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Simulating noninteracting fermion systems is a common task in computational many-body physics. In the
absence of translational symmetries, modeling free fermions on N modes usually requires poly(N ) computational
resources. While often moderate, these costs can be prohibitive in practice when large systems are considered.
We present several free fermion problems that can be solved by a quantum algorithm with substantially reduced
computational costs. The memory costs are exponentially improved, poly log(V). The run-time improvement,
compared to the best known classical algorithms, is either exponential or significantly polynomial, depending
on the geometry of the problem. The simulation of free fermion dynamics belongs to the BQP-hard complexity
class (i.e., as hard as any (decision) problem that can be solved on a quantum computer). This implies (under
standard assumptions) that our algorithm yields an exponential speedup for any classical algorithm at least
for some geometries. The key technique in our algorithm is the block encoding of objects such as correlation
matrices and Green’s functions into a unitary. We demonstrate how such unitaries can be efficiently realized as
quantum circuits, in the context of dynamics and thermal states of tight-binding Hamiltonians. The special cases
of disordered and inhomogeneous lattices, as well as large nonlattice graphs, are presented in detail. Finally, we

show that our simulation algorithm generalizes to other promising targets, including free-boson systems.

DOI: 10.1103/zmwm-gdmw

I. INTRODUCTION AND BACKGROUND

Quantum many-body dynamics can be naturally simulated
by a quantum computer [1], enabling its applications in con-
densed matter and quantum chemistry. For a system of size N,
standard quantum algorithms use poly(V) resources for such
simulations. It implies an exponential advantage over classical
methods, when dealing with a generic many-body system.
Such a general advantage may not hold in special cases of
interest, such as the modeling of free fermions, where the
best classical algorithms also have poly(N) cost [2—4]. This
classical efficiency has been key to many successes of compu-
tational physics, as free fermions model a variety of systems
in condensed matter and quantum chemistry; they have also
been used in computational strategies for solving interacting
fermion systems, using mean-field (Hartree-Fock), perturba-
tive methods or dynamical mean-field theory. Nonetheless,
in the practical simulations of noninteracting fermions, even
the most efficient numerical methods become too expensive
for large systems. This motivates the key question of this
work: can a quantum computer boost free fermion simulations
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beyond what can be done classically? We answer this question
in the affirmative, presenting quantum algorithms with an ex-
ponential speedup and memory compression for several free
fermion problems.

To appreciate the value of such an exponential reduction,
consider numerical simulations of free fermion models of
materials and interfaces for quantum transport [5,6]. These
can become prohibitive when involving more than N = 10°
modes, which is of practical interest when simulating three-
dimensional lattice models. Upon compression, a system of
10° sites can be described by n = 30 qubits. Larger systems
of practical interest could still be accessed with moderately
sized quantum computers. Indeed, even simulating one mole
(N =~ 10?*) of fermionic modes requires fewer than n = 80
qubits in compressed form. This opens the door to modeling
free fermions near the thermodynamic limit—a desired but
often challenging goal.

Our result is based on an understanding of the reduced
classical complexity of free fermion systems. As an inspira-
tion, we used the fact that the matchgate computations and
the dynamics of free fermion problems on N = 2" modes
can be simulated in compressed form, using O(n) space on
a quantum computer [7-11]. In this work, we go beyond
these memory compression results to identify free fermion
problems that also permit an exponentially improved, poly(n)
quantum run-time. Our key idea is to represent the rele-
vant 2"-sized object—such as the correlation matrix or a
Green’s function of a free fermion state—as a block of an
n-qubit unitary. This unitary can be given as an efficient
quantum circuit; we provide explicit construction methods by
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leveraging the modern quantum algorithm toolbox of block-
encoding manipulations [12-16]. In particular, we show how
to construct the desired unitary for free fermion states aris-
ing from time dynamics or thermal equilibrium. Given block
encodings of the aforementioned objects into a circuit, we
show how to accurately extract various physical quantities
for a state, including the occupation number on a given site,
or energy density across the entire system. We analyze the
application of our methods to free fermion models on d-
dimensional lattices and expander graphs. For the particular
case of d-dimensional lattices, we argue that a polynomial
run-time improvement can be expected, based on the com-
parison with best available classical algorithms. For expander
graphs, the same analysis suggests an exponential speedup.
On a more general geometry, the problem of single-particle
time dynamics is BQP hard [17]—as hard as any problem
that can be efficiently solved by a quantum computer. This
rigorously proves that our approach offers an exponential
quantum speedup at least for some geometries (as long as
quantum computers can offer exponential speedups in prin-
ciple). Finally, we outline the generalization of our approach
to systems beyond free fermions.

Our work can be viewed as a fermionic counterpart to Ref.
[17], which shows how the time dynamics of a system of
coupled oscillators can be solved exponentially faster on a
quantum versus a classical computer—with further applica-
tions in Ref. [18]. Compared to the alternative and recent work
[19] that focuses on encoding a correlation matrix into a state,
our method using block encodings has an exponential advan-
tage in signal strength for the extraction of local observables
(see Appendix A for more details).

We note that quantum algorithms for compressed sim-
ulation of interacting fermionic models have also been
considered in, e.g., Ref. [20], where a Fermi-Hubbard model
is simulated in the O(1)-particle subspace. By contrast, we
consider N-mode systems with as many as ®(/N) particles.

II. PRELIMINARIES

Throughout this work, we set N =2". A particle-
conserving free fermion Hamiltonian H can be written as

N—1,N—1
H= Z hijd’a;. 1)

i=0,j=0

with Hermitian matrix /&, which we will assume to be
O(1) sparse (i.e., there are at most a constant number of
nonzero entries in each row) and |h;;| < 1. Here, {a;f, aj} =
8ij, {ai, a;} = {a;.", a';} = 0. We denote the fermionic particle
number operator as N = ny:_ol ajai, and we restrict ourselves
to Hamiltonians that preserve particle number [21]. We allow
for states p with an arbitrary number of particles Tr Np),
which in general may scale with N = 2". Observe that in the
case of single-particle dynamics Tr (N p) = 1, the fermionic
nature of the system does not come into play and bosonic or
fermionic dynamics are equivalent.

The Hermitian correlation matrix M of a fermionic state p
on N modes is defined as

M;; =Tr(ala;p) € C, 2)

~

and obeys 0 < M < I, and Tr(M) = (N). M contains observ-
able information about the fermionic state p: for example,
M;; is the mean fermion occupation number of a state p
in the mode j. Furthermore, an expectation value of a free
fermion Hamiltonian [Eq. (1)] can be expressed as Tr(H p) =
Zi, i hiiM ;. If p is itself free fermionic, expectation values of
interacting Hamiltonians can also be obtained from M, using
Wick’s theorem.

Throughout this work, we will use [N = 2"] in a non-
traditional way, namely, offset by 1: [N]={0,...,N — 1}.
We also use the standard notation f(x) = O(g(x)) if a func-
tion is asymptotically upper bounded by const - g(x), f(x) =
Q(g(x)) if lower bounded, and f(x) = ©(g(x)) if both [i.e.,
scaling in the same way as const - g(x)].

III. OUTLINE

In Sec. IV, we detail our objects of interest: correlation
matrices for the time-evolved and thermal equilibrium states,
as well as the Green’s function matrix. Each of these objects
carries physically meaningful information about the system
and has a form F (h)—an explicit matrix function of A.

In Secs. V=-VIII, we demonstrate how the information con-
tained in these matrices can be efficiently extracted from a
quantum computer, using the framework of so-called block
encodings. Figure 1 provides a visual scheme, illustrating
the structure of our approach. Section V explains the block-
encoding framework, namely, how any N x N sized matrix
A can be encoded into a block of a unitary Uy on O(n) =
O(log N) qubits. We also review the basic tools to produce
and manipulate such unitaries Uy, which were previously es-
tablished in the literature. Given the matrix functions F () of
our interest, we will aim to produce the block-encoding Ur )
as compact quantum circuits.

The starting point of our circuit construction are smaller
unitaries that encode 4 itself; these unitaries are called sparse
access oracles (as the matrix # is required to be sparse). In
Sec. VI, we show how to to implement the sparse access
oracles as quantum circuits of size poly log N. Such imple-
mentations are specific to the model of interest: we discuss
the cases of d-dimensional lattice models and some expander
graph geometries; we also demonstrate that quenched disorder
can be introduced efficiently.

In the following Sec. VII, having implemented the sparse
access oracles for h, we move to the second step of the
construction—realizing the block encoding of matrix func-
tions F (h) of our interest. We detail how this can be done with
quantum circuits of size that scales polynomially in log N, as
well as polynomially in parameters of the respective function,
such as the evolution time 7, the inverse temperature f, or the
Green’s function regularization parameter §!.

Being able to run a circuit that realizes the block encoding
of the matrix F'(h) is not sufficient for a successful simula-
tion: one still needs an efficient method to extract physically
relevant information from F (h). Section VIII shows how this
can indeed be done, using a Hadamard test and basic sam-
pling techniques. In particular, we demonstrate that the local
observables and global densities (such as the total energy
density) can be accurately extracted from a block encoding
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[Sparse access to h]—)[Block-encoding of h]—)[Block—encoding of F (h)]—)[Estimate entries of U F(h)]

[Polynomial approximation of F' (1)]7

A N

[ Hadamard test ]7

FIG. 1. Overview of the proposed quantum computational method to extract properties of free fermionic systems such as the entries of
matrices listed in Sec. IV. The elements of the construction illustrated here are described in detail in Sects. V=VIIIL

of F(h), while maintaining the poly log N complexity of the
algorithm.

Sections IX and X deal with a crucial question: does
our approach provide a significant speedup compared to a
classical computation? This question can be answered in the
affirmative from two perspectives. In Sec. IX, we take a com-
plexity theory perspective and observe that simulating free
fermionic time dynamics using log N qubits is BQP hard. In
other words, for a classical computer it is strictly as hard as
simulating a general quantum computation on log N qubits—
which is widely assumed to be exponentially hard in the
number of qubits. This establishes that our approach yields
an exponential quantum speedup for at least some system
geometries. In Sec. X, we take a more practical perspective
and focus on the geometries of direct physical interest (such
as those given in Sec. VI). For these models, we compare
the performance of our algorithm with the best classical algo-
rithms that are currently available. In particular, we find that
the quantum algorithm yields a power-(d 4+ 1) polynomial
speedup when simulating the time dynamics of d-dimensional
lattice models. For simulations of the expander models, we
demonstrate an exponential quantum speedup.

We close the main text with the Sec. XI, where we sketch
how our approach can be generalized to other systems, such
as free fermions with pairing terms (~Aa;ay) and free bosons
with particle conservation. In Sec. XII, we discuss the future
directions.

IV. OBJECTS OF INTEREST

We consider three kinds of target objects—matrix func-
tions of A, whose entries encode the physically relevant
information.

(1) Correlation matrices M#) of thermal states pg =
e PH /Tr(e=PH) associated with free fermion Hamiltonians H:

1

MP) — .
I+ efh

3

The eigenvalues ng(€;) = (1 + <)~ of M®) correspond to
the Fermi-Dirac distribution, with ¢; the eigenenergies of 4,
and (1\7 )g = »_;ng(€;). Note that h here includes a chemical
potential term—u[, if needed.

(2) Correlation matrices M (t) of time-evolved states po(z)
(where the time evolution of p(0) is under a free fermion
Hamiltonian H):

M(t) = e"Me™™, 4)

with M denoting the correlation matrix of p(0).

In fact, we will consider a slightly more general object:
Mt 1) = M Me M (5)
the entries of which correspond to
Mij(t1,12) = Tr (af (t)a; (1)), )

with Heisenberg operators aj (1), aj(t) with respect to the free
fermion Hamiltonian H.

Note that for a Hamiltonian H = Hy +V with free
fermionic Hy and interacting perturbation V, after applying
U(t) = e " to an initial free fermionic state p, observables
involving creation and annihilation operators can be obtained
from M(t;, ;) in Eq. (5). This can be done via a perturbative
expansion of U (t) = e~ and using Wick’s theorem.

(3) The Green’s function (in the frequency domain) with
respect to a thermal state pg of a free fermion Hamiltonian:

1) 1 1
(8,8,) — _ _
G (h) = 2 [(1 1+ exp(ﬂh)) i85 — (h+ )

1 —1
+ (1 +exp(/3h))i8+ (h+w)]’ @

with § > 0 a regularization parameter.

G®A®(h) is a Fourier transform of the time-domain
Green’s function, the entries of which are given by [here we
use time-ordering unlike in Eq. (6)]

iTr(a] (t)aj(t)pp),  for 1 > 1,
Gt ) =4 .
—iTr(a;(2)a; (t1)pp), for 1 <n,
ih(t—ty) 1
B (et 1+exp(ﬁh))ij’ fortn >,
T ) (k- (1 _ 1
(—ie™=)(1 1+exp(ﬂh)))ij, fort; < tp.
3

The regularization parameter § in Eq. (7) ensures that the
Fourier transform converges in the case of an isolated system,
but can also model interactions with a bath at finite tempera-
ture [22].

V. BLOCK ENCODINGS

Let us consider encoding a Hermitian (N X N)-
dimensional matrix A into a block of an (n -+ m)-qubit
unitary Uy. In general, an n-qubit matrix A is said to be block
encoded into Uy, if it is equal to the block of Uy where m
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qubits are in a trivial state, with some coefficient o:
Aij = afil,,{0],,Ualj),10) - )

Here, the matrix indices i, j € [N] are interpreted as bit strings
of length n. The coefficient « > 1 arises from the fact that
lU4]l = 1 while A is arbitrary. If ||A]| < 1, we can take o =
1. For a useful block encoding, the coefficient & should not
blow up beyond poly log N. Fortunately, in the applications
considered in this work, « will remain a small constant. For
the same reasons of maintaining efficiency, we will limit the
number of ancillary qubits m to O(log N).

We will also allow block encoding with error ¢, the devia-
tion in operator norm between A and «(0],,U4|0),,,.

Definition 1. For a matrix A on n qubits and o, e € R,
an (m + n)-qubit unitary Uy is an («, m, £)-block encoding
of A, if

1A —a((01*" ® DU0)*" @ D) < ¢, (10)

where || - || is the spectral norm.

The quantum circuits that approximately block encode the
matrix functions F (k) are built using elementary circuits U,
that block encode h. These latter block-encoding Uy, in turn,
contain unitaries that realize so-called sparse query access to
h. To access an s-sparse matrix A, i.e., a matrix that has up
to s = O(1) nonzero entries in any row, we will use “oracle”
unitaries O, and O, that produce the entries of 4. The “row”
oracle O, returns, for a given row i, all column indices where
the matrix 4 has nonzero entries. The “matrix entry” oracle O,
returns the value of 4 (given with n, bits) for a given row and
column index. This way, entries of & can be retrieved without
explicit access to the ®(2") nonzero entries of matrix h. Let
us formally define the oracle tuple O, of a sparse matrix h
containing the row and matrix entry oracles, and also their
inverses and controlled versions as follows.

Definition 2 (Sparse access oracle tuple Oy,). Sparse
access for an s-sparse 2" x 2" matrix 4 is defined as

O, 10D = |i)|r(i, D)r(i, 2)) -~ 1r(i, 8)), Vi € [2"],
Ol ) 0YE™ = |i)| ) hij), Vi, j e [2"], (11)

where r(i, k) is the index for the kth nonzero entry of the ith
row of &. Let us now cover a few technicalities. O, is a matrix
acting on (s + 1)(n + 1) qubits, and so the first qubit of |i) is
in |0). To accommodate rows with less than s nonzero entries,
one uses the following. If the ith row contains s’ < s nonzero
entries, then the last (s — s')(n + 1) qubits are put in the state
[1)|k). Note that for states |r(i, 1)) - - - |r(i, s')), the first qubit
is in |0). h;; is the value of the (i, j)th entry of A, described
by a bit string with n, binary digits (we will assume this
representation to be exact). O, is a matrix acting on 2n + n,
qubits.

Furthermore, we define the controlled version of the above
sparse access, consisting of

C-0, =0, ®|1)(1], + 1 ®10)(0,,
C-04 = 0, ® |1)(1], + 1 ® [0)(0],, (2)

where each matrix now acts on an additional (ancil-
lary) qubit a. We call the collection of six oracles
(0, 04, C-0,,C-0,, 0,1, 0", C-0;',C-0,") the sparse

access oracle tuple Oy, of h.

The relation between this definition of the oracle tuple and
another common definition is discussed in Appendix B for
completeness.

Let us now present the following statements, relating the
construction of the block encoding of / and that of polynomi-
als of h. Note that these block-encoding constructions contain
calls to oracles from the oracle tuple O, in Definition 2. We
shall use these results when constructing the block encodings
of our desired matrix functions. The following statements use
Definition 1.

Proposition 1 (Lemma 48 in Ref. [23]). A (s, n + 3, g, )-
block encoding of 4, Uy, (and its controlled version) consists
of O(1) calls to oracles from O}, tuple, O(n + log®/* (s> /egE, ))
elementary gates, and O(sn + n, + log”?(s* /€BE,)) ancillary
qubits. Here, n, denotes the number of bits with which the
entries of & are specified.

Proposition 2 (Theorem 31 in Ref. [14]). Let py(x) de-
note a degree-d polynomial, such that |p,;(x)| < 1/2 for x €
[—1,+1]. Then, a (1,n + 5, 4d/egE, /s + 6§)-block encoding
of pa(h/s), Up,uys) consists of O((n + 4)d) elementary gates,
and at most d calls to unitaries Uy, Uh_1 , or controlled Uj,. The
classical description of this circuit can be obtained classically
in poly(d, log(1/8)) time.

VI. SPARSE ACCESS REALIZATION
FOR PHYSICAL SYSTEMS

The starting point for our method is to realize the sparse
access tuple O, for the system Hamiltonian 4, using efficient
quantum circuits. In particular, we need circuit realizations for
unitaries O, and O, [Eq. (11)]; these in fact can be given as
(reversible) classical circuits, as no entanglement generation is
required. Then, the controlled and inverse unitaries from O,
can also be obtained as efficient circuits (with a constant factor
overhead), controlling or inverting the circuits for O, and O,
gate by gate. Please note that “efficient” in our case means
poly log N gate complexity, i.e., polynomial in the number of
qubits rather than the size of k. In other words, simply looking
up the entries of the N x N matrix 4 would not suffice, as that
takes time that is exponentially longer than desired. Despite
this difficulty, the requirement of the efficient implementation
of O), can be satisfied for a variety of & of interest.

A large family of free fermionic models for which
the sparse access to h can be efficiently realized are d-
dimensional tight-binding models. Consider a d-dimensional
square lattice £ with L; x Ly X --- X L; = Nj sites, with ei-
ther periodic or open boundaries. For each site X, let there
be up to Ny = O(1) on-site degrees of freedom such as spin
or local orbital degrees of freedom. We can thus represent
each fermionic mode using n = (l'If’=1 [log, L;1) x [log, Ny
qubits as X = (xy, ..., Xg), 0), where Ny = ©(2"). Inside the
lattice, let there be O(1) nonoverlapping rectangular domains,
modeling different physical regions such as leads versus bulk
regions, where parameters in H can be different. We thus
consider Hamiltonians of the following form:

— Lot
H=Y" Y |hiosiad,;, t, +He,  (13)
0102 3e L, [flw<!

where it is understood (but notationally awkward) that the sum
over ¥ € L, |flm < [ only counts each possible hopping term
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once. In addition, we have
h},ol,,‘r'#»t.,oz = g(ol , 02, D()_C'), D()_é + ?)v ?)a
‘hfc,o],fH—f.oz ‘ < L. (14)

Here, |.|y means Manhattan distance in the lattice; the max-
imal range of the interaction is posited to be constant—I =
O(1). The function D(X) returns the domain to which X be-
longs: since the domains are rectangular regions, D(X) can
be efficiently computed using standard reversible arithmetic
circuits. If ¥ or ¥ +7 does not belong to any domain (for
example, ¥ + 7 is beyond the boundaries of the lattice), the
coefficient h; ,, z.r,, = 0. Thus, the function g only takes in
O(1) information and all O(1) possible nonzero outputs of
g can be stored classically, using, say, O(n,) bits. To realize
the oracles O, from Definition 2 as poly(n)-sized quantum
circuits, observe that one can efficiently generate the O(1)
input to g and lookup the relevant information.

Going beyond local d-dimensional models, we give an
example of a model on an expander graph that has sparse
query access. These graphs have the important property that
the number of vertices that lie a distance d away from a given
vertex scales exponentially in d. Free fermionic models on
such graphs have been a subject of recent interest, especially
in the studies of Anderson localization on random regular
graphs [24-27]. In Appendix C, we provide details of the re-
alization of Oy, as poly(n)-sized quantum circuits for a simple
example: the Margulis expander graph.

So far, we have proposed models with efficient sparse
access where there was only a limited number of possible
options for the hopping parameters, and they were input
“by hand.” This is in line with a necessary limitation—even
though the system has size N, we should be unable to assign
every mode an independent value of the hopping parameter.

However, this restriction can be somewhat relaxed. In par-
ticular, one can show that local quenched disorder can also
be incorporated into 4. This has the significance for physics
application, as it allows to study Anderson localization. For
simplicity, let us focus on realizing on-site disorder in a single
domain D* of a tight-binding model. This means that we
introduce a single change to the Hamiltonian of Eqgs. (13)
and (14). Namely, if D(X¥) = D* and = 0 (both equalities
are efficiently checkable), the value of h;, :,7, Will be
replaced by

h-

X,01,%+1,07

— 8,0, PRE(T), (15)

where §, 5 is the Kronecker symbol and PRF is a pseudo-
random function of the lattice site coordinate X. Note that a
pseudo-random function can be realized as an efficient clas-
sical circuit [28,29]. Other models of local disorder can be
realized similarly. We note that an independent work [30] dis-
cusses the application of simulating disordered free fermions
in more detail.

VII. BLOCK ENCODINGS OF RELEVANT
MATRIX FUNCTIONS

Given the poly(n)-effort sparse access tuple Oy, we now
aim to realize a block encoding of the desired matrix functions
of h (Sec. IV) with an efficient quantum circuit. We will

approximate these functions with polynomials of sufficiently
low degree, enabling us to use standard methods of block-
encoding manipulation (Proposition 2).

To construct the polynomial approximations, let us first
establish the following. Proposition 2 prescribes how degree-d
polynomials p,(x) with x = h/s can be block encoded, with s
the sparsity of 4. We thus require a polynomial approximation
pa(x) to our functions of interest F (h = sx) to be sufficiently
accurate in the domain x € [—||&|/s, +] k|| /s]. It can be ar-
gued straightforwardly that this domain is at most [—1, +1]
by bounding the spectral norm of 4:

Proposition 3. Let h denote an s = O(1)-sparse Hermi-
tian N x N matrix with |h;| < 1, Vi, j. The spectral norm
[1h]]/s < 1 by the Gershgorin circle lemma (which says that
every eigenvalue of % lies within at least one of the N disks
D ={z€ C:lz—hul <3 hijI}).

To block encode the thermal correlation matrix in Eq. (3)
and the thermal Green’s function in Eq. (7), we need to ap-
proximate the functions

PR P S — (16)
41 + exp(Bsx)

and

G.p.w) 146 1 1
g (X) = ZE 1— ] .
+ exp(Bsx) / i6 — (sx + w)

1 —1
+ (1 + exp(ﬂsx)) i8 + (sx +a)):| a7

in the domain x € [—1, +1]. These functions have poles in the
complex plane at z = (2k + 1)in /B (with k € Z) and at z =
(£ié — w)/s, respectively. Since these poles might lie in the
unit circle for general 8 and §, we have to resort to polynomial
approximation techniques beyond Taylor approximations to
obtain a sufficiently accurate approximation for x € [—1, +1].
In particular, we will employ Bernstein’s theorem:

Lemma 1 ([31]). Let f(x) be analytic on [—1, +1] and
analytically continuable to the interior of an ellipse defined
by E, = {%(z +z7Y 1 |z] = r} (for some real-valued r > 1).
Furthermore, let | f(z)| < C for z € E,. The error with respect
to their polynomial approximation p,(x) (Chebyshev expan-
sion truncated at degree d) can be bounded as

2Ccr—4
r—1-°

maxll|f(x)_l7d(x)| < (18)

xe[—1,+

Using this result, we derive the following error bounds
for the polynomial approximations of Eqgs. (16) and (17).
The proofs of Lemmas 2 and 3 are given in Appendixes D
and F.

Lemma 2 (Simplified version of Lemma D1 in Appendix D).
For the function £ (x) in Eq. (16) (with 8, s > 0), one can
efficiently construct a polynomial p,(x) of degree d such that

maxye—1,+111f ) (x) — pa(x)] < poly(Bs)/d. (19)

Lemma 3 (Simplified version of Lemma F1 in Appendix F).
For the function g®#®)(x) in Eq. (17) (with 8, 8, s > 0), one
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can efficiently construct a polynomial p,(x) of (even) degree
d such that

maxye—1,+1)18%7 (x) — pa(x)|
< (poly(Bs) + poly(s/§))/d. (20)

Combining Lemmas 2 and 3 with Propositions 1 and 2,
we directly obtain Theorems 1 and 2 below. The detailed
proofs are given in Appendixes D and F. Note that—crucially,
because of the factors ‘lT in Eqgs. (16) and (17)—the poly-
nomials p,(x) that are block encoded obey |p;(x)| < 1/2
for x € [—1, +1], provided that the error of the polynomial
approximation is O(1). The size of the circuits that block
encode M® (1) in Eq. (3) and G@B-® () in Eq. (7) is poly(n),
provided that 8, 1/§ = poly(n) and when the oracles from O,
are poly(n)-sized circuits (such as those in Sec. VI).

Theorem 1 [Block encoding of the thermal correlation
matrix Eq. (3)]. For an s-sparse Hamiltonian 4 on n qubits,
assume access to the oracle tuple O,,. We denote the controlled
(1,n+5,¢)-block encoding of 1M® = 11/(I + exp(Bh))
by C-Uy®. The implementation of this block encoding for
B = poly(n) requires poly(n)/e calls to oracles from the ora-
cle tuple Oy, O(n) + n, + log®?(poly(n)/e*) ancillary qubits,
and O(n) + poly(n)/e + log®?(poly(n)/e*) additional ele-
mentary gates. To implement this block encoding, an ad-
ditional classical computing time of poly(n/e, log(1/¢)) is
required.

Theorem 2 [Block encoding of the thermal Green’s func-
tion Eq. (7)]. For an s-sparse Hamiltonian /& on n qubits,
assume access to the oracle tuple O,. We denote the con-
trolled (1, n 4 5, £)-block encoding of 3 G®#-)(h) in Eq. (7)
by C-Uges«. The implementation of this block encoding
for B, 1/8 = poly(n) requires poly(n)/e calls to oracles from
the oracle tuple O, O(n)+ n, + log®? (poly(n)/e*) ancil-
lary qubits, and O(n) + poly(n)/e + log>’? (poly(n)/e*) ad-
ditional elementary gates. To implement this block encoding,
an additional classical computing time of poly(n/e, log(1/¢))
is required.

Next, let us focus on block encoding the time-evolved cor-
relation matrix M (¢) in Eq. (4). To block encode it, we will use
a block encoding of exp(iht) as a subroutine. The construction
of this latter block encoding through polynomial approxima-
tions is already considered in Refs. [13,23], and we will use
this construction from Ref. [23] directly. We construct a block
encoding of M (t) using the product of block encodings of
exp(iht), an initial correlation matrix M, and exp(—iht). A
detailed proof of Theorem 3 is given in Appendix E. There, we
in fact consider a block encoding of the more general object
M(t,, 1) in Eq. (5).

Theorem 3 [Simplified version of Theorem EI in Ap-
pendix E. Block encoding of the time-evolved correlation
matrix in Eq. (4)]. For an s-sparse Hamiltonian 4 on N
fermionic modes, assume access to the oracle tuple Oj.
In addition, assume access to the (o, m, &)7)-block-encoding
Uy of a correlation matrix M of a fermionic state on N
modes. The («, 2n 4+ m + 10, € + &y)-block-encoding Up)
of M(t) =e™Me=" can be produced using D(a,&,t) =
O(Jt] + log(xe/¢)) calls to oracles from the tuple O, and a
single use of the block-encoding Uy. Moreover, one uses

O(nlt| + log(a/e) + D(a, &, t)(n + log>/*(|t]/¢))) elemen-
tary gates and O(n, + log5/ 2(oz|t| /€)) ancillary qubits.

VIII. EXTRACTING OBSERVABLES

Having explicitly constructed (o, m, €)-block-encoding
Ur@y of our objects of interest F(h), let us detail how
to extract relevant observables from such block-encoding
unitaries. If Upp) is given as a poly(n)-sized quantum
circuit, the real and imaginary parts of F(h);; can be ex-
tracted efficiently using the so-called Hadamard test using
an ancillary-qubit-controlled U ). Note that the circuit size
required to implement controlled Up(;y scales the same as
Ur )y, up to a constant factor overhead. We can extract F (h);;
with an accuracy specified in the next Lemma 4. This Lemma
is stated for a general block-encoding unitary and is proved in
Appendix G. From Lemma 4, it is clear that the error up to
which F(h);; can be estimated is 1/poly(n), since we allow
for at most poly(n) calls to the block-encoding unitaries.

Lemma 4. Given an n-qubit matrix A. Let C-U, (acting
on n+ m+ 1 qubits) denote the controlled version of the
(o, m, g)-block-encoding Uy of A. An estimate A; ; of entry
A;j can be obtained s.t. |A;; — A;;| < & + @& with probabil-
ity at least 1 — §, using poly(n)-sized circuits and at most
D(&,8) = ®(F%1og(46™")) calls to C-U,.

Combining Lemma 4 with Theorems 1-3, we can, respec-
tively, estimate entries of M# in Eq. (3), G*#® in Eq. (7),
and M(t) in Eq. (4), up to 1/poly (n) error with poly(n)
effort. Note that—asymptotically—the circuit implementing
the controlled block encodings (which is required for the
Hadamard test in Lemma 4) is of the same size as the block-
encoding circuits themselves.

‘We note that in case when F (h) = M is a correlation matrix
and H corresponds to a lattice model, one can also obtain
correlation matrix entries in momentum space—by using Uy
and the efficient quantum Fourier transform circuit [32].

Going beyond individual matrix elements, for any local
fermionic Hamiltonian term H, in H, for example, H, =
(hijaa; + Ifala;) (with || < 1) or Hy = (Vijua]ajaza +
Vijkla;a,iaja,-) (with |Vjju| < 1), the expectation of that term
with respect to a state p can be efficiently extracted from
the block encoding of its correlation matrix Uy, [33]. In this
way, one can also obtain the total energy density of p relative
to a system Hamiltonian H. To do so, one can sample from
the Hamiltonian terms uniformly at random and evaluate the
expectation value of individual terms as mentioned above. For
H being a free fermion Hamiltonian, this sampling can be
implemented using the sparse access model discussed below;
this method of sampling can be extended to interacting Hamil-
tonians. We can obtain the following concentration bound on
this evaluated energy density e, assuming, for simplicity, that
the expectation of an individual term is learned from Uy, with-
out error. By assumption, we have that |Tr(H,p)| < 1 for each
Hamiltonian term H,. This allows us to infer the Chernoff
bound, which says that for sample size S = CIC log(6™1)),
we have

P(le —Tr(Hp)/K| < &) 21—, 2y
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where K = ®(2") is the number of terms in the Hamilto-
nian H. Similarly, densities of other Hermitian operators can
be learned through sampling, such as the particle density
(N)y/2" = Tr(M)/2".

IX. COMPLEXITY

We have presented a method for simulating free fermionic
systems on N = 2" modes with polynomial resources in n
in a variety of settings. The naive classical treatment of
2" fermionic modes, on the other hand, requires exponen-
tial resources. Therefore, the naive speedup of our quantum
method is exponential. However, our approach comes with
manifest qualifications, namely, the requirement for the oracle
tuple O, to be implementable using poly(n)-sized quantum
circuits, time dynamics being simulable only for time ¢ =
poly (n), thermal states for 8 = poly (n), and Green’s func-
tions for 8, 1/8 = poly (n). Competing classical approaches
could hypothetically exploit this structure of our setting. To
settle this issue, one can readily argue that our method gen-
erally yields an exponential quantum speedup, by showing
that it solves a BQP-complete problem. Roughly speaking,
BQP-complete problems are the hardest problems that can
be efficiently solved by a quantum computer [34]. Since for
single-particle dynamics, the character of the particle—be it a
boson, fermion, or distinguishable particle—is not relevant,
BQP hardness of time dynamics follows in principle from
Theorem 3 in Ref. [17], using techniques such as those de-
veloped in Ref. [35]. For completeness, we provide a slightly
different proof for the complexity of the evolution of a multi-
particle fermionic state in Appendix H.

Theorem 4. Let py be a (multiparticle) fermionic state on
2" modes, such that its correlation matrix M, is sparse, and
the access oracle tuple Oy, can be implemented as a poly(n)-
sized quantum circuit. Given a quadratic Hamiltonian H on 2"
modes, let & be as in Eq. (1) and sparse, and we assume that the
oracle tuple O, is implemented as a poly(n)-sized quantum
circuit. For ¢ = poly(n), the problem is to decide whether,
for some given mode j, n;(t)=Tr (a;aje”’H’poe"H’) >
1/p(y/n) (with p a polynomial) or <exp(—+/n), given a
promise that either one is the case. This problem is BQP
complete.

X. QUANTUM SPEEDUP IN A VARIETY OF SETTINGS

We have established that our algorithms in principle pro-
vide an exponential speedup, at least in the setting of time
evolution. In this section, we argue what the speedup is for
several models of physical importance. To that end, let us first
argue that for d = O(1)-dimensional lattice models, entries of
our matrix functions of interest (see Sec. IV) can be estimated
classically with poly(n) effort for 8, 1/8, ¢ = poly(n).

Lieb-Robinson bounds [36-38] imply that the time evo-
Iution of observables such as the occupation number of a
mode i at some position (starting from a product state with
some modes occupied and others unoccupied) is only affected
by O(t%) = poly(n) sites in a ball of radius proportional to
t around that position. Similarly, Ref. [36] shows that, for a
given mode i, the thermal correlation matrix entries |Ml.(J’.3 )|
decay exponentially with the distance between modes i and

J» with a characteristic length O(8). Mode i is therefore only
nontrivially correlated with O(8%) = poly(n) modes in a ball
of radius O(B) around it. This latter fact suggests that an entry
Mi(’.s ) can be classically evaluated with poly(n) effort, provided
that B = poly(n). Let us formalize this as follows.

Lemma 5. Let h € C?*?" be an s = O(1)-sparse matrix
that corresponds to a d = O(1)-dimensional lattice model,;
cf. Eq. (1) with entries as in Eqgs. (13) and (14). Assume
poly(n)-effort classical access to the oracles O, and O,
(see Definition 2) for h. Let F(h) be a matrix function of
h. If maxye(—1,4+17 |[F (x) — pr(x)| < poly(n)/K with pg(x) a
degree-K polynomial, then an entry F(h);; can be estimated
with that same error using poly(K) x poly(n) classical effort.
For some K = poly(n), the error thus becomes 1/poly(n) with
poly(n) classical effort.

Proof. If one is able to estimate (ilh*|j) for any
ke{0,1,...,K} with effort E, then (i|px(h)|j)=
Zf:o (¥k<i|hk|j> can be evaluated with effort K x E. By
assumption, (i|F (h)|j) can then be classically approximated
up to poly(n)/K error with K x E effort. Since h corresponds
to a d = O(1)-dimensional lattice model, h*| j) is only
supported on O(k?) = poly(k) |i)’s. We can thus evaluate
each (ilh*|j) for ke {0,1,...,K} using poly(k) calls
to the oracles and with a total E = poly(k) x poly(n)
computational effort. Therefore, (i|F(h)|j) can be
approximated classically with poly(n)/K error with
K x poly(k) x poly(n) = poly(K) x poly(n) effort. Clearly,
there is a K = poly(n) so that the error becomes 1/poly(n)
and which yields a poly(n) classical effort. |

Combined with Lemmas 2 and 3, Lemma 5 implies the
following for d = O(1)-dimensional lattice models. In the
parameter regimes of Theorems 1 and 2, entries of the ther-
mal correlation matrix in Eq. (3) and of the thermal Green’s
function in Eq. (7) can be estimated up to 1/poly(n) error with
poly(n) classical effort.

Using similar reasoning, entries of the time-evolved corre-
lation matrix M (¢) in Eq. (4) can be evaluated classically with
poly(n) effort for t = poly(n). In fact, assuming exact classi-
cal access to entries (k|M|[) of an initial correlation matrix M
for given (k, [), one can obtain entries M(z);; with 1/exp(n)
error. The improved error scaling comes from the fact that the
polynomial approximation error of exp(ith) can be bounded
by 1/ exp(n) even for degree K = poly(n), provided that t =
poly(n). A detailed treatment is given in Appendix I. Note
that if we apply the time evolution to M'®) (where M'® is the
thermal correlation matrix corresponding to some &' # h), the
accuracy reduces to 1/poly(n) due to the error in estimating
entries of M),

Despite losing the exponential speedup for d = O(1)-
dimensional lattice models, let us argue that we retain a
power-(d + 1) polynomial speedup for such models. Let us
focus on the task of estimating entries of the time-evolved
correlation matrix from Eq. (4). In particular, let us fo-
cus on the task of time evolution for ¢ proportional to the
Lieb-Robinson time #; g, which is the time it takes for a
Lieb-Robinson light cone to contain the entire system. For
lattice models, f;g = N'/¢. To then compute an entry of the
correlation matrix M(t) = ¢ Me=™, known classical algo-
rithms require Q(Nt) = Q(¢*!) run-time [39]. Given the
poly log(N) - t run-time of our quantum algorithm, we obtain
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TABLE I. Asymptotic run-times for evaluating entries of time-evolved correlation matrices [with 1/poly(n) error] for three different
system types: lattice models, expander graphs, and general sparse models. For the former two, we start from a thermal correlation matrix at
B = O(1) (of some /', different from 4 used for time evolution). For the latter, we start from a Slater determinant (free fermion pure) state.
The third row gives the Lieb-Robinson time (only denoted for lattice models and expander graphs), which corresponds to the time it takes the
Lieb-Robinson light cone to contain the entire system. The run-times of classical algorithms (for evolutions over a time interval that is at least
the Lieb-Robinson time) and our quantum algorithms are given. In addition, we provide the associated speedups for the lattice models and
expander graphs at the Lieb-Robinson time, and the speedup for general sparse models at = poly(n). The run-times required to prepare the
starting state are denoted by 7prep,c and 7prep o, for, respectively, the classical and quantum algorithms. Note that 7,ep o = poly(n) in all three

scenarios.

d = O(1)-dimensional lattice models Expander graphs General sparse models
Classical algorithms® Tprep,c + N -t
Quantum algorithms Tprep,0 + poly log(N) - ¢
Lieb-Robinson time N/ log(N) -
Speedup Power-(d + 1) polynomial® Exponential® Exponential®

#Run-times of—to the best of our knowledge—the best classical algorithm for these applications [39].

Speedups compared to the aforementioned classical algorithms.

“Speedup assuming that it takes exponential (in ) time to solve BQP-complete problems classically.

a power-(d + 1) polynomial speedup. In particular, this yields
a cubic speedup for d = 2 lattices and quartic speedup for
d = 3 —which can be of interest in early fault-tolerant de-
vices [40].

Crucially, our method can also be applied to settings other
than lattice models, and the exponential speedup for those set-
tings can be maintained. Let us consider tight-binding models
on expander graphs, such as the Margulis graph considered in
Sec. VI. The Lieb-Robinson time, due to the expansion prop-
erty of the graph, will be logarithmic in the number of modes
N:tr = log(N). We note that light cones also grow rapidly in
other graphs with log-sized diameter, such as the hyperbolic
lattices (see Ref. [41] for recent studies of such tight-binding
models). We expect to recover the full exponential quan-
tum speedup for their simulation because at # g = log(N),
the quantum run-time is poly log(N) while known classical
algorithms have run-time Q(Nt) = Q(N log(N)) [39]. This
speedup can be of particular interest for, e.g., the study of
Anderson localization on expander graphs [24-27].

To summarize the quantum advantage in different problem
settings, Table I gives an overview of the asymptotic run-times
of classical algorithms and our quantum algorithms, and asso-
ciated quantum speedups for the problem of time evolution.

XI. GENERALIZATIONS

The time-evolution framework presented in this paper can
be made more general and applied to systems beyond free
fermions. In a general quantum system described by a Hamil-
tonian H, one can consider a N-sized set of operators {O;}
such that [H, O] = Zy:] hjxO;. This is sufficient for a ma-
trix M = Tr(,oO}Ok) to transform as M +— e~ Me™ under
time evolution. Further assuming that % is a hermitian matrix
allows treatment of M as a block encoding of the type con-
sidered in this work. Beyond the free fermionic systems on
which we focused in this work, this general framework admits
fermionic H that includes pairing (Aaja; + H.c.) terms. In
this case, the relevant set {O;} would include not just an-
nihilation but also creation operators. Another example is a
system of 2" free bosons with particle conservation, in which

case {O;} should be chosen as bosonic annihilation opera-
tors. Beyond Tr(,oOj.Ok), one can consider M, k.. .k, =
Tr(;oOI1 ..0}1 Oy, ..O, ), which can be considered as a rectan-
gular matrix acting on n - max(/, ") qubits, and block encoded
accordingly. The time evolution of these objects is defined
similarly to that of M, and therefore can be easily found as a
block encoding, given the block encoding of the initial state.
The flexibility of this general block-encoding framework is
comparable to the one based on “shadow” states, presented in
Ref. [19] (see Appendix A for a discussion of the differences).

XII. DISCUSSION

In this work, we develop quantum algorithms that solve
several free fermion problems. We discuss in detail what type
of speedup is achieved over classical algorithms and present
generalizations of our approach.

One obvious avenue for future research is to apply our
method to other matrix functions of 4. For example, one
should be able to estimate the free energy density of a 2"-
mode free fermion system 2 = —(82")"'log Tr (e 7#) =
—(B2")~'Tr (log(I + e~P")) with error &, using a polyno-
mial approximation of the function log(I 4+ ¢~#") for g =
poly(n), the block encoding of &, and sampling entries to
model the trace function. Using an estimate of the free en-
ergy density /2" = ((H)g — ﬁ’lS(pﬁ))/Z”, one can in turn
estimate an entropy density, given an energy density esti-
mate, or a derivative of F/2" with respect to 8 such as the
specific heat. Another possible generalization of our work is
a poly(n)-efficient estimation of matrix elements or observ-
able expectations due to free fermionic dissipative dynamics,
which was shown to be classically simulatable in O(2%") time
in Ref. [42].

One could also consider how block-encoding techniques
fare when applied to estimating entries of a free-bosonic ther-
mal correlation matrix M®) = I/(e?" — I') of Bose-Einstein
form. A block encoding of a polynomial approximation as
developed in Lemma 2 and Theorem 1 in Sec. VII requires
a poly(n) bound on the mode occupation number (so that the
matrix function be block encoded), which can, however, grow
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as large as the number of particles for a Bose-Einstein con-
densate. Mathematically, the Bose-Einstein distribution with
€; > 0 has a singularity at ¢; = 0, which has to be avoided
(by choosing a small enough chemical potential 1) in order to
place any bound. Note that similar points about only algebraic
speedups for local lattice models (Lemma 5) were made for
bosonic/oscillator systems in a more recent work [43].

Another outstanding open direction is to compute and op-
timize the precise implementation overhead and circuit depth
for our proposed algorithms, as applied to simulation prob-
lems of practical interest.

Let us point out an open question in the setting of time dy-
namics on 2" fermionic modes [cf. Eq. (4)]. One task that can
be performed with poly(2") classical effort [2] is computing
the overlap

(S| exp(—itH)|S,) >

= Tr| exp(—itH)IS:) (2] expitH) 11)(S11 ], (22)

S53)¢Ss]

with |S;) and |S;) single-Slater determinant states and H a
free fermion Hamiltonian as in Eq. (1), and therefore |S3)
is also a Slater determinant state. If |S7)(S;| (for simplicity)
is a standard-mode-basis Slater determinant state, then it can
be expressed as a product of 2"*! creation and annihilation
operators. Using Wick’s theorem, evaluating this weight-2"+!
correlator in Eq. (22) requires evaluating products of 2" en-
tries of the correlation matrix [cf. Eq. (2)] of state |S3). This
task—at least with naive attempts—cannot be performed us-
ing our methods with poly(n) quantum effort, since we can
only evaluate poly(n) entries of the time-evolved correlation
matrix, although approximate sampling methods could come
into play.
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APPENDIX A: ALTERNATIVE ENCODINGS

In this section, we describe alternative ways of representing
a fermionic correlation matrix using qubits and their potential
drawbacks.

A compressed representation of free fermionic states on
2" modes, as well as their dynamics, is readily obtained by
using a (mixed) quantum state o = M/Tr(M) of n qubits to
represent the normalized correlation matrix of p. One then
computes, evolves and measures, with o to learn properties of

p or its time dynamics. For pure single-particle free fermionic
states p, o is a rank-1 projector, and ¢ projects onto the bit
string |i{) when p corresponds to aflvac), i=0,...,N—1,
where |vac) is the fermionic vacuum state. Once a state o is
prepared, its time evolution can readily be simulated: when
p evolves via e 'H! with free fermion Hamiltonian H, o —
e e~ Sparse oracle access to h—see Definition 2—then
allows for the efficient implementation of time evolution in
terms of its dependence on ¢ and calls to the oracle [13,15],
starting from some easy-to-prepare initial state. For example,
the initial state could be a set of fermions in a subset S
of 2 modes |i) (such that an efficient classical circuit can
map S onto the set of m-bit strings) or a subset of modes in
the Fourier-transformed basis (as the quantum Fourier trans-
form is an efficient quantum circuit). One can also adapt the
heuristic quantum Metropolis-Hastings algorithm [44,45] to
the Fermi-Dirac distribution and sparse Hamiltonians 4, since
the algorithm uses quantum phase estimation for ¢ at its
core. Even though the algorithm converges to the thermal state
ap = MP Tr(MP), poly(n) efficiency is not guaranteed and
unlikely for low-enough temperature.

Given a state o, one can apply any learning algo-
rithm for n-qubit states. For example, one can use shadow
tomography [46] to estimate the expectation of L observ-
ables, such as Oy = |k)(k|, OR = |I)(k| + |k){l|, and O} =
i(Jl) (k| — |k)(l]), with computational effort O(log(L)) using
random Clifford circuits of poly(n) size.

There are a few disadvantages to this simple and direct
method of representing the state via its correlation matrix. It
is not immediately obvious how to estimate a time-dependent
correlation function as in Eq. (6) as it relates to measurements
on ¢ e~ that is not a state. Second, and more crucially,
any learning of a linear function of o with accuracy ¢ leads
to learning with accuracy & Tr(M) = &(N) for the correlation
matrix M itself. Therefore, one expects poor accuracy for
large particle number (N); this in particular makes it imprac-
tical to extract individual matrix elements.

Thus, in the main text of this paper, we choose not to
directly encode a correlation matrix as a quantum state, but
rather apply quantum computational block-encoding tech-
niques.

Recently, Ref. [19] introduced a general quantum simu-
lation framework with compressed “shadow” quantum states
with applications to free bosons and free fermion systems. We
note that the results in Ref. [19] use yet a different encoding
than the encoding described above, or the block encoding in
the main text. Like for the encoding in the previous para-
graph, the normalization of the shadow state in Ref. [19] can
lead to a loss of efficiency if one wishes to estimate only
few entries of the correlation matrix (this loss of efficiency
is avoided in our block-encoding method). In particular, the
normalization of the shadow state is a, which is bounded
as /> ((N;) = 1/2)? < a < exp(n), where (N;) is the oc-
cupation number in the mode j of the represented state p.
On the other hand, when estimating densities, for example,
the energy density, our methods use sampling to estimate
Tr(Hp)/K (with K = ©(2"), the number of terms in H) with
some error &, while Ref. [19] estimates Tr(Hp)/O(Z”/za),
which, depending on the value a, can be more efficient.
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The precise relation between the shadow state approach
[19] and the block-encoding framework presented in this work
is currently unclear. A plausible hypothesis is that the latter is
strictly more powerful, due to the signal strength difference
discussed above. A concrete interesting question is whether
a shadow state corresponding to Mj; = Tr(pa;ak) [or, more
generally, Tr( pO; Oy)] can always be produced using a block-
encoding Uy, of M. In the “typical” case Tr(M M) = ©(2"),
this can be done simply by acting with Uy, on the maximally
entangled state between j and k registers, and postselecting on
the zero value of ancillary qubits. This “Choi—Jamiotkowski”

strategy, however, does not give a constant success rate when
Tr(MTM) = o(2"), and should be adapted.

APPENDIX B: REMARKS ON ORACLE CONVENTIONS

In this work, we define row and matrix entry oracles as in
Definition 2. An alternative definition of a row oracle, used in,
for instance, Ref. [14], is

O0Miy[k, 0 +D=Moe@y — |3y |r(i, k)), Vi e [2"],k € [s],

(BI)

with O acting on 2(n + 1) qubits. Again, if row i contains
s’ < s nonzero entries, then the last n + 1 qubits are set to
[1)|k). We note that having access to O, in Eq. (11) implies
access O,'', and vice versa.

In Ref. [14], Of“ and O, are used to block encode a sparse
matrix h. In principle, this block-encoding scheme requires
another (column) oracle th when it is used to block encode
general sparse matrices A. If & is also Hermitian, which is the
case for all applications considered in this work, this block
encoding can be implemented with just 0! and O,,, since O
can be realized using O and some SWAP gates.

APPENDIX C: MARGULIS EXPANDER GRAPHS

In the main text, we have provided an example of a
d-dimensional model that has sparse query access. Going be-
yond these models, in this Appendix we consider an example
of a model on an expander graph that has sparse query access.
Expander graphs are bounded-degree graphs, which have the
so-called expansion property. In particular, when counting the
vertices away from a given vertex by a distance d, one obtains
a number that scales exponentially with d. We will focus on
realizing sparse access for a particular simple example, which
is the Margulis expander graph.

A Margulis graph Gy, of size N> has vertices v labeled
by tuples v = (v, v2) € [N] X [N]; an edge between two
vertices u and v is placed if u = #;,(v), where the functions
for [ € [4] are defined as #y( (v, v2)) = (v; + 1 mod N, vy),
11 ((v1, v2)) = (v, v2 + 1 mod N), H( (v, v12)) = (v +
vymodN, vy), and t3((vy,v2)) = (vy, V2 + vy modN).
In other words, the first two types of edges are simple
nearest-neighbor links along the vertical and horizontal
directions, with periodic boundary conditions. From this
perspective, the edges t, and 3 are geometrically nonlocal,
and are the source of the expansion property of the graph.
We define our tight-binding Hamiltonian on the Margulis
graph as follows. Each fermionic mode is labeled by the

vertex of the graph, so the total number of modes is N2. The
Hamiltonian takes the form

p— i T
Hytarg = Z Z (aya, ) + ) (1)@

le[4] ve[N]x[N]

(ChH

For a given v, modular addition circuits allow to efficiently
generate a list of u = tlil (v). This list can be used to construct
an oracle O,; to ensure distinct outputs, if some of eight values
of u coincide, one stores only one of the colliding outputs. The
oracle O, then represents collisions with an increased matrix
element h,,, realized by counting the times u occurs in the list
of t]il(v). We expect that more models on expander graphs
can be implemented in a similar way—especially in the family
of constant degree Ramanujan Cayley graphs, of which the
Margulis graph is an example.

APPENDIX D: BLOCK ENCODING THE THERMAL
CORRELATION MATRIX

In this Appendix, we prove Theorem 1. In particular, we
prove a more detailed version of it, namely, Theorem D1
below. In its proof, we use Propositions 1 and 2 on the block
encoding of polynomials of sparse matrices, and Proposition
3 and Lemma D1 (of which Lemma 2 is a simplified version)
on constructing a polynomial approximation to our desired
matrix function M®) in Eq. (3). We will first prove Theorem
D1 and then Lemma D1.

As was argued in Sec. VII using Proposition 3, we wish
to construct accurate polynomial approximations of F (sx) for
x € [—1, +1]. Let us state Lemma D1, which will be proved
at the end of this section.

Lemma DI. For a function f(x) = QW (with Bs >
0,x € [—1, +1]), one can efficiently construct a polynomial
pa(x) of degree d such that

é(ﬂ)“ it 8 >
maXye[—1,+11]f (x) — pa(x)| < fo (7;5) ] 2; 1
2\7) > 1 E < 1.

(D1)

Theorem D1I. For an s-sparse Hamiltonian # on n qubits,
assume access to the oracle tuple O),. We denote the con-
trolled (1,n+ 5, epa + &y + 8)-block encoding of M#) =
%He+1>(/3h) by C-Uy s . The implementation of this block en-
coding requires

4.4
o(ﬁ—s) LA

EPA 2

D2
Brs* .. Bs 2
Ol— ), if— <1
EPA 21
calls to oracles from the oracle tuple Oy,
O(sn +ny +10g” (165° % [ (epa251)))  (D3)

ancillary qubits, and

0(11 + (n+4)B*s* Jeps + log™? (lésgﬁg/(glgAgi(h))))
(D4)
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additional one-qubit and two-qubit gates. To implement this
block encoding, an additional classical computing time of
poly(B*s*/epa, log(1/8)) is required.

Proof. It follows from Proposition 1 (from Ref. [14]) that
with O(1) calls to the oracle tuple Oy, one can construct a
(s, n 4 3, egg, )-block-encoding U}, of & and its controlled ver-
sion. For a given ¢gg,, the required number of ancillary qubits
and (additional) elementary gates are given in Proposition 1.

Let ps(x) denote the degree-d polynomial approximation
of the function 1 as in Lemma DI. It follows from
Lemma D1 that one can efficiently construct p,; such that

4 1+exp(Bsx)
3 (Bs\4 ce Bs
(7)), g =1

2
7(2)

Ipa(h/s) —1/4 MP|| < (D5)

. Bs
1fﬁ<l.

. 464 . 22,
Taking d = Q(in\) if £ > 1landd = Q(%) if 22 <1, we
achieve ||pg(h/s) — 1/4 M®P|| < epa.

For epa < %, we note that |py(x)] < 1/2 forx € [—1, +1].
Therefore, we can apply Proposition 2 (from Ref. [14]): A
(1,n+5,4d,/egg, /s + §)-block encoding of p,(h/s) con-
sists of at most d uses of unitaries Uy, UhT or controlled Uy,
and O((n + 4)d) elementary gates. In addition, it requires a
classical computation with run-time as stated in Proposition
2. We take &) 1= 4d.,/egg,/s so that for a given &), we
should ensure that egg, = ssf,(h) /(16d?).

Let the (1, n+ 5, ey + 6)-block encoding of p,(h/s) be
denoted by U, 1/5)- We can bound how well the block encod-
ing of py(h/s) approximates the block encoding of 1/4 M#)
as

1ot = |[1/4 MP) — (0|% @ 1U,,,1,/510)** @ 1]
< |11/4M = pa(h/s)|
+ 1pa(h/s) — (01%* @ 1U,,4/5)0)%* & 1]|

< epa + &pin) + 6. (D6)

We have thus constructed a (1,n+5, epa + &pm) + 6)-
block encoding of 1/4M®. To implement this block
encoding, we require a number of calls to oracles from the
tuple Oy, a number of ancillary qubits, and a number of
one-qubit and two-qubit gates as in the lemma statement. W

Let us now give the proof of Lemma D1.

Proof. For the proof of this lemma, we will employ Bern-
stein’s theorem (Lemma 1) that bounds the error of Chebyshev
approximations. Such a Chebyshev approximation of degree
d is of the form p,(x) = ZZ:O ai T (x), where T (cos(0)) :=
cos(k0) is the degree-k Chebyshev polynomial of the first
kind. The coefficients a; can be obtained by evaluating

2 (ML
Ji=2

with % replaced by % for k = 0. Each a; can be evaluated
classically with poly(Bsk) resources for f(x) in the lemma
statement.

Note that the function f(z = x 4+ iy) = m for Bs >
0 is analytic for |y| < w/Bs. Hence, we can pick the el-

lipse E, = {{(z+2z7") : |z = r} with r = 1\/(27/Bs)> + 4

on which f(z) is analytic, since within this ellipse |y| < 2L/3S

a = D7)

T J

We have |f(z)] < C =1 for z € E, since for |y| < 2Lﬁs we
have

[T +exp(Bsz)| = |1 +exp(Bsx)cos(Bsy)] = 1. (D8)

Using Lemma 1, we can thus bound max,e[—i +1;|f(x) —
pa(x)| as

2((r/Bs)* + 1)

xe[— - < .
maxye[—1,+1)1f(X) — pa(x)| V@B +4—1

Let us distinguish between scenario (1) 8s > 27 and scenario
(2) Bs < 2m. For scenario (1), we can bound

sV @r/Bs) +4— 12> §2n/Bs).
Furthermore, in both scenarios (1) and (2), we have that
(/) + D)™ < 1/((/Bs)’d/2 + 1)

<1/ /Bs)*d/2).

Combining these two facts leads to the following bound in
scenario (1):

(D10)

(D11)

12 ( Bs 4
maXye—1,+171f(x) — pa(x)| < _<;) )

y (D12)

In scenario (2), we can simply bound the denominator in
Eq. (D9) by

Wer/ps+4—1>3V5-1>1/10.

Combining this with the upper bound above for the numerator
in Eq. (D9) (which holds in both scenarios), we obtain the
following upper bound in scenario (2).

(D13)

40

Bs\’
maxye(—1,+171f () — pa(x)] < _<;> .

v (D14)

APPENDIX E: BLOCK ENCODING THE TIME-EVOLVED
CORRELATION MATRIX

In this Appendix, we prove Theorem E1 below, which is a
generalization of Theorem 3 for block-encoding M (#{, t;) in
Eq. (5). We will use a result from Ref. [23] on block-encoding
exp(iht) using a block encoding of h. Note that the error
of the block encoding of M(t,, ;) in the theorem statement
accounts for potential errors in the block encoding of the
initial correlation matrix as well.

Theorem EI. For an s-sparse Hamiltonian %2 on 2"
fermionic modes, assume access to the oracle tuple Q. Also
assume access to the («, m, &y)-block-encoding Uy, of a cor-
relation matrix M of a fermionic state on 2" modes. The
(e, 2n + m + 10, & + ey )-block-encoding Uy, 1,) Of

M(t, 1) = "M Me " (E1)

can be produced using

D(a, e, t1,1)
= O(s(It1] + |r2]) + log(12a(|t1| + |221)/(|t1]€))
+ log(12a(|t:| + 2D/ (I221€))) (E2)
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calls to oracles from the tuple O),, and a single use
of the block-encoding Uy. Moreover, one uses O((n+
3)G(nl + 1620) +logRa(lt | + 21/ (It1e)) + log(Ra(|t | +
2D/ (Ir21€)) + D(ex, €, 11, 1) (n + log’?as* (It | +
[t21)/€))) one-qubit and two-qubit gates, and O(n, +
log®?(2as*(|t;| + |t2])/€)) ancillary qubits (with n, denoting
the number of bits with which the entries of % are specified).

Proof. A block-encoding Uy, 1,y of M(t, t,) can be con-
structed using products of block encoding Uexpirny of exp(ith)
(for times #; and —#,) and Uy of M [where the latter is a
(o, m, gpr)-block encoding by assumption].

To construct a block encoding of exp(iht), we employ a
block encoding of 4. It follows from Proposition 1 (from Ref.
[14]) that with O(1) calls to the oracle tuple ), one can
construct a (s, n + 3, egg, )-block-encoding Uj, of h and its
controlled version. For a given egg,, the required number of
ancillary qubits and (additional) elementary gates are given in
Proposition 1.

Corollary 62 in Ref. [23] states that to implement a (1, n +
5, |2t|epg, )-block encoding of exp(ith), one is required to
implement U, or UhT a total of 6s|t| 4+ 9log ((6/(|t|egE,))
times, and controlled U}, or controlled U; three times. In addi-
tion, one has to use O((n + 3)(s|t| + log((2/¢gE,)) two-qubit
gates and O(1) ancillary qubits. So, to implement the (1, n +
5, |2t|egg, )-block encoding of exp(ith), one is required to call
Oy, a total of O(s|t| + log(6/(|t|esg,))) times.

Using Lemma 30 in Ref. [14], the block-encoding U, 1,)
of M(t,, 1) can be constructed using the product Uy, +,) =
(Lits4m @ Uexpiine))(L2nt10 @ Unt)((Lngs1m @ Uexp(—insy))s
such that Uy, 1) is a (a0, 2n + m + 10, 2ccegg, (|61 ] + [f2]) +
em )-block encoding. To implement this product, one is thus
required to make

D(egg,, t1, t2) = O(s(|t1| + |22]) + log(6/(It1|eBE,))
+1og(6/(|t2|eBE,))) (E3)

calls to oracles from the tuple . In addition, one has
to use a total of O((n 4 3)(s(|t1| + |t2]) + log(1/(|t1|€BE,) +
log(1/(It2lesg,) + D(gsr, 11, 12)(n + log"(s*/epr,)) one-
qubit and two-qubit gates, and O(n, + log*/*(s*/egg, )) ancil-
lary qubits.

We stress that a controlled version C-Uy, 1,) of the block
encoding of Uy, ) can be implemented with equivalent
resources. |

APPENDIX F: BLOCK ENCODING THE THERMAL
GREEN’S FUNCTION

In this Appendix, we prove Theorem F1, which is a more
detailed version of Theorem 2. In its proof, we will again use
Propositions 1 and 2 on the block encoding of polynomials
of sparse matrices. In addition, we will use Proposition 3
and Lemma F1 (of which Lemma 3 is a simplified version)
on constructing a polynomial approximation to our desired
matrix function G®#) in Eq. (7).

As was argued in Sec. VII using Proposition 3, we would
like to construct accurate polynomial approximations of F (sx)
for x € [—1, 4+1]. The function to be approximated for block-

encoding G*#) is

(8,8,0) (N . é _ ! 1
g (x) = g 1 1 ,
+ exp(Bsx) / i6 — (sx + w)

1 —1
+ (1 + exp(ﬁsx)) i6 + (sx +60):|. D

Note that g®#)(z) (z € C) has poles at z = ’5%‘” and z =
”'i”"; the regularization parameter § ensures that these poles
lie off the real axis. For convenience, we define the functions
&0 (2) = 1/(i8 — (52 + w)) and g8 (z) = =1/ + (sz +
w)). Due to the poles, |g(15‘2‘")(x)| can still grow as 1/48. To
be able to apply Propositioh 2 for block-encoding polynomi-
als, we have to ensure that the polynomial that approximates
g®#)(x) has absolute value at most 1/2 for x € [—1, +1].
That is the reason for including a factor of §/8 in g©®#®(x) (so
that its absolute value is at most 1/4, and that of its polynomial
approximation at most 1/2 for approximation error less than
1/4).

Let us first state the following lemma, the proof of which
will be provided at the end of this section, which will be used
in the proof of Theorem F1 (and thus Theorem 2) on the block
encoding of the matrix G®#®)(h).

Lemma FI. For a function g®#“)(x) as in Eq. (F1) (with
B,8,s > 0and x € [—1, +1]), one can efficiently construct a
polynomial p,(x) of (even) degree d such that

maxyer—1 +1)18%7 ) (x) — pa(x)|

12 (Bs\4 e Bs 128 (s\4 e 2
< &) ifn =1L RG>
X
40 ( Bs\2 e Bs 32 (s)2 e 2
(F2)

Theorem F1. For an s-sparse Hamiltonian 4 on n qubits,
assume access to the oracle tuple O;,. We denote the controlled
(1,n+5, epa + €pny + Sciass)-block encoding of §GF)(h)
in Eq. (7) by C-Ugesw. The implementation of this block
encoding requires

5)* : s s : N
o(4h). k1 [o(i). wiz
5)? . s 52 . N
O(LYr), il <1 |O(y), ifF <L
(F3)

calls to oracles from the oracle tuple Oy,
O(sn +ny 41022 (165°(B* +1/8*) [ (eppt i) (F4)
ancillary qubits, and
O(n+ (n+4)(B*s* +5%/8%)/epa
+log”? (165°(8* +1/6°7 [ (ehac00))  (FS)

additional one-qubit and two-qubit gates. To implement this
block encoding, an additional classical computing time of
pOIY((,B454 + 54/84)/8PA, log(1/8¢1ass)) 18 required.

Proof. Like in the proof of Theorem D1, we employ
Proposition 1 (from Ref. [23]) to construct a (s, n + 3, epg, )-
block-encoding U, of h. Using this block encoding, we
construct a block encoding of a polynomial approximation of
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GP-@)(h). Let py(x) denote the degree-d polynomial approx-
imation of the function g®#“)(x) from Lemma F1. It follows
from Lemma F1 that one can efficiently construct p, such that

|| pa(h/s) — G*P(w, h)|| (F6)

is upper bounded by the right-hand side of the inequality in
Eq. (F2). Hence, taking

o(f). k> [eGg). >l
6(%)’ ]ff_; <1 ®(823:PA)’ lf% <1
(F7)

we obtain ||pg(h/s) — 8/8 GOP(w, h)|| < epa.

For epp < %, we note that |py(x)| < 1/2 forx € [—1, +1],
allowing us to apply Proposition 2 (from Ref. [14]). A (1,7 +
5,4d./¢egg,/s + 8)-block encoding of p,(h/s) consists of a
circuit with O((n + 4)d) one-qubit and two-qubit gates, and
at most d calls to unitaries U}, UhT , or controlled Uj,. The
classical description of this circuit can be classically com-
puted in O(poly(d, log(1/8c1ass))) time. We define &pp) :=
4d./eg,/s so that for a given &,y), we should ensure that
€BE, = selz,(h)/(l6d2).

Let the (1,745, &pp) + Sctassica)-block  encoding  of
pa(h/s) be denoted by U,,am/). Like in the proof of
Theorem D1, we have that epy = ||G®P)(h) — (0] ®
]lUpd(h/X)|0)®a Q1| < epa+ Ephy t+ Sclass- We have thus con-
structed a (1,n+5, epa + €p(n) + ctass )-block encoding of
G%A-®) (h). To implement this block encoding, we require a
number of calls to oracles from the tuple O, a number of
ancillary qubits, and a number of one-qubit and two-qubit
gates as in the lemma statement. |

Let us now give the proof of Lemma F1.

Proof. We wish to approximate g®#®)(x) in Eq. (F2) by a
polynomial of degree d. Let us first express g®#®)(x) as

8/8((1 = fPNE ) + fP W ), (FB)
and its degree-d polynomial approximation p,(x) by
8/8((1 = £ @)glih () + fiR T h(x).  (F9)
Note that
18/8 8P (x) = pa)]
<8/8(| ) = gl + [0 — &b @)])

+172|fP@) - £ )], (F10)

where we have used that |g(l‘i;1“})2(x)|, |g(2‘%;i“;)2(x)| < 2/8 for

sufficiently large d (note that |g(1‘3’(”)(x)|, |g(2‘s"‘))(x)| < 1/6).
Using the bound on max,c(_i 1] |f(5)(x)—f[§’/92)(x)| from
Lemma DI, and applying Bernstein’s theorem [31] (i.e.,

Lemma 1) to the functions g(f’“’)(x) and g(f’w)(x) (with a

Bernstein ellipse E, with r = /(8/(2s))* + 1), we obtain
the upper bound on max,c_1 .17 1g®#“) (x) — pa(x)| in the
lemma statement. |

APPENDIX G: PROOF OF LEMMA 4

Proof of Lemma 4. By assumption, we have that |(i]A|j) —
a(0|®™(i|U4|0)®™|j)| < &, where Uy acts on n + m qubits.

Let us consider estimating (0|®"(i|]U4|0)®"|j), which can
alternatively be expressed as

(O1®™(01*" (1 ® U Uy (1 ® U;)I0)="|0)*", (GD

where U;, U; are depth-1 circuits that prepare bit strings i and

j. We denote the estimate of (0]%" (i|U4|0)®™|j) by (i|A[}),
so that if (01" (i|UA|0)®"|j) — (/IATj)| < . then |(ilA| ) —
(x(i|A/\TJ/')| < e+ k.

One can obtain the estimate (i|A|j) by running a series of
Hadamard test circuits on n 4+ m + 1 qubits. These circuits
correspond to running

—_~—

(I ®[H R(0)])(1 @ |0)(0l, + U @ [1){1[,)(1 & Ha),
(G2)

where U = (U; DUy (U;®1), on the state
[0Y®™]0)®"|0), (with the final qubit being an ancillary
qubit). The output state of the ancillary qubit is measured
a total of D(Z,6§) times, half of the times for 6 =0
and half of the times for 6 =m /2. The fractions
of output-0 measurements for 6 =0 and 6 =m/2
provide  estimates  of I+ FRe((0®"(i|U4|0)*™|}))
and 1 — JIm((0|®"(i|U4|0)®™|j)), respectively. Using
a /(\J_IE:rnoff concentration bound, one can show that
[(i]A]j) — (0]®™(i|U4|0)®™|j)| < & with probability at least
1 — & for D(8,8) = O 2 log(4s™")).

One can thus obtain an estimate of (i|A|j) (given by

a(i|A/_\H')) up to error &€ + «& with probability 1 —§, using
D(,8) = O 2 log(46~1)) calls to C-Uy. [ |

APPENDIX H: BQP COMPLETENESS

Here, we prove Theorem 4, using the next Lemma HI as a
small tool:

Proof of Theorem 4. 1t is straightforward to see that eval-
uating the matrix element M;;(z) of the correlation matrix
M(t) = e Mye ™" att = poly(n) is a problem in BQP, given
the promise. By Lemmas 4 and E1, given access to Oy, and
Oy, as poly(n)-sized quantum circuits, the problem is solved
with poly(n) quantum effort.

To show BQP hardness of our problem, we use the fact that
for any promise problem in BQP of problem size m, we have
the following property [34]: the problem can be decided by
acting on an k = poly(m)-qubit input |00 - --0) with (a uni-
form family of) poly(k) = poly(m)-sized quantum circuits,
outputting 1 (on the first qubit) with probability at least 2/3
in case YES, and 1 with probability at most 1/3 in case NO.
In addition, one can boost the success and failure probabilities
2/3 - 1 —exp(—0O(k))and 1/3 — exp(—®(k)), by running
k instances of the poly(k)-sized circuits in parallel and taking
a majority vote on the first qubit of the output state for each
instance (and copying the answer onto an ancillary qubit).
The circuit corresponding to this boosted scenario acts on
g = k* qubits, and its success and failure probabilities are,
respectively, 1 — exp(—©(,/q)) and exp(—0O(,/q)). Let the
quantum circuit for this problem with boosted probabilities be

U=W,---W, (HI)
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where W, are elementary one-qubit and two-qubit gates and
L = poly(k) = poly(,/q). We represent this decision problem
using time evolution with a sparse circuit Hamiltonian. The
circuit Hamiltonian, acting on a ¢gcock = log,(L + 1)-qubit
clock space [we assume wlog that log,(L 4 1) is an integer]
and the g-qubit space is given by

h_Z(|l+

We take n = gclock + ¢ and note that geock < ¢ for sufficiently
large g, so that n/2 < g < n. The matrices W; have at most
four nonzero entries in a given row/column. Therefore, 4 is
at most eight sparse. Since {W;}}_, are unitary matrices, the
entries of & are O(1) in absolute value.

Consider the evolution [ (1)) = e™"|1) e |00 - - - 0) with
the Hamiltonian A from Eq. (H2). This state can be decom-
posed as

llclock ® VV[ + |l)(l + l|c10ck ® W ) (H2)

L+1
(@) = Zaz,u clock ® H Wir100 - - (H3)
r=1
with coefficients ¢, given by
L+1
Zdz A = e Dgour (H4)
where J is a Hamiltonian on the clock register:
J= Z U+ D laoek + 1D+ Vo). (HS)

Given the encoding of the clock register, one can write the
probability of measuring |L + 1) 4o on the clock and mea-
suring |1) on the first of the ¢ qubits as

P =1L + ook ® (1) [¥ ()]
= (1|‘310Ck (OO t 0|eihtMOeiiht|l)clock|OO e 0)»

with M() = m l_[;ji;k(]l - chock,j)(]]- - unbit,l)- HCIICC,
when the state U]00---0) outputs 1 on the first qubit with
probability at least 1 — exp(—./q) (YES), it follows through
Lemma F1 that p= Q(1/poly(,/q)) = Q(1/poly(y/n)).
When the state U]00---0) outputs 1 on the first
qubit with probability at most exp(—.,/qg) (NO), then
p < exp(—,/q) < exp(—+/n/2) through Lemma F1. Now,
observe that My is a valid and sparse correlation matrix of a
multiparticle free fermionic state on 2" modes [in particular,
a fraction ®(1/poly(s/n)) of the modes is occupied], which
is evolved in time ¢t = poly(4/n) by the sparse Hamiltonian #,
after which one wishes to estimate a particular matrix element
(labeled, say, by j = l¢ock,00---0) of the time-evolved
matrix, which is the problem stated in Theorem 4. The only
thing left to argue is that given the description of {W;}, one
can implement O, in Definition 2 as a poly(n)-sized circuit.
Oracle implementation. The oracle O, from Definition 2,
acting on (s + 1)(gclock + ¢ + 1) qubits, can be implemented
as follows. For convenience, we label the first (gciock + g + 1)
qubits by A and the last s (gciock + ¢ + 1)-qubit registers by
By, ..., Bs. For simplicity and wlog, we assume that all W;
are two-qubit gates and all entries of W; in their two-qubit

(Ho)

subspaces are nonzero. Note that for each / € {1,2,...,L},
we have access to the labels Q(ll) and Q;Z) (with Q(ll) < Qg)) of
the qubits on which W, acts nontrivially. The structure of 4 is
such that each row contains eight nonzero entries (apart from
the rows associated with clock states |1)oc and [L 4+ 1) goer)s
with a row |i) = |I)|*) having four nonzero entries asso-
ciated with clock register state |l — 1), and four nonzero
entries associated with clock register state |/ 4 1) ... These
entries correspond to the entries <XQII—1 s Xl [Wi—1ly1, y2) and
(xQzl,xQ:2|W;|y1, y2) (for y € {0, 1}%), respectively. The rows
associated with clock states |1),c and |L + 1), are four
sparse.

We take workspace in the form of 2(L 4 1) additional
(gciock + @)-qubit registers (initialized in |00 - - - 0)), denoted
by Ci, ..., Cyu+1). Foreach j e {1,2,..., L+ 1}, we trans-
form the first (L 4 1) qubits on registers C;;_; and C;; to
| /) etock- Then, for each j € {2,3,..., L} (so excluding 1 and
L+ 1), we flip qubits geock + Qfl and Gelock + Q{l on
register Cy;_; and qubits geiock + Qf and geiock + Q5 ON reg-
ister Cy; to |1). In addition, we flip qubits gciock + Q} and
Gelock + Q) on register C; and Gelock + OF and Geiock + 05 on
register Co;—1 to |1).

Controlled on the clock state on register A being |I) jock>
we set the clock state to |/ — 1) . On registers By, ..., By
(provided that / > 1) and to |/ + 1), On register Bs, ..., Bg
(provided that / < L 4 1). Controlled on the last g qubits
of register A being in state |x), we copy |x) onto the fi-
nal g qubits of By,..., By, excluding qubits gcjock + Qlfl
and ¢clock + le_l. These latter two qubits are transformed
to |00), |01), |10), and [11) on registers By, ..., Bs, re-
spectively. Similarly, we copy |x) onto the final ¢ qubits
of Bs, ..., Bs, apart from qubits Gejock + Q) and Geiock + 05,
which are, respectively, transformed to |00), |01), |10), and
[11). These operations make use of the states in the workspace
registers Ci, ..., Cyr+1), which are uncomputed at the end
of the protocol. In accordance with Definition 2, we need
to account for rows of & having less than eight nonzero
entries. Since the rows of & associated with clock states
[1) ok @and |L + 1) .o are four sparse, registers By, ..., By
are set to, respectively, [1) ® [S),  1gr---s 1) ® |8)qclock+q
controlled on the A clock state being | 1) jocx [after which regis-
ters (By, ..., Bs)and (Bs, ..., Bg) are swapped], and registers
Bs, ... Bg are set to, respectively, 1) @ I5) guuctqr -+ 11) ®
|8) etk controlled on the A clock state being |L + 1) ock-
The size of the circuit implementing O, is poly(n).

To implement oracle O,, let us note that wlog the entries
of Wy are 0, =1/ V2, or 1, so that the entries can be encoded
into a three-bit string. By employing additional poly(n)-sized
workspace [note that L = poly(,/q) and each W; has 16 en-
tries], the oracle O, can be implemented [by a poly(n)-sized
circuit]. [ |

Remark. Like in Ref. [17], we could have adapted the BQP-
verification circuit to output the state [0), ® |00 ---0) (so all
qubits back to their initial state and an additional ancilla qubit
a to 0) with high probability in the NO case, and with low
probability in the YES case. This is done by simply copying
the answer of the BQP circuit onto an additional ancilla qubit
a and applying the gates W ---W; in reverse on the other
qubits. If we use this cleaned-up circuit, it means that we are
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interested in estimating the probability for a specific output
state—all qubits in |0) and clock state in |L + 1),.c—and this
corresponds to estimating an entry of a time-evolved rank-1
projector My, corresponding to a single-particle state. Hence
not surprisingly, time evolution of single-particle states is also
BQP complete, as was shown in Theorem 3 in Ref. [17]
(where more work was done to bring 4 in sign-free form to
directly correspond to a sum of kinetic and potential energies).
The following lemma, which is used in the proof of The-
orem 4, mainly follows the approach of Ref. [17]. Instead of
employing this lemma, one could also adapt the coefficients in
the hopping Hamiltonian % in Eq. (H2) to allow for a perfect
one-dimensional state transfer from |1) o = |IL + 1)cioeks
using an idea first suggested by Peres [47] (see also
Ref. [17]): such adaptation requires extra ancilla qubit over-
head in realizing the time dynamics of /; hence, we omit it.
Lemma F1. For a Hamiltonian J = Y (|I){I + 1| +
|l + 1){Il]) on a (L 4+ 1)-dimensional Hilbert space with basis

states |[), [ € {1,...,L+ 1}, there exists a t = O(L*logL)
such that
L+ 1le™ 1) = Q(1/VL). (H7)
Proof. The Hamiltonian J has eigenstates
L+1 .
2 7 jk
k) + k) _ :
= X s ith e —— (_>7
[Vk) ga] lj),  with L+2sm L2
(H8)
and eigenvalues
2 d (HO)
€, = 2cos ,
¢ L+2

with k=1---L+ 1. We note that the gap between any
two eigenvalues is at most 4. To prove a lower bound on
[{L + 1|e~¥|1)|, we will derive a lower bound on the gaps
Ay = |€mt1 — €n| for m=1,2,...L) between the eigen-
values of J:

Am = |€m+l - eml

T d 2 cos(x)

_— min _—

T LA 2 e | dx

2 T
> sin(—— | = QU /L +2)>. H10
/L+2sm<L+2> (/(L+2%).  (HI0)

Using the eigendecomposition of J, we infer that

L+1 Tk
L+ 1le="1) = —iet (1)KL g 2( )’
(L + 1e ™ [T) —L+2k:1€ (=1)"""sin )
(H11)
so that
. ) 2 L+1
|<L+1|e—11t|1>|2=<L+2) Z e—l(ek Gk)l‘( 1)k+k

kk'=

k K
wsin? [ 25 Y sin? (22—~ ). (HI12)
L+2 L+2

To show that there must be a time ¢ for which
(L + 1le ¥|1)]*> = Q(1/L), we use the fact that a probabilis-

tically chosen time in a sufficiently large interval will give
high success probability [35], and hence there must exist a
specific time that works sufficiently well. More precisely, for
k # k', there must exist a probability distribution { p(t)}rT=0 >
0, Y"1, p(t) = 1, such that

T

Z P(f )efi(ékfek/ n

t=0

provided that A =Q(/(L+2)>) and T =O(L+
2)? log(1/¢)). Examples of probability distributions for
which this is true are given in Ref. [48].

Therefore, for those {p(¢)}’s we have that

T
Z Z p(t )efi(ékfekr)t(_l)k#»k/

kK =0

.o mk .o f Tk
x sin” [ —— | sin” | ——
L+2 L+2
.o mk .o f Tk
<825m (L+2>s1n (_L+2>

((L +2)Y 3L+ 2))
= & —_ <
4 8

<e, (H13)

(L +2)?
E—//——,
4

(H14)

where the equality follows from direct computation. We thus
conclude that

T

> pONL + e ™ 1)

t=0

a 2 2Lt wk
.4
=0 k=1
The term >, p)(5)* 1 sin( Z5) can be evaluated

to be = 2(L+2) So choosing, for instance, ¢ = 2(L+2),

that Y"1 p(O|(L + 1]e™/"|1)|> = Q(m) For T = O((L +
2)? log(2(L + 2))), we conclude that there must be a t =
O(L?log L) for which [(L + 1]e=¥|1)|> = Q(1/L). |

we know

APPENDIX I: CLASSICALLY ESTIMATING ENTRIES OF
THE TIME-EVOLVED CORRELATION MATRIX ON
LATTICE MODELS

In this Appendix, we briefly argue the following. For t =
poly(n) and assuming classical access to entries (k|M|[) of an
initial correlation matrix M for given (k, /), one can obtain
entries M (t);; with 1/ exp(n) error with poly(n) classical ef-
fort. To see this, note that max,ej—1 417 |px(x) — exp(itsx)| =
ot/ VK YD) with pg(x) a degree-K Taylor approximation.
This implies

(P (/)M pic(—h/$))i; — M(1);j] = O((t/vK)*H1), (1)

where we have used that |[M|| < 1. Note that this error can
be bounded by 1/exp(n) for some K = poly(n). Using the
same reasoning as in the proof of Lemma 5, we can obtain
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(i|h MK*|j) for all ki, ks < K = poly(n), giving an esti-
mate of (px(h/s)Mpk(—h/s));;. So, for sufficiently large

K = poly(n), we obtain an estimate of (e™""Mye~"");; with
1/ exp(n) error.
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