resolution defines the dimensions of a raster cell. The translation val-
ues describe the distance of the upper left corner of the mask its bounding
box with respect to the upper left corner of the raster file.
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After determination of the location and value of raster cells with the low-
est value within a mask, a reverse conversion is needed in order to define
their real world coordinates. Equation 5 describes how to obtain these real
world coordinates:

x = scalex ∗
i + 0.5

dimensionx
+ translatex (5a)

y = scaley ∗
j + 0.5

dimensiony
+ translatey (5b)

Where translate describe the distance the distance of the upper left corner of
the mask its bounding box with respect to the upper left corner of the raster
file. Dimension defines the resolution of the grid. Scale dimensions can be
determined by:

scalex = dimensionx ∗ Raster cell size (6a)

scaley = dimensiony ∗ Raster cell size (6b)

A list of real world raster cell locations and values within a mask is obtained
now. Based on this information, the ∆heightmax within a mask can be deter-
mined. This information is the starting point for detecting areas with a high
probability of the presence of water.

Breadth-first search

After obtainment of the initial locations for the detection of areas with a
high probability for the presence of water it is needed to search for other
raster cells that do have similar characteristics, in order to increase the scale
of information from cell level to area level.

A method in order to achieve this is to make the data relational within a
tree or graph data structure. These graph data structure consist of a finite
and possibly mutable set of nodes. A method to store raster data in a graph
structure is by translating the data into a 2D array; a systematic arrangement
of nodes in rows and columns. The array stores basically information with
respect to the value for each node. In case it is needed to store additional
information besides a (height) value each node needs to be rewritten so that
it is capable to store extra information. algorithm 4.1 shows a methodology
to rewrite an array in order to store additional data for each node.

Pu and Zlatanova [2005] introduce an overview of different search algo-
rithms. One search algorithm is Breadth-first search (BFS) which was initially
invented as a method to find the shortest path out of a maze [Skiena, 1998]
and later expanded as a wire routing algorithm [Lee, 1961]. The BFS algo-
rithm starts at the tree root or some arbitrary node of a graph and explores
the neighbor nodes first, before moving to the next level neighbors, and then
their successors, and so on till it finds the goal node. Rather than for exam-
ple a depth-first algorithm a BFS explores more close by nodes first before
exploring farther located nodes.



62 methodology

Algorithm 4.1: Rewriting array algorithm
Input: An array Am representing height values from raster file for

each node within the array
Output: An array An representing height, positional values for each

node within the array and also information whether the
node is visited by a search algorithm

1 create array An of 0s with equal shape as Am

2 for i, row in enumerate(Am) do
3 for j, z in enumerate(row) do
4 An.value = Am[i][j];
5 An.position = Am(i,j);
6 An.visited = False

Within this context there is no goal node, the BFS algorithm will search for
adjacent nodes that have certain characteristics that they can be classified
as comparable. When there are no more adjacent nodes that needs to be
tested the algorithm is finished; algorithm 4.2 shows the pseudo code for a
BFS algorithm.

Algorithm 4.2: Breadth-first search
Input: An array An described in algorithm 4.1, a starting Raster cell

c and a height difference ∆h
Output: A list of raster cell coordinates reachable from c labeled as

water

1 create empty queue Q;
2 create empty list L

3 initial height H = c.value

4 Q.append(c)

5 while Queue is not empty do
6 u = Q.pop(0);
7 L.append(u.coordinate)

8 for each node n that is adjacent to u do
9 if n < H + 0.5 ∗ ∆h then

10 n.visited = True

11 if n.visited = False then
12 n.visited = True;
13 Q.append(n)

Another criterium that algorithm 4.2 will test is whether the height of
each adjacent node does not transcend the ∆heightmax that is determined
within the mask. If so, it is assumed that this node does have a higher prob-
ability being land rather then water. By lowering ∆heightmax of percentage
(e.g. 50%) smaller parts of water courses surrounding the water body will
be classified as areas with a high probability of the presence of water. Ap-
plication of this parameter assumes that there is a correlation between the
presence of water and height within the masked area.
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Further testing

Where the input DEM contains many holes, it is possible to use this charac-
teristic for the classification of two classes of water bodies:

• Smaller water bodies that mainly consist out of data raster cells

• Larger water bodies that mainly consist out of no-data raster cells

After determining areas with a high probability of the presence of water
by applying a BFS algorithm additional testing is needed; the BFS algorithm
detects many areas falsely. For further testing, some statistics will be calcu-
lated for each output of the BFS algorithm:

• Coverage (with respect to the raster file);

• Percentage of raster nodes with a no-data value within the output of
algorithm 4.2

• Standard deviation of the output of algorithm 4.2

These statistics will provide the tools to test each output of algorithm 4.2
deeper. All output is tested if they meet the following conditions:

• The lowest value that is detected by the BFS algorithm should not be
significant lower than the initial detected lowest height

• If the output does have a certain coverage (e.g. > 10%), the standard
deviation is supposed to have a certain value (e.g. < 0.1 meter)

Small water bodies

Small water bodies are classified as water bodies where a maximum of 5%
of the output of algorithm 4.2 are raster nodes with a no-data value. If so,
the output is tested if it meets the following condition:

• The areas with a high probability of the presence of water should not
have a too high standard deviation (e.g. > 0.5 meter) when the coverage
of a water body exceeds a certain value (e.g. > 5%)

If the output meets this condition all raster nodes will be qualified as nodes
with a high probability of the presence of water.

Large water bodies

Large water bodies are classified as water bodies where at least 5% of the
output of algorithm 4.2 are raster nodes with a no-data value. For these
data tested is if it meets the following conditions:

• The areas with a high probability of the presence of water should have
a certain minimum size

• The lowest point that is detected by the BFS algorithm should not be
significant lower than the initial detected ’lowest’ height

• In case of data with a high (> 50%) percentage of raster nodes with a
no-data value the standard deviation is should not be too high.

If the output meets all of these conditions only the raster nodes with a no-
data value will be qualified as nodes with a high probability of the presence
of water.
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4.3.4 Filling building footprints and local deviations

After the filling of holes identified as water bodies, holes remain within the
rasterized ground data that are caused by building footprints and local devi-
ations. These holes will be filled by using IDW interpolation. gdal fillnodata.py
is a Python script that fills holes within raster files by estimating heights us-
ing IDW interpolation using the heights of surrounding raster cells with a
known height value:

$ gdal_fillnodata.py [input.tif] [output.tif] -md [value] -si [value]

Holes are identified as raster cells with a no-data value within the input
raster using an image mask. Valid raster cells containg height data that can
be used for the interpolation are searched in four directions (up, down, left,
right). With the flag -md it is possible to define a maximum search distance.

With the flag -si an average filter can be applied on the interpolated pixels
to smoothen potential artifacts in the raster output. The average filter has
a kernel size of 3 x 3 pixels and is applied iteratively. However, due to a
problem in the current code this option should be avoided until a fix has
been provided [McInerney and Kempeneers, 2015].

4.3.5 Buildings

For the generation of a DBM interpolation should be limited to the interior of
the building outline. This makes the concept of edge-constrained interpola-
tion relevant. A method for designing these ’constraints’ is by determinion
of a buildings’ outer boundary. In this subsection two methods for the ex-
traction of building boundaries will be compared:

• Extracting building boundaries by LiDAR data

• Extracting building boundaries by external 2D geodata sets

The first method extracts building boundaries directly from classified point
cloud data where the second method extracts building boundaries indirectly
using external 2D geodata sets.

Extracting building boundaries by LiDAR data

For the determination of building boundaries from point cloud data only
those point records are relevant that are classified as building (see subsec-
tion 4.2.3). A tool to extract building boundaries is LASboundary, as part of
LAStools. LASboundary reads LiDAR point records and computes a bound-
ary polygon for the points:

$ lasboundary -i [classified.las] -keep\_class [class_num] -holes

-disjoint -concavity [value] -o [buildings.shp]

The flag -i defines the input point cloud data, the flag -keep class defines the
class for which the boundary should be determined (buildings = class 6).
The flag -holes defines whether a polygon can have interior holes. Adding
the flag -disjoint will produce multiple hulls in order to generate disjoint
polygons for individual buildings. Definition of the flag -concavity defines
a maximum search distance for each separate hull; for example, a concavity
value of 1 meter, meaning that voids with a distances of more than 1 meter
are considered as the exterior.
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(a) (b)

(c) (d)

Figure 39: Visualization of disjoint polygons after the application of multiple concav-
ity values using the LASboundary tool. (a) Aerial photograph. (b) Con-
cavity value = 0.5 meter. (c) Concavity value = 1.0 meter. (d) Concavity
value = 2.0 meter.

Figure 39 shows the output of LASboundary using different concavity val-
ues. Selection of a relative small concavity value will lead to gaps and spikes
within building polygons due to a too low point density (Figure 39b). Se-
lection of a too large concavity values will lead to a large generalization of
polygons or even generate polygons covering multiple buildings, if located
close to each other (Figure 39d). Chosen is to adapt a concavity value of
1.0 meter, this value will prevent most of the above introduced problems
(Figure 39c).

Besides the detection of a building its outer boundary it can also happen
that a building contains a non-build area within its interior (Figure 40a).
In such a situation there should also be a hole within the interior of the
building polygon. With LASboundary it is possible to add these holes to a
building polygon as defined in the previous step (Figure 40c). Hole defini-
tion applies the same concavity value, no separate value can be defined.
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(a) (b) (c)

Figure 40: Adding holes within the interior of a building polygon with the LAS-
boundary tool. (a) Aerial photograph. (b) A polygon representing the
outer boundary of a building. (c) A polygon representing the outer
boundary, including an interior hole within a building polygon.

Extracting building boundaries by external geodata sets

For the Netherlands, there exist two open data sets containing building
information: TOP10nl and BAG. Details about both data sets and a qual-
itative comparison are described in Appendix B. Chosen is to make use
of the BAG data set because it does have a higher positional accuracy. A
method how to obtain a recent version of the BAG data set and how to
process and store the data set in a spatial database is described at http:

//www.nlextract.nl/home.
The BAG and the AHN2 data set are obtained at different moments; there

is a temporal difference between the dates of collection of the data sets. In
order to have information about buildings that were only present at the mo-
ment of data acquisition of both data sets it is needed to know the temporal
accuracy for both data sets.

The BAG data set contains information about the year of construction
(’bouwjaar’) resulting in a temporal accuracy of 1 year.

For the AHN2 data set it is possible to check the public header block in-
formation of the point cloud data in order to obtain the file creation day
and year (see section 2.2). After checking this file creation day for four data
samples it appears that three of them are created within two days. It can be
assumed that the time stamp is probably not related to the data collection
date, but to the date that data was processed. Date of collection for the
AHN2 data set is differs over multiple areas (Figure 41) and since only the
year of collection is known theoretically the temporal accuracy is between
1 day and 1 year. Practically the AHN2 data set provide information with
a temporal accuracy of 1 year, assuming no errors within the data set with
respect to the year of collection.

After considering the temporal accuracy of both data sets, it is possible to
extract building information from the BAG data set. All buildings with a year
of construction that is older than the year of collection for the AHN2 data set
for the particular area are clipped from the database using a SQL-query:

$ ogr2ogr -skipfailures -clipsrc [xmin] [ymin] [xmax] [ymax] [output.shp]

"PG:dbname =[ localhost] user=[user] password =[pw] dbname =[ dbname ]"

-sql "SELECT * FROM pandactueel WHERE bouwjaar < [AHN2]"

The output contains polygons representing individual houses (Figure 42b).
In order to interpolate the building points it is needed to have the outer
boundary of each building block, for that reason a dissolve operation is
applied in order to obtain polygon data representing the outer boundary of
individual building blocks (Figure 42c).

http://www.nlextract.nl/home
http://www.nlextract.nl/home
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Figure 41: Gathering years of the AHN2 point cloud data [Van der Zon, 2011]

Comparison

When looking at the building boundaries extracted from the classified LiDAR

data most boundaries are detected well (Figure 42b). Nevertheless, detected
building boundaries can appear fuzzy, contain false holes within building
structures and some buildings are detected only partly or sometimes even
completely not at all (Figure 42e). This in line with the conclusion of Tay-
lor et al. [2007], who states that LiDAR data is not dense enough to model
accurately sharp surface discontinuities like building boundaries.

Despite this, LiDAR data could be used as an indicator for the detection of
building boundaries in case this data is wrongly present or missing within
external 2D geodata sets. When taking a closer look at the BAG data set it ap-
pears that not all building boundaries are detected completely or sometimes
even completely (Figure 42e).

Overlaying building boundary data extracted from LiDAR data with build-
ing boundaries extracted from the BAG data set shows that LiDAR data de-
tects roofs of building structures such as carports and barns that are not
present within the BAG data set. These objects are not included because of
the definitions of the BAG data set2 (see Appendix B). LiDAR data also detects
inaccurate and missing data within the BAG data set (Figure 42f).

Doing the opposite shows that the BAG data is capable to detect building
boundaries that are not detected by LiDAR data (Figure 42f). Where building
boundaries obtained by LiDAR can be wobbly due to the characteristics of
LiDAR, the building boundaries from the BAG data set are represented with
a higher positional accuracy. Also falsely holes detected within building
structures when using LiDAR data are not present in the BAG data set.

It can be concluded that both methods are complementary with respect to
each other. For this reason both methods will be combined for the detection
of building outlines.

2 The smallest functional and architectural-constructive, self contained unit that is directly and
permanently connected to the ground which is enter-able and lockable [BAO, 2013].
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(a) (b)

(c) (d)

(e) (f)

Figure 42: Visual comparison of different methods of building boundary extraction.
(a) Aerial photograph. (b) Building polygons extracted from the BAG
data set. (c) Dissolved building polygons. (d) Building polygons ex-
tracted from LiDAR data. (e) Dissolved building polygons extracted from
the BAG data set overlaid by building polygons extracted from LiDAR
data. (f) Building polygons extracted from LiDAR data overlaid by dis-
solved building polygons.
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Edge-constrained interpolation

After extraction of building boundaries in twofold both shapefiles will be
dissolved. In order to deal with falsely detected holes during the extraction
of building boundaries from LiDAR data, only holes within the BAG data set
will be used to indicate holes within buildings (e.g. patio’s).

Next step is a clipping operation on the classified point cloud data that
has been defined in subsection 4.2.3. Within this process all points classified
as vegetation are dropped. Point data that is classified as noise is kept; many
points are falsely classified as noise where these points should have been
classified as points reflected on buildings. For this reason there might be
potential information within the noise points (Figure 43). Noise points will
be further processed when a point is located within the interior of a building
polygon from the BAG data set. This operation takes place with LASclip, as
part of LAStools:

$ lasclip -i [classified.las] -poly [dissolved.shp] -drop_class

[class_number] -o [clipped.las] -v

Where the flag -i indicates the input point cloud that will be clipped, the flag
-poly indicates the shapefile that will be used to clip the point data. The flag
drop class indicates the point cloud classes that needs to be dropped during
the clipping procedure and the flag -o indicates the location and name of
the output file. The flag -v indicates that the interior of the shapefile defined
with the flag -poly needs to be clipped.

After clipping the point cloud data it is needed to normalize the height
of the point data with respect to the underlaying DEM in order to generate a
DBM. For that reason LASheight will be used another time:

$ lasheight -i [clipped.las] -replace_z -o [normalized.las]

Application of LASheight differs from the method described in subsection 4.2.2,
adding the flag -replace z will overwrite the original Z-coordinate and re-
place it with the normalized height for each above-ground point record.

(a) (b) (c)

Figure 43: The potential of noise points during the generation of a digital building
model. (a) Aerial photograph. (b) Clipped building point data (yellow).
(c) Clipped building (yellow) and noise (black) point data located within
geometry of the BAG data set.

In subsection 2.3.1 a number of sources for errors within the AHN2 point
cloud data have been introduced, resulting in raster cells containing height
values that are mostly lower with respect to the real height. A two-step
manipulation of the point cloud data will be performed in order to remove
point records that cause these errors:

• Thickening the point cloud

• Thinning the point cloud
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The first step is a thickening of the point cloud data. In order to remove
point records with a lower value with respect to the real height, information
from neighboring points can be used in order to eliminate such lower point
records. For all points within a building polygon, each point will be dupli-
cated 8 times in a discrete circle with a small radius around every original
point. In this way outliers are not filtered, they are covered by artificial point
records that originally reflected on the nearby surface of the building.

The second step is a thinning of the thickened point cloud. A virtual grid
is defined and for each cell the highest point record will be selected. This
record will replace all points within the raster cell by one located in the
center of the virtual grid cell (Figure 44b). Both these steps can be applied
with LASthin, as part of LAStools:

$ lasthin -i [normalized.las] -step [step size] -highest -subcircle

[radius] -o [manipulated.las]

Where the flag -i defines the input point cloud, the flag -highest indicates that
the highest point record should remain for each virtual grid cell with a cell
size that is defined with the flag step. The flag -subcircle defines the radius
of the artificial duplicates for each point record and the flag -o determines
the name and location of the cleaned output point cloud file.

(a) (b)

Figure 44: Point cloud manipulation. (a) Original point cloud data. (b) Point cloud
data after, thickening and thinning by selecting the highest LiDAR for
each raster cell.

The point cloud data after manipulation will provide better input data for
spatial interpolation. In section 3.4 it is introduced that interpolation based
on a TIN has the potential to generate height data with respect to buildings in
a proper way because there will not take place any smoothed by definition.
For this reason interpolation based on a TIN has the capability to represent
complex building segments in a correct and non-smoothed way. By using
the shapefile data representing building boundaries it possible to generate
height data for only those raster cells that are located within the interior of a
building polygon. In this way a strategy is applied that is comparable with
the construction of a constrained DT.

Application of interpolation based on a TIN using point records that are
classified as building and noise (Figure 45b) accomplish a higher coverage
with respect to the usage of only those point records that are classified as
building point records (Figure 45a).
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(a) (b)

Figure 45: Application of interpolation based on a triangular irregular network. (a)
Using only point records classified as building points. (b) Using both
point records classified as building and noise points located within build-
ing geometry of the BAG data set.

By increasing the scale of the DBM some more interesting comparisons can
be made. The applied classification algorithm described in subsection 4.2.3
lacks to determine buildings 100% correctly. This results in an increasing
degree of misclassified point records when the complexity of a building
increases. For this reason, point records reflected on small building compo-
nents such as bay windows, dormers and small veranda’s are often not clas-
sified as building. Figure 46a shows that the interpolation of only building
point records, without the application of point cloud manipulation results
in a poor representation of height data within a DBM.

When expanding the input data with point records classified as noise lo-
cated within building geometry of the BAG data set it appears that a higher
coverage of raster data for buildings is achieved. Despite the higher cover-
age, the height data does have a fuzzy appearance, especially along building
boundaries (Figure 46b). This height data is similar to the data related to
buildings within the currently existing raster-based height maps introduced
in subsection 2.4.1. The presence of fuzzy height data is related to errors
during the collection of the AHN2 data set.

The addition of point cloud manipulation steps as introduced on the pre-
vious page leads to raster data having a smoother appearance and less arti-
facts (Figure 46c). Fuzzy height data within the previous examples caused
by unwanted point records are mostly covered by artificial point records
(thickening of the point data) and a removal of the original erroneous point
records (thinning of the point data).

(a) (b) (c)

Figure 46: Comparison of raster data of different digital building models. (a) Using
classified building point cloud data. (b) Using point records classified
building and noise points located within geometry of the BAG data set.
(c) Using classified building and noise point cloud data located within
geometry of the BAG data set combined with point cloud manipulation.
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Figure 47: Diagram of a pit-free algorithm methodology [Khosravipour et al., 2014].

4.3.6 Vegetation

The first step in order to generate a DBM is to normalize the height of the
point data with respect to the underlaying DEM in order to generate a DBM,
within this procedure all points being classified different then vegetation are
dropped. For that reason LASheight will be used again:

$ lasheight -i [clipped.las] -replace_z -keep_class [class_number]

-o [normalized.las]

Application of LASheight differs from the method described in subsection 4.2.2,
by adding the flag -replace z will overwrite the original Z-coordinate for each
above-ground point record with the normalized height with respect to an
underlaying DEM. Addition of the flag -keep class keeps only point records
classified as vegetation.

In subsection 3.4.3 it is introduced that the presence of data pits is a big
challenge within the generation of CHMs. In order to address this issue,
Khosravipour et al. [2014] introduce the concept of partial CHMs; in an it-
erative process multiple CHMs are generated excluding all returns above an
increasing height above an underlaying DEM (Figure 47). Each partial CHM

represents only some higher parts of the vegetation. ASPRS [2013] distin-
guish three classes of vegetation:

• Low vegetation (0.5 m <height ≤ 2.0 m)

• Medium vegetation (2.0 m <height ≤ 5.0 m)

• High vegetation (5.0 m <height)

A similar layering system can be used for the construction of partial CHMs
after rasterization of a TIN constructed from point records classified as vege-
tation. In order to interpolate vegetation point records reflected on the same
tree crown, a cut-off threshold value should be larger then the average point
spacing, but smaller than the space that separates individual trees. A cut-off
threshold value of 1.5 meter is applied based on the LiDAR point density:

$ blast2dem -i [normalized.las] -step [step_size] -kill -o

[interpolated.tif]

Where flag -i defines the normalized point cloud data, the flag -step defines
the output resolution and the flag -o the name and location where the out-
put data will be stored. The flag -kill defines a threshold value based on
the longest edge for each triangle; when the longest edge of the triangle
transcend the kill-value the interior of the triangle will not be rasterized.
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For the first partial CHM (CHM00), all LiDAR point records classified as veg-
etation are used for construction (Figure 48b); this is a standard CHM that
other researchers typically generate from first return LiDAR point records
[Hyyppä et al., 2008]. As second, CHM(CHM02) is constructed by including
all point records classified as vegetation having a normalized heights of 2

meters or more with respect to the underlaying ground (Figure 48c). Point
records with a normalized height higher then 5 meters are used in order to
generate the third CHM (CHM05, Figure 48d). The fourth CHM (CHM10) and
fifth acchm (CHM15) are constructed from point records having normalized
heights of respectively at least 10 (Figure 48e) and 15 meter. This process
is continued iteratively with threshold intervals of 5 meter until the highest
normalized vegetation points are lower then the threshold value. After gen-
eration of the partial CHMs they are merged into one CHM (Figure 48f). This
CHM preserves the morphological structure of individual tree crowns better
having less data pits in comparison with the first-return CHM (Figure 48b).

(a) (b)

(c) (d)

(e) (f)

Figure 48: Canopy height model generation. (a) Aerial photograph. (b) CHM00. (c)
CHM02. (d) CHM05. (e) CHM10. (f) Merged canopy height model.
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4.4 post processing
In section 3.5 related work regarding to post processing is introduced. In
a raster-based context, post processing is a set of operations that can be
applied on the generated raster data in order to improve its quality and use-
ability. Processing steps that will be applied in this section are resampling
in subsection 4.4.1, smoothing of the data in subsection 4.4.2 and merging
of the tiles generated in section 4.1 in subsection 4.4.3.

4.4.1 Raster resampling

Final application of this thesis is a comparison of the output data generated
according to the methodology described within this chapter with currently
existing raster-based height maps introduced in section 2.4. For a proper
comparison it is required that the raster data does have an equal raster
resolution. Where it has been shown in subsection 4.3.1 that it is possible to
generate data at a higher resolution, two strategies can be applied in order
to achieve an equal resolution as currently existing height maps do have:

• Direct interpolation of data at the required output resolution

• Indirect interpolation of data at the highest possible resolution and
resampling of the data to the required output resolution

Within this subsection both methods will be applied and compared.

Direct interpolation

When directly interpolating the LiDAR data at the required output resolution,
topographic features smaller then the DEM resolution will be suppressed and
smoothened during the interpolation process (Figure 36a).

(a)

(b) (c)

Figure 49: Digital elevation model generated by gridded interpolation based on a
triangular irregular network. (a) Aerial photograph. (b) 0.5 meter resolu-
tion. (c) 0.25 meter resolution.
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Indirect interpolation

In subsection 4.3.1, the second strategy is applied for the generation of
a raster-based height data having a spatial resolution of 0.25 meter (Fig-
ure 49c), resampling can be one with gdalwarp, as part of GDAL:

$ gdalwarp -s_srs "EPSG :28992" -tr [xres} [yres] -dstnodata [val]

-r [resampling method] [input.tif] [output.tif]

Where the flag -s indicates the spatial reference system and the flag tr the
resolution in the x- and y-axis. The flag -dstnodata indicates the value that
needs to be assigned to new raster cells for which no height can be deter-
mined and the flag -r indicates the resampling method. In subsection 3.5.1
it is described that the resampling methods bilinear and cubicspline result in
smoother results when resampling the raster data.

(a) (b)

Figure 50: Indirect interpolation. (a) 0.5 meter resolution raster data after bilinear
resampling. (b) 0.5 meter resolution raster data after cubicspline resam-
pling.

Figure 50 shows the down-sampled raster data after applying a bilinear
resampling (Figure 50a) and cubic spline resampling procedure (Figure 50b).
Visually there does not seem to be that much difference at first instance;
some degree of smoothness is perceptible near the overpass of the bikepath.

Comparison

When subtracting the bilinear resampled raster data from the direct inter-
polated data, the difference is near-random distributed applying a bilinear
resampling method (Figure 52). The differences in height is at centimeter
level (−0.012 < ∆hmax < 0.012 meter). Figure 51a indicates that the height
of raster cells representing the overpass are higher value (white), where
part that belong to the tunnel have a lower value after resampling (black). It
can be concluded that a better representation of the situation is achieved by
bilinear resampling in comparison with direct interpolation.

When subtracting the cubicspline resampled data from the direct inter-
polated data a correlation is visible between the height difference and both
models (Figure 51b). Features can be distinguished in the subtracted data,
this indicates that, rather than smoothing, this resampling method also ap-
plies a geometrical shift. Height differences are at centimeter level but
larger in comparison to bilinear resampling (−0.030 < ∆hmax < 0.031 meter)
which indicates a higher degree of smoothing in comparison to bilinear re-
sampling.
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(a) (b)

Figure 51: Difference between directly interpolated raster data and indirect interpo-
lated data after resampling. (a) Difference between directly interpolated
raster data and indirect interpolated data after bilinear resampling. (b)
Difference between directly interpolated raster data and indirect interpo-
lated data after cubic spline resampling.

(a) (b)

Figure 52: Distribution of height differences between direct interpolation and indi-
rect interpolation using different resampling methods. (a) Bilinear resam-
pling. (b) Cubicspline resampling.

The distribution of the height difference between the direct interpolated
model and both bilinear as well as cubic spline resampling is Gaussian (Fig-
ure 52)

It has been shown that some degree of improvement can be achieved
by applying by interpolation of the data at the highest possible resolution
and resampling of the data to the required output resolution. Especially for
complex situations, where direct interpolation provides less smooth looking
raster data, it has been shown in this subsection that resampling is capable
to process the data in a smooth way. This is interesting, especially for the
application of complex objects such as houses.

Both methods perform some degree of raster smoothing and for that
reason, the selection of the resampling method will take place in subsec-
tion 4.4.2.
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4.4.2 Raster smoothing

In subsection 3.5.2 it has been introduced how smoothing of raster data is
beneficial, whereas smoothing also can lead to the loss of real tpographic
information within a DEM or DSM.

In the previous subsection it has been proved that resampling has the
potential to generate smoother data; a generalization of raster data with a
higher resolution takes place in order to retrieve raster data at the required
(lower) resolution. Within this method, some degree of smoothing is will
take place.

Selection of a best resampling method is impossible; [Li et al., 2011] states
that no single values of area and depth thresholds are best in all cases. For
this reason it is chosen to apply the bilinear resampling method: a lower
degree of smoothing is applied in order to generate resampled data with
a relative lower degree of smoothness. By selecting bilinear resampling
there will not be a geometrical shift, which has been indicated when apply-
ing cubicspline resampling. Application of bilinear resampling makes it is
possible to smooth un-autocorrelated errors such as numerous small depres-
sions. It is expected that the degree of smoothing will not lead to excessive
smoothing.

4.4.3 Virtual raster generation

Final post-processing step is to merge the overlapping tiles that are created
by pipelining the data as first step within the processing methodology as
treated in section 4.1. In order to merge the small-scale data, a VRT will be
generated from all overlapping tiles, in subsection 3.5.3 the advantages of
the creation of a VRT above the creation of mosaic images are explained.

Besides the composition of large-scale data from small scale data, the
following steps will be applied additional within the generation of a VRT:

• Removal of buffers

• Geo referencing of the raster data

This can be applied with gdalbuildvrt, as part of GDAL:

$ gdalbuildvrt -a_srs "EPSG :28992" -te [xmin] [ymin] [xmax] [ymax]

[output.tif] [input.tif]

Where the flag -a srs indicates the spatial reference system and the flag -te
the boundary of the original convex hull in order to remove the buffer.

Figure 53 shows the difference between a set of non-overlapping tiles
(Figure 53a) and the same raster data represented in a overlapping VRT af-
ter removal buffered data(Figure 53b); near the tile boundaries jumps in
height/color are clearly visible, both because coloring takes place for each
tile separately, but also because of edge effects due to bad interpolation near
tile boundaries. After the creation of a VRT, visualization of raster data will
be applied in a uniform way.
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(a) (b)

Figure 53: Virtual raster generation. (a) A virtual raster consisting of non-
overlapping tiles. (b) A virtual raster consisting of overlapping tiles after
the removal of buffered data.

4.5 raster visualization

In the final part of the methodology visualization of the raster data will
be treated. In section 3.6 related work was introduced with respect to raster
visualization. In the first part of this section a methodology will be proposed
in order to improve the visualization of the raster data. Within the scope of
this thesis raster visualization will be applied in order to support a visual
inspection of the raster data, similar as applied by Luethya and Stengeleb
[2005] introduced in subsection 3.6.4. In the second part of this section a
method regarding multi-scale representation of raster-data is proposed.

4.5.1 Hypsometric tinting

Hypsometric tints are colors used to indicate elevation. Standard raster data
is visualization based on singleband gray values; high values are near-white
and lower values are near-black (Figure 54b). Applying hypsometric tinting
makes it possible to apply another color schema and specify which color
need to represent certain heights. In this way a producer can control the
color schema and produce maps with better accessible data (Figure 54c).

(a) (b) (c)

Figure 54: Calculating a slope-based raster file out of a digital elevation model. (a)
An aerial photograph. (b) A raster image visualized with singleband gray
colours. (b) A raster image visualized with hypsometric tints.
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4.5.2 Hill shading

Hill shading creates an effect that provides an optical relief for cartography.
With gdaldem, as part of GDAL, it is possible to generate hill shadings based
on raster-based height data:

$ gdaldem hillshade [input.tif] [output.tif] -z [value] -s [value]

-az [value] -alt [value] -of GTiff

Where the flag -z indicates the vertical exaggeration used to pre-multiply
the elevations and the flag -s the ratio of vertical units to horizontal. The
flags -az and -alt indicate respectively the azimuth and altitude of the light,
in degrees. The flag -of indicates the output format.

Figure 55b shows an hill shade image based on the height data generated
within this thesis. Figure 55c shows how a combination of hypsometric
tinting and a hillshade image is capable to improve the visualization of
raster data.

(a) (b) (c)

Figure 55: Calculating a slope-based raster file out of a digital elevation model. (a)
An aerial photograph. (b) A hill shade image generated from raster-based
height data. (b) A hill shade image overlain with hypsometric tining
based on raster-based height data.

4.5.3 Image overview generation

In subsection 3.6.3 related work has been introduced with respect to the
visualization of large-scale raster-based data. Where the scale increases the
efficiency of the raster-based data decreases. Image overviews are down-
sampled versions of the original high scale raster data. The concept of image
pyramids combines these image overviews with the generation of tiles.

Due to the selection of a tiling-based method for the creation of a pipeline
as introduced in section 4.1 implementing image overviews is preferred
with respect to the generation of an image pyramid since tiles are already
available. Image overview generation will take place on the individual tiles,
rather than the virtual raster described in subsection 4.4.3

With gdaladdo, as part of GDAL, overview images can be built. No new
files need to be built, the overviews can be included in the current available
tiles:
$ gdaladdo -r [resampling method] [input.tif] [overview_level_2 ^1]

[overview_level_2 ^2] [overview_level_2^X]

Where the flag -r indicates the resampling method. A number of image
overview levels can be added by the user in order to define the number of
image overviews and their level, typical image overview levels can be 2 4 8

16. In subsection 3.6.3 it is introduced that bilinear interpolation is a good
and fast method for continuous data, such as elevation.





5 IMPLEMENTAT ION & RESULTS

In section 5.1 the implementation of the methodology that is introduced
in chapter 4 will be described. Test data sets that will be introduced in
section 5.2 and in section 5.3 a validation of the output of this methodology
will be provided for these test data sets. In section 5.4 a quality assessment
will take place by assessing the output of the methodology within this thesis
with current raster-based height maps introduced in chapter 2.

5.1 implementation
Implementation of the methodology that is described in chapter 4 is applied
in a number of Python scripts. Additional, there is made use of the Python
packages GDAL, OGR, OSR, Numpy, Image and subprocess. All work related
to point cloud data is done with LAStools and all work with respect to visu-
alization is done with QGIS.

5.2 test data sets
Four sample areas of 2 x 2 kilometer with different terrain characteristics
are selected in order to validate and assess the quality of the developed
methodology under different circumstances:

• Dronten, a rural town in the late 1950’s drained province Flevoland.
The landscape in this area is famous for its straight lines (Figure 56a).

• Kerkrade, a city in the province of Limburg which can be considered
as a mountainous area by Dutch standards (Figure 56b).

• Den Haag, the third largest city of the Netherlands and the city having
the highest average citizen density (Figure 56c).

• Leiderdorp, a semi-rural area in the western part of the Netherlands,
the landscape is a typical moorland with small height differences be-
tween land and water (Figure 56d).

In Table 4 some details about the input point clouds are shown; in Ap-
pendix C a deeper analysis of the LiDAR data sets is provided. Heights
are with respect to the Dutch geodetic datum, the Normaal Amsterdams
Peil (NAP). Figure 57 depicts the generated DEMs for the test data sets and
Figure 58 depicts the generated DSMs for the test data sets.

81
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Data set

Dronten Kerkrade Leiderdorp ’s-Gravenhage

Point records (filtered) 35 854 955 41 756 071 59 706 251 33 089 491

Point records (unfiltered) 56 056 266 70 546 031 6 127 630 32 049 810

Min Z (filtered) -5.91 98.21 -3.73 -10.25

Max Z (filtered) -0.63 208.15 9.00 7.43

Min Z (unfiltered) -5.82 98.18 -3.00 -10.99

Max Z (unfiltered) 38.85 218.67 84.15 133.87

Scale factor XYZ 0.01/0.01/0.01 0.01/0.01/0.01 0.01/0.01/0.01 0.01/0.01/0.01

File creation day/year 240/2010 142/2013 239 2010 239/2010

Number of point returns 1 1 1 1

Classification 0 0 0 0

Table 4: Details of test data sets, heights are with respect to the Dutch geodetic
datum.

(a) (b)

(c) (d)

Figure 56: Aerial photographs covering the test data set areas. (a) Dronten. (b)
Kerkrade. (c) Leiderdorp. (d) s-Gravenhage.
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(a) (b)

(c) (d)

Figure 57: Digital elevation model. (a) Dronten. (b) Kerkrade. (c) Leiderdorp. (d)
s-Gravenhage.

(a) (b)

(c) (d)

Figure 58: Digital surface model. (a) Dronten. (b) Kerkrade. (c) Leiderdorp. (d)
s-Gravenhage.
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5.3 validation of individual classes
In subsection 2.4.1 and subsection 2.4.2 an oversight is given of the weak-
nesses of current raster-based height maps. In this section a visual compari-
son will take place in order to compare in which extend the methodology as
proposed in chapter 4 is capable to solve these errors. The performance of
the individual classes ground, vegetation and buildings generated accord-
ing to the methodology proposed in chapter 4 will be validated.

5.3.1 Ground

PDOK provides raster-based height data that is generated with the applica-
tion of IDW interpolation of the AHN2 point cloud data (see subsection 2.4.1).
Kramer et al. [2014] assumes the height data of PDOK being correct, for that
reason this data is used directly within the remainder of his method.

For the methodology described in subsection 4.3.2, high resolution raster-
based height data is generated by gridding (indirect, see subsection 3.5.1) a
vector-based TIN constructed from the AHN2 point cloud data. This method-
ology provides raster-based data that is nearly similar with respect to IDW in-
terpolation that is applied by PDOK for the generation of their raster-based
height map; height differences are measured at centimeter level (−0.012 <
∆hmax < 0.012 meter) with a SD value of 5.9 ∗ 10−3 meter with respect to the
raster-based height map for the Dronten test data set. Height differences
are near-random distributed, the biggest height differences are determined
near edges of water bodies (Figure 59b).

Application of direct interpolation (subsection 3.5.1), height differences
are achieved at sub-milimeter level (−3.5 ∗ 10−5 < ∆hmax < 3.5 ∗ 10−5 meter)
with a SD value of 1.2 ∗ 10−3 meter with respect to the raster-based height
map for the Dronten test data set.

(a) (b)

Figure 59: Height differences between PDOK raster-based height data and the digi-
tal elevation model generated according to the methodology described in
this thesis. (a) Aerial photograph. (a) Positive height differences (white)
and negative height differences (black).

The conclusion is that interpolation based on a TIN generates raster-based
height data with nearly similar heights in comparison with IDW interpola-
tion, as applied for the generation of the raster-based height map of PDOK.
The degree of smoothing when applying interpolation is the cause for the
biggest height differences between both raster-based height maps. Indi-
rect interpolation generates raster-based height data wit a higher degree of
smoothness with respect to direct interpolation, resulting in better looking
raster-based height maps.
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Sink filling

Due to the characteristics of topographical LiDAR on water surfaces, point
records are sparsely distributed on water bodies (see section 2.2). In subsec-
tion 2.4.1 it has been introduced that this leads to no-data values for raster
cells covering water when applying IDW interpolation for the generation of
a raster-based height map. Figure 60b shows a sample of the raster-based
height map as generated by PDOK.

In subsection 2.4.3 a method has been introduced for the filling of no-data
areas near water bodies by Kramer et al. [2014]. This method fills no-data
areas by using the TOP10NL data set; for each polygon representing a water
body the raster cell with the lowest height value is determined and the value
is assigned to all raster cells within the polygon. Figure 60c shows a sample
of this method; proper height data is transformed in wrong height data due
to a poor positional accuracy of the used external data set. The quality of
the methodology of Kramer et al. [2014] is dependent on the quality of the
external data set that is used. For this reason, the usage of a more accurate
data set, such as the Basisregistratie Topografie (BRT) does give a similar
problem: missing or inaccurate data cannot be used or could lead to wrong
output.

(a) (b)

(c) (d)

Figure 60: Visualization of the areas covered by the test data sets. (a) Aerial photo-
graph. (b) PDOK. (c) Kramer et al. [2014], copyright Alterra, Wageningen
UR. (d) The slope-based water detection algorithm described within this
thesis.
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The slope-based water detection algorithm introduced in subsection 4.3.3
detects areas with a high potential on the presence of water. This algorithm
is based on the concept that water always flows from a location with a higher
height to a location with a lower height. The partly gridded DEM product
is used as input in order to detect potential water bodies. The algorithm is
capable to detect different kinds of water bodies, e.g. canals, (dry) ditches
and small lakes. For areas that do not have slope near water bodies water
is not detected. This leads to missing detection of water in wetlands, urban
canals and quays. Although, for the Dronten test data set, the algorithm is
capable to detect a higher amount of water bodies in comparison to the BRT

data set (Figure 61).

(a) (b)

Figure 61: Detected water bodies. (a) Polygons (blue) from the BRT data set rep-
resenting water bodies. (b) Water bodies (blue) detected with the slope-
based water detection algorithm.

The slope-based water detection algorithm detects area with a high poten-
tial on the presence of water. Some areas could be classified as such while
not being a real water body. For example, tunnels are within the applied
parameterization detected and classified as a location with a high possibility
on the presence of water (Figure 62), but due to sewerage systems this is not
the case under normal circumstances.

(a) (b)

Figure 62: Falsely detected water bodies. (a) Aerial photograph. (b) Water bodies
(blue) detected with the slope-based water detection algorithm near a
tunnel.

Another disadvantage of slope-based water detection algorithm is that it
is executed for each tile separately. For that reason it is possible that a larger
water body, which is distributed over multiple tiles, could be detected in
one tile but not in another. This will result in partly detected and classified
water bodies.
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Filling building footprints and local deviations

Another category of holes within the raster-based height data of PDOK that
has been detected in subsection 4.3.2 are building footprints and local devi-
ations. Figure 63b shows these holes clearly within the DEM near buildings,
dynamic objects and dense vegetation.

Kramer et al. [2014] detects holes with respect to building footprints
within the DEM from PDOK using of the BAG data set; the average height is
calculated for each buffered building polygon separately and no-data raster
cells within the buffered building polygon are assigned with the calculated
height. Where the applied buffer size is unknown, the influence of the se-
lected buffer size is high; not only the building footprint is filled; up to 20

meters outside the building footprint the calculated height is assigned to
no-data raster cells (Figure 63c). In case that a building is located in a hilly
area it can be expected that the application of a smaller buffer size would
provide a rough estimation of the earth’s surface near a buildings’ footprint.
The influence of the applied strategy is clearly visible.

In order to fill all remaining holes within the DEM of PDOK, Kramer et al.
[2014] applies IDW interpolation. It can be assumed that this is a better
strategy, also for the filling of building footprints. Using IDW interpolation
based on neighboring raster cells containing a height value local deviations
are taken into account in order to perform a more smooth reconstruction,
even within larger no-data areas (Figure 63d).

In case of larger buildings, IDW interpolation could lead to artifacts within
the building footprint. The applied gdal fillnodata.py script, as part of GDAL,
provides a flag to apply a predefined number of smoothing iteration based
on a 3 x 3 average filter. Switching on this flag will lead to failures when
running the algorithm; for this reason smoothing cannot be applied.

(a) (b)

(c) (d)

Figure 63: Filling building footprints and local deviations within a digital eleva-
tion model. (a) Aerial photograph. (b) PDOK. (c) Kramer et al. [2014],
copyright Alterra, Wageningen UR. (d) Outcome of the methodology de-
scribed in this thesis.



88 implementation & results

5.3.2 Buildings

In subsection 2.4.1 it is introduced that the raster-based height map of
PDOK contains noisy height data near building edges. There are also holes
present in the raster-based height data for raster cells covering buildings
(Figure 64b). These holes are often correlated to building edges in combina-
tion with black surfaces or glass (Figure 64a).

The methodology of Kramer et al. [2014] fills these holes within the raster-
based height map of PDOK by assigning the average height of nearby raster
cells containing a height value within the corresponding building polygon
from the BAG data set. This method based on an average value does not seem
to be a proper approach in order to define a value for the filling of holes
within buildings where building often have complex structures and many
height differences. Figure 64c shows that the output of this methodology
leads to appearance of new erroneous data. Additional, the methodology
of Kramer et al. [2014] does not provide an answer with respect to the noisy
height data that has been indicated within the raster-based height map of
PDOK.

The methodology described within this thesis goes deeper with respect
to the methodologies described above. As introduced in subsection 4.3.5,
individual buildings are detected and the point data within each building
is interpolated individually in order to develop a DBM. Rather then the
definition of a height with respect to sea level (NAP) the normalized height
with respect to the underlaying ground is defined for the DBM. Figure 64d
shows the output of this methodology.

(a) (b)

(c) (d)

Figure 64: Filling of buildings within a digital surface model. (a) Aerial photograph.
(b) PDOK. (c) Kramer et al. [2014], copyright Alterra, Wageningen UR.
(d) Digital building model generated according to the methodology de-
scribed in this thesis.
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For larger buildings a high degree of data completeness is achieved; cover-
age is achieved for large parts of buildings. Main errors can be found near
(complex) building edges. Due to missing point records or too low point
densities it is not possible to generate a TIN covering the complete building
(Figure 65a).

For smaller buildings (e.g. barns, garages) the data completeness is lower.
The cause for this can be found in the classification step within the process-
ing procedure; LiDAR points reflected on smaller buildings are most often
classified as vegetation when using the chosen parameterization described
in subsection 4.2.3. Within the method for DBM generation these points are
not further processed, although these wrongly classified LiDAR points will
be used within the generation of a CHM resulting in the presence of building
data within the CHM (Figure 65b).

(a) (b)

Figure 65: Missing building data within a digital building model. (a) Digital build-
ing model with missing height data near a building edge due to missing
point records or too low point densities. (b) Canopy height model con-
taining barns that are falsely classified as vegetation due to a misclassifi-
cation of LiDAR points.

Sometimes buildings remain (partly) absent within the generated DBM

(Figure 66b). This happens in case of a too low point density due to errors
during the collection of the LiDAR point data or because of the reflectance
characteristics of building rooftops with dark surfaces or glass; the transmit-
ted laser pulses will reflected weakly so that many laser points were missed.
For certain scenarios it is impossible to reconstruct buildings properly and
it is chosen to exclude the buildings from the DBM.

(a) (b)

Figure 66: Absent building data within a digital building model. (a) Aerial photo-
graph. (b) Digital building model with absent building data due to a too
low point density of the input point cloud.
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5.3.3 Vegetation

In subsection 2.4.1 it is been introduced that the raster-based height data
of PDOK contains height data that is determined wrongly with respect to
raster cells covering vegetation. Due to the characteristics of LiDAR multiple
returns will be recorded that are reflected on vegetation. Each of these re-
turns (1st, 2th, ..th) will have a different height value (section 2.2). The applied
IDW interpolation method calculates a weighted average height resulting in
an interpolated height that is probably somewhere in between the ground
and the highest point record reflected on a treetop (Figure 67b).

Kramer et al. [2014] adopts the raster-based height data of PDOK and
focuses on the filling of holes within the height data with respect to vegeta-
tion. Vegetation is detected by calculation of the NDVI derived from aerial
photography. Estimation of height values in order to fill a hole takes place
by calculation of the average height of close by raster cells covering vegeta-
tion containing a height value (Figure 67c). Holes within vegetation can be
expected at cell-level due to the distribution of LiDAR points and the shape
of vegetation; for this reason it is difficult to comment this methodology.

The methodology described within this thesis propose a strategy to gen-
erate a pit-free CHM, based on the generation of multiple partial CHMs (sub-
section 4.3.6). A TIN is generated with point records that are classified as
vegetation and this TIN is gridded into a raster-based height map. This pro-
cess is repeated a number of times for all points above a stepwise increasing
height with respect to the underlaying ground and in the end all partial
CHMs are merged into a CHM. This results in a normalized CHM that con-
tains a lower degree of data pits, resulting in a more smooth representation
of vegetation with respect to other raster-based height maps (Figure 67d).

(a) (b)

(c) (d)

Figure 67: Filling of no-data areas within vegetation. (a) Aerial photograph. (b)
PDOK. (c) Kramer et al. [2014], copyright Alterra, Wageningen UR. (d)
Canopy height model generated according to the methodology described
in this thesis.
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The height values stored within the CHM represents the highest point that
is determined within each raster cell. When subtracting the raster-based
height data of PDOK from the CHM height differences are measured up
to decimeter level; ∆hmax = 25 meter with a SD of 5.56 meter (Figure 68).
These measurements prove that the applied methodology of PDOK for the
generation of height data is wrong with respect to vegetation as already was
indicated in subsection 2.4.1.

(a) (b)

Figure 68: Height differences between the raster-based height data of PDOK and the
canopy height model generated according to the methodology described
in this thesis. (a) Aerial photograph. (b) High height differences (white)
and low height differences (black).

The applied classification algorithm described by Hug et al. [2004] mis-
classifies point data as vegetation when applying the parameterization se-
lected in subsection 4.2.4. In subsection 5.3.2 it is already introduced that
point data that is reflected on smaller buildings are mis-classified as vegeta-
tion. Also points reflected on electricity pylons and cables are often classi-
fied as vegetation. Results differ between the test data sets; in the Dronten
test data set electricity cables are classified as vegetation (Figure 69a), where
electricity cables are not classified as vegetation in the Leiderdorp test data
set (Figure 69b). These differences in classification are probably due to dif-
ferences in point cloud densities (see Appendix C).

(a) (b)

Figure 69: Electricity poles and cables within a canopy height model. (a) Dronten.
(b) Leiderdorp.
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5.3.4 Large-scale height map generation

Besides the validation of the individual classes it is also interesting to vali-
date the performance of the methodology for the generation of large-scale
height data. The methodology for pipelining as introduced in section 4.1
first collects, merge and clip the needed input tiles before generating over-
lapping tiles as input for the remainder of the processing procedure. Fig-
ure 70 shows a sample of a DEM that is generated on the intersection of four
tiles. It can be concluded that the pipelining methodology that is introduced
in section 4.1 is capable to generate height data without the occurrence of
artifacts near the border of the original input tiles.

m (w.r.t. NAP)

-7.500
-4.375
-1.250
1.875
5.000

Height

Figure 70: Digital elevation model generated with point cloud data from four input
tiles.

Edges between sub-projects

Due to a temporal difference between the gathering of the different sub-
projects of the AHN2 data set it might happen that there is point cloud data
available with a temporal difference of one or more years within a tile or
target area (see Figure 41). Figure 71a shows the edge between the different
sub-projects; due to a difference in point density between the sub-projects
the edge between them is easily recognizable. Alignment of the two projects
is not perfect; small gaps having no point data can be detected on the edge
between the sub-projects (Figure 71a). This results in missing raster-based
height data when processing the point data (Figure 71b).
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(b)

Figure 71: Errors on the edge between sub-projects. (a) Missing point cloud data on
the edge between sub projects. (b) Holes within a canopy height model
due to missing point data on the edge between sub-projects.
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5.4 quality assessment
In this chapter the quality will be tested in a quantitative way for the data
generated with the methodology as proposed in chapter 4. ISO19157 Geo-
graphic Information Quality principles will be used to assess data quality,
introduced in section 3.7.

Assessing quality for only one data set without any reference data, is sub-
jective and requires a high level of knowledge of the generation of processes.
The operator also needs to be experienced to recognize deviations from the
expected output and to predict the most useful kind of analysis [Podobnikar,
2009]. A better method for quality assessment is by comparing different data
sets. In subsection 2.4.1 and subsection 2.4.2 two raster-based height maps
are introduced. Where the raster-based height map produced by ESRI intro-
duced in subsection 2.4.2 is only available in a web viewer this data cannot
be used for quality assessment. For this reason, the following raster-based
height maps will be used for quality assessment within the remainder of
this section:

• Not filled DEM and DSM by PDOK [2014]

• Filled DEM by PDOK [2014]

• OHN DEM and DSM by Kramer et al. [2014]

• The proposed methodology in chapter 4

The raster-based height map products from PDOK and Kramer et al. [2014]
are available as DEM and DSM. The methodology proposed in chapter 4 can
generate a DEM but does not generate a DSM. For proper quality assessment,
a DSM will be generated by merging the DEM, DBM and CHM. This method
is supposed to filter out the remaining errors within raster-based DSMs as
detected in subsection 2.4.1, the presence of noise: small urban objects which
temporarily perturb the scene such as cars, roof antennas, cranes and other
objects. A sample of this new-created DSM is depicted in Figure 72b.

Quality of the data sets will be assessed with respect to reference data.
The spatial resolution of the reference data should be at least as high as
expected from the tested data sets Podobnikar [2009]. For this reason, aerial
photographs with a resolution of 0.07 meter will be used that are obtained
during the collection of the AHN2 data set.

(a) (b)

Figure 72: Digital surface model generation. (a) A digital surface model from PDOK.
(b) A digital surface model composed by merging multiple object classes.
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5.4.1 Completeness

As introduced in section 3.7, completeness expresses the presence and ab-
sence of data, their attributes and relationships. There are two sub elements:
commission (excess data present) and omission (data absent) [ISO, 2013].

The goal of this thesis research is to obtain universal raster-based DEM

and DSM height maps that represents the earth’s surface as best as possible.
Final goal is a data completeness of 100% for both raster-based DEM and
DSM height maps, where the output data does not have a deeper specific
application.

Dronten Kerkrade Leiderdorp ’s-Gravenhage

C (%) O (%) C (%) O (%) C (%) O (%) C (%) O (%)

Not-filled DEM 81.792537 18.207463 79.004762 20.995237 87.992625 12.007375 63.492169 36.507831

Filled DEM 83.659069 16.340931 80.373194 19.626806 88.632356 11.367644 65.095225 34.904775

OHN DEM 1 ∗ 102
0 1 ∗ 102

0 1 ∗ 102
0 1 ∗ 102

0

My DEM 1 ∗ 102
0 1 ∗ 102

0 1 ∗ 102
0 1 ∗ 102

0

Table 5: Completeness of digital elevation models expressed in commission (C) and
omission (O) for test data sets.

Table 5 shows the completeness of raster-based DEM products for the test
data sets. The not-filled DEM provided by PDOK scores commission rates be-
tween 63.492169% (’s-Gravenhage) and 87.992625% (Leiderdorp). The filled
DEM is capable to have a slightly higher degree of completeness with com-
mission rates thats scores between 0.639731% (Leiderdorp) and 1.866532%
(Dronten) higher with respect to the not-filled DEMs. An explanation of these
low commission rates is already provided in subsection 2.4.1.

The OHN DEM of Kramer et al. [2014] is capable to increase the commis-
sion rate for all test samples to 100% by filling all holes within the raster-
based height map of PDOK. In a similar way the methodology as described
in chapter 4 is capable to obtain commission rates of 100%.

Dronten Kerkrade Leiderdorp ’s-Gravenhage

C (%) O (%) C (%) O (%) C (%) O (%) C (%) O (%)

Not-filled DSM 98.99411 1.00589 94.49192 5.50807 92.719375 7.280625 97.22864 2.77136

OHN DSM 1 ∗ 102
0 1 ∗ 102

0 1 ∗ 102
0 1 ∗ 102

0

My DSM 1 ∗ 102
0 1 ∗ 102

0 1 ∗ 102
0 1 ∗ 102

0

Table 6: Completeness of digital surface models expressed in commission (C) and
omission (O) for test data sets.

Table 6 shows the completeness of raster-based DSM products for the test
data sets. The not-filled DSM provided by PDOK scores commission rates
between 92.719375% (Leiderdorp) and 98.99411% (Dronten). It can be con-
cluded that a large part of the omission rate within the raster-based DEM

height map is caused by above-ground objects that are part of the raster-
based DSM height map. An explanation of the sources for omission is pro-
vided in subsection 2.4.1.

Comparable with the raster-based DEM products, the OHN DSM of Kramer
et al. [2014] is capable to obtain commission rates for all test data sets of
100% by filling all holes within the raster-based height map of PDOK. In a
similar way the methodology introduced in chapter 4 is capable to obtain a
commission rate of 100%.
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5.4.2 Logical consistency

As introduced in section 3.7, logical consistency is used primarily to specify
conformance with certain topological rules [Salgé, 1995]. Spatial relations
describe the spatial integrity of a geospatial dataset. Spatial integrity con-
straints are a tool for improving the internal quality of spatial data [Devillers
and Jeansoulin, 2006].

Potentially, a grid cell can represent multiple classes: A house is build on
ground and a tree is also located on the ground. A tree can also grow (partly)
above a house. Vegetation can grow in the water and for the Netherlands it
is also common that houses are located on the water. Given these examples
there do not seem to be that many topological situations that could be de-
fined as being illogic. For that reason, assessment of the logical consistency
will not take place.

5.4.3 Positional accuracy

As introduced in section 3.7, in order to determine the positional accuracy,
the closeness of provided data position values to values accepted as or being
true, is the component of interest. Expression of the positional accuracy is
determined by calculating the RMSE and SD. It needs to be taken into account
that for data sets containing holes only raster cells with a determined height
will taken into account.

No reference data is available, for that reason height differences is mea-
sured with respect to each other. RMSE is a commonly used method to docu-
ment the vertical accuracy for raster-based height maps. Because a ground
truth is missing when calculating the RMSE, error maps will be created in
order to detect height deviations between the different raster-based height
maps. Combined with reference aerial photographs it will be determined
visually which raster-based height map contains the erroneous data.

Digital elevation model

In subsection 2.4.1 errors are explained within the raster-based DEM height
map from PDOK. No errors related to wrongly determined height values are
introduced, only errors with respect to holes within the data are determined.
For this reason it can be stated that where heights are available, heights are
determined in a proper way. The positional accuracy will be tested with
respect to the filled DEM introduced in subsection 2.4.1 which has a slightly
higher completeness with repsect to the non-filled DEM. Additional, the
positional accuracy between the OHN DEM and my DEM will be determined.
Table 7 shows the positional accuracy for all test data sets, some interesting
things can be concluded:

• The filled raster cells within the filled DEM from PDOK are also inter-
polated local with respect to the not-filled DEM from PDOK. No differ-
ences are detected between both raster-based height maps for all test
data sets when looking at the positional accuracy.

• Where the focus of the OHN DEM from Kramer et al. [2014] focuses on
the filling of holes within the raster-based height data from PDOK it is
surprising that height differences are measured on meter level. This is
even larger than height differences measured between the filled DEM

by PDOK and my DEM for most test data sets. Also RMSE values are
significant higher for the OHN DEM in comparison to my DEM.
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• Overall, a significant higher positional accuracy is achieved by my DEM

with respect to the OHN DEM.

Also the positional accuracy between the OHN DEM and my DEM is mea-
sured. The measured parameters for this comparison are worst. This indi-
cates that both models differ the most with respect to each other.

Digital surface model

In subsection 2.4.1 errors are explained within the raster-based DSM height
map from PDOK. Both errors related to holes within the raster-based height
data as well wrongly determined height values due to wrongly applied
filtering and interpolation methods.

For this reason it is not possible, rather than it is for a DEM, to deter-
mine available height data as being correct. Nevertheless, the positional
accuracy will be tested with respect to the not-filled DSM introduced in sub-
section 2.4.1. Additional, the positional accuracy between the OHN DSM

and my DSM will be determined. Table 8 shows the positional accuracy for
all test data sets, some interesting things that can be concluded are:

• The RMSE between the not-filled DSM and the OHN DSM does have
smaller differences when calculating the RMSE and SD, rather than for
my DSM. This shows that not much adjustments are done within the
OHN DSM with respect to the not-filled DSM.

• In subsection 2.4.1 errors within the not-filled DSM are introduced,
where in chapter 4 a methodology is proposed to solve these errors.
My DSM does have the largest ∆Hmax, RMSEs en SD with respect to the
not-filled DSM for all test data sets. This indicates that many height
values differ with respect to the not-filled DSM.

• The positional accuracy from my DSM with respect to the not-filled
DSM and OHN DSM results in ∆Hmax, RMSE and SD. This proves that
my DSM is different with respect to both erroneous DSMs.

5.4.4 Temporal accuracy

As introduced in section 3.7, temporal accuracy refers to the agreement be-
tween encoded and ’actual’ temporal coordinate system [Veregin, 1999]. It
is the discrepancy between the actual attributes value and coded attribute
value. A value is actual if it is correct in spite of any possible time-related
changes in value. Thus currentness refers to the degree to which a database
is up to date [Redman, 1992].

All raster-based height maps are based on the same data set. In section 3.4
it has been introduced that the data set does provide unrealistic information
with respect to the date of collection. According to the meta data of the test
data sets for 3 out of 4 of them the file creation date is within a time stamp
of two days (Table 4). Based on the information provided by Van der Zon
[2011] there is a temporal difference of 1-2 years between the gathering years
of the AHN2 data set and the file creation date. It can be assumed that the file
creation date is the date that the data is processed. The temporal accuracy
can be determined as one year based on Van der Zon [2011] (see Figure 41).
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5.4.5 Thematic accuracy

As introduced in section 3.7, the thematic accuracy compares the classes
assigned to a feature or their attributes to a reference dataset or ground
truth [ISO, 2013]. For a confidence level of 95% with a confidence interval
of 5% based on a population of 16 ∗ 106 raster cells for each test data set, the
thematic accuracy is tested for 384 random selected raster cells.

Digital elevation models

For measuring the thematic accuracy of DEMs a classification will be used
containing the classes ground and water. Ground truth for all classes is
extracted from aerial photography with a spatial resolution of 0.07 meter. In
case of no-data values, raster cells will be qualified as unclassified. Within
this subsection only the confusion matrices from the DEMs for the Dronten
data set will be shown, outcome of the thematic accuracy from other test
data sets will be showed in this subsection, the matrices from other test data
sets can be found in Appendix D.
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Water 0 0 0

Unclassified 74 6 80

Total 378 6 384

Table 9: Confusion matrix for not-
filled digital elevation model
(Dronten).

True condition
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d Ground 304 0 304

Water 0 0 0

Unclassified 74 6 80

Total 378 6 384

Table 10: Confusion matrix for filled
digital elevation model
(Dronten).

Table 9 shows the confusion matrix for the not-filled DEM for the Dronten
data set. This raster-based height map does not contain information with
respect to water, for that reason only a classification of ground points and
unclassified points is possible. Sensitivity for the ground class is 80.42% and
for the water class is 0%. Since only one class can be defined for this data set
(ground), all other points are related to missing data and are for that reason
classified as false positive points. For the other test data sets sensitivity rates
of 67.65∼87.10 % are measured, differences are mainly do to the absence of
building data in the not-filled DEMs. Water does have a sensitivity rate of
0% in all test data sets.

Table 10 shows the confusion matrix for the filled DEM for the Dronten
data set. Despite an increase of the completeness of this data set of 1.87%
results for the random selected points remains similar. For that reason the
sensitivity remains the same; for the ground class sensitivity is 79.95% and
for the water class it is 0%. For the other test data sets slightly higher sensi-
tivity rates of 68.99∼94.82% are measured for the ground class, differences
are mainly do to the absence of building data in the not-filled DEMs. Water
does have a sensitivity rate of 0% in all test data sets.
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True condition
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Total 377 7 384

Table 11: Confusion matrix for the
OHN digital elevation
model (Dronten).
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Water 1 6 7

Unclassified 0 0 0

Total 377 7 384

Table 12: Confusion matrix for my
digital elevation model
(Dronten).

Table 11 shows the confusion matrix for the OHN DEM for the Dronten
data set. Biggest difference with respect to previous measured DEMs is that,
due to a higher degree in completeness, the data set does not contain any un-
classified raster cells. The sensitivity for ground data is increased to 99.73%.
The OHN DEM does not contain specified information related to water, for
that reason the sensitivity for this class is 0%. For the other test data sets
sensitivity rates of 88.00∼97.40% are measured for the ground class, differ-
ences are mainly do to the absence of building data in the not-filled DEMs.
Water does have a sensitivity rate of 0% in all test data sets.

Table 12 shows the confusion matrix for my data set. Biggest with respect
to the previous DEMs is that my DEM contains information regarding water.
Sensitivity for ground data decreased slightly to 99.73% due to a raster cell
that is classified as water but is ground in the real world. Where my DEM

contains information regarding water, sensitivity rate for this class is 85.71%.
For the other test data sets sensitivity rates of 94.41∼98.93% are measured
for the ground class. Water does have a sensitivity rate of 59.38∼83.72% in
all test data sets.

Digital surface models

When measuring the thematic accuracy for DSMs the confusion matrix needs
to be expanded further. The methodology proposed in chapter 4 provides a
differentiation for above-ground objects in buildings and vegetation, the not-
filled DSM and OHN DSM do not. For those data sets, thematically accuracy
will be determined whether a raster cell contains to the surface or that it is
unclassified.

Table 13 shows the confusion matrix for the not filled DSM for the Dronten
data set. A lower degree of points are unclassified, which is in line with the
conclusion of subsection 5.4.1 that indicates a higher degree in completeness
for the same raster-based height map. For the generalized surface the sensi-
tivity is 99.07%. For the other test data sets sensitivity rates of 93.49∼97.40%
are measured for the generalized surface class, differences are mainly do to
the absence of building data in the not-filled DEMs.

Table 14 shows the confusion matrix for the OHN DSM for the Dronten
data set. The biggest improvement of this raster-based height map is that
no points are unclassified. For the generalized surface the sensitivity is
100.00%, similar sensitivity rates are achieved for all other test data sets.
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Surface 213 1 58 102 375

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 2 6 1 0 9

Total 215 7 59 102 384

Table 13: Confusion matrix for not-filled digital surface model (Dronten).
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Total 215 7 59 102 384

Table 14: Confusion matrix for OHN digital surface model (Dronten).
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Surface 0 0 0 0 0

Ground 210 1 0 1 212

Water 0 6 0 0 6

Building 0 0 59 1 60

Vegetation 5 0 0 101 106

Unclassified 0 0 0 0 0

Total 215 7 59 103 384

Table 15: Confusion matrix for not-filled digital surface model (Dronten).

Table 15 shows the confusion matrix for the my DSM for the Dronten data
set. With respect to the previous DSMs, this data set differentiates the surface
in different classes, an oversight of the sensitivity of all classes is provided
in Table 17.
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5.5 evaluation
Quality assessment has showed that a total approach, from LiDAR point
cloud to raster-based height map, is capable to improve the quality of these
raster-based height maps based on the AHN2 data set.

Dronten Kerkrade Leiderdorp ’s-Gravenhage
Completeness 1 ∗ 102% 1 ∗ 102% 1 ∗ 102% 1 ∗ 102%

Positional accuracy

RMSE (w.r.t. not-filled DEM) 0.0054 m 0.0185 m 0.0154 m 0.0301 m

Thematic accuracy

Ground 97.67% 99.33% 99.69% 99.48%

Water 85.71% 83.72% 56.00% 76.92%

Table 16: Quality of digital surface models for test data sets.

Table 16 shows that for all test data sets a completeness of 100% is achieved.
The positional accuracy can be determined at centimeter level with respect
to current DEM from PDOK, where the OHN DEMs have a lower positional
accuracy due to wrong processing of data, see subsection 2.4.3. The method-
ology proposed in chapter 4 is capable to generate raster-based height data
with a high thematic accuracy for ground with rates between 97.67∼99.69%.
Thematic accuracy is lower for water bodies, with rates between 56.00∼85.71%.
This indicates that a slope-based approach needs additional sources in order
to detect water with a higher thematic accuracy.

Dronten Kerkrade Leiderdorp ’s-Gravenhage
Completeness 1 ∗ 102% 1 ∗ 102% 1 ∗ 102% 1 ∗ 102%

Positional accuracy

RMSE (w.r.t. not-filled DEM) 3.9822 m 4.7380 m 1.3701 m 4.4689 m

Thematic accuracy

Ground 97.67% 99.33% 99.69% 99.48%

Water 85.71% 83.72% 56.00% 76.92%

Buildings 100.00% 100.00% 94.74% 91.09%

Vegetation 98.00% 100.00% 100.00% 100.00%

Table 17: Quality of digital surface models for test data sets.

Table 17 shows that, similar as the DEM products, a completeness is achieved
of 100%. Where the positional accuracy is lower with respect to currently
existing DSMs this is mainly caused by the applied methodology for the gen-
eration of DBMs and CHMs as proposed in chapter 4. The Leiderdorp test
data set, that contains less buildings and vegetation, has a relative higher
positional accuracy proves this.

Thematic accuracy for ground, buildings and vegetation is high with ac-
curacy rates between 91.09∼100% for all test data sets. Similar as for the
DEM products, the thematic accuracy is lower for water bodies, with rates
between 56.00∼85.71%.





6 CONCLUS ION , D ISCUSS ION
AND FUTURE WORK

In this last chapter the conclusions of this thesis research will be given. First
in section 6.1 the research questions will be answered that are introduced in
section 1.2. Secondly, in section 6.2 a discussion will take place about the
chosen methodology as applied within this thesis. As third, in section 6.3
an overview will be given of future work within the field of automatic gen-
eration of raster-based height maps.

6.1 conclusion
What kinds of errors are most common within currently existing raster-based height
maps based on the AHN2 data set?

Two groups of currently existing raster-based height maps can be distin-
guished, having their own product-specific errors:

• The first group of raster-based height maps are DEMs; representing a
bare earth representation without any above-ground objects.

• The second group of raster-based height maps are DSMs; representing
the first echo/return the laser received for each laser pulse send out.

The first group of raster-based height maps, the DEMs, are based on a fil-
tered version of the AHN2 data set. This product is based on semi-automatic
filtering of ground points in combination with additional manual editing in
order to meet the requirements that are defined by this point cloud product
by Rijkswaterstaat and the Dutch water boards.

Errors within DEMs are due to no-data holes that appear after spatial inter-
polation of the point cloud data (subsection 2.4.1). Where LiDAR beams do
not hit the ground no data is available. Identified causes for missing data
with respect to the ground are filtering of above-ground objects (e.g. houses,
vegetation and dynamic objects that perturb the scene) and the characteris-
tics of topograpic LiDAR (e.g. water). Where raster data is available this height
data is indicated being a proper representation of the real-world surface.

The second group of raster-based height maps, DSMs, are based on the
complete AHN2 data set. It has been observed within this thesis that no
further filtering of erroneous point records (e.g. multipath) is applied (sub-
section 2.4.1). Besides missing data, DSMs contain height data that is deter-
mined in a wrong way. This results in raster cells that do not represent a
true height and the presence of data pits. Also dynamic objects that perturb
the scene (e.g. cars, cranes) are present within currently existing DSMs.

Methodologies that fill no-data holes within both DEMs and DSMs do
change height values for raster cells with a known estimated height.
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What strategy is appropriate for the processing of large amounts of point cloud data
to raster-based height maps?

A divide-and-conquer strategy that decomposes massive data in overlap-
ping tiles is sufficient in general. Selection of a proper tile and buffer size is
not only dependent of the size of the input point cloud data; further increase
in file size during the processing within the remainder of the pipeline needs
to be taken into account. A-trial-and-error method is indicated being the
best method to determine proper parameterization. For the implementation
of the divide-and-conquer strategy a tile size of 200 by 200 meter is applied
and a buffer size of 25 meters within the methodology.

For the detection of geographic objects that exceeds the tile size (e.g. large
water bodies, rivers), it can happen that an object is detected in one tile but
not in any adjacent tile, due to the local presence of characteristics in order
to detect a certain geographic object.

Given a point cloud sample, which algorithm or methodology is best filter out differ-
ent classes of information?

No methodology or algorithm exist that can guarantee a 100% correct classi-
fication of LiDAR points automatically. Results of comparisons strongly differ
based on both the characteristics of the input data and the characteristics of
the terrain.

This thesis has showed that filtering of (above-)ground does perform
worse results then current available point cloud products. Also, the filtering
of above-ground objects as buildings and vegetation lacks performance due
to a standard parameterization where point cloud densities differ in density,
not only between the different test data sets, but also within test data sets.
Another issue is the complexity of the terrain; there is a clear correlation
between the failure of the applied point cloud classification algorithm and
the complexity of the terrain characteristics.

What interpolation technique is most appropriate to estimate a height at a given
location for different classes of objects?

No best method exist for the interpolation of dense 3-dimensional LiDAR

point data (1 > point/m2) into 2.5-dimensional raster data. Similar as for
the classification of point cloud data the results of comparisons strongly
differ based on both the characteristics of the input data and terrain charac-
teristics. More simple interpolation algorithms as IDW or interpolation based
on a TIN do not perform worse then more complex geo-statistical methods.

Ground

For the generation of a raster-based DEM a hybrid methodology based on
the characteristics of the point cloud data and the terrain’s characteristics
works out well. Where point cloud data is available, interpolation based on
a TIN can estimate heights at well. Selection of a proper cut-off threshold
is necessary in order to prevent the occurrence of artifacts of the applied
interpolator where data is sparser distributed: triangles within a TIN where
the longest edge is longer then the defined cut-off threshold will not be used
when converting the vector-based TIN into a raster-based height map.
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Sparser distributions of point cloud data are detected near water, build-
ings local deviations. Sink filling is applied for areas detected as having a
high probability being water, using a slope-based strategy. Where no-data
holes are present within the detected water bodies, these raster cells will be
filled with the minimal height value as detected within a water body. This
strategy does not detect water directly, it estimates areas with a high proba-
bility on the presence of water. Remaining holes within a raster-based DEM

are filled with IDW interpolation.

Buildings

Interpolation of building data, so-called DBMs, should only take place within
building boundaries. Edge-constrained interpolation based on a TIN is intro-
duced as a method in order to determine height data only within the interior
of buildings. Building boundaries are detected in a complementary strategy
that combines boundary extraction from point records classified as building
and external 2D geodata from the BAG data set.

Data pits within building data, caused by noise within the LiDAR data is
filtered out by a two-step strategy that thickens the point cloud first and
thins it afterwards has showed to result in a smooth representation of raster-
based building data within the DBM.

Vegetation

CHM are generated by gridding a TIN that is constructed from all point
records classified as vegetation. Multiple partial CHMs are generated iter-
atively using point records with a normalized height above an increasing
threshold until the highest normalized vegetation points are lower then the
threshold value. Merging the partial CHMs results in the generation of a
CHM that preserves the morphological structure of individual tree crowns
better having less data pits in comparison with standard CHMs.

To which extent can external 2D geodata sets help to improve the quality of raster-
based height maps?

Where there does not exist any algorithm or methodology that is capable
to apply a 100% correct classification external geodata sets can help in or-
der to identity and correct data within the processing pipeline during the
classification and interpolation of point cloud data.

When using external 2D geodata a differentiation in positional and tem-
poral accuracy with respect to the point cloud data set needs to be taken
into account.

For the detection of building boundaries, within the edge-constrained in-
terpolation of DBMs it has been proved that the BAG data set is capable to
indicate building boundaries that are complementary with respect to the
ones detected by point records classified as building.

What quantitative degree of quality can be achieved for raster-based height maps
generated from AHN2 point cloud data by the application of an automated process?

Three parameters are indicated as usable for measuring the quality of raster-
based height maps :

• Completeness

• Positional accuracy

• Thematic accuracy
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For data completeness a maximum degree is achieved where the proposed
methodology is capable to deliver DEMs and DSMs that do not contain any
holes.

The positional accuracy has been calculated for both raster-based DEMs
and DSMs. For DEMs the positional accuracy is high with respect to currently
available raster-based height maps. For DSMs a lower positional accuracy is
detected with respect to currently available raster-based height maps. This
is due to erroneous processing of point cloud data within the processing pro-
cedure of them where the proposed methodology within this thesis solves
these errors.

For thematic accuracy it has been proved that the proposed methodology
is capable to classify more object with respect to currently existing raster-
based height maps with a sensitivity rate that ranges between 56∼100% ±
5%.

In general it can be concluded that a higher quality is achieved with re-
spect to currently existing raster-based height maps. Since no reference
height data is available it has not been possible to measure the outcome of
the proposed methodology with respect to a ground truth.

6.2 discussion
This thesis have proved that it is possible to generate raster-based height
maps with a higher quality than currently available products. The potential
has been showed in order to develop derivative products related to objects
in the build environment such as buildings and vegetation. However, the
methodology proposed within this thesis does not provide 100% correct
results. This is caused both due to characteristics of LiDAR as well as the
proposed methodology:

• No good insights are available in the filtering algorithm that is ap-
plied for point classification within this thesis. Despite the fact that
good results are achieved it can be assumed that, when having a bet-
ter insight in a used filtering algorithm, it is possible to achieve a better
classification. In order to improve the proposed methodology for the
generation of a raster-based height map it can be expected that the
biggest improvements can be made during the filtering phase, eventu-
ally combined with manual editing.

• Application of the AHN2 data set is to obtain information with respect
to the ground. For the collection of the point cloud data chosen is to
obtain data early-spring when there are not much leaves on the trees.
For this reason the vegetation within CHMs is represented in an order
that is smaller than it is in reality. For obtainment of a CHM collection
of LiDAR data should take place later in spring or during summer.

• Due to the characteristics of some building surfaces it is not possible
to fully reconstruct buildings using LiDAR techniques. Examples of
building surfaces can be roofing felts, or surfaces with a high reflectiv-
ity. Another issue are glass surfaces, due to its translucent character-
istics LiDAR beams penetrate through glass, resulting in missing data
for small skylights, but also for large glass building structures. Also
in a situation where vegetation is covering parts of buildings it does
not seem to be possible to reconstruct covered building parts without
involvement of any structure related to vegetation.
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• The results presented within this thesis are a simplified and gener-
alized version of the data that can be created potentially within the
methodology proposed within this thesis. It has been shown that there
is potential for improvement, besides data quality, for trivial matters
as:

– Increased spatial resolution

– Specific modeling for urban objects such as water, vegetation and
building models

6.3 future work
In this section an overview of suggestions will be provided for further im-
provement of the methodology proposed within this theses.

Digital elevation modeling

For the detection and filling of water bodies a slope-based method is applied
on tile level within this thesis. Where adjacency with respect to neighboring
tiles is not taken into account, this is currently problematic for water bodies
that exceed the size of a tile. Another imperfection is that not all water
bodies can be detected by the proposed slope-based method. Besides this
methodology, external 2D geodata sets containing information with respect
to water bodies could be used in order to increase the detection of water
bodies within raster-based height maps. The completeness of the BRT data
set is not 100%. Nevertheless, a combined approach that makes use of a
combination of both the slope-based approach and the BRT data set in order
to detect (the lowest height within a) water body could lead to better results.
Also the determined heights for sink filling are determined at tile-level. This
approach creates unrealistic, plan form flow patterns since all topographic
information within the sink is discarded. For the generation of correct water
flow networks carving or breaching are techniques that can be used in order
to cut into the DEM by creating a descending path from the bottom of the
sink to the nearest point that is lower than that of the bottom of the sink.
The objective of stream carving is to link dead-end pathways into the main
network in the most realistic manner.

Digital building modeling

Building boundaries are extracted based on a concavity threshold for indi-
vidual building polygons within the methodology proposed in this thesis.
These building boundaries are directly stored as polygons without any fur-
ther processing. The level of detail of building boundaries is limited due
to factors like the availability of other data sources, the density of LiDAR

data and the complexity of the scene. Alharthy and Bethel [2002] present a
method in order to optimize building footprints to regular vector building
shapes as connected, rectilinear line segments.

Within LASboundary, that is applied in order to extract building bound-
aries, it is not possible to define different concavity values for inner and
outer boundaries of building polygons. This results often in small inner
boundaries within building polygons due to locally lower point densities
on buildings. Based on the size or/and perimeter of these holes filtering of
unintentional could take place additional.
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Canopy height modeling

More research is needed in order to perform better point classification. Since
different strategies are proposed for different point classes a wrong classifi-
cation will lead to wrongly processed output data. By performing a better
point classification points are processed within a tailor-made method, result-
ing in better raster-based height maps.

Further optimization

Besides future work with respect to improvement of the data quality, also
possibilities for speed optimization could be researched. The Python mod-
ules subprocess and multiprocessing cannot be used interchangeable resulting
in inefficient usage of processing power resulting in time consuming pro-
cessing of the developed scripts. Rewriting of scripts into the C++ program-
ming language looks potentially interesting.

AHN3

After the availability of the AHN1 and AHN2 data set, the AHN3 data set will
be published in several portions from 2015 until 2018. So far, there are no
official documents available regarding specifications and goals when this
thesis is written. The general sense from the participants within the AHN

project team is focused to adjust from point cloud densification to change
detection. It can be expected that there will not be a significant quality
change in the AHN3 point cloud collection with respect to point density.

In section 2.2 it has been introduced that there is no more data available
but the XYZ-coordinates for each point within the AHN2 data set. For the
AHN3 point cloud data it more meta data is available, for example:

• number of return

• intensity

• classification

• scan angle rank

• GPS time

For this reason, meta data that has been added to AHN2 point cloud data
during the processing steps within this thesis are already available within
the meta data of the AHN3 data set. No further research is done with respect
to the degree of correctness of the meta data for the AHN3 data set.
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A REFLECT ION

This thesis proposes a methodology for the automatic generation of raster-
based height data for the Netherlands based on the AHN2 data set. The
research has taken place between November 2014 and January 2016. Where
the initial planning supposed a literature study followed by the develop-
ment of a prototype in reality both processes have been applied, in an it-
erative way resulting in the proposed strategy consisting of three different
height models; (i) a DEM, (ii) a DBM and (iii) a CHM. Rather then the gen-
eration of a DSM it has been indicated that different strategies for different
objects needs to be applied in order to generate object-specific height data
with a higher quality.

The relationship between the methodical line of approach of the Master
Geomatics and the method applied within this thesis consists of the ob-
tainment, pipelining, classification and interpolation of massive LiDAR data.
Another part of the research consist of the generation, manipulation and
visualization. These topics are in line with the courses Sensing technologies,
GIS and cartography, Python programming and Geo Datasets & Quality that
are part of the Geomatics track and could not have been applied without
having knowledge with respect to these information.

The relationship between the research and application of the field geo-
matics is that the output of the presented methodology can be used as input
for a broad range of Geomatics-related applications. Height maps are often
used as input in GIS and are the most common basis for digitally-produced
relief maps. DSMs can be useful for applications such as landscape modeling,
city modeling and visualization applications while a DTM is often required
for applications such as flood or drainage modeling, land-use studies, geo-
logical applications, and other applications.

The relationship between the work presented within this thesis and the
wider social context is that the applications for which raster-based height
data can be used as input to predict floodings, light and shadow simulation
and many more applications in a social context. The generation of higher
quality raster-based height data will lead to better input data contributing
to higher quality output for output applications.
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B OPEN 2D GEODATA SETS IN
THE NETHERLANDS

Currently most open 2D geographic vector-based data in the Netherlands
is based on aerial photography and this data is generated already for many
years. For that reason it can be assumed that currently available open 2D
geodata sets have a degree of quality. In this chapter an oversight will
be given in currently available 2D geodata sets in order to introduce their
characteristics.

b.0.1 TOP10NL

TOP10NL is an object-oriented topographical vector file for the Netherlands
which can be used on a scale between 1:5 000 and 1:25 000. The TOP10NL
data model contains a collection of topographical base objects, related to a
reproduction scale of 1:10 000 which have been included as object classes
(Figure 73). In the main structure of TOP10NL, every geographical object
is assigned to a specific object class. The current set of object classes con-
sists of ’Road section’, ’Railway section’, ’Water section’, ’Building’, ’Land’,
’Planimetric feature’, ’Relief’, ’Registrational area’, ’Geographic area’ and
’Functional area’. A geographical object has certain geometry (point, line
or polygon) and is characterized by its attributes furthermore. The data
within the TOP10NL data set is obtained by aerial photography [Kadaster,
2014a]. For the remainder of this section only the classes ’Water section’ and
’Building’ are relevant for a deeper introduction.

Water section

For the Water section class geometry is available both as line and polygon
geometry. Where line geometry is used for water sections with a maximum
width of 6 meters, the minimum area for polygon geometry is 50 m2. For
both kinds of geometry a maximum positional deviation of 3 meters is al-
lowed [Kadaster, 2014b]. An example of TOP10NL geometry for a water
section is showed in Figure 74b.

Building

Building geometry is only available as polygons. Most important rule is
that the minimum size of a building is at least 9 m2. A maximum positional
deviation of 3 meters is allowed [Kadaster, 2014b]. An example of TOP10NL
geometry for a building is shown in Figure 75b.
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Figure 73: Vector-based map based on the TOP10NL data set.

b.0.2 BAG

The BAG is part of the basic registrations of the Dutch government. The BAG

data set contains information about all buildings in the Netherlands, which
are classified in five different classes:

• Buildings (’panden’)

• Stay objects (’verblijfsobjecten’)

• Number designations (’nummeraanduidingen’)

• Public spaces (’openbare ruimtes’)

• Residences (’ligplaatsen’)

Attributes for the different object classes can be:

• Status

• Surface size

• Geometry

• X,Y coordinate

• Year of construction

• Purpose

Information for all object classes is provided by the different Dutch munic-
ipalities. Despite the definition of rules for the creation of data (see [BAO,
2013]), much non-uniformal data is present within the BAG data set. The
minimal positional accuracy of building geometry can differ from 0.6 meter
in urban areas up to even 1.2 meter in rural areas. Nevertheless, most build-
ings have a minimal positional accuracy of 0.28 meter for urban areas up to
0.56 meter in rural areas. More information about definitions of geometry
with relation to the BAG data set can be found in Rietdijk et al. [2008]. An
example of BAG geometry for a building is shown in Figure 75c.
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b.0.3 BGT

The Basisregistratie Grootschalige Topografie (BGT) is a data set that is cur-
rently under construction and will be available nationwide starting 2016.
The BGT data set is more or less the successor of the TOP10NL data set and
similar to that data set the BGT contains geographic objects as ’Road section’,
’Railway section’, ’Water section’ and more.

Where geographical object within the TOP10NL data set can have dif-
ferent geometry classes (point, line or polygon), the BGT data set defines
all geographic data as polygon geometry, all data is (geometrical) stored
the same. Another difference between TOP10NL and BGT is that different
data classes are provided by different stakeholders; for example national
government provides information about highways, provinces provide infor-
mation with respect to the roads they maintain, while municipalities have
the responsibility to provide information about remaining roads. Similar
as for the BAG data set this can lead to the distribution of non-uniformal
data within the BAG data set, even despite there exist definitions for the cre-
ation of data. According to these definitions defined by Van den Brink et al.
[2013], the positional accuracy of data for the BGT data set depends on the
need. For data that requires a high accuracy (e.g. buildings) the positional
accuracy is between 0.3 meter and 0.6 meter, while for data that requires a
lower positional accuracy (e.g. water) a minimal accuracy is defined at 0.6
meter.

b.0.4 Comparison between TOP10NL, BAG and BGT

In this chapter a number of open 2D geo data sets have been intro, a com-
parison of them is given in Table 18. It can be concluded that the BAG and
BGT data sets have a higher positional accuracy with respect to the TOP10NL
data set. Nevertheless, it is needed to take into account that both the BAG

as well as the BGT data set have multiple contributors which might lead to a
variable quality of the geo data.

Data Number of contributors Positional accuracy (m)

TOP10NL Buildings + Water 1 6.00

BAG Buildings multiple 0.28-1.20

BGT Buildings + Water multiple 0.30-0.60

Table 18: Comparison between the TOP10NL, BAG and BGT data sets.
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(a) (b)

(c)

Figure 74: Comparison of TOP10NL and BGT. (a) Aerial photograph of a water sec-
tion. (b) Polygon representing the water section in the TOP10NL data set.
(b) Polygon representing the water section in the BGT data set.

(a) (b)

(c)

Figure 75: Comparrison of TOP10NL and BAG. (a) Aerial photograph of a house.
(b) Polygon representing the house in the TOP10NL data set. (b) Polygon
representing the house in the BAG data set



C PO INT CLOUD ANALYS IS

(a) (b)

(c) (d)

Figure 76: Point density of the filtered AHN2 point cloud product colored as dark
green (0) to purple (40) per square meter. (a) Dronten. (b) Kerkrade. (c)
Leiderdorp. (d) s-Gravenhage.
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(a) (b)

(c) (d)

Figure 77: Histogram of the average point density per square meter of the filtered
AHN2 point cloud product. (a) Dronten (average = 10.16). (b) Kerkrade
(average = 12.57). (c) Leiderdorp (average = 17.42). (d) s-Gravenhage
(average = 11.79).
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(a) (b)

(c) (d)

Figure 78: Point density of the filtered + unfiltered AHN2 point cloud product col-
ored as dark green (2) to purple (104) per square meter. (a) Dronten. (b)
Kerkrade. (c) Leiderdorp. (d) s-Gravenhage.
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(a) (b)

(c) (d)

Figure 79: Histogram of the average point density per square meter of the filtered
+ unfiltered AHN2 point cloud product. (a) Dronten (average = 23.14).
(b) Kerkrade (average = 16.43). (c) Leiderdorp (average = 29.50). (d) s-
Gravenhage (average = 16.60).



D THEMAT IC ACCURACY

d.0.5 Kerkrade

Digital elevation model

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 297 3 300

Water 0 0 0

Unclassified 44 40 84

Total 341 43 384

Table 19: Confusion matrix for
not-filled digital elevation
model (Kerkrade).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 299 3 302

Water 0 0 0

Unclassified 42 40 82

Total 341 43 384

Table 20: Confusion matrix for filled
digital elevation model
(Kerkrade).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 341 43 384

Water 0 0 0

Unclassified 0 0 0

Total 341 43 384

Table 21: Confusion matrix for the
OHN digital elevation
model (Kerkrade).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 341 7 348

Water 0 36 36

Unclassified 0 0 0

Total 341 43 384

Table 22: Confusion matrix for my
digital elevation model
(Kerkrade).
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Digital surface model

True condition

G
ro

un
d
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er
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g
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n

To
ta

l

Pr
ed

ic
te

d

Surface 150 23 25 164 362

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 0 20 2 0 22

Total 150 43 27 164 384

Table 23: Confusion matrix for not-filled digital surface model (Kerkrade).

True condition
G
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Pr
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d

Surface 150 43 27 164 384

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 0 0 0 0 0

Total 150 43 27 164 384

Table 24: Confusion matrix for OHN digital surface model (Kerkrade).

True condition

G
ro

un
d

W
at

er

B
ui

ld
in

g

V
eg

et
at
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n

To
ta

l

Pr
ed

ic
te

d

Surface 0 0 0 0 0

Ground 149 2 0 0 151

Water 0 36 0 0 36

Building 0 5 27 0 32

Vegetation 1 0 0 164 165

Unclassified 0 0 0 0 0

Total 149 43 27 164 384

Table 25: Confusion matrix for my digital surface model (Kerkrade).
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d.0.6 Leiderdorp

Digital elevation model

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 329 2 331

Water 0 0 0

Unclassified 23 30 53

Total 352 32 384

Table 26: Confusion matrix for
not-filled digital elevation
model (Leiderdorp).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 330 2 332

Water 0 0 0

Unclassified 22 30 52

Total 352 32 384

Table 27: Confusion matrix for filled
digital elevation model (Lei-
derdorp).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 352 32 384

Water 0 0 0

Unclassified 0 0 0

Total 352 32 384

Table 28: Confusion matrix for the
OHN digital elevation
model (Leiderdorp).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 352 13 365

Water 0 19 19

Unclassified 0 0 0

Total 352 32 384

Table 29: Confusion matrix for my
digital elevation model (Lei-
derdorp).
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Digital surface model

True condition

G
ro

un
d

W
at

er

B
ui

ld
in

g

V
eg

et
at

io
n

To
ta

l

Pr
ed

ic
te

d

Surface 317 9 18 14 358

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 2 23 1 0 26

Total 319 32 19 14 384

Table 30: Confusion matrix for not-filled digital surface model (Leiderdorp).

True condition
G
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l
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d

Surface 319 32 19 14 384

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 0 0 0 0 0

Total 150 43 27 164 384

Table 31: Confusion matrix for OHN digital surface model (Leiderdorp).

True condition

G
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un
d
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g

V
eg

et
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n

To
ta

l

Pr
ed

ic
te

d

Surface 0 0 0 0 0

Ground 318 15 0 0 332

Water 1 18 0 0 19

Building 0 0 18 0 18

Vegetation 0 0 1 14 15

Unclassified 0 0 0 0 0

Total 319 32 19 14 384

Table 32: Confusion matrix for my digital surface model (Leiderdorp).
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d.0.7 ’s-Gravenhage

Digital elevation model

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 253 1 254

Water 0 0 0

Unclassified 121 9 130

Total 374 10 384

Table 33: Confusion matrix for
not-filled digital elevation
model (’s-Gravenhage).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 257 1 258

Water 0 0 0

Unclassified 117 9 126

Total 375 10 384

Table 34: Confusion matrix for filled
digital elevation model (’s-
Gravenhage).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 374 10 384

Water 0 0 0

Unclassified 0 0 0

Total 374 10 384

Table 35: Confusion matrix for the
OHN digital elevation
model (’s-Gravenhage).

True condition

G
ro

un
d

W
at

er

To
ta

l

Pr
ed

ic
te

d Ground 370 0 370

Water 4 10 14

Unclassified 0 0 0

Total 374 10 384

Table 36: Confusion matrix for my
digital elevation model (’s-
Gravenhage).
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Digital surface model

True condition

G
ro

un
d

W
at

er
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ui
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n

To
ta

l

Pr
ed

ic
te

d

Surface 191 5 97 79 372

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 0 8 4 0 12

Total 191 13 101 79 384

Table 37: Confusion matrix for not-filled digital surface model (’s-Gravenhage).

True condition
G
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un

d
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er
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n

To
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l

Pr
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ic
te

d

Surface 191 13 101 79 384

Ground 0 0 0 0 0

Water 0 0 0 0 0

Building 0 0 0 0 0

Vegetation 0 0 0 0 0

Unclassified 0 0 0 0 0

Total 191 13 101 79 384

Table 38: Confusion matrix for OHN digital surface model (’s-Gravenhage).

True condition

G
ro

un
d

W
at

er

B
ui

ld
in

g

V
eg

et
at

io
n

To
ta

l

Pr
ed

ic
te

d

Surface 0 0 0 0 0

Ground 190 3 2 0 195

Water 1 10 0 0 11

Building 0 0 92 0 92

Vegetation 0 0 7 79 86

Unclassified 0 0 0 0 0

Total 191 11 101 79 384

Table 39: Confusion matrix for my digital surface model (’s-Gravenhage).
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