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Abstract
Motivated by a number of questions concerning transversality-type properties of pairs of
sets recently raised by Ioffe and Kruger, this paper reports several new characterizations
of the intrinsic transversality property in Hilbert spaces. New results in terms of normal
vectors clarify the picture of intrinsic transversality, its variants and sufficient conditions
for subtransversality, and unify several of them. For the first time, intrinsic transversality
is characterized by an equivalent condition which does not involve normal vectors. This
characterization offers another perspective on intrinsic transversality. As a consequence, the
obtained results allow us to answer a number of important questions about transversality-
type properties.

Keywords Transversality · Subtransversality · Intrinsic transversality · Normal cone ·
Relative normal cone

Mathematics Subject Classification (2010) Primary 49J53 · 65K10; Secondary 49K40 ·
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1 Introduction

Transversality and subtransversality are the two important properties of collections of sets
which reflect the mutual arrangement of the sets around the reference point in normed
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spaces. These properties are widely known as constraint qualification conditions in opti-
mization and variational analysis for formulating optimality conditions [22, 45, 47, 53] and
calculus rules for subdifferentials, normal cones and coderivatives [19–21, 23, 33, 34, 45,
47], and as key ingredients for establishing sufficient and/or necessary conditions for linear
convergence of computational algorithms [3, 14, 16, 36, 41, 42, 44, 50, 52]. We refer the
reader to the papers [26–28, 33–37, 39] by Kruger and his collaborators for a variety of their
sufficient and/or necessary conditions in both primal and dual spaces.

Transversality is strictly stronger than subtransversality. It is sufficient for many appli-
cations where the latter is not, for example, in proving linear convergence of the alternating
projection method for solving nonconvex feasibility problems [41, 42], or in establishing
error bounds for the Douglas-Rachford algorithm [16, 50] and its modified variants [52].
However, transversality is too restrictive for many applications, and there have been a num-
ber of attempts to identify weaker properties, still sufficient for such applications. Of course,
one cannot expect a universal transversality-type property that works well for all appli-
cations. When formulating necessary optimality conditions for optimization problems in
terms of abstract Lagrange multipliers and establishing intersection rules for tangent cones
in Banach spaces, Bivas et al. [7] recently introduced a property called tangential transver-
sality, which is a primal space property lying between transversality and subtransversality,
but there is no evidence that this new property is actually different from both.

When establishing linear convergence criteria of the alternating projection algorithm for
solving nonconvex feasibility problems, a series of meaningful transversality-type prop-
erties have been introduced and analyzed in the literature: affine-hull transversality [50],
inherent transversality [6], separable intersection property [48] and intrinsic transversal-
ity [13]. In contrast to tangential transversality, the latter ones are dual space properties
since they are defined in terms of normal vectors. Unlike the transversality property, all the
above transversality-type properties are not dependent on the underlying space, that is, if a
property is satisfied in an ambient space X, then it is also satisfied in any ambient space
containing X. Recall that in Euclidean spaces, a pair of closed sets {A,B} is transversal at
a common point x̄ if and only if

NA(x̄) ∩ (−NB(x̄)
) = {0}, (1)

where NA(x̄) stands for the limiting normal cone to A at x̄, see Eq. 3 for the definition. This
characterization reveals that transversality is a property that involves all the limiting normals
to the sets at the reference point. This fundamentally explains why the property is not invari-
ant with respect to the ambient space and becomes too restrictive for many applications.
Indeed, the hidden idea leading to the introduction of the aforementioned transversality-type
properties in the context of nonconvex alternating projection follows from the observation
that not all such normal vectors are relevant for analyzing convergence of the algorithm. The
affine-hull transversality is the transversality but considered only in the affine hull L of the
two sets, that is, the pair of translated sets {A − x̄, B − x̄} is transversal at 0 in the ambient
space L − x̄. As a consequence, the analysis of this property is straightforwardly obtained
from that of transversality [50]. The key feature of the inherent transversality1 [6] is the use
of restricted normal cones in place of the conventional limiting normal cones in characteri-
zation Eq. 1 of transversality in Euclidean spaces. As a result, the analysis of this property is

1The property originated in [6, Theorem 2.13] without a name, then was refined and termed as inher-
ent transversality in Definition 4.4 of the preprint “Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Alternating
projections and coupling slope. Preprint, arXiv:1401.7569, 1–17 (2014)”.
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reduced to the calculus of the restricted normal vectors as established in [6]. The separable
intersection property [48, Definition 1] was motivated by nonconvex alternating projection
and ultimately designed for this algorithm. The intrinsic transversality was also introduced
in the context of nonconvex alternating projection in Euclidean spaces [13], it turns out to
be an important property itself in variational analysis as demonstrated by Ioffe [23, Section
9.2] and [22] and Kruger [32]. On the one hand, a variety of characterizations of intrinsic
transversality in various settings (Euclidean, Hilbert, Asplund, Banach and normed linear
spaces) have been established by a number of researchers [13, 22, 23, 32, 36, 40, 48]. On the
other hand, there are still a number of important questions about this property, for example,
the ones raised by Kruger [32, page 140] or the challenge by Ioffe about primal counterparts
of intrinsic transversality [22, Remark 6.1]. It is known that for pairs of closed and convex
sets, subtransversality admits an equivalent characterization in terms of normal vectors, and
the latter is equivalent to intrinsic transversality in the Euclidean space setting [32]. Another
interesting question is whether this equivalence is also valid in the nonconvex setting.

Motivated mainly by the above research questions, this paper is devoted to investigating
further characterizations of intrinsic transversality in connection with other transversality-
type properties. Apart from the appeal to address the aforementioned questions, this work
was also motivated by the potential for meaningful applications of these properties, for
example, in establishing convergence criteria for more delicate projection algorithms (rather
than alternating projection) and in formulating calculus rules for relative limiting normal
cones (see Definition 5).

The organization and contribution of the paper is as follows. New results in terms of
elements of normal cones are presented in Section 2 with the key quantitative estimate for-
mulated in Lemma 1. Theorem 1 establishes the equivalence of intrinsic transversality, weak
intrinsic transversality [32] and the sufficient condition for subtransversality formulated in
[35, Theorem 2]. This result significantly clarifies the picture of transversality-type prop-
erties and unifies several of them. As by-products, we address several important questions
concerning these properties in the Hilbert space setting, see Questions 1–3. In Section 3, for
the first time, intrinsic transversality is characterized by an equivalent property which does
not involve normal vectors, see Theorem 2. This result, which was motivated by a ques-
tion (see Question 4) raised by Ioffe [22, Remark 6.1], opens a new perspective on intrinsic
transversality. Intrinsic transversality in Euclidean spaces is studied in Section 4. Lemma
3 establishes a geometric counterpart of the analytic condition under which the complete
quantitative results of Theorem 1(ii) are obtained. Theorem 3 gives a new characterization of
intrinsic transversality, which refines the corresponding result of [32, Corollary 3]. Theorem
4 yields further insight on the quantitative results established in Section 2 when specialized
to the Euclidean space setting. As by-products, we address a couple of interesting questions
concerning intrinsic transversality in Euclidean spaces raised by Kruger [32, page 140], see
Questions 5 and 6.

Our basic notation is standard; cf. [12, 45, 51]. The setting throughout the current paper
is a Hilbert space X. The open unit ball in X is denoted by B, and Bδ(x) (respectively,
Bδ(x)) stands for the open (respectively, closed) ball with center x and radius δ > 0. The
distance from a point x ∈ X to a set � ⊂ X is defined by dist(x,�) := infω∈� ‖x − ω‖,
and we use the convention dist(x,�) = +∞ when � = ∅. The set-valued mapping

P� : X ⇒ X : x �→ {ω ∈ � | ‖x − ω‖ = dist(x,�) }
is the projector on �. An element ω ∈ P�(x) is called a projection. Note that the projector
is not, in general, single-valued and can have empty values. The single-valuedness of P�

everywhere in fact defines the Chebyshev property of �. Every nonempty closed convex set
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in a Hilbert space is Chebyshev. The inverse of the projector, P −1
� , is defined by

P −1
� (ω) := {x ∈ X | ω ∈ P�(x) } ∀ω ∈ �.

The proximal normal cone to � at a point x̄ ∈ � is defined by

N
p
�(x̄) := cone

(
P −1

� (x̄) − x̄
)

,

which is a convex cone. Here cone(·) denotes the smallest cone containing the set in the
brackets.
The Fréchet normal cone to � at x̄ is defined by (cf. [25])

N�(x̄) :=
⎧
⎨

⎩
v ∈ X | lim sup

x
�→x̄,x �=x̄

〈v, x − x̄〉
‖x − x̄‖ ≤ 0

⎫
⎬

⎭
, (2)

which is a nonempty closed convex cone. Here x
�→ x̄ means x → x̄ and x ∈ �.

The limiting normal cone to � at x̄ is defined by

N�(x̄) := Lim sup
x

�→x̄

N�(x) :=
{
v = lim

k→∞ vk | vk ∈ N�(xk), xk ∈ �, xk → x̄

}
. (3)

In the above definition, the Fréchet normal cones can equivalently be replaced by the prox-
imal ones. It holds: N

p
�(x̄) ⊂ N�(x̄) ⊂ N�(x̄), and if � is closed and dimX < ∞, then

N�(x̄) �= {0} if and only if x̄ ∈ bd (�), where bd (�) denotes the boundary of �. By con-
vention, we set Np

�(x̄) = N�(x̄) = N�(x̄) := ∅ whenever x̄ /∈ �. If � is a convex set, then
all the above normal cones coincide and reduce to the one in the sense of convex analysis
(e.g., [9, Proposition 2.4.4], [25, Proposition 1.19]):

N
p
�(x̄) = N�(x̄) = N�(x̄) = {v ∈ X | 〈v, x − x̄〉 ≤ 0 for all x ∈ �} .

2 Subtransversality, Transversality and Intrinsic Transversality

The following definition recalls probably the most widely known regularity properties of
pairs of sets.

Definition 1 (subtransversality and transversality) Let {A,B} be a pair of sets and x̄ ∈
A ∩ B.

(i) {A,B} is subtransversal at x̄ if there exist numbers α ∈ ]0, 1[ and δ > 0 such that

α dist (x,A ∩ B) ≤ max {dist(x,A), dist(x, B)} ∀x ∈ Bδ(x̄). (4)

(ii) {A,B} is transversal at x̄ if there exist numbers α ∈ ]0, 1[ and δ > 0 such that

α dist (x, (A − x1) ∩ (B − x2)) ≤ max {dist(x, A − x1), dist(x, B − x2)}
∀x ∈ Bδ(x̄), ∀x1, x2 ∈ δB. (5)

The exact upper bound of all α ∈ ]0, 1[ such that condition Eq. 4 (respectively, Eq. 5)
is satisfied for some δ > 0 is denoted by str[A, B](x̄) (respectively, tr[A, B](x̄)) with the
convention that the supremum over the empty set equals 0. It is clear that Eq. 5 implies Eq. 4
by setting x1 = x2 = 0 in Eq. 5. Hence, transversality is stronger than subtransversality,
and it always holds that tr[A, B](x̄) ≤ str[A, B](x̄).
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Remark 1 (i) (subtransversality) The subtransversality property can be traced back to at
least the early 80’s thanks to Dolecki under the name decisive separation [10, 11]
where it was known as a sufficient (and also necessary in the convex setting) condition
for the tangent cone of the intersection of a pair of sets at a reference point being equal
to the intersection of the two tangent cones of the sets at that point [11, Propositions 5.3
and 5.4]. In the surveys [18, 19], Ioffe used the property (without a name) as a qualifi-
cation condition for establishing calculus rules for normal cones and subdifferentials.
Subtransversality was studied by Bauschke and Borwein [2] under the name linear
regularity as a sufficient condition for linear convergence of the alternating projec-
tion algorithm for solving convex feasibility problems in Hilbert spaces, and became
widely known thanks to this important application. Their results were extended to the
cyclic projection algorithm for solving feasibility problems involving a finite number
of convex sets [3]. The term linear regularity was widely adapted in the community
of variational analysis and optimization for several decades, for example, Bakan et al.
[1], Bauschke et al. [4, 5], Li et al. [43], Ng and Zang [46], Zheng and Ng [54], Kruger
and his collaborators [26–28, 37–39]. Ngai and Théra [47] referred to this property
as metric inequality and used it to establish calculus rules for the limiting Fréchet
subdifferential. Penot [49] referred to the property as linear coherence and applied it
in establishing calculus rules for the viscosity Fréchet and viscosity Hadamard sub-
differentials. The name (sub)transversality was coined by Ioffe in the 2016 survey
[20, Definition 6.14]. In his 2017 book [22, page 301] he explained that “Regularity
is a property of a single object while transversality relates to the interaction of two or
more independent objects”. In spite of the relatively long history with many important
features of subtransversality, for example, those in connection with metric subregu-
larity, error bounds, weak sharp minima, growth conditions and conditions involving
primal and dual space slopes, useful applications of the property keep being discov-
ered. For example, Luke et al. [44, Theorem 8] recently proved that subtransversality
is not only sufficient but also necessary for linear convergence of convex alternating
projection. This complements the aforementioned result by Bauschke and Borwein
[2] obtained 25 years earlier. Luke et al. [44, Section 4] also reveal that the property
has been imposed either explicitly or implicitly in all existing linear convergence cri-
teria for nonconvex alternating projection, and hence conjecture that subtransversality
is a necessary condition for linear convergence of the algorithm also in the nonconvex
setting.

(ii) (transversality) The origin of the concept of transversality can be traced back to at
least the 19th century (cf. [15, 17]) in differential geometry which deals of course
with smooth manifolds, where transversality of a pair of smooth manifolds {A,B}
at a common point x̄ can also be characterized by condition Eq. 1.2 The property is
known as a sufficient condition for the intersection A∩B to be also a smooth manifold
around x̄. To the best of our awareness, transversality of pairs (collections) of general
sets in normed linear spaces was first investigated by Kruger in a systematic picture
of mutual arrangement properties of sets. The property has been known under quite a
number of other names including regularity, strong regularity, property (UR)S , uni-
form regularity, strong metric inequality [26–28, 37] and linear regular intersection
[41]. Plenty of primal and dual space characterizations of transversality as well as its

2In this setting, the normal cones appearing in Eq. 1 are the normal spaces (i.e., orthogonal complements to
the tangent spaces) to the manifolds at x̄. The minus sign in Eq. 1 can be omitted.
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close connections to important concepts in optimization and variational analysis such
asmetric regularity, (extended) extremal principles, open mapping theorems and other
types of mutual arrangement properties of collections of sets have been established
and extended to more general nonlinear settings in a series of papers by Kruger and
his collaborators [24, 26–31, 38, 39]. Apart from classical applications of the property,
for example, as constraint qualification conditions for establishing calculus rules for
the limiting normal cones [45, page 265] and coderivatives (in connection with metric
regularity, the counterpart of transversality in terms of set-valued mappings) [12, 51],
important applications have also emerged in the field of numerical analysis. Lewis
et al. [41, 42] applied the property to establish the first linear convergence criteria for
nonconvex alternating and averaged projection. Transversality was also used to prove
linear convergence of the Douglas-Rachford algorithm [16, 50] and its relaxations
[52].

We refer the reader to the recent surveys by Kruger et al. [35, 36] for a more
comprehensive discussion about the two properties in Definition 1.

A number of characterizations of transversality in terms of normal vectors, especially in
the Euclidean space setting, have been established [26–28, 36, 37, 39, 41] and applied, for
example, [41, 45, 50, 52]. The situation is very much different for subtransversality. For
collections of closed and convex sets, the following characterization of subtransversality is
due to Kruger.

Proposition 1 (normal-vector-based characterization of subtransversality with convex-
ity) [32, Theorem 3]3 A pair of closed and convex sets {A,B} is subtransversal at a point
x̄ ∈ A ∩ B if and only if there exist numbers α ∈ ]0, 1[ and δ > 0 such that ‖v1 + v2‖ > α

for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄) with ‖x − a‖ = ‖x − b‖ and
v1, v2 ∈ X satisfying

dist(v1, NA(a)) < δ, dist(v2, NB(b)) < δ,

‖v1‖ + ‖v2‖ = 1, 〈v1, x − a〉 = ‖v1‖ ‖x − a‖, 〈v2, x − b〉 = ‖v2‖ ‖x − b‖.

Let itrc[A, B](x̄) denote the exact upper bound of all α ∈ ]0, 1[ such that the conditions
in Proposition 1 (equivalent to subtransversality in the convex setting) are satisfied for some
δ > 0, with the convention that the supremum over the empty set equals 0. This quantity is
well defined regardless of the convexity of the sets, and the strict inequality itrc[A, B](x̄) >

0 characterizes a certain transversality-type property in not necessarily convex settings.
The constant itrc[A, B](x̄) is going to play a central role in the subsequent analysis of
this paper.

In the nonconvex setting, the first sufficient condition for subtransversality in terms
of normal vectors was formulated in [38, Theorem 4.1] following the routine of deduc-
ing metric subregularity characterizations of set-valued mappings in [29]. The result was
then refined successively in [36, Theorem 4(ii)], [35, Theorem 2] and finally in [32] in the
following form.

Proposition 2 (sufficient condition for subtransversality) [32, combination of Definition
2 and Corollary 2]4 A pair of closed sets {A,B} is subtransversal at a point x̄ ∈ A ∩ B

3The result is valid in Banach spaces.
4The result is valid in Asplund spaces.
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if there exist numbers α ∈ ]0, 1[ and δ > 0 such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈
(B \ A) ∩ Bδ(x̄) and x ∈ Bδ(x̄) with ‖x − a‖ = ‖x − b‖, one has ‖v1 + v2‖ > α for
some ε > 0 and all a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b), x′

1 ∈ Bε(a), x′
2 ∈ Bε(b) with

‖x − x′
1‖ = ‖x − x′

2‖, and v1, v2 ∈ X satisfying

dist(v1, NA(a′)) < δ, dist(v2, NB(b′)) < δ,

‖v1‖ + ‖v2‖ = 1,
〈
v1, x − x′

1

〉 = ‖v1‖‖x − x′
1‖,

〈
v2, x − x′

2

〉 = ‖v2‖‖x − x′
2‖.

Let itrw[A,B](x̄) denote the exact upper bound of all α ∈ ]0, 1[ such that the above
sufficient condition for subtransversality is satisfied for some δ > 0, with the convention
that the supremum over the empty set equals 0.

To this end, the following question about the above result is of importance. Our
subsequent analysis will give the negative answer to it (see Remark 6).

Question 1 Is the sufficient condition formulated in Proposition 2, i.e. itrw[A, B](x̄) > 0,
also necessary for subtransversality?

We next recall the central concept of this paper, i.e., the intrinsic transversality property
of pairs of sets. Compared to its better known siblings recalled in Definition 1, intrinsic
transversality came to life much later.

Definition 2 (intrinsic transversality in Euclidean spaces) [13, Definition 3.1] A pair of
closed sets {A,B} in a Euclidean space is intrinsically transversal at a point x̄ ∈ A ∩ B if
there exists an angle α > 0 together with a number δ > 0 such that any two points a ∈
(A\B)∩Bδ(x̄) and b ∈ (B\A)∩Bδ(x̄) cannot have difference a−b simultaneously making
an angle strictly less than α with the two proximal normal cones N

p
B(b) and −N

p
A(a).

The above property was originally introduced in 2015 by Drusvyatskiy et al. [13] as a
sufficient condition for local linear convergence of the alternating projection algorithm for
solving nonconvex feasibility problems in Euclidean spaces. As demonstrated by Ioffe [23],
Kruger et al. [32, 35] and will also be confirmed in this paper, intrinsic transversality turns
out to be an important qualification property in variational analysis. Kruger [32] recently
extended and investigated intrinsic transversality in more general underlying spaces.5

Definition 3 (intrinsic transversality) [35, Definition 4(ii)] & [32, Definition 2(ii)]6 A
pair of closed sets {A,B} is intrinsically transversal at a point x̄ ∈ A ∩ B if there exist
numbers α ∈ ]0, 1[ and δ > 0 such that ‖v1 + v2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄),
b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄) with x �= a, x �= b, 1 − δ <

‖x−a‖
‖x−b‖ < 1 + δ, and

v1 ∈ NA(a) \ {0}, v2 ∈ NB(b) \ {0} satisfying
‖v1‖ + ‖v2‖ = 1,

〈v1, x − a〉
‖v1‖‖x − a‖ > 1 − δ,

〈v2, x − b〉
‖v2‖‖x − b‖ > 1 − δ.

The exact upper bound of all α ∈ ]0, 1[ that together with some δ > 0 satisfies the above
definition of intrinsic transversality is denoted by itr[A, B](x̄), with the convention that the
supremum over the empty set equals 0.

5It is worth noting that the extension from Definition 2 to Definition 3 of intrinsic transversality is not trivial,
and the coincidence of the two definitions in the Euclidean space setting was shown in [32, Proposition 8(iii)].
6The property was defined and investigated in general normed linear spaces.

11



Nguyen Hieu Thao et al.

Remark 2 In Definition 3 it can be assumed without loss of generality that δ ∈ ]0, 1[. In this
case, the three conditions a ∈ A\B, b ∈ B \A and 1−δ <

‖x−a‖
‖x−b‖ < 1+δ imply conditions

x �= a and x �= b. In similar contexts in the sequel, the latter two conditions will be omitted
for the sake of brevity, for example, in the proofs of Lemmas 1 & 2, representation Eq. 72
and Definition 5(i).

Making use of the quantities str[A, B](x̄), tr[A, B](x̄), itrc[A, B](x̄), itrw[A, B](x̄) and
itr[A, B](x̄), we can concisely summarize the facts recalled so far in this section. The defi-
nitions of subtransversality, transversality and intrinsic transversality and Propositions 1 &
2 respectively admit more concise descriptions.

Proposition 3 (summary) Let {A,B} be a pair of closed sets and x̄ ∈ A ∩ B.

(i) {A,B} is subtransversal at x̄ if and only if str[A, B](x̄) > 0.
(ii) {A,B} is transversal at x̄ if and only if tr[A, B](x̄) > 0.
(iii) {A,B} is intrinsically transversal at x̄ if and only if itr[A, B](x̄) > 0.
(iv) If the sets are convex, then {A,B} is subtransversal at x̄ if and only if

itrc[A, B](x̄) > 0.
(v) {A,B} is subtransversal at x̄ if itrw[A, B](x̄) > 0.

In this section, we are particularly interested in the result established by Kruger [32, The-
orem 4] that intrinsic transversality implies the sufficient condition for subtransversality
stated in Proposition 2, which in turn implies the one stated in Proposition 1. These
implications are captured by Proposition 4(i) via the relationships between the corre-
sponding quantities. For completeness, more comprehensive relationships between the
transversality-type properties are also presented here.

Proposition 4 (relationships between quantitative constants) [32, Proposition 1] Let
{A,B} be a pair of closed sets and x̄ ∈ A ∩ B.

(i) 0 ≤ tr[A, B](x̄) ≤ itr[A,B](x̄) ≤ itrw[A, B](x̄) ≤ itrc[A, B](x̄) ≤ 1.7

(ii) itrw[A, B](x̄) ≤ str[A, B](x̄).8

(iii) If A and B are convex, then itrc[A, B](x̄) = str[A, B](x̄).
(iv) If dimX < ∞ and A,B are convex, then itrw[A, B](x̄) = itrc[A, B](x̄) =

str[A, B](x̄).

Remark 3 (notation and terminology) In view of Proposition 4(i)&(ii), the strict inequality
itrw[A, B](x̄) > 0 corresponds to a property, which is weaker than intrinsic transversality
and stronger than subtransversality. That property is called weak intrinsic transversality in
[32, 35]. This in particular explains why the letter “w” is used in the notation itrw[A, B](x̄).
Similarly, the strict inequality itrc[A, B](x̄) > 0 corresponds to a weaker property than
weak intrinsic transversality. Such a property has not been named yet, but it has played an
important role in the analysis of transversality-type properties mainly in the convex setting
[32]. This particularly explains why the letter “c” is used in the notation itrc[A, B](x̄).

Proposition 4(iv) in particular claims the equivalence between weak intrinsic transversa-
lity and intrinsic transversality in the convex and finite dimensional setting. The following

7The statement is valid in Banach spaces.
8The statement is valid in Asplund spaces.
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question about their relationship in more general settings is of interest. Subsequent analysis
will give the answer to this question in the Hilbert space setting (see Remark 5).

Question 2 [32, question 3, page 140] What is the relationship between weak intrinsic
transversality and intrinsic transversality in the general nonconvex setting?

The next result establishes the main quantitative estimate of this section. Though the
statement and its proof are rather technical, its meaningful consequences will follow shortly.

Lemma 1 (quantitative estimate) Let {A,B} be a pair of closed sets and x̄ ∈ A ∩ B. It
holds

min
{
itrc[A, B](x̄), 1/

√
2
}

≤ itr[A, B](x̄). (6)

Proof To proceed with the proof, let us suppose that itrc[A, B](x̄) > 0 since there is nothing
to prove in the case itrc[A, B](x̄) = 0. Let us fix an arbitrary number

β ∈
]
0,min

{
itrc[A, B](x̄), 1/

√
2
}[

(7)

and prove that itr[A, B](x̄) ≥ β. By the definition of itrc[A, B](x̄), there exist numbers

α ∈
]
β,min

{
itrc[A, B](x̄), 1/

√
2
}[

and δ > 0 such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄) and x ∈ Bδ(x̄) with
‖x − a‖ = ‖x − b‖, one has

‖v1 + v2‖ > α (8)

for all v1, v2 ∈ X satisfying

dist(v1, NA(a)) < δ, dist(v2, NB(b)) < δ, (9)

‖v1‖ + ‖v2‖ = 1, 〈v1, x − a〉 = ‖v1‖‖x − a‖, 〈v2, x − b〉 = ‖v2‖‖x − b‖. (10)

Choose a number δ′ ∈ ]0, δ/3[ and satisfying
2
(√

δ′ + δ′
)

< 1/2 − β2, (11)

√
2δ′+ 2

√
2δ′−δ′2

4−6δ′+3δ′2 < min
{
δ, α − β

}
. (12)

Such a number δ′ exists since 1/2 − β2 > 0, min
{
δ, α − β

}
> 0 and

lim
t↓0 2

(√
t + t

)
= 0, lim

t↓0

⎛

⎝
√
2t + 2

√
2t − t2

4 − 6t + 3t2

⎞

⎠ = 0.

We are going to prove itr[A, B](x̄) ≥ β with the technical constant δ′ > 0. To begin, let us
take any a ∈ (A \ B) ∩ Bδ′(x̄), b ∈ (B \ A) ∩ Bδ′(x̄) and x ∈ Bδ′(x̄) with x �= a, x �= b,

1 − δ′ <
‖x − a‖
‖x − b‖ < 1 + δ′, (13)

and v1 ∈ NA(a) \ {0}, v2 ∈ NB(b) \ {0} satisfying
‖v1‖ + ‖v2‖ = 1,

〈v1, x − a〉
‖v1‖‖x − a‖ > 1 − δ′,

〈v2, x − b〉
‖v2‖‖x − b‖ > 1 − δ′. (14)

All we need is to show that
‖v1 + v2‖ > β. (15)

13
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We first observe from Eq. 14 that
∥
∥∥∥

v1

‖v1‖ − x − a

‖x − a‖
∥
∥∥∥

2

= 2 − 2
〈v1, x − a〉

‖v1‖‖x − a‖ < 2 − 2(1 − δ′) = 2δ′,
∥
∥∥∥

v2

‖v2‖ − x − b

‖x − b‖
∥
∥∥∥

2

= 2 − 2
〈v2, x − b〉

‖v2‖‖x − b‖ < 2 − 2(1 − δ′) = 2δ′.
(16)

We take care of two possibilities concerning the value of 〈x − a, x − b〉 as follows.
Case 1. 〈x − a, x − b〉 > 0. Then

∥∥
∥∥

x − a

‖x − a‖ − x − b

‖x − b‖
∥∥
∥∥

2

= 2 − 2
〈x − a, x − b〉

‖x − a‖‖x − b‖ < 2.

Equivalently,
∥
∥∥∥

x − a

‖x − a‖ − x − b

‖x − b‖
∥
∥∥∥ <

√
2. (17)

By the triangle inequality and estimates Eq. 17, Eq. 16, we get that
∥∥
∥∥

v1

‖v1‖ − v2

‖v2‖
∥∥
∥∥ ≤

∥∥
∥∥

x − a

‖x − a‖ − x − b

‖x − b‖
∥∥
∥∥+

∥∥
∥∥

v1

‖v1‖ − x − a

‖x − a‖
∥∥
∥∥+

∥∥
∥∥

v2

‖v2‖ − x − b

‖x − b‖
∥∥
∥∥

<
√
2 + 2

√
2δ′ = √

2
(
1 + 2

√
δ′
)
.

This implies that
∥∥∥
∥

v1

‖v1‖ − v2

‖v2‖
∥∥∥
∥

2

= 2 − 2
〈v1, v2〉

‖v1‖ ‖v2‖ < 2
(
1 + 2

√
δ′
)2

⇔ 〈v1, v2〉 > −4
(√

δ′ + δ′) ‖v1‖ ‖v2‖ . (18)

Using ‖v1‖ + ‖v2‖ = 1 which implies ‖v1‖ ‖v2‖ ≤ 1/4 and Eq. 18, respectively, we obtain
that

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 + 2 〈v1, v2〉 = 1 − 2 ‖v1‖ ‖v2‖ + 2 〈v1, v2〉
> 1 − 2 ‖v1‖ ‖v2‖ − 8

(√
δ′ + δ′) ‖v1‖ ‖v2‖ ≥ 1

2
− 2

(√
δ′ + δ′) .

This, combined with Eq. 11 yields that

‖v1 + v2‖ >

√
1

2
− 2

(√
δ′ + δ′

)
> β.

Case 2.

〈x − a, x − b〉 ≤ 0. (19)

Let us define m = a+b
2 and

x′ = x − 〈b − a, x − m〉
‖b − a‖2 (b − a). (20)

We first check that

‖x′ − a‖ = ‖x′ − b‖. (21)

14
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Indeed,

‖x′ − a‖2 − ‖x′ − b‖2 = ‖x − a‖2 − ‖x − b‖2 − 2
〈b − a, x − m〉

‖b − a‖2 〈x − a, b − a〉

+ 2
〈b − a, x − m〉

‖b − a‖2 〈x − b, b − a〉

= ‖x − a‖2 − ‖x − b‖2 − 2
〈b − a, x − m〉

‖b − a‖2 〈b − a, b − a〉
= ‖x − a‖2 − ‖x − b‖2 − 2 〈b − a, x − m〉
= ‖x − a‖2 − ‖x − b‖2 − 〈(x − a) − (x − b), (x − a) + (x − b)〉 = 0.

We next check that 〈
x − x′, x′ − m

〉 = 0. (22)

Indeed, by Eq. 20, it holds that

〈
x − x′, x′ − m

〉 = 〈b − a, x − m〉
‖b − a‖2

〈
b − a, x′ − m

〉
,

from which Eq. 22 follows since

〈
b − a, x′ − m

〉 =
〈
b − a, x − m − 〈b − a, x − m〉

‖b − a‖2 (b − a)

〉

= 〈b − a, x − m〉 − 〈b − a, x − m〉
‖b − a‖2 〈b − a, b − a〉 = 0.

Let us define also

v′
1 = ‖v1‖

‖x′ − a‖ (x′ − a), v′
2 = ‖v2‖

‖x′ − b‖ (x′ − b). (23)

It is clear that
‖v′

1‖ = ‖v1‖, ‖v′
2‖ = ‖v2‖, ‖v′

1‖ + ‖v′
2‖ = 1,

〈
v′
1, x

′ − a
〉 = ‖v1‖‖x′ − a‖ = ‖v′

1‖‖x′ − a‖,
〈
v′
2, x

′ − b
〉 = ‖v2‖‖x′ − b‖ = ‖v′

2‖‖x′ − b‖.
(24)

We next check that

dist(v′
1, NA(a)) < δ, dist(v′

2, NB(b)) < δ. (25)

Let us prove dist(v′
1, NA(a)) < δ. Indeed, since v1 ∈ NA(a), it holds by Eq. 23 that

dist(v′
1, NA(a)) ≤ ‖v′

1 − v1‖ =
∥∥∥
∥

‖v1‖
‖x′ − a‖ (x′ − a) − v1

∥∥∥
∥

= ‖v1‖
∥∥∥
∥

x′ − a

‖x′ − a‖ − v1

‖v1‖
∥∥∥
∥

≤ ‖v1‖
(∥∥∥
∥

x − a

‖x − a‖ − v1

‖v1‖
∥∥∥
∥+

∥∥∥
∥

x′ − a

‖x′ − a‖ − x − a

‖x − a‖
∥∥∥
∥

)
.

(26)

An upper bound of
∥∥∥ x−a

‖x−a‖ − v1‖v1‖
∥∥∥ has been given by Eq. 16:

∥∥
∥∥

x − a

‖x − a‖ − v1

‖v1‖
∥∥
∥∥ <

√
2δ′. (27)

We now establish an upper bound of
∥∥
∥ x′−a

‖x′−a‖ − x−a
‖x−a‖

∥∥
∥ via three steps as follows.
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Step 1.We show that

‖x − x′‖2 ≤ 2δ′−δ′2
4(1−δ′)2 min

{
‖x − a‖2, ‖x − b‖2

}
. (28)

If ‖x − a‖ ≥ ‖x − b‖, then
‖x − a‖2 − ‖x − b‖2 ≥ 0

⇔ ‖x − m‖2 + ‖m − a‖2+2 〈x − m, m − a〉 − ‖x − m‖2 − ‖m − b‖2
− 2 〈x − m, m − b〉 ≥ 0

⇔ 〈b − a, x − m〉 ≥ 0.

(29)

Note from Eq. 19 that

〈b − a, x − b〉 = 〈b − x, x − b〉 + 〈x − a, x − b〉 = −‖x − b‖2 + 〈x − a, x − b〉 ≤ 0.
(30)

Taking Eq. 20, Eq. 29 and Eq. 30 into account, we have that

‖x′ − b‖2 − ‖x − b‖2 = ‖x′ − x‖2 + 2
〈
x′ − x, x − b

〉

= ‖x′ − x‖2 − 2
〈b − a, x − m〉

‖b − a‖2 〈b − a, x − b〉
≥ ‖x′ − x‖2.

(31)

By Eq. 21 and Eq. 22 we get that

‖x − a‖2 + ‖x − b‖2 = 2‖x − x′‖2 + ‖x′ − a‖2 + ‖x′ − b‖2 + 2
〈
x − x′, 2x′ − (a + b)

〉

= 2‖x − x′‖2 + 2‖x′ − b‖2 + 4
〈
x − x′, x′ − m

〉

= 2‖x − x′‖2 + 2‖x′ − b‖2.
This together with Eq. 13 and Eq. 31 yields that

2‖x − x′‖2 = ‖x − a‖2 + ‖x − b‖2 − 2‖x′ − b‖2
≤ (1 + δ′)2‖x − b‖2 + ‖x − b‖2 − 2‖x′ − b‖2
≤ (1 + δ′)2‖x − b‖2 + ‖x − b‖2 − 2

(
‖x − b‖2 + ‖x′ − x‖2

)
.

Equivalently,

4‖x − x′‖2 ≤
(
2δ′ + δ′2) ‖x − b‖2 =

(
2δ′ + δ′2)min{‖x − a‖2, ‖x − b‖2} (32)

since ‖x − a‖ ≥ ‖x − b‖ in this case.
By a similar argument, if ‖x − a‖ ≤ ‖x − b‖, then

〈b − a, x − m〉 ≤ 0, 〈b − a, x − a〉 ≥ 0.

Thus

‖x′ − a‖2 − ‖x − a‖2 = ‖x′ − x‖2 + 2
〈
x′ − x, x − a

〉

= ‖x′ − x‖2 − 2
〈b − a, x − m〉

‖b − a‖2 〈b − a, x − a〉
≥ ‖x′ − x‖2.

(33)

By Eq. 21 and Eq. 22 we get that

‖x − a‖2 + ‖x − b‖2 = 2‖x − x′‖2 + 2‖x′ − a‖2,
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which together with Eq. 13 and Eq. 33 yields that

2‖x − x′‖2 ≤ ‖x − a‖2 + 1
(1−δ′)2 ‖x − a‖2 − 2

(
‖x − a‖2 + ‖x′ − x‖2

)
.

Equivalently,

4‖x − x′‖2 ≤ 2δ′−δ′2
(1−δ′)2 ‖x − a‖2 = 2δ′−δ′2

(1−δ′)2 min{‖x − a‖2, ‖x − b‖2} (34)

since ‖x − a‖ ≤ ‖x − b‖ in this case.
Combining Eq. 32 and Eq. 34 and noting that 2δ′ + δ′2 < 2δ′−δ′2

(1−δ′)2 , we obtain Eq. 28 as
claimed.

Step 2.We show that

‖x′ − a‖2 ≥ 4−6δ′+3δ′2
2δ′−δ′2 ‖x − x′‖2. (35)

Indeed, if ‖x − a‖ ≤ ‖x − b‖, then the use of Eq. 33 and Eq. 34 yields Eq. 35:

‖x′ − a‖2 ≥ ‖x − a‖2 + ‖x − x′‖2
≥ 4(1−δ′)2)

2δ′−δ′2 ‖x − x′‖2 + ‖x − x′‖2 = 4−6δ′+3δ′2
2δ′−δ′2 ‖x − x′‖2.

Otherwise, i.e., ‖x − a‖ ≥ ‖x − b‖, then the use of Eq. 21, Eq. 31 and Eq. 32 successively
implies that

‖x′ − a‖2 = ‖x′ − b‖2 ≥ ‖x − b‖2 + ‖x − x′‖2
≥ 4

2δ′+δ′2 ‖x − x′‖2 + ‖x − x′‖2 = 4+2δ′+δ′2
2δ′+δ′2 ‖x − x′‖2,

which also yields Eq. 35 since 4+2δ′+δ′2
2δ′+δ′2 > 4−6δ′+3δ′2

2δ′−δ′2 . Hence Eq. 35 has been proved.
Step 3.We show that

∥∥
∥∥

x′ − a

‖x′ − a‖ − x − a

‖x − a‖
∥∥
∥∥ ≤ 2

‖x − x′‖
‖x′ − a‖ . (36)

Indeed,
∥∥
∥∥

x′ − a

‖x′ − a‖ − x − a

‖x − a‖
∥∥
∥∥ ≤

∥∥
∥∥

x′ − a

‖x′ − a‖ − x − a

‖x′ − a‖
∥∥
∥∥+

∥∥
∥∥

x − a

‖x′ − a‖ − x − a

‖x − a‖
∥∥
∥∥

= ‖x − x′‖
‖x′ − a‖ +

∣∣
∣∣
‖x − a‖
‖x′ − a‖ − 1

∣∣
∣∣ .

If ‖x − a‖ ≥ ‖x′ − a‖, then Eq. 36 holds true since
∣∣∣
∣
‖x − a‖
‖x′ − a‖ − 1

∣∣∣
∣ = ‖x − a‖

‖x′ − a‖ − 1 ≤ ‖x − x′‖ + ‖x′ − a‖
‖x′ − a‖ − 1 = ‖x − x′‖

‖x′ − a‖ .

Otherwise, i.e., ‖x − a‖ < ‖x′ − a‖, then Eq. 36 also holds true since
∣
∣∣∣
‖x − a‖
‖x′ − a‖ − 1

∣
∣∣∣ = 1 − ‖x − a‖

‖x′ − a‖ ≤ 1 − ‖x′ − a‖ − ‖x − x′‖
‖x′ − a‖ = ‖x − x′‖

‖x′ − a‖ .

Hence Eq. 36 has been proved.
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A combination of Eq. 35 and Eq. 36 yields that
∥
∥∥∥

x′ − a

‖x′ − a‖ − x − a

‖x − a‖
∥
∥∥∥ ≤ 2

√
2δ′−δ′2

4−6δ′+3δ′2 . (37)

Plugging Eq. 27 and Eq. 37 into Eq. 26 and using Eq. 12, we obtain that

dist(v′
1, NA(a)) ≤ ‖v′

1 − v1‖ ≤ ‖v1‖
⎛

⎝
√
2δ′ + 2

√
2δ′ − δ′2

4 − 6δ′ + 3δ′2

⎞

⎠ (38)

<
√
2δ′ + 2

√
2δ′ − δ′2

4 − 6δ′ + 3δ′2 < δ.

The proof of dist(v′
2, NB(b)) < δ is analogous, and we also obtain that

dist(v′
2, NB(b)) ≤ ‖v′

2 − v2‖ ≤ ‖v2‖
⎛

⎝
√
2δ′ + 2

√
2δ′ − δ′2

4 − 6δ′ + 3δ′2

⎞

⎠ (39)

<
√
2δ′ + 2

√
2δ′ − δ′2

4 − 6δ′ + 3δ′2 < δ.

Hence Eq. 25 has been proved.
Conditions Eq. 25 and Eq. 24 ensure that the pair of vectors {v′

1, v
′
2} satisfies conditions

Eq. 9 and Eq. 10, respectively. It is trivial from the choice of δ′ in Eq. 12 that a ∈ (A \ B) ∩
Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄). We also have x′ ∈ Bδ(x̄) since

‖x′ − x̄‖ =
∥
∥∥∥x − 〈b − a, x − m〉

‖b − a‖2 (b − a) − x̄

∥
∥∥∥ ≤ ‖x − x̄‖ + ‖x − m‖

≤ δ′ + max{‖x − a‖, ‖x − b‖}
≤ δ′ + ‖x − x̄‖ + max{‖a − x̄‖, ‖b − x̄‖} ≤ 3δ′ < δ.

Hence, the estimate Eq. 8 is applicable to {v′
1, v

′
2}. That is,

‖v′
1 + v′

2‖ > α. (40)

Now using the triangle inequality, Eq. 38, Eq. 39, Eq. 40, Eq. 12 and Eq. 7 successively, we
obtain the desired estimate:

‖v1 + v2‖ = ‖v′
1 + v′

2 + v1 − v′
1 + v2 − v′

2‖
≥ ‖v′

1 + v′
2‖ − ‖v′

1 − v1‖ − ‖v′
2 − v2‖

≥ α − (‖v1‖ + ‖v2‖)
⎛

⎝
√
2δ′ + 2

√
2δ′ + δ′2

4 + 2δ′ + δ′2

⎞

⎠

= α −
⎛

⎝
√
2δ′ + 2

√
2δ′ − δ′2

4 − 6δ′ + 3δ′2

⎞

⎠

> α − (α − β) = β.

This completes Case 2 and Eq. 15 has been proved.
Hence, we have proved that {A,B} is intrinsically transversal at x̄ with itr[A, B](x̄) ≥ β.

Since β can be arbitrarily close to min
{
itrc[A, B](x̄), 1/

√
2
}
, we also obtain the estimate

Eq. 6 and the proof is complete.
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Remark 4 The idea behind Lemma 1 comes from two observations. First, when pairs of
vectors (v1, v2) appearing in the definitions of itr[A, B](x̄) and itrc[A, B](x̄) are further
restricted to the constraint 〈v1, v2〉 < 0, the two groups of conditions defining the two
constants become equivalent. Second, this additional constraint, which also gives rise to
the number 1/

√
2 in Lemma 1, does not qualitatively affect the properties characterized

by these constants. See also Lemma 3 for a geometric counterpart of this constraint in the
Euclidean space setting.

Combining Lemma 1 with Proposition 4, we obtain the main result of this section.

Theorem 1 (complete quantitative relationships) Let {A,B} be a pair of closed sets and
x̄ ∈ A ∩ B. Then the following statements hold true.

(i) If itrc[A,B](x̄) ≥ 1/
√
2, then

min {itr[A, B](x̄), itrw[A,B](x̄), itrc[A, B](x̄)} ≥ 1/
√
2. (41)

(ii) If itrc[A,B](x̄) < 1/
√
2, then

itrc[A, B](x̄) = itr[A, B](x̄) = itrw[A, B](x̄). (42)

As a consequence, the three transversality-type properties characterized by the above con-
stants are equivalent. In particular, itrc[A, B](x̄) is a refined equivalent qualitative constant
of intrinsic transversality.

Proof (i) In this case, it holds min
{
itrc[A, B](x̄), 1/

√
2
}

= 1/
√
2. Lemma 1 then yields

itr[A, B](x̄) ≥ 1/
√
2, which in turn implies Eq. 41 because the left-hand side of Eq. 41

equals itr[A,B](x̄) in view of Proposition 4(i).

(ii) In this case, it holds min
{
itrc[A, B](x̄), 1/

√
2
}

= itrc[A, B](x̄). Lemma 1 then

implies itrc[A, B](x̄) ≤ itr[A, B](x̄), which together with Proposition 4(i) yields the
equalities in Eq. 42.

In view of Theorem 1, the following result covers both Propositions 1 & 2 in the Hilbert
space setting. More importantly, it refines Proposition 2 which establishes the weakest suf-
ficient condition in terms of normal vectors for subtransversality in the nonconvex setting.

Corollary 1 (refined sufficient condition for subtransversality) A pair of closed sets
{A,B} is subtransversal at x̄ ∈ A ∩ B if itrc[A,B](x̄) > 0. The converse implication is
also true when the sets are convex.

Proof Let us suppose itrc[A, B](x̄) > 0. In both cases of either itrc[A, B](x̄) ≥ 1/
√
2 or

itrc[A, B](x̄) < 1/
√
2, Theorem 1 ensures that itrw[A, B](x̄) > 0. In view of Proposition

4(ii), the latter implies subtransversality of {A,B} at x̄. The statement about the converse
implication in the convex setting follows from Proposition 1.

Corollary 1 gives rise to the following question, which will be addressed in Remark 7.

Question 3 Is the sufficient condition itrc[A, B](x̄) > 0 also necessary for subtransversal-
ity in the nonconvex setting?

The following result is of importance.
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Corollary 2 (intrinsic transversality is subtransversality in the convex setting) For
pairs of closed and convex sets, subtransversality and intrinsic transversality are equivalent.

Proof In view of Corollary 1, a pair of closed and convex sets {A,B} is subtransversal
at x̄ ∈ A ∩ B if and only if itrc[A, B](x̄) > 0. By Theorem 1, this is equivalent to
itr[A, B](x̄) > 0, i.e., {A,B} is intrinsically transversal at x̄.

As by-products, we address Questions 1 - 3 in the remainder of this section. It is worth
mentioning that Question 2 remains open in more general underlying spaces.

Remark 5 (answer to Question 2) Theorem 1 clearly shows that weak intrinsic transversality
(i.e., itrw[A, B](x̄) > 0) and intrinsic transversality (i.e., itr[A, B](x̄) > 0) are equivalent
in the Hilbert space setting. Note that in the case itrc[A, B](x̄) > 1/

√
2, the equality of

itrw[A, B](x̄) and itr[A, B](x̄) remains unknown.

Remark 6 (answer to Question 1) In view of Remark 5, the condition itrw[A, B](x̄) > 0
(i.e, weak intrinsic transversality) is equivalent to intrinsic transversality of {A,B} at x̄. But
it is widely known that the latter is not necessary for subtransversality in the nonconvex
setting [14, 36, 48]. This establishes the negative answer to Question 1.

Remark 7 (answer to Question 3) Thanks to Theorem 1, the two conditions itrc[A, B](x̄) >

0 and itrw[A, B](x̄) > 0 are equivalent. The latter is not necessary for subtransversality as
explained in Remark 6. As a consequence, the condition itrc[A, B](x̄) > 0 is not necessary
for subtransversality in the nonconvex setting.

In conclusion, Theorem 1 unifies and refines a number of transversality-type proper-
ties in Hilbert spaces including intrinsic transversality [13], weak intrinsic transversality
[32], the sufficient conditions for subtransversality [35, 36, 39] and the characterization
of subtransversality with convexity [32]. This result significantly clarifies the picture of
transversality-type properties.

3 Intrinsic Transversality in Primal Space Terms

In view of Corollary 2, for pairs of closed and convex sets in Hilbert spaces, intrinsic
transversality is equivalent to subtransversality which is defined in primal space terms.9 The
situation for pairs of nonconvex sets has not been known and requires clarification; see, for
example, the following question raised by Ioffe [22, Remark 6.1].

Question 4 [22]What are primal space counterparts of intrinsic transversality?

The analysis in this section is devoted to addressing the above question. The main goal is
to characterize intrinsic transversality by conditions which do not involve normal vectors.

9In this section, the term primal space is used to indicate that the mentioned objects, conditions, properties
or representations do not explicitly involve normal vectors.
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For convenience, let us introduce the notation involving three sets as follows:10

d (A,B, �) := inf
x∈�,a∈A,b∈B

max{‖x − a‖ , ‖x − b‖}, for A, B,� ⊂ X,

with the convention that the infimum over the empty set equals infinity.

Definition 4 (property (P)11) A pair of closed sets {A,B} is said to satisfy property (P)

at a point x̄ ∈ A ∩ B if there are numbers α ∈ ]0, 1[ and ε > 0 such that for any a ∈
(A \ B) ∩Bε(x̄), b ∈ (B \ A) ∩Bε(x̄) and x ∈ Bε(x̄) with ‖x − a‖ = ‖x − b‖ and number
δ > 0, there exists ρ ∈ ]0, δ[ satisfying

d
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ αρ ≤ ‖x − a‖ , where λ := (

α + 1/
√

ε
)
ρ. (43)

The exact upper bound of all α ∈ ]0, 1[ such that {A,B} satisfies property (P) at x̄ for α

and some ε > 0 is denoted by itrp[A, B](x̄).

The following statement is straightforward from the definition.

Proposition 5 A pair of closed sets {A,B} satisfies property (P) at a point x̄ ∈ A ∩ B if
and only if itrp[A, B](x̄) > 0.

We next formulate several technical results which are essential for proving the equiva-
lence between property (P) and intrinsic transversality.

Proposition 6 [8, Corollary 6.3]12 Let {A,B} be a pair of closed sets in X, x̄ ∈ A ∩ B,
u, v ∈ X and numbers ρ, ε > 0. Suppose that

(A − u) ∩ (B − v) ∩ Bρ(x̄) = ∅, (44)

max{‖u‖ , ‖v‖} < d
(
A − u,B − v,Bρ(x̄)

)+ ε. (45)

Then for any numbers λ ≥ ε + ρ and τ ∈ [
0, λ−ε

λ+ε

[
, there exist points â ∈ A ∩ Bλ(x̄),

b̂ ∈ B ∩ Bλ(x̄), x̂ ∈ Bρ(x̄) and vectors v1 ∈ NA(â), v2 ∈ NB(b̂) such that

‖v1‖ + ‖v2‖ = 1, ‖v1 + v2‖ < ε/ρ, (46)
〈
v1, x̂ − â + u

〉+ 〈v2, x̂ − b̂ + v〉 > τ max
{∥
∥x̂ − â + u

∥
∥ , ‖x̂ − b̂ + v‖

}
. (47)

Remark 8 Condition Eq. 47 plays an important role in searching for primal space coun-
terparts of intrinsic transversality because it relates normal vectors to the primal space
elements.

Our subsequent analysis requires the following modified version of Proposition 6, where
the reference point x̄ ∈ A ∩ B is replaced by a triple of points (a, b, x) ∈ A × B × X.

10This is the distance between the two sets A × B and {(x, x) ∈ X × X | x ∈ �} in X × X endowed with
the maximum norm.
11The definition is valid in normed linear spaces.
12The result is valid in Asplund spaces.
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Proposition 7 Let {A,B} be a pair of closed sets in X, a ∈ A, b ∈ B, x ∈ X and numbers
ρ, ε > 0. Suppose that

0 < d
(
A,B,Bρ(x)

)
, (48)

max{‖x − a‖ , ‖x − b‖} < d
(
A,B,Bρ(x)

)+ ε. (49)

Then for any numbers λ ≥ ε + ρ and τ ∈ [
0, λ−ε

λ+ε

[
, there exist points â ∈ A ∩ Bλ(a),

b̂ ∈ B ∩ Bλ(b), x̂ ∈ Bρ(x) and vectors v1 ∈ NA(â), v2 ∈ NB(b̂) satisfying Eq. 46 and

〈v1, x̂ − â〉 + 〈v2, x̂ − b̂〉 > τ max
{∥∥x̂ − â

∥∥ , ‖x̂ − b̂‖
}
. (50)

Proof The idea of the proof is to apply Proposition 6 to

A′ := A − a, B ′ := B − b, x̄ := 0 ∈ A′ ∩ B ′, u := x − a and v := x − b (51)

by verifying Eq. 44 and Eq. 45. Indeed, condition Eq. 48 implies that

A ∩ B ∩ Bρ(x) = ∅, or equivalently, (A − x) ∩ (B − x) ∩ (ρB) = ∅.
The latter is exactly Eq. 44 since by Eq. 51

(A′ − u) ∩ (B ′ − v) ∩ Bρ(x̄) = (A − x) ∩ (B − x) ∩ (ρB).

Note also from Eq. 51 that

d
(
A′ − u,B ′ − v,Bρ(x̄)

) = d (A − x, B − x, ρB) = d
(
A,B,Bρ(x)

)
.

This together with Eq. 49 yields condition Eq. 45.
In view of Proposition 6, there exist points

a′ ∈ A′ ∩ (λB), b′ ∈ B ′ ∩ (λB), x′ ∈ ρB (52)

and vectors v1 ∈ NA′(a′), v2 ∈ NB ′(b′) satisfying conditions Eq. 46 and Eq. 47. Let us
define

â := a′ + a, b̂ := b′ + b and x̂ := x′ + x.

This together with Eq. 51 and Eq. 52 ensures that â ∈ A ∩ Bλ(a), b̂ ∈ B ∩ Bλ(b) and
x̂ ∈ Bρ(x). Note also that

NA(â) = NA′(a′), NB(b̂) = NB ′(b′), (53)

x̂ − â = x′ − a′ + x − a = x′ − a′ + u, x̂ − b̂ = x′ − b′ + x − b = x′ − b′ + v. (54)

The combination of Eq. 47 and Eq. 54 yields Eq. 50 while condition Eq. 53 ensures that
v1 ∈ NA(â), v2 ∈ NB(b̂).

Therefore, the points â, b̂, x̂ and vectors v1, v2 satisfy all the required conditions of the
proposition. The proof is complete.

Another technical result is needed for our analysis.
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Proposition 8 13 Let {A,B} be a pair of closed sets in X, a ∈ A, b ∈ B, x ∈ X with
‖x − a‖ = ‖x − b‖ > 0, α, ε > 0 and vectors v1, v2 ∈ X with ‖v1‖ + ‖v2‖ = 1. Suppose
that the following conditions are satisfied:

‖v1 + v2‖ + 2ε
(
α + 1/

√
ε
)

< α, (55)

dist(v1, NA(a)) < ε, dist(v2, NB(b)) < ε, (56)

〈v1, x − a〉 = ‖v1‖ ‖x − a‖ , 〈v2, x − b〉 = ‖v2‖ ‖x − b‖ . (57)

Then there exists a number δ > 0 such that

d
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ αρ > ‖x − a‖ , where λ := (

α + 1/
√

ε
)
ρ, (58)

holds true for all ρ ∈ ]0, δ[.

Proof By Eq. 56, there exist vectors u1 ∈ NA(a) and u2 ∈ NB(b) such that

‖v1 − u1‖ < ε, ‖v2 − u2‖ < ε. (59)

Since α − ‖v1 + v2‖ > 2ε(α + 1/
√

ε) due to Eq. 55, there are positive numbers α1 and α2
such that

α > α1 > α2 > ‖v1 + v2‖ , α1 − α2 > 2ε(α + 1/
√

ε). (60)

Choose a number β > 0 such that

β <
α1 − α2

α + 1/
√

ε
− 2ε, equivalently, α1 − α2 − (2ε + β)(α + 1/

√
ε) > 0. (61)

By the definition Eq. 2 of the Fréchet normal cone, there is a number δ′ > 0 such that

〈u1, a′ − a〉 ≤ β
2

∥∥a′ − a
∥∥ , 〈u2, b′ − b〉 ≤ β

2

∥∥b′ − b
∥∥ ,

∀a′ ∈ A ∩ Bδ′(a), b′ ∈ B ∩ Bδ′(b). (62)

Let us define
δ := δ′

α+1/
√

ε
> 0 (63)

and show that δ fulfills the requirement of the proposition. Indeed, let us suppose to the
contrary that condition Eq. 58 is not satisfied for some ρ ∈ ]0, δ[. That is,

d
(
A ∩ Bλ(a), B ∩ Bλ(b),Bρ(x)

)
+ ρα ≤ ‖x − a‖ , where λ := (

α + 1/
√

ε
)
ρ.

Since α1 < α, the above inequality ensures the existence of â ∈ A ∩ Bλ(a), b̂ ∈ B ∩ Bλ(b)

and x̂ ∈ Bρ(x) such that

max{∥∥x̂ − â
∥∥ , ‖x̂ − b̂‖} < ‖x − a‖ − ρα1. (64)

Note that λ = (
α + 1/

√
ε
)
ρ < (α+1/

√
ε)δ = δ′ thanks to Eq. 63. Then in view of Eq. 62,

we have
〈u1, â − a〉 ≤ β

2

∥∥â − a
∥∥ , 〈u2, b̂ − b〉 ≤ β

2‖b̂ − b‖.
This implies that

〈
u1, â − a

〉+ 〈u2, b̂ − b〉 ≤ β
2

∥∥â − a
∥∥+ β

2‖b̂ − b‖ ≤ β
2λ + β

2λ = λβ. (65)

By Eq. 57, ‖v1‖ + ‖v2‖ = 1 and ‖x − a‖ = ‖x − b‖, it holds
〈v1, x − a〉 + 〈v2, x − b〉 = ‖v1‖‖x − a‖ + ‖v2‖‖x − b‖ = ‖x − a‖ . (66)

13The result is valid in normed linear spaces.
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By Eq. 64 and ‖v1‖ + ‖v2‖ = 1, it holds

〈v1, x̂ − â〉 + 〈v2, x̂ − b̂〉 ≤ max{∥∥x̂ − â
∥∥ , ‖x̂ − b̂‖} < ‖x − a‖ − ρα1. (67)

By the Cauchy-Schwarz inequality and α2 > ‖v1 + v2‖ in view of Eq. 60, it holds

〈v1 + v2, x − x̂〉 ≤ ‖v1 + v2‖
∥
∥x − x̂

∥
∥ < ρα2. (68)

By the Cauchy-Schwarz inequality and Eq. 59, it holds

〈v1 − u1, â − a〉 + 〈v2 − u2, b̂ − b〉 ≤ ε
∥
∥â − a

∥
∥+ ε‖b̂ − b‖ ≤ 2λε. (69)

Adding Eq. 69 and Eq. 65 yields that

〈v1, â − a〉 + 〈v2, b̂ − b〉 ≤ 2λε + λβ. (70)

Making use of Eq. 66, Eq. 67, Eq. 68, Eq. 70, λ = (
α + 1/

√
ε
)
ρ and Eq. 61 successively,

we come up with

‖x − a‖ = 〈v1, x − a〉 + 〈v2, x − b〉
= 〈v1, x̂ − â〉 + 〈v2, x̂ − b̂〉 + 〈v1 + v2, x − x̂〉 + 〈v1, â − a〉 + 〈v2, b̂ − b〉
< ‖x − a‖ − ρα1 + ρα2 + 2λε + λβ
= ‖x − a‖ − ρ

(
α1 − α2 − (2ε + β)(α + 1/

√
ε)
)

< ‖x − a‖ ,

which is a contradiction and hence the proof is complete.

Remark 9 Condition Eq. 58 holding true for all ρ ∈ ]0, δ[ is the negation of condition Eq. 43
holding true for some ρ ∈ ]0, δ[.

The next lemma establishes the key quantitative estimates of this section.

Lemma 2 (quantitative estimates14) Let {A,B} be a pair of closed sets and x̄ ∈ A ∩ B.
Then

itr[A,B](x̄) ≤ itrp[A, B](x̄) ≤ itrc[A, B](x̄). (71)

Proof We first prove itr[A, B](x̄) ≤ itrp[A, B](x̄). Since the inequality becomes trivial
when itrp[A, B](x̄) = 1, we only need to prove the inequality for the case itrp[A, B](x̄) <

1. We take an arbitrary number α satisfying itrp[A, B](x̄) < α < 1 and show that
itr[A, B](x̄) ≤ α. To do this, let us first recall the following representation of itr[A, B](x̄)

[35, Equation (72)]:

itr[A, B](x̄) = lim inf
a→x̄, b→x̄, x→x̄, a∈A\B, b∈B\A

v1∈NA(a)\{0}, v2∈NB(b)\{0}, ‖v1‖+‖v2‖=1
‖x−a‖
‖x−b‖ →1, 〈v1,x−a〉

‖v1‖‖x−a‖ →1, 〈v2,x−b〉
‖v2‖‖x−b‖ →1

‖v1 + v2‖, (72)

with the convention that the infimum over the empty set equals 1. In view of Eq. 72, all we
need is to show that for any (arbitrarily small) number ε > 0, there exists a pair of vectors
(v1, v2) satisfying the constraints under the lim inf in Eq. 72 and ‖v1 + v2‖ < α.

By the definition of itrp[A,B](x̄) and the inequality itrp[A, B](x̄) < α, we have that
for any number ε > 0, there exist points a ∈ (A \ B) ∩ Bε(x̄), b ∈ (B \ A) ∩ Bε(x̄) and

14The first inequality in Eq. 71 holds true in Asplund spaces while the second one holds true in normed linear
spaces.
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x ∈ Bε(x̄) with ‖x − a‖ = ‖x − b‖ and a number δ > 0 such that the inequality Eq. 58
holds true for all ρ ∈ ]0, δ[.

Since A ∩ B is a closed set and a, b /∈ A ∩ B, there is a number γ ∈ ]0, ε[ such that
Bγ (a) ∩ (A ∩ B) = ∅, Bγ (b) ∩ (A ∩ B) = ∅. (73)

Let us take an arbitrary number ε ∈ ]0, 1[ and choose a number ρ > 0 satisfying

ρ < min
{
δ,

γ

α+1/
√

ε
, ε,

ε‖x−a‖
1+α+1/

√
ε

}
. (74)

Define a number ε′ := αρ > 0 and note from Eq. 74 that

ε′ = αρ <
(
α + 1 + 1/

√
ε
)
ρ < ε ‖x − a‖ < ‖x − a‖ = max{‖x − a‖ , ‖x − b‖}. (75)

We are going to apply Proposition 7 to the sets A′ := A ∩ Bλ(a), B ′ := B ∩ Bλ(b),
the points a ∈ A′, b ∈ B ′, x ∈ X and numbers ρ, ε′, λ and τ := λ−2αρ

λ+αρ
. Let us verify

all the conditions of the proposition. First, the inequality Eq. 58 reduces to Eq. 49. It also
implies Eq. 48 since d

(
A′, B ′,Bρ(x)

)
> ‖x − a‖ − αρ > 0 thanks to Eq. 75. It is clear

that ε′ + ρ = (α + 1)ρ <
(
α + 1/

√
ε
)
ρ = λ as ε ∈ ]0, 1[ and τ = λ−2αρ

λ+αρ
<

λ−αρ
λ+αρ

= λ−ε′
λ+ε′ .

We have checked all the conditions of Proposition 7. Therefore, in view of Proposition 7,
there exist points â ∈ A′ ∩ Bλ(a), b̂ ∈ B ′ ∩ Bλ(b), x̂ ∈ Bρ(x) and vectors v1 ∈ NA′(â) and
v2 ∈ NB ′(b̂) satisfying Eq. 50 and

‖v1‖ + ‖v2‖ = 1, ‖v1 + v2‖ < ε′
ρ

= α. (76)

The following observations verify that the vectors (v1, v2) in conjunction with the points
(â, b̂, x̂) fulfill the constraints under the lim inf in Eq. 72.

• By the triangle inequality and ρ < ε due to Eq. 74, it holds that
∥∥x̄ − x̂

∥∥ ≤ ‖x̄ − x‖ + ∥∥x − x̂
∥∥ < ε + ρ ≤ 2ε,

∥
∥x̄ − â

∥
∥ ≤ ‖x̄ − a‖ + ∥

∥a − â
∥
∥ < ε + λ = ε + (

α + 1/
√

ε
)
ρ ≤ (1 + α)ε + √

ε,

‖x̄ − b̂‖ ≤ ‖x̄ − b‖ + ‖b − b̂‖ < ε + λ = ε + (α + 1/
√

ε)ρ ≤ (1 + α)ε + √
ε.

This implies that x̂ → x̄, â → x̄, b̂ → x̄ as ε ↓ 0.
• Since λ < γ by the choice of ρ in Eq. 74, we have â ∈ A ∩Bγ (a) which together with

Eq. 73 implies that â /∈ B. That is â ∈ A \ B. Similarly, we also have b̂ ∈ B \ A.
• It holds v1 �= 0 and v2 �= 0. Indeed, if otherwise, Eq. 76 implies ‖v1 + v2‖ = 1 < α,

which is a contradiction to the inequality α ≤ 1.
• Since â ∈ A′ ∩Bλ(a) = A∩Bλ(a) and b̂ ∈ B ′ ∩Bλ(b) = B ∩Bλ(b) by the definitions

of A′ and B ′, we have
v1 ∈ NA′(â) = NA∩Bλ(a)(â) = NA(â), v2 ∈ NA′(â) = NB∩Bλ(b)(b̂) = NB(b̂).

• By the triangle inequality and
(
α + 1 + 1/

√
ε
)
ρ < ε ‖x − a‖ in view of Eq. 74, it

holds that
∥∥x̂ − â

∥∥ ≤ ‖x − a‖ + ∥∥x̂ − x
∥∥+ ∥∥a − â

∥∥ ≤ ‖x − a‖ + ε′ + λ

= ‖x − a‖ + (
α + 1 + 1/

√
ε
)
ρ < (1 + ε) ‖x − a‖ ,

∥∥x̂ − â
∥∥ ≥ ‖x − a‖ − ∥∥x̂ − x

∥∥− ∥∥a − â
∥∥ ≥ ‖x − a‖ − ε′ − λ

= ‖x − a‖ − (
α + 1 + 1/

√
ε
)
ρ > (1 − ε) ‖x − a‖ .

Hence, we have

(1 − ε) ‖x − a‖ ≤ ∥
∥x̂ − â

∥
∥ ≤ (1 + ε) ‖x − a‖ .
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Using similar estimates, we also have

(1 − ε) ‖x − b‖ ≤ ‖x̂ − b̂‖ ≤ (1 + ε) ‖x − b‖ .
The above estimates together with ‖x − a‖ = ‖x − b‖ �= 0 imply

1 − ε

1 + ε
≤
∥
∥x̂ − â

∥
∥

‖x̂ − b̂‖ ≤ 1 + ε

1 − ε
,

which in turn implies that ‖x̂−â‖
‖x̂−b̂‖ → 1 as ε ↓ 0.

• By Eq. 76, the Cauchy-Schwarz inequality, Eq. 50 and the definition of τ , we have

1 = ‖v1‖ + ‖v2‖ ≥ 〈v1, x̂ − â〉
∥
∥x̂ − â

∥
∥ + 〈v2, x̂ − b̂〉

‖x̂ − b̂‖

≥ 〈v1, x̂ − â〉
max

{∥∥x̂ − â
∥∥ , ‖x̂ − b̂‖

} + 〈v2, x̂ − b̂〉
max

{∥∥x̂ − â
∥∥ , ‖x̂ − b̂‖

}

> τ = λ − 2αρ

λ + αρ
=
(
α + 1/

√
ε
)
ρ − 2αρ

(
α + 1/

√
ε
)
ρ + αρ

= 1/
√

ε − α

1/
√

ε + 2α
,

which tends to 1 as ε ↓ 0. Thus,

〈v1, x̂ − â〉
∥
∥x̂ − â

∥
∥ + 〈v2, x̂ − b̂〉

‖x̂ − b̂‖ → 1 as ε ↓ 0.

Due to the Cauchy-Schwarz inequality and ‖v1‖ + ‖v2‖ = 1, the above convergence
happens if and only if

〈v1, x̂ − â〉
‖v1‖

∥∥x̂ − â
∥∥ → 1 and

〈v2, x̂ − b̂〉
‖v2‖ ‖x̂ − b̂‖ → 1 as ε ↓ 0.

By Eq. 76 and the above observations, letting ε ↓ 0 implies itr[A, B](x̄) ≤ α in view of
Eq. 72.

We now prove itrp[A, B](x̄) ≤ itrc[A, B](x̄). Since the inequality becomes trivial when
itrc[A, B](x̄) = 1, we only need a proof for the case itrc[A, B](x̄) < 1. We take an arbitrary
number α satisfying itrc[A, B](x̄) < α < 1 and prove that itrp[A,B](x̄) ≤ α. From Def-
inition 4, to obtain this inequality, it suffices to show that {A,B} does not satisfy property
(P) at x̄ with α (and any number ε > 0).

Fix a number α1 satisfying itrc[A, B](x̄) < α1 < α. Since 2ε(α + 1/
√

ε) ↓ 0 as ε ↓ 0
and α − α1 > 0, there exists a number ε0 > 0 such that ε ∈ ]0, ε0[ is equivalent to ε > 0
satisfying

2ε
(
α + 1/

√
ε
)

< α − α1. (77)

We claim that for any ε ∈ ]0, ε0[, there exist a ∈ (A \ B) ∩ Bε(x̄), b ∈ (B \ A) ∩ Bε(x̄),
x ∈ Bε(x̄) with ‖x − a‖ = ‖x − b‖ and a number δ > 0 such that Eq. 58 holds true for all
ρ ∈ ]0, δ[.

To prove the above claim, we first recall the following representation of itrc[A, B](x̄)

[32, Equation (15)]:

itrc[A, B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
dist(v1,NA(a))→0, dist(v2,NB(b))→0, ‖v1‖+‖v2‖=1

〈v1,x−a〉=‖v1‖ ‖x−a‖, 〈v2,x−b〉=‖v2‖ ‖x−b‖

‖v1 + v2‖, (78)

with the convention that the infimum over the empty set equals 1.
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In view of Eq. 78 and itrc[A,B](x̄) < α1, there exist a ∈ (A\B)∩Bε(x̄), b ∈ (B \A)∩
Bε(x̄), x ∈ Bε(x̄) with ‖x − a‖ = ‖x − b‖ and v1, v2 ∈ X satisfying

dist(v1, NA(a)) < ε, dist(v2, NB(b)) < ε, ‖v1‖ + ‖v2‖ = 1, ‖v1 + v2‖ < α1, (79)

〈v1, x − a〉 = ‖v1‖ ‖x − a‖ , 〈v2, x − b〉 = ‖v2‖ ‖x − b‖ .
The last inequality in Eq. 79 and Eq. 77 imply ‖v1 + v2‖ + 2ε

(
α + 1/

√
ε
)

< α, which
is Eq. 55.

Thus, the points a, b, x together with the numbers α, ε > 0 and the vectors v1, v2 satisfy
all the assumptions of Proposition 8. In view of this proposition, there exists a number δ > 0
such that Eq. 58 holds true for all ρ ∈ ]0, δ[.

Hence, we have proven the above claim, which in turn implies that {A,B} does not sat-
isfy property (P) at x̄ with the number α. This is because in view of Remark 9, the statement
that Eq. 58 holds true for all ρ ∈ ]0, δ[ is the negation of the statement that there exists
ρ ∈ ]0, δ[ such that Eq. 43 holds true. Then from Definition 4, we have itrp[A,B](x̄) ≤ α.

The proof is complete.

The first estimate in Eq. 71 shows that property (P) is a necessary condition for intrinsic
transversality while the second one shows that it is a sufficient condition for the property
characterized by the inequality itrc[A,B](x̄) > 0. A combination of Lemma 2 and Theorem
1 eliminates the gap between these properties in the Hilbert space setting.

Theorem 2 (equivalences) Let {A,B} be a pair of closed sets and x̄ ∈ A ∩ B. Then the
following statements hold true.

(i) If itrc[A,B](x̄) ≥ 1/
√
2, then

min
{
itr[A, B](x̄), itrw[A, B](x̄), itrp[A, B](x̄), itrc[A, B](x̄)

} ≥ 1/
√
2.

(ii) If itrc[A,B](x̄) < 1/
√
2, then

itr[A, B](x̄) = itrw[A, B](x̄) = itrp[A, B](x̄) = itrc[A, B](x̄).

Proof Item (i) follows from Theorem 1(i) and Eq. 71 while item (ii) follows from Theorem
1(ii) and Eq. 71.

The following observation is obvious in view of Theorem 2.

Remark 10 (answer to Question 4) In Hilbert spaces, intrinsic transversality is equivalent to
property (P). Note that the latter does not involve elements of normal cones. Note also that
in the case itrc[A,B](x̄) > 1/

√
2, the equality of itrp[A, B](x̄) and itr[A, B](x̄) remains

unknown.

4 Intrinsic Transversality in Euclidean Spaces

We first recall definitions of the relative limiting normals which are motivated by the com-
pactness of the unit sphere in finite dimensional spaces as well as the fact that not all normal
vectors are always involved in characterizing transversality-type properties. These notions
were shown to be useful for analyzing intrinsic transversality and its variants. We refer the
reader to [32, page 123] for a more thorough discussion.
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In this section, X is a Euclidean space.

Definition 5 (relative limiting normal) [32, Definition 2] Let A, B be closed sets and
x̄ ∈ A ∩ B.

(i) A pair (v1, v2) ∈ X × X is called a pair of relative limiting normals to {A,B} at x̄ if
there exist sequences (ak) ⊂ A \ B, (bk) ⊂ B \ A, (xk) ⊂ X and (v1k), (v2k) ⊂ X

such that ak → x̄, bk → x̄, xk → x̄, v1k → v1, v2k → v2, and

v1k ∈ NA(ak), v2k ∈ NB(bk) (k = 1, 2, . . .),

‖xk − ak‖
‖xk − bk‖ → 1,

〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖ → 1,

〈v2k, xk − bk〉
‖v2k‖ ‖xk − bk‖ → 1,

with the convention that 0
0 = 1. The set of all pairs of relative limiting normals to

{A,B} at x̄ is denoted by NA,B(x̄).
(ii) A pair (v1, v2) ∈ X × X is called a pair of restricted relative limiting normals to

{A,B} at x̄ if there exist sequences (ak) ⊂ A \ B, (bk) ⊂ B \ A, (xk) ⊂ X and
(v1k), (v2k) ⊂ X such that ‖xk − ak‖ = ‖xk − bk‖ (k = 1, 2, . . .), ak → x̄, bk → x̄,
xk → x̄, v1k → v1, v2k → v2, and

dist(v1k, NA(ak)) → 0, dist(v2k, NB(bk)) → 0,

〈v1k, xk − ak〉=‖v1k‖ ‖xk − ak‖ , 〈v2k, xk − bk〉= ‖v2k‖ ‖xk − bk‖ (k = 1, 2, . . .).

The set of all pairs of restricted relative limiting normals to {A,B} at x̄ is denoted by
N

c

A,B(x̄).

The following statement recalls a basic property of NA,B(x̄) and N
c

A,B(x̄). In particular,
they are cones.15

Proposition 9 [32, Proposition 2(i)] Let A,B be closed sets and x̄ ∈ A ∩ B. The sets
NA,B(x̄) and N

c

A,B(x̄) are closed cones in X × X. Moreover, if (v1, v2) ∈ NA,B(x̄)

(respectively, N
c

A,B(x̄)), then (t1v1, t2v2) ∈ NA,B(x̄) (respectively, N
c

A,B(x̄)) for all
t1, t2 > 0.

The following equalities show the important role of the cones NA,B(x̄) and N
c

A,B(x̄) in
characterizing intrinsic transversality [32, Equations (19)&(20)]:

itr[A,B](x̄) = min
(v1,v2)∈NA,B(x̄)
‖v1‖+‖v2‖=1

‖v1 + v2‖, (80)

itrc[A, B](x̄) = min
(v1,v2)∈Nc

A,B(x̄)

‖v1‖+‖v2‖=1

‖v1 + v2‖, (81)

with the convention that the minimum over the empty set equals 1. Note that the minima in
Eq. 80 and Eq. 81 are attainable thanks to the compactness of the constraint sets under the
minima.

15Here, the empty set is viewed as a cone by convention.
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Remark 11 One can formulate a similar representation for itrw[A, B](x̄) using another cone
N

w

A,B(x̄) of ‘weak’ relative limiting normals satisfying

N
c

A,B(x̄) ⊂ N
w

A,B(x̄) ⊂ NA,B(x̄). (82)

The goals of this section are 1) to establish a geometric counterpart of the analytic con-
dition under which Theorem 1(ii) is valid, see Lemma 3; 2) to deduce new characterizations
of intrinsic transversality in terms of relative limiting normals, see Theorem 3; and 3) to pro-
vide further insight into the quantitative results established in Section 2 when specialized to
the Euclidean space setting, see Theorem 4. As by-products, we address the following ques-
tions raised by Kruger [32] regarding the cone objects appearing in Eq. 82, see Remarks 12
and 13.

Question 5 [32, question 4, page 140] What is the relationship between the two cones
NA,B(x̄) and N

c

A,B(x̄)?

Question 6 [32, question 5, page 140] How can N
w

A,B(x̄) be used in characterizing
intrinsic transversality?

Recall from Theorem 1 that if itrc[A, B](x̄) ≥ 1/
√
2, then the intrinsic transversality

property is satisfied with a quantitative constant at least 1/
√
2. This indicates that the other

case, i.e.,
itrc[A, B](x̄) < 1/

√
2, (83)

is of the main interest in studying the property.
The analysis in this section is tuned to the scenario of Eq. 83. To begin, let us define the

set:
C := {(v1, v2) ∈ X × X | 〈v1, v2〉 < 0}. (84)

Proposition 10 The set C defined above is a cone in X × X. Moreover, if (v1, v2) ∈ C,
then (t1v1, t2v2) ∈ C for all t1, t2 > 0.

Proof The proof is straightforward from the definition of C.

For convenience, we also define the set

S := {(v1, v2) ∈ X × X | ‖v1‖ + ‖v2‖ = 1} ,

and note that N
c

A,B(x̄) ∩ S is the feasible set under the minimization in Eq. 81.
The following result explains the role of C in the analysis of intrinsic transversality in

this paper.

Lemma 3 Let A,B be closed sets and x̄ ∈ A ∩ B. Then

C ∩ N
c

A,B(x̄) ∩ S �= ∅ ⇔ itrc[A, B](x̄) < 1/
√
2.

Proof (⇒) We suppose C ∩ N
c

A,B(x̄) ∩ S �= ∅ and prove that itrc[A, B](x̄) < 1/
√
2. Take

a pair (v1, v2) ∈ C ∩ N
c

A,B(x̄) ∩ S. We note that v1 �= 0 and v2 �= 0 as (v1, v2) ∈ C, and
set v′

1 := v1
2‖v1‖ and v′

2 := v2
2‖v2‖ . It holds (v′

1, v
′
2) ∈ S since ‖v′

1‖ + ‖v′
2‖ = 1/2 + 1/2 = 1.
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Thanks to Propositions 9 and 10, it also holds (v′
1, v

′
2) ∈ C ∩ N

c

A,B(x̄). Then we have in
view of Eq. 81 that

itrc[A, B](x̄)2 = min
(v1,v2)∈N

c
A,B(x̄)∩S

‖v1 + v2‖2 ≤ ‖v′
1 + v′

2‖2 = 1/2 + 2
〈
v′
1, v

′
2

〉
< 1/2,

where the last inequality holds true due to Eq. 84 as (v′
1, v

′
2) ∈ C. Hence itrc[A, B](x̄) <

1/
√
2.

(⇐) We suppose C ∩ N
c

A,B(x̄) ∩ S = ∅ and prove that itrc[A, B](x̄) ≥ 1/
√
2. If

N
c

A,B(x̄) ∩ S = ∅, then Eq. 81 yields itrc[A, B](x̄) = 1 > 1/
√
2. We consider the case

N
c

A,B(x̄) ∩ S �= ∅. Take an arbitrary pair (v1, v2) ∈ N
c

A,B(x̄) ∩ S. Then by the assumption,
it holds (v1, v2) /∈ C, i.e., 〈v1, v2〉 ≥ 0. This implies

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2 + 2 〈v1, v2〉 ≥ ‖v1‖2 + ‖v2‖2 ≥ 1

2
(‖v1‖ + ‖v2‖)2 = 1/2.

We have just proved that

‖v1 + v2‖ ≥ 1/
√
2 for all (v1, v2) ∈ N

c

A,B(x̄) ∩ S.

This together with the equality Eq. 81 implies that itrc[A, B](x̄) ≥ 1/
√
2.

Lemma 3 provides an intuitive geometric counterpart of the quite mysterious ana-
lytic condition Eq. 83. It also gives rise to the following characterizations of intrinsic
transversality.

Theorem 3 (refined characterizations of intrinsic transversality) Let A,B be closed
sets and x̄ ∈ A ∩ B. Then the following statements are equivalent.

(i) {A,B} is intrinsically transversal at x̄.
(ii) There exists a number α ∈ ]0, 1[ such that

‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩ N
c

A,B(x̄) ∩ S. (85)

(iii)
{
v ∈ X | (v, −v) ∈ C ∩ N

c

A,B(x̄)
}

⊂ {0}.

Proof (i) ⇒ (ii). We suppose that {A,B} is intrinsically transversal at x̄. This is equiva-
lent to itrc[A, B](x̄) > 0 in view of Theorem 1. If itrc[A, B](x̄) ≥ 1/

√
2, then by Lemma

3 the intersection C ∩N
c

A,B(x̄)∩S is empty, and hence the conclusion is trivial. We ana-

lyze the case itrc[A, B](x̄) < 1/
√
2. Take any α satisfying 0 < α < itrc[A, B](x̄). Then

in view of Eq. 81 we have that

‖v1 + v2‖ ≥ itrc[A, B](x̄) > α for all (v1, v2) ∈ N
c

A,B(x̄) ∩ S,

which obviously implies Eq. 85.
(ii) ⇒ (iii). Suppose that (iii) is violated, i.e., there exists v �= 0 such that (v,−v) ∈ C ∩

N
c

A,B(x̄). Then the pair (v1, v2) :=
(

v
2‖v‖ , − v

2‖v‖
)

∈ C∩N
c

A,B(x̄)∩S, but ‖v1+v2‖ = 0.

That is, (ii) is violated.
(iii) ⇒ (i). Suppose that (i) is violated, i.e., itrc[A,B](x̄) = 0. By [32, Corollary 3,

(i)⇔(ii)], there exists a pair of vectors (v1, v2) ∈ N
c

A,B(x̄)∩ S satisfying ‖v1 + v2‖ = 0.
The latter conditions trivially imply v1 = −v2 �= 0 and 〈v1, v2〉 < 0. Then the vector
v �= 0 satisfies (v, −v) := (v1, v2) ∈ C ∩ N

c

A,B(x̄). That is, (iii) is violated.
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An implication of Theorem 3 is that only pairs of relative limiting normals in C are rele-
vant for characterizing intrinsic transversality. This observation guides us to the following
concrete relationship between the two cones NA,B(x̄) and N

c

A,B(x̄).

Theorem 4 Let A,B be closed sets and x̄ ∈ A ∩ B. Then

N
c

A,B(x̄) ∩ C = NA,B(x̄) ∩ C. (86)

Proof It is known by [32, Proposition 2(ii)] that N
c

A,B(x̄) ⊂ NA,B(x̄). Thus, it is sufficient
to show that

NA,B(x̄) ∩ C ⊂ N
c

A,B(x̄) ∩ C.

Let us take any (v1, v2) ∈ NA,B(x̄) ∩ C. Then by the definition of NA,B(x̄), there exist
sequences (ak) ⊂ A \ B, (bk) ⊂ B \ A, (xk) ⊂ X and (v1k), (v2k) ⊂ X such that ak → x̄,
bk → x̄, xk → x̄, v1k → v1, v2k → v2 and

v1k ∈ NA(ak), v2k ∈ NB(bk) (k = 1, 2, . . .),

‖xk − ak‖
‖xk − bk‖ → 1,

〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖ → 1,

〈v2k, xk − bk〉
‖v1k‖ ‖xk − bk‖ → 1. (87)

Note that v1 �= 0 and v2 �= 0 as (v1, v2) ∈ C. Then thanks to v1k → v1 and v2k → v2,
we can assume that v1k �= 0 and v2k �= 0 for all k ∈ N. In view of Remark 2, we can also
assume that xk �= ak and xk �= bk for all k ∈ N.

Since (v1, v2) ∈ C, it holds that 〈v1, v2〉 < 0, equivalently,
∥∥
∥∥

v1

‖v1‖ − v2

‖v2‖
∥∥
∥∥ >

√
2. (88)

To complete the proof, it suffices to prove that (v1, v2) ∈ N
c

A,B(x̄). For each k = 1, 2, . . .,
let us define:

mk := ak + bk

2
,

x′
k := xk − 〈bk − ak, xk − mk〉

‖bk − ak‖2 (bk − ak), (89)

v′
1k := ‖v1k‖

‖x′
k − ak‖ (x′

k − ak), v′
2k := ‖v2k‖

‖x′
k − bk‖ (x′

k − bk). (90)

All we need is to verify the following four conditions:

‖x′
k − ak‖ = ‖x′

k − bk‖ (k = 1, 2, . . .), (91)

x′
k → x̄, v′

1k → v1, v′
2k → v2 (k = 1, 2, . . .), (92)

dist
(
v′
1k, NA(ak)

) → 0, dist
(
v′
2k, NB(bk)

) → 0, (93)
〈
v′
1k, x

′
k − ak

〉 = ‖v′
1k‖‖x′

k − ak‖,
〈
v′
2k, x

′
k − bk

〉 = ‖v′
2k‖‖x′

k − bk‖. (94)

Condition Eq. 91. This follows from Eq. 89 since for each k = 1, 2, . . ., we have that

‖x′
k − ak‖2 − ‖x′

k − bk‖2 = ‖xk − ak‖2 − ‖xk − bk‖2 − 2
〈bk − ak, xk − mk〉

‖bk − ak‖2 〈xk − ak, bk − ak〉

+ 2
〈bk − ak, xk − mk〉

‖bk − ak‖2 〈xk − bk, bk − ak〉

= ‖xk − ak‖2 − ‖xk − bk‖2 − 2
〈bk − ak, xk − mk〉

‖bk − ak‖2 〈bk − ak, bk − ak〉
= ‖xk − ak‖2 − ‖xk − bk‖2 − 2 〈bk − ak, xk − mk〉
= ‖xk − ak‖2 − ‖xk − bk‖2 − 〈(xk − ak) − (xk − bk), (xk − ak) + (xk − bk)〉 = 0.
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Condition Eq. 94.We first infer from Eq. 91 and ak �= bk that x′
k �= ak and x′

k �= bk . This
ensures that v′

1k and v′
2k in Eq. 90 are well defined. Then thanks to Eq. 90, we have that

‖v′
1k‖ = ‖v1k‖, ‖v′

2k‖ = ‖v2k‖,
〈
v′
1k, x

′
k − ak

〉 = ‖v1k‖‖x′
k − ak‖ = ‖v′

1k‖‖x′
k − ak‖,

〈
v′
2k, x

′
k − bk

〉 = ‖v2k‖‖x′
k − bk‖ = ‖v′

2k‖‖x′
k − bk‖.

Condition Eq. 93. Since v1k ∈ NA(ak) and v2k ∈ NA(bk) (k = 1, 2, . . .), whenever
condition Eq. 92 has been verified, we have that

dist
(
v′
1k, NA(ak)

) ≤ ∥∥v′
1k − v1k

∥∥ ≤ ∥∥v′
1k − v1

∥∥+ ‖v1k − v1‖ → 0,

dist
(
v′
2k, NB(bk)

) ≤ ∥
∥v′

2k − v2k
∥
∥ ≤ ∥

∥v′
2k − v2

∥
∥+ ‖v2k − v2‖ → 0.

Condition Eq. 92. Since xk → x̄, ak → x̄ and bk → x̄, it holds by Eq. 89 that

∥∥x′
k − xk

∥∥ =
∥
∥∥∥
〈bk − ak, xk − mk〉

‖bk − ak‖2 (bk − ak)

∥
∥∥∥ ≤ ‖xk − mk‖ =

∥
∥∥∥xk − ak + bk

2

∥
∥∥∥ → 0.

Then
∥∥x′

k − x̄
∥∥ ≤ ∥∥x′

k − xk

∥∥+ ‖xk − x̄‖ → 0.

In the remainder of the proof, we show that v′
1k → v1 while the condition v′

2k → v2 is
obtained in a similar manner. Since v1k → v1, all we need is to show that

∥
∥v′

1k − v1k
∥
∥ → 0.

Note that by Eq. 90 it holds

‖v′
1k − v1k‖ =

∥
∥∥∥

‖v1k‖
‖x′

k − ak‖ (x′
k − ak) − v1k

∥
∥∥∥ = ‖v1k‖

∥
∥∥∥

x′
k − ak

‖x′
k − ak‖ − v1k

‖v1k‖
∥
∥∥∥

≤ ‖v1k‖
(∥∥∥
∥

xk − ak

‖xk − ak‖ − v1k

‖v1k‖
∥∥∥
∥+

∥∥∥
∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥∥
∥

)
.

(95)

Note also that due to Eq. 87,

∥∥
∥∥

xk − ak

‖xk − ak‖ − v1k

‖v1k‖
∥∥
∥∥ =

√

2 − 2
〈v1k, xk − ak〉

‖v1k‖ ‖xk − ak‖ → 0. (96)

In view of Eq. 95 and Eq. 96, in order to obtain
∥∥v′

1k − v1k
∥∥ → 0, it suffices to prove that

∥∥
∥∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥
∥∥ → 0.

To proceed, let us take any number ε > 0 which can be arbitrarily small and show the
existence of a natural N ∈ N such that

∥
∥∥∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥
∥∥∥ < ε, ∀k ≥ N . (97)

Choose a number ε′ > 0 and satisfying

2

√
2ε′ − ε′2

4 − 6ε′ + 3ε′2 < ε. (98)

Such a number ε′ exists since ε > 0 and limt↓0 2
√

2t−t2

4−6t+3t2
= 0.
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By the convergence conditions in Eq. 87, there exists a natural number N ∈ N such that
∀k ≥ N ,

1 − ε′ <
‖xk − ak‖
‖xk − bk‖ < 1 + ε′, (99)

〈v1k, xk − ak〉
‖v1k‖ ‖xk − ak‖ > 1 − ε′,

〈v2k, xk − bk〉
‖v1k‖ ‖xk − bk‖ > 1 − ε′. (100)

The estimates in Eq. 100 amount to
∥∥∥
∥

v1k

‖v1k‖ − xk − ak

‖xk − ak‖
∥∥∥
∥ <

√
2ε′,

∥∥∥
∥

v2k

‖v2k‖ − xk − bk

‖xk − bk‖
∥∥∥
∥ <

√
2ε′. (101)

In order to prove Eq. 97, we first note that
〈
xk − x′

k, x
′
k − mk

〉 = 0. (102)

Indeed, by Eq. 89, it holds that

〈
xk − x′

k, x
′
k − mk

〉 = 〈bk − ak, xk − mk〉
‖bk − ak‖2

〈
bk − ak, x

′
k − mk

〉
,

from which Eq. 102 follows since

〈
bk − ak, x

′
k − mk

〉 =
〈
bk − ak, xk − mk − 〈bk − ak, xk − mk〉

‖bk − ak‖2 (bk − ak)

〉

= 〈bk − ak, xk − mk〉 − 〈bk − ak, xk − mk〉
‖bk − ak‖2 〈bk − ak, bk − ak〉 = 0.

Second, we show that ∀k ≥ N ,

‖xk − x′
k‖2 ≤ 2ε′−ε′2

4(1−ε′)2 min
{
‖xk − ak‖2, ‖xk − bk‖2

}
. (103)

If ‖xk − ak‖ ≥ ‖xk − bk‖, then
〈bk − ak, xk − mk〉 ≥ 0. (104)

Note from Eq. 88 and Eq. 101 that
∥∥∥
∥

xk − ak

‖xk − ak‖ − xk − bk

‖xk − bk‖
∥∥∥
∥ ≥

∥
∥∥ v1k‖v1k‖ − v2k‖v2k‖

∥
∥∥−

∥
∥∥ v1k‖v1k‖ − xk−ak‖xk−ak‖

∥
∥∥−

∥
∥∥ v2k‖v2k‖ − xk−bk‖xk−bk‖

∥
∥∥

>
√
2 − 2

√
2ε′.

This, combined with Eq. 99 yields that

〈xk − ak, xk − bk〉 < 4
(√

ε′ − ε′) ‖xk − ak‖‖xk − bk‖
< 4

(√
ε′ − ε′) (1 + ε′)‖xk − bk‖2.

Then

〈bk − ak, xk − bk〉 = 〈bk − xk, xk − bk〉 + 〈xk − ak, xk − bk〉
= − ‖xk − bk‖2 + 〈xk − ak, xk − bk〉
< − ‖xk − bk‖2 + 4

(√
ε′ − ε′) (1 + ε′)‖xk − bk‖2

= −
(
1 − 4

(√
ε′ − ε′) (1 + ε′)

)
‖xk − bk‖2 < 0.

(105)
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From Eq. 89, Eq. 104 and Eq. 105 we have that

‖x′
k − bk‖2 − ‖xk − bk‖2 = ‖x′

k − xk‖2 + 2
〈
x′
k − xk, xk − bk

〉

= ‖x′
k − xk‖2 − 2

〈bk − ak, xk − mk〉
‖bk − ak‖2 〈bk − ak, xk − bk〉

≥ ‖x′
k − xk‖2.

(106)
By Eq. 91 and Eq. 102 we get that

‖xk − ak‖2 + ‖xk − bk‖2 = 2‖xk − x′
k‖2 + ‖x′

k − ak‖2 + ‖x′
k − bk‖2 + 2

〈
xk − x′

k, 2x
′
k − (ak + bk)

〉

= 2‖xk − x′
k‖2 + 2‖x′

k − bk‖2 + 4
〈
xk − x′

k, x
′
k − mk

〉

= 2‖xk − x′
k‖2 + 2‖x′

k − bk‖2.
This together with Eq. 99 and Eq. 106 yields

2‖xk − x′
k‖2 = ‖xk − ak‖2 + ‖xk − bk‖2 − 2‖x′

k − bk‖2
≤ (1 + ε′)2‖xk − bk‖2 + ‖xk − bk‖2 − 2‖x′

k − bk‖2
≤ (1 + ε′)2‖xk − bk‖2 + ‖xk − bk‖2 − 2

(
‖xk − bk‖2 + ‖x′

k − xk‖2
)
.

Hence

4‖xk − x′
k‖2 ≤

(
2ε′ + ε′2) ‖xk − bk‖2 =

(
2ε′ + ε′2)min{‖xk − ak‖2, ‖xk − bk‖2} (107)

since ‖xk − ak‖ ≥ ‖xk − bk‖ in this case.
By a similar argument, if ‖xk − ak‖ ≤ ‖xk − bk‖, then

〈bk − ak, xk − mk〉 ≤ 0, 〈bk − ak, xk − ak〉 ≥ 0.

Thus

‖x′
k − ak‖2 − ‖xk − ak‖2 = ‖x′

k − xk‖2 + 2
〈
x′
k − xk, xk − ak

〉

= ‖x′
k − xk‖2 − 2

〈bk − ak, xk − mk〉
‖bk − ak‖2 〈bk − ak, xk − ak〉

≥ ‖x′
k − xk‖2.

(108)
By Eq. 91 and Eq. 102 we get that

‖xk − ak‖2 + ‖xk − bk‖2 = 2‖xk − x′
k‖2 + 2‖x′

k − ak‖2,
which together with Eq. 99 and Eq. 108 yields that

2‖xk − x′
k‖2 ≤ ‖xk − ak‖2 + 1

(1−ε′)2 ‖xk − ak‖2 − 2
(
‖xk − ak‖2 + ‖x′

k − xk‖2
)
.

Equivalently,

4‖xk − x′
k‖2 ≤ 2ε′−ε′2

(1−ε′)2 ‖xk − ak‖2 = 2ε′−ε′2
(1−ε′)2 min{‖xk − ak‖2, ‖xk − bk‖2} (109)

since ‖xk − ak‖ ≤ ‖xk − bk‖ in this case.
Combining Eq. 107 and Eq. 109 and noting that 2ε′ + ε′2 < 2ε′−ε′2

(1−ε′)2 , we obtain Eq. 103
as claimed.

Third, we show that ∀k ≥ N

‖x′
k − ak‖2 ≥ 4−6ε′+3ε′2

2ε′−ε′2 ‖xk − x′
k‖2. (110)
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Indeed, if ‖xk − ak‖ ≤ ‖xk − bk‖, then the use of Eq. 108 and Eq. 109 yields Eq. 110:

‖x′
k − ak‖2 ≥ ‖xk − ak‖2 + ‖xk − x′

k‖2
≥ 4(1−ε′)2)

2ε′−ε′2 ‖xk − x′
k‖2 + ‖xk − x′

k‖2 = 4−6ε′+3ε′2
2ε′−ε′2 ‖xk − x′

k‖2.
Otherwise, i.e., if ‖xk − ak‖ ≥ ‖xk − bk‖, then the successive use of Eq. 91, Eq. 106 and
Eq. 103 implies that

‖x′
k − ak‖2 = ‖x′

k − bk‖2 ≥ ‖xk − bk‖2 + ‖xk − x′
k‖2

≥ 4
2ε′+ε′2 ‖xk − x′

k‖2 + ‖x′
k − xk‖2 = 4+2ε′+ε′2

2ε′+ε′2 ‖xk − x′
k‖2,

which also yields Eq. 110 since 4+2ε′+ε′2
2ε′+ε′2 > 4−6ε′+3ε′2

2ε′−ε′2 . Hence Eq. 110 has been proved.
Fourth, we show that ∀k ≥ N

∥∥
∥∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥
∥∥ ≤ 2

‖xk − x′
k‖

‖x′
k − ak‖ . (111)

Indeed,
∥∥∥
∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥∥
∥ ≤

∥∥∥
∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖x′
k − ak‖

∥∥∥
∥+

∥∥∥
∥

xk − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥∥
∥

= ‖xk − x′
k‖

‖x′
k − ak‖ +

∣
∣∣∣
‖xk − ak‖
‖x′

k − ak‖ − 1

∣
∣∣∣ .

If ‖xk − ak‖ ≥ ‖x′
k − ak‖, then Eq. 111 holds true since

∣∣
∣∣
‖xk − ak‖
‖x′

k − ak‖ − 1

∣∣
∣∣ = ‖xk − ak‖

‖x′
k − ak‖ − 1 ≤ ‖xk − x′

k‖ + ‖x′
k − ak‖

‖x′
k − ak‖ − 1 = ‖xk − x′

k‖
‖x′

k − ak‖ .

Otherwise, i.e., if ‖xk − ak‖ < ‖x′
k − ak‖, Eq. 111 also holds true since

∣
∣∣∣
‖xk − ak‖
‖x′

k − ak‖ − 1

∣
∣∣∣ = 1 − ‖xk − ak‖

‖x′
k − ak‖ ≤ 1 − ‖x′

k − ak‖ − ‖xk − x′
k‖

‖x′
k − ak‖ = ‖xk − x′

k‖
‖x′

k − ak‖ .

Hence Eq. 111 has been proved.
Finally, a combination of Eq. 110, Eq. 111 and Eq. 98 yields that
∥∥∥
∥

x′
k − ak

‖x′
k − ak‖ − xk − ak

‖xk − ak‖
∥∥∥
∥ ≤ 2

‖xk − x′
k‖

‖x′
k − ak‖ ≤ 2

√
2ε′ − ε′2

4 − 6ε′ + 3ε′2 < ε, ∀k ≥ N,

which is Eq. 97 and hence the proof is complete.

We now have sufficient information for addressing Questions 5 and 6.

Remark 12 (answer to Question 5) In view of Theorem 4, the two cones N
c

A,B(x̄) and
NA,B(x̄) are equal when restricted to the cone C given by Eq. 84. Recall that elements of C

are sufficient for characterizing intrinsic transversality in view of Theorem 3. Their equality
outside of C remains unknown.

Remark 13 (answer to Question 6) The combination of Eq. 82 and Eq. 86 yields that

N
c

A,B(x̄) ∩ C = N
w

A,B(x̄) ∩ C = NA,B(x̄) ∩ C. (112)

In view of Theorem 3, this particularly implies that the three cones have equivalent roles in
characterizing intrinsic transversality.
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Remark 14 Corresponding to itrw[A, B](x̄), the cone N
w

A,B(x̄) would not be essential for
the analysis in this section due to Eq. 82 and Eq. 112. This explains why we chose not to
introduce its definition for the sake of brevity in terms of terminology. It occasionally comes
up in the discussion only for the purpose of addressing Question 6.

Remark 15 Thanks to Eq. 80 and Eq. 81, Theorem 1(ii) in the Euclidean space setting
can be deduced from Theorem 4. However, Theorem 4 can not be deduced from Theorem
1(ii) since in general the equality itr[A,B](x̄) = itrc[A, B](x̄) does not imply N

c

A,B(x̄) ∩
C = NA,B(x̄) ∩ C. Instead, Theorem 4 complements Theorem 1(ii) and further clarifies
the characterizations of intrinsic transversality in terms of relative limiting normals. It is
worth noting that the result of Theorem 4 is also inspired by the importance of the cones
themselves, see [32, page 123].

We conclude this paper with a list of characterizations of intrinsic transversality in the
Euclidean space setting.

Proposition 11 (characterizations of intrinsic transversality in Euclidean spaces) Let
A, B be closed sets and x̄ ∈ A ∩ B. The following conditions are equivalent:

(i) {A,B} is intrinsically transversal at x̄;
(ii) itrc[A,B](x̄) > 0;
(iii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩

N
c

A,B(x̄) ∩ S;

(iv)
{
v ∈ X | (v,−v) ∈ C ∩ N

c

A,B(x̄)
}

⊂ {0};
(v) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈

N
c

A,B(x̄) ∩ S;

(vi)
{
v ∈ X | (v,−v) ∈ N

c

A,B(x̄)
}

⊂ {0};
(vii) itr[A, B](x̄) > 0;
(viii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩

NA,B(x̄) ∩ S;
(ix)

{
v ∈ X | (v,−v) ∈ C ∩ NA,B(x̄)

} ⊂ {0};
(x) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈

NA,B(x̄) ∩ S;
(xi)

{
v ∈ X | (v,−v) ∈ NA,B(x̄)

} ⊂ {0};
(xii) itrw[A, B](x̄) > 0;
(xiii) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈ C ∩

N
w

A,B(x̄) ∩ S;

(xiv)
{
v ∈ X | (v,−v) ∈ C ∩ N

w

A,B(x̄)
}

⊂ {0};
(xv) there exists a number α ∈ ]0, 1[ such that ‖v1 + v2‖ > α for all (v1, v2) ∈

N
w

A,B(x̄) ∩ S;

(xvi)
{
v ∈ X | (v,−v) ∈ N

w

A,B(x̄)
}

⊂ {0};
(xvii) itrp[A,B](x̄) > 0;
(xviii) {A,B} satisfies property (P) at x̄.

If, in addition, the sets are convex, then the following item can be added to the above list:

(xix) {A,B} is subtransversal at x̄.
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Proof (i) ⇔ (ii) follows from Theorem 1. (i) ⇔ (iii) ⇔ (iv) follows from Theorem 3. (i)
⇔ (v) ⇔ (vi) follows from Corollary 3 of [32]. (i) ⇔ (vii) follows from Proposition 3(iii).
(i) ⇔ (viii) ⇔ (ix) follows from Theorem 3 and Theorem 4. (i) ⇔ (x) ⇔ (xi) follows from
Theorem 5 of [32]. (i) ⇔ (xii) ⇔ (xiii) ⇔ (xiv) ⇔ (xv) ⇔ (xvi) are consequences of the
previous equivalences in view of Proposition 4(i) and the inclusions in Eq. 82. (i) ⇔ (xvii)
⇔ (xviii) follows from Theorem 2 and Proposition 5, respectively. (i) ⇔ (xix) in the convex
setting follows from Proposition 3(iv).

Remark 16 The equivalences (i) ⇔ (ii) ⇔ (v) ⇔ (vi) ⇔ (vii) ⇔ (x) ⇔ (xi) can be deduced
from Theorem 3, Corollary 3 and Proposition 4 of [32]. Using Theorems 7 and 8 of the
aforementioned paper, one can straightforwardly add more items to the above list of intrinsic
transversality characterizations.

Acknowledgments NHT would like to thank the Centre for Informatics and Applied Optimization (CIAO)
at Federation University Australia for offering him the opportunity for collaborating with his colleagues there
in November 2018. Without that visit, this paper would not be completed. The authors would like to thank
the two anonymous referees and Professor Alexander Kruger for their careful reading of the manuscript and
constructive comments and valuable suggestions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality, and linear regularity of convex sets. Trans. Amer.
Math. Soc. 357(10), 3831–3863 (2005)

2. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm
for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM
Rev. 38(3), 367–426 (1996)

4. Bauschke, H.H., Borwein, J.M., Li, W.: Strong conical hull intersection property, bounded linear regu-
larity, Jameson’s property (G), and error bounds in convex optimization. Math. Program., Ser. A 86(1),
135–160 (1999)

5. Bauschke, H.H., Borwein, J.M., Tseng, P.: Bounded linear regularity, strong CHIP, and CHIP are distinct
properties. J. Convex Anal. 7(2), 395–412 (2000)

6. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of
alternating projections: theory. Set-Valued Var. Anal. 21(3), 431–473 (2013)

7. Bivas, M., Krastanov, M., Ribarska, N.: On tangential transversality. J. Math. Anal. Appl. 481(1), 123455
(2020)

8. Bui, H.T., Kruger, A.Y.: Extremality, stationarity and generalized separation of collections of sets. J.
Optim Theory Appl (2019)

9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
10. Dolecki, S.: Metrically upper semicontinuous multi]unctions and their intersections. Math. Res. Center,

Madison Wis., Report 2035 (1980)
11. Dolecki, S.: Tangency and differentiation: Some applications of convergence theory. Ann. Mat. Pura

Appl. 130(4), 223–255 (1982)
12. Dontchev, A.L., Rockafellar, R.T. Implicit Functions and Solution Mappings. A View from Variational

Analysis, 2nd edn. Springer, New York (2014)

37

http://creativecommons.org/licenses/by/4.0/


Nguyen Hieu Thao et al.

13. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets.
Found. Comput. Math. 15(6), 1637–1651 (2015)

14. Drusvyatskiy, D., Lewis, A.S.: Inexact alternating projections on nonconvex sets. arXiv:1811.01298,
1–15 (2018)

15. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Inc., Englewood Cliffs (1974)
16. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for

feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013)
17. Hirsch, M.: Differential Topology. Springer, New York (1976)
18. Ioffe, A.D.: Approximate subdifferentials and applications. III. The metric theory. Mathematika 36(1),

1–38 (1989)
19. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Surveys 55, 501–558 (2000)
20. Ioffe, A.D.: Metric regularity – a survey. Part I. Theory. J. Aust. Math. Soc. 101(2), 188–243 (2016)
21. Ioffe, A.D.: Metric regularity – a survey. Part II. Applications. J. Aust. Math. Soc. 101(3), 376–417

(2016)
22. Ioffe, A.D.: Transversality in variational analysis. J. Optim. Theory Appl. 174(2), 343–366 (2017)
23. Ioffe, A.D.: Variational Analysis of Regular Mappings. Theory and Applications. Springer Monographs

in Mathematics Springer (2017)
24. Khanh, P.Q., Kruger, A.Y., Thao, N.H.: On induction theorem and nonlinear regularity models. SIAM J.

Optim. 25(4), 2561–2588 (2015)
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