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I. INTRODUCTION

1.1 COURSE OBJECTIVE

The objective of this course is to convey knowledge and experience of probabilistic techniques that were
acquired during large scale hydrualic projects such as:

4 creation of an artificial island in the Beaufort
Sea (to the North of Alaska, see Figure I-1)

¢ port construction in Karwar (on the westcoast
of India, see Figure I-2)

4  the design of the Jamuna Bridge in Bangladesh
(idem)

4 the Oosterschelde storm surge barrier (see Figure
I-3)

4 the Nieuwe Waterweg storm surge barrier (idem)

¢ the design of the Pump Accumulation Station
(the Lievense Plan)

¢ water defences; most importantly the latter refers
to a study carried out for the Technical Advisory
Committee on Water Defences (TAW). The Advisory Committee’s tasks include giving guidelines
for the construction, management and maintenance of water defences (not only for dykes).

Figure I-1

This course will also treat the guidelines.

Figure 1-2

Figure I-3

Using fault trees and other probabilistic techniques sometimes leads to a better grasp of the problem,
as became evident during the design of the Jamuna Bridge and the breakwater design for Karwar and
Madras (Chennai).

The aforementioned techniques were used for the risk analysis for existing breakwaters, carried out for
PIANC. The objective was to define guidelines for breakwater design. For the design of armour units
safety factors were determined.




1.2. THE COURSE SET-UP

De following subjects will be treated during the course:

¢
¢
L 4

¢

¢

¢
¢

Statistical description of boundary conditions and strength.

Selecting probability functions and the related parameters. Correlation.

Probabilistic calculations for ultimate limit states (U.L.S.) and serviceability limit states (S.L.S.).
Calculations at levels III, II and I and further refinements. Selecting methods and testing. Boundary
conditions with two or more variables such as water levels in the transitory area between the river
and the sea and load by waves, where wave heights and periods in the wave field are of significance.
Failure modes in a section. Stability for a great number of possible failure modes. Fault- and event
trees. Examples of U.L.S. and S.L.S..

Length effects. Length effects resulting from boundary conditions and loads on the one hand and
from fluctuating strength on the other hand.

Analysis of the complete design using examples. Correspondence with quality assurance.
Regulations, guidelines etc.

Though not directly in the hydraulic domain, the following issue is also covered:

L4

Risk- analysis of the costs and planning.




II. STATISTICAL DESCRIPTION OF BOUNDARY CONDITIONS AND STRENGTH

II.1. INTRODUCTION

High water levels, wave climates (which concern the directions, heights and periods of the waves, as
well as the possible relations between these aspects), discharges etc. are often presented as exceedance
frequency curves or probability distributions. If observations concerning the variable to be examined
are available, one should first consider with which objective the data is to be analysed. There is a difference

between looking for:

4 anextreme load (an ultimate limit state - U.L.S.

or less in one year) and

- with an expected occurrence of for example 0,01

¢ afrequently occurring load (a serviceability limit state - S.L.S. - which occurs a considerable amount

of the time.)

When analysing statistical data, one should first consider the form of the process (natural phenomenon)

(see Figure 1I-1):
a Is it a constant process?

(Is the process STATIONARY? !)) (E.g. monsoons)

x(t) x(t)

b do seasons play a role?

¢ are there more than one pheno-
mena?
(E.g. a cyclone during a monsoon)

x(t)

o

Figure I1-1

Ad a.

If the observations originate from one stationary
process, an uninterrupted observation period of for
example one year gives sufficient information for
the statistical description of the phenomenon. The
distribution of the phenomenon can be determined
from observations. If 3-hourly observations (of wind
velocities, significant wave heights, efc.) are concerned,
as is often the case with wave registrations, the function
found is an estimated probability that phenomenon x

(the significant wave height determined from wave
registrations during 20 minutes, measured with
intervals of 3 hours, is assumed equal to the significant

x(t)

Figure II-2

wave height during those 3 hours) is smaller than or equal to a certain value x. This distribution is usable
for S.L.S. considerations such as wear, workable days (under weather conditions), etc..

A process is stationary if the expected value is constant, i.e. E [x(t)] = E [x(t + 1)] = ¢, where T denotes
a time interval. The term process indicates that the random variable is time dependent. If the random
variable is place dependent(in x- ,y- and/or z- direction) a so called field is involved. For the sake of
brevity these notes only mention a random process.

IT - 1



Adb.

In the case of seasonal influences, it is
sometimes possible to carry out the analysis

for every process that is (more or less) X ( t ) UL.S.
stationary during the season. Seasons last
a considerable percentage of time, so this
analysis will also be for an S.L.S.. An
example of such a process is the wave height
in amonsoon region. During the northeastern
monsoon (on the northern hemisphere)
circumstances are more or less stationary,
likewise during the southwestern monsoon
(also on the northern hemisphere). The
considered S.1..S. could be the calm location
of ships behind a breakwater.

Figure I1I-3

Exceptions are cyclones or hurricanes which are "superposed" on monsoon circumstances. In that case
the phenomena are as is indicated in Figure H-1c.

Adc.

Often extreme phenomena occur during the
station rocess. From a certain point of
X ( t ) I w view th:lsz c}:)ases entail more than one f)rocess.
| Cyclones and storm depressions (extreme
phenomena) during a southwestern monsoon
or the winter season on the northern hemisphere
(the stationary process) are examples of these

cases.
The extreme loads caused by these processes
are analysed for the U.L.S. During storm
circumstances ships don’tneed a calm shelter
behind a breakwater. Some disturbance in the
t port is acceptable. The breakwater must,
however, stay intact (or damages may not

. exceed a small percentage according to
Figure II-4 requirements).

If several storms occur per year, as is the case on the coasts of western Europe, three types of analysis are

possible:

. Firstly, considering every year’s greatest storm and applying the statistics of yearly maxima.
Unfortunately, the periods during which measurements take place are usually rather short. By applying
this method one is left with very few measurements.

. Secondly, considering storms that cause wave heights above a certain threshold value as statistically
independent realisations (Peak Over Threshold or P.O.T.).
. The third possibility (a physical consideration) is distinguishing between wind directions (and

possibly also the course of the depression which causes the storm ). Determining the probability function
of extremes selected by this method, is only suitable for U.L.S. analysis.

With given 3-hourly observations of a stationary process, the most simple assumption is that these observations

are independent of each other. In that case the number of observations in one yearis: N = % = 2920.

IT - 2



The highest of these values is normative. The distribution of the highest (significant) wave can be derived
by using the extreme value theorem (see § II-2). This highest (significant)wave is used inan U.L.S. analysis.

The assumption of independence of the 3-hourly observations is incorrect, but it is a safe assumption. Dependence
is disregarded so probabilities are overestimated. Weather conditions usually continue for more than 3 hours.
Weather can be ascribed a certain persistence. The number of "sea states", affected by the weather situation
(i.e. by H ) will be smaller than assumed. If N > M, the expected value of the highest of N (significant)
waves is greater than that of the highest of M (significant) waves, as long as both samples are taken from
the same basic distribution.

II.2. EXTREME VALUE DISTRIBUTIONS

With the given distribution F(x) the probability ') that the random variable x is smaller than or at most
equal to a certain given value x per definition equals F_(x):

P(x<x) = F (x)
Wanted: the probability that the highest of N realisations from the distribution F, (x) is smaller than a certain
value x. -

The probability that the first realisation is smaller than or at most equal to x equals F_(x).

The probability that the second realisation is smaller than or at most equal to x equals F, (x).

The probability that the first and the second realisations are smaller than or at most equal to x equals:
F (x) *F _(x) as long as the realisations are independent.

Further realisations are analogous, so for N realisations:
Probability that all N realisations< x = F, (x) * F,(x) * ...= F)_:N(x).

The distribution of the highest of N realisations from a basic distribution is called an extreme value distribution 7, (x)

for maxima ?): v
F,(x) = F, ()

The probability density function (p.d.f.) f(x) of the extreme value distribution for maxima is acquired
by differentiation:

£) = Nf, oy F\(x)

An example of an extreme value distribution type I for maxima (a Gumbel distribution) is given in Figure
II-5.

Note that the probability is without dimensions. The probability density generally does have a
dimension, namely the reciprocal of that of the considered random variable.

Note that the capital letter E as an index refers to the extreme value distribution, whilst the underlined
letter (in dit case: x ) indicates arandom variable. The variable which is not underlined (x ) is the "current
value" or the "dummy variable " of the distribution. An average value of arandom variable x is denoted
by p, . The estimated average calculated from observations (x,) is denoted by x. N
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F ()

- 1.0
F
g e
Gumbel
distribution| 0 5— x-a
_x-a Extreme B
6 B value o Ne B
e
9:0
x
Bin N
fi‘ (x)
f (x) Extreme
E value
Original
density function
X
Figure II-5

To find the distribution of extreme minima the procedure is analogous:
Probability that all N realisations > x = {1 —Fi(x)} * {1 -F, (x)} * = {1 -F, (x)}N )

The mathematical adaptations, applied to the extreme value distributions for minima lead to results analogue
of those for maxima. The figure below shows this for an extreme value distribution type I for minima:

xX-a

F)=1-e°' B>0

The extreme value distribution for this is::

Fy(x) = {1 —e'e%}N

F (x)
FE( x)
X-a
X-a\N|
< -e B > / 1-e e F
1-e _/
X
Bin N
f_ (x) Extreme
alue
Fe(x) - Original
densily function
k X
Figure I1-6
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EXAMPLE: EXTREME VALUE DISTRIBUTION OF A FINITE DISCRETE DISTRIBUTION

The chosen process is throwing an unbiased six-sided dice. Wanted are the probability density function
and the distribution of the throw with the highest outcome when it is thrown N times. N.B. The probability
density function concerns a variable that can only equal discrete values, in this case 1, 2, .., 6, and thus
is the equivalent of the p.d.f..

The probability density function consists of so called Dirac- functions (also known as "nails"). With one
dice one throws either a one or a two etc.. In between there are no values of the variable: "outcome of throw
". The probability density is defined only for whole numbers: one, two, etc.. In a graph this is expressed

by infinitely small widths Ax, with heights fx, (x,) = ﬁ (the "nails"), such that the surface of each

1

nailis'/s.Incase N = 1 (onethrow)the probability that M=1, 2, 3, etc. (outcome of throw) when throwing
un unbiased six-sided dice always equals: f_(x,)-Ax, = % . The probability density could be represented
it 3

by Dirac- functions or distributions. (See Figure II-7 left.)

g
Surface of every nail is /6 B, (x)

fl ( 77
1/6

Figure II-7

We can define a probability density function: p_(x) = P(x =x). The right side of figure II-7 shows the
probability density function of all possible outcomes of throwing an unbiased six-sided dice.

The distribution function of a continuous random variable can be obtained from the p.d.f. by integration.
The distribution function of a discrete random variable follows from the probability density function by
addition.

F,(x) = [£,()dx of F,(x)= ¥ p,(

all x;sx  ~

Integrating Dirac- functions is not simple, so the second definition of the distribution will be used.

For extreme value distributions F(x) = FEN(x) continues to be valid (page I1-3, halfway), so for throwing

a six-sided dice:

all x;<x  ~

Fy(x) = { )Y px(x)}N

IT - 5



The distributions of the probabilities of throwing M or less in N throws and the probabilities of throwing
a maximum of M in one out of a total of N throws, are presented in the table in Figure II-8. The right side

of Figure II-8 shows the probability distributions F(x) = FiN(x).

Explanation (see shaded square in the table in Figure 1I-8):

The probability of the event "a 5 or less is thrown" (M = 5) occurring when a dice is thrown once (N =
1) is the probability that "a 5 is thrown" or that "a 4 is thrown" or that ... or that "a 1 is thrown". According
to the rule for "independent or-probabilities" (see lecture notes CTOW4130/b3") ) the probability of the

event "a 5 or less is thrown" occurring with one throw equals 5 * —é—

When there are 4 throws (N = 4), this probability is valid for the first throw and the second throw and the
third throw and the fourth throw . According to the rule for "independent and-probabilities" (see lecture
notes CTOW4130/b3) the probability of the event "a 5 or less is thrown every time" occurring with 4 throws

5 4
equals ( g) =~ 0.48.
Analogously, one finds that the probability of the event "a 4 or less is thrown every time" (M = 4) occurring

4
when a dice is thrown 4 times(N = 4) equals (%) = (.20.

The two calculated probabilities lead to the probability of the event "the maximum throw is 5" when a dice
is thrown 4 times, as this equals the difference between "a 5 or less is thrown" in four throws and "a 4
or less is thrown" in _four throws: 0.48 -0.20 = 0.28.

outcome of throw 1 2 3 4 5
Fy (x) 16 2/6 3/6 4/6 5/6
N= =
fy(x)dx 1/6 1/6 1/6 1/6 116
4 4 2 2
Fe (x) 7710 1210 6.010
N=4 -
-2
fE(x)dx 4810 0.14 0.52
0
123456
-3 -2
Fa%x) 1010° 1710 016 10 4
N=i0 - =
-2
fE(X)dx 1610 015 0.84 0
) 123456
20 4 -
Fe (x) 3010 2610 10 4
N=20 =
-3
dx
fe(x) 2610 097 |, x
Figure I1-8
! Vrijling, J.K. and A.C.W.M. Vrouwenvelder, Lecture notes b3, Probabilistic Design, Faculty of

Civil Engineering of the Technical University Delft (in Dutch)
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EXAMPLE: EXTREME VALUE DISTRIBUTION OF A UNIFORM DISTRIBUTION

The probability density function of a uniform distribution is:
fx) =

for @ < x < P and 0 elsewhere.

The distribution function follows from this by integration:
F X = _x.._—a
.0 - 2=

The corresponding extreme value distribution is:

Fpx) = (

X -0 N

SN—

=

-a

Differentiation gives:

X'“(l) N-1

B-a

If, after the analogy of the dice, one takes: 0.= 1 and =6, the following extreme probability density functions f.(x)
apply for various values of N:

U
1) = 57 (

F 0
20 N=10/
1.6
02 [.N=1 N=42
, S
1 2 3 4 5 6~
Figure II-9
Figure II-10 shows the corresponding probability distributions.
x= 1 2 3 4 5 6
- F(x) 00 02 04 08 08 10
fx(X) 00 02 02 02 02 02
Fdx) 00  1610% 26102013 041 10
fe(X) 00  6410° 51162 017 041 08 .
123456 x
< -3
F1%x) 00 1010’ 1010" 6016° 041 10
N=10 = 1
feix) 00 10 16% 5010% 002 027 20 . an
123456
Figure II-10
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I1.3. TYPES OF EXTREME VAL UE DISTRIBUTIONS

Observations can be clustered and set out in a histogram. This histogram can be matched with a mathematical
description which serves as an estimate for the probability density function of the considered statistical
phenomenon (see Figure I1-11). A number of techniques that can be used for this purpose are discussed
in more detail in § II.11 and further. By adapting the found probability density function as described in
§ 11.2, the corresponding extreme value distribution is determined.

Frequency
f x (x)
]
T
1
/
/
/
/
b'¢
Figure I1-11

Depending on the behaviour of the "extreme tail" of the original p.d.f., (for maxima this is on the right side)
the extreme value distribution converges to type L, I or IIl. A standard publication concerning extreme
value distributions is:

E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York and London, 1958.

For yearly maxima of wave heights, river discharges, high water levels, etc., an extreme value distribution
type I for maxima is often used, a so-called Gumbel- distribution:

x-a

I
F(x)=e° = exp( —e P )

One can demonstrate quite simply '), that the extreme value distribution of N observations taken from a
Gumbel distribution is in fact another Gumbel- distribution, which is congruent with the original distribution,
but displaced over f-/n N.One might say: the extremes of a Gumbel distribution are Gumbel distributed.

Suppose the two derivatives (of the original distribution and of the extreme value distribution)
equal zero. The difference in intercept values for which the second derivatives are zero is
B+in N. (See also Figure II-5. Naturally the comment also stands for the extreme value
distribution type I for minima: see Figure 11-6.)

N.B. Note that assuming the second derivative equals zero, gives the intercept of the point of
inflection of the probability distribution, i.e. the maximum of the probability density function.
From this the modal value follows.
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SUMMARY OF EXTREME VALUE DISTRIBUTIONS

Type I maxima (Gumbel) | | Type I maxima (Fréchet) | | Type Il maxima l

F (& exp [-e*¢9] exp [- (Ew)*] exp [- E/w)]
£©) o exp [-o(6-u)-e*¢7] (khu)(Ew)*" exp [-(&u)*] “(k/u)EM)* expl-(-(E/)H]
range ~eo<E, —oo<y<+oo, >0 Euk>0 wE<0 k>0
My p=u+0,577/a p=uI'(l-/k) (k>1) p=uT(1+1/k)
o o=nla/ 6 = T(1-2/K) (k>2) 4 g T4 200
=maxy, a=a, u=u+{Inn)}/o k=k,, u=u, n'%
mton ) o 47 k=k, u,=u, i
106 (&) 6
£
£
Type 1 minima | | Type II minima | | Type III minima (Weibull) I
F® 1-exp [-e"Y) 1-exp [- (Eu)*] 1-exp [- (E/)']
£©) o exp [aE-w)-e"] - Ey™ exp [-Ewy*] (e/u)(E/uy " expl-(-(E/u)]
range oL, o< +o0, >0 g,u<0 k>0 u,E k>0
by u=u-0,577/c. p=uT'(1-1/k) (k>1) p=uTI'(1+1/k)
o o=m/ov 6 P+ pt=w? T(12/k) (k>2) O+ p2=1? T(1+2/K)
X = maxy; o, =0, u,=u-{In(n)}/c k,=k,, u,=u, n"% k,=k, u,=u, o'
i=1.n
148 1,06) (€}
Notes:

1. The type Il and III distributions are given with lower (upper) boundary 0; by translation an arbitrary
different boundary can be introduced.

2. The gamma function is defined as: I'(r) = ft"l-e 'dt. with T'(r) = (r-1)! (for r >0).
0

Furthermore, the following applies to r: I' (r+1) = 1e2e3e . er, the faculty function.




The extreme value distribution type II for maxima is also known as the Fréchet distribution. The distribution
function is:

F. (x) = exp{—(x—l;a) _Y} x>aq, >0, y>0

. The relation between the Gumbel distribution and the Fréchet distribution is an analogue
of the relation between the normal distribution and the log- normal distribution:
if y is Fréchet distributed, then x = Iny is Gumbel distributed, as long as the parameter o
is equal to O (zero) in both distributions.

This can be interpreted as follows. The Fréchet distribution is taken:

F (y) = expy- 27 (Assuming: o = 0.)
= B

Assume: x = Iny , so, for the "dummy variables": y = e*.
Substitution of this in the Fréchet- distribution gives:

(5] |-t ()]

= exp{-{e*~)7}

F, ()

F,(x) = exp{-e Y& "D} Gumbel.

] The extremes of a Fréchet- distribution are Fréchet distributed. For the Fréchet distribution
of significant wave heights #, :

_ -C
run - onf ()}

The extreme value distribution becomes:

H-4)\°¢
F.(H) = exp]-

1
B-N€

1
=A,B, =BNCand C, = C.

E E

Often, a Weibull distribution is used for the long term distribution of significant wave heights. This
is not based on the exireme value theory (see § I1.2) and it has no physical background. Usually, a good
fit is found between the data (observations) and the Weibull distribution. The Weibull distribution is
the extreme value type III distribution for minima. However, the distribution is often used to model
maximum significant wave heights.

k
F,.(x) = 1—exp{—(fi) } x> u>0, k>0 Weibull
z u

For the values 1 and 2 of exponent k, the Weibull distribution is known by separate names:

k=1 F.(x) =1 -exp{— zC—_—e}: exponential distribution.
= u

2
k=2 F,(x) = 1-exp —( ) : Rayleigh distribution.

’/2-m0
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EXAMPLE: THE DISTRIBUTION OF THE SIGNIFICANT WAVE HEIGHT AT KARWAR
DURING THE SOUTHWEST MONSOON

The significant wave heights during a southwest monsoon period at Karwar (on the westcoast of India,
see Figure I1-47 on page II-32) can be described with a Gumbel distribution '). The 3-hourly observations
satisfy:

_H-4

F, (H) = exp( -e T) with4 = 1.941 mand B = 0.284 m. Themodal value ofthe significant wave
is thus 1.941 m.

Assuming each monsoon period lasts 3 months, each of those periods would contain:
N - 3mnth.-30day.- 24 hr. _ 720

3hr. obs.

independent realisations of the significant wave height.

The extreme value distribution to be considered is the distribution of the highest significant wave in a year.
This will be another Gumbel distribution with:

A, =A+BIn720 = 3.81 m and B, = 0.284 m. The modal value of the maximum significant wave in
a year is thus 3.81 m.

Assuming that observations every 6 hours (instead of every 3 hours) are independent, due to persistence
of the waves, then N = 360 and calculations lead to: 4, = 3.61 m. The difference with the last 4, is

only 0.20 m. The significance of persistence for 4, is academic rather than practical.

If one wishes to determine the distribution of the highest significant wave during the life of a breakwater
(presumed 50 years) the procedure will have to be repeated with N = 50:
A, =A;+B-In50 = 3.81+0.284 ¥3.91 = 4.92 m. The modal value of the highest significant wave at

Karwar in the southwestern monsoon period (without hurricanes) is 4.92 m in 50 years.

f H s(H)

f.(H)

E 3-hourl 1 -
obs. y yr%aa)?r. senléexa. iy

fEL(H)

f(H)

b 1y (H)
I

104 381 492 H[m]

Figure I1-12

InFigure II-38 on page 1129 the significant wave heights during the southwestern monsoon are approximated
using a Weibull distribution. That distribution for the significant wave heights during the southwestern
monsoon will be used in the rest of these lecture notes. In Appendix II-I at the end of this chapter (page
11-113 and further), the approximations are compared (Gumbel and Weibull distributions based on the
same measurements).
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EXAMPLE: THE DISTRIBUTION OF THE SIGNIFICANT WAVE HEIGHT AT KARWAR
DURING CYCLONES

The significant wave heights during cyclones in the southwestern monsoon period in Karwar appeared
to satisfy a Fréchet distribution by good approximation:

_4\-C
F A, H = exp{—(%) } Frechet

Based on the observations of the significant wave height during twenty five cyclones, it appeared that:
A =0.00 m, B =2498 mand C = 3.388 (see Figure II-52 on page 1I-34).

Assume that a construction (breakwater) in Karwar must withstand a certain wave attack and that this wave
attack is characterised by the significant wave height. If a cyclone were to occur every year and the "life"
of the construction was 50 years, then the parameters of the Fréchet distribution of the highest significant

wave in that lifetime would be:
1

A, = 0.00 m, B, = 2.498-503%% = 7.93 mand C, = 3.388.

The problem is more complicated. A cyclone does not occur every year. Counting over a number of years
gives an estimated probability P(cyclone) of 0.5 that a cyclone occurs in a year. Significant waves during

a cyclone occur on condition that a cyclone occurs.

The probability of a significant wave occurring as a result of a cyclone in a year (probability of significant
waves AND a cyclone) is made up of two"contributions":

1 theprobability of "no cyclone" occurring in a particular year (in which case there is no significant wave
caused by the cyclone):
P(no cyclone) = 1 - P(cyclone)

2 the probability of a significant wave height occurring in a particular year whilst a cyclone is taking place
Y. This is the conditional probability of a significant wave height given that a cyclone is occurring,
multiplied by the probability of a cyclone taking place:

P(H, N cyclone) = P(H; | cyclone) * P(cyclone)

The probability density and the distribution of H, can be presented as is shown in Figure II-13:

f (H)
Ijs 5 Fﬁ;“-i‘ﬂ‘L:)/ fﬂglwdone(Hs)'P(cydons)

0.0 Hg
Flié H)
1.0 /,_
1-P (cyclone )=0.5 J
0.0 0'0 iy
Figure I1-13

If a cyclone is taking place, one can assume that the total energy in the wave field originates from
wind waves. Other sources of energy (swell) are disregarded.
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InFigure II-13 f,, | eyetone () is the probability density function of H_, which has been calculated (fitted)
from observations of /_ during cyclones. (See Figure II-52 for the conditional distribution function £, | cyclone (H).)

In this case it is easier to work with the exceedance frequency curve:

P(H>H,) = 1-F, (H) = (1 -F,

H_ | cyclone

(H) ) P(cyclone)
The probability distribution is:

P(H,<H,) = F, (H) = 1-(1 —FHS"ydone(Hs))-P(cyclone)

I.4. DEPENDENCE AND EXTREME VALUE DISTRIBUTIONS

Assume a dyke in the storm direction ("op de stormstreek") on a lake with a fixed water level. The "load"
is formed by wave attack. The "strength" is the crest level of the dyke. The regarded failure mode is "wave
overtopping".

The distribution of the highest wave in a year and the distribution of the crest level are given. The probability
of failure (probability of wave overtopping) P; in a year can then be calculated. The highest wave in M
years can be derived from the given distribution for wave heights. The probability of failure in M years
becomes:

PfM =1 —(1 —Pf)M = M'Pf as long as P, is sufficiently small.

This expression for the probability of failure in M years (the life or the period between maintenance works)
is valid for independent failure probabilities in all years. The maximum waves in various years are independent
but the height of a dyke in one year is not independent of the height in the preceding year. The probabilities
of failure in various years are thus dependent on the crest level of the dyke. A good procedure is to determine
the probability distribution of the highest wave in the lifetime for the load and then calculate the probability
of failure during the lifetime of the structure.

IL.5. PROBABILITY DENSITY FUNCTIONS AND DISTRIBUTIONS FROM PHYSICAL RELATIONS

Ifpossible, the determination of a mathematical relation between quantities based on measurements ("fitting"
arelation between physical quantities or adapting a p.d.f.) should not be based solely on statistical techniques.
It is at least as important to take the physical process into consideration.

The wave height on a (short) shallow foreshore bordering a (deep) sea is used as an example !).The wave
height is limited by the water depth. In deep water the significant wave is: Hso. On the shallow foreshore
the significant wave is: H_ (see Figure II-14). Given the p.d.f. of the significant wave height in deep water,

one wants to determine the p.d.f. of the significant wave in shallow water.

The foreshore must be short and the sea must be deep, because otherwise an "onshore wind", necessary
for the occurrence of wave attack, would cause wind set up. The wave height would then be influenced
by the water depth in a special way. This influence is disregarded here.
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"DEEP "

Figure I1-14

The mathematical relation (the mathematical model) between the significant wave "in deep water" and
the significant wave on the shallow foreshore is:

Hs0 Jor HS0 < 0,5+xh (h = waterdepth)
H =

0,5+h for HSO > 0,5+h

This model is illustrated in Figure II-15. The p.d.f. of the significant wave in shallow water is acquired
by transforming the wave in deep water. Provided the wave doesn’t break, the wave height on the shallow
foreshore equals the significant wave height in deep water. In Figure II-15 that transformation is represented
by short black arrows between the cross hatched surfaces in the p.d.f.s. Waves higher than half the water
depth break until the height (approximately) equals half the depth. The broken waves conserve the wave
length they had before breaking.

The distribution of deep water waves is, as far as the distribution of significant waves on the shallow foreshore
is concerned, censured by the breaker depth. In Figure II-15 this is marked by the darker spotted surface
that transforms into the "nail" in the p.d.f. of the significant wave on the shallow foreshore.

y=05h "breaking "

o

Figure II-15
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The distribution of the significant waves on the shallow foreshore is a so-called censured distribution.
This distribution function has a gap where the probability density function is censured.(In Figure II-15:
for y = 0,5 h.) This gap is easily missed if one only considers the observations.

Another way to "cut down" a distribution is applied in the case of the so-called truncated distribution.
This way the reduced a™ part of the basic probability density function is proportionally distributed among
the ordinates of the rest of the probability density function so that:

Point of truncation

f fr@)dx =1

—oo

The ordinates become:

+ oo

fr(x) = lia *fl(x); a-= [ fy(x) dx = 0<a<1, x<point of truncation in f.(x)

point of truncation

In this f,.(x) is the truncated probability density function, see Figure II-16.

fr(x)

f!(x)

Point of truncation x
Figure I1-16

Such a distribution can be used to model the probability of occurrence of weights of stones from a quarry.
The largest stones are removed from the population or, alternatively, are broken into smaller stones.

A different discontinuity can be found in the exceedance frequency curves for high water levels in a river.
If any present flood plains are not taken into account, one extrapolates high water levels as follows:

I | | I
10" 10?2 10 10
P(hriver >h)inayear

10

Figure I1-17
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However, at the highest measured water levels the riverbed that leads the current may differ from the bed
used at lower water levels.

That way the river’s discharge- water level relation (Q- h or rating curve) changes. The high water level
exceedance frequency curve shows a bend at herit, i.e. the height at which the flow profile changes size.
(Compare Figure II-18 with Figure II-19.) During processing or interpretation of the data of observed high
water levels this easily escapes attention. (Compare Figure II-17 with Figure 11-19.)

[ T I
L T A 1
P(hrivu >h)inayear

Figure 11-18 Figure I1-19

The relation between discharge and water level is shown analogously to the HSO - H_ relation for waves

breaking on a high foreshore. The p.d.f. of the discharge can often be assumed continuous. The corresponding
high water level, however, shows a "leap" where the flood plains are inundated as a result of the slope difference
in the Q- h- curve.

Leap corresponds to bend

in high water level h
exceedance frequency curve
er(Q) dQ:f_hr(h) dh
continues to bs valid:
h ..
It
pa - y
dh
f (h)
h 2 ) Q
dQ 54
f Qr( Q)
Figure I1-20
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6. MULTI-DIMENSIONAL PROBABILITY DENSITY FUNCTIONS

When a phenomenon is described by more than one random variable, the probability density function of
this phenomenon is multi-dimensional. The variables each have a marginal probability density. The phenomenon
has the probability density of all variables together. It is usual to illustrate a joint probability density function
for two variables with normal marginal probability density functions:

1| * ‘“i)
1 5 GxI
fy ) = ‘exp =

o cx] \/2_7t

A=
1 3 Oz
o) = "exp -

- 0‘\/2_71’.

If the parameters x/ and x2 are statistically independent, then the joint probability density function is the
product of the marginal probability density functions:

1 2\ o ) e
7, xl x2 (xy) = e = =

Lines of equal probability density are determined by assuming the exponent is a constant:

2 2
x_“,i y_uﬁ

+ = Constant = ellipses
o, S
f x1, x—2 ( X,y )
f x1 ( X ) 0
- I
R s
7 "“‘ QN
TN
x i
u
X :g f x2 (y )

Figure II-21

In this figure one recognises the frequently presented "Gauss- hat".
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The variables x/ and x2 are not always independent and they are not always normally distributed either.
In case they are linearly dependent and normally distributed’) the joint probability density function can

be denoted as: ) {( x-p ) 2 G-~ 1) ( y—u,z) 2}
- — | “2Pu,x — —* —
=2 5_0— 6:(2

1 2005 ) [\ %2
f,c__]_,g(xay) = e -

2
27tc£c£‘/l “Pxi, x2

In this case lines of equal probability density are determined by the ellipses:

2 2
XMy (x_uﬁ)(y_p'xz) Y-By
—| 2P — — + — | = Constant
Cx1 T %% Ox2
Tangents of these ellipses are derived from:
of
/ = —...q{
of
Vertical tangents of these ellipses are found from:
) YRy YTHe 2
a_f =0 - —2px],x2 +2 —_— = y_p’x2 =Px1,x2_—(‘x_p’x1)
Y T T %% %% On - T T % -
(See Figure 1I-22.)

The following is a formula of the regression line with x as an independent variable ("regression of y on
x"), as estimated with linear regression using the Least Square Method (see § II.11.1 and further):
- S —
y-y = rx,ys—y(x -x)

The direction of this regression line relative to the x-axis (the axis for the independent variable) is estimated

as follows: toq = COVEY) _ eSSy Sy
ga = = =ry

2 2 )

Sx S, x

Based on observations, the (empirical) regression line is thus an estimate of the connections between the
points and the vertical tangent on the contour ellipses (the theoretical regression line). (See Figure I1-22.)

o

y y-ux2=px,,x2,,’§()f-ux}
2
o 2
fya (¥) ul, X
°xt | %x
fﬂ(x)

Figure 11-22

Ifthe dependence is not linear, the meaning of the correlation coefficient, p,, ,, (see Figure11-22),
can not be interpreted unambiguously. Estimates of statistics are treated further in §I1.12.
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Often, marginal probability density functions are not normal. Suppose that both the wind set up on a sea
and the high discharge of a river in that sea are exponentially distributed. If the wind set up and discharge
are both independent, the joint probability density function for a station on the river, where the tidal influence
is still noticeable, is as follows:

For the wind set up (storm surge) assume:
sV

1,
S V) = e

and for the discharge:
-2

1
f%(Q = ae ©

The joint probability density is the product of the marginal probability density functions provided they are
independent *):
g
SV, — e cl1 C2
ALY ClCo

In this case lines of equal probability density are denoted by:

sv +_Q_ = Constant = straight lines

cl1 cC2

fanl V)

sv
I
] Joint probabilitydensity function of two random
variables with (marginal) exponentional
probability density functions
Q
Figure I1-23

1

For wind set up on the Noth Sea and discharges of the Rhine Van Der Made (1969) demonstrated that wind
set up and discharges are not totally independent.

(VanDer Made, J.W. , Design levels in the transition zone between the tidal reach and river regime reach. Actes
des Colloque de Bucarest: Hydrologie des Deltas, mai, 1969.)
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Another example is the (incorrect) assumption that the wind velocity, u , and the wind direction, ¢, ,

are independent ).

The marginal probability density functions could be:
for the wind velocity:

S, = %'3 K exponential
and for the wind direction: 1 (cp_—_4 )z
. B
jfp () e normal
= B{2n

The joint probability density function would then become:
v 1[e-4
l - + o | —
frg 9) = ———e 2t}

BCy2x
The lines of equal probability density are acquired by assuming the exponent is a constant:
2
2 e AV L constamt - parabolas
C 2\ B
f (o)
w
¢
Joint probability density
function of a (marginal)
parabolas exponential and a (marginal)
normal probability density
C * Const. function
v
Figure I1-24

Particularly for the Netherlands this is not true. Storms from the northwest are usually stronger
(see Figure 11-28) than those from the east northeast.
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EXAMPLE: TWO DIMENSIONAL P.D.F. OF WIND VELOCITY AND WIND DIRECTION.

To determine the joint p.d.f. of wind directions and wind velocities 3- hourly observations of (usually)
20 minutes are used, so that a year is presumed to give 2920 independent observations. These
observations can be classified according to direction sectors of for example 11° 15". (Giving 32 sectors
or points of the compass to be considered). The number of times a year the wind blew from a certain
direction sector is counted. Assume the number of times equals ;. This number is divided by the total
number of observations (2920). The fraction of the total number of observations concerning "wind from
a certain direction sector” can be displayed according to the direction sectors in a histogram:

frequency in wind direction sector

it J!‘ﬂr .
dp IHBHBHES
Tl ittt
AT IHaHEHEE R
Tl | B RE R RE R -
i IR
i bt btk bbb
| r‘l"r*‘,__l__l__lr 1' l 1l : ; : I : : ! : | : i i : i
o 1 b vttt ‘ : A NN HE R
iy S BRHEHIRE ! AR RE
1THHHHHE I AHHNERERNI 1ilHA RN NN
1
wind direction N NE SE s sw w NW N
seclor
Figure II-25

This histogram can be perceived as an approximation of the probability density function of "wind from

N,
a certain direction" in a year. Per direction sector: p ” {o} = -M—’— . M Denotes the number of selected
%
2N,
io1

direction sectors (in this example 32). A mathematical description of the frequency diagram can be
obtained using a Fourier analysis.

For every selected direction sector, the wind velocity has to be established for every time the wind blew
from that direction. Thus, per direction sector a wind velocity exceedance frequency curve can be
determined, based on the N, observations for every i* direction sector. This conditional wind velocity
exceedance frequency curve can be denoted as:

P{(K>V) | (@,<@=<q, +A(p)} =1 _F1|((pi<q)g(pi+Aq))(V)

The order of work given above:

1 classifying observations according to direction

2 determining wind velocity exceedance frequency curve on condition of wind from a certain
direction

is preferable to:

1 estimating the probability distribution of wind velocities from all observation data

2 determining the marginal probability distribution of wind directions.

The observation data is more homogenous after classification according to direction sectors.

For a good description of the conditional p.d.f. of wind velocities and wind directions in a certain place
on earth, observations need to be gathered over a longer period of time (e.g. 30 years).




In practice, the probability of exceedance of wind velocities from certain directions in one year are often
presented graphically (see for example Figures II-26 and II-28):

Wind velocity v 44 . PN
exceedance probability 107e @ X7
3- hourly wind velocities ¢ X

wind direcion N N

sector
angle @ 0 45 90 135 180 225 270 315 360

Figure I1-26

P{>N(@<@ <0, +80)} = (1-F, |(<qug a0/ (¥)) P, (9)

Note, that the probabilities of exceedance (and corresponding wind velocities) are only defined separately
for the distinguished direction sectors. The above formula is valid for one separate direction. The
probability of exceedance of 3- hourly wind velocities from a particular direction has a distribution (and
a probability density) per discrete direction sector.

The exceedance frequency curve of the wind velocity for all direction sectors is:
M

1-F,0) = Z] {l _le(w,-<¢sw,-+mp)(v)}'pgi(‘pi)

This exceedance curve is always above the exceedance curve per wind direction because the exceedance
frequency curve of the wind velocities for all directions is an addition of the curves per direction sector.

1 _Fy_(") > 1 ‘Fv_;(cp,qps o)(¥) for all @, continues to be valid

il Qi

Wind
8
77
7

1067 10 10° 104 16° 102
probabiiity of exceedance of 3- hourly wind velocities

Figure I1-27



The parameters of the conditional distributions of the wind velocities should be determined per direction
sector (centrally for 36 sectors of 10° or 32 sectors of 11° 15' or 12 sectors of 30° or 8 sectors of 45°)
(E.g. two parameters for an exponential distribution or three parameters for a Weibull distribution). A
maximum of 32 (sectors) * 3 (parameters for a Weibull distribution) = 96 parameters are necessary to
establish the joint p.d.f..

Sometimes, multiplication with p_ (@.) leads to a simple translation of the conditional wind veloci
AN v

exceedance frequency curve :

v-4A _v-A-B-ln p((pi)
Py, (@)e =e

or:

Observations Lightship Goeree

Period 1949 - 1955 (incl.) (total 57513 hours)
Distribution wind direction and windforce

No. Hours exceedance of a certain

wind force in degrees Beaufort

WINDSCALE OF BEAUFORT
Wind force Wind velocity (m/s) Name
0 0-05 calm
1 0.6-1.7
2 18-33 light breeze
3 34-52
4 53-7.4 moderafe breeze
5 7.5-9.8
6 99-124 strong breeze
7 12.5-152
8 15.3-18.2 fresh gale
9 18.3-21.5
10 21.6-25.1 whole gale
11 252-29.0
12 >29.0 hurricane
Figure 11-28

Sometimes, Figure 1I-26 is presented in the same format as Figure II-28. Figure II-28 suggests a
classification in (M =) 16 direction sectors and one- hourly (outer circle) independent(?!) observations
of the wind velocity.

The joint p.d.f. of wind velocity and wind direction, presented above, is valid for the S.L.S. because it
is based on all observations in a year. If one wishes to establish the joint p.d.f. for the U.L.S., one must
determine the extreme value distribution per direction sector.



In order to establish the joint p.d.f. of wind direction and wind velocity one can also work with the yearly
maxima of the wind velocity per sector (measured during a number of years). See Figure II-29:

Return periods yearly extremes Return period
Location Schiphol ( = Hoek van Holland ) e
40 10,000 years
,,,,,,,,,,,,,,,, ._
P 1,000 years
35 - TN T B — —
*/Tr ,,,,, L AN 100 years
30 / — - \\vr e
N\ I 10 years
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0 30 60 90 120 150 180 210 240 270 300 330 360
Wind direction in degrees eastwardly

Figure I1I-29

If the wind velocity is Gumbel distributed, Figure 1I-29 will match Figure II-26. For other distributions
it generally does NOT hold that the reciprocal of the exceedance probability in a year is the return period
in years.

IL7. WAVE CLIMATE

Waves are created on the plane dividing two media (e.g. water and air) which flow with different relative
velocities. As a rule, the height and length of sea waves increase with the wind velocity. The wind
transfers energy to the water surface, which causes waves to grow and to increase their velocity until the
propagation velocity equals the wind velocity. The fact that waves no longer grow can also be attributed
to decreasing wind velocity. Sometimes the water depth limits the propagation velocity and/or the height.

The wave record under the influence of wind (this wave record is called swell) does not consist of a
series of monotonous, uniform waves, but of a scala of waves of different heights and periods, which
run through and over each other. Figure 1I-30 gives the irregular wave record which is created by the
superposition (momentary recordings) of six different monotonous wave series.
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Figure I1-30
Some data concerning the above wave series:
wave component | period T radial amplitude
(seconds) frequency (m)
o (s
A 14 0.42 1
B 12 0.52 2
C 10 0.63 1.5
D 8 0.79 1
E 6 1.05 0.5
F 4 1.57 0.4

Though only six monotonous wave series were added, the superposition already gives a rather "wild"
wave record.

The square of the amplitude, 7, is a measure for the energy per m*> which is present in a wave field.
Plotted against the period, T, or against the frequency, f = %, or against the radial frequency, ® = 2—;— ,
this leads to the energy spectrum (Figure II-31) of the waves treated above, leaving the factors p (mass

density) and g (acceleration due to gravity) and a constant undefined.
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As arule, all radial frequencies are generated in a wind field. It is hence no longer possible to speak of
the energy in one particular wave component. One refers to the energy in a radial frequency band A®

or in a frequency band Af.
In a variance density spectrum the variance (a measure for the energy) of the wave amplitudes is
conveyed as a function of the (radial) frequency (o = —-27173 respectively f = % , with T = wave period).

Several spectra have been described in formulae: Neumann (outdated), Pierson- Moscowitz, JONSWAP.
(See Lecture notes b 78 Wind waves, september 1989 (in Dutch).)

Sm.’( f)
ONSWAP Spn(f)
Pierson and Moskowitz
f 3 f
Figure I1-32 Figure I1-33

The variance or energy density spectrum describes the short term wave record. A spectrum is determined
by the shape, the surface below the curve and the peak period. During a storm the wave heights are
assumed to be distributed according to Rayleigh. The distribution during a storm is the short term wave
height distribution.

From the energy density spectrum the following long term wave statistics are of importance:
H; = significant wave height (H, = 4,/m, with m, = surface of the variance density spectrum).

= average height of the highest one third of the waves

= wave height which is exceeded by approximately 13% of the waves (with a Rayleigh- distribution)
T, = peak period

= period with which the energy density is maximum
¢ = the angle of incidence.

The peak period can usually be indicated directly. The average period T, ("centre of gravity" of the
energy density spectrum) is more difficult to define because this centre is very much dependent on the
shape of the spectrum (selected: Pierson- Moskowitz, JONSWAP, etc.). For the P-M spectrum:

T
7” ~ 1.4 is valid, for the JONSWAP spectrum: 7” ~ 1.2.
Often, in practice, the spectra are not indicated as "tidily" as the "standard spectra". Double peak spectra
and spectra with different shapes exist. The peak period can be recognized more clearly in the spectrum
than the average period. The use of the peak period (see Figure II-33) is therefore preferable.




Oosterschelde spectum ~ Hg=2m S..(f
Snn(f) Broken waves from North Sea: 'I'I( )

1

Figure I1-34 Figure II-35 = Figure I1I-36-1-a

From the measured energy density spectrum and from the measured directions spectrum much can be
deduced concerning the "physical backgrounds" of waves. Often there is one "high frequency peak",
caused by "local events" (wind over shallows located nearby, wind along the coast, etc.) and a "low
frequency peak", caused by the swell, which is influenced by breaking. Often the direction of the "high
frequency waves" is determined by the wind direction, whilst the "low frequency waves" get their
direction from the combination of the "deep water wave climate" and the geometry of the seabed in front
of the coast. T, corresponds to the "main phenomenon", T, is influenced by all phenomena.

The next pages display the monsoon-spectra for Karwar.

Figure 11-36-1 and Figure II-36-2 concern wave data collected during the northeastern monsoon.
(Recordings are from November 12 and 13 1988.)

Figure I1-37-1 and Figure II-37-2 concern data collected during the southwestern monsoon. (Recordings
are from June 19 and 20 1988.)

Figures I1-36/37-1/2-a (top figures) give the variance densities in m’s (as a function of the frequency in
Hz).

Figures II-36/37-1/2-b (bottom figures) give the angles of incidence of the waves.

During the northeastern monsoon, the waves with a maximum density of the variance of the amplitude
(represented by approximately 0.2 m’s - on 12/11/'88 - to 0.37 m’s - on 13/11/'88) come from the
direction 210° eastwardly, or roughly from the south southwest. This is obvious if one is aware that their
source is in the south of the Indian Ocean somewhere near Capetown. The waves with maximum variance
density (waves with the"peak frequency" T,) thus travel "against the prevailing northeasterly wind".
During the southwestern monsoon the waves which are generated by the local wind field are from the
same direction as the (low frequency) swell. (See Figures II-37-1/2,a,b.) Because the wind velocity is a
little higher than during the northeastern monsoon, the constituent parts of the spectrum can be
distinguished less clearly than in Figures II-36-1/2,a,b.

Wavec i*1988 11-12 12:30 Wavec i*1988 11-13 11:30
Steepness S,.......: .022 Steepness S,.......: .011
Tm:4.5s Tp:11.7s Tm:6.5s Tp:133s

Hs: 499m Tz: 3.7s Hs: .52m Tz: 545
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For long term wave statistics (description of the wave climate) three elements are of importance: H
(significant wave height), T, (peak period) and ¢ (direction from which the wave originates). Often wind
directions can be distinguished from which the majority of the waves originate. For those wind directions
only the H, and the T, are of importance. Traditionally, a lot of attention is paid to the statistical
description of H,. For this description a Weibull- (exponential), Gumbel- or log- normal distribution is
often selected. However, the (peak) period, T, is of equal importance.

Some data that result from measurements on location in Karwar are noted in the following tables and

figures:

For the southwestern monsoon:
Significant wave height in m.
Analysis of 291 data

_(H—1.500)'~365
FH (H)=1—e 0.675
MEAN =2.103m

ABS. DEVIATION =0.298 m
ST. DEVIATION =0.347m
SKEWNESS  =0.513
KURTOSIS =2.270

H, max =3.180 m

H, min =1.550m

For the southwestern monsoon:

Period during which maximum energy density in s

Analysis of 291 data

T 1
1 2
F,(T) = [— 1 ¢
2 { 0.095-& 27
MEAN  =1L15s

ABS. DEVIATION = 0.679 s
ST. DEVIATION = 1.019s

SKEWNESS = 1.593
KURTOSIS  =12.926
T,_max =18.100 s
T, min = 8.300s

For the southwestern monsoon:
Wave steepness
Analysis of 291 data

_5-1.000
_ —e 0.167
Fsi(s) =¢

MEAN =1.095%
ABS. DEVIATION = 0.149%
ST. DEVIATION = 0.205%
SKEWNESS =1.211%
KURTOSIS =7.714%

S, _max =2.205%
$,_min =0.415%
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An important question is, how to describe the joint p.d.f. of H; and T, For the calculation of quasi-
statical wave loads on constructions or for use in combination with recently developed formulas for stone
stability (formulas by Van Der Meer, for example) the peak period, T, is at least as important as H,.

The joint probability density function of H, and T, can be determined. In literature one often finds that
the marginal p.d.f.s of H; and T, are modelled with Weibull or log normal p.d.f.s. If H; and T, were not
correlated, the joint p.d.f. could look as shown in Figure II-41.

st (H)

fr M H

SE

Figure 11-41

However, the joint p.d.f. can NOT be derived from the marginal p.d.f.s because H, and T, are certainly
correlated. High waves usually have long periods, low waves usually have short periods. Figure II-42
(taken from Lecture notes Wind waves, b 78, Station "INDIA" (in Dutch: Collegehandleiding
Windgolven, b78, Station “INDIA”), Battjes, 1970, 1972) clearly shows this dependency.

Figure 11-42 is generated by determining the marginal probability density of the period with maximum
energy density per class of significant wave height (and also per direction sector from which the waves
arrive):

l'u

Figure II-42



The relation between H, and T, can be described (modeled) in many ways. This course maintains a
preference for the consideration of A, and s, as independent random variables.

s, = wave steepness (for wave length and height see the definition diagram: Figure II-43.)

—_ HS HS
Lp gT;
2n

L, = length of the wave with period T,
g = acceleration caused by gravity.

Figure I1-43

In the H; - T, plane lines of constant wave steepness are presented as parabolas:

H, 2 . s g
s, = —— = constant = H_= C * T, parabolas for different C = ;;.
T

2
g7,
2x

Figure I1-44

This is a verification of the input data (observations) concerning H; and T,. In nature waves with a
steepness greater than 5 to 6% don’t or rarely exist. Waves with this steepness break. On the other hand,
waves with a steepness less than approximately 1% rarely exist either. A steepness that small is found,

for example, for swell that originates from a far away source.

II-32




I1.8. VERIFICATION OF THE INPUT DATA

Firstly, the independence of the input data (i.e. s, and H;) has to be tested. Subsequently, one has to
consider whether or not the results of this test can be explained physically.

S
To test wether H and s, are independent, the P
calculated steepnesses are plotted against the 5%
significant wave height. IfH; and s, are independent, 39
. . (]
no clear relation can be revealed. The diagram
opposite serves as an example of independent H, and 1%
Spe
i . H
The position of the cloud of points serves as a test of s
the input data (observations) of H; and T,,. Fioure I1-45
sp . . o sp
5% [t 5%
s .. L L LK R
3% 3%
1% 195 | wiied Mg atuetlichy
Hs Hs
Figure I1-46

Subsequently, consideration should be given as to whether the acquired diagrams are explicable. Waves
in a lake (no swell, surface of the lake small compared with that of a depression, so that one wind field
is to be considered) will have a wave steepness of around 5%, independent of the wave height. This is
known as young swell. The cloud of points will be around the s, = 5% line. (For example, figure II-46
left could have been based on wave data from the IJsselmeer.)

In Karwar the steepnesses found
during a southwestern monsoon
generally were approximately 0.8 to
1%. (see Figures II-51 and 1I-56,
comparable with Figure 1I-46 right.)
The waves (mainly swell) transpired to
originate from the south of the Indian
Ocean ("Roaring Forties").

op "

40°8L —— y
Roaring Forties” v

Figure 11-47




In nature, the conditions for the generation of a long significant wave are less easily met than those for
the generation of a high significant wave. Hence, the peak periods of spectra are usually relatively short.

Significant wave heights with periods of 15 to 20 seconds demand very large fetches and very high wind
velocities. The approximation of independence of H, and s, is a conservative one considering that high
steep waves are assumed as likely as low steep waves.

When a deep depression passes, as is
indicated in Figure II-48, the swell
entering the North Sea from the Atlantic
Ocean is broken on the Doggersbank. In
the North Sea new waves are generated.
During a storm on the North Sea, the
wave steepness near the indicated
measuring point (BG 11, see also Figure
11-66) is around 3.5%.

e
a
Alaska
o
1]
"DOME Island” )|
o
o

Y

Figure I1-49

Wave measuring point

Figure I11-48

Around 1980 the former oil company DOME built an
oilrig in the Beaufort Sea to the north of Alaska. For
this purpose a "sand hill" was created .To prevent the
drilling installations from being pushed off the island
by ice packs in the winter, a square of caissons was
placed. The space within the square was filled with
sand. On top of that the drilling installations were
placed. One believed to have found, from
measurements, that the (significant) waves had
steepnesses of around 2% with a height of H, ~ 2m.
Considering the reflection against the vertical
restriction, formed by the caissons, the caissons were
given a height of 2 m above still water.

Taking into account the distance between the border of the ice pack in summer and the coast of Alaska,
the then prevailing northern wind and the size of the centres of the depressions, one would expect a wave
steepness of 5% (young swell). The Beaufort Sea is "deep enough" everywhere, so breaking would not
take place. (Breaking reduces the height, but the wave period remains practically the same.) It appeared
that the expected wave steepness was better than the measurements. A mistake had been made during the
registration of the wave height. The waves on the Beaufort Sea turned out to be 4 m instead of 2 m high,
so, reflected by the caissons, the waves around the island were 8 m high. The sand that had been dumped
between the caissons washed away very quickly! Only with great improvisations (supplying parts for
steel sheet piling by plane from mainland and importing a polypropylene cloth from the Netherlands to
hold the sand) tlie island could be saved. The costs, however, were considerable!




EXAMPLES OF RELATIONS BETWEEN H; AND T,

The steepness of the waves near Karwar during the SOUTHWESTERN MONSOON can be modelled with
a Gumbel distribution (see next to Figure 11-40):

P{SL < s} = Fsl(s) =e’°

_ 100-5 -1.000
0.167

The heights of the significant waves are given in % of the

lengths of those waves, i.e. the steepness is expressed in

%.

The wave steepness which is not attained by 10% of the

waves follows from:
_ 100-5-1.000

0.167
-e
e

0.5
For s, = s=0.00861 (see the definition of s, on the top of :%

page I-31):

H, = 0.01344-T,
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Figure I1-50

This line is plotted in Figure II-50. The line is labelled

S 10%-

Analogously:
H, = 0.02149-T;, labelled s o, and H, ~ 0.01657-T., labelled s .

.
kY3
o

e 4

0.0

1.0

20

3.0

Hy [m]

To check whether the wave steepness is independent of the
significant wave height, s, can be plotted against H,. This
was done in Figure II-51. The lines s, = 0.861%
(probability of non-exceedance 10%), s, = 1.061%
(probability of non-exceedance 50%) and s, = 1.376%
(probability of non-exceedance 90%) are plotted in the
diagram. The regularity that seems to appear from the
figure is deceptive because the peak periods were
"supplied" in classes. (Compare Figure 1I-39.)

Figure II-51

Data gathered from measurements on location in Karwar during HURRICANES, are presented in the

following tables and figures:

For hurricanes during the southwestern monsoon:
Significant wave height in m.

Analysis of 25 data points:
H )—3.388

F, (H) - e

MEAN =3.075m
ABS. DEVIATION = 0.797 m
ST. DEVIATION =1.042 m
SKEWNESS  =0.880
KURTOSIS  =3.072

H, max =5.770 m

H, min =1.530m

Fﬁ(H)
.00 §
0,80 L
¢.80 L
0,70 L
o,

o
0,50
G50 L
20
{1

LR L

6.0 il

Significant wave height H

140

. . :
LB8 2.3 2,87 2,38 5.65 4.24 4.8%5 5.32 8.8 £.30

Frechet distribution

Figure I1-52
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For hurricanes during the southwestern monsoon:

Period T, for which the energy density is Frp(T)
maximum in s. w0 |
Analysis of 25 data points ol .
T { __(ln§ 2 110)2 ol 7
F, (T) = f—-e 2\ 0151 /. gE soso | 7
2 ” 0.151'&'\/—2_1t oos ya
MEAN = 8323s |
ABS. DEVIATION = 0.881 s oz | ')'"'
SI’I(‘.EDEVD;?ON—=O 153 :83 6s ;; 1 Penod of wave with maximurm probablhty densrty T
KURTOSIS = 2.3;74 Lo;normal distribution ) ‘
T, max =10.610s
T, min = 6.780 s Figure I1-53
For hurricanes during the de southwestern
monsoon: Fap(® ) )
Wave steepness. aso | L
Analysis of 25 data points 2.0 e
s _1(-28202 o} J
iLEG Z
F (s) = 2 ome ge o |
- 0.724 m ol .| e
MEAN =2.820% vy 4
ABS. DEVIATION = 0.517% S s
ST. DEVIATION = 0'644% . crj! 6”: Al f(.f? ".ﬁ’/ '/. £l ’-?A 20 ';ﬂiwa:f sfe?pr:efs sr oc
SKEWNESS =0.475% Normal Adlstnbutlor‘lu o
KURTOSIS  =2.974%
§,_max =4.536% Fi 11-54
s,_min =1.753% igure I1-5

In this case it is possible to model the wave steepness during hurricanes with a normal distribution (see
adjacent to Figure II-54):
1 (100-& -2.820)*

s -1
2 2
e 0.724 d &

1
0.724- 27 fm

The wave steepness that is not attained by 10% of the waves follows from:

P{s ss%} =F (s) =
2 3

_ 1 (100-£-2.820)
2 0724 de = 0.1 = 100-5s -2.820 _

s

f -128 = s =1.89%
0.724- m 0.724
Hs [m] |
For s =0.0189: &’“I‘ : 5&1
H, = 0.02951T, 50 FF
This line is drawn in the opposite figure. The 40 £ +/, H
line is labelled s ., . 7
30 R
i w
Analogously: , 20 o ——
~ 0.04404-7,, labelled s ,, and 24
10
2
H_ = 0.05872°T,, labelled s ), .
0.0 5 5 10 15 Tols]

Figure I1-55
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To check whether the wave steepness is
independent of the significant wave height,
again, plot s, against H,. This has been done in
the opposite diagram. The calculated regression
line has a small gradient and the points are
widely spread around it. From this a strong
suggestion of independence arises . (A strategic
test could also be carried out. Due to the small
number of observations - only waves with H, >
3 m were considered - the visual evaluation of
the diagram opposite will suffice.)

BG II- observations (see below: the peak frequency, f,, plotted against the significant wave height, H,)
originate from a measuring pole in the Oosterschelde estuary at a depth of 10 m. The very curved lines
are drawn for statistical reasons. The lines with constant gradients have also been included in the figure.
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I1.9. HYDRAULIC BOUNDARY CONDITIONS FOR THE OOSTERSCHELDE STORM SURGE
BARRIER

The following article, titled Hydraulic Boundary Conditions and written by Vrijling, J.K. and Bruinsma, J.
is taken from a contribution to the Symposium on Hydraulic Aspects of Coastal Structures.

SYNOPSIS

In the design of the Oosterschelde storm surge barrier semi-probabilistic methods have been used. The
probabilistic load calculation requires knowledge of the three dimensional probability density function
of storm surge level, basin level and wave energy.

However especially in the interesting regions of low probability of occurrence the consequent lack of
measured data prevents a reliable estimate of this function.

In this paper a combination of purely statistical models and mathematical models, based on physical
laws and checked with measured data, has been used. The probability density function of the storm
surge level is based on a purely statistical model. A simple mathematical model, based on physical facts,
is used to derive the conditional probability density function of the basin level on the storm surge level.
The conditional probability density function of the wave energy on the storm surge level is found along
the same lines. A mathematical model is developed based on the hypothesis, that the typical double
peaked form of the wave spectrum is caused by the fact, that the wave energy originates from two sources:
waves, entering the estuary from deep water via the shoals and waves generated locally, form together
the seastate at the barrier site. The required three dimensional probability density function of storm
surge level, basin level and wave energy is derived as the product of the probability density functions
referred to above.

CONTENTS
1. Introduction

2. The still water level at both sides of the barrier
2.1. Introduction
2.2. The storm surge level, two models
2.3. The low water level
2.4. Empirical evidence
2.5. The basin level

3. The storm surge levels and wave energy
3.1. Introduction
3.2. Analysis and foundation of the model
3.3. The mathematical wave model of the Oosterschelde
3.4. Empirical evidence
3.5. Wave direction
3.6. The mathematical model of the North Sea
3.7. Empirical evidence
3.8. The completed model

4. The three dimensional probability density Function of storm surge level, basin level and wave energy
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I1.9.1. INTRODUCTION

In the design of the Oosterschelde storm surge barrier semi-probabilistic methods have been used (Mulder
and Vrijling, 1980). The probabilistic load calculation requires knowledge of the three dimensional
probability density function of storm surge level, wave energy, and basin level. Basically there are two
ways of extrapolating the measured data of these parameters and their correlations into the regions of
low probability of occurrence, where measured data are not available.

1. A purely statistical extrapolation.
2. A statistical extrapolation supplemented by mathematical models based on physical laws and

checked with measured data.

A combination of these methods has been used in finding the probability density function of the storm
surge level and the conditional probability density functions of wave energy and basin level, from which
the three dimensional probability function is derived. A schematic diagram for the development of this
three dimensional function has been given in Figure II-58.
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Figure II-58 A schematic diagram of the physical relations used for the derivation of the three
dimensional probability function of storm surge level, wave energy and basin level.

The probability density function of the storm surge level is based on 68 years of historical data; extremes
are predicted by statistical extrapolation. The knowledge of the physical laws governing this phenomenon
has been used to see whether predicted extremes could be reached (ch. 11.9.2).

The conditional probability density function of the basin level depends at least partly on the closing
strategy of the barrier during storm surges. A simple model was developed based on the fact that a storm
surge is formed by a random combination of wind set up and astronomical tide (ch. I1.9.2.). From this
model the conditional probability density function of the basin level (conditional on storm surge level)
could be derived for different closing strategies. The basin level was found to be virtually statistically
independent of the wave energy.

It appeared from the data that a loose correlation exists between the storm surge level and the energy
of the wave spectrum. Lack of data, however prevented a reliable extrapolation of this two dimensional
probability function by purely statistical methods. Therefore a mathematical model has been developed
(ch. I1.9.3.). It is based on the hypothesis that the typical double peaked form of the wave spectrum
is caused by the fact, that the wave energy originates from two sources. Waves, entering the estuary
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from deep water via the shoals, are influenced by the processes of breaking, bottom dissipation and
refraction by depth and current. The remaining wave energy reaching the barrier depends strongly on
the storm surge level. In addition, waves are generated by local windfields, showing a loose relation
to the general storm intensity. The model, which incorporates all these effects, is tested in a hindcast
of several storms. Being in good agreement, the model is used in extrapolating the conditional two dimensional
probability density of storm surge level and wave energy.

The required three dimensional probability density function of storm surge level, wave energy and basin
level is derived as the product of the probability density functions referred to above (ch. I1.9.4). It has
been used as input in the calculations of the probability distribution of the hydrodynamic load on the
storm surge barrier.

I1.9.2. THE STILL WATER LEVELS AT BOTH SIDES OF THE BARRIER

I1.9.2.1. INTRODUCTION

As the storm surge level, the basin level and the wave energy will be considered as stochastic entities,
itis possible to construct the three dimensional probability density function of these quantities. Throughout
this paper the stochastic variables will be underscored. In this chapter the still water levels at both sides
of the barrier during a storm surge will be studied.

The probability density function of the maximum storm surge level has to be based on the frequency
of exceedance curve of such level published in the Delta-report (1960), regulating the design of the
Dutch sea defenses. However in addition a model is used, that relates the maximum storm surge level
to its fundamental origins, viz. the windfield above the North Sea and the astronomical tide. It is shown
that extreme storm surge levels can only be reached by North Westerly storms.

Further a model is developed that incorporates the available stochastical information on wind set up,
storm duration and astronomical tide. The model is tested by comparing the calculated probability of
exceedance curve of maximum storm surge levels to the empirical curve as published in the Delta report.
Subsequently it is used to find the set of low waters preceding a storm surge that necessitates the closure
of the barrier. This set is also gathered from historical storm surge data and shows good resemblance
to the calculated set.

Finally the two dimensional probability density function of maximum storm surge level and basin level
is evaluated.

11.9.2.2 THE STORM SURGE LEVEL:; TWO MODELS

The probability density function of the storm surge level is based on the frequency of exceedance curve
presented by the Delta-committee (1960) as a criterion for the design of the Delta works. This curve
is based on historical data collected in the period 1888-1956 and corrected for influences due to the
Delta works. It is given by:

2.94-z
P(z >z) = e 03026 0
m

where: z,, = the highest still water level during a storm in metres above reference plane (NAP)
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However, to see whether predicted extremes could be reached, the underlying physical phenomena have
been analysed and modelled by Schalkwijk (1947) and Weenink ( 1958). They show, that a storm surge
is the resultant of two stochastically independent phenomena, viz.:

1. wind set up
2. astronomical tide

The wind set up is caused by the wind fields of a cyclone above the North Sea. If the form of the cyclone
and the 9-hour uninterruptedly exceeded wind speed are known, the model of Weenink calculates the
maximum wind set up (s,,) in the region of the Oosterschelde.

Applying the model for two schematised storms, the following expression can be derived.

North Westerly storm:

s, = 3.47x1072 Wl /g @)
South Westerly storm:

s, = 1.50%1072 W’ /g 3)

where:
s, = maximum wind set up near the Oosterschelde [m]
W, = 9-hour uninterruptedly exceeded wind speed [m/s]
g = acceleration of gravity [m/s?]

These expressions show that any given wind set up caused by a South Westerly storm can be equalled
by the set up due to a North Westerly storm having a 1.5 x lower wind speed.

A common way to get an impression of the maximum storm surge level (z,,) is simply to add the maximum
wind set up and the astronomical high water level. Analysing the historical storm surge of 1953 and
the design "Delta” storm (z = 5.50 m), assuming different astronomical high waters (hyy,), one finds
the following figures for the wind set up and the required wind speed as a function of wind direction

(o).

Storm Zy tide hyw Sm o W,
[m] [m] [m] [m/s]
1953 4.20 neap 1.20 3.00 NW 28
Delta 5.50 neap 1.10 4.40 NW 34
Delta 5.50 average 1.50 4.00 NW 33
Delta 5.50 spring 1.90 3.60 NwW 31
Delta 5.50 spring 1.90 3.60 SW 49

The table shows, that the dramatic storm surge of 1953 can be easily surpassed, if the same wind velocities
coincide with spring tide.

The conclusion tan also be drawn from the table, that an exceedance of the deterministic design storm
level NAP + 5.50 m may indeed be caused by an extreme North Westerly storm. An exceedance of
this level during a South Westerly storm seems however very improbable, given the wind statistics for
the North Sea region.
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By simply adding the astronomical high water and the maximum wind set up, the model developed above
excludes phase shifts and interactions between the two phenomena. The effect of possible phase shifts
will be studied next by treating the wind set up and the astronomical tide as independent functions of
time.

The properties of the wind set up as a function of time have been studied by subtracting the astronomical
tide from the still water level variations recorded during 38 selected storms in the period 1921-1970.
It turned out that the variation of the wind set up with time could be roughly approximated by:

s() = s(m) cos? nt @
D
forO<t<D
where:
s, = the maximum wind set up during the storm

D = the duration of the wind set up

- D/z o] % —t
Figure II-59 The wind set up as a function of time.

In this study it was found that the probability of exceedance of the maximum wind set up during a storm,
after correction for the Delta works, can be given by:

1.53 -5
P(s >s5) = e [s] =m ®

As already shown by Van Dantzig (1960) the probability of exceedance curve of wind set up is parallel
to the probability of exceedance curve of storm surge level (compare eqs. 1 and 5 ).

The duration of the wind set up of the 38 storms is found to be log-normally distributed.

1 (ln(D) - 111(51.3))Z
p(D) _ 1 e 2 In(1.4)

- [D] = h 1 6
D In(1.4) 2= " . ©

Although Rijkoort (1960) proves a positive correlation between the maximum wind speed and the duration
of a storm, the wind set up data show virtually no correlation between the maximum and the duration

of the wind set up (": p = 0.02). Therefore it is assumed, that these two parameters are stochastically

independent.

1) This notation is used in contrast to that in other parts of these lecture notes
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The astronomical tide is caused by the gravity forces of the celestial bodies. Thus, the astronomical
tide has no causal relation with the wind set up. In this study the astronomical tide is modelled as a
periodical fluctuation of the water level h with a period T, = 12.4 hrs, and with a Gaussian distributed
random amplitude (hyy) . This randomness embodies the daily inequalities. The mean and standard deviation
of hyy are given by:
Elh 1} =1480 m olh _} =0.195 m
HW HW

In addition the low water level amplitude hy, is found to be linearly dependent on hyy:
hLW = 0.897_11HW - 0.22 [A] =m : Q)

A storm surge is now represented as a linear superposition of a random wind set up and a random astronomical
tide, whose maxima occur at a random time shift ¢ with respect to the maximum of the wind set up
(see Figure II-60).

Lemvetmrm—
~» p(z) hyy.D.S)

- ]

-Toiy Tory - ¢

Figure II-60 A storm surge level as a linear superposition of wind set up and tidal fluctuation

z(®) = h(®) + s 8)
where:
z (1) = storm surge level in reference to NAP
h ) = astronomical tide in reference to NAP
s (1) is given in equation 4
h,_-h h_+h
B = 7TV Gy 2z (t+o) + VW )
2 T, 2

As a consequence of the assumed independence of astronomical tide and wind set up in all aspects, the
time shift between them has a uniform probability density function. For symmetry reasons, time shifts
of T, hrs or more are irrelevant, so the probability density function of ¢ becomes (see Figure 1I-60):
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1
p(o) = 0 for I(PI>ET,,
@ = = forle| < 4T @
- Or < -
P©) = — ol < ST,

o
Moreover it follows that, ¢, hyy, D and s, are stochastically independent of each other.

The wind set up has a duration, which is much larger than the period of the astronomical tide. Therefore
the maximum storm surge level z must occur at or very near astronomical high water. For given values
of hyw, D and s, the maximum storm surge level is given by:

z ©|hyyD,s,) + by + s, cos? n_j;g (11)

-1 i l%
= p(9) 30

and the expression (10) for p(¢), the conditional probability density function of z, can be calculated
with the result

Using the relation
-1

P by, D,s,) = p(@|hyy,D,s,) (12)

oz,
0

[ h ALY
D (%, 'uw Zm My 2
z \h,,,D,s ) = -1 = 13)
PGyl n) nl s, [ s ( s )
for z,, in the range:
h,., + s cos® EZ‘_’_ <z < hg, +s (14)
HW m 2 D - m - HW m

The marginal probability density function of z_, then follows from
pE,) = [[[P@ultigy:Ds5,) PllyyD>s,,) dhyyy dD ds, (15)

or in view of the independence of hyy, D and s
pz,) = f f f Pz, | by D.s,) P(hyy) p(D) p(s,) dhyy, dD ds, (16)

Numerical values of p(z,,) have been obtained by substitution of the respective probability density functions
into the right hand side of eq. (16). The corresponding cumulative probability distribution has been
plotted in Figure II-61 together with the curve published by the Delta committee (1960).

Prizm>2) ——— CALCULATIONS
? 109 —~—= HISTORICAL DATA

1 2 3 4 5 GI 2mim)

Figure II-61 The comparison of the calculated and the observed exceedance curve
of the maximum storm surge level.

The close resemblance of the curves supports the accuracy of the developed model. The model will
next be used to calculate the low water level.
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11.9.2.3. THE LOW WATER LEVEL

The closing strategy of the barrier greatly influences the basin level. In the design period a closing strategy
was assumed that would cause the lowest basin level, as this basin level will yield the largest static load
on the barrier. According to this strategy the barrier will be closed at the low water, preceding the first
relative storm surge level maximum, which is expected to surpass a certain threshold level (see Figure
11-62).

To find the set of low waters at which the barrier will be closed to protect the hinterland against a storm
surge, the model, developed in the preceding paragraph, proves valuable.

Ly
4
i 0
|
CLOSURE | 1
WINDOW  prrrrTTr
_To,2 TO’Z —&

Figure I1-62  The set of closure moments for a given threshold level.

Studying the model it is clear, that the earliest possible moment at which the threshold level (z;) can
be surpassed by a storm surge, occurs at time t = t; such that:

nl;

zp = Ry 4 cos2[-D—) (17)

For reasons of symmetry the threshold level (z;) can be exceeded in the interval —t; < t < t; only.
This interval has the duration of D = 2 t;.

The earliest possible closure of the barrier occurs when the high water at t; just exceeds the threshold
level z;. The barrier is then shut at the preceding low water:

The latest closure occurs when the high water at t; just not reaches z;. Now the barrier will be closed
at the next low water:

_ [
_tT o

2

t

close

So for the given closing strategy the closure takes place in the interval:

T T,
t.-—=2<t <tT+7 18)

T 2 close
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As this paragraph aims at finding the two dimensional probability function of the basin level and the
maximum storm surge level, a relation has to be established between these two parameters.

Figure II-63  The relation between the maximum storm surge level and the low
water level at closing.

For given values of ¢, hyy, s, and D the maximum storm surge level is calculated by eq. 11. The closing
moment for this particular storm surge (see Figure II-63) can be found by straightforward mathematics,
which will not be explicated here.

The low water level at which the closing operation starts is

L h,

close’ w m LW m

Tt
,D,s y=h +s cosz(——-gﬂ) (19)

Using the relations (7), (11) and (19), the two dimensional probability density function of maximum
storm surge level and low water level can now be evaluated numerically by:

P, .z, dz,, . dz,, = f f f p(@) p(hyy) p(s) p(D) J do dhy, ds dD 20)

where J is the Jacobian of the transformation. The result is given in Figure I1-64.

Figure II-64 The two dimensional probability density function of maximum storm surge
level and low water level at closing.
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11.9.2.4. EMPIRICAL EVIDENCE

The integration of the derived two dimensional probability density function of the maximum storm surge
level and the low water level with respect to the maximum storm surge level above the threshold level
z; gives the set of low waters at which the barrier will be closed. The probability density function is

given by

Pz = f D(z,,2 )z, @1)
Zr
The probability density function of z; y at closing can also be found by applying the decision rule as
mentioned above on historical data of the period 1957-1976 (17 storms; z , > NAP + 2.75m; z; =
NAP + 2.75 m). The result of both methods is given in Figure II-65. The close resemblance of the
probability density functions supports the accuracy of the developed model.

p(z LW) L._‘ - -= QORSERVATIONS
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Figure [I-65 The probability density function of z y, from observation and model for z; =2.75 m
above NAP

11.9.2.5. THE TRANSFORMATION OF THE LOW WATER LEVELS INTO BASIN LEVELS

In the preceding section the two dimensional probability density function of maximum storm surge level
and low water at sea has been determined. However, for the load calculations the basin level at the inward
side of the barrier is important. The two dimensional probability density function of maximum storm
surge level and basin level can be obtained by transforming the results of eq. 20. The transformation
has to take into account five effects that influence the basin level.

1. Reduction of the tidal amplitude in the Oosterschelde due to the resistance of the barrier in opened
position.

The basin ¢scillations induced by the sudden closing of the barrier.

Wind set down on the Oosterschelde caused by the North Westerly storm.

Leakage through the barrier and the sill.

wave overtopping of the barrier during the storm surge.

SRR
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The first three effects influencing the basin level have been incorporated in the model as constants.

The slow filling of the basin by leakage through the barrier and the sill is evaluated for every storm
taking into account the time path of the storm surge level starting at the moment of closing until the
peak level is reached and the rising basin level.

The wave overtopping is calculated as a function of the storm surge level and the wave height using
a simple model.

The result is a realistic approach of the joint probability of occurrence of maximum storm surge level
and coinciding basin levels. However, for the load calculation the last two, effects, leakage and wave
overtopping, have been discarded for safety reasons, because they raise the basin level and reduce the
static load.

11.9.3. THE SURGE LEVELS AND WAVE ENERGY
I1.9.3.1. INTRODUCTION

In this chapter the second part of the three dimensional probability density function of hydraulic boundary
conditions will be developed, viz. the two dimensional probability density function of maximum storm
surge level and wave energy. Due to the complexity of the bar and trough pattern in the mouth of the
Oosterschelde and the very restricted available research time it was only possible to use simple models.

First a hypothesis will be formulated on the general relations between wind velocities, the storm surge
level and the wave energy on the North Sea and the Oosterschelde. The hypothesis also gives a clue
to the typical form of the wave spectrum on the Oosterschelde. Next the part of the hypothesis that relates
the wave spectrum near the barrier to the local wind speed, the storm surge level and the wave spectrum
on the North Sea is put in a mathematical form. The mathematical model is tested in the hindcast of
several storm surges.

Finally the model is expanded with a section that describes the processes on the North Sea. The part
that deals with the storm surge level as a result of wind set up and astronomical tide is taken from the
preceding chapter. A part is added, which relates the wave energy on the North Sea and the local wind
speed at the Oosterschelde to the wind field of the storm. Now concentrating on the maximum storm
surge level, the expanded model is tested on historical data. Being in good agreement the last step is
made and the two dimensional probability density function of maximum storm surge level and wave
energy is evaluated .
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I1.9.3.2. FOUNDATIONS OF THE MODEL

The projected barrier is situated in the mouth of the Oosterschelde estuary, separated from open sea
by a complex of shoals (see Figure I1-66).

Figure I1-66  Sketch of the mouth of the Oosterschelde and the situation of the wave stations
BG II, OS IV and OS IX.
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Figure I1-67 The relation between the storm surge level and the significant wave height (H,) at
station OS IV.

The idea arises, that wave height near the barrier site during storm surges will be governed by the phenomenon
of wave breaking over the shoals. In this case the observed wave height should be a function of the water
depth above the shoals. However, if the significant wave heights observed during storm surges are plotted
against the water level, the correlation is not very good (see Figure II-67).
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Also the local wind speed cannot explain the significant wave height near the barrier site (see Figure
I11-68).
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Figure II-68  The relation between local windspeed and significant wave height H, at location
OS1V.

Analyses of wave energy spectra at stations OS IV and OS IX showed, that these were generally double-peaked
during storm surges. Taken together, the analyses referred to above suggested the assumption, that the
wave energy near the barrier originates from two sources:

1. Wave energy from the wave field in open sea (low frequency) penetrates, after breaking on the
shoals, in the mouth of the Oosterschelde.
2. Local wind fields generate wave energy (high frequency) above the shoals.

A schematic diagram showing this idea has already been given in Figure I1-58.

A central role is played by the wind fields above the North Sea. The wind set up and the wave growth
on deep water are both effects of the wind fields of the cyclone. Further there is a loose correlation
between the general intensity of the cyclone and the force of the local wind field above the Oosterschelde.
The model indicates, that the wave height on the Oosterschelde and the storm surge level should be
correlated, as the processes of wind set up and wave growth have roughly the same time lag and the
waves have to pass the filter "shoals" that is opened by the water level. The only factor that disturbs
the pure correlation seems to be the local wind field. To develop and verify these ideas, a mathematical
model has been formulated that calculates from the input data (wave spectrum at sea, the water level
in the estuary and the local wind speed) the wave spectrum near the barrier site. The results of these
calculation have been checked against measurements of recent storms.

11.9.3.3. THE MATHEMATICAL WAVE MODEL OF THE OOSTERSCHELDE

The above mentioned ideas have been translated into mathematical formulae. For the wind set up the
model developed by Weenink (1958) as shown in ch.I1.9.2. has been used and for the wave growth
the model of Sanders (1976) was employed.

However, for the parts of the model that directly govern the wave height in the estuary, only theories
are available, which describe the various sub processes, such as shown in Figure I1-69.
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Figur II-69  Building blocks of the filter "shoals".

All these processes together form the filter properties of the "shoals", but an overall description is not
known. Also the process of wave generation by local wind fields in the presence of broken waves is
unclear. After a study of the map of the shoals it was decided to divide the filter in4 sectors with different
properties (see Figure I1-66). Every sector is simplified to a schematized bottom profile, that shows
only significant changes in depth (see Figure II-70).
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Figure II-70  The schematized bottom profile of sector IV (see Figure 11-68).

It is first assumed that the wave energy from the North Sea propagates via the shoals to the barrier without
a change of direction. The sector that contains the propagation direction is chosen for the calculation
of the energy-loss of the waves. The irregular wave field at sea will be represented by a regular sine
wave with an amplitude and period equal to:
1
a=—H, 22
2 sea ( )

T = sz 23)

The propagation of this wave through water of changing depth is described by the well known energy
balance equation. By including energy dissipation by bottom friction the equation can be written as:

_a__Pi +e¢ =0 24
35S 24)
where P is the energy flux per unit length:
P = Enc = —;—pgaznc (25)
in which:
ne = _1_ 1+ __%ﬂ_ S (26)
2 sinh(2kd) ) k

o = ygk tanh(kd) 27
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For the energy loss in the turbulent boundary layer at the bottom Bretschneider and Reid (1954) proposed

_ 4x1072 ca |
- 3% p( sin(kd)) (28)

Besides by bottom friction, energy loss is also caused by breaking, when the maximum steepness is
exceeded. For periodic waves of constant form the criterion of Miche is valid:

a_ = %tanh(kd) 29)

where f = 0.14x.

However if an irregular wave field is schematized to a regular wave as described above, we observed
that the coefficient B can be better approximated by 0.093 = (v.Marle, 1979).

If at any point the calculated wave amplitude exceeds this breaker criterion, it is assumed to be reduced
to the maximum value given by (29).
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Figure II-71  The significant wave height near the barrier as a function of the storm surge level and
time for the April 1973 storm.

Observations show however that the time history of H; vs. z for any surge shows a hysteresis effect.
A typical example during a storm situation has been given in Figure II-71. A possible explanation would
be the influence of the tidal current. Using the linear theory Battjes (1977) showed that the refraction
of the waves by the tidal current gives an effect which is of the same magnitude. In this paper the complex
formalism of refraction by current is modelled by a simple linear relation between the breaker height
and the velocity of the current v in the main gully.

a<a, (1+0.15v) [al =m; [v] = mls 31)

So far the influence of refraction by depth and diffraction on the energy propagation is neglected.
Refraction-diffraction calculations were carried out separately for different water levels and different
wave directions. The results of these calculations were incorporated in the simple model in the form
of coefficients, partly depending on the water level.
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| Sector I REFRACTION COEFFICIENT "

I 0.75 + 0.10z
II 0.50 + 0.16z
I 0.90
IV 0.75

N.B. The coefficients maximum value is 1.0.

Now it is possible to calculate for a sector the amount of wave energy, which penetrates from the North
Sea via the shoals in the Oosterschelde . As noted before, it appeared from measurements that the wave
spectra near the barrier in general show two peaks. Within statistical accuracy the low frequency peak
of the Oosterschelde wave spectra is always at the peak frequency of the North Sea wave spectrum.
(f, = 0.1 Hz). This fact combined with a fit through spectral data led to the following parametrization
of the spectral form for the energy penetrating from the North Sea (see Figure II-72).
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Figure II-72  The spectral form for the energy penetrating from the North Sea.

S =151 forf<S, o
SO =1/ forf > f,

By equating the calculated wave energy and the spectral area for given f,, the coefficient vy is solved.
The second peak in the wave spectra is strongly correlated with the local wind speed and not due to
the non-linear breaking effect. In the calculations so far attention was given only to the energy loss of
the waves during their propagation over the shoals. Apparently the energy addition by local wind fields
must be taken into account. For simplicity it is assumed that the wave growth process starts with the
spectrum calculated above, and that it takes place from the windward edge of the shoals to the barrier
site, over a fetch written as F,. Further the JONSWAP (1973) growth-curves will be applied to add
the local wave generation to the calculated spectrum. From the calculated spectrum the energy density
for a frequency f* is determined. Now a fictitious fetch, that is the fetch that should be necessary to
generate an energy density S(f") at the prevailing wind speed, is calculated from the JONSWAP growth-curve.
The total non-dimensional fetch (F) is found by adding the fetch available after breaking F, to the fictitious
fetch (see Figure II-73).
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Figure II-73  Calculation of wave spectré by adding local wave generation to waves coming from
the North Sea and propagating over the shoals. The figure on the righthand side gives
the JONSWAP growth-curve for a given frequency f* as function of the non-dimensional

fetch.

Substituting this total fetch in the JONSWAP growth-curve for a given frequency f* the total energy
density (being the result of penetration and local generation) is evaluated. By repeating this procedure
for all frequencies, the high frequency peak of the wave spectrum that is generated by the local windfields,

is found.

11.9.3.4. EMPIRICAL EVIDENCE

The simple model described in the preceding paragraph is tested in a hindcast of several recent storms.
During these storms hourly observations have been made of wind speed, water level and wave spectrum
in the Oosterschelde. Simultaneously the wave spectra at sea (5 miles from the coast) have been measured.
Using these data as input, the model predicts the wave spectra in the Oosterschelde reasonably well
(see Figures 11-74,75). The significant wave height is predicted with an accuracy of 10% .
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Figure II-74  Comparison of observed and hindcasted significant wave heights at the barrier site

(OS IV, 08 IX).
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Figure II-7S  Comparison of observed and calculated wave spectra at the barrier
site.

11.9.3.5. WAVE DIRECTION

The wave load on the barrier depends on the direction of the waves. At the design stage no technique
was available to obtain the directional wave spectra. A number of methods have been used to get information
about the main wave direction. Calling to mind that the wave energy near the barrier originates from
two sources, one can distinguish two main wave directions:

a) local wind fields generate wave energy (high frequency) above the shoals. The main direction of

these waves is the same as the local wind direction.
b) Wave energy (low frequency) coming from open sea and propagating over the shoals. Here aspects

as refraction by depth and current govern the wave directions.

Various visual observations performed during storm situations confirm this hypothesis. However, as
the low frequency wave energy is mainly responsible for the wave load on the barrier, all wave energy

is reckoned to have the direction of the low frequency part.

Four different methods have been used to get an idea of the main direction and the short crestedness
of the low frequency wave energy. With a helicopter flying at varying altitudes visual observations have
been made. Further the main direction of the long period wave energy was found by heading a survey
vessel to the sea. In addition stereo- and mono-photography have been performed by plane. The photographs
were analysed by eye. All these methods were compared in different storms. The results are in good
agreement with each other. With these methods the main wave direction is estimated with an accuracy

of about 10 degrees.
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By visual observation it also appeared that the length of the wave crests near the barrier was about the
same as at the open sea. Therefore the same directional distribution of the wave energy was assumed
near the barrier. At sea usually a cos?¢ distribution is assumed, where ¢ is the angle with the main
wave direction.

As only a small amount of storm data were available, an extrapolation of the main wave direction to
extreme circumstances was impossible. Therefore a mathematical model (Radder, 1979) was used describing
refraction ant diffraction. It is based on the parabolic wave equation, derived from the Helmholz equation
using a parabolic approximation. This method described the propagation of regular long crested waves.
Although linear wave theory is being used two non-linear effects have been built in:

a) anon-linear dispersion relation (see eq.27)
b) the Miche breaking condition (see eq.29).

All other effects are neglected. The results of the motel have been compared with the aerial photographs

and visual observations in the Oosterschelde. Being in good agreement calculations have been performed
for extreme circumstances.

N

Figure II-76 = Wave crests for incoming waves from North West with a wave period of 7 seconds
calculated with the refraction-diffraction model of Radder.

An example of a calculation has been given in Figure II-76. It shows the wave crests for incoming waves
from North West. The main wave direction is assumed to be perpendicular to the wave crests.
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11.9.3.6. THE PROCESSES ON THE NORTH SEA

The wave model described in the previous sections requires the wave conditions on the seaward edge
of the Oosterschelde delta, the storm surge level and the local wind speed as input.

As already shown in the introduction to this chapter a general role in the hypothetical relationship between
these phenomena is played by the wind fields of the cyclone. Because reliable statistics of total wind
fields on the North Sea are difficult to get, a reversed procedure is followed. Using the models from
the first chapter, that relate the maximum storm surge level to the wind speed and the astronomical tide,
the two dimensional probability density function of maximum storm surge level and the wind speed
uninterruptedly exceeded during 9-hours can be approximated. Taking only North Westerly storm directions
into account the following formulation is found.

Ifs =s,, W= W,, Z =z, and h = hyy, then using eq.2, eq.8 can be rewritten as:
2

z =k +37+102 % 33)
g

In view of the independence of h and s the following expression for the probability density function
of storm surge level and wind speed may be obtained:

o o
pw) = ph)| O %7 | = pihns) ﬁi‘
2 ? m 34)
Z
_pw2) _ p(h) p(s)| Os
PO = T T he |ow

If this result is combined with a theory of wave growth on water of limited depth, the two dimensional
probability density function of wind speed and storm surge level is transformed into the two dimensional
probability density function of maximum storm surge level and significant wave height at the seaward
border of the Oosterschelde.

An exact knowledge of the wave height at the seaward border of the Oosterschelde is of minor interest,
as the introduction of the approximate breaker criterion for the shoals of the Oosterschelde shows, that
nearly all wave fields generated on the North Sea during North Westerly storms will break on the shoals
(see Figure II-80). Therefore the wave height at sea will not influence the energy penetrating in the
Oosterschelde. The maximum storm surge level is the only parameter governing the penetration.

A very important parameter in the wave load calculation is the spectral peak period of the penetrating
wave energy. This peak period, being equal to the peak period of the wave spectrum at the seaward
border of the Oosterschelde, is restricted by the limited depth of the Southern part of the North Sea.
For North Westerly storms, data as well as the wave growth model of Sanders give a saturation peak
period of 11.5 s at the seaward border of the Oosterschelde. In the load calculations this peak period
has been held constant as a safe estimate (Mulder and Vrijling 1980). The second source of wave energy
near the barrier is related to the local wind speed. To complete the model, the relation between the local
wind speed and the wind fields at sea characterised by w, must be established. Studies of the wind speed
during a storm as a function of time (Rijkoort, 1960) show a result, which can be expressed as:
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0.83

Wm
k=268 — -1 (35
Wy
where
= number of hours during which the one hour average wind speed exceeds w, without
interruption (Figure I1-77)
w, = maximum one hour average wind speed.

—pt

Figure II-77 The windspeed during a storm.

According to Weenink (1958) a time lag T between the maximum one hour average wind speed and
the maximum wind set up in the Southern North Sea amounts to 6 hours on the average. Knowing that
the time shift ¢ between the astronomical tide and the wind set up has a uniform probability density
function (eq. 10) a conclusion can be drawn concerning the wind speed accompanying the maximum
storm surge level (see Figure I1-78). The moment of the maximum storm surge level is within + T /2
of the moment of the maximum wind set up or approximately anywhere from the time of maximum
wind speed t=12 hrs to 12 hrs later, since T /2 = T = 6 hrs.

As the wind speed is an approximately linear, decreasing function of time over this interval, while ¢
has a uniform probability density, a uniform distribution of wind speeds may be assumed. The maximum

Qhrs
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Figure II-78  The relation between the maximum storm surge level and the accompanying
windspeed.

and minimum possible wind speeds, for given value of w,, have to be derived by means of eq. 35, using
k = 9 hrs and k = t;-t; = 24 hrs respectively, which gives:
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= 1.27 w,

max

w_. = 0.68w, (36)
so that:
p(w|w9) =0 forw<w_ orw>w__
1 37
wlw,) = ——— orW_. < W < W

Having already evaluated the two dimensional conditional probability density function of w, and z,, (see
eq.34), the conditional probability density function of the maximum storm surge level and the local
wind speed coinciding with maximum storm surge level, given a maximum storm surge level, is calculated
by:

pw|z,) = [p(w|wy) p(wy|2) dw, 38)
1]

The local wind speed w accompanying the maximum storm surge level z,, governs the local wave growth
at the Oosterschelde.

11.9.3.7. EMPIRICAL EVIDENCE

In the preceding paragraph two conditional probability density functions have been established (eqs 34
and 38). Moreover, combining eq. 34 with the theory of wave growth on water of limited depth a relation
between the maximum storm surge level and the significant wave height has been obtained (Figure I1-79).

4 1
BREAKERCRITERION
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2 I |
] : } ® OBSERVATIONS ABOVE zpy z2m
] l |
o ' 1 | y
1 2 3 4 s 8 7
z(m)

Figure II-79  The relation between the maximum storm surge level and the significant wave height
on the seaward edge of the shoals. The conditional probability density function of H,
has been given for z = 2m, 3m and 4m.
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The historical data are certainly not in contradiction with the theoretical result, but conclusions on the
extrapolation cannot be drawn on the basis of this empirical material.

The theoretical relation between the maximum storm surge level and the local wind speed (eq.38) is
compared with historical data in Figure II-80.
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Figure II-80  The relation between the maximum storm surge level and the local wind speed.

Here too agreement is seen between theory and empirical material. The set of data however is far too
small to be a reliable base for extrapolation.

11.9.3.8. THE COMPLETED MODEL

In the preceding paragraphs of this chapter two mathematical models have been developed and tested.
The first model calculates the wave spectrum near the barrier given the seastate at the North Sea, the
storm surge level and the local wind speed. The second model evaluates the joint probability density
function of the maximum storm surge level, the seastate at the North Sea and the local wind speed.
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1 7.50 1
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Figure II-81  The relation between the maximum storm surge level and the significant wave height.

In the figure the conditional probability density function of H; for a number of storm
surge levels has been given.
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As the aim of this paper is the prediction of the future boundary conditions for the barrier, an estimate
of the future geometry of the shoals in the mouth of the Oosterschelde (Figure II-66) has to be incorporated
in the first model. If it is further realised that the barrier will be maximally loaded during the maximum
storm surge level, because the difference between sea level and basin level and the amount of low frequency
wave energy penetrating from the North Sea are then both maximal, the models can be joined by introducing
the restriction to maximum storm surge levels.

Thus the three dimensional probability density function generated by the second model under the assumption
of North Westerly wind direction is used as input for the first model. The result is the conditional probability
density function of maximum storm surge level and local wind speed (Figure II-80), where for every
combination the wave spectrum near the barrier is known (Figure I1-81).

11.9.4. THE THREE DIMENSIONAL PROBABILITY DENSITY FUNCTION OF MAXIMUM STORM
SURGE LEVEL, WAVE ENERGY AND BASIN LEVEL.

The aim of this paper was to find the three dimensional probability density function of maximum storm
surge level, wave energy and basin level. The result of the work done in ch. I1.9.2. is the two dimensional
probability function of maximum storm surge level and basin level, written as p(z,,,b). The conditional
probability density function of the maximum storm surge level and the local wind speed, where in each
point the wave spectrum is known, was evaluated in the third chapter. It is written as p(w | z,). Now
these two functions may be joined to the desired one if the statistical independency of basin level and
local wind speed of wave spectrum can be proved.

Starting from the theoretical models it is seen that the basin level shows a very weak correlation with
the maximum storm surge level. The local wind speed and the wave spectrum are correlated to the surge
level, but there is no obvious reason why any correlation between wave spectra and basin levels should
exist. Also, historical data from significant wave heights and low waters show virtually no correlation
(r = 0.17). Accepting the statistical independency of the basin level and the local wind speed to be a
reasonable assumption, the final step can be made, as follows:

p,,b.w) = p(z,.b) . p(w|z,) (39

where for each combination of (w,z_) the wave spectrum at the barrier site can be calculated by the
method described in ch. I1.9.3.. This result has been used as input in the probabilistic load determination
for the barrier (see Mulder and Vrijling 1980).
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LIST OF SYMBOLS

h(t) astronomical tide
s(t) wind set up

z(t) water level

b(t) basin level

HW  high water (hyy = astronomical high water)
LW  low water (z, = low water)

Z, maximum storm surge level

Zy threshold water level

wind speed
wind direction
hours uninterruptedly exceeded wind speed

R E

significant wave height

wave period

peak period

wave frequency

peak frequency (= the frequency at which the maximum variance spectral density occurs)
variance spectral density function

wave number

H -

) AR h
—~ o
N/}

[=R

water depth
current velocity

<
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I1.10. STRENGTH

11.10.1. Some data

Quantity type | average spread
own weight N 1.05 * X0 vV =0.07
{| separation walls LN {0.30Kn/m*> |V =0.40

floor load (inventory/people)
office
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II.11. METHODS OF STATISTICAL ANALYSIS

For calculations the relation between quantities is given in mathematical formulations (models). The
laws can be physical, chemical, biological, econometric or sociological etc., etc.. Examples of extrapolations
which were supported by models of physical laws were given in § I1.5. In many cases the knowledge
of the (physical) processes is insufficient for a complete description with a mathematical model. The
statistical analysis of (model) tests has to offer a solution. Sometimes, the statistical analysis leads to
a greater insight into the phenomenon concerned.

The relations are not always apparent from the measurements. Measurements can be widely spread,
for example in the case of determination of the coefficient in Chézy’s Law. The measured values of
the coefficient can deviate greatly from the expected values.

The mathematical relations between physical quantities can’t always be clearly indicated. Often no complete
mathematical formulation (mathematical model) of the phenomena is known. The relation between
the cone resistance in the ground and the increasing depth serves as an example of a partially known
mathematical model.

strength sand product
ground . transport . characteristic
""“ "'" °
o . ®
-6'.‘ ¢ o® Y 0
o0 o /e .’*—9
- 6 LA
o %
depth Ver  flow measurable
velocity process
variable
Figure I1I-82

The mathematical relation can generally be represented by the so-called THEORETICAL REGRESSION
LINE: =
y = g(%.6)

Here is the dependent variable.

y
X is the number of independent variables, on whichy is dependent: ¥ = X, X, .., X
6

-
=0,,0,0,..90 are the parameters of the mathematical relation.

n

When deriving a relation from observations (a random sample) this relation is known except for the
parameters. From measurements one can attempt to find out something about this unknown relation.

One assumes a relation g()? ,5) between the dependent variable y and the independent variables X,

and one takes a random sample. From the measurements (realisations or separate observations from
the sample), the parameters 6 of the assumed relation are estimated . If a perfect model (i.e. a correct
and complete mathematical formulation of the law) were available, the data would satisfy the mathematical
formulation exactly. This is almost never the case, if only because the measurement errors have not
been included in the model. However, other imperfections can also occur in the model, for example
because one (or more) (jointly)determining independent variable(s) X, has (have) not been recognised,

i.e. one (or more)X, has (have) not been included in the calculation model. Because the model is not

(or not completely) known, these imperfections can not be distinguished from measurement errors.
To find the parameters (coefficients and possibly powers) of the mathematical model (the EMPIRICAL
REGRESSION LINE, empirical because it is deduced from the random sample) one can use different techniques
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of analysis, such as linear or non- linear regression analysis, etc.. By correlation analysis the "strength"
of a (linear) relation between (normally distributed) random variables (i.e. the extent to which the variance
of the one variable can be explained by the variance of the other variable) can be determined. In this
course linear regression analysis and correlation analysis (both for only two variables) will be discussed.
Non- linear and multi-dimensional regression and correlation analysis are not considered in detail.

I1.11.1. REGRESSION ANALYSIS

The term "regression analysis" was introduced by G. Galton ( Natural Inheritance, 1889) in a statistical
genetics research. He used "regression” to indicate a certain genetic relation between people. The word
has been adopted into statistical terminology and it now signifies the statistical method that was used
by Galton.

The essence of the regression analysis is that one minimises the deviations of the data from the (assumed)
model by an "optimal" selection of the parameters. It is usual to minimise the sum of the squared differences
between the observations and the assumed model:

N
var(e) = o = min 37, -g(x,0)}°
0-6 i=

The result is an optimal estimate of the parameters 6. This leads to an expression for the empirical
regression line.

Applying regression analysis to two variables means considering only one independent variable, x ,

besides the dependent variable, V. The assumed relation can be modelled by:
y =g(x.8)+e

Where ¢ is the random scatter around the assumed mathematical relation. This scatter is caused by

imperfections in the model and measurement errors. The scatter is of no further importance to the mathematical
relation.

Inregression analysis the nature of x : random or deterministic, and, in the case x is a random variable,
the type of distribution of x , are irrelevant.

The average of ¢ is defined equal to O (zero), so that £ does not contribute towards the expected value
of y . The chosen denotation distinguishes explicitly between the "moving average" By = g(x, 5) and

the scatter € .
(The notation y | x indicates that the event y occurs on condition that x occurs.)

Regression analysis for two variables (assume x en y ) considers x an independent variable and y
a dependent variable (dependent on x). Selecting which variable should be considered independent

and which should be considered dependent is not without significance! Different parameters (6) are
found for the regression line, depending on that selection. (Remember Figure II-22. The indicated angle
o can be measured relative to the x- axis and relative to the y- axis. "Linear Least Squares" can be applied
both in the x and in the y direction.)



The following hypotheses underlie regression analysis for two variables:
1. For every value of x, £ (and hence y) is normally distributed.

2. The expected value (i.e. the average) of y, By 1x0 is a known function of x:
p’xlx = g(x’_é)

in which the unknown parameters 6 appear. The function Byx = g(x, 5) is called the theoretical

regression line, as opposed to the empirical regression line which is based on the observations
y = h(x;4,B,...,...).
3. Thevarianceof ¢, var( [ x) , is a constant (or is proportional to a given function of x. The latter

is left aside here.).
4. The observations are statistically independent.

Io.11.1.1. WORKING METHOD FOR LINEAR REGRESSION OF TWO VARIABLES WITH
CONSTANT VARIANCE

Given the observations: {x1 Iy }, {x2 , yz}, {x3 , y3}, e {xn, yn} and assuming the mathematical relation
y = g(x,@), to which the scatter € has been added:

y = glx.0)+e
one can write:

e -y -g(x.0)

If the assumed regression line is a straight one, the resulting set of equations is solvable using algebra.
Assume the linear relation: By s = O +0;X, then:
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Wanted are the estimates’) 4 and B of o, anda, and the estimate s> of statistic var(e | x,) so that:
N
¢ = min 3y ~(4+Box)f
6-8 i-

i.e. minimise the sum of the squares of the deviations of the expected values for the parameters 4 and
B. 1t is after this that the method of "curve fitting" is named the method of the least squares.
For a minimum the following should apply:

—a—l-z=0 and aXZ—O

oB

This leads to two equations with two unknowns.
Assuming the derivatives equal zero gives:

axz_o_zz{( -4-B-x)(-1)} %:0:2%{(yABx)( %)}

04 i=1
Solving 4 and B from this gives: N 1 & N
N N Exi'yz_ﬁzxi'zyi
1 B p - it =1 i
4 = _Eyi——zxi N N 2
N7 Nis 2
335

The scatter of the observations around the empirical regression line is given by the estimator of the
variance of € :

> { - B)f

2 _ i=1
¢ N-2

This way, the ESTIMATES OF THE PARAMETERS are "best fit" (or "optimal”, see 2™ paragraph of § I.11.1)
in as much as they are NORMALLY DISTRIBUTED, with the required parametersA and B as EXPECTED VALUES

and with the SMALLEST POSSIBLE VARIANCES.

. 2 2 . 2 2
The estimates s, and s of the variances ¢, and oy of 4 resp. B are:

11.11.1.2. IMPLICATIONS OF TRANSFORMATIONS

The last paragraph showed that the regression analysis is simple to carry out as long as the relation
is linear. Often the considered (physical, econometric, sociological, etc.) relations are not linear. Usually,
in those cases, functions which turn into linear functions by axis transformation are used as approximations.
For example:

)  "Estimators" are treated more in depth in § II.12. Note that A and B are random variables,

hence subject to "probability"” or "uncertainty". We can not know more about them than
follows from the "data”.
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y = A-exp(B-x) @)
y = Ax” )

y = A+Bln(x) 3)

Sometimes, people (unjustly!) apply a transformation without considering the background of the phenomenon.
The approximation ("fit") takes place after transformation. Consider, for example, the given equation

(1):
y = Arexp(B'x)-e (andnot: y = A-exp(B-x)+€.)

Transformation gives a linear relation between /n(y ) and x:
In(y) = In(A)+B-x+In(g)

in which /n(g) is normally distributed with an average of zero, so that ¢ is assumed to be a MULTIPLICATIVE
ERROR with a LOG- NORMAL DISTRIBUTION.

I1.11.2. CORRELATION ANALYSIS

For a correlation analysis two variables (takex and y ) are both considered random variables. The relation
between the variables can be described by a joint probability density function of x and y . This is NOT
possible in regression analysis because the distribution of x is not relevant. That distribution is not taken
into account.

The objective of the correlation analysis is finding the statistical dependence (correlation, the extent

to which the variance of the one variable can be explained by the variance of the other variable) between
the variables.




Cov(x,y)
Correlation between two random variables is defined as: p, v - —_Z— , with interchangeable x
- 0 . c
x oy
and y . Hence, it is irrelevant which variable is considered independent of the other. Thus it follows

that a correlation matrix is symmetrical.

————

Due to the relation
y= a0+ o 4X

the variance of x
completely explains
the variance of y.

fy (v) / x

fy (x)

A correlation analysis can only determine a stafistical and linear dependence between variables. A physical
relation between the variables must be determined on other grounds.
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Figure II-85

For an unambiguous interpretation of correlation the relation between the random variables must be
LINEAR. (See the following paragraph.)



I1.11.3. EXPLAINED VARIANCE ')

The parameter o, from Figure I1-84 can also be denoted as (see § 11.6.):
cov(x,y)

var(x)

oy

cov(x,y)
var(x)
B) be interpreted as the gradient of the regression line.

Only if a linear relation exists betweenx and y can (and the corresponding estimate of statistic

The correlation coefficient p, v is defined as:

cov(x,y)

Fra ” PGy vary)

hence one can also write:

(Compare with Figure I1-22.)

From this follows: 5 , var(y)

. —_—
17 Py var(x)

The total variance of y can be divided in explained variance (from x ) and the so-called autonomous
variance. Calculate var{ y } from var{)i } and var{ e } . Alevel Il approachfor y = a,+a,-x +& (Course
CTow4130) gives:

var(y) = alz-var(g_c_) + var(e)

explained +autonomous

2
a,-var(x var( €
or L da) )

+ 1 - 2 + 1 B 2
var(y) var(y) Px.y ( Px y. )

pxz,y is thus the part of the variance of y that (in case of linear dependence) can be explained from
the variance of x (or the other way around because p, y =P ).

Note that replacing the given theoretical quantities (o, , o, p, 320,50, ) by the estimates of statistics
(4, B, r

.y’

5,8, ) in the preceding paragraph gives a complete analogy.

II.12. ESTIMATES OF STATISTICS

Assume the probability density function of a certain process (e.g. the discharge of a river during high
water), f.(x,0), is known but that the p.d.f. contains an unknown parameter, 6. If data are available,

the set x,,x,,...,x, serves as a random realisation of the population characterised by that probability

') A. Hald, Statistical theory with Engineering applications, Wiley & Sons, Inc., New York,
1952
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density function. To estimate the unknown parameter 6, one must calculate the value of a function of

the N observations which is suitable for that purpose '):
t = T(x%,,.00Xy)

t is called an estimate of 6. The function 7'(x,,x,, ...,X,,) is called the estimator of 6.

It is assumed that the function 7'(x,, x,, ...,x,,) does not depend on 6 . Based on this assumption, the properties
of t may be deduced from the distribution of the random sample.

The main problem concerning the estimation theory is formulating the desired property (/-ties) of the
estimate(s) of statistic(s), t, and to find (an) estimator(s) 7'(x,,x,, ...,x,,) with that (those) property (/-ties).

(Assuming the distribution type is given.)

Desired properties of estimates of statistics are (amongst others and sometimes also subject to circumstances):
consistency, efficiency, unbiasedness and robustness.

CONSISTENT ESTIMATE OF STATISTIC

An estimate t of statistic 0 is said to be consistent if t probably converges towards 0 when N- .

Example:
The average of a random sample is a consistent estimate of the average of a population (on condition
that the variance of that population is finite). This follows from the Tchebycheff- inequality which
poses that the probability that the average of the random sample differs less than an arbitrary small
number £ from the population average, is greater than 1 minus the variance of the population divided
by the number of observations times the square of the arbitrary small number €.

As a formula:

_ o
P(|lx-p | <e)>1-—
= N-¢?
N
)Y X
With:x = average of the random sample = il
TN = average of the population.
e = arbitrary small number.
2 . .
[ = variance of the population.
N = number of realisations (observations) in the random sample.

Even if the variance is not finite, the fact that the sample average converges towards the population
average, on condition that the population average is finite, can be proven (Khinchine’s Theorem).

An example of an inconsistent estimate of the parameter p , is the random sample average in case
of a Cauchy or Lorentz distribution®) of the population. The average of the RANDOM SAMPLE can
be calculated. The average of the

POPULATION does not exist because | "~ £

integral: — [ —a
the integr c'nf tn)? &
—o0 1 +
o)
D) Choosing "a function suitable for that purpose” means that the distribution type is assumed
known.

%) Lorentz (Cauchy) distribution:

A® - b s F@ - sl aem S o<t < e

cn1+§_p2 2 = o
c



diverges. (In this case the median of the random sample is a consistent estimate of the parameter p').)

The median of the sample "estimates" the median of the population.

The average of the sample would serve as an estimate of the population average if it existed. Because
the population average does not exist, the sample’s average is not a consistent estimate.

Both the sample’s average and the sample’s median are estimates of the parameter p.

(ASYMPTOTICAL) EFFICIENT ESTIMATE OF STATISTIC

Usually several consistent estimates of a parameter of a distribution exist and some of those can be asymptotically
normally distributed, which means that (random sample) distributions of these estimates of statistics
tend to normal distributions when the number of observations N=«. Comparing the variances of these
estimates, the asymptotic normally distributed estimate of statistic is called an asymptotic efficient estimate
of statistic. The efficiency of an estimate of statistic is defined as the ratio between this minimal variance
and the variance of the considered asymptotic normally distributed estimate of statistic.

Example:
Consider the average and the median of N observations from a normally distributed population
as estimates of the parameter p of the normal distribution:
T (S
1 2
F,(¢) = fe ¥ &
- y2n:o _f,,

) The median of the population is defined as that value of x for which:

X
[ £.(8)dt = 05
To determine the RANDOM SAMPLE MEDIAN THE OBSERVATIONS ARE PUT IN ORDER OF
GREATNESS. The following then applies:
X ediaan = xi(= N+1) if N is odd

2

x.( N)+x.( N
== Ji==
_ 2 2

X mediaan = 2

+])
if N is even
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One can prove that both estimates are asymptotically normally distributed with averages equal to p
and variances % (of the sample’s average) and %g (of the sample’s median). The variance

of the random sample average is hence smaller than the variance of the random sample median.
The sample average is an efficient estimate of the parameter p because its standard deviation is

smallest. The efficiency of the sample median is 2. 0,64 which means that the variance of the
T

average of N = 64 observations from a normally distributed population equals the variance of
the median of N = 100 observations.

UNBIASED ESTIMATE OF STATISTIC

An estimate of statistic 7, is said to be an unbiased estimate of the parameter 0 if, for every N ,:

E(_tﬂ>=9

which means that by drawing random samples, each the size of N, from a given population a random
sample of ¢, 's is acquired of which the average value is 6.

(NB E(¢@) denotes the expected value of @ ).

Example:
the estimate of the variance of a population:

N
E -\2
2 _ =1
s =

“ N-1
is an unbiased estimate.

The central second moment - § 11.13.2 :

i=1
N

3 (1,3

2 _ =
s, =m, =

is a biased estimate of the variance.
SUFFICIENT ESTIMATE OF STATISTIC

Consider an estimate #,, of 6 and the probability density function of the random sample of the estimate:

ftN (2y:9). If the probability density of the random sample can be denoted as:

f,ﬂ(x,;9)'f,1(x2;9)'---'f,l(xN;O) = f,ﬂ(tN;G)'g(xl,xz,...,xN)

whereg(x,,x,, ...,x,,) does not contain the parameter 6, thenz,, is called a sufficient estimate. The importance
of this definition is, that #, contains all information relevant to 0 if t,, is a sufficient estimate.

ROBUST ESTIMATE OF STATISTIC

The term robust was introduced in statistics by G.E.P. Box in 1953. Various definitions are possible
but concerning an estimate it signifies: "insensitive to small deviations from the idealised assumption
under which the estimate is optimised”. "Small" in this description means: concerning large deviations
for a small number of observation points. This definition concerns the term"outliers" (points which
differ greatly from the general trend). This definition is generally used for statistical procedures.



II.13. ESTIMATING DISTRIBUTION PARAMETERS

In probabilistic design, the distributions of the random variables are assumed to be known. That assumption
concerns both the type of the distribution and the corresponding parameters.

The type of distribution should (if at all possible) be selected on grounds of physical or other non- statistical
considerations. Often, however, the necessary knowledge is lacking . In those cases, one chooses a
type and one estimates the parameters from a random sample (data from measurements or observations
from the population). One subsequently applies a mathematical relation to the given measurement results.
Proving the validity of the hypothesis that the selected distribution type (which usually - wrongly - is
determined on grounds of the same observations as those from which the parameters were estimated!)
is not improbable, usually (again: wrongly) remains undone.

II.13.1. METHODS FOR THE ESTIMATION OF DISTRIBUTION PARAMETERS

~To determine the parameters from observations a number of methods are available. Of these a couple
will be treated in the following paragraphs, namely:

4 methods of the moments (§ 11.13.2.)

4  (linear) regression (§ I1.13.3.). This concerns adjusting points that have been plotted on probability
paper "by hand", or calculated adjustment, for example using the method of the least squares. The
method of the least squares has already been treated in § 11.11.2..

¢ method of maximum likelihood (§ I1.13.4.).

¢ Bayesian parameter estimation (§ I11.13.5.).

Because these methods use different estimators
t = T(xy,%y..0Xy)

(see § I1.12.) different estimates are found for certain parameters. The parameter(s) of the distribution
of the population is (are) estimated on grounds of observations (a random sample). The estimates are
(per definition!) not equal to the parameters of the distribution. The random sample contains a limited
number of observations and these observations are discrete (have certain defined values) whilst the distribution
is often continuous. Not only does this limit the accuracy of the estimate, but it also sometimes leads
to the situation where a random sample better satisfies a different distribution than the distribution of
the population from which it is taken. Among the tests of the "conformity" of observations with the
selected distribution are the x*- test (see § I1.13.6) and the Kolmogorov - Smirnov test (K.S. test, §
I1.13.7). :

I1.13.2. THE METHOD OF THE MOMENTS

The moments of most distributions can be written as functions of the distribution parameters. The k®
central moment of the distribution ( £>1) of a population is defined as:

+0o +0o

b= Bl -p)f = [€-W"f @ with p = [&f, Q) = population average

The central moments (the moments "relative to the average") can be determined from (random sample)

realisations of observations:
N

>f - 3 >

_ =l with x = 1 =]1\7 = average of the sample and k>1

mk—

The second central moment that can be calculated from the random sample is, (provided the second
moment of the distribution of the population exists) a (biased) estimate of the variance:

N
—\2
5
i=1

S2 m
b T M T
N




The index b was added to indicate a biased estimate . The unbiased estimate Su2 (index u to indicate
unbiased estimate), is (see also § 11.12):
u =\2
> (xi —x)
2 N 2 =
u "8y )
N-1

M

N-1

By using the estimates of the moments, calculated from the random sample, as approximations of the
moments of the distribution of the population, estimates of the parameters of the distribution can be
calculated. Estimation of the parameters of a distribution according to the Method of the Moments assumes:
: W = My

(I.e. m, is selected as an estimation of p,)

Example:
For an exponential distribution, the following is given:
)

F & =1-¢ "

Differentiation gives:

Average and higher central moments of an exponential distribution are found simply by partial
integration.

The distribution average is:
g- [}

M dE = o, +0y

F@ - - oL@ - L e

1

One can state:

p=a+a ~ 4A+B = 2L

with which a first relation is made between the parameters o, and o, the estimates A and B and
the observations x;.

The variance of the distribution is:
E-04

[EWLOE = — [Ea,-a)e * &= d

1 s

Il

E(x-py = o = p,

And: N 2
N E‘xj

2 i-1 N
=0 2 B? - N

This is a second relation between the parameters and the observations.
Solving B gives:

()

|
e
2
3
i

For A as an estimate of o, one finds:



The skewness of the exponential distribution is calculated as follows:
b

b = Bl = oo afe & - 20
1 o

A distribution with a unimodal or single peak probability density function with a skewness greater than
zero slants to the right. The probability density function of the exponential distribution:

_é_a"

1 (&) = 1. e ™ (and, colloquially: the exponential distribution itself) slants to the right according
a

1
to this "definition". The third central moment of a symmetrical distribution such as the uniform or the
normal distribution equals zero. :

The square of the skewness can be standardised by division by the variance to the power three. This
standard gives the extent of spreading:

H2
3
B] T3
)
The corresponding estimate is:
2
ms
b] = —3‘
m,
often denoted:
. . _ !’I’3 . . _ m3
for the population: \/E =— and calculated from the observations: ‘v/bil =—
2 2
K2 "

An exponential distribution reads:

The kurtosis of the exponential distribution is calculated:

E.v‘ao

B, = E()i—p)“ = al—f(f;—ao—al)“'e “dE =9 a;

1 o

The kurtosis can be standardised by division by the square of the variance:
Ky
Bz = —
Ha

The standardised kurtosis van of an exponential distribution is:

_9af_9
b=y

—

The standardised kurtosis of a normal distribution is 3. The standardised kurtosis of a uniform distribution
is 1.8.

The estimate of the standardised kurtosis is calculated from observations as follows:



One can consider B, a function of B, . For various distributions, the relations between B, and B, have

been investigated by Pearson. Figure II-86 is taken from: Hahn, G.J. & Shapiro, S.S., Statistical Models
in Engineering, Wiley, 1967. In the computer plot (Figure I1-87) a + indicates the position of (5, , b,)
for a data set EXPO1000.DIS with 1000 observations from an exponential distribution. b, and b, were

calculated from this random sample. Based on the large number of observations (1000), one would
expect: b, = 4 and b, = 9. It transpires: b, ~ 3.6 and b, ~ 8.6. On grounds of the computer plot
one could believe the observations originate from a gamma distribution or a log- normal distribution.
The random sample apparently suggests a different distribution than the distribution of the population
from which the observations originate! To compare, the probability density functions and the distribution
functions plotted on half- logarithmic paper, both from the 1000 point data set EXPO1000.DIS, are
given in Figures II-88 and II-89.

Impossible area

B2

t distribution

0 1 2 3 ) 4
b1
Regions in (By, fy) plane for various distributions. (From Professor E. S.
Pearson, University College, London.)

Figure I1-86
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I1.13.3. LINEAR REGRESSION

A second method which is often used for estimating distribution parameters is linear regression. (See
§ I1.11.1. and further.) Using this method to estimate parameters leads to difficulties when only the
intercepts are given for the coordinates x;, y, ,(x, : significant wave heights, yearly maximum river discharges,

etc.). To come to coordinates, assumptions have to be made concerning the probability of occurrence
of the observations concerned. For this the observations must be organised and, if necessary, transformed.

I1.13.3.1. ORGANISATION OF THE OBSERVATION MATERIAL AND TRANSFORMATIONS

To determine the PARAMETERS ') of the distribution, observations are first put in order of increasing
greatness. These observations in order of greatness are indicated by ,x,. Here N represents the number

of observations in the considered random sample. These , x; can be seen as intercepts of coordinates.
Tothe ,x, ordinates, ,y,,havetobeadded. The plot positions of the observations are then characterised
by the coordinates ( ,x,, ,¥,)-

Plot positions have to fulfil the following conditions according to Gumbel ?):

1. it must be possible to plot all observations , therefore ,x, and ,y, (or their transformed forms)
must be finite.
2.y, mustlie between the observed frequencies % and é and be independent of the distribution.

3. The return period of an observation greater than or equal to that of the greatest observation must
approach N. (Mutatis mutandis this is valid for observations smaller than or equal to the smallest
observation.)

4. The observations must be spread equidistantly over the frequency axis. This means that the difference

Vi~ »Yi-; 1s only a function of N, independent of i (and of the distribution, see point 2.)

5. The plot position must have a significance that can be intuitively sensed and it must be easy to
calculate.

A couple of plot positions are presented in the following table. Often the selected "significance that

can be intuitively sensed" is: EJ ,», } = —]\_fl_f : the expected value of the frequency of the i® realisation
+

3).

) No more than in §I1.11. and further, where the PHYSICAL RELATION had to be established on
grounds that were not statistical, is the DISTRIBUTION TYPE derived from the observations
here!

%) Gumbel, E.J., Statistics of extremes, Columbia University Press, New York and London,
1958.

%) A further explanation is given in Appendix II-2 (page II-116 and further).
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| Method Approximation of the ordinate

of the plot position
m
California i
N
Hazen / Foster i-0.5
N
Gumbel / Weibull i
N+1
Bernard / Bos - Levenbach i-0.3
N+04
Blom i-0.375
N+0.25
Tuckey 3i-1
3-N+1
Gringorten i-0.44
N+0.12

For LINEAR regression (grouping the observation points around a straight line) the observations, (x,),
are plotted as intercepts, and the expected values, (y,), as ordinates, if necessary after transformation.

Figure I1-89 shows the observations plotted linearly. For the scale of the expected values the transformation:
i
N+1
taken from an exponential distribution:

was selected. This transformation was selected because the observations were

Y, = -ln(l—

[
F,(&) = 1-e

Which can be replaced by:
£-a

1-F (&) =e ™
Calculating the logarithm of both sides of this equation serves as a transformation:

o) - 2
1 1

Gumbel’s choice is used for F, (&):

F (&) =

j a
In{1-—L - L "X, - =
N+1 a, a,
Analogously, for other distributions such axis transformations can be found that every (chosen!) distribution

function can be depicted as a straight line. If the selected distribution is correct, the coordinates formed
by the (transformed) observations, (x;), and the (transformed) expected values of ordinates of the plot

positions, (y,),will approximately satisfy a linear relation. In the following table a couple of transformations

so the transformation becomes:

are named.



|| Distribution I X- axis Y- axis l

Uniform Linear Linear
Normal Linear Normally distributed
Log- normal Logarithmic Normally distributed
Exponential Linear Logarithmic
Gumbel Linear Double- logarithmic
Weibull Logarithmic Double- logarithmic
N.B. 1. The "position on a straight line" (if necessary after transformation) does not verify the

correctness of the selected distribution. The position of the ( ,x;, ,»,) on a straight

line only leads to the conclusion that the OBSERVATIONS (coincidentally) PRESENT IN
THE RANDOM SAMPLE can be modelled well by the selected distribution.

N.B.2. A starting point for the regression analysis is that the deviations, g, from the regression
line are normally distributed with average value zero and that they are independent.
By the organisation ("sorting in order of greatness") of the observations, the successive
observations are not independent. (A "next observation" is increasingly greater than
its "precedent".) The application of regression analysis for parameter estimation of
distributions is, therefore, at least questionable.

II.13.3.2. THE METHOD OF THE LEAST SQUARES

The method of the least squares was treated for linear functions of two variables in § I1.11.1.3. For
the y; , plot positions are selected according to one of the rules in the table in § I1.13.3., if necessary
followed by a transformation to arrive at a linear depiction. The distribution parameters are subsequently
estimated by applying the method of the least squares to adjust the distribution, transformed to a straight
line, to the random sample.

Various types of probability paper can also be used, a line can be drawn through the points "by visual
estimation" '), or the line can be calculated using the method of the least squares.

II.13.4. THE METHOD OF MAXIMUM LIKELIHOOD

The Method of Maximum Likelihood does not require observations to be sorted according to size. The
Method of Maximum Likelihood uses the random sample likelihood function. Based on (discrete) (random
sample) observations conclusions are drawn concerning the parameter(s) of an (assumed known type
of) distribution of the population .

Assume that the (population) DISTRIBUTION of a variablex is KNOWN, that it has only one parameter,

0, (the case of more parameters will be discussed after this) and that the parameter is also known. The
probability of realising one OBSERVATION x, can be expressed by:

X, Ax,
P {xj-—— <x <x+ b= [ (x))dx,
Ax-0 2 2 =

) The eye "minimizes" (more or less) the "vertical distances" to the estimated regression line,
where the distances of points above the line are considered positive and those of points below
the line negative. ("There are approximately as many points equally far "vertically" above the
line as below".) "The eye" does not use the least square approach but a "smallest |y -y, | "

approximation! This corresponds to the Chebyshev approach, which determines y such that:
max {|y -y I} minimal
asxsbh
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If N INDEPENDENT observations are available, the probability of realising such a random sample is:

Ax, Ax, Ax, Ax
Aﬁﬂ [{x]_7<xlﬁx1+—2—} n { ...... } n {xN—T<stxN+ 2N}]
= £ (X5 Xy e, Xy | 0)dx, dXy o dxy,
= £ (%,10)-dx - £, (x,|0)-dx - .... " S Gy |0)dx

N
= [1/,(x,18)-dx

i=1

N
From this follows: [ (%)% %y | 0) = TT £ (x,10)
i=1 ~

The other way round, if the observations x,, x,, ...,x,, are a random sample from a distribution (of a known

type) of which the parameter, 6, is not known, the equation above can be considered a function of 6
alone. The random sample likelihood function is defined as:

N
L(®|x},%y.Xy) = q £,x,10)

This equation reads from left to right: the (relative) probability of occurrence of a certain random sample,
X;,%,,...,Xy, as @ function of a (given) parameter 0, or reversed, (read from right to left) the (relative)
probability of a value of 8 occurring, given that certain random sample. (The probability of 6 given
the observations x, , equals the probability of observations x; , given 0). This interpretation is attractive

because it suggests that the value of 8 for which the random sample is (relatively, i.e. compared with
other random samples) more probable, is also the value of 8 which (relative to other values of 0) is
more probable. Hence, one has to find the value of the estimate of 8, for which the likelihood function
is maximum: The maximum likelihood estimate of © is the value t for which the likelihood function
L(6) assumes a maximum.

Example:
Assume an exponential distribution:
F (x) =1-e K
The probability density function is:
1.,7s
x) = —e
TACRE

The joint probability density function of N independent observations in a random sample, from
which the estimate B of ¢, is determined, is:

N i
1 —
FACHE H E-e !
- i=1
De likelihood function for the estimate t of 9 is:
N
X, th
A
L(t| %X 0Xy) = H —e ' =—¢ !
i-1 ty
This likelihood function has a maximum at:
N
Y x
t = 2L asfollows simply from a _ .
N dt




Concerning the determination of the maximum of a function "many paths lead to Rome". If the likelihood
function is at least monotonous, a method which is often used for the determination of estimates according
to the Method of Maximum Likelihood is calculating the maximum of the logarithm ).

An example for the abovementioned exponential distribution:
The likelihood function for a estimate B is:

1
L(t|xXp..Xp) = — ¢
Its logarithm is:

>,

In(L) = —N-ln(t)—fflt—

Its derivative is:

N
in

din(L) _ N _ia
dt t t2
Assuming this equal to zero and
solving t gives:
N
>
PR LS

N

The preceding theory can easily be extended to cases where the probability distribution contains more
(assume M) parameters:

N
L(8,,0,,...,0,,| X1, %50 000Xy) = Hé(xi]el,ep...,eM)
or, equally:
N N
(L) = m| [ £.x10,0,..8,)| = Y ln(fx(xi | e,,ez,...,eM))
i=1 ~ i=1 -
Solving a set of equations is typical for the determination of the maximum:

N
> olnlf,(3410,8,-,8,)) = 0 with j = 1,2,...M
36, 0=

i=1

E.g.:

F,@ =1-e *
The probability density function is:

D! As a result of the monotony of the likelihood function and the one to one relation between the
likelihood function and its logarithm, these have a maximum for the same value of the estimate of
the parameter.
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The likelihood function is:

L(A.B|xppety) = ——¢  ®  with A<x,B>0.
B

The likelihood function of A has a maximum at:

(t=)A4=x, (bordermaximum)

The most probable curve found is the line - -+ -+ - in Figure I1-90. Imagine the curve I-I-I-I-I
or the curve II-II-II-II-1T in Figure II-90 is the p.d.f. of the population. On grounds of the RANDOM
SAMPLE these curves are considered less likely. Values of o, the parameter of the distribution
for which A is an estimate, larger than x, are ruled out because the random sample contains smaller
values. x; could not be a realisation from the population if x, was smaller than o,,.

A

f-)s( X)
L(A)
1 A-Xx
-'~ B
fl( X)= B e
I ' for the three p.d.f.'s:
'II \ . same B, different A
L(A) !
/
J _—
D Nt T =
X
X, X, x3 x4x5
Figure I1-90
If the likelihood function:

N
L(0,,0,,...,0,,| X%y, s Xy) = 11 £,%,10,05,...6,)

is solved numerically, the numbers often become too small (underflow condition). The logarithmical
transformation again offers a solution.

I1.13.5. BAYESIAN PARAMETER ESTIMATION

The Bayesian parameter estimation is based on a so-called a priori distribution of the parameter 6. (A
priori (Lat.): beforehand.) This a priori distribution indicates what is known at the moment that data
are not yet available. The determination of it thus takes place on subjective grounds.

According to a prescribed procedure this a priori distribution is combined with the objective statistical
data (observations) and thus turns into a so-called a posteriori distribution. (A posteriori (Lat.): afterwards.)
Adjusting the a priori distribution on grounds of the observations leads to the a posteriori distribution.




Bayes’ theorem is central in the Bayesian analysis:
(4| B) - PBLAYP(A)
P(B)

(See Lecture notes CTow30 , Vrijling, J.K. and Vrouwenvelder, A.C.W.M., Probabilistic Design,
Fac. Of Civil Engineering, TU Delft, 1984 (in Dutch)).

This theorem indicates how the probability of event A is adjusted under the influence of fact B. For
the statistical processing of data, a hypothesis concerning a statistical parameter (e.g.: the average is
between 10 and 11) is used for event A and the observations (realised statistical data) is used for B.
Rewritten with new symbols (H = hypothesis, W = Observations), Bayes’ Theorem reads:

P(W|H)P
pe|wy = POVLH)Y P
: P(W)
with:
P(H|W) = probability that the considered hypothesis is right in view of the available data (a posteriori

probability).
P(W|H) = probability of observing the statistical data (observations) assuming that hypothesis H
is valid. This corresponds to the likelihood function introduced earlier.

P(H) = the a priori probability that the hypothesis is right. This probability has to be estimated
in advance (a priori). This is the vulnerable point of the analysis.
P(W) = aquantity which is not easy to interpret. In practice, however, it is a standardisation constant

which makes the integration of the likelihood function from - to +« equal 1 (and hence
signifies a probability density).

In a formula:
N
fé (t I xl,x2, ...,xN) = C'H_fx (xlaxga --'9xN, t).fé (t)
= i=1 =~ -

The distribution type can also be determined using this Bayesian technique. The hypothesis is that the
observations originate from certain distributions V(j).

N
Jo (VX052 ey = C-Hfi(xl,xz,...,xNI V) A7)

Of the various SELECTED distributions, V;, the parameters of a certain data set are determined first.
Subsequently, the most likely distribution for a DIFFERENT DATA SET from the same population
is determined.

When using a computer to process these procedures, one should be aware of over- and underflow problems.
In most cases it is recommended to take the logarithm both left and right.

Priors
K W
Nen- informative .'
: Data- likelihood function ¢ |
! i (to be determined P
! according to the data, x) i
LAY LAy

Exponentigl

Exponeptial

Posteriors
AP

o i

Updated p.d.f. % Updated p.d.f.
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IL13.6. *- TEST

The x*- test determines the maximum difference between the (assumed) probability density function
and the histogram that can be drawn up from the observations. If the observations are sorted in k classes
with width Ax, the i" interval will contain n, observations out of a total of N observations. The expected
value of the number of observations in the i™ interval is:

N-p, = N-f (x;)dx

The test quantity is the difference between the realised number of observations n, and the expected value
of the number of observations in that class, where the probability density function, f, (x,), is assumed.

The used test quantity is:

wit D = test quantity, with a y>-distribution.
A result of the dependency, created by sorting into classes and the fact that r parameters of the probability
density functionf, (x) are estimated from the observations, is that the number of degrees of freedom
equals k-r-1.
Using a table for they? - distribution one can determine the maximum value of D for which the zero-hypothesis
with a certain reliability won’t be rejected:

P(Dsy ) = 1-a

A disadvantage of the x> test is that the observations have to be classified. The number of classes
can influence the result of the test. This limitation may not be neglected when applying the x>~ test.




11.13.7. KOLMOGOROV-SMIRNOV TEST

In literature a number of test can be found which do not reject the correctness of a hypothesis with a
certain reliability. This does NOT mean that the hypothesis is correct with that certain reliability!

The Kolmogorov-Smirnov test (or K.S.- test) is applicable to observations from given distributions
which have not been classified. The "test statistic” is the maximum deviation from a point, (x,,y,),

of the given distribution. This test gives an indication of the "join" (of the CHOSEN distribution) with
the observations surrounding the MODAL VALUE of the POPULATION if the approximation (type AND estimated
parameters) of the population distribution is correct. For extrapolations the TAILS of the distribution
are of importance.

If the N observations x, (i = 1,2,...,N) are mentioned, thensS, (x) is the function which gives the part
of the population with observations smaller than the given value x. This function is constant between

. . . . . . 1 . .
successive (i.e.: sorted in order of size) x;s and it increases with a constant v with every x, (see Figure

I1.92).
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The test quantity selected is the distance D (see Figure 11-92):

N N
D = max | 8,00 -F.®) ’ - max ) »,-F.(x) { with y, =
i=1 - i=1 -

z
N
The DISTRIBUTION may not be deduced from the GIVEN OBSERVATIONS .

The test is that:

Reliability threshold
o o =123 10%
D<7—A‘, Jor N >5. o« = 1.36 5%
o= 1.63 1%

If the distribution is estimated from the observations, a correction seems necessary for the number of
estimated parameters M:
o

YyN+M

D <

However, no theory concerning this matter is known.
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I1.14. L.OADS

For the final design (of a port or a hydraulic structure) one (or more) reliability function(s) is (/are)
regarded to determine the probability of failure:
Z =R-S§

In an early design stage it is often useful to have a probability distribution or an exceedance frequency
curve of the loads at one’s disposal. The strengthR is then replaced in the formula by a constant S;:

Z =8-S

A level II- or level ITI- calculation is then used to determine the probability that a load is greater than
the constant S,. By varying S, an exceedance frequency curve of the considered load is obtained. To

introduce the reliability (or the probability of failure) of the structure in calculations, a mathematical
model based on the calculated points, (SO,PJ,(SO)) , must be given.

Various versions of the structure to be designed, or
parts of it, can be "confronted" with the found load
exceedance curves, aimed at weighing up the probabilities <
of failure of several variants. Oosterscheide

storm surge barer Q\
Often calculating the load is a problem in its own right. Jand C
The load on the Oosterschelde storm surge barrier serves 5

as an example. The barrier closes off a basin with a
more or less fixed water level from the sea.

Figure I1-93

Given:

1. the probability density function of the High Water
levels on sea. (For the Oosterschelde barrier this
follows from the exceedance frequency curve of the

foua(X)
Hw storm surge levels on the North Sea.)

x 2. The probability density function of the (significant)
wave heights. (This follows from the long term
Ty exceedance frequency curve of the wave heights.)

3. For both the wave run up and the loads (forces,
y resonances) it is necessary to know a probability density

function of the periods. In the past, little attention
fo(z) for (’;’;’o’;‘;'nifgye parrior) was paid to the influence of the periods of the waves,
- but from modern research it appears that periods
are very important. The probability density function
of the periods is often difficult to determine.

.5%0.5

Figure 11-94




A certain wave height corresponds to a whole range of periods, as could be seen earlier (see for example
Figure I1-42). In young swell high waves are often long, short waves are often low. In swell low waves
can have very long periods. An alternative to the probability density function of the wave period is
the probability density function of the wave steepness:
gT,’
with L =——
P 2.

Experience shows that the wave steepness is independent of the wave height. The conditional probability
density function of the wave period can be calculated from the probability density function of the wave
steepness. Thus, the probability density function of the wave period can be acquired by multiplication
with the probability density of the wave height. If necessary, the wave directions also have to be taken
into account.

Forces on a structure can be divided into static
and dynamic forces. Of the first kind, the head 'I
force needs to be mentioned. To determine High Water level (HW)
(dynamic) wave forces on a structure, linear wave =
theory is often applied.

The first load to be taken into account is the head  insige Water level (BW)
force, K, ,; (see Figure II-95), which should be =

. . . i K
considered a function of the difference between head |
the outer and the inside water levels:

Kyeus = 8(HW ,BW)

head

For the wave load on very stiff structures, such Figure I1-95

as lock doors, another procedure should be followed

than that for the (static) "head load". The gates in the Oosterschelde barrier react quasi- statically to
wave load. Because waves have a spectrum, the wave force on the structure is calculated for a number
of frequencies. Wave forces are a function of H ,T and the water level HW :

- K, = h(H,.T,.HW )
| :\‘ e High V;mrleval

Ksignitxcant wave

High Water level

Inside Water level Inside Water level

Figure 11-96 Figure I1-97

Load by high low frequency wave Load by low high frequency wave
with one high outside water level (and fixed inside water level)

The load is standardised with the wave amplitude, n(f) = é— H(f). The transfer function
(standardised load as a function of the frequency) becomes:

K.
RKTI(f) _ s,inf ant
2 1)
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The forces or load spectrum S, (f) is found by multiplying the wave spectrum Sm](/) by the
square of the transfer function RKH:

2
SN * Rien(N) = Sil(f)

Wave (amplitudé) spectrum (square of the wave amplitude
per frequency band).
The surface of the spectrum is called .

/ ' The significant wave height (with a Rayleigh distribution of
the wave heights - see § IL.3) is : H, = 4,/m, (See lecture
T (Hz) notes CTWAS5316, b78, Wind waves, as mentioned earlier.)

Sm\(f) ial

2
RN

Square of the transfer function. The sketched transfer
function is characteristic for a structure which reacts quasi-
statically. The structure is so stiff and inert that it does not
react dynamically to the wave load.

SKK(f)

Load or force spectrum. The load spectrum shows that, in
this case, a second (higher frequency) peak in the wave
spectrum doesn’t or hardly does "affect" the force spectrum.

f(

Figure I1-93 Due to the linear theory the forces are also Rayleigh distributed.
The significant force can be calculated according to K, = 2‘/;1; , but now m,, is the surface of the

force spectrum.

Sm(f)

A

7\
I

2
Ry()

Figure I1-100

“re When determining the transfer function of structures which react
f (Hz) dynamically to wave load (in a laboratory where a model of the
St structure can be tested: the linear theory no longer holds then) the
structure may appear to be hit in its eigen frequency. The forces
(and mutatis mutandis the displacements) then increase greatly. For
the mat laying ship The Cardium (used for the realisation of the
A Oosterschelde storm surge barrier ) the MARIN institute in

f (Hz) Wageningen determined that the coil, onto which the concrete mats

had been rolled, would be driven by waves with periods of

Figure I1-99 approximately 8 seconds. The mass of the coil (including the mat)
was 9000 metric tonnes and it was thought that this mass would be
too inert to be brought into motion by waves. The period of the
swell on the North Sea, however, is 8 to 10 seconds and when this
swell reached The Cardium the coil did have to be connected more
stiffly with the ship!




For structures that react dynamically the following also holds:

SN *Rol) = Sl

Note that structures that react quasi-statically to wave loads, such as lock doors, gates of barrages
or other defence structures etc., can sometimes start to vibrate due to current forces (oscillation
with large amplitude: in the order of metres!).

Often, wave spectra (from measurements) can be better approximated by power functions than by
standard spectra (Neumann, Pierson- Moscowitz or JONSWAP). Hand books state that for the

right flank side of the spectrum (the high- frequency area): Sml :: 78 (:: = directly proportional
to). This is the so-called equilibrium range of O. Philipps. For Karwar S = S 35 and for the
Oosterschelde S f2° were found. Standard spectra often don’t "fit" and a "second top" can not

be modelled by standard spectra either. By approximating the measurements with power functions,
however, a second top can be easily be included by superposition.

From the following, the method to determine the extents of the forces is known. Furthermore, it is
known that the forces caused by wave loads are Rayleigh distributed:

2L)?
Fe(F)=1-¢ 5

The distribution of the forces which occur due to the N highest waves, which are Rayleigh

distributed, is:
N
—z(i)z N i 2
Fy(F) = {1—e K } ~ g Ne (K:)

Z =8-S

The equation

given at the beginning of this paragraph, can be replaced by:

Z = SO —Khead -gv_*M

in which M has the distribution of the N highest waves.

In"PROBABILISTIC LOAD DETERMINATION", Th. Mulder and J.K. Vrijling’s contribution to
the SYMPOSIUM ON HYDRAULIC ASPECTS OF COASTAL STRUCTURES, held in 1980,
the probabilistic approach to hydraulic loads on the Oosterschelde storm surge barrier is treated in
detail. This article is reproduced in full on the following pages.



II.15. PROBABILISTIC DETERMINATION OF THE LOAD FOR THE OOSTERSCHELDE
STORM SURGE BARRIER

The following article, with the title Probabilistic Load Determination, written by Mulder, Th. and
Vrijling, J.K., is taken from a contribution towards the Symposium on Hydraulic Aspects of Coastal
Structures (1980).

SUMMARY

This paper deals with a probabilistic approach of the hydraulic loading conditions of the
Oosterschelde storm surge barrier. The joint probability density function of the hydraulic boundary
conditions (storm surge level, wave energy and water level at the Oosterschelde-basin) is used as
input. By introducing linear spectral transfer functions between the load and the hydraulic
parameters, this density function can be transformed into the two-dimensional probability density
function of wave and static loads, from which the probability distribution of the total hydraulic load
can be derived by integration.

The transfer functions needed were determined with the aid of a mathematical model, which has been
checked by a series of hydraulic model tests.

By applying a probabilistic load determination as indicated above, the total horizontal load at the
storm surge barrier was reduced by approximately 40%, as compared to the rather pessimistic
outcome of a deterministic load determination, in which all unfavourable and unlikely effects are
assumed to coincide. The probabilistic load determination has also been used in a probabilistic
approach of the behaviour of the storm surge barrier, in which the structural properties were treated
as random variables, in addition to the loads. In this way a risk analysis has been executed to find the
failure probabilities of several parts of the barrier, which have to be in balance.

I1.15.1. INTRODUCTION

After the storm flood disaster of February 1st. 1953, The Netherlands Delta Committee stipulated that
primary sea-retaining structures have to provide full protection against storm surge levels with an
excess frequency of 2.5 x 10 times per year. In the case of conventional defences, such as dikes, an
extreme water level may be used as a design criterion, because overtopping is considered to be the
most important threat to dikes. In the preliminary design stage of the Oosterschelde storm surge
barrier, a design storm surge level was chosen in accordance with the report of the Delta Committee.
This surge level was combined with a maximum extrapolated single wave and a low estimate of the
inside water level to determine the hydraulic load (deterministic approach).

In fact this approach is unsuitable for a storm surge barrier. The structure consists of concrete piers,
steel gates, a sill, a bed protection and a foundation. These components have to be designed on the
basis of load combinations, which will give the most dangerous threat to the structural stability.
These load combinations originate from waves and a difference in water level across the barrier.
They are therefore only partially depending on the seawater level. Thus, in the case of the storm
surge barrier, the hydraulic load has to be chosen as the "potential threat". Since the design method
used is a quasi-probabilistic one, this means that a design hydraulic load was chosen with a
probability of exceedance of 2.5 x 10 per year.

In order to be able to determine this design load for the various structural parts of the barrier, a
method for a probabilistic load determination has been developed.



II.15.2. HYDRAULIC BOUNDARY CONDITIONS

The basic parameters in the determination of the hydraulic load at the storm surge barrier are:

Z, = maximum storm surge level at sea
w = wind speed
b = basin level at the Oosterschelde

In the paper "Hydraulic Boundary Conditions" the joint probability density function of these
parameters p, , (z,,b,w) is discussed.

52,

This joint probability density function (p.d.f.) has been used as input for the calculation of the
probability distribution of the hydraulic load on the storm surge barrier.

I1.15.3. TRANSFER FUNCTIONS

To transfer the hydraulic parameters into the hydraulic loads, the static loads and the wave loads have
to be written as functions of the parameters:

Static load:
S = G(z,,,b,geometry) 1

Wave load spectrum:
Sy = H(z,,,w,geometry) 2

In the case of the static load this function can be easily determined from the hydrostatic pressure
distribution on both sides of the barrier and potential flow pattern in the sill around the base of the
pier.

The transfer from waves to wave loads has been done with the aid of a spectral method. To allow the
application of such a method the transition from waves to wave loads has to be a linear system. In the
case of the storm surge barrier this criterion was fulfilled, as has been proved by model tests. This
will be shown in the sections 3.2 - 3.4.

For the storm surge barrier the transfer functions have been determined with the aid of a
mathematical model, as will discussed in the next section.

I.15.3.1. MATHEMATICAL MODEL

In the mathematical model an incoming wave field with elevation n,, is considered as a stochastic

process in (x,y,t). The two-dimensional energy density spectrum of n,, is S ,(f,0). This spectrum is
defined as follows:

S, (N = 8,(£,6)de 3
D(8;f) = R
D50 @

in which D(6;f) is a directional spectrum, giving the relative energy density for the directions in case
of a fixed f. For the storm surge barrier the following function has been assumed (see [1])

D(0;f) = 2-cos2(0-0) for |9—6| < g and 0 < f <e )

in which 6 = angle between the mean direction of wave propagation and the axis perpendicular to the
barrier.



The energy density spectrum S,(f) of the wave load W(t) at the structure can be determined as
(see [1]):

Sy(f) = foZ(/) r(£,8) S, (£,6) do ©)
in which:

o) = the wave load (o-top) per unit of incoming wave amplitude, as a function of the
frequency f. The waves are assumed to be long crested and perpendicular to the
structure.

k = wave number.

1(f,0)= the ratio of the total wave load of a structure of length 2/ for oblique wave attack
(approach angle 0) of the total wave load for a perpendicular approach of the waves:

1(£0) = sin(k! sin6) )
’ kl sin®

Assuming a relatively narrow wave load spectrum Sy/(f), and a Rayleigh- distribution of the
individual wave load peaks, the traditional parameters W, (significant wave load) and Ty, (mean wave
load period) can be obtained by the following relations.

W, = 2/m, ®

m,

TW = - (L))
m,

- ff " Sy(f) df (10)

Function O(f) is determined numerlcally by calculatlng per wave frequency (wave period) the wave
load per unit of wave amplitude a; (= H/2).

The basis of this calculation is the following wave pressure distribution according to a linear wave
theory, for partially reflected waves against a vertical wall:
- between the upper side of the sill and the sea water level (0 <z <d):

_ cosh(kz) n
p(x.2.0) = pga’ Sres V1+a?

+2acos(kx) sin(w?+0) (11

with the boundary pressures:
pa(x,t) for z=d;
Po(x,t) for z=0.
- above the sea water level (z > d):
p(x,z,t) = py(x,t)-pg(z-d) 12)

- in the sill (z < 0):
p(x,2,1) = py(x,t)e ™ 13)

in which:
k = wave number
o = reflection coefficient
® = angular frequency
t=time

¢ = phase shift = arctan( %tan(kx ))
+a
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Figure II-101  Cross section. Top view.

By integration of the pressure distribution over the height of the structure the wave load at a vertical
plane j with a width B, can be determined:

W, = fp(xj,z,t)Bj dz (14)

By doing this for the various vertical planes of the barrier, like the gate, the front of the pier wall and
the front of the pier footing, the total load due to a regular wave at the barrier can be found:

w(t) = Z} W (1) 15)
2

The maximum of this wave load function W(t) divided by the incoming wave amplitude gives us the
transfer value for the wave period considered.

I.15.3.2. DESCRIPTION OF MODEL FACILITIES

The hydraulic model tests have been executed in two 100 m long wind-wave flumes of the Delft
Hydraulic Laboratory.

Investigations with perpendicular wave attack were executed in the 2 m wide wind-wave flume, and
investigations with oblique wave attack in the 8 m wide wind-wave flume (see Figures II-106 and II-
107). The irregular waves applied in the investigations were generated by programmable wave
boards, driven by hydraulic actuators and commanded by analogue signals.

Wave conditions characterized by the spectral shape and wave height distribution, may be generated
by a proper adjustment of the input filter function and amplification. The wave form is further
adjusted to the natural shape by wind.

The wave pattern has been measured by resistance type wave height metres. The tests with
perpendicular wave attack were carried out using a model scale 1:60, with dummy sections at both
sides of the measuring sections, to close the flume entirely.

The total forces are measured by strain gauges attached on a dynamometer frame. The model section
is hanging free from dummy sections and the bottom.

11.15.3.3. SERIES OF TESTS

In the first place, tests with regular waves have been executed in the 2 m wide wind wave flume. A
great number of H,T- combinations have been tested varying the following parameters:

- sea water level

- basin level Oosterschelde

- water depth

In this way it was possible to check the linearity of the transfer from waves into wave loads and to
determine the reflection coefficient as a function of the above mentioned parameters (incl. the wave
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period). The reflection coefficients have been determined from wave height measurements in a

"standing" wave in front of the structure. From a linear wave theory the reflection coefficient will be:

- Hmax _Hmin ( 1 6)
H +H

max min

o

in which H_, and H,; are respectively the wave height in a anti node and in a node of the "standing"
wave. Secondly, tests with irregular waves have been performed to check the transfer functions
determined by the mathematical model. The same parameters have been varied as in the regular tests.

The influence of an oblique wave attack has been tested in the 8 m wide wind-wave flume approach
with angles of 30° and 45°.

The incoming wave spectrum S,;(f), needed for the determination of a transfer function, has been
derived from the measured wave spectrum S, (f) using the following relation:

Som(D
S (f) = —2———_ 1
N [ 1+a (f)]2 ( 7)
in which o(f) is the reflection coefficient as a function of the wave frequency f determined from the
tests with regular waves (see [4]).

IL.15.3.4. RESULTS

The results of the hydraulic model tests were given as:

- wave forces per unit of wave amplitude for several wave frequencies and amplitudes (check on
linearity).

- reflection coefficients as function of the wave frequency

- transfer functions

- cumulative frequency distributions of wave load peaks

Some typical results are shown respectively in Figures II-108, II-109, II-110 and II-111.

In general it could be concluded, that

- the transfer value "wave load per unit of wave height" is almost independent of the wave height: in
other words, the wave load is almost linearly dependent on the wave height.

- The measured and calculated transfer functions are in good agreement, except that:

- the transfer functions derived from measurements in the shallower locations show
oscillations, in contrast to the calculated transfer functions. No satisfactory explanation has
been found for this phenomenon. (See Figure 1I-110).

- In approximately 10% of the cases the measured transfer functions exceed the calculated
ones. So the mathematical model is not giving the mean of the test results, but a rather
conservative result.

- In the case of high sea water levels, the results of the model tests for frequencies greater than
0.11 Hz give significantly greater transfer values than one would expect from the calculation
(no explanation has been found for this difference).

- The distribution of the wave load peaks follows the Rayleigh distribution quite well. (See

Figure II-111.)

- The reflection coefficient is a function of the sea water level, the level of the sea bottom and the
wave frequency. In general the reflection coefficient decreases for:

- increasing wave frequency

- increasing sea water level

- increasing water depth

(in case of frequencies lower than 0.15 Hz)

Summarizing it can be concluded, that the model tests support the mathematical model. Consequently
this model has been used in the probabilistic load determination.

II-101



II.15.4. PROBABILISTIC LOAD DETERMINATION

II.154.1. GENERAL

Starting from the joint p.d.f. of the boundary conditions, the joint p.d.f. of the static load (S) and the
significant wave load (W, ) - being the characteristic value of a wave load spectrum - can be found.

Secondly, the joint p.d.f. of the static load and the wave load peaks can be determined using the
distribution of the individual wave load peaks, given a wave load spectrum.

Finally, the probability of exceedance of the total load can be determined.
These three steps will be described in detail in section 4.2. In view of a clear and brief notation this is
done analytically. However, due to the absence of an analytical description of the wave spectra in

case of the Oosterschelde storm surge barrier the determination of the load distribution has been done
numerically. An impression of such a numerical transfer is given in section 4.3.

11.15.4.2. THE DESCRIPTION OF THE METHOD (see [6])

Since the basin level was found to be virtually statistically independent of the wind speed, the joint
probability density function of the boundary conditions can be written as:

P; 5w(Zbsw) = py(bl2,) P, (W[2,) P, (2,) (18)
Using the equations (1) and (2) the conditional p.d.f.s of the static load S and the significant wave
load W, can be determined from the conditional p.d.f. p, (b |z,) and p,(w |z,).

W12,) = Py (W, 2) 19
wlz ) = z
pﬂ m pzs s m aw ( )
oS
pg,_(b lZm) = P§(S|Zm)£ 20)
Using (19) and (20), equation (18) can be transferred in
W, as
,b, = W . S . . s. 22 2
pgm’b’y_y(zm w) P_Vgs( S|Zm) pS( |Zm) sz(zm) 3w 3b 21
so:
1
p (WS,S) = pz W(Zm,b,W)' po—— dZm
ol bt oW, as 22)

Secondly, it is now possible to transfer p,, (W,,S) in a joint p.d.f. of the static load and the wave
load peaks W, as follows:
(W,8) (W.,8) orr, dw
Py s\W>0) = ,{ Py s\ Vs PY 4 s (23)

s

in which Pr; represents a probability distribution, which depends on the limit state considered. In the
following, three kinds of limit state are discussed.

1. In cases, where all wave load peaks are in principle important, the Rayleigh distribution will be
used:

_z(zy
Pr, = PKW>W|W,) = e Ws (24)

In case of the storm surge barrier this distribution has been used for the increasing deformations of
the subsoil (see Kooman e.a. [12]).
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2. If, however a model is considered in which a one time exceedance of the load leads to a collapse,
than the probability distribution of the wave loads, which are exceeded at least once, has to be
used. Starting from N independent wave load peaks within the duration of a sea state, according to
the binomial distribution the probability, that none of the wave load peaks will exceed a level W,
equals

{1-Pr(p>w| Ws)}N

The probability Pr, that W is exceeded at least once, equals
Pr, = 1-{1-Pr(>w| W)Y 25)

In case of the storm surge barrier this probability distribution has been used in the structural design
of the pier, the beams and the gate.

3. Finally, we can also look at another model, where collapse only occurs, when a load level is
exceeded several times (in case of failure of an element of the barrier due to fatigue). Based on the
binomial distribution we find for the probability Pr; that a load peak exceeds a given level W at
least m times, out of N.

h=m-1
M h A
=1- — 2 . Pr(W>W|WH {1 -Pr(W>W]| W)} 26)
HE=0 h'(N-h)! r(#> l S) r(E> I S) (

To arrive at a probability distribution of a total load T for a specific limit state, based on the joint
p.d.f. of the wave load peaks and the static load, it has to be known in which ratio the wave load
and the static load contribute to this limit state.

In general this can be defined as follows:
I=pS+yW 27

Now the probability of exceedance of a specified total load Pr{T>T} can be determined per limit
state by integrating the bidimensional probability density function p,, (W.S) over the area for
which BS + yW > T.
Pr(T>T) = f Py s(W,S) dW dS
BS +yw>T

=/

S

28)

Figure 11-102
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I1.15.4.3. NUMERICAL TRANSFER (see [6])

Since a description of the complete numerical transfer will be too extensive, only one transfer will be
described, which is typical for the entire method. For this purpose the transfer from the joint p.d.f. of
the basin level and the sea water level to the p.d.f. of the static load is chosen.

From the p.d.f. of the sea water level the probability of occurrence

per class Az can be determined as zf:{l%ws. K,ﬁ,‘p
Pr{zmi—%z— <z <z, + éz—z—} = fAszm(zm)dzm /
™2
In the same way for the basin level can be calculated: i
bj+% . \
Pr{bj—%b— <b< bj+ézf’-|zm} - [ pblz,)db z
5, -_A2£ Figure I1-103

The joint probability of occurrence Pr{z,;,b;} of the basin level class and the sea water class z,; will
be:

Priz_,b} = Priz .—E <z <zmi+é£}*
mi®” j mi o m 2
*Pr{b,—_A_b_<_b_<b,+A_blZ }

) ;oo

For a given geometry the static load S;; for a sea water level z,; and basin level b; can be determined.

Per definition the probability of occurrence of this static load equals the joint probability of
occurrence:

PriS = Sij} + Pr {zmi,bj}

By dividing the complete static load range in classes S;; with class middle S, it is possible to group all
the static loads S;; (i=1,2...Tand j = 1,2,... J). :

By adding the probabilities of occurrence of the static loads S; which belong to a static load class S,

the probability of occurrence of S, can be found:
AS AS,  w ¢
Pr{s,—7 <S§< S,+7} =) ) Pris=s;}xy,
i=1 j-1

in which Y;; = 1 for those combinations ij, satisfying:

5-28 <5 <5088
2 2

Y;; = 0 for the other combinations i,j.

In this way a histogram of the static load is found.

II-104




11.15.5. THE RELIABILITY OF THE METHOD

I1.15.5.1. THE DESCRIPTION OF THE ANALYSES

The probabilistic load determination as described in the previous paragraph, is based on the statistical
descriptions of the hydraulic boundary conditions. After the transfer from boundary conditions into
loads and executing the statistical compilations, the probability distribution of the hydraulic load was
found. In this method the statistical descriptions of the hydraulic boundary conditions, the
assumptions with regard to the determination of wave spectra and some assumptions in the method
itself, have not been varied. Therefore the result of the method will be a probability distribution with
deterministic parameters. In reality the parameters of the probability distribution will have a
stochastic character.

A study has been executed concerning this stochastic character. This has been done by means of a so
called "mean value first order second moment method" [5].

This method is based on the following assumptions:

- The probability distribution Pr can be described as a function of the parameters x; determining this
distribution. These parameters are considered to be stochastic variables.
£r = .ﬂx1’x27"'7xj9"'7xn)

- The parameters x; have Gaussian distributions with means p;, and a standard deviations o,

- A linear apgroximation of f(X,,X,,...,X,) is obtained by expanding the relationship in a Taylor series
in a point x” and retaining the first two terms.
* * * u * a X '*
Pr = f(xl 3Xg 5.0 Xy ) +E (xi—xi ) j; 1 )
i=1

i

The function f(x,,X,,...,X,) is linearized at the mean m = (m,,m,,...,m,), so X’ = m.

These assumptions justify the following conclusions with regard to Pr:
1. Pr has a Gaussian distribution
2. The distribution properties are:

p, = f(m)

Cp, = \ji(ﬂ@cﬂ)z

1| Ax,

H

As an example in this paper, the reliability of the probability distribution of the total hydraulic load
normal to be barrier in case of 4 piers, namely R3, R19, H9 and H15 will be discussed.

The following parameters x; have been considered:
1. the frequency of exceedance curve of storm surge levels;
2. the probability distributions of basin levels;
3. transfer functions with regard to:
a.  static load above the sill;
b. static load in the sill;
¢.  wave load above the sill;
d. wave load in the sill.
4. the duration of a storm surge level;
5. wave spectrum;
6. the p.d.f. of wave spectra per storm surge level class.

For the parameters on which 5 and 6 have been based, reference is made to Vrijling and Bruinsma

[9].
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An overview of the values o, for the various piers is given in Table 1.
i

i

parameters R 19 R3 H15 H9
kN % kN % kN % kN %
1 4250 | 26.7 | 3420 | 24.0 | 3070 | 30.3 | 3620 | 35.2
2 2272 | 7.6 | 1480 4.5 | 1423 6.5 | 1779 8.5
3a,b 2146 | 6.8 | 1610 5.3 1498 7.2 | 1644 7.2
3c,d 2870 | 12.1 | 2616 | 14.0 | 1915 | 11.8 | 1879 9.5
4 229 - 203 - 149 - 150 -
5,6 5636 | 47.0 | 5045 | 52.2 | 3709 | 44.2 | 3842 | 39.6
8240 | 100.0 | 6987 | 100.0 | 5580 | 100.0 | 6106 | 100.0

Table 1.

11.15.5.2. RESULTS

The results of the analyses, being the mean p,, the standard deviation op, and the contribution of each
parameter to the standard deviation (in percentages), are given in Table 1.

Comparing the results of this study with the probability distribution with deterministic parameters
used in the design, it became clear that the deterministic distributions give approximately 7% higher
load values than the "mean" distribution curve of the stochastic approach. This has been caused by
the fact that the by "engineering judgement” chosen constants were rather pessimistic mainly for the
parameters:

- wave load above sill (see section 11.15.3.3);

- schematized relation H - T (see [9]);

- foreshore (see [9]).

T 4

e

~

T AN %
T e .
M 5 ?
{ -
a3 ,\0-4 —R c-z ’T)

Figure 11-104

Also it can be seen that the probability distribution curve with an excess frequency of 2.3% (p,,

+ 205,) exceeds the curve calculated with deterministic parameters only in a minor way. This
exceedance has been embodied in a partial safety coefficient y; (according to ISO standard 2394).
This coefficient is intended to allow possible adverse modification of the load effects, due to
incorrect design assumptions and constructional discrepancies.

II-106




11.15.6. THE APPLICATIONS IN THE DESIGN PROCESS

The probability distributions of the total hydraulic load have been applied in two ways, depending on
the design method used. To be able to discuss the applications a brief review of the existing design
methods is given first.

IL15.6.1. THE DESIGN METHOD

The element "load greater than strength" is one of the most fundamental criteria in a design process.
To ensure the fulfilment of this criterion a safety margin is introduced between the expected load and
the strength pursued.

In principle there are three philosophies regarding the way of introducing a safety margin in the
design:

1. the deterministic design method

2. the quasi-probabilistic method

3. the (semi-) probabilistic method

ad. 1.
In the case of a deterministic method, "safe" values are chosen for the basic variables causing the
load. Usually the mean values of the strength parameters are used to determine the strength. The
safety margin is guaranteed by a safety-coefficient based on engineering experience.

ad. 2.
The basis of the quasi probabilistic design method is that the parameters used in the structural
design are not specified constants, but stochastic variables, whose exact magnitudes are not known
with certainty in the design state and in case of the hydraulic parameters, not even after
construction. Because the use of these stochastic elements is not practical for the normal design
activities due to the lack of statistical information and of computer programs for mass production,
the concept "characteristic value" has been introduced in the structural design. The safety margin
will be guaranteed by partial safety coefficients.

ad. 3.
The most advanced design method is the (semi-) probabilistic method. In this method all basic
variables are specified by probability density functions. With the help of theoretical models the
p.d.f.'s of the strength and of the load can be derived. These two p.d.f.'s form the basis in
determining the failure probability of the mechanism. By checking this failure probability against
the allowable failure probability of the total system, one can determine whether or not the safety is
sufficient.

IL15.6.2. THE APPLICATION OF THE LOAD DISTRIBUTION

In case of the storm surge barrier two design methods have been used, the quasi-probabilistic and the
semi probabilistic one. In both of the methods the probability distribution of the hydraulic loads has
been used.

11.15.6.2.1. QUASI- PROBABILISTIC DESIGN METHOD

In this method, which is the most practical one, a load with a certain excess frequency is chosen from
the load distribution.

In the case of the storm surge barrier the design criterion is that the barrier has to withstand - with a
certain safety margin - a potential threat with an excess frequency of 2.5 * 10*/year. Considering the
task of the barrier it will be obvious that this potential threat is based on the natural boundary
conditions, mairily waves and water level differences, which manifest themselves in the hydraulic
load. For that reason the design loading has been defined as the total hydraulic load with an excess
frequency of 2.5 * 10 times/year.
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This hydraulic load derived from the probability distribution has been used as an extreme load, being
a characteristic load multiplied by a safety coefficient of overloading. This extreme load is used in
combination with a characteristic strength and the partial safety coefficients needed. So, in terms of
design methods, a quasi-probabilistic design method has been applied.

11.15.6.2.2. SEMI- PROBABILISTIC DESIGN METHOD

Simultaneously with the "everyday" design activities a risk analysis of the storm surge barrier has
been executed. A first step in this risk analyses was to make an overview of all possible causes and
circumstances which may lead to a mal-functioning of the storm surge barrier and from that to the
inundation of several parts of SW- Netherlands.

Subsequently, the causal connection between the elements have been determined, which has been
done with the aid of so called fault trees (and event trees). An ever returning element in the fault tree
is the state "Load greater than strength". This plays a very important role in every part of the barrier.
A state in which the external load at the structure equals the loading capacity of the structure is called
a limit state. Consequently, a structure has a number of limit states equal to the number of failure
mechanisms.

A last step in the risk analyses is to determine as exactly as possible the probabilities of all the
elements in a fault tree, in order to determine the probability of mal-functioning of the barrier. This
overall mal-functioning probability has to fulfil an acceptable level.

To be able to determine the probability of failure of a limit state of a structural part of the barrier a
semi-probabilistic design method has been applied. In this method it is possible to use the full
statistical description of the hydraulic load in combination with strength parameters as stochastic
variables.

For those cases when:
the transfer functions from the hydraulic parameters to the hydraulic load are available in an
analytical form
and:
the theoretical models are available to determine the loading capacity of the structure from the
strength parameters,
the semi-probabilistic design method can be done fully analytically. A so called "advanced first order
second moment method" can be used in that case (see 5). In the design of the storm surge barrier this
has been applied to:
- the main cross section of the floor slab;
- the overall stability of the piers;
- the main girders of the gate.
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IL.15.7. CONCLUSIONS

- A probabilistic load determination as discussed in this paper allows a more realistic hydraulic
design load, to be used in the prevailing design methods, than the conventional deterministic
methods. It avoids a too pessimistic load determination. In the case of the most heavy loaded pier
this has resulted in the figures as mentioned in the table below.

deterministic approach probabilistic approach

storm surge level || NAP +5.50 m 3 im 2%
Pr(g > Zm) = e 0.696
m

wave spectrum height = 10 m; period =12 s P%(Sm. |z,)
basin level NAP - 1.70 m Py(b|z,)
total hor. force T=173 MN Pr(T >100 MN) = 2.5+107*

- A reliability analysis of the probabilistic method shows that a probability distribution curve with
an excess frequency of 2.3% (p;, + 2 op,) exceeds the curve derived from constant p.d.f.'s of the
parameters only in a minor way.

- The applications of a semi-probabilistic design method provides a quantitative insight into the
influence of the stochastic uncertainty of the basic parameters. It thus forms an important tool in
assigning priorities in study or quality control to specific parameters of theoretical models. It
contributes moreover to an overall risk analyses of the system by providing the probability of
failure of each element of the system.
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LIST OF SYMBOLS
o; amplitude of a regular wave
B; width of a structure element
B characteristic strength
b basin level Oosterschelde
d water depth (till still water line)
D() directional spectrum
f wave frequency
G() function (static load)
H,.. wave height in an anti node of a standing wave
H.. wave height in a node of standing wave
H, significant wave height
h binomial coefficient
k wave number
1 dimension of the structure
m number of load exceedances
m, area of wave load spectrum
m, second moment of wave load spectrum
m, n-th moment of wave load spectrum
N number of wave loads
o) transfer function
Pr probability of exceedance
probability density
p(x,z,t) wave pressure :
r() correction factor (oblique wave attack)
S static load
S spectral density of incoming waves
S.(D spectral density of wave loads
t time
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peak period of waves

mean wave load period

total load

wind velocity during 1 hour
wave load

significant wave load
coordinate

basic variable hydraulic load
x; in design point

coordinate

accounting factor

coordinate

maximum storm surge level
reflection coefficient
contribution factor (static load)
contribution factor (wave load)
phase shift

approach angle of waves
mean approach angle of waves
mean of Pr (T >T)

mean of x;

standard deviation of P(T > T)
standard deviation of x;
angular frequency

specific density of water
elevation
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APPENDIX 1I-1 COMPARISON OF GUMBEL DISTRIBUTION WITH WEIBULL DISTRIBUTION

Wave data Karwar JUNE2JULY WAVE DATA. (291 observations)

ﬂ Hs Tz Tp Hs Tz Tp Hs Tz Tp Hs Tz Tp | Hs Tz Tp

I | |
1.94 7.54 10.5 | 2.49 7.54 11.1 } 2.08 7.84 11.1 |} 1.76 7.44 11.1 | 2.37 6.0 8.3
1.95 7.52 10.5 | 2.87 7.54 10.5 | 2.05 7.2 1.1 f 1.72 7.12 10.5 } 2.21 6.08 8.6
1.9 7.35 15.3 | 3.18 7.53 12.5 | 2.1 7.31 11.1 | 1.82 7.34 10.5 I 2.23 6.47 10.0
1.81 7.32 10.5 | 2.8 7.31 11.7 { 2.25 7.78 11.1 | 1.73 6.98 10.5 | 2.27 6.87 10.5
1.95 7.39 10.5 | 2.91 7.69 11.7 | 2.24 6.2 11.7 | 1.69 6.97 11.1 | 2.29 6.31 10.5
1.85 6.97 10.5 | 2.76 7.36 11.7 | 2.44 .37 11.7 | 1.69 6.97 10.5 | 2.27 6.29 10.5
1.8 7.03 10.5 { 2.78 7.74 12.5 | 2.56 6.28 11.7 | 1.6% 7.02 10.5 | 2.4 6.07 11.1
1.8 7.11 10.5 | 2.4 7.6 12.5 | 2.32 6.42 11.7 | 1.84 7.46 10.5 | 2.58 5.98 11.1
1.84 7.67 10.5 | 2.56 7.65 11.7 | 2.31 7.03 11.7 | 1.76 6.76 10.5 | 2.52 6.39 11.1
1.68 7.3 10.5 | 2.66 7.49 11.1 | 2.2 6.57 11.7 | 1.73 7.01 11.1 | 2.5 6.46 10.5
1.62 7.38 10.5 | 2.63 7.58 12.5 | 2.43 7.25 11.7 | 1.76 7.13 11.1 | 2.37 6.3 11.1
1.65 7.38 11.1 | 2.66 7.68 11.7 | 2.24 7.14 11.1 | 1.91 6.59 11.7 | 2.2% 6.35 11.1
1.64 6.76 11.1 | 2.79 7.5 11.7 | 2.22 €.89 11.1 | 1.77 6.73 11.1 | 2.47 6.07 11.1
1.69 7.11 11.1 | 2.59 7.02 12.5 | 2.57 6.44 11.7 | 1.81 7.22 11.1 I 2.7 6.36 10.5
1.65 6.94 10.5 | 2.8 7.14 11.7 { 2.62 .55 10.5 | 1.77 7.71 11.1 | 2.76 7.42 13.3
1.63 6.55 11.1 | 2.85 6.%92 11.7 | 2.43 7.3 11.7 | 1.72 7.54 11.1 | 2.85 7.42 13.3
1.66 6.35 10.0 | 2.5 6.88 11.7 | 2.51 7.42 11.7 | 1.71 7.4 11.1 I 2.59 7.4 12.5
1.73 6.76 10.5 | 2.79 7.5 11.7 | 2.57 7.8 1.7 | 1.85 7.13 11.1 | 2.72 7.52 12.5
1.78 6.4 0.5 | 2.59 7.02 12.5 | 2.38 7.53 12.5 | 2.02 7.39%9 11.1 | 2.71 7.64 12.5
1.63 6.3 9.5 | 2.8 7.14 11.7 | 2.45 7.74 11.7 | 1.85 7.25 11.1 | 2.37 7.45 11.1
1.55 7.0 9.5 | 2.85 6.92 11.7 | 2.24 7.6 12.5 | 1.72 7.24 11.7 | 2.49 7.66 12.5
1.63 7.34 11.1 | 2.5 6.88 11.7 | 2.15 7.38 11.7 | 1.86 7.52 11.7 | 2.52 7.71 12.5
1.2 7.21 11.1 | 2.2 7.57 1i.1 | 2.27 7.33 11.7 | 1.85 7.8 11.7 | 2.31 7.64 12.5
1.72 6.65 11.1 | 2.56 7.54 11.7 | 2.06 7.28 12.5 | 1.81 7.99 11.1 | 2.32 7.57 12.5
1.71 7.55 11.7 | 2.19 7.86 11.7 | 2.06 7.5 10.5 | 1.86 6.99 11.7 i 2.38 7.69 12.5
1.72 7.4 11.7 | 2.13 7.22 11.1 } 2.09 .91 11.1 | 1.85 6.64 11.1 | 2.38 7.62 12.5
1.82 7.65 11.7 | 2.25 7.71 11.7 | 2.27 7.61 12.5 | 1.92 6.82 11.1 | 2.4 7.78 12.5
1.67 7.48 10.5 | 2.24 7.05 11i.7 | 2.34 7.77 11.7 | 1.9 6.36 11.1 | 2.44 7.39 11.7
1.73 7.33 10.5 | 2.2¢ 7.16 11.7 | 2.25 7.61 11.7 | 1.98 6.55 11.1 | 2.18 6.93 12.5
1.7 6.75 11.1 | 2.23 7.18 11.7 | 2.03 7.54 11.1 | 2.05 .57 11.7 | 2.44 7.39 12.5
1.71 6.82 10.5 | 2.1z 7.19 1i.1 | 1.99 7.58 11.1 | 2.27 7.32 11.1 | 2.43 7.62 13.3
1.69 6.81 11.1 | 2.1 7.58 11.1 | 1.84 7.68 11.1 | 2.45 6.39 11.1 | 2.36 7.9 12.5
1.7 6.94 10.0 | 2.02 7.26 11.1 | 1.66 6.99 11.1 | 2.3 6.87 11.7 | 2.41 7.71 12.5
1.74 6.12 11,1 | 2.07 7.65 11.1 | 1.68 7.52 11.1 | 2.13 6.63 10.5 [ 2.5 7.37 12.5
1.89 6.54 10¢.5 | 2.02 7.43 11.1 | 1.77 7.22 11.1 | 1.95 6.45 11.1 | 2.21 7.69 12.5
1.83 6.28 10.0 | 2.05 7.53 11.1 | 1.78 6.32 10.5 | 2.04 6.76 11.1 | 2.25 7.46 12.5
1.93 6.34 10.5 | 1.%94 7.21 11.1 | 1.78 6.6 11.7 | 1.89 6.67 11.1 | 2.54 7.45 11.1
2.12 6.61 18.1 | 1.94 7,21 11.1 '} 1.92 7.15 11.1 | 1.87 6.64 11.1 | 2.55 7.68 11.1
2.18 6.06 16.6 | 2.27 7.5 11.1 | 1.97 6.68 11.1 | 1.83 6.28 11.1 | 2.53 7.41 11.1
2.15 6.36 10.5 |} 2.06 7.53 1i.1 | 1.83 6.73 11.1 | 2.15 5.44 10.0 | 2.51 6.96 12.5
2.24 6.45 10.5 | 2.09 7.32 1i.1 | 2.06 7.16 11.1 | 2.2 5.78 11.1 | 2.83 7.66 11.7
2.23 6.56 10.5 | 2.0 7.32 10.5 | 1.98 7.45 11.7 | 2.08 6.44 11.7 | 2.67 7.89 10.5
2.19 6.4 9.0 | 1.74 6.93 10.5 | 1.76 7.16 11.7 | 1.94 6.5 9.0 | 2.7 8.07 12.5
2.12 .88 10.0 | 1.83 6.97 10.5 | 1.76 7.4 11.1 | 2.18 6.66 11.1 ! 2.74 7.88 12.5
2.24 6.86 10.5 | 1.92 6.52 10.5 | 1.76 7.44 11.1 | 2.17 6.05 11.1 | 2.66 8.14 11.7
2.24 6.92 10.5 | 1.92 7,07 11.1 | 2.06 7.16 11.1 | 2.31 5.77 11.7 | 2.37 8.34 11.7
2.16 7.04 10.5 | 1.92 7.14 10.5 | 1.98 7.45 11.7 | 2.27 6.37 8.6 | 2.46 8.33 11.1
2.4 7.66 10.5 | 2.1&8 7.4 1.2 ] 1.76 7.16 11.7 | 2.18 6.12 9.0 | 2.46 8.33 11.1
2.46 6.65 10.5 | 2.08 7.62 | 1.76 7.4 1.1 | 2.35 5.94 10.5 | 2.46 8.33 11.1
2.29 7.74 11.1 | 1.71 6.46 | 1.75 5.81 10.5 | 1.86 6.4 10.0 | 1.97 6.48 10.0
2.48 7.81 12.5 | 1.68 6.14 | 1.67 5.67 10.0 | 1.74 6.13 10.5 | 1.75 6.32 10.0
2.33 7.67 11.7 | 1.65 6.17 | 1.75 6.19 10.0 | 1.74 6.21 10.5 | 1.7 6.08 11.1
2.17 8.17 11.7 | 1.79 6.05 | 1.71 5.61 10.5 | 1.71 6.24 9.0 | 1.76 6.34 10.5
1.81 7.32 11.7 | 1.77 5.93 | 1.74 5.85 8.6 | 1.83 6.38 10.0 | 1.79 6.14 10.0
2,07 7.87 11.7 | 1.82 5.94 | 1.74 5.94 9.0 | 1.81 6.25 9.5 | 1.84 6.07 10.5
1.81 7.32 11.7 | 1.68 5.9 ] 1.71 5.66 10.0 | 1.8 5.89 10.0 ] 1.84 6.34 9.5
1.79 7.17 17.7 | 1.63 5.86 | 1.7 5.83 10.5 | 1.91 6.26 10.0 | 1.98 6.22 10.0
1.78 6.99 10.0 | 1.83 5.84 ] 1.78 6.22 10.0 | 1.81 5.84 10.0 | 2.02 6.36 10.0
1.82 6.86 11.7 |
Z2.16 7.4 11.% = Start of July
14

The wave heights, H_, plotted against Vol (see §11.13.3.1.), are given in Figure II-38. The approximation

+

with a Weibull distribution given there:

H-1,5\L366
FHS(H) . l_e—(o.m’s)

was determined using the Method of the Linear Least Squares (see § 11.13.3.2.).
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For the above mentioned "Weibull fit" this is: s = 0.048.

A different measure often used for the spread aroundthe "fit" is the correlation coefficient, r. Here: » = 0.959

A measure for the spread around the "fit": 5 =

The fit of the Gumbel distribution: Fhg(H)
_H-1941 —=
F H, (H) = exp( —e 028 ) ‘C“ eI
given in § I1.3. (top of page II - 11) is also GBZ ]
calculated using the method of the Linear Least sen
Squares. A figure, analogue to II-38 is presented om0 L
opposite. )
For the spread around the fit for the Gumbel e
distribution s = 0.045 isfound. The correlation cor o S
coefficient for this Gumbel distribution is: Significant wave height H
r = 0.952. Gumbs! distribution

Figure I1-112
Both approaches are displayed in Figure II-113:

OO

FrgH) |

0.00 a 1 | ! i 1 i : i L
1440 L.é1 L.8Z  2.03 2.Z24 2,45 Q.66 2,87 3.02 3.28 3.B0

Significant wave height H

Gumbel and Weibull distribution

Figure I1-113

Based on this figure, neither of the distributions can be selected "at a glance". The distributions,"fitted"
on the data, the values of which lie between 1.55 m (lowest measured /) and 3.18 m (greatest measured

H) (practically) coincide.
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If one wishes to extrapolate to wave heights with small probabilities of occurrence, it is of great importance
which distribution is selected. This is clearly reflected when both distributions are plotted on "Gumbel

paper":

Gumbel paper
> 1.00 2.00 3.00 4.00 5.00
£ 0999 y,
g / 8 /
3 o [P 0.998
O 0997 /& S8
Q /@0 @
. 7 0.995
7/
0.990
0.980
0.970
0.950 0.960
0.900
0.800
0.700
o600} — | & ]
0.500
0.400
0.300
0.200
oo —— 41— 0.100
0.005 G B ——————————————— i T — 0.010
0.001 2 0-001
1) 4.00 5.00
Significant wave height

c:\F_30\SOM&FILE\XKARWARWUN2JULY.DIS

Figure I1-114

The approximations are still a good fit for the point "mass", but for the extrapolations beyond the observations
area, the distributions vary widely.

A probability of 0.999that H_ stays smaller thana certain H (i.e.: P{ﬂ < H} = 0.999) gives, by approximation

with a Gumbel distribution:

_H-1941
0.999 = exp| -e 2%
a wave height of H = 3.90.

Approximation by a Weibull distribution:

0.999 = 1 —e'(z.;;f)l's“

gives a wave height H = 3.40.

With an equal probability of exceedance, (P {H,>H} = 10 ), H,is 0.5m higher extrapolated according

to the Gumbel distribution, than would have been the case if it had been extrapolated according to the
Weibull distribution.
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APPENDIX II-2 ORDINATES WITH DATA SETS OF OBSERVATIONS

To determine the ordinates of the "plot positions" of the observations, arranged in order of greatness, the
following methodology can be used:

The intercepts, sorted in order of greatness, ,x;, of N observations which constitute a random sample

of a certain distribution, each have a probability density function. For a uniform distribution, the probability
density functions for N=10, f o (&), of \x;, yX,..» yX;o are shown in Figure II-115 (bottom figure,

plotted downward).
D

¢ F
A

(€)

NYi
m
—

=
>

b=

f

i
i
1
i
H
!

Figure II-115

The reasoning which leads to the probability density function of the i observation in a random sample

consisting of N observations, sorted from the smallest to the largest value, is an analogy of the reasoning

behind the derivation of the binomial distribution:

1. Assume that the p.d.f. of the i observation in a random sample, consisting of N observations placed
in order of greatness, equals f X, (&).

2. i-1 observations have smaller values and N -i observations have values which are greater than the
N!

———— different possible
(i-1)! (N-i)!

i™ observation. In a random sample of N observations there are

results.
3. The probability of observations smaller than or at most equal to the i observation is:

(1°<& N 2°<E N ... N (i-1)°<&,). This equals: [Fx(é)]i”.(N.B.the observations are presumed

INDEPENDENT, because placing the observations in order of greatness is not necessary to establish
the NUMBER (the probability of) observations smaller than or at least equal to the i observation.)
4. The probability of observations greater than the i occurring observation is:

((i+1)°>& N (i+2)*>E N ... N N°>E). This equals: [1 -FX(é;)]N-".
5. The probability of an observation occurring in the interval §, -A§ < &, < & +A¢ is, according to the
definition of the p.d.f.,: £, (§).

6. The probability density function of the i observation in a random sample of N observations, arranged
in order from smallest to greatest is thus:

: N
S (9 (i-1)1-(N-i)!

F, (&) {1-F, O} £,(®)
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The vertical axis in Figure II-115 is used for the (cumulative) (probability) distribution function, F, (&).
This F_ (&) can be interpreted as a new variable, {. For f (&) we can write: d(Fx (é)). The last cited

equation then turns into:

Mgt {1

KO = o

Here, Y is the ordinate (y- value) of the plot position of the i® draw. The expected value is:

1
_ _ N! (rari-1.01 _p\N-i g7 _
BT} - by = Gy 6800

i
N+1

So, is this also the probability of non-exceedance of the expected value of the i draw? The answer is:
generally, no. Let us first consider the exceptional case in which it is.
The f - (&) are plotted in the lower part of Figure II-115 for a uniform distribution, for which:

- N [&=a) 7 Ema) L
TS (i—l)!'(N-i)!(b—a) (1 b—a) b-a

The vertical axis of Figure II-115 shows the (cumulative) (probability) distribution function. This can be
used to transform the probability density, f 5 (&), into the probability density of the frequency of non-exceedance

of the i draw, i.e. to transform fo_ (&) into fNy- (n), as follows:
dF_N_yL(n) i dFN_xi(&)
dn dg

f o, - 2 - [fﬁ(ﬁ)lfgf

dn L=\v(n)

of.
d
ORI

For a uniform distribution:

Fé,_(&) =1 = E:Z Jor a<&<b and 0 elswhere.
Leading to:
§=n(b-a)+a
45 _ b-a
dn
Substituted inf o, (m) this gives:
o) = N! In@-a)+a-al ' 1_n(b—a)+a-a N (b-a) =
Rk (i-D)!-(N-D)! b-a b-a) b-a
N! i-1 N-i
= . (1- .
(-1 (N-i)! )

These probability density functions are plotted in Figure II-115 on the left side.

The expected value (the average), p, , of the random variable « is found from:

o

M, = fV'fl(V)dv

—o0
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For the expected value of the i® realisation of the random variable x in a random sample of N realisations
from a distribution which is uniform in [a,b) this gives:

b . .
i} _ N! e Ema) (a1, i(B-a)
E{_N_x_’} u_l"_f (G- (N-)! fé ( b—a) (1 b~a) b—aa”i N+1

a

Analogously, for the expected value of the FREQUENCY of the i" realisation of the random variable x in
a random sample of N realisations from a distribution which is uniform in [a,b):

1
N! i-1 N-i i
E[ )= S it (1-n)¥idn =
{—”y’} Mo " GoD-i) {"" (T=m)™dn = 5

For auniform distribution, f 5 (&) turns into f o, (m) viaa linear transformation, because the (cumulative)
(probability) distribution function is linear in that case. Only then: the transformed expected value of f o &),

E { N } = uﬁ, is the expected value of the frequency £ { Vi } =p Th This is checked for the Gumbel
distribution. (see Figure II-116.)

4 Fl(f)
—— = 10
B I
K ST,
I\‘-'{‘/ %4 L
PV D Y
L _— Ad -
T JAPCIRN > 5 < \
ﬂ-;x . v
(2] --)-—a;:=3=(=.-=:.=.'.=:=:=.-=' Y
—~ o g Y
Ao - = >0t iy
N T e 0 y
|4
~ !
2 MAAA A A 1
Y~ o
/f
0
6 _
L 78 i
i= % 6
f o .(§)
N%i

Figure 1I-116

The figure shows, that the expected value of the frequency of the i® realisation does not equal the transformed
expected value of the i realisation. The figure is based on a random sample, consisting of N= 10 realisations.
The probability density functions f o (&) and f o (n) for i =3 are hatched. The transformations of the

expected values are indicated by dash-dot-lines.
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The expected value of ,x; fora Gumbel distribution can’t always be calculated analytically. The expected
value of ,y, is derived from the fact that ,;y, islocated between 0 and 1 and that the expected value has

a uniform distribution there. In that case:
i
N+1

E{lwn} = by, - (i—l)!]\-”N—i)!.

1
fn'n"‘“(l -V dn =
0

automatically follows. See for yourself, that the probability density function of the i® realisation from a
Gumbel distribution turns into a probability density function of the i® realisation from a uniform distribution
in [0,1).

Analogously, the variance of ,y, is found:

1
- N! . i+1, _ N-i, +
VAR{ \»,} TR {F,L(é) {1-F (O}'"d F, (&)
1 2
_ N! , i1 N-i, . gy il
(i-1)!1-(N-i)! {Fi(é) {1 Fi(é)} 4F, @) (N+1):(N+2) (N+1)?

In order to calculate the integrals used in this appendix, a basic understanding of Beta functions is useful.
(See Abramowitz ') page 258):

The Beta function, B(z,w), is defined as follows:
1
2- w- - I'(z) T(w)
B(zw) = [t?7V-(1-t)r 1 dt = =22 17/
) = [1201 -0 o

For whole values of the argument of the Gamma function:
I'(n) = (n-1)!

1
For the integral:fFi(é’;) i-{l —Fi(é)}N"'-d Fi(é) this means:
0

TG+1)T(N-i+1) _ il-(N-i)!

1
fFi(é)i'{l —Fi(i)}N""d F (&) = B(i+1,N-i+1) =
0

T(N+2) (N+1)!
h :
o E[F (&) - N! Ci(N-D)
{N—"' } (i-D1-(N-i)!  (N+1)!  N+1

1) Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun (eds.), Dover Publications, Inc., New
York
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APPENDIX1I-3 COMPARISON OF LINEAR REGRESSION OD OF LEASTILINEAR SQUARES
WITH THE METHOD OF THE MOMENTS

An exponential distribution is used as an example:
x4
Fy(x) = 1-e B

Transformation leads to the linear equation:

1 A

In(1-F, (x)) = ~—x+=

( x ( )) B B
The observations, x, are arranged from smallest to greatest. Assume there are N observations. Intercepts
are found by assigning a number of ranking, 7 , to the observations. To every observation placed in order,
x_,an ordinate is added accordingto: y, = In| 1- ! =lIn N+l
! ! N+1 N+1
(x,,y,) and using the method of the least linear squares, the parameters A and B are estimated by:

| 1-—L S N
N+1 B ' B

N+1-i

N+1

) .On grounds of the coordinates

i <1;0<N+1—i
N+1 N+1

As0Q <

< 1 too; so ln( ) < 0. The parameter B thus has a positive

value.

The gradient —% can be estimated by:

2 2
s s s
1g0. = 1 ____cov(;c,y) or B=-—2* = -1 = -—2 (see pageII - 18)
B . cov(x,y) Ty y5yS, "ey'S)

The parameter can also be estimated as the second moment of the observations x:
B, = s, (seepagell-78)

m

Still: B, < B.
PROOF: B, < B
s
or: s, < -—— or 1< - !
Txy'Sy Txy™Sy

N+1-i 1 A . . . L.
y =lIn = -—-x,+=,s0y isadecreasing function of x , from whichisknownthat: -1 < r_ < 0

N+1 B B i
s, <1 thus remains to be proven.

. 1 N . .. . 1 N
The p.d.f.of y = In z with z=U(z; ,——). (z uniformly distributed in ,
P 7 ( N+1 N+1)( Y [N+1 N+1))

Assume = g, then =1-e.IfN-> othene | 0.

N+1 N+1

1-¢

The expected value of y is: E(y) = lim f In z dzy | -1 (approaches from the top to -1).

el0

1-e

The variance is lim f (In z)? dzp-(E(y))* 1 +1 (approaches from below to +1).
el0

This leads tosy < 1 for finite N.
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II. PROBABILISTIC CALCULATIONS
IIL.1. COMPARISON OF PROBABILISTIC CALCULATIONS AT LEVELS 11 AND Il

In the table below some aspects of different types of calculations are compared:

Full integration l | I\(/:I;)Irﬁ)e III Level I
Many stochastic variables - 0 0
Accuracy 0 +/- 0
Calculation time :: (Number of integration steps) Member of varisbles : 1/P; moderate
Discontinuous reliability function 0 0 -
Discontinuous derivative £(x) 0 0 -

/| Insight in_o? +- +/- 0
Correlation within reliability function 0 0 -0
More than one reliability function 0 0 -
Reliability t:unc.:tion cons?sting of more 0 0 )
than one reliability function

- = awkward to treat with this method :: = proportional to

P, = failure probability 0 = method is (practically) insensitive for this aspect

+ =this method is quite adequate for this purpose

I1.2. THE WEIGHTED SENSITIVITY ANALYSIS AT LEVEL III

The problem space (X- space) is divided in two parts by the failure function (failure boundary). The problem

space consists of}
«  afailure domain, in whichZ < 0 and

» asafe domain, in which Z > 0.
(See lecture notes CTOW4130 / CUR- manual number 190 ')

The Design Point (DP), i.e. the pointX,,X,, ..., X,, satisfying the failure function Z(X;',X;,...Xy) = 0
and for which the probability density of the reliability function, Z, is maximum, is a by-product in alevel II-
calculation. In the DP the contributions to the variance of the reliability function, af, equal the squares
of the coefficients of correlation between X, en Z, X, taken as the values in the DP. Thea, are called

sensitivity factors ?).
The fraction of the variance of Z that originates from a stochastic basic variable X, equals:

az Y
) _| 08X, =
a'i = _—
Gy
D) CUR- publication 190, Probabilities in Civil Engineering, part 1: probabilistic design in theory (in

Dutch: "Kansen in de Civiele Techniek, deel 1: probabilistisch ontwerpen in theorie"), March 1997,
CUR Foundation, Gouda, The Netherlands, ISBN 90 - 376 - 0102 - 2.

2) Madsen, H.O., S. Krenk, N.C. Lind, Methods of Structural Safety, Prentice-Hall, Inc.,Englewood Cliffs, 1986,
ISBN O - 13 -579475-17.
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o i , . 0z  covX,7)
The derivative of the reliability function Z ) can be written as: v =—

o
cov(X.,Z =+
From this: E'GX _ v X2
oX, = Gf(_,-_
This substituted in the expression for af en taking the square root leads to:
con(X,,Z)
ai = pX ,Z T ——
= — GX _' GZ

i

Contributions to the variance in level IlI- calculations can be established by calculating cov(X,,Z), 0)2(_
, cov? X.,Z) -
% = 2 2 . This procedure provides approximations of the aiz that are

2
andc; and from those: JE
- X Tz

(roughly) comparable with those found in a mean value approach.

A calculation of the sensitivity factors is possible once the DP is known. The DP can be approximated
by Monte Carlo- simulation as will be shown in section I11.3.2.

I1.3. TRANSFORMATION TO STANDARD- NORMALLY DISTRIBUTED VARIABLES

Ifthe distribution of a variable, X, ,is givenby ', (X.) then X, can be transformed to a standard- normally
distributed variable, U, ,by U, = o1 (F ¥ (Xi)), provided the probability density function of X, is

differentiable. NB @ ~(-) represents the standard normal distribution. The space to which the X- space
is transformed by U, = @' (F . (Xi)> is called the U-space.

In the DP the sensitivity factors can be calculated and so it is possible to get an impression of the influence
ofthe variables on the probability of failure. The Hasofer Lind- reliability index, B, is defined as the distance
from the origin to the (transformed) DP in the U-space . The relationship between the values of the standard
normally distributed variables, U, , in the DP and the reliability index, B, is given by:

U’ = aB
The values of the basic variables, X, can be calculated from the standard- normally distributed variables,
U,, by the transformation: X = FX:1 ((I)( UI))

I11.3.1 THE DESIGN POINT IN AN INTEGRATION PROCEDURE

The DP in a level Ill calculation using integration can be found by registering the probability density of
allpointsinwhich Z < 0provided the variables are independent. In such a point, (&1 28gsees F,N) the probability
density is:

N
£ (6)-dt, = T1 £ (&)dE,

= i-1 =+
inwhich f, (&) d&, is the probability density function of the basic variable X, for the value &, .It is simple

to keep count of this product while integrating over the failure domain. The integration is commonly
performed on a grid. The grid point at which the failure function is (approximately) zero andf, ({,)-d¢,
is maximum is (an approximation of) the DP. The approximation is better as the integration grid is finer.

1 cov(x.y)
) Compare: E = ——(—T in section I1.11.3, now stated for a function in more than two stochastic variables.
var{ x
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111.3.2. THE DESIGN POINT IN MONTE CARLO SIMULATIONS

In a simple Monte Carlo- simulation ) the values of the variables, X, are generated from their distributions

and substituted in the reliability function, Z. The resultingZ is called a “failure” if it is smaller than or
equal to zero. An estimate of the probability of failure is calculated by dividing the number of failures
by the total number of simulations, the approximation being better as the number of simulations is increased.
If combinations of values of X, for whichZ < 0 are close together, it is likely that in that neighbourhood

the probability density of the combinations is high. If symmetric probability densities like normal probability
densities are considered, such clusters will be found near to the expected values of the variables, see Figure
1121, in which the normal joint probability density of two variables is sketched. The maximum probability
density in Figure II-21 isat (x = p,, y = p).

Inthe following it is assumed that the reliability function is described by independent normally distributed
variables. If the variables are not normally distributed and/or they are not independent a transformation
has to be performed first.

As an example the “classical problem” of the weight hanging from a circle-cylindrical steel bar ?) can

be taken. The reliability function is: Z=o-2F
n-d?
in which o = tensile strength of the bar, mean p, = 290 N/mm?, standard deviation o, = 25 N/mm?
F = weight deterministic, 100000 N
d = diameter of the bar mean p; = 30 mm, standard deviation ;= 3 mm

The reliability function can be expressed in standard- normal variables, U,, as follows:
4-F

“'(Pd+°d'U2)2 20

Z = pstoy U

The failure boundary, a characteristic point in the failure &-
domain derived from the simulations (indicated as C)and s |-
the DP are sketched in Figure III-1. The axes have been
scaled in such a way that the standard deviation of ¢ on
the vertical axis is equal in length as the standard deviation
of d on the de horizontal axis. By this the contours of equal
reliability are transformed to circles and the connecting s}
line between the DP and the (scaled) centre of the joint

12+

probability density, Ha , L ,is perpendicular to the

Gd Gc
(transformed) failure function. The origin of the axes is 0,
K p’c
translated to | -2 , —2 .
Tansiate o, 60) Figure I1I-1

By scaling and translation the failure function is expressed in standard normally distributed variables U,
and U,. The distance from the origin to the failure function is the Hasofer Lind- reliability index, .

D) In literature several Monte Carlo- procedures are mentioned. (See among others CUR- publication 190.)
Here, i. e. in these lecture notes, the most simple method of calculation is used: the straight forward
method of simulation.

2) Rationalisation of safety and serviceability factors in structural codes, Hallam, M.G., N.I. Heaf and I.R. Wooton,
CIRIA Report 63, London, 1977
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Travelling from the point C in the failure domain in the direction of the centre of the joint probability

density ( the point Ha s i in the transformed space orthe point (0, 0 ) in the U- space) the probability

Gd GO’
density increases. If the failure domain is not convex ') it is possible that the calculated point C is not
in the failure domain. This can complicate the calculation of the DP. These complications will not be

dealt with here.

If the reliability function is not sharply curved in the neighbourhood of the DP in the U- space, a good
approximation of the DP is given by the intersection of the connection of the point C in Figure I1I-1 and
the mean of the joint probability density (the origin in the U-space) with the failure boundary. Once the
(approximation of the) DP is established, the derivatives of the reliability function can be calculated and
from them the sensitivity factors, o,

A straight line that contains the origin in the U- space can be written in vector notation as:
U, = b,

H )\,* N
U, = b,

if the parameter A is properly chosen.

The vector on the left hand side with elements U, through U, can be seen as the coordinate of the DP in
U- space. The elements b, through b, of the vector on the right hand side can be determined in more than
one way. For example the following methods can be applied:

. the method “centre of gravity”,
. the method “angles”,
. the method “nearest to the mean”

These methods will be explained in the following sections.

Starting point for all methods are simulations 2
for which Z < 0. These simulations are called

realisations. The number of simulations hasto G5
be large enough, so that at least one realisation 16 -
occurs.

I11.3.2.1. METHOD “CENTRE OF GRAVITY”

The coordinate of the centre of gravity (CG in i
Figure I1I-2) of the realisations is connected with
the origin in the U-space. The connecting line
intersects the failure boundary at DP’, being an
approximation of the “real” DP.

Figure I1I-2

1) A domain is convex if the connection of any two points in that domain is inside the domain. In the chosen example
of the weight hanging from a bar the failure domain is concave. It does not complicate the calculation of the DP in
this case as the failure function is not sharply curved in the neighbourhood of the DP.
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If (c;, ..., cy) is the coordinate of the afore mentioned centre of gravity, the elements of vector b can be

c,
writtenas: b, = — for i€l,2,..,n

c

1

in which: n = number of basic variables
M

, = ]\_1/! . E U; . =value of the i element in the coordinate vector of the centre of gravity of

j=1 7

the realisations for which Z <0 .
M = number of realisations ( number of simulations for which Z < 0).

A flow diagram for the approximation of the DP by the method “centre of gravity” applied to the example
of the weight hung from a bar, could be as follows:

Method
' “centre of gravity”

Initialize variables:
Realisations := 0
SumUI :=0
SumU2 := 0
I:=1
N := Number of simulations

Determine centre of
gravity in U-space
. |
Szmulat?g] ﬁg m St. Calculate intersection of |
norma: distrioution line from CG to O with
Simulate U2 from st. Jailure function
normal distribution ;
Calculate Z in U-space Transform fo
X-space
<Z<o»
= (step)
Realisations := Realisations + 1
SumUl1 :=8SumUI + 1
SumU2 :=8umU2 + 1
i
Figure III-2a

Computer programmes for the example are given in MathCad7.3 and in Turbo Pascal (Version 4 or higher)
in section I11.3.2.5.
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.3.2.2. METHOD “ANGLES”

This approximation differs from the former one. Only part of the information is considered, namely only
the part regarding the direction and not the part regarding the length of the vector. Again (if necessary)
basic variables, X,, are transformed to standard-normally distributed variables, U,. Each set of U, for which
Z < 0, can be identified by (n - 1) angles with the coordinate axes and one distance from the origin, n being
the number of basic variables. If the angles of the directions of the realisations are taken as a sample, the
mean of this sample can be considered as an approximation of the angle between the direction in which
the DP has to be found and the coordinate axes.

The direction can be characterised by the angle ¢; ; ; for transformed realisations U; ; and U; , in the it
simulation. iis the serial number of the stochastic variable considered in the reliability function concerned.
It is mentioned that:

U, = b,

: Ax
U, = b,

il

The vector on the left hand side (elements U, through U,) is the approximation of the coordinate of the
DP. The elements b, through b, of the vector on the right hand side are calculated as follows:

The angle @; , ;is (by definition) in the interval [ 0,2 = ). If Z < 0 in the j % simulation, then the angle
@1 ;18

U .
IfU,>0and U , > 0 then ¢, , = arctan Ujl)
i1
U,
If U, <0 then @, = m+arctan| —=
U
U,
If U, ,<0and U ;>0 then @, , = 2*m+arctan U_
i1

The mean of j angles can be expressed as: M, @) ]l{(_] -1)'M, @10 (Pj,l,i}'

For the first simulation in which Z < 0 (the first realisation) is: M, @) = i

1,1

In every successive realisation (every new simulation
in which Z < 0) the values of the elements of the vector
have to be adapted:

b, = tan(M,(, ) with i€2,3,...n, j€1,2,.M

M is the number of realisations (number of simulations
in which Z < 0).

NB Recurrent relationships for higher moments can be
derived analogous to this formulation .

60
500

0
20

Qaga

1z |

Theslopes, b,, are derived from the mean angle M, @,1.) 8|
by calculating b, = t.am(M1 01 ')).

The tangent is nct defined for 0,5 *x+n +x. As an angle
is nearer to these values, the sensitivity of the tangent

. . , ,
for (small) changes in the angle increases. If the 0 3, e, 0 B, 1, B
angle of'the vector of mean values of U is near 0.5 5

s+ n *, the spreading in the calculated slope increases.
The answers will be less reliable. Figure ITI-3
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Flow diagram for the example:

Method
“Angles”

Initialize variables:
MeanAngle := 0
I:=1

Realisations j := 0
N := Number of simulations

Calculate intersection
Direction and failure function
Simulate Ul from st. Tr ansfolrm o
normal distribution X-space
Simulate U2 from st.
normal distribution
Calculate Z in U-spacd
<Z=o>
Yes

Realisations: j :=j + 1
Directl := atan (U2 / Ul

|Direct =7+ Directj

*mw+ Direct,!

I Direct := Directd

| Meandngle := 1/j * { (j- 1) * Ml + Direct }|

Figure I11-3a
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11.3.2.3. METHOD “NEAREST TO THE MEAN”

10 20 30 “d 50 4 60
T 1 T T T T
1

00
The starting point in the former two methods was the centre
of gravity of the points simulated in the failure domain 6
or of the direction of that centre of gravity, both measured
from the origin in the U-space. The realisation nearest to
the origin in the U-space can be considered as another starting
point. Analogous to the method “centre of gravity” a vector
of b, can be calculated. gL

—-400

300

Suppose the coordinates of the realisation nearest to the 4
origin in the U-space are (p;, P2, ---» P, ---» Po)> then the vector ~—
(b;, b, ..., b, ..., b)) can be calculated:

0

1 1 1
p; b 7, 65 10 B, 16% 4 D
b, = — foriel,2,..,n <

Cop ) %
with: n = number of basic variables Figure ITI-4

p;, = U], for the simulation of Z(U}’i, - U]n) <0 je1,2,3,..M for which

N
2. .. .
U;’; is minimum. See Figure I1I-4.
-1

i

Flow diagram for the example of the weight on the bar:

-S’;" ! Method
€6 »
Initialize variables: nearest to mean
Realisations: j:=0
Distance Dist := o
I:=1
N := Number of simulations

Calculate intersection
Direction and failure function
i
Transform to
X-space

Simulate Ul from st.
normal distribution
Simulate U2 from st.
normal distribution '

Calculate Z in U-spac

Figure I11-4a
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I1.3.2.4. COMPARISON OF THE RESULTS FOR THE CHOSEN EXAMPLE

In the example of the weight hung from a circle-cylindrical bar and data as given on page I1I-3 the following
results are obtained by the Turbo Pascal programs given in section II1.3.2.5. For better comparison these
Turbo Pascal programmes were combined, so that randomly generated values for U, (transform of tensile
stress in the bar) and U, (transform of diameter of the bar) could be used in all three methods. As a consequence
there was only one failure probability calculated for all three methods.

If 10000 simulations are calculated

DESIGN POINT VALUES: d c failure frequency
Method “centre of gravity” 21.94 264.62  2.05*%10°°
Method “angles” 21.94 264.54 (2.05*%10°3, same
simulations used as in method
Method “nearest to mean” 20.96 289.94 “centre of gravity”)

If 100 000 simulations were calculated, the results could be:

DESIGN POINT VALUES: d c failure frequency

Method “centre of gravity” 21.81 267.72  2.32*10°?

Method “angles” 21.81 267.64 (2.32*%10°3, same
simulations used as in method

Method “nearest to mean” 21.01 288.51 “centre of gravity™)

If 1 000 000 simulations were calculated, the results could be:

DESIGN POINT VALUES: d o failure frequency

Method “centre of gravity” 21.09 266.93 2.230*10°3

Method “angles” 21.87 26627  (2.230*%10°3, same
simulations used as in method

Method “nearest to mean” 20.90 289.60  “centre of gravity™)

For comparison:
Design point values: d c failure probability

LEVEL II- METHOD 21.85 266.82 2.039*10°?

NB. De failure probability calculated by the level II- method is smaller than the one calculated by any
Monte Carlo (level III-) method. This is caused by the linearisation of the reliability function if the level
II- method is applied.

The DPs found agree well with the one found by using the level II-method. The DP found by the method
“nearest to the mean” differs most from the one calculated by the level II- method and can be regarded
as least accurate. The lever II-method is assumed to provide the “exact” DP. The DPs found by the other
methods are approximately equally accurate.
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I11.3.2.5. PROGRAMS IN MATHCAD?7.3 AND IN TURBO PASCAL (version 4.0 or higher).

Program for the method “centre of gravity” in Mathcad7.3

Method Centre of gravity ORIGINE1 N :=10000 simulations
. 4.F . . . 4.F
Problem of the wire: Z=¢ — Z in standard-normally distributed variables: Z=p ; +0 ;-U{-
2
n-d 1t'<),t d+0’ d'Uz)z
Variable 6 \" [1
tensile stress ¢ =290 65 +=25 N A 266 MHz PENTIUM processor can
11.6 2 perform 10P simulations in
m .
load =10° . ca. 12 minutes.
N For N = 10000 simulations the
Iculation time is ca. 7.2 s.
diameter B q+=30 6 4:=3 1—10 mnt’ calculation time is ca. 7.2 s
M = | NZsmOe« 0 Initialising variables
TotU 14— 0
TotU 24— 0
for ie 1. N N simulations
U ;e qnorm(rnd(1),0,1) Generate U1 and U2 from standard-normal distribution
U pe-gnorm(rnd(1),0,1)
Z«—p6+06-U1——————‘1‘—F—2 Calculate Z
"o(hgtogUy)
NZsmOe—NZsm0+ 1 if Z<0 If Z < 0 a "failure case" is added to the total of calculated
TotU 1~ TotU 1+ Uy if Z<0 "failure cases".
The abscissae and ordinates of the "failure cases" are
TotU 5¢TotU 5+ U, if Z<0 added in case of a "failure case".
Gl‘_ NZsm0 Vector contains 3 elements: Number of "failure cases"
Sum of the abscissae
G,TotU 4 Sum of the ordinates
G;eTotU 5
G Total of "failure cases": M1 =25 from 10000 simulations
M, M,
Abscissa of the centre of gravity in U-space: U ;5 :=TVI_ Ordinate of the centre of gravity in U-space: U,y =—
M
1 1
Intersection of the line between the centre of gravity and the origin with the failure function:
abscissa in U-space: U :=-1 (starting value) U :=root| p ctosUq- 410 2,U 1] U1=-0.901
Uaz
Uiz
L _Uaz _
Ordinate in U-space: Ujyi=——U, U,=-2.728
Uiz
Intersection in X-space (approximation of DP):
X1=U1og+k, X =267.487
Yi:=Ugo g+ 1 ¢ Yy=21.817
. 4.F -8 :
Check: ( X;, Y;) on failure boundary: Xi- 5= ~4.16#10 Approximately zero
’ T ‘YI
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Program for the method “angles” in Mathcad7.3

Method "angles" ORIGIN=1 N:=10000 simulations
Problem of the wire: Z=¢ — 4_F Z in standard-normally distributed variables: Z=p g+04,U - 4F
n-d? n~<p d+°d'U2)2
Variable n o \" [1
tensile stress k=290 05525 1 N
1 . 11.6 -
oad F:=10 - - N
diameter B q:=30 6 4= 110 mni’
Mathcad program.........cceovvevnnneecnnnsnnnnns Explanation

M= |j0 Initialyzing variables

M <0

for ie 1. N N simulations

U jeqnorm(rnd(1),0,1) Generate U1l and U2 from standard-normal distribution

U pegnorm(rnd(1),0,1)

Z*-Pc+°o‘U1——4'105——2 Calculate Z
m(kgtogUs)
if <0 IfZ<0 ...
it 1 a "failure case" is added to the total of failure cases
U s S
Richtle atan __E Seilcul'atc the angle of the direction to the point with the
U, -axis
if Up>0 The angle is calculated in the first or in the fourth
. . . quadrant. In the first quadrant the angle is positive, in the
Richte—Richtl if U,>0 fourth quadrant the angle is negative. From this the

following IF-statements result.
Richte-2-m+ Richtl if U,<0 ollowing ments resu

Richte 7 4+ Richtl if U 1<0

M 1‘__1.[( j= 1M ;+ Ri cht] Calctfllate the mean of all angles associated with "failure
i cases".
G j Vector contains 2 elements: The number of "failure cases
The expected value of the
Ge-M angle with the Ul-axis

G

Number of "failure cases" M 1= 25

Intersection of the mean direction in which Z < 0 with the failure function in U-space

410

Uji=-1 Uyi=root[p s+6 45U - 2,Ul U {=-0.905
1[(],1 d+odtan(M2>U 1)

Upi=tan(M,)) Uy Upy=-2.726
Idem in X-space

X:i=p g+045U X=267369  Yi=pg+oqU, Y=21822

Check: x-AF _ 5 eam10

T

8 which is approximately zero.
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Program for the method “nearest to the mean” in Mathcad7.3

Method "nearest to mean” ORIGIN =1 N :=10000 simulations
Problem of the wire: Z=c — 4'F2 Z in standard-normally distributed variables: Z=p 5 +06 45U - 4F >
n-d n'(ud+od~U2)
Variable n o \Y [1
tensile stress kg =290 6 4:=25 1116 N/mm 2
load =10° - - N
diameter B g =30 6 4:=3 110 mm’
Mathcad program .........c.oovevennnnnnnnnnnes Explanation

M = |je—0 Initialise variables

Dist « 10%°

for ie 1. N N simulations

U j¢gnorm (rd(1),0,1) Generate U1 and U2 from standard-normal distribution

U 5¢—gnorm (rnd(1),0, 1)

4F
Zep g +0 5U - —_— Calculate Z in U-space
n ~(p dt+o d'UZ)
if 2<0 IfZ<0..
it d 0 one "case of failure” is added to the total of failure cases
2 2
D i"‘!JU 1 +U; 0 the distance to the origin is calculated
if D ;<Dist
XUy If this distance is smaller than those calculated so far
YU, 0 "Update" the abscissa
Dist D . 0 "Update" the ordinate
! 0  Replace the "old" calculated distance by the new one
Glc— j )
) Vector contains:
G, Dist 0 the number of "cases of failure"
0 the distance of the failure case that in this run is
G3¢—- X

calculated nearest to the origin
G4<— Y 0 the abscissa of the "failure case" in U-space
0 the ordinate of the "failure case" in U-space

G
. o ., Ascrib I ctor. .
Abscissa of the point in U-space: U p =M, Ordinate o%c&ecpﬁ%% ltxsx B-ggac%lz Usp =M, Distance: M , =2.901
In X-space:
XpiEpgto oM, X p =267258 Ypi=pg+toqM, Yp=21737 Failures: M, =25

Intersection of the line from the calculated point to the origin and the failure boundary:

Abscissa of the intersection in U-space: U ;:=-1 (starting value) U =100t p g +0 ;U — , U
2
8]
U { =-0.901 2
1 Usp "'“d"'“d'U ~U1)
Ordinate of the intersection in U-space: Ugpi=——U; U,y=72727 1D
18]

Intersection in X-space (approximation of the Design Point):

Xpp=Ui0g+hg X pp = 267479 Yppi=Uy G g+hy Y pp =21.818
Check: 7=0c — 4F XDP"L :—4.044-10—8 (Approximately zero)
o T['Z._. N'anz e e e
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Program for the method “centre of gravity” in Turbo Pascal:

PROGRAM CGRAVITY;

USES CRT;

CONST
N = 1000000;

VAR

NuZsmaller0O, i : LONGINT;
Ul, U2, TotUl, TotU2, muSigma, Func, Deriv,
sigmaSigma, mud, sigmad, FLoad, Help,

X1, X2, Ulz,U2%Z, Ul0, Ull, Ul2, 2 : EXTENDED;
BEGIN

ClrScr;

RANDOMIZE; NuZsmaller0 := 0; TotUl := 0; TotU2 := 0;

muSigma := 290; sigmaSigma := 25; mud := 30; sigmad := 3; FLoad :=1le5;
FOR i :=1 TO N DO

BEGIN
GOTOXY (36,12); WriteLn(i);
X1 := Random; X2 := Random;
Ul := SQRT ( - 2 * 1In ( X1 )) * cos ( 2 * pi * X2 );
U2 := SQRT ( - 2 * 1In ( X1 )) * sin ( 2 * pi * X2 );
Z := muSigma + sigmaSigma * Ul - 4 * FLoad / pi / SQR ( mud + sigmad * U2 );
IF Z < 0 THEN
BEGIN
NuZsmaller0O := NuZsmallerO + 1; TotUl := TotUl + Ul; TotU2 := TotU2 + U2
END
ELSE { DO NOTHING }
END;
UlZz := TotUl / NuZsmallerO; U2Z := TotU2 / NuZsmallerO;
ClrScr;

< 0: ',NuZsmaller0:6);
',NuZsmaller0/N:16);

WritelLn ('Number Z
Writeln('Prob Z < O:
= 10;

Ul0 := -1; Ul2
WHILE abs ( Ul2 - Ul10 ) > le-10 DO
BEGIN
Help := mud + sigmad * U2Z / UlZ * U1l0;

Func := muSigma + sigmaSigma * Ul0 - 4 * FLoad / pi / SQR ( Help );
Deriv:= sigmaSigma +

4 * 2 * FLoad * sigmad * U2Z / UlZ /

pi / Help / Help / Help;

Ull := U1l0 - Func / Deriv;
IF abs ( Ull - U10 ) < le-10 THEN Ul2 := Ul0 ELSE Ul0 := Ull
END;
Writeln('Xint: ', Ull*sigmaSigma+muSigma:16) ;
Writeln ('Yint: ',U02Z/U1Z2*Ull*sigmad+mud:16) ;
GOTOXY (27,12); Write('To continue, hit <RETURN> '); Readln
END.
OUTPUT:
Number Z < 0: 2196
Prob Z < 0: 2.1960000E-0003
Xint: 2.6693140E+0002 With this Turbo Pascal program adjacent results
Yint: 2.1840131E+0001 were calculated in 44 s.

Compare this with the 12 minutes calculation
time for the Mathcad program!
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Program for the method “angles” in Turbo Pascal:

PROGRAM ANGLES;
USES CRT;
CONST
N = 1000000;
VAR
NuZsmaller(O, i : LONGINT;
U1, U2, Ul0, Ull, Ul2, Deriv,
ResAngle, ResAnglel, Help, Func,
MeanAngle, muSigma, sigmaSigma,

mud, sigmad, FLoad, X1, X2, Z : EXTENDED;
BEGIN
ClrScr;
RANDOMIZE; NuZsmaller(0 := 0; MeanAngle := 0;
muSigma := 290; sigmaSigma := 25; mud := 30; sigmad := 3; FLoad :=le5;

FOR i :=1 TO N DO
BEGIN
GOTOXY (36,12); WriteLn(i);
X1 := Random; X2 := Random;
= SQRT ( - 2 * 1In (X1 )) * cos ( 2 * pi * X2 );
SORT ( — 2 * In ( X1 )) * sin ( 2 * pi * X2 );
Z := muSigma + sigmaSigma * Ul - 4 * Fload / pi / SQR ( mud + sigmad * U2 );
IF Z < 0 THEN
BEGIN
NuZsmallerQ := NuZsmallerO + 1; ResAnglel := ArcTan(U2/0U1);
IF Ul > 0 THEN
BEGIN
IF U2 > 0 THEN ResAngle := ResAnglel ELSE ResAngle := 2 * pi + ResAnglel
END ELSE
ResAngle := pi + ResAnglel;
MeanAngle := ( ( NuZsmallerO - 1 ) * MeanAngle + ResAngle ) / NuZsmallerO
END ELSE { DO NOTHING }
END;
ClrScr;
Writeln ('"Number Z2 < 0: ',NuZsmaller0:6);
Writeln('Prob Z < 0: ',NuZsmaller(0/N:16);
Writeln ('MeanAngle: ',MeanAngle:16);
Ul0 := -1; Ul2 := 10;
WHILE abs ( Ul12 - U10 ) > le-10 DO
BEGIN
Help := mud + sigmad * sin ( MeanAngle ) / cos ( MeanAngle )* U1l0;
Func := muSigma + sigmaSigma * Ul0 - 4 * FLoad / pi / SQR ( Help ):
Deriv:= sigmaSigma +
4 * 2 * FLoad * sigmad * sin ( MeanAngle ) / cos ( MeanAngle ) /
pi / Help / Help / Help;

aga
N =
I

Ull := Ul0 - Func / Deriv;
IF abs ( Ull - Ul0 ) < le-10 THEN Ul2 := U10 ELSE U10 := Ull
END;
Writeln('Xint: ', muSigma + sigmaSigma * U10:16);
WriteLn ('Yint: ',mud + sigmad * Ul0 * sin ( MeanAngle ) / cos ( MeanAngle ) :16);
GOTOXY (27,12); Write('To continue, hit <RETURN> '); Readln
END.
OUTPUT:

Number Z < 0: 2196

Prob 7z < 0: 2.1960000E-0003
Xint: 2.6683549E+0002
Yint: 2.1844055E+0001
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Program for the method “nearest to the mean” in Turbo Pascal:

PROGRAM Distance;
USES CRT;
CONST
N = 1000000;
VAR
NuZsmaller0O, i : LONGINT;
Ul, U2, Distance, Dist,
muSigma, sigmaSigma, X, Y,

mud, sigmad, FLoad, X1, X2, Z : EXTENDED;
BEGIN

ClrScr;

RANDOMIZE; NuZsmaller0O := 0; Distance := 1le20;

I

muSigma := 290; sigmaSigma := 25; mud := 30; sigmad := 3; FLoad :=le5;

FOR i :=1 TO N DO

BEGIN
GOTOXY (36,12); WriteLn(i);
X1 := Random; X2 := Random;
Ul := SQRT ( - 2 * 1In ( X1 )) * cos ( 2 * pi * X2 );
U2 := SQRT ( - 2 * 1In ( X1 )) * sin ( 2 * pi * X2 );
Z := muSigma + sigmaSigma * Ul - 4 * FLoad / pi / SQR ( mud + sigmad * U2 );
IF Z < 0 THEN
BEGIN
NuZsmallerO := NuZsmallerO + 1; Dist := SQRT ( SQR ( Ul) + SOR ( U2 ) );
IF Dist < Distance THEN
BEGIN
X := Ul;
Y := U2;
Distance := Dist;

END ELSE { NOTHING }
END ELSE { DO NOTHING }

END;
ClrScr;
Writeln ('Number Z < 0: ',NuZsmaller0:6);
Writeln('Prob Z < 0: ',NuZsmaller0/N:16);
Writeln('X: ',muSigma + sigmaSigma * X:16);
WriteLn('Y: ',mud + sigmad * Y:16);
GOTOXY (27,12); Write('To continue, hit <RETURN> '); Readln
END.
OUTPUT:
Number Z < 0: 2181
Prob Z < 0: 2.1810000E-0003
Xint: 2.6547600E+0002
Yint: 2.1896883E+0001
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I1.4. BOUNDARY CONDITIONS AS A FUNCTION OF TWO PHENOMENA

H1.4.1. EXTREME HIGH WATER LEVELS

Extreme high water levels are caused by wind set up (in a lake; at sea the tide is also involved), by high
discharges (in a river, resulting in an increasing river level, or in a lake, resulting in an increasing basin
level) or by a combination of both.

Along the North Sea Coast high water levels are mainly caused by superposition of the tide (high tide)
and wind set up. Besides that, shower gusts and oscillations can be of influence. Before construction of
the storm surge barrier, high water levels in the Oosterschelde basin were determined by, besides the tide,
wind set up on the North Sea. No large rivers discharge into the Oosterschelde basin. Since the realisation
of the barrier, the water level in the basin during high water levels in the North Sea is influenced greatly
by the use of the storm surge barrier.

The extremely high river water levels inside the flood plane are determined by the high water discharges
caused by melting snow in spring (Rhine) or caused by rain fall in the flow area of the river (Rhine or
Meuse).

When calculating the high water levels in a lower river area (e.g. for the benefit of the Storm surge barrier
in the Nieuwe Waterweg or for the strengthening of dykes in the western part of the Alblasserwaard) both
wind set up at sea (storm surges) and high river discharges, as well as a combination of both should be
taken into account. -

-rre

&=

Figure II1-5

To gain an insight into the factors that cause a high water level at a certain measuring post and into how
these factors are manifested in the high water level exceedance frequency curve, some schematisations
are introduced. The influences of the sea and a high river discharge on the high water level in a basin (a
schematisation of a lower river area) are first considered separately . Subsequently, a possible simultaneous
occurrence of a storm surge and a high river discharge is analysed. The effect of a storm surge barrier
is examined.
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I1.4.2. STORM SURGE LEVELS

In the Netherlands a storm surge is understood to mean a high water level as a consequence of tide (high
tide) and wind set up (caused by a "storm"), which exceeds a certain threshold level. The threshold level
is defined as the water level that is exceeded on average 0.5 times per year. Hence, on average, a storm
surge occurs once every two years.

Let us consider a basin is open connection with the sea. In that basin storm surges may occur. A schematisation
of the Oosterschelde basin (which serves as an example) is shown in Figure ITI-6 on the right side.

Figure 1-6

To simplify, we assume the wind set up so great, that the influence of the
tide can be neglected.. Furthermore, the high water level is assumed constant
during the storm which causes the wind set up. The duration of the storm
sv e surge is assumed such that the maximum water level is attained everywhere
in the basin in the considered storm.

High water level

Time

durstion storm surge
. f (h
Figure I111-7 ﬂl( basin )

The probability density function, the probability
distribution and the exceedance frequency curve of
the high water Ievel in the basin all have (practically) b
the same shape as those of the storm surge at sea. The ‘

high water level in the basin "follows" the storm surge £ ("naa ')|
level at sea: A, = h,,, provided that the estuary
is wide and deep enough relative to the length of the
basin and that the bed slope multiplied by the basin
length is not too great, relative to the height of the storm

surge level. »
0 basin

Note, that (in civil engineering) the probability exceedance 4l - - -
curve (and NOT the probability distribution) is usually Npasin | i e
presented with the high water levels as ordinates and 3 u i
the logarithm of the probabilities of exceedance as e ﬁi
intercepts, as is the case in the opposite figure. i i
In the presentations of probability density and probability 1
distribution the storm surge level is plotted on the axis ol
of the intercepts. The probability exceedance curve 10° 107 102 10° g0t
plots the storm surge level on the axis of the ordinates. 1 - Fyw(tyesn )
(Compare the bold points in the opposite figures.) T

Figure 111-8
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f (hbasin )
Closure level .
I ] hbasm
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Closure level
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basin
"basin * i
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THT
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1-F uf Mbasin )
Figure I11-10

In the case of closure of a defence:

hbasin

hba.s’in

=h

sea

Figure II1-9

If, for whatever reason, the high water levels in
the basin are considered too high, the basin can
be closed off, as has been done on several sites
in the Netherlands as part of the Delta works. The
high water levels’ threat to the land needn’t be
resolved by raising all protection works surrounding
the basin. The length of the sea dykes to be
maintained decreases by closing offthe basin (coast
line shortening). The dykes along the closed off
basin can be lower than would be necessary without
closing off.

‘When amovable defence is in use, the storm surges
at sea can be kept out of the basin by shutting
the defence at a certain water level (the closure
level). In that case, all storm surge levels at sea,
higher than the closure level are"censured". (For
censured distributions, see § I1.5.) The probability
density function, the probability distribution and
the probability exceedance curve of the high water
levels in the basin are as is illustrated opposite.

if hypin < Closure level

Closure level for all other (higher) water levels at sea.

N.B. The defence must be closed gradually to avoid translation waves in the basin.
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I11.4.3. RIVER DISCHARGES

The second case is a situation in which a river flows into a basin (e.g. the Haringvliet). The following
also applies to big rivers that flow through the basin formed by their "winter bed" or estuary.

SCHEMATISATION OF THE BASIN LEVEL OF AN OPEN BASIN WITH A FIXED OUTSIDE WATER LEVEL:

- &~

,
/ Qriver
Sea Basin
mouth A,

Figure ITI-11

For the sake of simplicity, the water level outside the estuary (at
sea) is assumed a fixed level. (Instead of at sea one can imagine
ata - fixed - lake water level.) Water level increases are measured
relative to this level. The variation of the water level in the basin

o, @ )

(QM)

Pesin is a result of flood waves in the river.

regardless of the size of the discharge wave:

Fa, e ) [ Assume that the flood wave lasts a "time unit" (e.g. 5 days),

High water discharge
Qo)
® hm Q
‘4 I Time
Qper Duration of
3 discharge wave
2 Figure I11-12

il The high water levels in the basin follow from the river’s high
0 w w w w water discharges. (Compare § I1.5.) The river discharges (as well
as the storm surge levels) can be assumed distributed exponentially.
The probability distribution of the river discharges to the basin
Figure ITI-13 and theriver discharge exceedance frequency curve can be shown
as in Figure III-13. In formula:

_ Oriver 0

F%(Qriver) =1-e b

Furthermore, assume a stationary situation, so that all river discharges are transported via the mouth of
the basin. Also assume that the flow section of the mouth of the basin doesn’t change much due to the
water level rise (storage) in the basin, as a result of river discharge. In the equation:

Qmouth =Hu A mouth V 2g ) Ahbasin
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in which Q,,.,., = discharge via the mouth of the basin (= Q,,,,)

Y = discharge coefficient
A,oun = surface of the flow profile of the basin mouth
g = acceleration due to gravity

Ahy,;, = water level rise in the basin asa result of the river discharge, also high water level

by in the basin,
2

pand A, are assumed constants, so that Ak, . = h, . = %iv A I 21 : ijer (water level
u- .

mouth

rise in the basin is proportional to the square of the river discharge).
SCHEMATISATION OF AN OPEN BASIN WITH VARIABLE OUTSIDE WATER LEVEL:

If (as is usually assumed) the river discharges are independent') of the high outside water levels (storm
surge levels), the water levels at sea may be added to the water level( rise)s as a result of river discharges.
The water level in the basin can then be described with (see: bottom of page III - 5 and bottom of page

I - 6):
2
h, . =h,+ Orer | . 1
basin sea HA 2.g

mouth

CLOSING THE DEFENCE:

The defence is closed at the closure level s, for which (apparently):

2
s = hbasm = hsea+ im ' 21
B ‘g

mouth

FILLING THE BASIN WITH A CLOSED DEFENCE:

Qe Closing the defence prevents the flow of river water from
the basin. After closing the defence, the water level in the
basin will rise because the total river discharge now has to
be stored in the basin. The corresponding equation which
describes this is:

Qriver
Ahba.sin = B At
basin
Figure III-14 Ah,,.. = water level rise in the basin
Qiver = river discharge
B, .. = storage surface of the basin
At = duration of the discharge wave.

WATER LEVEL IN THE BASIN JUST BEFORE THE REOPENING OF THE DEFENCE:

Just before the reopening of the defence, the basin water level, A can be modelled with:

Qriver ‘A 4
basin B

basin?

Calculating the exceedance frequency curve of the basin water level is not a simple task.

) ' Van der Made demonstrated that the wind set up in the North Sea and the Rhine discharges are
not totally independent (See footnote on page II - 19.)
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111.4.4. EQUAL LEVEL CURVES

For every one of the previously described situations for a basin (tide without and with a defence and river
discharge with and without a defence) equal level curves can be determined. Equal level curves ') are displayed
in a line nomogram, indicating which high water levels are equally high as a result of storm surge levels
at sea and/or as a result of high river discharge and/or as a result of combinations of both.

5
Storm surge level 4 By agin =4 M above raferance jevel
at sea
. 3 hm = 3 m above referance level
h inm
sea 2 h___ =2mabove refovence lovel
melative to
reference level h = 1 m above rsfersnce jevel
1 basin

Storm surge level 5

at sea
) 5
h gegq inm 4
relative to 3 o
reference level 2 lovel
1
0 -
With defence  (Riverdischarge)
Figure ITI-15
5 Water lovels in basin only result
Storm surge level 4 of river discharge (influence of
at soa water levels at sea
h g8 inm 3 disregarded.)
relative fo reference| 2 E E 5 E I‘E,
fevel 4 S 9 S 2 o
0> 4 5 _
Without def;énce River discharge Q r
5 Water Isvels In basin only result
Storm surge level 4 of river discharge (influence of
af sea water levels at sea
h o inm | 3 disregarded.,)
relative to 2
level E E E E<{ 3
) A~ w0 o 0|
1| o w & o o
0 1 3 4 5
With defence River discharge Q,
5 Water levels in the basin as
Storm surge level \ a result of river discharge
at sea 3 and of water levels at sea
h goy Inm
rofative to 2
lovel g g B 5‘1 13
O] | = © Q)
1 o « o o 9

0 .1 3 4_5
With déferice * rier dscharge Q,

Figure I1I-16

In case no river flows into the basin the high water
level in the basin is determined by the water level
at sea. The river discharge has no influence.

In Figure ITI-15, in which Q, the river discharge, is
selected as intercept and the storm surge level at sea,
h,.,, as an ordinate, a coordinate defines a point of
an equal level curve, that is, the line of equal high
water level in the basin. The equal level curves for
a basin without river discharge run parallel to the
axis on which the discharge (or the water level as
a result of it) is plotted.

Closure of the water defence rules out water levels
higher than the closure level (in principle). (In
principle, because the defence can collapse. This
subject will be re-opened later.)

In case the river discharge is solely of influence on
the high water level and the water level at sea is
constant, the equal level curves run parallel to the
axis on which the storm surge levels are marked.
The water levels in the basin increase quadratically
with the discharge.

Closure of the defence (still assuming a constant
outside water level) gives equal level curves which
are also parallel to the axis on which the storm surge
levels are marked, only now the water levels in the
basin increase linearly with the discharge.

A closed defence where initially the outside water

level did vary (combination of opened and closed

defence) corresponds to the equal level curves in

the top of Figure II-16, moved over a distance
Q river ‘At

3

basin

") Instead of the term "equal level curves" the term "bearing line" is sometimes used, INCORRECTLY.
A bearing line gives a relation (borne) between water levels and different water level gauges with

a permanent river discharge.
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at sea
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Closure
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1
0y ) \5 ...
River discharge Qr
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Figure I11-17

There are areas where both the water levels at
sea and the river discharges influence the water
level. In this so-called transitory area (in the
Netherlands: the part of the river area to the east
of'the line Schoonhoven - Werkendam and west
of the line Jaarsveld - Gorinchem) every rise of
the sea water level is increased by a water level
rise as a result of the river discharge. The result

is that the lines of equal basin water level, 4, . ,

go down to the right due to the raising influence
of the discharge, Q . _ (Figure III-17, above),

rver
because for the equal level curves:
2

h - h 1 . Qriver

basin sea+2_.g A = constant

mouth

By closing the defence at a certain closure level
(in Figure III-17 Reference level +2.60 m was
chosen) the equal level curves (of course) keep
the same gradient below the closure level. The
equal level curves above the closure level have
the characteristics of curves of "only river
discharge influence", since the sea’s influence
is eliminated by the defence.

In practice, the equal level curves aren’t calculated using a discharge formula and/or a basin approach,

but using a tide model, such as DUFLOW.
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I1.4.5. EQUAL LEVEIL CURVES IN THE "GUIDELINES LOWER RIVERS"

Sea

Figure I11-18

For three selected stations along a river: one at the estuary mouth, where the high water levels are solely
determined by the storm surge levels at sea, one in the "tidal area" (lower river), where both storm surge
levels and high water discharge waves determine the high water levels and one where the influence of
the storm surges is no longer noticeable (upper river) and the high water levels are determined only by
high river discharges, the shapes of the equal level curves are globally as illustrated in Figure ITI-19. As
a simplification, the curves in the middle figure have been drawn as straight lines. Theoretically, these
should be parabolas, but on the next page the cases of Streefkerk and Jaarsveld are seen to differ in reality.
The probability density functions of storm surge levels and of river discharges are also given.

Station 3

T 12345 723834586 Y q12384:5

- Q qQ Q

for every station.
fc( Q) fg( Q ,) f_o( Qr)

Figure II1-19

In the preceding paragraphs drastic simplifications were introduced. The most striking simplifications
are the assumption of a constant basin surface at all basin water levels and the assumption of the constant
duration of a storm surge situation and a flood wave. Only the height of the storm surge level and the amount
of discharge were considered (random) variables. Contrary to the impression given above, the equal level
curves (particularly in the transitory area ) won’t be straight in reality. A couple of equal level curves published
in the Guide to the design of river dykes, part 2, lower river area, (in Dutch, “Leidraad voor het ontwerpen
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van rivierdijken, deel 2, benedenrivierengebied”),T echnical Advisory Committee on Water Defences,
the Hague, September 1989, published by Waltman, Delft, are shown below.
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Figure I11-20
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II1.4.6. PROBABILITY DENSITY OF THE HIGH WATER LEVELS IN THE BASIN

InFigureITI-19, which shows the equal level curves for three stations along a river, the hatched areas indicate
where the basin water level is "reference level +2 m and higher". Integration of the joint probability density
functions of storm surge levels and high river discharges over these areas in the direction perpendicular
to the equal level curves gives the exceedance probability of the high water level considered. The exceedance
probability , Pl >4}, the probability distributionF, (h,,,,) and the probability density function f, (1) of

high water levels in the basin can be determined this way.

The figure below illustrates the procedure for determining the histogram (probability density function)
of the high water levels in a lower river area, where, at a certain moment, the defence structure in the river
estuary is closed.

Storm surge level High water levels in

at sea basin relative to

reference level

Figure I11-21

For every combinationof 4, and O, the basin water level has to be calculated . For an opened defence

(iver)®

structure: 2

1 0,

hbasin = hsea + )
2 ‘g n 'Amouth

If, however, the defence structure is closed and the outside water level exceeds the closure level, the following
formula for the closed defence applies: 0 At

r

basin =8t B

With this function definition the probabilities p, (4,,,,) along the A, axisare classified . Hence a probability

basin

density function (see page II - 5) of the basin water level is determined.

P{E :hbm}: P (Psasin) My = Y Jew Mseay (O Ah, , AQ,

Ahb i Ahbasi
hbasin - 20-71’" <hbasin (hsea’Qr)S hbasin * 2 -

The figure in the bottom right corner of Figure III-21 shows the part below the joint probability density
function of storm surge levels and discharges, which is representative in the histogram (bottom left, that
is the probability density function of the basin water level)for the considered interval A#, . (here about

1.5 m above chart datum) of high water levels in the basin.
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111.4.7. FAILURE OF THE WATER DEFENCE

The purpose of the defence structure is reducing the probability of exceedance of a certain basin water
level to a determined (small) value (e.g. 10™).

Assume, for simplicity’s sake, that only sea water levels are of influence. (There is no river discharge into
the basin.) If the water level at sea becomes too high the defence can collapse. In the figure below this is
expressed in the equal level curves which regain a meaning above a certain level. The corresponding probability
density function is sketched next to the equal level curves.

Storm surge —
level at sea Defence colla s@
5
he — High water levels in
4 "Gap"in basin relative to
Closure equal level curves reference level
level S 3
2
1
f ) 072 3 4 5
HW" sea With defence River discharge Q,

Figure 111-22

To calculate the probability that a certain water level in the basin is exceeded in one year, "failure of the
defence" hasto be involved. Firstly, there is a probability (assume: p), that the defence structure is not closed
(e.g. due to human failure or to a defective operation mechanism). The probability of closure of the defence
isthen (1-p). Forthat, the set of equal level curves given at the beginning of this section is valid. The "surface
below the probability density function" now isn’t 1 (as is usual), but (1 - p). The probability of occurrence
of a certain high water level in a year, which is calculated using the lines, has to be increased by the probability
of that high water level if the defence is not closed.

111.4.8. COINCIDING LOADS

In the previous sections it was assumed that, in the case of high water levels caused by tide, wind set up
and high river discharges, these three elements occur together simultaneously and for the same period of
time. A discharge wave, however, lasts approximately 3 weeks, a storm (wind set up) for example 36 hours
and the tide (in the Netherlands) lasts 12 hours and 25 minutes. The combination of these three high water
level determining factors '), is what is of importance, for example in the lower rivers area: the water level
that is assumed constant during 5 days (the "top" of the 20 day lasting flood wave), on top of which the
highest 10 (5 days discharge wave "contains" 10 tides) storm surge levels are superposed. (This leaves
the problem of § I1.2.: If 10 realisations are drawn from the storm surge levels, what is the probability density
function of the highest of these 10 realisations?)

l) Turkstra,C.J. and H.O. Madsen, L.oad combinations in codified structural design, Journal of Engineering, Structural
Dividion, ASCE, Volume 106, nr. St. 12, December 1980.
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Figure I1I-23 could, for example, relate to the loads on a (part of a) structure near Sliedrecht.

Qp, hpasi
asin w
time
Flood wave
h
sea .
Wind setup
Tide
High tide L/ : .
g _ WAL time
Low tide, JV] VIV VY
Stori je at sea
Forces | ,
Moments §/gh'gh w_ate.rs a day
(10 realisations from
extreme value
top of / distribution)
flood wave 2
time

Load by storm surge
Figure 111-27

The problem for the Storm surge barrier in the Nieuwe Waterweg is different than in the lower rivers area.
This defence structure is closed in the case of extreme storm surges (1 - F,;;, (s) < 0.1 in a year). Such

extreme storm surges won’t coincide with the yearly maxima of the discharge. That is why, in this case,
the probability density function of the yearly maxima of the outside water level (f;(4,,,)) was combined

sea

with the probability density function of the momentary values of the river discharges (fQ (Q,)). The water

levels caused by high outside water levels and those caused by river discharges had to be calculated separately.
From that the load as a result of the head difference over the defence could be calculated.
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IV. FAILURE MODES IN A CROSS SECTION

IV.1. FAILURE MODES

Systems are designed to satisfy civil engineering needs. A system usually consists of a number of structures.

Structures are designed and constructed to fulfil one or several needs. A structure fails or collapses when
this(these) function(s) can no longer be carried out.

The way a structure collapses or fails is called a failure mode.
A failure mode occurs when a limit state is exceeded, i.e. when the load exceeds the strength.

To assess to what extent the occurrence of a failure mode leads to the failure of a certain structure and whether
the failure of the structure leads to the failure of the system, risk analytical methods have been developed
which are summarised by the name "trees". In the lecture series b3, Probabilistic design, fault and event
trees were introduced and explained. Fault trees are particularly suitable for the illustration of cause and
consequence chains which lead to an (unwanted top-)event if one cause has only two consequences which
can be clearly distinguished (yes or no, positive or negative, right or wrong, failure or non-failure, etc.).
Only the negative consequences (no, wrong, etc.) are included in the fault tree. To illustrate consequences
which can’t be as clearly distinguished, a cause- consequence chart is more suitable.

To efficiently present chains of modes, which (could) lead to failure of a system in a fault tree, a function
analysis of the considered system is necessary. Which loss of function is selected as the top event must
be well defined. For the safety evaluation of water defences this is usually clear. The unwanted top event
can usually be described as follows: The water is no longer kept out. For a breakwater around a port the
function is: providing calm water to facilitate the loading and unloading of ships.

The general structure of a fault tree is presented in Figure IV-1. Different aspects which are relevant for
the analysis, are also indicated.

. \ System fails
Reserves |
.} Structure fails 4" Length-
L effects
ULS  Occuring failure modes { .~
SLS S>R
Load --(_Strength
Disribution types
Parameter estimation
Figure Iv-1
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The sea defence system of the town Whitstable before 1980 serves as an example. Whitstable is located
near the Thames estuary, namely on the south bank of the Thames, to the north east of Canterbury. The
town itself lies below the sea defence system and below the (assumed impermeable) North Downs (hills).
The sea defence system consisted of the following elements (see Figure IV-2):

1. anew sea wall in the east (crest amply above average sea level).

2. aport terrain in the middle. This port terrain is (before 1980 and still: anno 1996 !) closed off during
high water levels by placing sandbags.

3. anold, low, unstable sea wall in the west. (In the course of a number of years this wall was improved.
The renovation had not yet been totally completed in 1994.)

4. an oyster warehouse, built in the western old sea wall.

5. acouple of land partitions to the south and the west of Whitstable. In the west these land partitions
are linked to the dyke along the southern bank of the Thames.

People feared the town would be flooded due to failure of the sea defence system.

Thames
New sea wall

Old sea wall

Dyke along Thames

Low dykes
(land pertitions)

Figure IV-2

A faulttree (see Figure IV-3) indicates how the most unwanted reaction of the system (flooding of Whitstable)
can arise.

The five structures mentioned in the example’s description can be distinguished in the fault tree in Figure
IV-3. Note that every mode is considered characteristic for a certain cross section (structure or section:
land partitions, old sea wall, oyster warehouse, port terrain, new sea wall). Several modes can be relevant
to one cross section (e.g.: "OLD SEAWALL IS INUNDATED" and "OLD SEA WALL COLLAPSES").

Every cross section is expected to concern a whole (stretch of a) structure. "Failure" is considered "in a
cross section” ("per section" or "per structure"). If, for example, the water level in a cross section is higher
than the defending height, the structure is considered failing over the entire length. Analogous circumstances
lead to the collapse of the old sea wall and of the oyster warehouse. The approach is characteristic for the
analysis of a serial system (here the serial system is: the succession of individual structures).

A closed system of water defences doesn’t usually consist of a single defence structure, which, in turn,
doesn’tusually consist of one section. This is a serious complication because it makes it virtually impossible
to calculate the probability of collapse of a vaguely realistic system of water defence structures. In literature,
a number of upper and lower limit approximations for simple serial systems can be found, which can be
worked out numerically. Until now, however, the knowledge to calculate these limits for more realistic
systems of water defence structures is lacking. We will come back to this subject in the following chapter
V. LENGTH- EFFECTS.
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A regularly voiced objection against the fault tree analysis is that it is a technical analysis, whilst, to a great
extent, human intervention (or the lack of it) determines the reliability of a system. However, in the fault
tree depicted above, the aspect of "human intervention" is also included. If the water level exceeds the level
ofthe port terrain, a temporary defence made of sandbags is to be created. This temporary defence structure
fails ifthe water level exceeds the level of the port terrain and the sandbags aren’t placed by the responsible
organisation. (This could be analysed further: sandbags not in place, sandbags not in good state, people
to place sandbags absent , etc..)

Figure IV-3
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IV.2. EXAMPLES
FAILURE MODES FOR WATER DEFENCES
A closed system to defend a dyke ring against the water is sketched in Figure IV-4. The system consists

of several types of defence structures besides dykes (and dams). The defences, which make up a defence
system, could be:

¢ dykes and dams

4  dunes

4 other structures

4 natural high grounds.

storm direction
dyk rderi
cLrey
wave run up
Figure IV-4

Sometimes, dependent on the "load", different courses can be distinguished for one type of defence (e.g.
a dyke). (Compare Figure IV-4.) That way a dyke bordering deep water could be considered part of one
course, whilst a dyke bordering shallow water could be attributed to a second course. In the fault tree in
Figure IV-5 one can recognise the serial system of six construction elements. A fault tree for "Inundation
of the dyke ring of Figure IV-4" can be drawn up just like in Figure IV-5. Note that the failure modes are
considered per structure (characterised by a cross section).

inundation
I : @ ; ] |
Failure Failure Failure Failure Failure Failure SET;GRS Sﬂgt':,s E
sea dyke sea dyke dune river dyke sluice “coupure” idered
deep water shallow water :;si:, ne as one
A A A A A
r 1
overtopping | | Overtopping breach
R<S R<S
A A FAILURE MODES
[ I — 1
......... m;“tm,ny erosion sliding piping
R<S R<S R<S R<S R<S
Figure IV-5
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In the fault tree, besides technical causes of failure. human mistakes or insufficiencies can also be included.
For certain defences such as sluices and coupures'), these can be important components of the total
probability of failure of the defence system. (Many managers of water defences "forbid" coupures in
their dyke ring.)

Failure
coupure
Failure Under Collapse Stcr:‘%lfgs
foundation |seepage| |stoplogs present
vV v v
No
action
High
water

Figure IV-6
For every section, characterised by one cross-section, a probability of failure can be calculated by determining
the probabilities of all relevant failure modes for that cross-section according to level II or level IIT
calculations. An upper limit of the probability of failure of the system of water defences is acquired
by adding the probabilities of failure of all sections. The greatest failure probability serves as a lower
limit of the probability of failure for the system.
The upper limit of the failure probability can be established because several failure modes can be determined

by the same (common) parameters. Sections can be correlated because, for example, the storm surge
level burdens all of them.

: overtopping mf
mt:pping m outer slope
Mrslope j coupure
mity E drifting ice
:ﬁh ; collision

pipelines ’_V/v%fsi::u;er slope

buildings, plants erosion fore shore

i

Figure IV-7

A certain dependence of the sections, caused by the load, was pointed out earlier (bottom of page IV -
2). Several failure modes in one cross-section are not totally independent either. A limited number of
parts of a dyke easure the defending function and the stability of the core, the revetment and the subsoil.

1) A coupure is a cut through the water defense which allows the passage of a (rail) road. In case of
high water levels the gap is barricaded with large beams called stoplogs.
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If one part is insufficiently strong, it raises the probability of failure for more than one failure mode.
Care must be taken of each of these parts during the design phase. In practice, if the various parts of a
dyke have been carefully and well designed, measures will have been taken to reduce the probability of
occurrence of the failure modes. A relation scheme for parts and modes is given in Figure IV-8.

FUNCTIONAL PART FAILURE MODE
Overtfopping
Crest height
Wave overfopping
Sealing works
Slip circle inner slope
Core
Seepage / piping
Inner slope
Settlement
Outer slope

Micro instability
Subsoil
Slip circle outer slope

Pushing up

Erosion outer slope
Figure IV-8

The dependence of failure modes in one cross-section due to a certain load, which is involved in more
than one mode, and the coherence of functional parts and failure modes is still the subject of research.

Recognising the relation between functional parts and failure modes also has a significance in the design
practice. The function of a dyke does not have to be limited to defending against water. Traditionally,
dykes were used to connect settlements, attributing the function of traffic road to the dyke. Due to its location
along the water, the dyke can also fulfil a leisure function (sport fishing, ramp for pleasure craft, etc.).
In the evaluation of safety against flooding the unwanted top event can be described as : The water can
no longer be kept out. Inundation, dyke breach, insufficient dune profile, lock door collapses, etc., are
alternatives (different descriptions) of this event. This does not mean that the analyses of other functions
can’t be presented with the use of fault trees.

Some examples of the liberty a designer has when objects (in Figure IV-7: houses) appear in the dyke,
are sketched below. The dyke has a function as a "landscape or cultural historical element". Note how
different parts of the "classical" dyke profile are replaced by alternative structures, which limit the probability
of occurrence of various failure modes.

Figure IV-9




EXAMPLE OF SEVERAL FAILURE MODES IN ONE CROSS SECTION: A DUNE SECTION

To illustrate several failure modes in one cross section of a water defence, a dune section is considered.
The fundamental lower, respectively upper, limit for the probability of collapse of the section, which can
be interpreted as a serial system') of N modes is:

N N
WIJY Pb,.S Pb section < z; Pb,
i= i=

in which: N = number of modes according to which the section can collapse
P, = probability of collapse in case of collapse according to failure mode i
b section™ total probability of collapse of the section

The lower limit is valid if there is one mode that includes all the others. The upper limit is applicable if
all modes exclude each other. "Including" and "exluding" can be indicated in Venn diagrams (in Figure
V-4 indicated for 3 events. Q is the total failure probability space, which, thus, also includes "no failure".):

1M2m %
J

INCLUDE EXCLUDE

Figure IV-10

Of all the failure modes for a dune EROSION, WAVE OVERTOPPING AND OVERTOPPING satisfy the demands
for the lower limit. The mode DUNE EROSION includes the other two, because in case of overtopping or inundation
abreach will certainly follow as aresult of dune erosion(and/or has followed). The Dune Erosion Guidelines
see to this by requiring the dune crest to be at least 2.50 m above the design water level, or higher if wave
circumstances call for it.

There is less dependence between the failure modes "sliding" and "seepage". The high water level is also
of importance to these modes, but so are the steepness of the inner slope and, for example, the absence
of rabbit burrows. These are two aspects that don’t influence dune erosion. The Dune Erosion Guidelines
aim to keep the probability of failure for these modes small by requiring certain values for the minimum
crest width after erosion (3 m), the maximum gradient of the inner slope (arctan(1/2)) and the minimum
width at storm surge level (10 m; see Figure V-11).

- a L
& 7.

1om <
minimum t
dune profile

i . (3
storm surge level w A
N2

. Figure IV-11

") The dune section is required to collapse either according to the first failure mode or the second
failure mode or ... or according to the N™ mode. This is characteristic for a serial system.
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A formal check on the probability of collapse for these modes is not required by the Dune Erosion Guidelines.
Such a check is only demanded for dune erosion. The probability of failure according to that mode must
be smaller than or at most equal to 107,

A practical result of a probabilistic check on a dune section could be:

I Dune section |

1. dune erosion

10” in a year

2. wave overtopping

10 in a year

3. overtopping

5*10°® in a year

Associated failure probabili

4. sliding 107 in a year (fictitious)
5. seepage 107 in a year (fictitious)
TOTAL: 1.125*107 in a year

The elementary limits of the probablllty of collapse of this dune section are:

Mpb = Pbsectzan = EP

Inserting numerical values from the table above:
10° <P

b section

< 1.125-10°°

Using the previously mentioned considerations concerning the first three failure modes, the upper limit
can be reduced to:
} +P by = 10

The elementary limits of the probability of collapse of this dune section become:
10°5<P < 1,02:10°°

b secnon

S41077+1077 = 1.02-10°3

i=1

Pb section < {M P

By taking correlation between the failure modes into account the upper limit can be decreased further. However,
the limits are already so close to each other that, considering the inaccuracy of the mathematical models,
a further refinement based on statistical techniques (taking into account correlation) is futile.

The probability of collapse due to dune erosion appears to be dominating for the safety of a dune section,
provided the probabilities of failure according to the modes wave overtopping and overtopping are smaller.
The probabilities of collapse due to the modes sliding and seepage should be F4R smaller than the first mentioned
failure probability so as not to endanger the total safety of the section.

This example is based on the assumption that a stretch of dune can be characterised entirely by one single
cross section. This assumption is incorrect, considering the erratic course (both lengthwise and in time!)
of the cross section of the dunes. The course should really be divided into a number of independent sections,
each with its own cross section (and at a certain point in time). The probabilities of failure of all sections
should be combined. The Dune Erosion Guidelines resolved this issue by applying the lower limit approximation
only for the weakest section.

Iv - 8




EXAMPLES OF FAILURE MODES FOR BREAKWATERS

A breakwater can be constructed for various purposes:

the breaking of waves. (lower waves behind the breakwater)

catching (diversion) of sand transport .

guiding the current. (limiting the cross current for navigation)

visual guidance. (marking the navigation channel between shallow areas)

foundation of port lights.

offering a berth ("outer harbour". Beware of settlements! Pipe lines settle along with the breakwater!)

LR 2B K JB 2R 2

Sometimes the following aspects need to be taken into account:
4 recreation.
4 realisation as a prestige object (developing countries).

In many places in the world it is usual to create a (relatively) calm loading and unloading facility for sea
vessels by constructing breakwaters in seawardly direction (see sixth point above), as is the case in Figure
Iv-12.

+ +

Pontenam

Berths

\pueoeouenua

+ +

Figure I'V-12
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In this case, the aim of the breakwater is to limit the duration of high waves occurring in the port basin.
Basically three phenomena contribute towards the generation of waves in a port basin:

¢  diffraction and refraction of waves which enter the basin via the harbour mouth

4 wave transmission through the breakwater and wave overtopping over the breakwater

4 wave generation in the port basin (ships waves and wind waves).

Below, the fault tree for the breakwater is given; underneath the top event one sees all of the failure modes
previously mentioned, except for wave generation in the port basin. (A breakwater can’t do much about
this.)

waves too
high behind
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transmission crest around around
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As for water defence structures, various failure modes which can lead to the unwanted top event, can be
distinguished for breakwaters. However, the relations between the modes and the functional parts are not
so clear. In practice, this leads to a disproportionally large emphasis on the stability of the revetment, whilst
a mode such as "wave overtopping" is underexposed. This last mode is actually the central issue. Again,
it has to be clear what is to be selected as the top event. One defines"failure" as not (no longer) fulfilling
the main function. In this case, the top event is defined as: "disturbance (significant wave height H, ) too
great behind the breakwater".

A TRADITIONAL BREAKWATER can consist of tout venant (unsorted, usually small sized stones from a quarry)
dumped on the seabed, covered with heavier stones, armour units and a toe construction and completed
with a crest (or crown element), as is illustrated below:

Figure I'V-14
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A summary of failure modes of such a breakwater is given in Figures IV-15a to IV-15j.

Fa————

TOE STABIL
Figure IV-15b

SLIDING CROWN ELEMENT ) TOPPLING CROWN
Figure IV-15¢c Figure IV-15d ELEMENT

- -]

Figure IV-15e SLOPE Figure IV-15f

SETTLEMENTS IN SUBSOIL
Figure IV-15¢g

DS PN 0

Figure IV-15h

: BREAKAGE CROWN
Figure IV-15i TETRAPODS Figure IV-15j ELEMENT

Figure IV-15

The mathematical models of several modes are unknown. The squeezing of subterranean cavities in an
area with signs of limestone erosion (Arzew) is an example of such a mode. Many applied formulas (Hudson
or, more recent: Van der Meer) concern the displacement of the armour units (stones in the outer stone
layer). One could call this failure mode "erosion of the outer slope". The mode is found "halfway down
the fault tree". Hence, it only models a part of the top event.
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EXAMPLE OF AN ULTIMATE LIMIT STATE MODE IN A CROSS SECTION

The stability of the armour layer is an example of a U.L.S.. The armour layer must remain stable during
extreme (design) wave loads. The probability of loss of stability can be determined with an Approximate
Full Distribution Approach (level II calculation) or with a level III calculation (Monte Carlo simulation
or Riemann integration). (See Lecture notes b3, Probabilistic Design).

The stability of the armour layer can be modelled with Hudson’s formula: ')

o H>
G - Ps"8 11
)3
K, MJ -cotana.
Py
in which: . = significant (design)wave height [m]
= weight of block [N]

= mass density of the armour stone [kg/m®]

= mass density of (sea) water [kg/m®]

acceleration as a result of gravity [m/s?]
stability coefficient []

outer slope angle [°]

G
Ps
Py
g
KD
o

This formulation of the weight of the block is not directly useful as a reliability function in an approximate
full distribution approach. In such a reliability function the variables may not be independent of each other.

(The variables must be so-called basic variables.) As: G = p,*g*v-4>,G contains the variable p, which

also appears on the right side of Hudson’s formula?)

From the above mathematical modelling the following reliability function can be deduced:

o H>
G =pogvd’ = P8 ;
K, Ps Py -cotano.
Py
from which: Py Py ,
g = p 'li. _K—D-'l.i_ﬂ

with n = cotana.

) Shore Protection Manual, Coastal Engineering Research Center, U.S. Army Corps of Engineers,
U.S.A., 1984, from now on referred to as SPM.

%) N.B. v is a shape factor, which expresses the ratio between the stone size 4 and the nominal diameter
3
w.
D, ,,. The nominal diameter for quarry stone is defined as: D, = . 5; , in which W is the
median stone weight, that is the weight given by the 50% point of the weight distribution. For

43
a sphere with the same weight G = p g'% , sothatv = % = 0.52 if 4 is the diameter of the

spheres. This way the relation is made between concrete elements (tetrapods etc.) and a characteristic
dimension of the element. (See SPM, chapter 7)
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An example considers the calculation of dimension A of the armour units of the "root" of a breakwater
in Karwar, using an Approximate Full Distribution Approach. (N.B. For the "head" of a breakwater different
formulas apply.)

The variables: p,, p,,, 4 , K;,, and n are assumed normally distributed.

For the variable v the deterministic value 0 can be chosen (v = 1 means that the nominal stone diameter,

D, ,,, is selected as the dimension A4.)

The rock to be used is expected to have a mass density of 2650 *¢/,3 , with a standard deviation of 50 *¢/_3.
The mass density of (sea) water is assumed to be 025 *¢/_3 on average, with a standard deviation of 20/ 3.

The expected value of the nominal diameter, p, o is determined in such a way that the "beta- value" is

around .65 ("probability of failure" of approximately 5%, a "prevailing value" for the design of breakwaters).
The standard deviation of the nominal diameter is estimated at 0. m.

K, isthe so-called stability coefficient, which is assumed 4.0 for non- breaking waves. (In this case, a "breaking

wave" means that the wave breaks against the breakwater as a result of the increasingly shallow foreshore
in front of the breakwater. It doesn’t describe the type of breaking as a result of the slope of the breakwater
itself').) The mentioned value K, = 4.0 is considered anaverage . The standard deviation of K, is assumed

0.8.

The breakwater is designed with slopes of the cross section of 1:2, sothat, on average: n = 2.0. The assumed
standard deviation is 0 .

For the conditional distribution for the significant wave heights (long- term wave height distribution, see

§11.3., textaccompanying Figure II-3) during hurricanes, the Fréchet distribution (Figure II-52) is available:
H )—3.388

- _(2.498
FHs|cyclone(H) =€

The probability of a hurricane in one year is 0.5, so that:

_(i)—mss
Fy (H) = 1-|l-e 2498 *0.5

For an Approximate Full Distribution Approach this distribution has to be replaced by an approximative
normal distribution. (See lecture notes b3, chapter 3.)

The Manual on the use of rock ...”) recommends using H,,, which is *) the average of the highest 10% of
the waves, rather than the significant wave height (/) as a design wave. If the waves in the wind field
are distributed according to a Rayleigh distribution: H,; ~ 1.27-H;.

) Manual on the use of rock in coastal and shoreline engineering, CIRIA Special Publication 83 /
CUR Report 154, London / Gouda, 1991, hereafter referred to as: Manual on the use of rock ...

%) Manual on the use of rock ... : § 5.1.3.2. Armour layers
® SPM § 3.2. EXAMPLE PROBLEM 1

Iv - 14




Appendix II-1 made it plausible that the (selected) type of distribution greatly influences the numerical
result of the probability of failure according to a certain failure mode. The (selected) Fréchet distribution
of the yearly maxima for hurricanes has no theoretical base. The Fréchet distribution, just like the least
squares method, is "fitted" around data that have a certain spread around the "fit".

To model both effects (with possibly different distributions and spreads around the selected distribution)
a normally distributed variable, fHs , is added. In practice, there are two "prevailing" methods for such

an additive:
4 addition to ﬂ (Normal distribution: N (st;O,c& ): dummy variable fHs, average 0,

standard deviation s ).

c S
¢ multiplication factor for H, (Normal distribution: N(fHs;1, = ): dummy variable fHs,
- GHs
... Oms
average 1, standard deviation ——).
s
In the first case: __R?
1 JHs 20,
F, (fHs) = ———— [e *dh
e s W2'm _j;
In the second case: 1 k-1 )2t
2 O
fHs -
1 Hy
Fy, (fHs) = f e =/ dh
L T
& W2'm

GHs

The numerical differences (see lecture notes b3, Probabilistic design, pages 2-27 and 2-28: z as the sum
ofxandyandzasaproductof x andy; in this case, forx: read H, and fory: read fHs )asaresult of applying

these models are generally negligible. A conditional probability density of fHs is assumed along (the expected

value of ) the long term wave height distribution . This is illustrated schematically for an exponential distribution
of the long term distribution of significant wave heights, in Figure IV-16.

H

H

12+ L T e HfT

104 BT

81 o ’f it

st

44 |

24 |

0 i P(H>H)
1® 107 102 108 .

Figure IV-16

Here the first method is chosen: adding fH_ to H_ .

The spectra for the breakwater in Karwar were not determined in Karwar, but many miles further to the
north. A separate study with the programme package HISWA concluded that, at the breakwater to be designed,

H, = -0.5+138-H,,-0.08 -H]% could be assumed as the design wave.

Based on the measured values, the reliability function is to be altered as follows:
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1. H,,:=127-(H +fHs)
2. H,:=-05+138 H,,-0.08 Hp
3. z0= 2P K-,

Py

The distribution types, the parameters of the distributions and the initial values (averages) of an approximate full
distribution approach are given in the table below:

Random Distributio | Parameter | Parameter | Parameter | Initial value | Unit
variable n type A B C
X;
Normal 2650 50 0.00 2650 kg/m’®
s
P Normal 1025 20 0.00 1025 kg/m’®
w
11 Normal 1.50..0.05..2.00 0.1 0.00 1.50..0.05..2.00 m
KD Normal 4.0 0.8 0.00 4.0 -
n Normal 2.0 0.1 0.00 1.500 -
_Ii‘) Fréchet 0.5 2.498 3.388 1.6117 m
fﬂ Normal 0.000 0.,5 0.00 0.000 m

The parameters A and B in the normal distribution concern respectively the average and the standard deviation.

For the expected value of the stone dimension, with a probability of P{Z < 0} = 5 %:

p, =p, = 1.6m ("Exactly” 1.62 m.)
is found. - =
The design point values and the contributions of the variances of the variables to the variance of the reliability

function ("the a,.z ") then become:

Variable Value at the Share of
X; design point : X,* | the variance o]
P 2642 kg/m? 0.8%
P, 1028 kg/m?® 0.9%
A 1.589 m 3.5%
KD 3.721 - 4.5%
n 2.00 - 0.0%
H, 454  m 87.6%
fHs 0.136 m 2.7%

) The parameters A, B and C in the Fréchet distribution are defined in the following:
H

-C
F, (H) = 1—{1 e ('5) }*A with 4 = 0.5, B = 2.498 en C = 3.388.
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The greatest advantages of Hudson’s formula are the simplicity and the diversity of armour unit shapes
for which K ;- values have been determined. However, the formula also has many disadvantages such as:

4 possible scale effects as a result of the small model scale on which most tests were carried out.
4 only regular waves were used for the tests.
4 the wave period , the storm duration (or, see § I1.8.: the wave steepness) can’t be taken into account explicitly

4 no description of the level of damages
4 only applicable for permeable cores and for waves that don’t overtop the breakwater.

Hg s=5%

m
T $=2%
14|
10 T
6 -
2.1
it bbb L
200 ' 400 ' 600 'm P
Figure IV-17
The Van der Meer formulas ') partially resolve the abovementioned shortcomings. Two types of waves
are distinguished, namely plunging and surging waves, dependent on the surf similarity parameter & = tana .
H
L

The formulas are sketched in Figure IV-5 for two different levels of damages.

Hs
AD, .,
3 PLUNGING  SURGING
\/ s i 8
§=3
2
1
1 2 3 4 5 6 ¢
Figure IV-18

1) Rock Slopes and Gravel Beaches under Wave Attack, J.W. van der Meer, Dissertation, Delft, 1988
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For a breakwater in deep water (no breaking waves on the foreshore in front of the breakwater) *):
For plunging waves:
02
i] 05

/N

% gapom.

A.l)nSO

For surging waves:

02
H S
S =1.0-P°B) £ . feota-E
A-D,s, VN

The transition between both formulas can be calculated for the critical value of £ :

¢ =[62-P . tana] (Tlﬁ>

In the above formulas:
H, = significant wave height = average of the highest one third of the waves in a wind field

A — pS —pw
Pw
p, = mass density of stone in the armour layer
p, = mass density of (sea) water
. . H 7y
D, ,, = nominal stone diameter = T
s

W,, =medianweight ofastone inthe armour layer, given by the 50 percent value of the weight distribution

P =porosity parameter P = 0 for a breakwater with impermeable core
P = 0.3 for a somewhat permeable core
P = 0.5 for a permeable core
P = 0.6 for a homogeneous breakwater

S, =level of damages S, = 2 for the beginning of damages

S; =5 for moderate damages
S, = 8 for serious damage
S, = 2: filter layer visible
N = number of waves during a storm (Maximum N = 7500)
= slope angle

=

§, = surfsimilarity parameter =

T, = average wave period

s, = Wwave steepness = —=
P
2
_ . _&7
L, =wave length (in deep water) = 5
T

g = acceleration as a result of gravity
T, = period with which energy density in the spectrum is maximum
é”IC‘

= critical surf similarity

1) Rock Slopes and Gravel Beaches under Wave Attack, J.W. van der Meer, Dissertation, Delft, 1988
en: Manual on the Use of Rock ... § 5.1.3.2 Armour layers
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Analogous to assumptions for breakwater design according to the Hudson formula, the following distribution
types, distribution parameters and initial values (averages) for an Approximate Full Distribution Approach
can be selected for breakwater design according to the Van der Meer formulas:

Random Distributio | Parameter | Parameter | Parameter | Initial value | Unit
variable n type A B C
Normal 2650 50 0.00 2650 kg/m?
s
P Normal 1025 20 0.00 1025 kg/m®
w
‘i Normal 1.62 0.1 0.00 1.776 m
Sd D] Normal 3.0..0.05..4.0 0.02 0.0 3.0..0.05..4.0 -
n Normal 2.0 0.1 0.00 1.500 -
Hs 2 Fréchet 0.5 2.498 3.388 3.2121 m
f& Normal 0.000 0.5 0.00 0.000 m
£ Normal 0.45 0.05 0.00 0.45 -
s_p_ B Normal 2.82 0.724 0.00 2.82 -

The parameters A and B for the normal distribution concern respectively the average and the standard deviation.

The following constants are used: N = 7500 (max. number of waves)
2=9.82"/2

The reliability function can be derived as follows:

Z = A*D,,~-DELTA_D

Inthis DELTA_D has to be determined with the Van der Meer formula for plunging waves (surging waves
don’t occur in this calculation), hence:

ns50
pw Nstab

H s ', = 2 2 4 (The beginning of damages in the Van der Meer formulas) corresponds to K, = 4 for
nonbreaking wavesand K, = 3.5 for breaking waves ("no damages" in the Hudson formula). With K, = 4
the expected stone dimension p,, o - 1.62 m was found using the Hudson formula This dimension

is also chosen here. The level of damages is determined by try and error with an assumed probability
of P{Z<0} =5%.

%) This was also the starting point for the calculation of the stone stability according to Hudson’s formula
(page IV-12/14). The same probability distribution is used in this case.

%) The distribution of the wave steepness is taken from § I1.8., page II - 36, Figure II-54.
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02
6.2-P°~18-[ £
inthis N, , ‘/N , SO:
V&
psmpw Hfo.ﬁ

Lp031) [—L_
mits § < 62-F Lt (P+°'5)
Jn

n50 02
& 62-po1s| 4
/N

(N.B. N is the number of waves, # is the cotangent of the slope gradient.)

1 1

Now &, = tana _ = , So that:
\/E; n- H, e Hy2'm
‘J L, g7,
1
Hy, —
- H,2'm
2
Z=fﬂ“i-1)n50— N N\ g7,
P 02
) 6,2-P0I8.| 4
/N

The following relation between the peak period and the average period is assumed: ')
T

- _P
" 1.35
SO:
HsO' TP
Hy2m
B 1.35:n"
7 = ps pW.D _ \ \ 8

P 6.2-P°-”‘-[ i]

/N

For the determination of the design wave height, the significant wave height on the breakwater spot has
to be taken into account again:

H,=-05+138-H -0.08 -Hsz. (N.B. now it is not necessary to take H, into account.)

T
") Derelation: —£ = 1.35 is determined as an average over many spectra. An order of magnitude

m

is taken from page I1I-29, Figure II-37-1-a, where from T, = 10.5and T,, = 8.4, T, = 1.25T,
is found. The spectrum of the wave steepness depicted next to it, Figure II-37-2-a, measured the
next day, is a different realization.
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With aprobability P { Z<0} = 5 % (equaltothe value in the calculation with Hudson’s formula) the expected
value S, is found: B, = 2.5. This means practically "no damage" (S, = 2 a 4 for "no damage").

With the input data presented in the table on page IV-16 the following design point values and the following
contributions of the variables’ variances to the variance of the reliability function (" the uiz ") are found

(still assuming P{Z<0} = 5 %)

Variable Value in design Share in the
X, point: X;” variance aiz
P 264478  kg/m’ 0.4%
P, 1027.15  kg/m’ 0.4%
A 1.599 m 1.7%
S, 25 - 0.0%
n 2.0 - 0.0%

Hs 4.666 m 92.6%
fHs 0.35 m 2.7%
P 0.447 - 0.2%
s, 2.653 - 2.0%

These results can be compared with those in the table at the bottom of page IV - 16.

A failure probability (in one year) of 5% (as is presumed for both the design according to the Hudson formula
and the design according to Van der Meer’s formulas ) seems rather high. Considering the "lifetime" of
abreakwater is in the order of 20 years, the probability of failure of a breakwater in its life can be calculated

as follows:

Py = 1-P % = 1-(1-0.05)% ~ 1-0.36 =~ 0.64

The probability of failure can be calculated exactly by using the table at the top of page IV -16 with p s, = 2.5

as the average of S, and by opting for the special distribution of H._ :

o - h-hee B8 o]

With these data, a probability of failure (P{g <0}) of 58.5% is found. This is a little different from the

64% found earlier.

Maybe it is economical to construct breakwaters with such a high failure probability. This should be subject
to further investigation.
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RELIABILITY FUNCTION "HUDSON"

FUNCTION Z(X: ARY): EXTENDED;
VAR
Rho a, {mass density stone}
Rho w, {mass density water}
D, {stone dimension}
k d, {damage factor}
N talud, {cotangent slope angle}
H sign, {significant wave height on measurement location}

H_so, {significant wave height near wave breaker}
fHs {uncertainty modelling H_s}
: EXTENDED;
BEGIN

Rho_a:=X[1]; Rho_w:=X[2]; D:=X][3]; k_d:=X[4];

N_talud:=X[5]; H_sign:=X[6]; fHs:=X[7];

H so:=,27 * (H_sign + fHs);

H_so0:=-0.5+.38 * H_so - 0.08 * SQR(H_so0);

Z:=(Rho_a-Rho w) * D * Power((k_d*N talud),/3)/ Rho w - H_so;
END;
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RELIABILITY FUNCTION "VAN DER MEER"

Function Z( X : ARY ):EXTENDED;
{ wave climate height and period }
{ break water stability Karwar }

VAR
H s, fHs,H so,S p,L _p, T p,N_talud, S, P, Delta_D, rho_a, rho_w, Delta, D : EXTENDED;
PROCEDURE Exchange;
BEGIN
H s =X[1];
Sp =X][2];
N_talud =X[3]
S = X[4];
rho_a =X[5];
rho w = X[6];
P =X][71];
D =X]8];
fHs =X]9]
END;

PROCEDURE Riprap( Hs, Tz, N_talud, P, S: EXTENDED;
VAR Delta D: EXTENDED );
CONST
{ start of damages S=2 ; moderate damages S=5 ; failure S=8 }
N =7500; { number of waves }
{ impermeable core P=0.; permeable core P=0.5 ;
homogeneous core P=0.6 }
g=9.82;
VAR
L _z ksi_z, ksi_criterium, N_stab: EXTENDED;
BEGIN
L_z:=g* SQR(Tz)/(2*pi);
ksi_z:=(/N_talud) / SQRT( Hs/L_z);
ksi_criterium := Power(6.2*Power(P,0.3)/SQRT( N_talud ), /(P+0.5));
IF ksi_z <ksi_criterium THEN
N_stab := 6.2 * Power(P,0.8)*Power(S/SQRT(N),0.2)/SQRT(ksi_z)
ELSE
N_stab := Power(P,-0.3)*Power(S/SQRT(N),0.2)*SQRT(N_talud)*Power(ksi_zP);
Delta D :=Hs/N_stab
END; {OF PROCEDURE RIPRAP}

BEGIN
Exchange;
H s:=H_s+ fHs;
L p =00 * H_s/S_p;
T_p =SQRT(L_p/.56);
H_so:=-0.5+.38* H_s-0.08 * SQR(H_s); { see hindcast study DHL }
Riprap( H_so, T_p/.35,N_talud, P, S, Delta D );
Delta :=rho_a/tho w -;
Z :=Delta * D - Delta_D
END;
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EXAMPLE OF A SERVICEABILITY LIMIT STATE MODE : CALM POSITION OF SHIPS IN AN OUTER PORT
WAVE TRANQUILLITY IN THE PORT BASIN

For rapid and safe handling of goods in a port basin a certain degree of calm is required. This calm can

be disturbed by three causes (compare page IV - 11):

a. by waves which enter via the harbour mouth. This is a combined effect of refraction and diffraction.
Calculation programmes are based on the assumption of monochromatic waves.

b by transmission of energy or by wave overtopping. A part of the wave energy that hits the breakwater
will enter the port basin through the breakwater. Transmission can be limited by a good design and
good realisation. Waves which overtop the breakwater, also transmit energy into the port basin. The
permissible wave overtopping has to be established in(physical) model tests.(N.B. in these tests disturbance
in the port due to overtopping can’t be separated from disturbance by transmission.)

c. bywaves which are generated in the port basin by wind and/or vessel movements. Usually these causes
don’t contribute much to the disturbance. The wind’s fetch over the port basin is generally too limited
to generate waves of any significance and the velocity of the ships in te basin is usually too small,
also leading to the generation of little wave overtopping.

The effects (consequences) of the various causes will first be treated separately and consequently combined.
The design of the naval port in Karwar (Figure IV-19), on the west coast of India, is selected as an example.
For comparison some data are presented concerning the port in Ennore, which is located on the east coast
of India (Figure IV-20 = Figure IV-12).

AIM OF THE CALCULATION

Aim of the calculation is to check the assumption that the significant wave height in certain points of the
port basin are not exceeded more than a certain amount of time.

The "check up" is based on a certain port and breakwater layout, whereby the cross section of the breakwater
(which determines the permeability and the wave overtopping) is also considered fixed. I.e.: the design
is fixed and the probability of a certain (still considered permissible) significant wave height, which is exceeded
too often with this design, is to be ascertained. If the probability is considered too great, the design needs
to be adjusted.

BOUNDARY CONDITIONS

The "certain (still considered permissible) significant wave height" and the maximum allowed duration
inthe port are established. For different points in the basin these can be different wave heights and a different
duration can correspond to every point.

For freight shipping (port of Ennore), for example, the following situations are accepted for NO MORE THAN
5 days a year:

» for the handling of coal (points A and B in Figure IV-20) a H, greater than 0.5 m,

» for the turning circle (point G in Figure IV-20) a H_ greater than 0.9 m and

» for the rest (points C,D and E in Figure IV-20) a H_greater than 0.6 m.

For the handling of arms smaller permissible wave heights apply. For the landing stage near the points J
and K in Figure IV-19 the requirements for the significant wave height in the port are:

* during 95% of the time (247 days a year) it may not exceed 0.2 m,

» during 4% of the time (15 days a year) it may be in the range 0.2 to 0.3 m and

¢ during 1% of tke time (4 day a year) it is allowed to exceed 0.3 m.
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That’s all, as far as the data connected to the "strength side" of the design is concerned. For the "load"
the wave boundary conditions have to be taken into account. Along the Indian coast (both for the Arabian
Gulf (port of Karwar) and for the Gulf of Bengalen (port of Ennore)) the wave climate can be summarised
in two different wave spectra: one for the southwestern monsoon and one for the northeastern monsoon.
For the port of Karwar, the data presented on page II - 29 are assumed. The various measured spectra (of
which two are given on page II - 29: one measured during the southwestern monsoon and one during the
northeastern monsoon) were averaged, as were the directions of wave incidence. For the southwestern
monsoon, this resulted in the schematised spectrum in the top left corner of Figure IV-21 with the corresponding
directions spread as sketched below. For the northeastern monsoon these data are presented in Figure IV-21
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CALCULATING REFRACTION/DIFFRACTION

To calculate refraction and diffraction different programmes are in use. DIFFRAC, DIFHA, HISWA and
PHAROS are amongst them. These programmes require the following input:

«  wave parameters (period, height and angle of incidence relative to the harbour mouth)
o shape (and, to calculate refraction also the depth) of the port basin
« reflection coefficients (amount of energy reflected by the basin edges).

The output consists of the wave height in various locations in the port basin as a fraction, K, ofthe incoming

wave. The selected locations in the port basin are points A to K in Figure IV-19.

The enlargement factor K is:

Ka( f ) = Hreﬁ;;ﬁoﬂdWaction( f )
incoming( f )

with:  H, 6 cionagracion( S ) = the refracted/diffracted wave height in metres
H,-nmm,-,,g( ) = the height of the incoming wave in metres
K.(f) = enlargement factor for the wave height

Enlargement factors are calculated for many wave periods, from 2.5 s to 40 s. Thereby the corresponding
directions of incidence are taken into account. Some calculated values of K, are given in the table below:

Period/Direction 8s 8s 8s 10s 10s 10s 128 12s 12s 20s 20s 20s

Location in port basin 2100 2250 2400 2100 2250 240c 2100 2250 2400 2100 2250 2400

0.023 0.293 0.151 0.034 0.230 0.129 0.198 0.200 0.099 0.367 0.192 0.123
0.190 0.284 0.177 0.073 0.168 0.026 0.128 0.135 0.086 0.053 0.135 0.079
0.214 0.246 0.154 0.071 0.168 0.080 0.141 0.146 0.105 0.164 0.177 0.156
0.058 0.062 0.091 0.055 0.072 0.031 0.082 0.163 0.064 0.097 0.235 0.110
0.161 0.284 0.253 0.043 0.043 0.037 0.015 0.019 0.068 0.040 0.040 0.105
0.291 0.260 0.283 0.074 0.102 0.035 0.044 0.140 0.071 0.061 0.032 0.051
0.037 0.074 0.077 0.015 0.051 0.043 0.002 0.021 0.058 0.110 0.100 0.024
0.034 0.020 0.059 0.062 0.061 0.050 0.054 0.032 0.036 0.059 0.022 0.012

TQT@moOw»

Enlargement factors K in various locations in the port bain for different directions of incidence.

The calculation results greatly fluctuate. This is not the result of errors in the calculation. In nature, such
fluctuations are found too, judging by the results of prototype measurements in the port of Visakhapatnam')
in which the square of the enlargement factor is given:

)  Gadre, M.R. and C.N. Kanetkar, Wave transmission in the Visakhapatnam Outer Habour, Central
Water and Power Research Station, Pune, India.
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The energies per frequency band of the (average) energy density spectrum (average of many measured
spectra such as on page II - 29) are multiplied by THE SQUARE OF the calculated enlargement factor K .

From that, (taking into account the angle of incidence of in the incoming wave) the energy density spectrum
of the waves in the considered location in the port basin during the considered monsoon period follows.
Both the spectrum of the incoming wave and that of the wave in the considered location in the port basin
can be characterised by their respective significant wave heights. The ratio between these significant wave
heights is an enlargement factor calculated on grounds of the (average) spectra, but now for the significant
wave. This enlargement factor is indicated by K - The calculation according to the above method is

known as "enlargement factor calculated with spectral analysis". The calculation scheme is given in the
figure below.
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Taking into account the correct directions, incoming wave heights, periods and depths and averagingthe H ,, -

values gives the following results for the southwestern monsoon period:

Considered location K, ,

s

0,03
0,03
0.04
0.05
0.07
0.06
0.08
0.02
0.04
0.03

Aomammgogaow»

CALCULATING TRANSMISSION AND OVERTOPPING

When waves hit a breakwater a part of the wave energy is either reflected or dissipated in warmth and
sound, or is transmitted, or a part of the wave overtops the breakwater. How the energy of the incoming
wave is divided in reflection, dissipation, transmission and overtopping depends on:

. the parameters of the incoming wave (period, height and water depth)

. the type of breakwater (rough or smooth, permeable or impermeable)

. the geometry of the structure (slope, height of the crest relative to the water surface, width of the
crest)

The number of parameters which describe the influence of overtopping and transmission are thus very
large.

In model tests, one can’t separate the influence of overtopping and of transmission on the wave height

in the port basin. (By placing partitions in the harbour mouth one can eliminate refraction and diffraction
influences.) Many laboratory tests have been carried out, but they usually involved monochromatic waves.
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Powell and Allsop ") investigated transmission/ overtopping for rubble mound breakwaters and for irregular
waves. The results are given in Figure IV-24.

H
sport
H
ssea
1,00
0105 See e 0, et
0, 00 i w - L] Tees 89
-1 0 +1 H crest
Ry
Figure 1V-24
Here: H_ =thesignificant wave height in the port basin, caused by transmission/ wave overtopping.
port

H, = the significant wave height of the incoming wave.

sea

H___=the crest height of the breakwater, relative to the still water level.

crest

.. = the height of the wave run-up which is exceeded by 2% of the wave run-ups.
% P p

With these data the mathematical model for the significant wave height as a result of (relative)
overtopping/transmission is:

Scea 2% %

HS Hcrest 2 HCreSt
Hpor' =0.05+0.12-] ——=2-1| provided -05<«—"<+1

The horizontal right part of the graph indicates that there is always a minimum of 5% transmission/overtopping
of the energy of the incoming wave, independent of the height of the crest of the breakwater.

) Powell, K.A. and N.W.H. Allsop, Low-crest breakwaters, hydraulics performance and stability,
Report SR 57, Hydraulics Research, Wallingford, July 1985.

IV - 29




For the mathematical modelling of the wave run-up, R,,,, physical model research carried out by Delft

Hydraulics Laboratory ') is used. The results of the research are presented as a bent straight line in Figure
IV-25.

R2%
H S
009> .. OD..' ':.... .:
0% "0 e °°
o...'
g
Figure IV-25
With: &  =the breaker parameter, equal to fan @

s
H_ = the significant wave height of the incoming wave.

a  =the slope gradient of the breakwater on the sea side.
s =wave steepness of the incoming wave.
The other parameters are as defined before.

With the results in Figures IV-24 and IV-25 a level II- calculation can be carried out. By varying the crest
height a fraction of the exceedance time of a certain significant wave height in the port basin can be established.
Three crest heights (7, 8 and 9 m above C.D. =Chart Datum) with a standard deviation of 0.2 m have been
considered. The selected still water level was C.D. + 1.0 m with a standard deviation of 0.1 m. The results
of the level II calculations are listed in the following table:

H 0.1m 02m 03m 04m 0.5m

port

month / crest

height

June 7m 4.0010! 5.71072 2.3¢10 1.1210 5.3¢10°3
8m 4.0010! 2.8¢10? 1.0-10? 4.541073 2.11073
9m 4.010! 1.5¢10 4.7+10 1.9¢107 8.9¢10*

July 7m 5.5¢10" 2.5¢1072 5.6°1073 1.621073 5.3¢10*
8m 5.5¢10! 8.0+107 1.510° 4.0-10* 1.2¢10*
9m 5.5¢10! 2.8:103 4.3¢10* 1.0-10* 2.9¢10°

August 7m 2.2¢107! 1.2¢102 3.5¢10° 1.2.103 4.9¢10*
8m 2.2¢10! 4.84103 1.2¢103 3.8-10* 1.4.10*
9m 2.2¢10" 2.0°10° 4.1-10* 1.2.10" 4.310°

September 7m 2.6210? 1.5-10"* 1.9¢10° 3.5¢10 7.4107
8m 2.6210 3.1-10° 3.1-10¢ 5.00107 9.8¢10%
9m 2.6°107? 3.4+10°¢ 5.5¢107 7.810% 1.4¢108

) Golf run-up on statically stable rockfill slopes under wave attack, slopes of loosely dumped materials
report on model investigations, M1983 part I1I, (in Dutch: Golfoploop op statisch stabiele strotsteen
taluds onder golfaanval, taluds van los gestorte materialen) Delft Hydraulics Laboratory/ Rijkswaterstaat
DWW, The Netherlands, June1988.
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WAVE GENERATION IN LOCAL WIND FIELD

If a storm blows in the longitudinal direction of the port (east southeastern or west northwestern storm
in Karwar, in the port of Ennore wind waves generated in the port don’t need to be taken into account)
wind waves of some significance can be generated. Calculations based on the JONSWAP spectrum and
with the following parameter values:

. fetch =4000 m

. wind velocity =10 m/s

were considered representative for storms from the west, which occur approximately 10 days a year. The
results of these calculations are:

. significant wave height: 0.34m

. peak period: - 2.1s

During the months December and January only less high and slightly longer waves occur. A significant
wave height of 0.2 m will be taken into account with (wherever necessary) a wave period of 3 s.

COMBINATION OF EFFECTS

Due to the occurring phase differences, it is not correct, to simply add the energies (or the squares of the
wave heights) of the different significant waves. By doing this regardlessly (and by taking the square root
of the sum of the squares), an upper limit for the significant wave which is exceeded a certain percentage
of time (number of days a year) is acquired. The following table gives the results of level II calculations
for a crest height of C.D. + 8 m. An enlargement factor, X, of 0.07 has been used. (See the table on page

IV - 28.) This value is considered representative for the points A to H in Figure IV-20.

months H percentage
“porttol exceedance
June 0.20 m 23
030m 5.5
0.50 m 0.7
July 0.20 m 24
0.30 m 2.6
0.50 m 04
August 0.20 m 9
030m 1.2
0.50 m 0.1
September 020 m 1
030 m 0.4
0.50 m 0.0

From the previous table, the following table was derived. The latter gives the calculated total number of
days that a certain significant wave height on the north side (points A to H in Figure IV-20) of the port
of Karwar is exceeded, as well as the maximum number of days during which the considered significant
wave height was allowed to be exceeded.

H Number of Assumed
port ot days a year number of days
exceedance of exceedance
in a year
0.20 m 17 18
0.30 m 3 4
0.50 m 0 1

Iv - 31




LONGSHORE TRANSPORT WITH A BERM BREAKWATER
THE BERM BREAKWATER

A morerecently applied type of breakwater is the BERMBREAKWATER. Its core consists of tout venant.
The core is covered by a cap made of coarser stones, however, not so coarse that no transport (profile change
of'the cap) could take place. The breakwater cap is constructed with the natural slope angle. Subsequently,
the waves will bring about an equilibrium profile, as happens for dunes. The fine tout venant in the core
reduces the height of the incoming waves.

CONSTRUCTION PROFILE

DYNAMIC EQUILIBRIUM PROFILE

Figure I'V-26

If the core becomes too low or too high as a result of settlements or other causes, waves will penetrate
into the coarser stones in the cap. A fault tree for "wave behind the breakwater too high as aresult of transmission
and/or overtopping" is given on the next page. However, more modes are possible:

EROQOSION

WAVE TRANSMISSION THROUGH CAP BECAUSE LAYER OF CAP STONES INSUFFICIENT

Figure IV-27a CORE IS TOO LOW Figure IV-27b

: ERQOSION IN FRONT OF TOE

) TOE EROSION "
Figure IV-27¢c Figure IV-27d

SLIP CIRCLE QUTER SLOPE SLIP CIRCLE INNER SLOPE

Figure IV-27e

Figure IV-27f

MICRO INSTABILITY

Figure IV-27g
Figure IV-27h
THROUGH SUCTION OF CORE MATERIAL
Figure IV-27i
Figure IV-27
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A danger with berm breakwaters is that the equilibrium profile in a cross-section doesn’t lead to a minimal
weight of the rock in the outer layer. After all, a dune is also stable.

With light stones and not totally perpendicular wave incidence, longshore transport can occur. In the following
article') the evaluation of the longshore transport is discussed.

) Vrijling, J.K., E.S.P. Smit, P.F. de Swart, Berm breakwater design - the longshore transport case:
a probabilistic approach, Coastal structures and breakwaters, Thomas Telford, London, 1991.
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BERM BREAKWATER DESIGN,; THE LONGSHORE TRANSPORT TRANSPORT CASE; A PROBABILISTIC APPROACH

by

prof. drs. ir. J. K. Vrijling, Delft University of Technology, Stevinweg 1,2600 GA Delft, the Netherlands,
ir. E.S.P. Smit, HASKONING, Royal Dutch Consulting Engineers and Architects, Barbarossastraat 35,
P.O. Box 151, 6500 AD Nijmegen, the Netherlands and

ir. P.F. de Swart, Civil Engineering Division, Rijkswaterstaat, P.O. Box 20000, 3502 LA Utrecht, the Netherlands.

SYNOPSIS

In the last decade a renewed interest has been shown for the berm breakwater concept.
In the design of a berm breakwater many limit states have to be checked: stability of the
armour layer in both cross and longshore directions, compliance of the secondary layers
with filter rules, stability of the toe under wave attack, geotechnical stability, overtopping,
etc. In this paper attention will be focussed on the stability of the outer armour. Special
attention is given to the longshore transport case. It will be shown that only a probabilistic
approach provides an insight into the sensitivity of the associated failure mechanism.

THE DYNAMICALLY STABLE ARMOUR LAYER

1. The design of the armour of a berm breakwater was brought on a more scientific footing
by Van der Meer (ref.1), who developed a computational model to predict the cross-sectional
profile ofthe armour layer after the reshaping process. The variables governing the reshaping
process and the final profile are:

« size of the armour units, D,s, [m],
« relative mass density of armour stone
in water, A [,
« significant wave height, H, [m],
* average wave period, T, [s],
» number of waves, N [
« angle of wave attack, 0 [degr.],

« water depth in front of the structure, h [m].

2. Arough indication of the stability of the armour rock is given by the ratio H,= H/AD .
According to Van der Meer this ratio should lie in the range of 3 - 6 for berm breakwaters.
It should be noted, however, that in two-dimensional flume tests structures with higher
H, ratios can be perfectly stable under wave attack after the reshaping process has taken
place. Sand dunes, where this ratio exceeds the value of 300, provide an example. In such
cases the longshore transport of material quickly gains in importance.
Two-dimensional model tests on berm breakwaters confirm this hypothesis. It is very
difficult to destroy a model berm breakwater by incoming waves, unless the structure
is overtopped. Overtopping waves can easily damage the back slope of the breakwater.
Consequently, an erosion process may start that quickly causes a breach in the breakwater.

LONGSHORE TRANSPORT OF THE ARMOUR LAYER

3. The reshaping process of the cross-section thus places no obvious upper limit on the
H, ratio. However, for high values of this ratio a considerable longshore transport will
take place when the waves attack under an angle. In cases where the amount of material
available on the weather side is insufficient the breakwater will collapse.

4. The longshore transport case is not well researched for berm breakwaters. Burcharth
and Frigaard (ref.2) made a first contribution. On the basis of Burcharth's data and data
gained in tests performed by Van der Meer on a berm breakwater design of the authors,
amodel of the following form is proposed to predict the longshore transport after the reshaping
process has taken place:
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S=A(HT,-B)Y  for HT,>B

1
S-0 for 0<HT <B )
where: S =longshore transport rate
of primary armour material [stones/wave)]

TO = Tp‘/-(g/D n50) [']

T, = spectral peak period [s]

g = acceleration due to gravity [m/s?]

A,B,C =4.8*107,100.0, 2.0 (empirical constants)

A plot of the proposed function and the data points is given in Figure IV-29. It is clear
that the theoretical understanding should be improved and that the number of data points
could be increased considerably.

5. The uncertainty reflected by the difference between the data points and the function
can be modelled by varying the constants A and B (Figures IV-30 and IV-31) by 50%
and 20% respectively. If these numbers are interpreted as variation coefficients the standard
deviation of the transport at any value of H,T, can be calculated by means of the error
propagation law. For H T, =245 the mean value of S is 1.009 stones/wave and the standard
deviation amounts to 0.57 stones/wave. The limited number of data points prohibits a
more thorough statistical analysis.

THE WAVE CLIMATE

6. For the wave climate a typical monsoon climate is adopted. During three months the
South-westerly monsoon is blowing, causing a wave field with an average H, of approximately
2.0 m.
During the other months of the year the sea is very calm and the breakwater is not damaged
during this period.

7. The three-hourly observations of the monsoon wave climate are modelled by the following
Gumbel distribution (Figure IV-32 = Figure II-112):

x -4

B B
F Hs(x) =e ¢ @
where: A=1941and B=0.284

The deep water wave steepness H/L, defined on the spectral peak period is independent
of the wave height and also modelled by a Gumbel distribution (Figure IV-33) with parameter
values of A =0.01 and B =0.00167.
On the basis of a visual comparison the significant wave height can be equally well described
by a Weibull distribution (Figure IV-34):

o

- B

F Hs(x) =1-e
where: A=1.50,B=0.675and C=1.866

©))

8. Every year during the monsoon the coast is assumed to be hit by one hurricane. The
significant wave height during the hurricane that lasts 24 hours is modelled by a Fréchet
distribution (Figure IV-35):

~ (x - A )“C
- B
Fu) = e

where: A=0.00,B=2.498 and C =3.388

@
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The wave steepness H/L, follows a Normal distribution with p = 0.028 and ¢ = 0.00724
(Figure IV-36) and is independent of the wave height.
9. The significant wave height at the breakwater is limited to 5.0 m by water depth.
10. The number of individual waves during the monsoon season amounts to 960,000.
During a hurricane it is assumed that 10,800 individual waves hit the structure.

THE BREAKWATER DESIGN

11. The basic breakwater design criteria are as follows. The breakwater was designed
for a lifetime of 50 years. The rock size for the berm was designed on the basis ofa 1/100
year design significant wave height of H, = 5.0 m.

A value of H,=2.75, which is for berm breakwaters rather conservative, led, in combination
with a A value of 1.57, to a choice of D 5, = 1.15 m (Ms, = 4.0 tonnes).

12. The total longshore transport during the planned lifetime of the structure can be calculated
by choosing an appropriate design wave and the number of waves in the lifetime Ng.
S, = Nhfe x §  [stones] o)

13. The choice of the appropriate design wave for this case is far from easy. For the monsoon
H;and T, values of 2.80 m and 13.3 s (1% wave steepness), a condition that is exceeded
during 5% of the time, seem a reasonable choice. However, as for this combination H, T,
equals 38.85, the resulting longshore transport according to Equation (1) is zero.

The hurricane design condition of H;= 5.0 m and T, = 10.7 s is characterised by a value
H,T,of 86. Asthis value is smaller than 100 no transport is predicted for hurricane conditions
either. So, no provision for the nourishment of the berm at the weather side of the breakwater
has to be made.

However, it is imaginable that the design values are exceeded or that the coefficients of
the transport equation (1) differ from the most likely values. Then the berm at the weather
side might be quickly eroded away.

PROBABILISTIC APPROACH; A FIRST STEP
14. When the probability distribution of the wave height is known, the expected value
of the longshore transport, expressed as the number of stones passing through a certain
cross-section during the lifetime, should be calculated according to:
H

s,max  Sp,max
- c
B(S,,) = { [ Ny AHT,-B) £y (H) £, (5) db ©
where: f;(H)= the probability density function (pdf) of H,
f,(s) = the pdf of s, the wave steepness defined on
T, at deep water

15. The expected value of the number of stones transported during the monsoon period

over the entire lifetime of the structure can be calculated by substituting the pdf's of significant
wave height and wave steepness, related to the Gumbel distribution (2), in the integral
(6). When the integration is performed with the transport relation given by (1) and with
the upper limits H; ,,, = 5.0 m and s , ., = 0.05, the expected value of the transport is 435
stones. This amount increases to 551 stones, when the integration is extended to H, ,,
=7.0m.
In the longshore transport calculation of Equation (6) this H; of 7.0 m is reduced to 5.0
m due to water depth limitations (see Paragraph 9). However, the influence on H, T, of
a deep water H; > 5.0 m emerges if it is assumed that the deep water wave maintains its
period while travelling to the breakwater location.

16. The difference between the result of the deterministic calculation of Paragraph 13
and the result reached here is caused by the fact that now the full range of wave height
and steepness values are taken into account by the integration.

17. If the Gumbel pdf of the significant wave height is replaced by the pdf related to
the Weibull distribution (3), the integration yields an expected value for the transport
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of only 4.6 stones during the lifetime. An increase in the upper limit of integration to 7.0
m now has a negligible effect.

So, the expected value E(S;;) of the transport appears to be very sensitive to the form
ofthe pdf of the significant wave height (Gumbel or Weibull) and the upper limit of integration
H; ..., Which may point at an important question point in the design.

18. The expected value E(S;;;) of the transport is also dependent on the uncertain values
of A and B in Equation (1). If for the coefficients in the transport relation the following
safe values are chosen: A =7.2*107%; B = 80, then the expected value of the transport for
the Gumbel distributed wave height becomes 4,747 stones or 4,747 * M,,= 19,000 tonnes.

19. A similar approach is followed for the hurricane wave climate by substituting in
the integral (6) the Frechet pdfrelated to (4) for the significant wave height and the Normal
pdf for the steepness. Also in this case the transport is sensitive to changes in the upper
limit of integration and to the substitution of safe values in the transport relation:

Hurricane transport upper limit H, ,,,,
15m 17m

average transport relation 668 841

"safe" transport relation 3,625 3,837

20. As the stone transport by the monsoon and by the hurricane have to be added to find
the amount of nourishment at the weather side, the following matrix should form the basis
of the design.

Total transport upper limits H,,,,
low high

average transport relation 1,103 1,392

"safe" transport relation 8372 8,978

The designer is confronted with a difficult decision.

PROBABILISTIC APPROACH,; A SECOND STEP

21. The correct solution for the problem posed above is found by introducing the uncertainties
described into the design equations in the form of additional pdf's.
Moreover, the uncertainties in the A and D, 5, values (hidden in the dimensionless quantity
H,T,) that will be realised during construction, and the exact amount of nourishment that
will be supplied, can be included.

22.Bymeans of a Level Il probabilistic calculation (ref.3) the influence of the uncertainties
in A, D, the coefficients A and B in the transport relation and the integration limits H, .,
on the expected transport, can be calculated. If the amount of material at the weather side
to nourish the longshore transport is known, the probability of failure can be established.

23. To this end the following reliability function is defined:

Z = Nourish - E(Shfe’mm‘) - E(S,ife,hm.) [stones] )
where: Nourish = nourishment at t=0 [stones]
E(Siie.mons) = expected value of the transport over the lifetime due to monsoon
waves [stones]
E(Sife purr.) = expected value of the transport over the lifetime due to hurricane

waves [stones]

24. For the constants A and B of the transport relation normal distributions are adopted
with the following parameters based on the scarce experimental data:
n o
A 4.8*%10° 2.4*10°
B 100.0 20.0
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25. The uncertainties of the stone size D,;, and the relative density A are also modelled
by normal distributions. The values for the standard deviations are based on the experience
of the authors:

n c
D, 1.15 0.058
A 157 0.060

26. The upper limits of the integration are set by the maximum significant wave heights
that will occur during the monsoon and during the hurricane in the lifetime of the breakwater
of 50 years. These maximum significant wave heights during monsoon and hurricane over
the entire lifetime follow extreme value distributions.

The lifetime contains 50 years * 3 months * 30 days * 24 hours/ 3 hours = 36,000 independent realisations
of the monsoon wave climate described by the Gumbel distribution (2), so the highest
significant wave is distributed according to:

Fy @) = Fy()" @®

where: N =136,000

Algebraically, the extreme value distribution is again a Gumbel distribution with the coefficients
A'= A + BIn(N) and B'=B.

The upper limit of the hurricane climate is modelled following the same reasoning for
N =50 independent storms during the lifetime. The exact extreme value distribution is,
in this case, easily derived to be a Fréchet distribution with parameters A'= A, B'= B*N©
and C'=C.

27. The number of stones that is provided at the weather side of the breakwater at t=0
to provide nourishment for the transport occurring over the lifetime (the resistance side
of'the design problem), is modelled by a Normal distribution to account for construction
tolerances:

n c
Nourish 2,500 100 [stones]

28. The Level II calculation shows (see Table 1) that the probability of failure is 28%
in the lifetime of the breakwater. In this case, failure implies that the extra amount of nourishment
provided at the time of construction is completely taken away during the design lifetime.
The Level I calculation also shows the contributions of the variables to the standard deviation
of Z in the column o?. The values in the column indicate that the greatest contribution
comes from the B coefficient in the transport relation, with the D, in the second place.
The integration limits, formed by the maximum significant wave heights due to the monsoon
and the hurricane during the lifetime, are relatively unimportant.

29. From the table the conclusion may be drawn that further research should be done
to establish the transport relation, especially the start of the movement modelled by the
coefficient B. During construction the D, of the rock going into the berm should be strictly
controlled by quality assurance measures to prevent errors in this variable to the lower
side.

CONCLUSIONS

30. The paper shows that although the design of the cross-section of a berm breakwater
is well defined by the work of Baird and Hall (ref.4), Van der Meer (ref.1) and others,
the longshore transport caused by angular wave attack may pose a threat that must be
addressed by the designer and the researcher of this type of structure.

31.Onthe basis of scarce data from Burcharth and Frigaard (ref.2) and from tests performed
for a project in which the authors were involved, a simple longshore transport relation
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for the armour rock of the berm has been derived. The influence of the angle of wave
attack cannot be deduced from the data.

32. Statistical descriptions of the monsoon and the hurricane wave climates at the project
location are given. A simple deterministic approach of the longshore transport of the berm
material shows no transport.

33. A first step probabilistic approach, that takes into account the variability of the waves,
proves, however, that the expected value of the longshore transport has a positive value
and that nourishment has to be provided. It is shown that the decision on the amount of
nourishment is far from simple in the light of the uncertainties in the transport relation
and the maximum significant wave heights during monsoon and hurricane. The amount
may vary from 1,103 stones to 8,978 stones depending on the optimism of the designer.

34.1In a second step all uncertainties are included in a Level II probabilistic calculation.
It is shown that a nourishment of 2,500 stones has a probability of failure of 29% in the
lifetime. The Level I calculation shows further that the uncertainty of the transport relation
contributes most to the failure probability. So, more research into this problem is needed.
Secondly, the stone size has to be carefully controlled during construction by quality assurance
procedures.

35. If the nourishment is increased to 5,000 stones the probability of failure is reduced
to 18% (see Table 2). The designer has now to decide on the basis of probabilities and
risks.
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Table 1. Result of Level 11 probabilistic calculation; the nourishment amounts to 2,500 stones

p =0.550

Probability of failure = 2.9¢10

Name type A B C M c X o?

A N 0.000 0.000 0.000 1.570 0.060 1.564

D ., N 0.000 0.000 0.000 1.150 0.058 1.138

A N 0.000 0.000 0.000 4.8¢10° 2.40107° 0.000
B N 0.000 0.000 0.000 100.000 20.000 90.428
Hsm,Monmn G 4.920 0.284 0.000 5.024 0.327 5.024

o Hrr F 0.000 7.926 3.388 8.832 3.001 8.832
Nourish N 0.000 0.000 0.000 2500.000 200.000 2495.381

Z(X) = -0.2689 (X is the design point)

Number of iterations = 8

Table 2. Result of Level II probabilistic calculation; the nourishment amounts to 5,000 stones

B =0.923
Probability of failure = 1.810™
Name type A B C 1) c X o?
A N 0.000 0.000 0.000 1.570 0.060 1.560
DnSO N 0.000 0.000 0.000 1.150 0.058 1.131
A N 0.000 0.000 0.000 4.8010°° 2.4010°° 0.000
B N 0.000 0.000 0.000 100.000 20.000 83.761
H,  omson & 4.920 0.284 0.000 5.024 0.327  5.024

e F0.000 7.926 3.388 8.832 3.001  8.832
Nourish N 0.000 0.000 0.000 5000.000 200.000 4996.381

Z(X) = 0.0018 (X is the design point)

Number of iterations = 12
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V. LENGTH EFFECTS

V.1. INTRODUCTION

§ IV.1. already mentioned that, lengthwise, ostensibly homogeneous hydraulic structures such as breakwaters,
dunes or dykes can be considered serial systems. The lengths of independent sections in these serial systems
can be related to the nature of the load, to the strength properties or to both.

To stimulate discussion, a couple of lengths related to the load on a water defence are listed:

water level 50 to 100 km
shower gust/ oscillation 5to 10 km
wave climate 20 to 50 km
foreshore 5to0 10 km
location in stormdirection 1to5km

The table below gives global indications of a couple of lengths related to the strength-properties of water
defences, for which the corresponding property can be considered constant

II strenth ||| length of a section II

crest height 0.2 to 0.5 km
grain diameter (D_,,) 1to 10 km
slope gradient 0.2 t0 0.5 km
width 0.5to 5 km
beach height 0.5to 5 km
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Within a statistically homogeneous course of a water defence structure a number of section or stretches
are distinguished, see Figure V-1, with lengths equal to the "correlation distance" !), i.e. the distance over
which the statistical properties of the reliability function are assumed totally correlated.

—

section or
stretch

Figure V-1

For "course" in this figure one can think of the length of a water defence (see Figure IV-4: dyke with wave
run-up bordering deep water or bordering water with a foreshore, a dune, a dyke without wave run-up,
a lock, a coupure, high grounds, etc.).

By choosing the fluctuation scale as a "correlation distance", one section is assumed independent of every
other one. The probability of failure of the water defence as a system is then determined by the weakest
section, see Figure V-3. There are as many sections as fluctuation scale lengths fit into the course.

The fluctuation scale of the reliability function, Z = R - S, is dependent on both the fluctuation scale
of the strength properties, R , and on the fluctuation scale of the load(s), S . In Figure V-3a more failure

modes per section are considered. This presentation is useful, as the length over which the strength properties
fluctuate is small relative to the length over which the load(s) vary. In Figuur V-3b the section length is
determined for every mode. Every section is considered an independent structure, for which the probability
of failure is determined according to the failure mode in question. The right figure bears a strong resemblance
to Figure IV-5. The difference is that Figure IV-5 treats a whole construction as one section, whilst now
a structure is assumed to consist of several sections.

)  Often, the characteristic x is taken as a realisation of a stationary normally distributed process

T

(x) =
and for p Pp xip (T) =€ (D) * isused

(see lecture notes: Probabilistic design, b3, TUD).

The FLUCTUATION SCALE, D, is defined as the surface below the auto correlation function:
D = fpx,m (1) dt
) TR

with: X = the characteristic (crest height, friction resistance, bearing capacity,

etc.) under consideration. "Collapse according to a certain failure mode"
also qualifies as a "characteristic". (Familiarly said: "The Z- functions
are correlated".)

T = distance between the points (in time) which are taken into account, known
as the lag.
o) = auto correlation function of x .
Xo Xt el

For D the auto correlation within the fluctuation scale is approximately 50 % or more. Furthermore,
the fluctuation scale is about half the wave length, i.e. half the average distance between two "upward
sections of the zero level", see Figure V-7.
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The fault tree can be represented in two ways:
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V.2. LENGTH EFFECTS AS A RESULT OF FLUCTUATING STRENGTH

STATISTICALLY HOMOGENEOUS COURSE. EXAMPLE: SEA DYKE.

A simple and greatly schematised case of the
influence of fluctuating strength is treated as
an example.

fH(h)
f h
Eq( )

crest height

One failure mode for a sea dyke is considered,
namely overtopping. For one section the reliability

storm surge levels function is:

Z-h-H

where/, isthe crest height and / is the high

level .
Figure V-4 water level above chart datum

The crest height is normally distributed with expected value M, 5.0 m . Two cases are regarded. The
standard deviation of 4, is equal to Oy, = 0.1 m in the first case and equal to Gy, = 0.2 m in the second

case. For the probability distribution of the storm surge levels in a year the probability for Hoek van Holland
is assumed:

h-196 T ~
WSE Oy = —— = 04.m

Fy(h) =e’* with: - 6
- 0.33 v

ELEMENTARY LOWER AND UPPER LIMITS

With the data above, arefined level Il calculation can be carried out for one section. The final results (design
point values) are:

First case: 6, =01m I
A
*
oz
p=3.709 Variable X (@) oX, o (i) o*(i)
Pb’_ =1.04*%10* h, 497m 1.00 0.1 0.01
H 497 m -1.00 1.299 0.99
Second case: Oy, = 0.2 m I
I%
oz
B=3.676 Variable X (1) 0X, o (i) o’(i)
Pbi =1.18*10* h, 4.89m 1.00 0.2 0.02
H 4.89 m -1.00 1.278 0.98




The elementary lower and upper limits of the probability of collapse of the system (water defence as a
serial system), consisting of N independent sections are:

N N
AiL‘llXPb,. < Pdeence < z]:Pbi
- i
If all sections are assumed to originate from the same population (statistically homogeneous process in
the course) so that all sections have the same inundation probability, the elementary lower and upper limit
of the probability of inundation for the entire defence structure can be simplified to:

{4

Pb,. < P yence N*Pb,.

Substituting the assumed numerical values gives:

I Standard deviation of S, ’ l elementary lower and upper limit |

1.04°10™ < P q,.< N°1.04°107

1.8°10% < Py pp< N°1.18°10

The development of the elementary limits as functions of the number of independent sections ') is drawn
in Figures V-7 and V-8.
APPROXIMATIVE METHOD ACCORDING TO DITLEVSEN

The method Ditlevsen (see lecture notes b3) gives closer boundaries. The reliability functions of two sections
are:

Z =h; -H,
4 -yt
The correlation coefficient is defined by:
cov( Zi,Zj)
Pz.z = )
- Gz 'Oz

where cov(Z,,Z)) = E [{i_E(i)}{Z—J_E(Z—’)H

where E(X ) = expected value of X .

Y Formally the upper limit is NOT VALID FOR p = 0 ((linear) independence) BUT FOR CASES WHEN
"FAILURE" OF EVERY SECTION EXCLUDES "FAILURE" OF OTHER SECTIONS. If the events ("failure”
of sections) exclude each other they are not independent! Independent events and events which
exclude each other are not synonymous! When events exclude each other: one event occurring
means the other, which is dependent on that, does nof occur!
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Further elaboration gives:

cov(Z,Z) = E [( h ‘ﬂ"”@*”ﬂ)(ﬁ‘ﬂ‘% | +”1i)]

AT TR}

Pha oy Oy =P 1 O Ot =Py Ot Ony, ™ Pt 1,08 O
_ 2 2 _ 2 2
%z, = 4| %, 708, O, = 4| ©n " + Cn,
Now: Ghd,. - Ghi ,asSUme G, (crest heights originating from the same population so the standard
deviation of the crest heights is the same for all sections)

1, = °H, ,assume %n (realisation ofhigh water levels from one population, so that the
standard deviation of the high water levels is the same for all
sections)

P by, H; = Py oy (symmetry of the correlation matrix)

2

so: p oo -2 p G, G, +p c
ha, hy, P hy H “hy H TH H CH

204 )
Oh, * O

For the determination of sharper upper and lower limits some assumptions are necessary:

L/ fluctuations in the dyke crest height and the storm surge levels are not correlated: p b, H, = 0.
i L

¢ the defence structure is so "short" (shorter than the order of 50 to100 km for "equal water
level", see table on page V - 1), that all sections are threatened by the same storm surge
level. Then: Py = L
27

Working out the correlation coefficient gives:
2 2
o5, +0
hy Phyny 700

Pz 2z
3 Gzhd +o?,

If'the section lengths are chosen such that the dyke crest heights of the sections are (linearly) independent
(see Figure V-2), then: P, h, = 0.
S

The correlation coefficient for the modes in the sections i and j then becomes:

2 2
o'y Sy

Oy




This expression is equal to that for the factor a® in the level Il calculation (see lecture notes CTWA4130/b3),
which is the contribution of the uncertainty of the high water level to the total variance.

For Oy, = 0.1 m, respectively Oy, = 0.2 m, the contributions to the variance of the reliability function

are given in the tables on page V - 5, where the probability of failure of one dyke section was considered:

a?,, with H Gumbel
Standard deviations - '—
crest heights a?, from level II On = 0.42.. m
B (page V - 5 middle)
6, =0.1m 0.99 _0ABUE g,
< 0.12+0.42324..2
0.42324..2
082287 o1
c, =02m 0.98 0.22+0.42324..2 e
Zd

N.B. When two reliability functions (Z, and Z,) contain one common random variable X (and possibly
other not common random variables), the correlation coefficient is equal to the product of the a s from
the level II calculation:

Pziz, =% inz, % inz,

(Level Il calculation means: linear (or /inearised) probability function and all variables normally distributed,
or approximated by normal distributions.)

Bz, Bz
According to the approximations by Ditlevsen, if B, = — = § ), = = - P, as in this case:
o o
Z, Z

1-p; 2
Here: B* = — == and ®(X) = standard normal distribution for the argument X.

2
lprZj

An upper limit for a defence structure consisting of N equal sections, is, according to Ditlevsen:
Pagenes® P(Z,<0)+(V-1){P(Z, <0} P(2) <0 N Z;<0)}

The lower limit follows from:

N
P tonce® y» {P(ﬂ<0)—(i—l)-P(§_<0 N z];<0)} as long as the terms are positive

i=1

The upper limits according to Ditlevsen have also been given in Figures V-7 and V-8. The lower limits

according to Ditlevsen are practically equal to the elementary lower limits. They are not indicated in the
figures.



AN EXACT SOLUTION

If one assumes that the water level, H, is equal for all sections and that the height of the water defence
sections are independent amongst each other ') but that they do originate from one population, an exact
calculation is possible. The theory behind this was treated for extreme values (paragraph II-2 and further).
For the calculation of the probability of failure (U.L.S. of for example the stability of the armour layer
of a breakwater) the distribution of the maximum values of independent realisations (maxima of the highest
significant wave or of a water level during a year or during the maintenance or planning period or during
the lifetime) is of importance. Such a consideration can also be applied using length instead of time as
a variable. However, in those cases the minima are often of importance, for example when the lowest of
N independent dyke sections is wanted for a given length of the water defence.

The extreme value distribution of the lowest of N dyke sections is wanted. It is assumed that a sample
of dyke crest heights can be described by a normal distribution. The probability that a section is higher
than # equals:

h- M,
P(hd>h) =1-0, =
—_ d Ghd
h- phd h- l’J‘hd
Here (th S is the standard normal distribution for the argument
o ha S,
The probability that all N sections are higher than 4 is:
N h- u.hi h ”@1 N
P(fzi>hﬂh_dz_>Hﬂ...fzﬂ>h) -1I{1-2,, - L e
d d

From this, the probability that at least one of the N sections is lower than 4 follows:
N

P(hd <h) -1-41-o, =

The distributions for various values of N are displayed in Figure V-5.

) This assumption is often not justified.
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The p. d. f. of the minima can be derived from the distribution :

N N-1

H—uhd

The probability density functions for various values of N are displayed in the figure below.
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The probability of inundation of the defence can be calculated by integration (level III):
N-1
P —771"-1 ® T " Hoh f. (HW) dHW dH
defence ~ - “h Cp | ——— | sy
" - H Ghd = chd = Ghd T

where f,, (HW) = probability density function of the storm surge levels. This double integral is numerically
solvable. The solutions are sketched in Figures V-7 and V-8.
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15— J
Exact (Storm Surge Gumbel): pi,j= 0.9471
10 —
5

ration)
.x-ctﬂ'ﬂ““ ,nwm
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4
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Figure V-8
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SUMMARY OF THE RESULTS

In the figures V-7 and V-8 the calculated elementary lower and upper limits, the upper limits according
to Ditlevsen and the "exact solution" (storm surge levels Gumbel distributed) are displayed. In practice
the upper limit approximations are used a lot, on the one hand because small probabilities of failure are
then striven after , on the other hand because, if the correlation is not too great, the "exact solution" is
often close to the upper limit. The calculated ratio between the upper limit of the probability of failure
of the whole defence and the probability of failure of one section is resumed for 100 sections in the table
below.

elementary upper limit according | "Exact solution"
upper limit to Ditlevsen Storm surges
Gumbel
100 17 2
100 32 4

From the preceding figures and the table it appears that the elementary upper limit is not always of practical
use. The upper limit according to Ditlevsen also probably allows for a disproportionally large influence
of the length effect. The "exact solution" shows that the length effect, even for a relatively small spread
of the sections’ crest heights is not negligible.

The practical question concerning the length of an independent section (and with that the question of the

number of sections of the defence) remains unanswered, so the value of the choice of N = 100 sections
(in the above table) can’t be evaluated.

vV - 11




EXAMPLE OF A LOWER LIMIT APPROXIMATION : DUNE EROSION GUIDELINES

In the Dune Erosion Guidelines')
a lower limit approximation is
selected, both for the distribution
of the admissible probability of
failure (107 in a year) over the
sections and for within a section
over the five failure modes. (In
Figure IV-5 wave overtopping/
overtopping is considered one
mode.) Firstly, the probability of
collapse of a section is assumed
equal to the probability of breach
due to dune erosion.
The contributions of the other
modes are kept so small by additio-
nal regulations (crest width 3 m,
slope 1:2, etc.) that they can be
Figure V-9 neglected in further calculations.
Aswas previously demonstrated,
this is justifiable under certain circumstances. Secondly, the length effect is taken into account in the guidelines
by attributing the entire probability of failure to one section (the weakest). The probability of failure of
the other sections have to be smaller by at least a factor 10. The probability of collapse of this section
is tested according to the norm (107 in a year for Central Holland). According to the Dune Erosion Guidelines,
such a test is only correct for a dune as a defence, if the thinnest (minimal) dune profile is checked for
dune erosion. If the profile in the considered section is insufficient the entire defence (the dune) has to
be adjusted and the thinnest profile remains the thinnest.

The new Dune Erosion Guidelines are a great step towards a practical application but the research into
the probabilistic design of water defences is not yet completed.

) The name for the guidelines is in fact an abbreviation. The literature reference reads: Technical
Advisory committee for the Water defenses, Guidelines for the evaluation of the safety of dunes
as a water defense (in Dutch: “Technische Adviescommissie voor de Waterkeringen, Leidraad
voor de beoordeling van de veiligheid van duinen als waterkering"), the Hague, State publisher,
1984.
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FAILURE PROBABILITY BUDGETING
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Figure V-10

For the probabilistic design of a water defence the length-effects as a result of the division into stretches
is to be considered. Due to different defences (dyke, dune, construction, etc.) and different circumstances
(bordering deep or shallow water, a sea, a transitory area or ariver, etc.) different failure modes are involved,
each to be schematised with its own independent dyke stretch length. In a fault tree, these parts of the
water defence system, which can be considered separately, can each be indicated: see Figure IV-5.

The criteria tree in Figure V-10 is an extension of this. The added percentages for the contribution towards
the probability of failure of the system form a so-called probability budget. This budget differs per case,
dependent on the costs to be made to reduce a contribution towards the failure probability and on the extent
of that contribution. The econometric aspects of raising a dyke, with several modes in a cross section,

are treated further in § V1.4..

A possible failure probability budget for a dyke ring is given in the table below:

Failure mode Start of failure Total inundation
(SLS) (SLS)
in multiples of the in multiples of the
norm probability of norm probability of
inundation in a year inundation in a year
overtopping }
1 0.5
wave overtopping J
sliding 1 0.1
piping 1 0.1
micro- instability 0.5 0.05
erosion outer slope 0.5 0.05
failure of structural works 1 0.1
imponderabilia 1 0.1
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The term "imponderabilia" in the table above implies the "inestimable influences" such as trees, musk
rats, ships collisions, etc..

There is an essential difference between a risk or a failure probability budget (i.e. a norm, a number of
criteria which are to be satisfied) and a risk analysis. A criteria tree such as in Figure V-10 and a fault
tree such as in Figure IV-5 or Figure V-3 may not be confused. In a criteria tree requirements to be met
by the failure probabilities (the safety)of parts are posed. Using a fault tree, the failure probability of
the structure is calculated from the failure probabilities of the parts.

Calculating the failure probability of a water defence system exactly is particularly difficult and in many
cases still impossible with the current state of technology. Usually, though, upper and lower limit approximations
can be given. The same is valid for criteria trees.

Often one opts for an upper limit approximation and one distributes the permitted probabilities of failure
over the branches at every or-port. However, for a large number of elements this can lead to an unrealistically
low requirement for the failure probability for every element. One can also choose for alower limit approximation.
In that case, virtually the entire failure probability is reserved for one (the weakest) element (part). Then,
the other elements are allowed to have a much smaller failure probability.

The failure probabilities in the first column of the table at the bottom of the last page are the result of
an upper limit approximation. They are found by addition of the failure probabilities of all sections in
the dyke ring.

The permitted failure probability for every mode and for every section depends on the number of independent
sections, on the transitory probability and on the accepted probability of inundation for the dyke ring

area concerned. For the mode overtopping at least as many sections as threats (river, lake, sea) are distinguished.
If a transitory area is involved, the number of sections is increased by one. These aspects are illustrated

in Figure V-11.
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Figure V-11
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For the mode overtopping, every section is threatened by the following, according to the table at the bottom
of page V - 13 and Figure V-11:

1073

sea and river: P, <

-5
sea, transitory area and river: P, < 10 .

In the case of overtopping, a section can be defined as the entire stretch which has the same orientation,
the same cross-section, and the same foreshore and where the wind speed (and the waves which are a
consequence of it) and the water level are completely (linearly) correlated. In the case of river dykes this
is difficult to imagine.

At sea, the number of possible orientations is limited and the wind(waves) and the water level are greatly
(linearly) dependent. That is why the number of independent sections is limited to for example 6.

Around a polder in the river area the orientation of the dyke relative to the wind direction greatly varies.
Hence, the number of independent sections is also greater. It will be around 16.

Forthe failure probability of every section according to the failure mode sliding, the same type of limitation
of the contribution to the inundation probability of the dyke ring area is valid:

-4
P, < 10

/
with: 1= section length for sliding
L = length of the stretch.

Because, with respect to sliding, the part which is most sensitive to sliding is designed appropriately and
because the reliability functions for the sections are correlated via the water level, a correction can be
applied:

10

1+a*—L—
/

P, <

with: a = correction factor.
Such reasoning, which leads to a (another) correction factor, is valid for the mode piping.

There is too little insight into the dependancies between variables which are of significance for the failure
mode micro-instability.

The following condition could apply to a dyke ring which contains structural works:

107
1+vxN

P, <

with: N = number of structural works
v = correction factor.

Given that the number of structures can increase in time, N is to be chosen sensibly. One could opt for
an N per dyke ring which leaves space for future developments.
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V.3. LENGTH AND TIME EFFECTS

Time and length effects (correlations in length and time) often occur in the same problem. The strength
and the load(s) can be correlated in time and in place. Consider a sea dyke on the one hand and a dyke
surrounding a pump accumulation basin (PAC- basin) on the other hand as examples. These dyke types
appear to be extremes as far as the correlation is concerned.

The correlation of the reliability functions for the different sections was given by:

2 2
phdi,hdjc"_d_z P, .H, O, Or * P, .1 O .
Py 5 = —— —2 ; (page V - 6, middle).
- S, *OH
LENGTH EFFECT

In § V.2. asea dyke was considered. The strength (height) of the sections was assumed uncorrelated: p hy by = 0,
and the same applied for the crest height and the water level: p b H = 0., whilst the sections were submitted
i P L

to the same "load", the water level: p,, , = 1..
e}

crest heigth ,

lengths of stretchels (fluctuation scaltla) ] l I
_
- schematisation .
according to Figure V-2 ‘
2 | | | | | 'h ( h )
0 20 40 60 80 100 d
Length T -
Figure V-12
<y
The result was that the correlation coefficient p, , = —— = —= = ay.Foraseadykethe spread
14 2 2
- °2hd Oy Oy

of the load is very much greater than the spread of the strength: 6, >> o, or 6, >> Gy, - A consequence

I8 pg 5 = 1.

In the PAC basin the (high) water level is accurately managed and limited (by the spillway), sothat 6, << o,

o’y o’

orc, << o, .Inseltedmpzi z = ﬁ this gives: Pz .z *
- - —= 0%, *0y -

T

= 0 sothatthe sections are (practically)

Q

[

independent in this case.
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VL. OPTIMAL SAFETY
VIL.1. NORMS

In the previous chapter, the starting point for the determination of permissible probabilities of failure per
mode, per section was an acceptable probability of inundation of a dyke ring area ') of, for example, 10* ina
year. The choice of such a norm does not arise from existing laws. The Delta committee limited itself
to indicating the exceedance frequency of the high water level (10 per year).

The probability of inundation of a dyke ring area in a year may not be confused with the exceedance frequency
per year of the design water level at a certain point along the water defence. In the third part of the Delta
report, the committee presents an economical consideration of the optimal inundation probability for Central
Holland (8 ° 10 in a year, see Van Dantzig and Kriens [1960]). For the Guidelines for the evaluation of
the safety of dunes as water defences a probability of a breach of 10 in a year was selected as the norm.

The considerations of the River dykes Committee implicitly tend towards a probability of inundation equal
to the probability of exceedance of the design water level, though this starting point has not yet been included
in the Guidelines for the design of river dykes.

In a completely probabilistic approach to risky activities, the acceptable probability of the "fatal" event
follows from an econometric consideration or from considerations regarding personally or socially acceptable
risks. See Vrouwenvelder, A.C.W.M. and J.K. Vrijling, [1984].

The application of the probabilistic approach concerning the safety level leads to distinguishing between
densely and sparsely populated polders, between polders with many industrial investments and polders
of predominantly agricultural use. Such a differentiation must be reviewed, bearing in mind the principle
that every Dutch national has a right to an equal minimum safety level. The criterion given above, concerning
the personal risk, essentially does see to such an equal minimal safety level.

In the National Environmental policy plan, [1988], only the personal and the social risk are covered. The
stated norms concerning the acceptable probabilities of accidents can be transformed into those given
in the Lecture notes CTOW4130, see Vrouwenvelder, A.C.W.M,, and J.K. Vrijling, [1995].

Literature:

Van Dantzig, D., and J. Kriens, 1960, The economical decision problem concerning the protection of the
Netherlands against storm surges, Report by the Delta committee, Part 3, contribution II.2 (in Dutch, Het
economisch beslissingsprobleem inzake de beveiliging van Nederland tegen stormvloeden, Rapport van
de Deltacommissie, Deel 3, bijdrage I1.2), State printer, The Hague.

National Environmental policy plan, [1988]: Dealing with risks (in Dutch, Nationaal Milieubeleidsplan,
[1988]: Omgaan met Risico's), Ministry of Housing, Spatial planning and the Environment, Central Management
Information Service and External Relations, 1988.

Vrouwenvelder, A.C.W.M. and J.K. Vrijling, [1984]. Lecture notes b3, Probabilistic Design, Faculty of
Civil Engineering, Technical University Delft, altered print, November 1984 (in Dutch).

Vrouwenvelder, A.C.W.M.,and J.K. Vrijling, [1995]. Standards acceptable risk level, TNO report 95-CON-R0851
(in Dutch, Normstelling acceptabel risiconiveau, TNO rapport 95-CON-R0851), TNO-Bouw under the
authority of Rijkswaterstaat-DWW, June 1995.

) A dyke ring area is an area surrounded by primary water defenses.
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In the econometric approach to the optimal safety level the loss of lives has to be expressed in monetary
units. Though objective values such as the present value of the net national product per capita can be given
for this, the question remains whether that constitutes a good interpretation of the involved social considerations.
For this reason two approaches were developed, which give an acceptable probability of drowning due
to inundation, based on accident statistics.

According to the first approach, an individual would determine the probability of drowning against the
background of the risk of death for accidents in general. The formulation this so-called individual criterion
is:

.10-4
Pacceptable = E}}O_ in a year
dlf
in which: 0,01 <p <100 = policy factor
10" = probability of a fatal accident
Pye = probability of drowning with occurring inundation.

The policy factor B allows for differentiation between voluntarily and involuntarily accepted risk and/or
between existing and new situations.

Society reacts more strongly to an accident when people mourn for several deaths at the same time than
for separate fatal accidents which take place spread over time and space. The social considerations for
the evaluation of group risks must be modelled in a separate philosophy.

The probability of failure is acceptable if it is in the area defined as follows:
2

1-F, (%) < < wim ¢ - |10
d 2
- X ck-/N,
where: B = policy factor as given above
1-F N, X = exceedance probability distribution of the number of deaths
c = influence factor, determined by the distribution type of the number

of
deaths for given failure. For a deterministic number of deaths
¢ =1 and for an exponentially distributed number of deaths ¢ =2.
k = probability condition or measure for risk aversion.
N, = number of places where the activity is carried out.

The acceptable probability of failure is proportional to the reverse of the square of the number of deaths.
The formula can be derived from the Chebychev inequality, assuming that the expected value of the number
of deaths is negligible relative to its standard deviation.



THE ACCEPTABLE PROBABILITY OF INUNDATION

To determine the acceptable probability of inundation of a polder, the three approaches have to be set
side by side. The strictest criterion determines the acceptable probability of inundation. To illustrate this,
the figure below indicates the results of the three approaches to the acceptable probability of inundation
for the English town Whitstable (see § IV.1, page IV - 2), which has 5000 inhabitants. In the figure, the

council’s choice is also indicated. After all, the final determination of the acceptable inundation probability
is up to the political authorities.

Probability of collapse
Pp system

in a year
107+
10-8;
10" proposition

10-4;

10-3- _
// individual viewpoint

5. Y
10-2__—1-— dm et e b e Nd
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Figure VI-1
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VI.2. ECONOMETRIC APPROACH
The econometric calculation of the optimal dyke height is as follows:

Risk is considered equal to the probability of inundation multiplied by its consequence (the damage):
Risk = P, S(h)

with: P, = probability of inundation
S(h) = damage as a function of inundation with high water level h.
where h = inundation depth, which is also a function of the high water level.

The extent (')f the damage is dependent on the inundation % damage
depth: the higher the water level above the ground surface

(up to a certain maximum) in the dyke ring area, the 100 ——
greater the damages. See the figure opposite. The influence
of'the inundation depth on the extent of the damage will
not be treated in this course. It is assumed that, if
inundation occurs, a fixed (deterministic) level of damage
arises.

The inundation of a dyke ring area due to overtopping
of ariver dyke, which is not subjected to wave attack,
is considered as an example. The probability distribution
of the high water level of the river in a year is given
by:

H -4

r

Fp(H)=1-¢ * inundation depth in m

The probability of the high water level, HW, of the river Figure VI-2.
exceeding the crest height of the dyke, 4, is:
hy-4
P, = B
For comparison purposes the risk has to be discounted. The reduced interest rate (interest reduced by inflation

and increased with the increasing economical growth in the dyke ring area) is .

The discounted value of the risk is:

The construction costs amount to:

Bouwkosten = I, +Ih,
Here: Initiation costs: costs for design, (laboratory) research, ground purchase, etc..

I =
0
I = Variable costs: costs of excavation, profile works, revetment, etc..
h, = Construction height of the defence.

It is assumed (by good approximation), that the variable costs are in proportion to the construction height
of the dyke.




The total costs are made up of construction costs and the discounted value of the risk:
hy-A

Se B
!
The minimum of the total costs is found by presuming the derivative with respect to the height equal to

Ctot = IO +I.hd+

Zero:
hy-4
aCfOt - I_l.e_ dB .ﬁ - I_ Pb.S - 0
oH d B r! Br'!
From this:
IBr'
P b optimal —S- or hd optimal A-Bin (Pb optimal)
COSTS
K \
0 * /
AN \[ :|- C
K |—:&\—==
opt " profitable
- I
> C
CREST HEIGHT
COSTS
\I+C /
opt|_\i ___“~._,
K |
o |
: not profitable
> C
1
d d oot CREST HEIGHT
Figure VI-3

Subsequently, is must be established whether the sum of the costs at the optimal height is lower than the
expected level of damage K, in the old situation (that is the existing state before raising the dyke). Only
if this last condition:

gain safety > costs dyke improvement

is met, the dyke improvement is profitable. See Figure VI-3.
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VL3. MORE THAN ONE THREAT

VL3.1. GENERAL

The sketched optimisation calculation can be extended to two (or more) threats. If a dyke ring area is
threatened by two rivers, the two extremes sketched in Figure VI-4 can arise:

SITUATION 1 SITUATION 2

polder
Figure VI-4
As determined (elementary lower and upper limit):
2 2
I:rlzalpri < Pbacceplable < izl Pbi

The left part of the equation concerns situation 1. There the dyke ring area is located downstream from
a fork in a river. Both high water level threats are totally dependent. If high water occurs in one fork of
the river, this is also the case in the other fork of the river. Depending on the width, the roughness, etc.,
of both forks one of both water levels (relative to a common reference level) will be highest. Assuming
the polder ground surface is horizontal, one of both dykes will be highest. The probabilities of inundation
for both defences are to be equal and smaller than the acceptable probability of collapse.

In situation 2 the river discharges are completely independent. This situation is represented by the right
hand side of the equation given above. For these situations optimal heights of the defences can be given
too.

SITUATION 1

2
For situation 1 the total costs are: Ctot = I, +11-hd1 +12°hd2 +£/( mabe‘) .

r i=1
hy 4
The high water level exceedance curve in the one river fork is given by: 1 - F,, (h, ) = e B andin
—1 1
hyy-C
D

the other river fork: 1 -F,, (h,) = e
—_—2 2

Itis economically rational to choose equal exceedance frequency probabilities. This means: P b, = sz <P,

h ‘—A ) h 4 -C

‘ D

The height of the one defence can then be expressed in the height of the other: 4 4 = % (h 4" C) +4.

acceptable

From this follows, for the high water levels:
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These results substituted in the expression for the total costs gives:
hyy-C
B S o
Cot =1, +II'{B.(hd2_C) +A}+I2'hdz+7.e P

Making the derivative to the height of the defence equal to zero gives the optimal crest height or the optimal

Jc hy,-C
probability of collapse: —Z = I]'-E +1, - S o0 <.

dhd2 D rD

hg,-C
With e P =P, =P, =P, Thisleads to:
1 2 optimal
/

Pbopnml = %.(II'B +12.D) or hd2 optimal = C_D.In(Pb opﬁmal)
SITUATION 2

For situation 2 the total costs:

g
Cow = ot 1y +1yhy +:7[ 2_; Pb,.)

The high water level exceedance frequency curve in the one river fork is given by:

hy -4
1-Fyy (hy) = e B

and in the other river fork:
hyy-C

l—F%(hdz) =e D

Inserting this information in the expression for the total costs gives:

p ( g4y c)
_ ) ) . B D
C, =1+ ha,1+12 hd2+—/ e +e

r

Posing the derivatives with respect to the defence heights (now plural, because the probabilities of failure
for both defences are not equal) equal to zero leads to the optimal crest height or the optimal probability
of collapse:

oC g tat I-Br'!
tot 1

YA = Il - /.e B =0 = Pb] = 3
d. Br

h, -C

9C, S L:D-r'
fot =I,- e D -9 . pbzz

ok, D-r s




From these equations different failure probabilities with a fixed relation between each other are derived
for both defences:
P, I'B

P, LD

The optimal probability of failure for the dyke ring area in situation 2 is:
/
,
= TS'_.(II'B +12'D)

P b optimal
The total area safety is the same as in situation 1. In situation 1 the failure probabilities for both dykes
are equal. In situation 2 the probability of inundation of the dyke ring area equals the sum of the probabilities

of failure for both dykes.

VL3.2. PREDOMINANT OBJECTION

There can be a predominant objection against raising one of the two defences, for example from the point
of view of nature conservation or conservation of scenic beauty. In terms of inundation probabilities this
means that the defence may not be raised (assume defence 2), the inundation probability is set at the existing
level. Consider the probability of inundation P.

N . S
For situation 1 this makes: C,, = I, +1;- hdl + 7 {max(Pb1 ,P)}

The defence is raised until: P b = P provided the zero option (existing state, as it is) is not cheaper. Further

raising of the defence won’t reduce the total inundation probability of the dyke ring area.

hy, -4
For situation 2: C,,, = I, +1;°h, +-S;'(e B +P)
r

On the condition that the zero option is not more economical, the defence is raised as if there was only
a question of one defence, i.e. to 4, = A -B-In(P).

VL3.3. LIMITED BUDGET
The situation could arise where the employer only has a limited budget at his disposal to raise the defences.

Provided raising the defences is worthwhile (the zero option is more expensive), in situation 1:
/
r
Pb1 = pb2 = E'(II'B +I2'D)'(1 +1)

where A has a value greater than 0 (zero), which indicates that the amount of money to be spent will be
exhausted.

In situation 2 the optimum (provided the zero option is more expensive) can be determined with:

/
- .7-g- =
P, = (1+A)1"B 5
/
P, = (1+))1,-D- ’E
/
Pb optimal (1 +}").%.(II.B +12.D)

The limitation is included in the calculation by enlarging all economical probabilities of failure by a factor
(1 + 1), which is just big enough to ensure that the budget for dyke improvement is exhausted.




VI1.4. SEVERAL MODES IN ONE CROSS SECTION
If more than one mode can occur in one cross section, the calculation is analogous to the preceding.

Assume that for dyke section two modes are of importance, namely "overtopping" (dependent on the crest
height, 4,) and "sliding over a deep sliding plane" (here presumed dependent on the inner slope angle,

) and that the modes are independent (quod non!). The crest height, 4, and the slope angle, o., are called

the optional variables.

Figure VI-5

The construction costs are analogous to the preceding: I, , = I, +1, 0 h,+1 0.
(P overtopping(h) + Psliding( (X.))S

The present value of the risk is: CW =

7
S
The total costs are: C,, = I, +1, -h,+1, o+ = (Poverropping (1) * Pjing (@)
Analogous to the preceding calculation we find
a Ctot a Ctat
a, , from: =0 and h__ from: =0
» da o oh

On these grounds we can determine which crest height and which slope angle are optimal. The results
can be incorporated in a criteria tree (Figure V-9).

N.B. The failure probabilities for the two modes are generally not equal.
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VL5. CONSEQUENCE VARYING AS A FUNCTION OF THE HIGH WATER LEVEL AND OF THE
LOCATION OF THE BREACH

The previous sections were based on the assumptions that the ground surface of the dyke ring area is "horizontal"
and that the height of the water defence system is on average equally high above the reference level. For
a dyke ring area in or around the sea this, by approximation, will be the case. (See figure below, left side.)
However, forriver polders and polders in the "transitory area" this is not so. (See figure below, right side.)
In case of a breach upstream the inundation depth will be greater than for a breach downstream. This implies
that, for dyke ring areas that have "upstream and downstream sides", the upstream defences should have
a smaller probability of breaching than the downstream defences or that building and settlement should
be limited to the higher part. The latter is probably not a realistic option for the Netherlands, but in countries
with less lack of space it is an alternative worth considering.

reach
riverside dyke

breach

breach
seaside dyke

Figure VI-6
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VII. BUDGETING AND TIME-PLANNING

VIL.1. INTRODUCTION AND DEFINITIONS

The control of the costs and the duration of a civil engineering project is not simple (Vrijling [ 1990], Vrijling
[1995]11)). Apart from uncertainty concerning quanta and production tempi (uncertainty about technical
aspects) unit prices or prices per quantum and wages (uncertainty involving economics) and "influences
of'the outside world" (essential changes of the design), this is caused by the long period over which a civil
engineering project is stretched. This period starts when the social demand for change is felt and the first
plan for the project is outlined. The end of the period can be set at the delivery of the final product and
the settlement of the bill. :

The estimate of the budget is always an approximation of the real costs. If all knowledge and facts have
to be expressed in one single number, as is often required, discrepancies between the estimate and the
finally realised costs cannot be avoided. Normally, in comparisons between the original estimate of the
building costs and the total expenses at the end of the project, no correction is made for the overall increase
in prices. In Table VII.1. the exceedence of the budgets for the hydraulic engineering parts of the reclamation
of some Lisselmeerpolders (land reclamation works in The Netherlands) are given (Belgraver and Kleibrink [ 1984]):

Table VII.1.
Polder: Exceedence
Wieringermeerpolder 12%
Northeast polder 16%
Easterly Flevoland -3%
in which:

calculated costs after completion - estimate of budget in study-of-plan phase
calculated costs after completion

Exceedence = -100%

The difference in accuracy between an estimate of the budget in an early stage of the project (the study-of-plan
phase) and the final estimate (builder’s specifications at the start of the engineering) is illustrated in the
next table (Goemans en Smits [1984]):

Table VIL.2.
Project Difference in % of the final costs
Estimate in Estimate in
study-of-plan phase Builder’s specifications phase
Haringvliet locks 77% 22%
Grevelingen dam -19% 22%
Volkerak dam 56% 23%
Brouwers dam -39% - 18%

Often final project costs exceed their estimate. History of the estimate of the budget at the Ministry of
Public Works in The Netherlands (Rijkswaterstaat) (Heezik [1994]) clearly shows the pattern of increase
of costs and delay in the work (which, due to inflation and loss of interest, also increases the costs):

1) References to literature on estimating budgets and time-planning are added at the end of this chapter.
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Table VIL.3.

Project Start Planned Reality

Mf years Mf years
Noordhollands Canal 1818 4 5 12.5 7
Haarlemmer lake 1837 8.4 5 13.8 21
Nieuwe Waterweg 1858 5 5 36.8 38
Maas & Waal 1864 6.5 10 24.7 44

In road-construction projects there were (and there are) big fluctuations in the differences between the
estimated budgets and the real costs as well. For road-construction projects in The Netherlands from 1980
up to and including 1985 differences between estimates in the pre-design phase and the real costs as a
percentage of the real costs are given below:

=

&
8 3
S, k]
8 g
[} (]
8 3
£ 2
-4

on average

100 90 80 -70 60 50 40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 > 140

fotal percentage ufexneodanoe___»
Figure VII-1

Publications on exceedence of the estimate of the budget in other countries show the same tendency. (The
Economist [1989] and Merewitz [1973]).
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Vii.2. THE CLASSICAL APPROACH TO BUDGET ESTIMATES AND TIME-PLANNING

From early days, the calculation of estimates of the budget and time-planning schemes are based on most
likely values. Uncertainty of the decision maker is expressed as an increase of the deterministic final amount
by a certain percentage of that amount.

One’s uncertainty regarding the budget estimate or the time-planning scheme is not constant during the
project. The later in the project an estimate of the budget or a time-planning scheme is made, the more
about the project is known and the decision maker’s uncertainty concerning the estimated amounts of money
and duration of the activities will be less than in the early stages of the project. A classification of project
phases in order of time is given in Table VIL.4. The project parts in the phase at hand are estimated or
planned in detail, for other parts in other phases this is done roughly.

Table VIL.4.
Class Project phase
D study-of-plan
C pre-design
B pre- builder’s specifications
A builder’s specifications

Because of the decision maker’s greater uncertainty in the early phases of the project, it is of no use to
make detailed estimates and time-planning schemes for phases to come. Making an estimate of the budget
in detail for builder’s specifications when the project is still in the study-of-plan phase will turn out to
be a waste of time, although in the early stages more detailed estimates and time-planning schemes (or
parts of those) are made. Below some examples of specifications of budget estimates in several phases
of a project are given.

Estimate of the budget, Class D Study-of-plan phase Estimate per unit

item viaduct
item road
item tunnel

1 viaduct X price of I viaduct
S5kmofroad x  price per km of road
1 tunnel X price per tunnel

o

+

Total of Direct costs
Indirect costs

Primary costs
Additional costs
Miscellaneous ')

Basic estimate
Unforeseen ?)

Estimate (ex. VAT)
VAT
+

Study-of-plan phase estimate

In the successive phases the items of the class D- estimate are worked out in more detail. An example
is given in the following class B- estimate.

h In "Miscellaneous” those costs are categorized which are known but which are not specified. For a study-of-plan
phase estimate these could be: land (has to be bought) preparation, deflection of conduit-pipes and water courses,
temporary diversion of traffic, etc..

2 "Unforeseen" is taken as an additional percentage on the Basic estimate here. If there is little insight in the character

of the item Unforeseen then this way of calculation is applicable. In section VII.6.1. the amount of the percentage
to be applied is discussed.
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Estimate of the budget, class B. Pre- builders specifications phase. Estimate on the basis of quanta and unit prices

800 m’ soil x  price per m’ = item "soil"
800 m® concrete x  price per m’ item "concrete"

I

1 ton reinforcement X  price per ton = item "reinforcement”

800 m? formwork  x  price per m’ = item "formwork”
e
Subtotal viaduct

The other items are detailed analogously.

In a class A- estimate (estimate for builders specifications) the prices per m’>, m? or ton are determined
in more detail, based on working methods and quanta. In an estimate in this phase time and equipment
are taken into consideration. Contractors prefer this method of estimating.

A sub- item of the item SOIL of the partial project ROAD from the class D- estimate (5 km of road) is
chosen as an example of specification of an item in a class A- estimate:

For the delivery and processing of 80,000 m® of soil for the partial project "road" the costs of the following
means of production are estimated:

Delivery at the quay by ship 80000 m’ x  priceperm® = partial item 1
Lease of an unloading plant 80 days X day tariff = partial item 2
Transport to location (by cars) 800 days X day tariff = partial item 3
Equipment for processing and compaction 85 days X day tariff = partial item 4
---------- +

Subtotal soil

The price per m® of processed soil is calculated by division by the volume in m® (here: 80,000).

In principle, the estimate of Direct costs (an example of which was given for a class D- estimate at the
bottom of the previous page) follows from an addition over all N partial items of the multiplication of
quanta, h,, and the prices per unit, p;. See the calculation scheme of the budget estimate on the following
page. Indirect costs can be calculated by an additional percentage, %,, which is a fixed percentage of the
Direct costs.

Additional costs and Miscellaneous can both be expressed as a percentage %, of the Primary costs. As
stated above, additional costs are established as a percentage of the preceding part of the estimate. The
Total estimate can thus be expressed as a function of the total of the Direct costs. A percentage of (the
part of) the afore calculated estimate is called an additional percentage ').

b} An additional percentage (for example the percentage Unforeseen) can be seen as a random variable or as a
deterministic constant. For example the percentage VAT was fixed at 17.5% for a long time. It can be regarded as
a fixed constant, unless it is expected to be changed in the future. Then, introducing the percentage VAT as a random
variable is an option.
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In any phase of the project such percentages can differ. Generally, the Total estimate, in which the additional
percentages are included, is calculated from the total Direct costs:

M N
Estimate = {E (1 +%j)}-{; hixpi}
in which:

M = the number of additional percentages

%j= the j addition over the foregoing subtotal

N = the number of cost items in the Direct costs
h, = the quantum in the i® item in the Direct costs

p, = de unit price in the i" item in the Direct costs.

A calculation scheme of the estimate looks like this:

Calculation: h,*p,
h,*p,
hy*py

N
N
Total of Direct costs: E hxp,

i=1

N
Addition for Indirect costs:  %,x Y hxp,
i=1

+

N

Primary costs (1 +%I)XE hxp,
i=1

Addition for ... e

+
M N

Total Estimate 11 (1 +%,)XE hxp;
j=1 i=1

TIME-PLANNING

Atfirstsight, it seems that a time-planning of a project is more simple than a budget estimate. In an estimate
of the budget the unit prices have to be multiplied by their quantum and then added. In a time-planning
only the duration or the lengths of time of all activities have to be added and no multiplication is needed:

Begin End

1. Study-of-plan ;gq T,

2. Pro-design =
3. Pre- builder’s spec. E
4. Builder’s spec. =

TIME >
Figure VII-2
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The duration of the project, D, equals:

D=YT,

M=

—

i=

in which: 7 = rotation number of the activity
T; = duration of the activity i

N = number of activities (in Figure VII-2: N =4).

Ifthe various activities succeed each other in time the time-planning is simple. Example: In a small building
pit, pile driving cannot be started before digging of the pit is completed. The digging hinders pile driving
too much.

Usually not all activities succeed each other in time. Various activities are (partially or totally) executed
simultaneously. A consecutive activity can often only be started when more than one preceding activity
have been completed.

In the figure below it is shown that the pre- builder’s specifications phase can only be started when the
pre-design phase has been completed and the licences have been granted. Both the activities have to be
completed before the pre- builder’s specifications phase can be started. If two activities are executed in
parallel (in Figure VII-3: the pre-design phase and the granting of licences) the time-planning can be sketched
as follows:

Begin ETd
Ty,
1. study of plan =
_ T,
> 2. pre- design %2
i T,
> 3. granting licences %3
| : bl T,
4. pre- builder’s spec. =
R
5. builder’s specifications %i
TIME‘; —- >

Total project —

Figure VII-3

In this example there are two time-paths:

D :TI+T2+ T4+T5

a

D, =T+ T3+T4+T5

The total duration of the project, D, , is the maximum amount of time according to the duration of the

tot?
various time-paths:

D,, = max(D,,D,)
In the example in Figure VII-3, the duration of the activities 1, 3, 4 and 5 determine the duration of the
total project, D, ,. It is said that these activities form the critical time-path (critical path for short).

VII - 6



VIL.3. UNCERTAINTY CONCERNING BUDGET ESTIMATES AND TIME-PLANNING

In order to express one’s uncertainty about the estimate or the time-planning, probabilistic techniques
are employed. If the random character of the cost items or the duration of the various activities are taken
into account, the budget estimate or time-planning of the project is said to be statistically controlled.

The estimated amount of money or the planned duration of a project can be interpreted in various ways,
depending on what the person who estimates or plans has in mind. Does he or she focus on an estimate
of the mean costs or duration(the expected values) or on the amount that is most likely (the mode of the
costs or the duration)? In the first case it is commonly assumed that the costs or the duration are normally
distributed. The mean and the mode then coincide. In the second case other (skew) probability density
functions are possible. Triangular probability density functions are often used for this purpose.

In addition to the mode or the mean of the estimate of the budget or the time-planning, the deviation from
it (or the spread around it) is important. The size of the margin depends on the phase the project is in and
on the required reliability with which the budget or the planned duration (quantification of the estimate
or time-planning plus margin) will not be exceeded.

Section VII.8.3 comes back to the second point (reliability of the estimated amount of money or of the
planned duration).

Consider the first point (size of the margin depends on the phase the project is in). In an early stage of
the project one is much more uncertain about the budget estimate or the planned duration than in a later
stage. Estimates and time-plans are often classified according to the phase of the project they were made
in.

Characteristic numbers for the magnitude and for the spreading around costs items depend on the project
phase. For time-planning such characteristic numbers are not (yet) available.
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VI1.3.1. CLASSIFICATION OF UNCERTAINTY

Uncertainty can be classified in three categories:

¢
4
¢

uncertainty related to Normal events;
uncertainty related to Special events;
project uncertainty.

UNCERTAINTY RELATED TO NORMAL EVENTS

Although the costs items in a Basic budget estimate of a project become increasingly clear in the course
of time, and the estimate becomes more accurate, many causes of uncertainty will remain as long as the
project is not finished. With the necessary changes made, this can be applied to time-planning. The degree
of uncertainty can be classified as follows:

1.

There is no cause of uncertainty. The item concerned is deterministic. This concerns costs items
or activities that are known exactly in size or duration. If, for example, the contract settling the purchase
of land has been signed, this amount of money is known exactly. An "activity" with deterministic
duration is the tide. The duration (along the North Sea coasts) is "exactly” 12 hours 25 minutes.

i
Py

A

100%

Figure VII-4

Often the costs are not so uniquely determined and one is uncertain about the duration of an activity.
When the negotiations are still in progress, there is a notion about how much money the land (meant
in point 1) will cost, but one cannot be certain. An example of uncertainty about the duration of
an activity is a barge with heavy draught that has to be towed over a sill. Suppose this can only be
done at high tide. (The keel clearance has to be sufficient). Usually the final costs or the spreading
around the point in time of arrival at the sill will be within a band width. The probability density
can then be as indicated in Figure VII-5,

]
!

100%

Figure VII-5
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UNCERTAINTY RELATED TO SPECIAL EVENTS

Often another type of uncertainty plays a role with the evaluation of costs of a project or its duration ,
namely uncertainty caused by the Unforeseen or by Special events (mainly calamities). Two criteria characterize
a Special event: the first is that it is not meant to occur and the second is that occurrence is not likely.
The probability of occurrence, p, is small (less than 0.5), but if the event occurs, the consequence (damage
or exceedence of the duration, B) is large. The probability of no occurrence (and accordingly: no damage
or exceedence of the duration) is 1 - p. In a "classical" estimate of the budget or time-planning such events
are seldom taken into account. Contractors insure against such events, associated with small probabilities
but with large consequences. In a statistically controlled estimate or time-planning the probabilities and
the consequences can be indicated as follows:

3.  Figure VII-6 shows the mass density of a Special event as a function of the damage or exceedence
of the duration.
f
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Figure VII-6

4.  The probability density function of a "Special event", of which the consequences (the damage or
the duration) are subject to uncertainty, could be as is illustrated in Figure VII-7.
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Figure VII-7
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PROJECT UNCERTAINTY OR PLAN UNCERTAINTY: VARIANTS

5.

In the study-of-plan phase several variants have to be considered and estimated (and sometimes planned).
Beforehand, one is not certain which variant will be chosen (for example a tunnel, a ferry or a bridge
for a road crossing of a river). Only at the end of the pre-design phase a decision is made. Awaiting
the choice, elaborating and estimating (and eventually time-planning) several variants mainly meet
the uncertainty. Sometimes, the decision between the variants is so unpredictable that all variants
are considered equally likely. Sometimes one variant is preferential and it is unlikely that another
one will be chosen.

f t01)
el ¢

o

(]

-
]

Variant 1 Variant 2
Figure VII-8

If more than one variant is estimated or planned, the problem could be that the estimate of the budget
is required to be one total amount of money or the time-planning should be one total duration. One
estimate of the budget or one time-planning (possibly with a margin or expressed as a probability
density function) for presentational purposes is then acquired rationally by weighing each variant
by its (estimated) probability of selection. The following figure presents the result for two variants.

f
fx(t)
A

p,%

0 »f
t

0 5 2
Figure VII-9

The disadvantage is that the result is not recognized as a reasonable estimate or time-planning of
each of the individual variants.
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The classified uncertainty and the formulae to calculate the associated means and the standard deviations
ofthe probability-weighed consequence ( the related risks) are summarized in the following table. Mutatis
mutandis the formulae hold for a time-planning with only one time-path.

Table VILS.
Case mean standard deviation Description
Normal 1 B 0 A deterministic amount of money, B,
events expressed in units of money
2 B Oy A stochastic amount of money, with
- mean B, and some spreading, op.
Special 3 pxB Vpx(1-p)xB? An event with probability of
events occurrence p that has a deterministic
consequence B.
4 pxB . 2 An event with probability of
px { (1-p)xB=+op } occurrence p that has a statistic
consequence with mean B and some
spreading, expressed by o.
Plan 5 P, *B,+p,*B, <(B+0> There are two (or more) variants, cach
uncertainty Px(Br+ 8, )+ associated with a probability of
realization, p; Their probabilities add
+p*x(Bg+ ofgz }+ up to one as it is certain that one of the
- variants will be selected.
~(p,xB,+p,* By

Asthe formulae do not show directly how the ratios of the means and standard deviations alter, numerical
values are filled in:

B (= B)) = 100 Mf, oy (:OBI)=15W
p(=p) =01 P, = 0,9 (One variant: p, +p, = 1)

B, =200 Mf, o, =30 Mf
Table VIL.5a.
Case mean stand. dev.
Normal 1 100 Mf 0 Mf
events
2 100 Mf 15 Mf
Special 3 10 Mf 30 Mf
events
4 10 Mf 33.5 Mf
Plan 5 190 Mf 41.6 Mf
uncertainness




The spreading for an item of the estimate increases with the related uncertainty. In the first case in Table
VIL5. one is absolutely certain about the size of the sum, B. The standard deviation equals zero. In the
second case there is some uncertainty. The spreading, 0, , is smaller than the expected value, B. (If this

were not so, the estimate of the item was of no significance. It then suggests that there is not the vaguest
idea of the size of B.) In case of Special events (cases 3 and 4), one is not certain if there will be costs
(damage) at all. The probability that there will be costs is p (p << 1). There is a greater probability (1 -
p) that there will be no costs. In fact the RISK '): (probability x consequence = p x B, see Vrijling and
Vrouwenvelder [1984]) is estimated. If the Spe cial event occurs, the estimated amount of money (p x
B) is not nearly enough to cover the costs (B). According to this, the third case is associated with a larger

spread (in the order of Bx/p ) than in the case of a Normal event. So the spreading for Special events

is approximately L times the expected value pxB.
p

1) From a mathematical point of view the estimates of Normal events are estimates of the risks as well. The probability
of occurrence of Normal events is 1 (or 100% certainty).
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VIL.4. TIME PLANNING AND BUDGET ESTIMATES IN LEVEL Il CALCULATIONS

If a planning has only one time-path, the duration of the project is approximately equal to the total of the
time spaces of the individual activities. An estimate of the budget consists of summation of the multiplications
of quanta and unit prices.

Ifatime-planning consists of only one time-path and the time space of any activity in it is normally distributed,
alevel Il or FORM calculation is an exact solution of the probability of exeedence of the planned duration.
Ifthe time space of any activity, i, is normally distributed and all N activities are independent, the duration

of the time-path is:
N N 2
Weime path = ZI: ¥; O ime path = X; g;
i= i=

Under the same assumptions and in case of fotally dependent time spaces:

N N
Riime path = E] K on‘me path = Z] 01‘
i= i=

If the time spaces are partially correlated, the standard deviation per item can be split in a dependent part,

a,, and an independent part, y/1 - e . The dependent parts are added linearly and the independent parts are

added quadratically. Finally the standard deviation of the total duration is calculated by adding the squares
of the dependent and the independent parts and taking the square root:

N N 2 N A 2
— - . _ . 1
Hﬁme path - E] l‘li 0'time path - \ Z; ai 01‘ +E (1 a’i ) o.i )
i= i=

i=1

When considering the budget estimates, products of quanta and unit prices play a role. A general rule is:
the expected value of a product is equal to the product of the expected values. If the variables are completely
independent, the following holds: the square of the coefficient of variation of a product can be approximated
%) by the quadratic sum of the coefficients of variation. For the product of a quantum, h, and the unit price,
p, of an estimate item, i, the coefficient of variation can be written as:

1) This formula is elucidated on the next page.

2) The exact formula of the square of the coefficient of variation of a product consisting of two variables is (Vrijling
and Vrouwenvelder [1984]):

2 2 2 2 2
Ve = Vs Vy+ Vo'V,

if z = x -y . In most cases sz . Vy2 is negligible.

VII- 13



PARTIAL DEPENDENCY OF ITEMS IN AN ESTIMATE

Ifthe items in an estimate are partially dependent, the calculation procedure is as given in the scheme below:

Item Expected Coefficient Variance Dependent Independent
value of variation part part
2 2 2 2,1, 2 2 2\ 2
1 M By = By Vi, +VP_l =V, p vy o= of o, 0, (1 —al)-o]
2 2 2 2,172 2 2\ 2
2 My, By, = By Vi Vo, = V2 py V" = o o, 0, (1 —oaz)-o1
2 2 2 2 2 2
1 [T Vo *Vo, = Vi WVt =0 «;°0, (1 ‘“1) 0,
2 2 2 21,2 2
N Mo, "Hpy = By Vi +Vp_~ =Vy My Vv = ox &y 0, (1 —(xN) 0,
__+ __+* ___+
2
Weotal O dependent Oindependent
2 2
Ororal = odependenr+oindependent

If a = 0 in this scheme, complete independence of the costs items is assumed. If a. = 1, then all costs items
are presumed to be completely dependent. If a spreadsheet program is used, the calculation is simple,
as can be seen in the following example on page VII - 15.

The measure of dependency can be derived theoretically. It is very comprehensive, because there is a great
resemblance with the correlation coefficient. Consider two costs items:y; and y, , and suppose that they

have a component in common, for example the wages. In the example on page VII - 15, this can be the
wages component in the viaduct (cost item y, ) and in the road (cost item y, ).

The wages component is the product of the number of hours (supposed to be different and independent
for "viaduct" and "road") and the costs per hour. Suppose the costs per hour for both the costs items are
the same. By this the costs of wages in items y, eny, are dependent. The first costs itemis: y, = h,'p, ,

the second costs item is: y, = h,'p, .

Suppose the standard deviation of the first cost itemis: o, and of the second costitem: o, . From the theory

concerning level II- calculations it is known that the factor of influence on the wages component in the
h,:o
2. Analogously, the factor of influence on the wages component
(o)
J_/1_

standard deviation of costitem y, is: e, =

h,:o

. . e . . 2 °p
in the standard deviation of cost item y, is: o, = —=
- »

The square of the correlation coefficient is: p?, = a,-«,. Furthermore, it is convenient to introduce the
coefficient of variation because 4, equals the (expected value of) the wages initem y, . We can write:

h]-up_l-le_l hz-p&'VP_1

2
=0, 0, =

P1,2 1, %, o p
Y1 Y2

After dividing the nominator and the denominator by K, the result is:



2 .
P12 =

wages component,*V wages component, -V
1 'p 2 'p
1 1

B

N

Y2

From this it is seen that the component causing dependency (here wage component ; ) has to be large in
both cost items. Furthermore, the ratios of the coefficients of variation of the wage components, Vp1 ,and VyI

or Vy2 , respectively, have to be large. "Large" here means that both ratios have to be in the order of unity.

Evenifahigh value of 0.8 is assumed for both the wage components and for the ratios of the coefficients of
variation, the result p12,2 = 0.8* = 0.4 is small. The coefficient of correlation is p = Y0.4 = 0.64,the
influence of the dependency on the spreading of the Total estimate will be very small.

EXAMPLE
A | 8 1 el o I e | elelwul + 1 o el o | w | o | o | o

| 1] Prices in kf III III Probabilistic estimate of budget, dependent items III

2

3 item quantity unit price/unit total v_quan} v price } si_quan si_price si_total } depend | si_dep si_indep | si indep"2 si_tot*2 si_tot v_total |
4 (number) ﬁl kfl kfl kfl kfl kfl kfl kfl

5 ] viaduct 3 piece 2.200 7500.00 o 0.2 0 500} 1500.00 0.7 1050) 1071.21 1147500

6 |}road 5 km 15000] 75000.00 0.1 0.2 0.5 3000 1677- 0.7]11739.3569] 11976.54] 143437500

0.51

7_Jjtunnel 1 iece 15000 15000.00 0 0.2 0 3000} 3000.00 0.7 2100 2142.43 4590000

8 + + +

9 J|DIRECT COSTS 97500.00 14889.3569 149175000] 3.71e+08] 19257.9321] 0.1975
10
._11_ indirect costs 0.3 11 97500 29250.00 0.1]0.1975 0.03] 19257.9321] 6475.63 0 0] 6475.63]41933740.4

12 i ——— + — +

13 J|PRIMARY COSTS 126750.00 14889.3569 191108740] 4.13e+08]20317.5217] 0.1603
14

15 |} additional costs 0.15 1/1 126750 19012.50 0.1]0.1603 0.015] 20317.65217] 3592.05 0 0] 3592.05] 12902789.6

16 || miscellaneous 0.1 1/1 126750] 12675.00 0.1]0.1603 0.01]20317.5217] 2394.70 ] 0] 2394.70]5734573.14.

17 -—- + — +
| 18 || BASIC ESTIMATE 158437.50 14889.3569 209746103} 4.31e+08] 20771.111} 0.1311
19
_21 hist. find 0.1 1/1 2000 200.00 [¢] 0.1 0 200] 603.32 0 0 603.32 364000
21 || poliuted soil 0.1 1/1 3000 300.00 0 0.3 0 900} 943.93 0 0] 943.93 891000
ﬁ diamond find 0.05 1/1 -1000 -50.00 0 0.2 0 -200] 222.49 0 0 222.49 49500

23 || design error 0.1 1/1 5000 500.00 4] 0.2 0 1000} 1532.97 (0] 0] 1532.97 2350000
| 24 M pile rupture 0.1 11 5000 500.00 0 0.2 0 1000) 1532.97 0 0} 1532.97 2350000
| 25 || settlement 0.1 11 2000 200.00 0 0.2 0 400] 613.19 [¢] 0] 613.19 376000

26 |linstallation error 0.1 11 5000 500.00 0 0.15 [¢] 750} 1518.63 0 0} 1518.63 2306250

27 J] formwork 0.2 1/1 1500 300.00 0] 0.22 0 330] 617.88 0 0] 617.88 381780
_Zi rupture of soil 0.25 1/1 500 125.00 0 0o 0 0] 216.51 o] 0 216.51 46875
| 29 o + + —— +
| 30 JIESTIMATE 161012.50 14889.3569 218861508)] 4.41e+08] 20989.3891] 0.1306

Notice that the Special events (rows 20 up to and including 28) have been modelled as mentioned in
point 4 of Table VIL.5. For "Quantity" (column B, rows 20 up to and including 28) the probability of
occurrence of the Special event is filled in. If the Special event occurs ("Unit" = probability 1/1 in column
C), the costs are as given in column D. No spreading is assumed in the "Quantity" (variation in the
probability of occurrence of the Special event), so the coefficient of variation of the "Quantity" (column
F) is set at 0 (zero). However, spreading has been supposed in the costs. These are expressed as a part
(column G) of the unit price of the Special event (column D). The standard deviation of the price of
the Special event, given in column I (compare oy in Table VII.5.) is the coefficient of variation in column
G, multiplied by the unit price from column D. In column J the calculation of the standard deviation
of the cost price of the Special event takes place according to Table VIL.5. point 4.
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The modelling of the additional costs asks for some comment as well. Column B mentions (lines 11,
15 and 16) the additional percentages. The column "Price per unit" (column D) displays the total of
the calculated costs. Cell D11 gives the amount of the Direct costs from cell E9: 97,500.00 kf and
in cell D15 and cell D16 the Primary costs from cell E13: 126,750.00 kf appear. The additional costs
in cells E11, E15 and E16 are calculated in the same way as for the Special events.

In column F some spreading in the quantities of the additions (= additional percentages) is taken into
account. Cells F11, F15 and F16 give the applicable coefficients of variation.

The coefficients of variation of the prices of the additional costs cannot be chosen independently. They
are equal to the coefficients of variation of the estimate calculated so far: cell G11 copies the content
of cell Q9, cells G15 and G16 give the amount from cell Q13.

Column H contains the products of the values in columns B and F. The Indirect costs in cell H11 are
the product of the contents of cells B11 and cell F11. For the additional costs, the content of cell H15,
the product of cells B15 and F15 is calculated. For Miscellaneous, in cell H16, the product of cells
B16 and F16 is calculated.

In column I, the product of the expected values of the price and the coefficient of variation of the price
(product of the columns D and G) is given. For the Indirect costs, the content of cell I11, the product
of the contents of cells D11 and G11 is calculated. For the additional costs in cell I15, the product of
the contents of cells cell D15 and cell G15 is given. For Miscellaneous, the product of cells D16 and
G16 is calculated and presented in cell 116.

The standard deviation of the total of each addition is mentioned in column J. Cell J11 presents the
square root of {the square of the content of cell F11 plus the square of the content of cell G11} times
the content of cell E11. The square root of the sum of squares of the coefficients of variation of the
quantities and the unit prices is multiplied by the expected costs. Cell J15 gives the square root of {the
square of the content of cell F15 plus the square of the content of G15} times the content of cell E15.
Cell J16 presents the square root of {the square of the content of cell F16 plus the square of the content
of G16} times the content of cell E16.

Finally, a remark is made concerning the dependency of the Primary costs items. Column K gives the

dependencies of the items "viaduct”, "road" and "tunnel" in rows 5, 6 and 7, namely 0.7, 0.7 and 0.7.
These are the coefficients ¢, from page VII - 14. Numbering the items: viaduct = 1, road = 2 and tunnel = 3,

in the formula on the bottom of page VII - 14 we get:

Pr, = 0a, = 0.7-0.7 = 049 = pi 5 = p5 5.

The coefficients of correlation are very low. The estimate will hardly differ from one in which the
items are supposed to be uncorrelated.
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EXAMPLE OF A CLASS A- ESTIMATE

As part of the development of a harbour project a quantity of sand of ca. 3,000,000 m® has to be dredged
by a hopper dredger. In the dredging industry the working week is seven days, with twenty four hours
per day, so in a working week there are 168 hours.

Assuming a working week of 168 hours, the duration of the project, T, amounts to:

quantity of sand
working coefficient: capacity-168

If the tariff on the hopper dredger is set by a fixed part (tg,.,) and by a variable part (t,,,) per week,
the costs, K, in total, amount to:

K = tﬁxed-(D +T)+t,,.T+overhead-(D +T)
For the calculation of the costs, a random delay, D, is added to the nett duration of the project.

Normal distributions with the following parameters model the probabilities of the variables:

Table VII.6.
variable u o dimension
quantum 3e10° 3¢10° | m’
capacity 2060 300 m’/hour
thixed 39 « 10* 39 ¢ 10° | f/week
toar 15 10 20 ¢ 10° | f/week
overhead 20 ¢ 10* 20 ¢ 10° | f/week
delay 1 1 week
working coefficient 0.85 0.05 --

As was explained for "LOADS" (page II - 91, paragraph 2) the probability of exceedence of the costs
can be calculated. In the problem at hand the costs technically fulfill the same role as the aforementioned
loads. The reliability function is:

Z =K

ived ™ {(tﬁxedJroverhead)-(D+T) +tvar°T}

For K., various deterministic values were substituted. The "probability of failure" (probability that
the target of the costs, K., is exceeded) was plotted versus K, ;. Some results of a level- II calculation
for Kg,.q = 9 Mf are given in the table below.

Table VII.7.
variable type n o design point o?
value

t fixed N 390000 f/w 39000 f/w 395273.30 f/w 0.071
amount N 3000000 m’ 300000 m® 3068803.68 m* 0.204
workcoef N 0.85 -- 0.05 -- 0.843 -- 0.075
cap N 2060 m*h 300 m’h 1951.82 m*/h 0.505
D N 1.00 w 1.00 w 1.17w 0.110
t_var N 150000 f/w 20000 f/w 151254.72 fiw 0.015
overhead N 200000 f/w 20000 f/w 201386.80 f/w 0.019




In the column marked "o*" the contributions of the various variables to one’s uncertainty about the
project costs are listed. The largest contribution (0.505) comes from the uncertainty concerning the
capacity of the dredger. The uncertainty about the total quantum of sand (0.204) plays an important
role as well.

By repeating the calculation several times for various values of Ky, the probability of exceedence of
the costs can be established. The probability of exceedence is presented in Figure VII-10.

Probabllity F xooda00 e — e _
oa ............... ................ ................ .............. .................
1 S TN R M | S— — —
o,, ............... ................ — ................
02 ............... ................ ................ ................

0 2 4 6 8 10 12 14

Mega euros
Figure VII-10

For the duration of the dredging project a probability of exceedence can be calculated analogously.
The reliability function is:
quantity of sand

working coefficient - capaciteit- 168

plan

Fixed values (in weeks) are substituted for T,,,, and the probability of exceedence of the planned time
is calculated. The result is given in Figure VII-11.

A person (the "decision maker") who has to decide about the allocation of means (money) can use these
results to get a good impression of the uncertainty about costs and the duration of the project. Moreover,
it is clear from the column "«>" in Table VII.7., which variables contribute most to the total variance
(which is a measure for one’s uncertainty). Alterations concerning these variables should have preference
if the total variance has to be decreased.
Probability of exceedance
1 e, oeee
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In an approximate full distribution approach (AFDA - calculation) Special events cannot be treated satisfactorily
as their probability density functions are discontinuous. The probability density functions (see Figures
VII.6. en VII.7.) are replaced by normal distributions, the means and standard deviations of which
are given in Table VII.5.. The replacement normal distributions, modelling calamities, are not good
approximations. For correct modelling of Special events level ITI- methods are adequate. Often a Monte
Carlo simulation is chosen.

STATISTICALLY CONTROLLED TIME -PLANNING

The reliability function of a time-planning in which more than one time-path plays a role, is not differentiable

everywhere. The duration of the project, D, is the maximum of the time spaces of all time-paths, D;:
N

D = max{D,}.

- i=1 —
Consequently, an exact level II- calculation is not possible. Time-planning problems are mainly analysed
using a Monte Carlo- simulation.

In statistically controlled time-planning the time spaces of the activities are seen as random variables
(given in Figure VII-12), in contrast to the deterministic approach, as sketched in Figure VII-2.. Generally,
the expected value of the duration of the project is used for the duration, D. Sometimes, the mode is
considered. If the independent time spaces of the various activities are normally distributed then there
is a 50% probability that the duration of the project is exceeded.

1. Study of plan A

»> 2. Pro- design
3. Preparation of
builder’s spec.

4. Builder’s spec.
TID"

50%
Total project

Figure VII-12

If the time spaces are independent and normally distributed, the mean and the standard deviation of
the total duration of each time-path are:

N N 2
“2 = Z; l‘l'T,. 02 = z; OT;
i= — i= -_

Sometimes activities are carried out simultaneously, as was illustrated in Figure VII-3. Licences to
lower the groundwater table, to dig, etc., can be acquired in parallel with the design "at the drawing
board". The time-planning can be as shown in Figure VII-13.

- ¥

{ Hy
1. study-of-plan TA

Lz
> 2. pro- design :
> 3. granting Iicencs#

]
4. prep. of buildefs: spec.i

8. builders spsciﬁciations
TID.

Total project ?? %

Figure VII-13

VII - 19




As stated on page VII - 7, there are two time-paths in this example:

D, =T+T,+ T,+T,

a

D, =T+ T,+T,+T;

For the total project no ambiguous probability density function can be defined. It can not to be said,
which one of the time-paths is "critical" (for which successive activities the total duration, D, is maximum).
The duration to be considered depends on the mean duration and on the standard deviations of the simultaneous
activities. In a probabilistic approach the concept of the "critical path" loses its significance. At most,
it can be a matter of probability that one of the time-paths will be critical .

In theory, every activity is described by a different distribution. For activity i:

P(duration act. i < tdum.oni) = FDi(tdmﬁa"i)

The probability that activity i takes longer than 1, is:

P(duration act. i > td‘mﬁmi) = I_FD,-(t dmﬁm'_)

According to section II-3, the probability that all n activities in one time-path have a greater duration
than a given amount of time, T _, is:

to1?

P(duration all n act. > T,) = H (A-F, (T,)
i=1 —

from which the probability distribution (extreme value distribution) of the maximum duration of all
activities in one path can be calculated:

n

P(duration all act. in time-path j < T,)) = F,, gwation tme satn i L) = 1-11 (1-Fp, (T,.)
0 ol ratio meE ! i o

i=1 i s

in which i is the number of activities in time-path j. If there are N time-paths, the probability that the
duration of the activities in one time-path is greater than 7, is:

P(duration all act. > T,,) = mAe;x [{ﬁ (1-Fp (T,p) } ]
= - J

j=1 i=1




All time-paths are (in theory) described by different distributions, each with their own parameters. An
example is given in Figure VII-14. Notice, that in Figure VII-14 there are two partial projects but there
are three time-paths, each with their own distributions.

Starting date | Endjng date

1. study-of-plan

2. pre- design

|
|
i
|
i
|
|
3. pre- builder's spec. :

i
l
|
!
i
|
l

4. builder’s speciﬁcations;

Begin ' a
Partial project a. e |
i
: z
| |
7 |
1. study-of-plan Probability of
2. pre- design : exceedence
3. granting licences | Of!. t1m elimit

4. prep. of builder’s spec.}i

5. builder’s speciﬁcations;
|

Partial project b.( 1 )
time-path T,, T, Ty, T

Partial project b.( 2 ).
time-path T1 7é 7"1 ; T5 %
Figure VII-14




VIL.S. VISUALISATION OF UNCERTAINTY

In the end, the calculated uncertainty has to be brought back into the framework of the estimate of the
budget or the time-planning.

Tl f)

» [ {guiders)

Figure VII-15

In Figure VII-15, B represents the (stochastic) Basic estimate, made up at the end of a well defined
phase of the project. The expected value of B in Figure VII-15,i.e. E(B) or p, , represents the estimate
as it was traditionally calculated.. (It is often still calculated in this way.) X 1s an unknown (random)
amount of money that has to be added to the Basic estimate. In Figure VII-16, the variables from the
definition sketch in Figure VII-15 are put into the context of an estimate.

=
Direct
cosfs
builder’s
8stimald | 4 dditional
costs
Indirect Basic
A estimate
o builder's
armtainty sstimato Nominal
w ; estimato of
within the: costs
Miscellanecus
ot u
~Basle i {w Statistical B
ma uncertainty _
within the:
: Unforeseen
02 X
- Unforeseen t
VAT ot
1 - estimato of l-l

Legend- a1 = margin in Basic estimate
02 = margin in Unforeseen
ot = margin in de fotal Estimate of costs, VAT inclusive

In @ nominal estimate the probability of excesdence is 50%
Figure VII-16
The real costs, K 1), will finally amount to:
K =pp+X

The expected value of the unknown amount of money, u, , appears to be a function of the expected
value of the Basic estimate, p,. Furthermore, X depends on the magnitude of the expected value of

the Unforeseen, p, , and on the spreading of it, o, , the latter two depend on the phase the project is in.

1) Notice that the spreading in the Basic estimate is accounted for in the spreading of the unknown amount of money, X .

Notice further that in the estimate of the budget no correction for inflation os taken into account.
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VIL.6. QUANTIFICATION OF THE ITEM UNFORESEEN

VII.6.1. EXPERIENCES WITH EXCEEDENCES OF COSTS

As can be seen in Figure VII-16, the deviation of the real costs from the estimate is mainly caused by

two components:

1.  theexpected value of the items in Unforeseen. This deviation from the estimate is mainly referred
to as "nominal Unforeseen".

2.  the spreading. This concerns both the spread caused by the deviations from the assumed starting
points (spreading in the Basic estimate) and by the incompleteness of the established extension
of the project (spreading in the items in Unforeseen).

Mostly the VAT is seen as a fixed percentage that is calculated from and added to the Total estimate
(ex VAT). This percentage, however, can be subject to uncertainty. This will not be dealt with here.

The real costs were modelled by (see Figure VII-16):

K =pg+X
The total estimate can be normalized:
K X
= = 1+=
] ]
X
in which — is supposed to be normally distributed.
Hp

Starting from the normalized estimate and expressed in percentages of the expected values of the Basic
budget estimates of many completed projects, the following values were found:

Table VII.10.
class project phase By Oy
G| e
(nominal (spreading
Unforeseen) in estimate)
D study-of-plan phase 30% 50%
C pre- design phase 20% 30%
B pre- builder’s specifications 10% 10%
A phase 5% 5%
builder’s specifications phase

The phase the project is in is the only "entrance" to this table to establish the magnitude of the item
Unforeseen. In practice, the table is used only if a detailed analysis is not needed.
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Table VII.10. was calculated from data concerning large projects of various kinds. A great part of the
data came from the building costs of chemical plants. The table contains expected values that are based
on experience.

Such numbers do not have to be representative for specific projects, such as, for example, rail infrastructure
projects. That is why an analysis of completed projects was undertaken by the Dutch Railways company .
In the following table the results of the analysis of 20 projects are given as percentages of the expected
values of the Basic estimate, B. The Dutch Railways company used a slightly different classification
from the one used in section VII.2.1.1.:

Table VII.11.
class project phase nominal spreading

Unforeseen in estimate
as % of g in % of p,

0 costs indication 7> 4+22% | 31 —-> 48%

1 cost price 2% 32%

2 credit request 7% 20%

3 estimate for construction - -

Considering the magnitude of the uncertainness the agreement with Table VII. 10 is remarkably good.
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VII.7. COMPARISON OF AN ESTIMATE CONTAINING SPECIAL EVENTS WITH EXPERIENCE
ON COST EXCEEDENCES

Two methods were mentioned for the estimate of the item Unforeseen:

1.  theestimates of the expected value and the standard deviation can be based on experience. Numbers
canbe as given in Table VII.10. The expected value and the spreading are then expressed as additions
to the Basic estimate of the budget. Suppose the nominal Unforeseen is 25 % of the Basic estimate
(cell E18 on page VII-15), the addition is then: 0.25 X 158 437.50 = 39 609.38 k f.

2.  theitem canconsist of Special events. (See the example on page VII-15, rows 20 up to and including28).

The estimated totals of Unforeseen can be compared by means of the risk. This provides a good test
for the assumption that the rough estimate of Unforeseen for a specific project correspond with the Special
events. For simplicity sake it is assumed that the costs in the case of occurrence of a Special event are
known. (Table VII.5, point 3).
The result of the Special event, G, is expressed as a fraction, f, of the Basic estimate, B:

G = fxB

Usually N Special events will be foreseen, so, according to Table VIL.5. point 3, the expected value
of the risks of all Special events will equal N-p-fB. The standard deviation is:

o ANl

Take an estimate class C (pre-design phase) as an example. The question is, how many Special events,
each having an expected probability of occurrence, p, and a potential consequence of G, are needed
to justify a reservation for Unforeseen in the pre-design phase of 20% and a standard deviation, o of
30% of the Basic estimate. (See Table VII.10.)

If the potential consequences of all Special events are equally large, the following combinations justify
the reservations of 20% for Unforeseen in the pre-design phase (see formulae for G and o0):

Table VII.12.
Probabili Number N| f = G/B
0.01 142 0.21
0.05 27 0.22
0.10 13 0.23
0.20 6 0.25
0.50 2 0.3

If the mean probability of a Special event, p, equals 0.1, then approximately 13 of such events are required
(see Table VII.12.), each with consequence G = 0.23 B, to justify the reservation in the pre-design
phase. During the course of the project it is to be expected that one or two of such events will indeed
occur.

Upon a closer look at the scheme on page VII-15 it is conspicuous that the percentages, p, are all approximately
0.1 (see column B, "Quantity", lines 20 up to and including 28). The mean risk (column E) of the Special
events is approximately 0.2. Only 9 Special events are listed, instead of 13. However, this cannot be
the explanation of the discrepancy between the above-mentioned value of Unforeseen (39609.38 kf,
see point 1.) and the addition of the mean values of the items Unforeseen in the example on page
VII - 15 (161012.5 - 158437.5 = 2575.00 k).

It could be interesting to compare the experiences, made in practice with this type of predictions stating
that the Unforeseen is caused by one or two rarely occurring Special events with considerable consequences.
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VII.8. RISK CONTROL MEASURES

VIL.8.1. DESCRIPTION OF CONCEPTS

Risk control measures are measures that either lead to reduction of one’s uncertainty (expressed as a
standard deviation of the Total estimate of the budget or duration of the project) or lead to the reduction
of the probability that the estimated costs exceed the budget or that the duration of the project is longer
than planned. For shortness sake, risk control measures will only be discussed for budget estimates
. For time-planning the method is (practically) analogous.

In the case the measures are taken in order to reduce the probability that the estimated costs exceed
the budget, their aim is to increase the accuracy of the estimate of the budget. The accuracy of an estimate
is the probability that the costs of a project do not exceed the budget. The costs are estimated. The decision
maker defines a budget in such a way that the costs of the project are covered with a sufficiently small
probability of exceedence. The formula in which this is expressed, reads:
Budget 2 p'total +k ototal

M0 @0d 0, have been defined in the scheme on page VII - 14. p, . is the expected value of the
estimated costs. o, ,, is a measure of the uncertainty of the decision maker. The factor k is a measure
of his/her risk aversion. It indicates the decision maker’s attitude to measures (which will add costs
to the estimate) which reduce the probability of exceedence of the budget. This attitude can be positive,
negative or neutral.

CLASSIFICATION OF THE MEASURES
The decision maker can choose from two categories of risk control measures:

1.  transfer of the risk to others for a fixed price. In this case his/her uncertainty about the item of
the estimate is bought off by a deterministic (fixed) expenditure. Examples are forward contracts,
lump sum contracts and insurances. In case of transfer the risk is limited by the juridical hardness
of the agreement. If the hardness is total, cases 2, 3, 4 and(/or) 5 in Table VIL.5. are replaced
by case 1 in that table.

2.  running the risk oneself and adapting the design if the risk is considered too great. The adaptation
of the design requires an extra investment. In this case the uncertainty remains, but an attempt
is made to sufficiently reduce the probability of exceedence of the budget by risk reducing measures
(which cost money).

VII - 26



THE EFFECTS OF ADAPTATION OF THE DESIGN

If the decision maker is prepared to run (part of) the risk, it can be necessary to adapt the design. The
effects of adaptation of the design are different for Normal and for Special events.

A. EFFECT ON THE RISK CONCERNING NORMAL EVENTS.

f
"t/
A
Figure VII-5

100%

|Probapility of exceedence
0 ' !

Figure VII-17

The measures concern an item categorized in case
2 in Table VIL.S. (Figure VIL.5). The variance of
the estimate of the cost of a Normal event is determined
by fluctuations in quanta and prices. The measures
causing reduction of the variance have to balanced
the costs of those measures. As it is certain that a
Normal event will take place, the probability of
occurrence, p, will be 100%.

The (expected value of the) estimate, B, is enlarged
to B’. One’s uncertainty, expressed in the standard
deviation, o, is decreased ') (provided the measure
is effective). The cost of the measure and its effect
on the probability density of the estimate of a Normal
event is sketched in Figure VII-17. The probability
of exceedence of the budget decreases by virtue of
the measure of risk control.

B. EFFECTS ON THE RISKS CONCERNING SPECIAL EVENTS

Risk control measures concerning Special events reduce the probability of exceedence of the budget,
as was the case for Normal events. In the latter case only the variance of the estimate was influenced.
A measure to control a Special event can influence both the probability of occurrence and the consequence

(damage). The damage can be:

1.  deterministic. If the Special event occurs, the consequence is deterministic, to the order of B (Case

3 in Table VIL.5., see Figure VII-6).
or

2.  stochastic. This case is mentioned only for completeness sake. It concerns the Special event with
an uncertain consequence . The consequence is a random variable. The mean is B and the standard
deviation is og. (Case 4 in Table VIL.5., see Figure VII-7). The quantification of the costs of
a measure and its effect is sketched in Figure VII-19. In the formula for the standard deviation

for Case 4 in Table VII.5, \Jpx{(l ~p)xB2+oz} , the term ofl is negligible compared with (1-p)xB2.

The quantification, sketched in Figure VII-19 then coincides with the one in Figure VII-18. From
the cases involving special events, mentioned in Table VII.5., only Case 3, represented in Figure

VII-18, is taken into consideration.

1) For this reason it is of no use to try to reduce the risk associated with a Normal event that is a deterministic
amount of money, B, as Og = 0 in that case. (See case 1 in Table VIL5., Figure VII-4).
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Figure VII-19

The measures concerning a deterministic damage in case of a Special event (see point 1 above) can

aim: to

a.  decrease the probability of occurrence
b  decrease the damage (the consequence)

Ad a: measure aims to decrease the probability of occurrence of the Special event.

Figure VII-20

-~

Before the measure is taken, the probability of occurrence
of the event is equal to p and the damage (if the event occurs)
is B. If the measure is taken, the amount of money lost if
the event takes place increases by the costs of the measure,
but the probability of occurrence decreases to p° < p. If
the event does not take place, the costs have been made in
vain. The probability that this is the case is 1 - p’. The
quantification of the measures and their effects is sketched
in Figure VII-18.

Ad b: measure aims to decrease the consequence of the Special

event (leaving the probability of occurrence unchanged).
Before and after the measure the probability of occurrence
of the event is p. If the measure is taken, the amount of money
lost when the event takes place is increased by the costs of
the measure, K;, but the consequences (damage after the
measure is taken equals B) decrease. ("The consequences
are - partly - taken beyond the reach of the threat.") The
quantification of the measures and their effects are sketched
in Figure VII-20.
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The measures are named per item and their ways of quantification are explicitly stated. They can be
introduced in (new) estimates. The result is an insight into the effect of each measure on the estimate:
both on the mean, p,,,, and on the standard deviation, o,,,, of the estimate. The budget is taken as
a standard, within which the project has to be financed. The decision maker will test if:

n total +k- Gtotal < Budg et

If the estimate is higher than the budget, one of the various measures can be selected.

VII.8.2. ANALYSIS OF THE INFLUENCE OF RISK CONTROL MEASURES

The risk control measures aim to reduce the influence of uncertainty on the estimate of the budget. The
uncertainty is expressed in the standard deviation of that estimate. The standard deviation of the Total
estimate is:

2 2
ototal - JoBasic estimate * o.Unfareseen

If there are n items in the Basic estimate and m items in Unforeseen, then the standard deviation of
the Total estimate can be written as:

2 2 2 2 2 2
Orotal = \J (01 t0)*... 40, )Bm estimate +{P1(1 ~p)B; +p,(1-p,)B; +...+p,(1-p,)B, }

Unforeseen

Starting from this formula the effect of risk control measures on the standard deviation of the Total
estimate can be analysed.

INFLUENCE ON NORMAL EVENTS (concerning the Basic estimate).

One can try to reduce the standard deviation of the price per quantum and the standard deviation of
the quantum of an item in the Basic estimate by risk control measures. The standard deviation of the
price per quantum can be reduced by agreements on prices. The standard deviation of the quantum is
smaller if "proven technology" is applied, for example by using standard solutions, that have been proven
many times in comparable circumstances and with which a vast experience of material behaviour in

working methods and in estimates has been built up. Reduction of the standard deviation of the price
per quantum causes reduction of the standard deviation of the item concerned. The same is the case
if the standard deviation of the quantum is reduced. This can be concluded from the scheme on page
VII-14. If the standard deviation of the Total estimate is differentiated with respect to the standard deviation
of the variable concerned, the result is:

dototal _ oi

doi Ototal

in which i is the rotation number of the item concerned in the Basic estimate.

The standard deviation of the Total estimate, 0, as a function of the standard deviation of item i in
the Basic estimate, 0;, is an increasing function, as the derivative of o, with respect to o, is always
positive. So decrease of the standard deviation of the price per quantum and/or reduction of the standard
deviation of the quantum will result in reduction of the standard deviation of the Total estimate.
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INFLUENCE ON SPECIAL EVENTS (concerning the Unforeseen)
MEASURES AIMED AT THE REDUCTION OF THE PROBABILITY OF OCCURRENCE

Page VII-9 states that the probability of occurrence of a Special event, p, is smaller than 0.5. Reduction
of the probability of occurrence of a Special event associated with a deterministic consequence (Case
3 from Table VII.5) results in decrease of the standard deviation of the estimate of the item concerned,
dototal 05312'(1 "2'P,—) . ..
as = is always positive.
dp, c

total

MEASURES AIMED AT THE REDUCTION OF THE CONSEQUENCE

Reduction of the consequence of the occurrence of a Special event with a deterministic consequence (Case 3
in Table VII.5.) always results in a decrease of the standard deviation of the item concerned:
2
do,,., _ B, (p;-pi)
dB, c

i total

is always positive.
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VII.8.3. ANALYSIS OF THE INFLUENCE OF RISK CONTROL MEASURES ON THE ACCURACY
OF AN ESTIMATE or the sensitivity of the costs for risk control measures

The equality:
Budget = n,,,+k'0

total

can be seen as the failure boundary of a "classical" reliability function:
Z = Budget R (R = N( l’l'total’o'tatal))

Inthe above "budget" is the "strength" and "estimate", R, is the "load". The unwanted top event ("failure")
is defined as "load exceeds strength". In this case this means that the budget is not sufficient to cover
the estimated costs.

: I . Budget-y,, . .
The safe region of the reliability function: ————— < £, canbe derived from the failure boundary.
0'tot

The estimate, R, can be elaborated:

2 2
R = Reotal +k Ottt = MBasic estimate * uUnforeseen +k OBasic estimate * OUnforeseen

= +U, F...t +Hw,+w, +...+ +
(,"’1 uz ”" )Basic estimate (ul pI] um )Unforeseen
2 2 2 2 2 2
kAl l0] +05+... 0, +07 +0y +... + 0,
'‘Basic estimate Unforeseen
= (B tpytent +(py'By *p,"By*+ .. +p,'B,,) +
("ll Ha Ry )Basic estimate (pl 17P2' 5 P B Unforeseen

2

e 2 2 2
k-\j (01 +0, +...+0,,)B +(p1'(1 ~p1)' By +py, (1-py)By +...+p,"(1-p,) B,

asic estimate ) Unforeseen

The summation of p,, and k-0, ,, can be sketched as follows:

tota

'R
R A 1otal
A roral
K %0 o

— \.ﬂ P

kK,

Figure VII-21

The accuracy of an estimate (with constant risk aversion, k, and in case of a deterministic target) increases
if its expected value and/or its standard deviation are reduced.

Both the expected value of the price per quantum and the expected quantum play a role when the expected
value of the item in the Basic estimate is calculated. The calculation of the expected value of an item
in Unforeseen takes the probability of occurrence and the damage (consequence) of the Unforeseen
item i into consideration. Decrease of the mean of the Basic estimate or of the mean of the Unforeseen
leads to an increased accuracy of the estimate.
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SENSITIVITY IN THE CASE OF NORMAL EVENTS

Differentiation of the last mentioned equation with respect to p; leads to:
AR _ MWiar_ 1
duy, dp
(The same holds for differentiation with respect to p, concerning the Unforeseen.)

i

The calculation of the standard deviation of the Total estimate takes the standard deviation of the price
per quantum and the standard deviation of the quantum of an item from the Basic estimate into account
in the same way. In both cases decreasing of the standard deviation of the item results in a decrease
in the standard deviation of the Total estimate. From the expression for R (see preceding page) it follows:

ﬂ _ k' dotatal= k.o.i
do, do. o

i total

A DECISION RULE IN CASE OF NORMAL EVENTS.

The costs, K, , of a measure concerning item i, increase the mean of that item by K,:

dp, )
dk,
Differentiation of p,,, with respect to K, according to the chain rule gives:
dutotal' d”l - lxl — l,
dp, dK,

so the expected value of the estimate also increases just as much as the money spent on the measure.

The relationship between the costs of the measure, K, and the standard deviation, o, in item i can

be written as:
o, = g (K,)

Inorder to see if the measure causes a sufficient decrease in the standard deviation, k-0, is differentiated
with respect to o, and subsequently with respect to K, , according to the chain rule. The measure with
respect to item i is sound if:

d {k.ototal} . doi > d I’Ltotal. dl"’z
do, dk, dy, dK,
For Normal events this gives:
k-o. |do.
1 . —__l > l
ototal de
do, dg, (K,)

b~ can be substituted. For those

The given function o, = g, (K,) and consequentl
g . = & (K) q yde iX,

values of K, for which the inequality holds, risk control measures concerning item i are sound. All

items in the Basic estimate can be taken into account in the optimization procedure. If there are n such
items this leads to a n-dimensional minimization problem.
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For each variable (item i in the Basic estimate) an estimation of the appropriate value of K, will have
to be made as a starting value in the iteration procedure. Depending on the risk aversion, k can be chosen
as 1 or 2. The magnitude of do, is estimated in the order of 0.5 * o,.

The estimate of page VII-15 is taken as an example.

ko, |do. .
From: ~-|l—=| > 1 (see preceding page) follows:
0.total de
k-o,
dk, < *do,
Y

total

For the item "viaduct" (see page VII-15) o,: 1500 kil (cell J5), o, ,: 19258 kfl (cell P9). For risk

total *
aversion k = 2 is chosen. A first estimation of an investment, dK ,, in a risk control measure which
halves the standard deviation of item i: do, = 0.5-0, = 0.5-1500 = 750 A1 is found to be:

_2-1500

, = =-222.750 ~ 120 kil
19258

In general the n-dimensional minimization problem is too complicated to be solved. The costs of this
kind of risk control measures concerning Normal events are estimated in the given way and it is left
at that. The minimization problem is not solved because:

1 the estimate consists of too many items (some hundreds) to be calculated successfully.
2 the functional relationships o, = g, (K,) are not known in most cases.




SENSITIVITY IN THE CASE OF SPECIAL EVENTS
INFLUENCE OF RISK CONTROL MEASURES AIMED AT THE REDUCTION OF THE PROBABILITY OF OCCURRENCE

The probability of occurrence of a Special event is: p < 0.5. Decreasing the probability of occurrence
of a Special event with a deterministic consequence (Case 3 in Table VIIL.5.) increases the accuracy
k-0.5-B}(1-2-p.
of the estimate as 2% = B+ i Py
dp i 0'z‘m'al

is always positive.

This working method results in a m-dimensional minimization problem, as before. (It is supposed that
the estimate contains m Unforeseen items.) For the same reasons the minimization problem cannot be
solved in most cases. Thus we restrict ourselves to a rough estimate of the costs of risk control measures.

For the mean of the Special event, i,(see Figure VII-18):

W =P B +K,

1

is found. Suppose K, <<< p,*B, (investment small compared with the risk) then p, = p,*B,.

For the standard deviation (see Figure VII-18):
0'1. = B,'vp,(l ‘P,-)

0'1. = B," pi

is found. As p, <<< 1:

The estimate of the i™ Special event is given by:
R, =, +k-op

The following inequality has to be satisfied for the measure to be sound:

dk, dk, dR,
— <1 or < —
dR, dp, dp,
From this:
dR, k
dK, < —-dp, = B;| 1+ “dp,
dp, 2+/p

The probabilistic estimate on page VII-15 is again taken as an example.

For the item "contaminated soil": p, = 0.1 (cell B21), B;: 300 kil (cell E21). Suppose again: k = 2.
dp, is estimated in the order of magnitude of 0.1 *p,. A rough estimate of an investment in a risk control

measure for contaminated soil is:

dK, = 300-(1+ 2

2-/0.1

]-0.1 = 125 kfl
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INFLUENCE OF RISK CONTROL MEASURES, AIMED AT THE REDUCTION OF THE CONSEQUENCES (DAMAGE)

Reduction of the deterministic damage due to the occurrence of a special event with deterministic consequence

kB-(p,-p}
(Case 3 in Table VII.5.) will increase the accuracy of the estimate as j—g = p, +—M is
. o

i total

always positive.

If p, <<<1 and K, <<< B, then:
R; = Bi'pi+k'Bi\/E

The following inequalities have to be fulfilled for the measure to be sound:

dK, dk, dR,
— < EE— S —
dR, dB, dB,
From this:
dK ——dR" dB { k } dB
< ‘dB. = +k/p. 1t -dB.
b dBi i pl Px i

Again the probabilistic estimate on page VII-15 is taken as an example.

As on the previous page: p, = 0.1, B,: 300 kfl and k = 2. dB, is estimated in the order of magnitude
of 0,9-B, . A rough estimate of an investment in a risk control measure for contaminated soil, aimed

at the reduction of the damage, is:
dK, = {0.1 +2-4/0.1 } 0.9:300 = 200 kfl

The measure can consist of electrically/chemically cleansing of the soil before contamination has been
established.
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VIII. SAFETY COEFFICIENTS

PIANC committee

Safety factors for breakwater design

by: J.K. Vrijling, J.W. v.d. Meer, P. de Swart, W. v. Hengel

VIII.1. BOUNDARY CONDITIONS AND OTHER BASIC VARIABLES

Seven different wave climates have been used as boundary conditions for the level II calculations.
The first four are based on observed data from real projects. The last three are theoretical extreme
assumptions.

All wave climates have been modelled by means of a Gumbel distribution.

Pr{H, < h} = exp(—exp(— h—;),f—))

If the given distribution models the highest significant wave in a year, then the distribution of the
highest significant wave height in N Year is defined by:

Pr{H, < h} = exp(—exp(— h—;éq—'))

Where A'= A+ B-In(N)
The parameter values for the seven wave climates are given below:

Data A A B B/A’

Sines 8.30 13.74 1.39 0.101
Bilbao 5.99 7.90 0.49 0.062
Tripoli 4.53 10.95 1.64 0.150
DHI 6.65 9.66 0.77 0.080
Test 1 - 6.72 1.80 0.268
Test 2 - 11.55 0.75 0.065
Test 3 14.57 - 0.05 0.003

N.B.: 4'= A+ B-In(50)

Table VIII.1.: The parameter values of the wave height distributions

The value of B/A’ mentioned on the last column gives an impression of the variation of the
significant wave height.

In the study the climates are ranked according to the B/A’ value in Table VIIL.2..

The parameters of the wave steepness distribution are chosen according to the conclusions of the
ICCE meeting in Delft.
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Data A A B B/A’

Test 3 14.57 - 0.05 0.003
Bilbao 5.99 7.90 0.49 0.062
Test 2 - 11.55 0.75 0.065
DHI 6.65 9.66 0.77 0.080
Sines 8.30 13.74 1.39 0.101
Tripoli 4.53 10.95 1.64 0.150
Test 1 - 6.72 1.80 0.268

Table VIII.2.: The parameter values of the wave height distributions ranked according to B/A’

The Uncertainty of the significant wave height distribution was modelled by:
f_H,-H,
The uncertainty is assumed to be normally distributed with the following parameters:

MU SI

1.0 0.00
1.0 0.10
1.0 0.20

It should be discussed if the first class really exists or that the set 1.0, 0.05 is a better description of
the state of the knowledge.

The parameters of the distributions of the other parameters loading as well as resistance are chosen
according to the conclusions of the ICCE meeting in Delft.

VIII.2. THE ACCEPTABLE PROBABILITY OF FAILURE

The Level II calculations haven been performed for three values of the acceptable or target failure
probability of the breakwater armour during the lifetime of 50 years. The values that have been
used, 10%, 20% and 40%, are high compared with target probabilities in building codes. I Holland
a value of 1.0E4 (beta = 3.6) is proposed for ULS and a target of 1% for SLS (beta=1.8).

The values used here are found by calibration of existing breakwaters. But looking to the histories
of failure it seems wise to add 0.1% and 1% to the list of values. This may initiate a trend to safer
breakwaters.

VIII.3. THE FORMAT OF THE PROPOSED CODE

Two slightly different formats have been studied for the stability of the armour layers. The first
format is theoretically correctly derived, but leads to some tension between theory and practice. The
second format is directly derived from the way it will be used in practice.

The first format:

R=62-f m-P*®.8°%.Delta-D-cota®

S=f H, -H, . NO10 /S__ZO‘25

gamma _R=R_ kar/R' gamma_S=S8"'S_kar

where the characteristic values for all basic variables are equal to MU: X char = MU (X) except
the characteristic value of the design wave.
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For the characteristic value of the wave height two values have been studied:
H_char = A’ return period 50 years
H cha=A"+B return period 2,72*50 years

In practice the format will probably be used as follows:

Delta-D/ gamma _R =gamma _S-H, /N _stab

or

Delta-D = gamma _S-gamma R-H_ /N _stab

where N _Stab=62-5 z"%.P".8% .cota®’ /N™

The second format is derived following the application of the design formulae in practice as

explained above. Using the same characteristic values for the basic variables the safety factors are
defined as follows:

R = Delta-D
S=H,/N_stab
gaa R R= & R/ ' aa § S S=d/

Theoretically this format is less precise, but now the factors show the importance of the terms on
which they are applied. In the end the difference is nil because the product of the two factors is
equal for both formats.

Delta-D = gamma_S-gamma R-H_/N _stab

The difference is shown for the Bilbao case.

Format g R gS g RS
1’ format 1.103 1.114 1.224
2’ format 1.034 1.184 1.224

In the report only the results for the first format are presented.

VIii.4. THE RESULTS

As a result of the calculations it appeared that the value of the damage number S did not influence
the values of the factors. Therefore this variable has been omitted in the results presented.

In the Table A all relevant results of the Level II safety factor calculations are given.
The values of Gamma R, Gamma S and Gamma_sk are printed in the respective columns.

The difference between the two load factors is explained by the two proposed choices for H, char.

H_char = A’ Gamma_S
H _char=A"+ B Gamma_Sk

In the horizontai direction the influence of F_H_ on the factors is shown in three steps.
In the fourth block the limited effect f the wave steepness increasing to 5% is clear.

Vertically, the variation of the wave height, expressed by B/A’, increases per block.
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Over the blocks the target probability of failure P_ft rises from 10% in the life time to 40%.

To provide a better insight into the results the factor values have been plotted as a function of B/A’
and P _ft.

It is seen that Gamma R is fairly constant over the range of B/A’ values.

Overlooking all results presented in Table A the value of Gamma R is bounded by 1.02 < - >
1.12.

A value of Gamma R = 1.05 is proposed for all cases.

The value of Gamma_S fluctuates strongly with B/A’ in this figure and for all other cases. It seems
impossible to choose one generally applicable value for this factor.

If, however, the definition of H_char is changed to A’ + B the behaviour of Gamma_Sk is more
restrained, and depending on the F_H_class and the target failure probability a constant value might
be chosen.

In Figure VIII-2 the factors are presented as a function of the uncertainty of the wave height
distribution for the Sines wave climate.

Again it is concluded that Gamma-R shows stability.

The factor Gamma_ Sk clearly increases with F_H _except for the highest value of the target
probability of failure.

In Figure VIII-3 the most stable loading factor Gamma Sk is shown to be sensitive for the values of
F H, and P_Ft. This sensitivity must be honoured in the code for technical as well as psychological
reasons.

The extreme variability of Gamma S is clear from Figure VIII-4. If this definition of the factor is
followed the idea of a fixed factor for all wave climates has to be abandoned.

The relative stability of Gamma R is clear from Figure VIII-5. Although the target probability of
failure influences this factor, its seems appropriate to take a constant value for the sake of
simplicity.

VIIL.S. TENTATIVE PROPOSAL

The first choice to be tested further is Gamma R = 1.05.

For the loading factor Gamma Sk the following values are proposed, taking into account the
considerations mentioned above.
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Gamma_Sk f H

P f 0% 10% 20%

10% 1.10 1.15 1.25

20% 1.05 1.10 1.15

40% 1.00 1.00 1.00
As a first test the product of the loading and the resistance factors might be compared with the
calculated results.

Gamma_Total f H

Pf 0% 10% 20%

10% 1.15 1.20 1.30

20% 1.10 1.15 1.20

40% 1.05 1.05 1.05

VIII.6. DISCUSSION POINTS

Format of the code
e fixed factors
e H charact.

— Minimal uncertainty of wave climate of 5%
Additional P_ft values of 0.1% and 1%
— The influence of dedicated model tests on the factors.

|
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IX. MAINTENANCE THEORY

IX.1. INTRODUCTION

Before saying anything about maintenance it is wise to define this term.
Maintenance signifies:

All activities aimed at retaining an object’s technical state or at reverting it back to this
state, which is considered a necessary condition for the object to carry out its function.

These activities include both the repair of the structural strength, back to the starting level, and any
inspections.

The costs of maintenance of civil engineering structures amounts to approximately 1 % of the
founding costs per year. For a life-span of 100 years this means that the maintenance costs are of
the same magnitude as the construction costs. Taking into account the decline in new housing
development projects, maintenance costs are clearly becoming an increasingly greater share of the
expenses.

A direct consequence is the desire to minimise maintenance costs.
In order to realise this, the optimal maintenance strategy has to be sought.
From the mechanical engineering maintenance theory, the following classification of strategies is
known:
1. Curative maintenance - fault dependent maintenance
2. Preventive maintenance - use dependent maintenance
- condition dependent maintenance.

In the case of fault dependent maintenance, an object is repaired or replaced when it can no longer
fulfil its function (see Figure IX-1). Thus, repair takes place after failure, therefore a failure norm
is involved. The life of an object is fully exploited. An object’s failure (and the associated costs) are
accepted.

In hydraulic engineering this type of maintenance is usually not acceptable because, generally, the
accepted probability of failure is limited. This type of maintenance can, however, be applied to non-
integral construction parts (parts which do not contribute to the stability of the entire structure),
with modest consequences of failure (provided reparation or replacement is not postponed for too
long).

initial strength‘z.

repair

time

Figure IX-1  Possible course of strength with fault dependent maintenance



In the case of use dependent maintenance, maintenance is carried out after a period consisting of a
previously determined number of usage units. The costs of maintenance and of the risk' generally
determine the extent of this period. The life of the object is not totally exploited. In mechanical
engineering, this type of maintenance is applied if the usage units can be registered, for example
with a kilometre indicator, product counter, etc..

In hydraulic engineering, this is different. We can hardly register all loads for every construction to
organise the maintenance around those registrations. In this case, the loads in a period are
considered random variables. Subsequently, the life time is estimated and the time for repairs is
determined for which the probability of failure is sufficiently small and for which the costs are
minimal. Therefore, one should use the term time dependent maintenance (see Figure IX-2). A time
norm is involved.

4 Initial strength
strength
i I L] ! i
| ] ! |
! ' : load
A e
N R I I
At 1 ' ' time

Figure IX-2  Possible course of the strength for time dependent maintenance

If loads which cause deterioration are registered, maintenance (inspection or repair) can be called
for after an extreme large load or after a certain total amount of loading (cumulative). This is
classified as load dependent maintenance, involving a load norm. In case the cumulative load plays
a role, the possible courses of strength and load are given in Figure IX-3.

strength/load

—-—w = o= o
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time ‘
pe—— .7 T, | -~ cumulative load e strength

Figure IX-3  Possible course of the strength for load dependent maintenance

With condition dependent maintenance the state of the object is determined at set intervals, by
means of inspections. The decision whether or not to carry out repairs is based on observations. The
inspection intervals can be regular or dependent on the condition of the object. In the latter case
condition parameters, indicating the condition of the object, have to be visible. The probability of
failure in a period between two inspections has to be sufficiently small. Generally, the life time of
the object can be better exploited than with usage dependent maintenance, but the costs of the
inspections do have to be taken into account.

This type of maintenance also involves drawing up norms.

These norms concern (see Figure IX-4):

1. a limit state which leads to an increase of the inspection frequency (warning threshold)

' RISK = (PROBABILITY OF FAILURE) * (CONSEQUENTIAL DAMAGES)
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2. a limit state which leads to carrying out repair works (action threshold)
In fact this concerns strength norms. These norms result from an optimisation of the maintenance or
correspond to a socially accepted failure probability in a year.
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[ | ]
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I R .}_._. - | — warning threshold

 — action threshold

— ...-1_.......-4 Inspection

time

Figure IX-4  possible course of strength with condition dependent maintenance

The selection of the maintenance strategy to be used depends on factors such as:
- predictability of the life-span of the object;
- consequence of failure of the object;
- costs of replacement or repair;
- costs of inspection;
- visibility of the condition of the structure (damages or deterioration).
A first comparison of the different strategies, focussing on the usability is presented in Figure IX-5.

< .
w
CONSEQUENCE | & GOOD DESCRIPTION OF g STATE DEPENDENT
OF FAILURE ™1 COURSE OF STRENGTH MAINTENANCE
‘smu. YEsI____*
FAULT DEPENDENT REGISTRATIONOF THE  [YES
MAINTENANCE | LOADS DURING USE
-
USE DEPENDENT MAIN
TIME DEPENDENT LOAD DEPENDENT
MAINTENANCE MAINTENANCE

Figure IX-5 Global selection of the maintenance strategy

In hydraulic engineering a combination of two or more strategies appears to lead to a better result
than simply applying a strategy selected using Figure IX-5. Thus, for example, a planning can be
drawn up using the time dependent maintenance strategy, which can be adapted on grounds of
observed loads, whilst the initiative to commence repair works is dependent on the strength
according to inspection. Based on this example, one can state that the limits of applicability of the
different strategies are flexible for hydraulic engineering.

Generally, however, statements can be made about the consequences of failure and with that the
acceptance of fault dependent maintenance.

Choosing between time dependent and condition dependent maintenance is less simple.

Completely time dependent maintenance will be applied if inspection is not possible or if inspection
is expensive relative to repairs.




Completely condition dependent maintenance will be carried out if it is not possible to make a
prognosis of the strength in the course of time or if inspection is very simple and therefore
inexpensive.

An important aspect of the condition dependent maintenance is collecting data concerning the
strength in the course of time. This allows for better planning of the maintenance or the inspections.

This chapter will pay no further attention to the purely condition dependent maintenance, which
requires no further knowledge of the wear of a construction.

The aim of this chapter is to give a method which can be used to determine an economically sound
planning of the times of repair and/or inspection of a structure.
Existing design models will be used for the deterioration of the structure.

The expected value of the costs of repair, inspection and the risk are central. To determine these
expected values of the costs, a grasp of basic statistical techniques is necessary. For this, the reader
is referred to the lecture notes CTWa4130 - Probabilistic design (Vrouwenvelder, Vrijling -
TUDelft).

IX.2. TERMINOLOGY

IX.2.1. TIME DEPENDENT STRENGTH

The strength of a structure is not independent of the point in time of evaluation. For a structure
made of reinforced concrete, for example, the strength increases as the concrete hardens and
decreases when the carbonation depth exceeds the cover, leading to corrosion of the reinforcement.
For a steel structure, corrosion clearly also leads to a decrease of the strength of the structure. For
structures which are not so much affected by the decay of materials, the strength can also be time
dependent. Here, a typical example is the settlement of a dyke, where the crest height is the

strength.
IX.2.2. PROBABILITY OF FAILURE

Failure is generally defined as exceeding a limit.
The limit state is a state, where the strength of and the load on the construction are equal. Two
types of limit states can be distinguished, namely:

a. the Ultimate Limit States (ULS) and

b. the Serviceability Limit States (SLS).

When the ULS is exceeded, failure occurs as a result of collapse of the structure under extreme
loads. Collapse of an earth body, the deflection of the structure and so on are ultimate limit states.
When the SLS is exceeded, the functional demands can no longer be met. Examples are limit states
concerning: deflection of a floor, cracking in reinforced concrete, waves which are too high behind
a breakwater etc..

Generally, failure can be defined as exceeding the strength with the loads. The state of a structure
can be described using a reliability function:
Z=R-S
where: R = the strength
S = the load

If the strength and/or the load are described with random variables, Z is also a random variable. If
Z < 0 the structure fails. The probability of failure is:
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Pr{Z <0} = [£,(6)d¢

where: £, = probability density of Z
13 = realisation of Z

The difficulty with the determination of the failure probability is the fact that the distribution
function of Z usually can not be determined exactly. Only in a few cases, e.g. where all variables
are normally distributed, the distribution of Z can be determined. However, there are techniques
that make it possible to calculate the probability of failure or to approximate it. If the distributions
of R and S are known:

Pr{Z <0} =Pr{R < S} = [1-F;({)- fr(£)dS

3

where: F = probability distribution of S = I fs(©)do
fs = probability density function of S
IR = probability density function of R

This integral is known as the convolution integral.

In case the strength and/or loads consist of several random variables, the distributions of S and R
are usually not exactly known. In these cases, the probability of failure is approximated by a Monte
Carlo simulation or a level II calculation.

IX.2.3. DETERIORATION MODELS

The relation between strength and time is given by a deterioration model. The relation can be linear,
exponential, logarithmic, etc..

In the case of development of the compression strength of cement stone, an asymptotic relation
clearly exists (see Figure IX-6). After approximately 30 days, the compression strength of the
cement stone almost equals the maximum value.

Settlement of a dyke on a thick, hardly permeable layer also involves a limit value of the strength
which can be observed. The settlement approaches a final value (see Figure IX-7).

Time

norm strength

Settlement

o

Time

Figure IX-6  Course of the compression Figure IX-7  Course of settlement
strength of cement stone in time (consolidation)



The deterioration model thus determines the strength at every point in time. The model is an
approximation of reality. The input required for the model is the starting strength and usually a
number of parameters which describe characteristics of the material or the structure.

The parameters which serve as the input for the deterioration model are usually determined from
tests or observations. They rarely have a certain value and can usually be best described by a
random variable. This means that the strength at a certain time is a function of random variables and
is thus a random variable itself.

IX.2.4 LIFE-SPAN OF A STRUCTURE WITHOUT MAINTENANCE

The life-span of a structure is the time strength,load
which passes between the realisation of [
the structure and the failure of the |strength
structure. In Figure IX-8 this is clearly
marked for time dependent strength and
load, for which the exact values are |[joad

known for every point in time. The
intersection of the strength and the load

determines the moment of failure of the | Life-span Time
structure. P

{7

Figure IX-8  Life-span for an exactly known course of
strength and load in time

In the case above, both strength and load are deterministic. The life-span is simple to determine, in
that case. This is less so, when the load and/or the strength are random variables because, then, the
life-span is also a random variable. The definition of the probability distribution of the life-span is:

F,(t)=Pr{L <t} =1-Pr{R > S for every t in the interval (0,1)}

For the consideration of Pr{R > S inthe interval (0,t)}the load has to be defined as the

dominating load in the period (0,t). As t increases the average of the load in the interval (0,t) will
also increase. This way the dependence on the duration of the dominating load is incorporated in the
probability distribution of the load. If the strength is also time dependent a new problem arises,
namely the determination of the normative strength for the period (0,t).

Given the probability distribution for the life-span, one can easily determine the probability density
function from:

dF, (t)
1) =—~t—=
11® i
The expected value of the life-span can be found by integration:

w = Jo-f@di=fi- £, 0

Multiplication of the probability density with dr gives the probability that the life-span ends between
the moments 7 and ¢ + dr:

F()dt=Pr{t <L <t +df}

The life-span ending in(#,? + df) means that R < S'in (¢, +dtf)and R > Sin (0,7). In formulae
this is:



f®dt =Pr{R < S in (t,t +dt) AR > S in (0,1)}

The probability density function of the life-span can also be seen as the probability of failure per
time unit, i.e. the failure rate. In this case one refers to unconditional failure rate.

It is also possible to define the conditional failure rate (7(¢)). Multiplication of the unconditional
failure rate with df again gives the probability of collapse in (¢, #+df), but this time on the condition
that in (0,?) failure doesn’t occur. in formulae:

r()dt=Pr{R < Sin(t,t+dt)| R > S in (0,1)}

The relation between F, (f), f, (f) and r(¢) is (the formulation of the conditional probability):

So@®dt =1~ F,(£))-r(t)dt

This equation can also be written as:

4 pay

dt d
r(t) = = FO)+F@)-r@)=r(
=150 —FO+F@)-r@)=r()
The solution to this differential equation is:

F(t)=1-exp I: ]'—r(r)dr}

This equation enables us to establish the probability distribution and the probability density of the
life-span if the load and strength are dependent on the duration.

To clarify this, we consider a construction for which the strength decreases in time but can be
considered constant in an interval (t,t+dt).

The strength in this interval is given by a deterioration model, on the condition that failure does not
take place in the interval (0,t). If this were the case, the structure would be replaced and
deterioration would commence at another point in time.

The load is defined using an extreme value distribution for maximums in a period lasting dt.
Because the strength is considered constant for a duration dt, the probability of failure in every
interval ( t,t+dt) can be determined.

Because the strength in the interval (t,t+dt) is conditional, the calculated probability of failure in
the interval (t,t+dt) is also conditional, i.e.:

Calculated probability of failure =Pr{R < S in(t,t +dt)|R> S in (0,1)}

This is the exact formulation of »(¢)-df. Dividing the calculated probability of failure in the
interval (¢,7 + df)by dt gives the conditional failure rate. This serves to determine the probability

distribution and the probability density of the life-span.

NAP.00m (F0)  Ag an example, a strictly theoretical case is considered,
involving a container, consisting of four sides and a
bottom, floating on a lake. Chains attach the container to
a winch at the bottom of the lake. At the beginning of
every time unit the chain is pulled down 2 cm, after
which the situation remains the same during one time unit
(see Figure IX-9). At the time t=0 the top of the
container is situated at NAP+6.00 m.
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Figure IX-9  schematisation of the example

The maximum water level in a time unit is defined by a Gumbel distribution for maximums:
£-1.98
Pr{h> &} =1—exp| —exp| ———
{h>&} p( p( 033
with: h = water level

The structure fails if the lake water level exceeds the side of the container, thereby filling the
container with water. It is now possible to calculate 7(¢)df for every point in time with:

r()-di=1- exp[— exp(— 6- 0'002;;- 1.98D

The equation of the probability distribution of the life-span is:

t t
F (f)=1-exp j— r(r)-dt=1- exp(— r+ Iexp(— exp(0.0606 - 7 —12.181 8))dtj
0 0

and the probability density function is:
d
N=—F,(t
£ & L ()
Figure IX-10 displays the numerical solutions of F, (f) and f, ().
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Figure IX-10 Probability distribution and probability density of the life-span

The expected value of the life-span is approximately 140 years.



