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ABSTRACT

Surface heat fluxes are vital to hydrological and environmental studies, but mapping them accurately over a

large area remains a problem. In this study, brightness temperature (TB) observations or soil moisture re-

trievals from the NASA Soil Moisture Active Passive (SMAP) mission and land surface temperature (LST)

product from theGeostationaryOperational Environmental Satellite (GOES) are assimilated together into a

coupled water and heat transfer model to improve surface heat flux estimates. A particle filter is used to

assimilate SMAP data, while a particle smoothing method is adopted to assimilate GOES LST time series,

correcting for both systematic biases via parameter updating and for short-term error via state updating. One

experiment assimilates SMAPTB at horizontal polarization andGOESLST, a second experiment assimilates

SMAP TB at vertical polarization and GOES LST, and a third experiment assimilates SMAP soil moisture

retrievals along with GOES LST. The aim is to examine if the assimilation of physically consistent TB and

LST observations could yield improved surface heat flux estimates. It is demonstrated that all three assimi-

lation experiments improved flux estimates compared to a no-assimilation case. Assimilating TB data tends to

produce smaller bias in soil moisture estimates compared to assimilating soil moisture retrievals, but the

estimates are influenced by the respective bias correction approaches. Despite the differences in soil moisture

estimates, the flux estimates from different assimilation experiments are in general very similar.

1. Introduction

Surface heat fluxes, and in particular their spatial pattern

and temporal evolution, are crucial for surface energy

balance (SEB) as well as terrestrial water cycle studies

(McCabe and Wood 2006; Bateni and Entekhabi 2012).

However, in situ measurements are difficult and expen-

sive, and are limited to only a few in situ flux networks

(Baldocchi et al. 2001; Ma and Szilagyi 2019; Xu et al.

2019). In addition, the heterogeneous nature of heat fluxes

further complicates their interpolation and extrapolation

in the spatial domain (Semmens et al. 2016).

Remote sensing techniques have great potential for

monitoring land surface variables continuously over a

large area. Although surface heat fluxes cannot be

observed directly from space, many studies have used

remote sensing products for surface heat flux estimation.

For example, ‘‘triangle methods’’ estimate fluxes by as-

suming a statistical relationship between the fluxes and

observable environmental indicators such as vegetation

indices and land surface temperature (LST) (Minacapilli

et al. 2016; Chirouze et al. 2014; Zhu et al. 2017). Other

studies have mainly focused on using remote sensing data

as input for SEB models (Su 2002; Bastiaanssen et al.

1998a,b; Allen et al. 2007; Kustas et al. 1996; Holmes

et al. 2018; Jiang and Islam 2001; Anderson et al. 2011)

or land surface models (LSMs) (Oleson et al. 2010;

Zheng et al. 2015). These models apply to a wide range

of conditions but require a relatively large suite of input

data (Lu et al. 2017).
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Aside from the direct modeling approaches, some

studies have assimilated in situ or remotely sensed LST

data for flux estimation (Bateni and Entekhabi 2012;

Bateni and Liang 2012; Bateni et al. 2013; Caparrini

et al. 2003, 2004b,a; Xu et al. 2014, 2018) into simple

SEB models. The rationale is that LST time series con-

tain information on energy partitioning over the land

surface. These studies estimate fluxes by determining

two key parameters: a neutral bulk heat transfer coef-

ficient CHN and an evaporative fraction (EF). The CHN

determines the sum of sensible and latent heat fluxes,

while EF represents the partitioning between them. In

these studies, CHN is often assumed constant during

a month, and EF is assumed constant in the daytime

window (0900–1600 LT) on sunny days. Thanks to the

assumptions, these methods only require a limited amount

of input data. Some studies have demonstrated that the

flux estimates can be further improved by constraining

EF using soil wetness information calculated from pre-

cipitation data (Sini et al. 2008), or in situ soil moisture

measurements (Farhadi et al. 2014; Lu et al. 2016) or

remote sensing (Farhadi et al. 2016; Lu et al. 2017; Xu

et al. 2019) soil moisture retrievals.

A potential risk of assimilating remotely sensed soil

moisture retrievals lies in the retrieval algorithm, which

utilizes land surface parameters and background in-

formation including, for example, LST data. These

data are often outputs of other models, which may be

inconsistent with, or even contradictory to the model

simulations in the assimilation system. Furthermore,

the retrieval errors will be correlated to ancillary data,

which in turn may be correlated to the background

information used in data assimilation (De Lannoy and

Reichle 2016b). Therefore, it is natural to consider

assimilation of brightness temperature (TB), which is

the direct measurement of satellite microwave radiom-

eters. It is more difficult to assimilate TB observations

than soil moisture retrievals since TB is indirectly related

to land surface variables. A radiative transfer model

(RTM) needs to be adopted as the observation operator

to translate modeled land surface variables into TB sim-

ulations. Several TB assimilation studies have been con-

ducted, which have usedTBobservations fromAdvanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E) (Tian et al. 2009; Zhao et al. 2016;

Yang et al. 2016) and Soil Moisture Ocean Salinity

(SMOS) (De Lannoy andReichle 2016a,b; Lievens et al.

2016, 2017a), and mainly focused on improving soil

moisture estimates.

Launched in January 2015, the Soil Moisture Active

Passive (SMAP) mission is the latest mission dedicated

to soil moisture monitoring. The microwave radiometer

onboardSMAPprovides global soilmoisturemeasurement

at 36-km scale and 2–3-day revisit time. Validation studies

suggest that SMAP can characterize the soil moisture

temporal evolution accurately (Pan et al. 2016; Colliander

et al. 2017; Cai et al. 2017). Recently, Lu et al. (2017)

demonstrated that surface heat flux estimates can be

improved by the assimilation of SMAP soil moisture re-

trievals and Geostationary Operational Environmental

Satellite (GOES-East) LSTdata into a coupledwater and

heat transfer model, and that incorporating soil moisture

data significantly improves flux estimation thanks to

the positive correlation between EF and soil moisture

(Gentine et al. 2007; Santanello et al. 2011; Farhadi

et al. 2014). However, SMAP TB assimilation studies

are limited to, for example, the operational SMAP

Level-4 data products (Reichle et al. 2017a,b) and a few

studies on soil moisture estimation (Lievens et al. 2017b)

or numerical weather forecasting (Carrera et al. 2019).

No studies so far have focused on surface heat flux

estimation or the differences between assimilating TB

observations and soil moisture retrievals.

The goal of this study is to determine if the assimila-

tion of physically consistent TB and LST data could

yield improved soil moisture and surface turbulent heat

flux estimates. Here SMAP TB observations at either

horizontal or vertical polarization are assimilated to-

gether with GOES LST data, and the experiments are

compared to a third experiment which assimilates GOES

LST data and SMAP soil moisture retrievals following

Lu et al. (2017). The objective is to investigate the in-

formation contained in SMAP TB observations for

surface turbulent heat flux estimation in comparison

with that from SMAP soil moisture retrievals, through

assimilation with GOES LST data, and to provide in-

sight into the differences in using horizontally or verti-

cally polarized TB data.

This paper is structured as follows: section 2 intro-

duces the datasets and model framework, including the

state propagation model and radiative transfer model as

well as the bias correction approach. The model simu-

lation assessment and the estimates for soil moisture and

fluxes are given in section 3. Finally the conclusions are

summarized in section 4.

2. Materials and methods

a. Study area and data

The methodology is applied over an area (35.758–
37.248N, 96.728–98.218W) in the U.S. Southern Great

Plains (SGP). The study area is coveredby 43 4 SMAPTB

cells posted on a 36-km Equal-Area Scalable Earth-2

(EASE-2) grid, or 30 3 30 GOES LST cells at 0.058
resolution. This area is chosen because of the relatively
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dense flux network. The area is flat and mostly covered

by grassland and cropland, with a small fraction of urban

area and water bodies. The dominant soil types are

sandy loam and silt loam, as shown in Fig. 1. In situ flux

measurements are available at four stations from the

Atmospheric RadiationMeasurement (ARM) network.

Sensible (H) and latent (LE) heat flux measurements

are provided every 30min by energy balance Bowen

ratio (EBBR) instruments. In situ soil moisture obser-

vations are available at two stations (Stillwater and

Abrams) from the U.S. Climate Reference Network

(CRN; Bell et al. 2013) and the Soil Climate Analysis

Network (SCAN; Schaefer et al. 2007), respectively. The

data are collected hourly at the depths of 5, 10, 20, 50,

and 100 cm from the surface.

Input data can be categorized into forcing data, ancil-

lary data, and data for assimilation. Precipitation forcing

data are obtained from the 3IMERGHH product

provided by the Global Precipitation Mission (GPM)

(Hou et al. 2014). The data are provided at 30-min time

interval and 0.18 spatial resolution (Huffman et al. 2015).

The atmospheric forcing data, including incoming

shortwaveRY
s and longwave radiationRY

l , wind speedU,

air temperature Ta, and air pressure Pa come from the

North American Land Data Assimilation System proj-

ect phase 2 (NLDAS-2) (Xia et al. 2012). The data are

provided hourly at 0.1258 resolution. Since the forcing

data are coarser than the model grid cell, a ‘‘drop in the

bucket’’ strategy is used to extract forcing data for each

model grid cell (i.e., the forcing data from the single

GPM/NLDAS-2 grid cell closest to, or overlaying, the

model grid cell are used).

The ancillary data used in this study include soil tex-

ture, vegetation, and land cover data. The soil texture

data, including soil sand fraction, soil clay fraction, and

soil bulk density data are provided on a 3-km EASE-2

grid by the National Snow and Ice Data Center (NSIDC)

(Das 2013), which are also used for SMAP soil moisture

FIG. 1. Study area with stations and dominant soil types and land cover for each pixel. The

SMAP grid cells are represented by the thick black lines, and the GOES grid cells are

demonstrated by the thin dashed lines. The border between Kansas to the north and

Oklahoma to the south is plotted in a red line.
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retrieval. This is to make the forward modeling of TB

consistent with SMAP soil moisture retrieval and to

avoid influences fromdifferences in soil texture ancillary

data. Soil hydraulic properties are computed based on

texture informationusing theROSETTAsoftware (Schaap

et al. 2001). The vegetation data, including the normalized

difference vegetation index (NDVI) and the leaf area index

(LAI) data are obtained from the Moderate Resolution

Imaging Spectroradiometer (MODIS) MOD13C1 and

MCD15A2 products, respectively. The NDVI data are

available at 0.058 resolution every 16 days (Huete et al.

1999), while the LAI data are provided every 8 days

at 1-km resolution (Knyazikhin et al. 1999). The land

cover data are from ESAClimate Change Initiative (CCI)

(v1.6.1). All ancillary data are spatially regridded to the

resolution of model grid cells (0.058). Since no daily LAI

or NDVI data are available, the datasets are also line-

arly interpolated between two observation dates to

generate daily values (Abdolghafoorian et al. 2017; Lu

et al. 2017). Previous studies suggest that linear inter-

polation provides reasonable approximation of the daily

value (Houborg et al. 2016). Although the LAI and

NDVI datasets are spatially and temporally gap-free in

this study, it is worth noting that linear interpolation

generally performs poorly in case of long periods with-

out observations (Kandasamy et al. 2013).

The TB data for assimilation are the SMAP Level-1C

(L1C_TB) data acquired by the L-band radiometer at

2–3-day intervals (Entekhabi et al. 2014). The TB observa-

tions are the arithmetic average of the fore- and aft-looking

TBdataobtained fromhttps://reverb.echo.nasa.gov/ andare

only assimilated at 0600 LT (descending node), when the

temperature within one model grid cell is very homoge-

neous, and the vegetation temperature can be assumed the

sameas soil temperature.TheGOESLSTdata are acquired

from the Copernicus Global Land Service (available from

http://land.copernicus.eu/global). The dataset is based

on fusion of multisource infrared sensors and provided

hourly at 0.058 resolution. The datasets are summarized

in Table 1, and all datasets are processed and mapped to

geographic coordinates. The assimilation period covers

two growing seasons, that is, day of year (DOY) 91

through DOY 304 (April–October) for 2015 and 2016,

respectively.

b. Model framework

1) DUAL-SOURCE MODEL

The dual-sourcemodel scheme introduced by Lu et al.

(2017) is used, which is based on surface energy balance.

In the dual-source scheme, the contributions to the en-

ergy fluxes from both soil and vegetation are character-

ized, and their energy balance is constructed separately.

The total H can be derived by

H5 rC
p
U(T

w
2T

a
)C

H
, (1)

where r (kgm23) is air density, Cp (J kg21K21) is spe-

cific heat capacity of air, U (m s21) is wind speed at

a reference height above the canopy, Tw (K) and Ta (K)

are the air temperature within and above the canopy,

and CH (—) is CHN (—) modified for atmospheric

instability.

Following Farhadi et al. (2014), CHN can be estimated

from LAI by

C
HN

5 exp(a1 b3LAI). (2)

Here a and b are two parameters to be estimated. By

assuming an exponential decay of conductance within

the canopy (Caparrini et al. 2004b), the influence ofCHN

for the fluxes over soil and canopy can be evaluated. This

relationship is shown to be valid under a wide range of

LAI values (Abdolghafoorian et al. 2017).

WhenH is calculated, LE can be derived using the EF.

In the dual-source scheme, EF (—) for soil (EFs) and

canopy (EFc) are calculated separately and assumed

constant during the daytime window (0900–1600 LT)

under clear-sky conditions. Hence only one EFs and one

EFc need to be estimated each day, making the appli-

cation easier and more robust (Caparrini et al. 2004a).

This assumption has been tested in many studies (Crago

1996; Crago and Brutsaert 1996; Gentine et al. 2007) and

has been proven effective in surface heat flux estimation.

The state propagation model consists of a coupled

heat transfer module and a water transfer module. The

modeled temperature impacts the magnitude of H and

hence LE, which serves as the sink term in soil moisture

simulation, while the modeled soil moisture influences

surface energy partitioning through EF and further de-

termines the ground heat flux which propagates the heat

transfer process.

TABLE 1. Summary of datasets. The variables are explained in

the text.

Original

resolution

Category Source Dataset Spatial Temporal

Forcing NLDAS-2 RY
s , R

Y
l , U, Ta, Pa 0.1258 1 h

GPM P 0.18 30min

Ancillary NSIDC Soil texture 3 km —

MODIS LAI 1 km 8 days

NDVI 0.058 16 days

ESA CCI Land cover 300m —

Assimilation SMAP TB 36 km 2–3 days

GOES LST 0.058 1 h
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The heat transfer is modeled using the force–

restore model

dT
s

dt
5

2
ffiffiffiffiffiffiffi
pv

p
P
e

G2 2pv(T
s
2T

d
)1 « , (3)

wherePe (Jm
22K21 s21/2) is the effective thermal inertia,

G (Wm22) is ground heat flux, v (s21) is the diurnal

frequency, Ts (K) is soil temperature, Td (K) is deep

ground temperature, and « represents model error. The

Pe term is calculated from soil moisture, bulk density, and

sand fraction (Lu et al. 2009), and Td is estimated with

a semidiurnal filter of surface temperature (Caparrini

et al. 2003).

Thewater transfer ismodeledusing a similar schemeused

in the Simple Biosphere model (SiB) (Sellers et al. 1986),

8>>>>>>>>><
>>>>>>>>>:
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1
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s
D

n

(Q
n21,n

2Q
n
)

, (4)

where n is the number of soil layers, Wk (—) is the soil

wetness of the kth layer, us (m
3m23) is soil moisture at

saturation, I1 (cm s21) is the infiltration into the first

layer from precipitation, Dk (cm) is the thickness of

the kth layer, Qk,k11 (cm s21) is the flow between

the kth and k1 1th layer, rw (g cm23) is water density,

Es (g cm
22 s21) is the water loss from soil evaporation,

Et,k (g cm
22 s21) is the water loss from vegetation tran-

spiration in the kth layer, and Qn (cm s21) is the gravi-

tational drainage from the bottom layer.

In this study a 90-cm soil column is used, which is di-

vided into six layers with thicknesses of 5, 10, 15, 15,

15, and 30 cm, respectively. Themodeled soil moisture is

then used to get a prior estimate of EFs and EFc using

an improved arctangent-form relationship first proposed

by Dirmeyer et al. (2000). A detailed description of the

model implementation can be found in Lu et al. (2017).

2) RADIATIVE TRANSFER MODEL (RTM)

To assimilate SMAP TB observations, the state

propagation model is coupled to a RTM to generate TB

simulations. The RTM used in this study mimics the

RTM used in the SMAP Level-2 retrieval algorithm

(O’Neill et al. 2015). Thismodel is developed by Jackson

(1993) based on the t–vmodel and calculates TB in both

horizontal (TBH) and vertical (TBV) polarization. The

real part of soil dielectric constant «r is first calculated

from soil moisture using a dielectric model. Here the

model proposed by Mironov et al. (2009) is used for

its simplicity over other models (Wang and Schmugge

1980; Dobson et al. 1985). The smooth surface soil

emissivity esoil_s is calculated from the dielectric constant

using the Fresnel equation. For horizontal polarization,

esoil_s is calculated by

e
soil_s

5 12 jcosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«
r
2 sin2h

q
cosh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«
r
2 sin2h

q j2 , (5)

where h is the incidence angle, which is 408 for the

SMAP radiometer.

For vertical polarization, esoil_s is calculated by

e
soil_s

5 12 j«r cosh2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«
r
2 sin2h

q
«
r
cosh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«
r
2 sin2h

q j2 . (6)

The influence of surface roughness (Choudhury et al.

1979) is then included to derive the rough surface soil

emissivity esoil_r by

e
soil_r

5 12
12 e

soil_s

exp(h
r
cos2h)

, (7)

where hr is a parameter dependent on the polarization,

frequency, and surface geometric properties (Entekhabi

et al. 2014).

Further, vegetation influence is included to derive the

land surface emissivity esurf (O’Neill et al. 2015):

e
surf

5 (12v
s
)(12 g)[11 (12 e

soil_r
)g]1 e

soil_r
g . (8)

Herevs (—) is the scattering albedo, andg (—) is the one-

way transmissivity of the canopy,which is estimated from the

vegetation water content (VWC)-based optical depth t:

g5 exp(2t sech)5 exp(2b
y
3VWC3 sech) . (9)

The values for hr, vs, and by are taken from a lookup

table provided in O’Neill et al. (2015), and VWC is
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calculated from the actual NDVI, the annual maximum

NDVI, and a land-cover-dependent stem factor using a

lookup table (O’Neill et al. 2015).

TB of the land surface (TBland) is given based on the

Rayleigh–Jeans approximation by

TB
land

5 e
surf

T
eff
, (10)

where Teff (K) is the effective temperature of the land

surface, which is a measure of the contribution of the

whole soil column to microwave emission (O’Neill et al.

2015). In many studies, Teff is estimated as a weighted

average of the surface (0–5cm) and deeper ground tem-

perature (50–100 cm) (Choudhury et al. 1982; Wigneron

et al. 2001, 2008; Holmes et al. 2006). Here the method

proposed by Wigneron et al. (2008) is adopted, which

includes the influence of soil moisture on the weights. TB

simulations are performed at the model resolution of

0.058 and then aggregated to the SMAP TB grid scale

(36 km) using a simple arithmetic averaging.

Water bodies within a SMAP cell dramatically lower

the TB observations, and need to be accounted for in

the forward modeling. Here TBwater is derived using a

theoretical model proposed by Klein and Swift (1977).

The simulated TB observations (TBsim) are then calcu-

lated as a weighted average of TBland and TBwater:

TB
sim

5 f
water

TB
water

1 (12 f
water

)TB
land

, (11)

where fwater is the water fraction in the model cell.

Since the theoretical modeling of TB of man-made,

impervious, and urban areas is very difficult with the pres-

ent land surface scheme (O’Neill et al. 2015), the urban

fraction within model grid cells is treated in the following

way: 1) If urban area is not the dominant land cover type

of the cell, the cell is considered nonurban and the in-

fluence from urban area is assumed marginal and ig-

nored. 2) Otherwise, the TBsim is not calculated, and the

grid cell is excluded (i.e., masked out) from the spatial

aggregation to the 36-km SMAP TB simulations.

c. Assimilation strategy

Similar to the case in Lu et al. (2017), the SMAP data

(TB or soil moisture) are assimilated with a particle fil-

ter, whereas the GOES LST data are assimilated with a

particle smoother. The main reason for using this hybrid

assimilation strategy is the large difference in spatial and

temporal resolution of the SMAP andGOES data. Since

GOES LST data are much finer than SMAP TB data

both spatially and temporally, the information contained

in the SMAP TB observations will be swamped by the

large number of GOES LST observations if assimilated

simultaneously in one batch. In addition, the SMAP TB

observations are a ‘‘snapshot’’ of the instantaneous land

surface states, and only available every 2–3 days, which

limits their ability to constrain the temporal dynamics or the

model trajectory of soil moisture (Dunne and Entekhabi

2006). A filter is therefore better suited to update the

instantaneous soil moisture state at the satellite overpass

time, and since soil moisture has inherent memory, the

update will propagate naturally in time. Related to the

LST observations, surface energy partitioning affects

not only the magnitude, but to a much larger extent in

the temporal evolution of LST time series. A batch

smoother is thus more appropriate to extract information

from a series of frequently sampled LST observations.

Here the SMAP TB observations are assimilated

using the particle filter (PF) at SMAP descending

overpass time (0600 LT) to update soil moisture. Next,

all availableGOESLST data in the daytime assimilation

window (0900–1600 LT) are assimilated with an adap-

tive particle batch smoother (APBS) at 1600 LT to update

LST as well as four selected parameters: a and b for

estimatingCHN, and two slope parameters (as and ac) to

estimate EFs and EFc. Here the TB assimilation does

not update soil temperature, and the LST assimilation

does not update soil moisture. However, an integrated

soil moisture and temperature update is possible and

may be considered for future research.

1) PARTICLE FILTER

Particle filters originate from Bayesian theory

(Moradkhani et al. 2005). Unlike Kalman filter–based

methods that directly update model states, the PFs

use a likelihood function to calculate and update the

weights of particles (Dong et al. 2015; Moradkhani

et al. 2012; Yan et al. 2015).

The observation is related to the true state by

y
t
5 h(x

t
)1 v

t
, (12)

where yt is the observation at time step t, xt is the state

vector, h represents the observation operator that maps

the state (geophysical) space into observation space, and

vt is the observation error. The state vector here consists

of soil moisture of each layer in the soil column, while

the observation operator consists of the RTM as well as

spatial averaging.

Uniform weights are given to the particles at first.

When assimilation is conducted, the particle weights are

updated by

wi*
t }wi

t21p(ytjxit) , (13)

wi
t 5

wi*
t

�
N

i51

wi*
t

, (14)
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where wi*
t is the unnormalized weight of the ith particle

from importance sampling,wi
t stands for the weight after

normalization, N is particle size, and p(ytjxit) is the

likelihood function, which is given by (Dong et al. 2015)

p(y
t
jxit)} exp 20:5(y

t
2 ŷit)

T
R21(y

t
2 ŷit)

h i
. (15)

Here ŷit is the simulated observation, and R is the

observation error covariance (scalar variance in this

case). The SMAP TB filtering uses one coarse obser-

vation to update all 0.058 state variables in the footprint.

2) TB ASSIMILATION

At SMAP descending overpass time (0600 LT),

SMAP TB observations are assimilated using the PF if

available. Since the model grid cells have a finer reso-

lution, an averaging operator is adopted to convert the

RTM-derived TB at 0.058 model grid cell to the simu-

lated TB at 36-km scale. For that purpose, first all non-

urban model grid cells in one SMAP TB grid cell are

identified. Second, for each nonurbanmodel grid cell the

particles are sorted by their simulated TB, which serves

as the basis for updating particles in the assimilation

procedure. This is to ensure that spatial patterns simu-

lated by the model are retained in the updated states.

Here it is assumed that the first particle yields the

highest TB, while the last particle has the lowest TB.

Finally, for all nonurban model grid cells the particles

are grouped by their respective ranking (i.e., the first

group contains all the first ranked particles from each of

the model grid cells). The simulated TB observation for

each group is then estimated as the algebraic average of

all members:

ŷit 5

�
M

j51

TBi
j,t

M
. (16)

Here M stands for the total number of nonurban

model grid cells within one SMAP grid cell, TBi
j,t is the

TB simulation of the ith particle in jth model grid cell at

time step t. Here ŷit is derived at the 36-km SMAP TB

scale. During assimilation, the likelihood of each particle

group is calculated using Eq. (15). Soil moisture of the

entire soil column is then updated based on the likelihood

to maintain water balance and the consistency between

layers within one particle.

TB observation error consists of instrument error and

representativeness error. The instrument error for SMAP

radiometer is anticipated to be around 1.3K at 36-km

scale (Reichle et al. 2012; Das et al. 2016). The repre-

sentativeness error is composed of RTM errors resulted

from imperfect model structure, suboptimal parameters

or ancillary data (e.g., vegetation, soil), and the spatial

and temporal mismatch error between TB observations

and model simulations. The representativeness error for

SMAP TB data is assumed similar to that of SMOS TB

data, since both missions operate in L-band and provide

TB observations at similar spatial scales. The represen-

tativeness error depends on soil moisture and LST and

should ideally be modeled online in the assimilation

system. Here a constant representativeness error of

4.5 K is adopted following De Lannoy and Reichle

(2016a) for simplicity. The observation error is then

assumed to be 5K (5’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:32 1 4:52

p
) for both horizontal

and vertical polarizations and spatially and temporally

uncorrelated.

3) ADAPTIVE PARTICLE BATCH

SMOOTHER (APBS)

The particle batch smoother (PBS) was first developed

by Dong et al. (2015) and by Margulis et al. (2015) in-

dependently, which was further improved by Dong et al.

(2016b) into the APBS. The main difference between a

filter and a batch smoother is that the filter assimilates

observations sequentially, while the batch smoother

assimilates all available observations within a window

in a batch. The limitation of the PBS is the requirement

to calibrate a tuning factor to avoid particle degeneracy,

which is improved in the APBS with an adaptive cali-

bration strategy.

In the APBS, the likelihood function is given by

p(y
t2L11:t

jxit2L11:t)} P
t

j5t2L11

exp½20:5b2(y
j
2 ŷij)

T

3R21(y
j
2 ŷij)�. (17)

Here L is the length of the assimilation window, R is

the error covariance matrix of observations, and b is a

tuning factor to avoid particle degeneracy (Dong et al.

2016a). The tuning factor b varies between 0 and 1 and

is determined by maximizing the reliability of state

estimates.

4) LST ASSIMILATION

GOES LST observations are related to the modeled

soil temperature Ts and vegetation temperature Tc fol-

lowing Kustas et al. (1996):

LST5 [f
c
T4
c 1 (12 f

c
)T4

s ]
1/4

. (18)

Here fc is the vegetation cover fraction calculated

from LAI. The temporal autocorrelations among LST

observation errors are not addressed for simplicity. The

LST data assimilation is conducted if at least four ob-

servations (out of a maximum of eight in the window)

are available in the daytime assimilation window, and a
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3-K observation error is assumed (Lu et al. 2017). During

assimilation, the state vector is augmented as follows

X5 LST
t1
LST

t2
� � � LST

tm
a ba

s
a
c

h i
, (19)

where t1, t2, . . . , tm are the time steps within the daytime

window when GOES LST observations are available

at a certain model grid cell; a and b are the parameters

for CHN estimation; and as and ac are the slope factors

for EFs and EFc estimation.

d. Bias correction

An assumption for most data assimilation systems is

unbiased observations and forecasts. However, the re-

mote sensing observations and the model simulations

often reveal different climatologies, in terms of long-

term mean or variability (Reichle and Koster 2004;

Reichle et al. 2004). Thismay be caused by the limitations

of the model (e.g., imperfect structure, simplifications,

suboptimal parameters) (De Lannoy et al. 2007) or non-

uniform representation of land surface variables of the

remote sensing system [e.g., shallower (,5cm) observed

depth of soil moisture] (Sahoo et al. 2013), among others.

The difference in climatology can be even more dramatic

for TB observations (Kornelsen et al. 2015). A common

practice is to correct for the bias prior to data assimila-

tion. Generally, bias correction methods focus on cor-

rection of the first-order moment (the long-term mean)

(Sahoo et al. 2013; De Lannoy and Reichle 2016b,a), the

first twomoments (mean and standard deviation) (Crow

et al. 2005; Kumar et al. 2012), or higher moments [the

distribution, often through cumulative distribution func-

tion (CDF) matching] (Reichle and Koster 2004; Lievens

et al. 2016). More sophisticated methods have also

been proposed (Yilmaz and Crow 2013; Kornelsen and

Coulibaly 2015; Su and Ryu 2015). There is not a simple

‘‘optimal’’ bias correction method for a large range of

applications, and the appropriate bias correction scheme

is application dependent.

A seasonal bias correction approach is used here to

correct for the bias in TB observations. Lu et al. (2017)

used CDFmatching to correct for the bias in SMAP soil

moisture since the bias in soil moisture is stationary and

less season dependent. In contrast, despite the dependence

on soil moisture, the magnitude of TB is also strongly

influenced by Teff and vegetation patterns. The bias in TB

hence varies with season, since both Teff and vegetation

have a strong seasonal cycle. Therefore the seasonally

varying difference between SMAP TB observations and

ensemble mean TB simulations is corrected.

Here bias correction is not performed for LST data.

First, LST data retrieved from the GOES mission have

proved accurate without significant bias compared with

ground measurements (Sun and Pinker 2003; Pinker

et al. 2009). Second, the particle smoother will reduce

the difference between model simulated LST and GOES

observations by adjusting the parameter values to make

model simulations match observation climatology. The

impact on estimated surface heat fluxes is expected to

be small as long as the parameter ranges are within a

physically reasonable range (Lu et al. 2017). Note that

earlier LST assimilation studies using a Kalman filter

for state updating only (no parameter updating) were

in need of bias estimation (Reichle et al. 2010; Draper

et al. 2015).

The bias correction steps are conducted for TBH

and TBV separately. Since SMAP TB observations are

coarser than model simulations, the simulated TB is

derived by averaging all nonurban modeled TB from

model grid cells that fall into each SMAP cell. To this

end, we first calculate the ensemble mean of modeled

TB for each nonurban model grid cell at each SMAP

descending overpass time. Then a 30-day moving

window is used, which averages the time series of

SMAP TB observations as well as simulated TB

forecasts for each SMAP grid cell separately. Finally,

the differences between window-mean SMAP TB ob-

servations and model simulations are removed from

SMAPminus simulated TB innovations, and only short-

term differences between observations and forecasts are

assimilated.

e. Experiment setup

At 0000 on the first day of model simulation, the soil

profile is assumed uniform and initialized randomly

within the physically valid range defined by the satu-

rated and residual soil moisture. The land surface tem-

perature is initialized using GOES observations within a

5-K range. For each experiment, 600 particles are used,

and the states are modeled at 0.058 resolution every

30min. The perturbations used are summarized in

Table 2. The perturbations have been used in Lu et al.

(2017) and proved reasonable.

The initial parameter ranges are given to a (27, a,25)

and b (0 , b , 1) based on Abdolghafoorian et al.

(2017). An initial range of (1, 10) is used for as and ac

TABLE 2. Perturbations for the forcing data, where 3 and 1 rep-

resent multiplicative and additive perturbations, respectively.

Forcing Perturbation Standard deviation

RY
s Gaussian, 3 3, 0.1

RY
l Gaussian, 3 3, 0.1

U Gaussian, 1 1m s21

Ta Gaussian, 1 5K

P Lognormal, 3 3, 0.2
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based on the values reported by Dirmeyer et al.

(2000). These ranges have proved reasonable in Lu

et al. (2017).

During the daytime window,Ts andTc are propagated

to calculate H. LE is then estimated using EFs and EFc.

The term G is calculated as the residual of the surface

energy balance. Outside the daytime window, G is es-

timated as a fraction of the net radiation to propagate

temperatures, since EF can no longer be assumed con-

stant. More details can be found in Lu et al. (2016).

The flux estimation similarities between different as-

similation strategies are assessed over the study area

using the Kling–Gupta efficiency (KGE; Gupta et al.

2009). The KGE is expressed as

KGE5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r2 1)2 1

�
s
ts1

s
ts2

2 1

�2

1

�
m
ts1

m
ts2

2 1

�2
s

,

(20)

where r is the correlation coefficient between two sur-

face heat flux time series, sts1 and sts2 are the standard

deviation of the two time series, while mts1 and mts2

are the corresponding mean values. KGE ranges

from minus infinity (poor agreement) to unity (perfect

agreement).

3. Results and discussion

a. Open-loop simulations

Figure 2 compares the spatiotemporal correlations

between the 36-km TB and surface soil moisture (0–5cm,

hereafter SSM) for SMAP products and open-loop

(no assimilation case, hereafter OL) simulations in the

whole study period (2015 and 2016 combined). Since the

Level-3 SMAP soil moisture product is retrieved from

vertically polarized TB observations using the single

channel algorithm (SCA) algorithm (O’Neill et al. 2015),

only TBV is included in the SMAP analysis. The corre-

lations between TB and SSM are generally very high,

indicating a strong control of SSM on TB. For vertical

polarization, SMAP TBV observations are slightly higher

than OL modeled TBV and have a larger dynamic range.

This may be caused by the difference between the SMAP

sensing depth and model settings. Studies have shown

that SMAPmaymeasure shallower soilmoisture than the

nominal 5-cm depth (Shellito et al. 2016). The correlation

between TBV and SSM is lower for OL simulations than

for SMAP data. This is mainly caused by differences in

the ancillary datasets used for the operational retrieval

and the forward simulation. Results from 2015 and 2016

show similar patterns, while the correlations for the 2016

study period are generally lower for both the SMAP

data (R2
V 5 0.85) and the model simulations (R2

V 5 0.73,

R2
H 5 0.78) compared to the 2015 study period (R2

V 5 0.91

for SMAP data, R2
V 5 0.81, R2

H 5 0.80 for model simula-

tions). This relates to the drier condition in 2016, when the

mean total precipitation during the study period (723mm)

is over 100mm less than in 2015 (829mm). The soil emis-

sivity becomes more variant for dry soil than for wet soil

(Njoku and Entekhabi 1996), which decreases the cor-

relation between SSM and TB.

The statistical metrics measuring the temporal agree-

ment between SMAP observations and OL simulations

are provided in Fig. 3 for both TBH and TBV (top row).

The boxplots show the distribution of the statistics

calculated for the 16 SMAP grid cells. OL simulated

TBV is better correlated with SMAP observations than

FIG. 2. Correlations between TB and surface soil moisture (SSM) from (a) SMAP (L1C_TB and Level-3 SSM)

and (b) OL simulations in the study period. The data pairs are extracted from all descending overpass time in the

study period in all the 16 SMAP TB grid cells.
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TBH. In terms of unbiased RMSD (ubRMSD) and the

bias, TBV significantly outperforms TBH. Over half of

the SMAP grid cells have ubRMSD over 15K for TBH,

while the ubRMSD is smaller than 15K for all cells for

TBV. The bias is less than 210K for TBV for most grid

cells, while over half of the grid cells have bias larger

than 210K for TBH. Overall, the OL simulated TB is in

better agreement with SMAP observations for vertical

polarization than for horizontal polarization, which is a

logical consequence of the fact that TBV is bounded by

surface soil temperature and less variable than TBH.

The spatial patterns of the statistical metrics are also

shown in Fig. 3 (middle and bottom rows). Generally,

the statistical metrics show similar spatial patterns for

TBH and TBV, where the OL simulations agree better

with SMAP observations in the southeast part of the study

area. The spatial patterns may be caused by the vegetation

density. In the study area, a positive gradient of vegeta-

tion density is seen from the northwest to the southeast

(Lu et al. 2017). With more vegetation, the impact of soil

moisture is reduced, which makes TB easier to model.

The magnitude and spatial distribution of the statistical

metrics for study periods in both years are very similar.

The time series of the differences between OL simula-

tions and SMAP observations for TBH and TBV in the

2015 study period is plotted in Fig. 4, and the areal mean

SSM from OL simulations and SMAP Level-3 soil mois-

ture product are also plotted for reference. The difference

between OL simulated and SMAP observed TB is much

smaller for TBV than for TBH because TB is less sensitive

to soil moisture in vertical polarization than in horizontal

polarization. The temporal evolution of the differences

shows similar trends for both TBH and TBV, closely

following the wetting and drying trends of the SSM.

FIG. 3. Statistical metrics between SMAPobservations andOL simulations for TBH and TBV and their spatial patterns in the study period:

(top) boxplots for the metrics, (middle) spatial pattern of the metrics for TBH, and (bottom) spatial pattern of the metrics for TBV.
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In general, the differences are smaller when the SSM is

higher, and get larger when the soil dries down. After

rainfall events, the soil moisture profile near the surface

becomes very uniform, and the soil emissivity becomes less

sensitive to soil moisture (Njoku and Entekhabi 1996).

As a result, the uncertainty of TB is very small, despite the

relatively shallow sensing depth for L-band radiometer for

wet soil (Shellito et al. 2016). Whereas the soil moisture

profile gets less uniform with the soil drying down, and the

deeper soil moisture influences the soil emissivity for drier

soil (Njoku and Entekhabi 1996). Under this condition, a

small difference in the sensing depth could lead to a sig-

nificant difference in TB between SMAP observations and

model simulations. In addition, the modeled SSMmay dry

down faster or slower than the true SSM, exerting different

influences under wet or dry conditions. This implies that

the difference between OL simulated TB and SMAP ob-

served TB is to some extent related to the soil moisture

condition or soil hydraulic properties. Correcting TB bias

online as a function of soil moisture therefore could po-

tentially improve TB assimilation schemes. The plots for

the 2016 study period show the same patterns (not shown).

b. Soil moisture estimation

Figure 5 provides the comparison of SSM estimates in

the 2015 study period fromOL and three joint assimilation

cases at the two 0.058 grid cells that contain soil moisture

stations, and the statistical assessments for both years are

summarized in Table 3. The assimilation cases include

(i) assimilation of GOES LST and SMAP TBH (hereafter

DATH), (ii) assimilation of GOES LST and SMAP TBV

(hereafter DATV), and (iii) assimilation of GOES LST and

SMAP Level-3 soil moisture retrievals (hereafter DATu)

following Lu et al. (2017). In general, the time series of OL

closely follows the dynamics of in situ observations at both

stations, indicating a goodmodel performance.Assimilating

TB observations instead of soil moisture retrievals reduces

the estimation bias, particularly in 2016. This may relate

to the drier condition in 2016, where surface emissivity is

more sensitive to the soil moisture state. At Abrams,

DATV has the best performance based on all the metrics in

both years, while DATH andDATu aremostly comparable.

At Stillwater, the estimates are significantly influenced by

the erroneous soil hydraulic properties used in the model-

ing as well as the disagreement in GPM data with in situ

precipitation measurements (Lu et al. 2017). Despite the

influence, DATV shows slight improvement over DATu.

The performance of data assimilation in the 2015 study

period is also assessed for the second layer (5–15 cm) and

root-zone soil moisture (hereafter RZSM) in Fig. 6.

To bridge the difference in the soil column thickness

(90 cm for the model and 100 cm for the measurements),

weighted averaging and linear interpolation are con-

ducted respectively for the model simulations and in situ

measurements before deriving theRZSM. Similar to the

results for SSM, assimilating TB instead of soil moisture

FIG. 4. Boxplot time series of the differences betweenOL simulations and SMAP observations for TBH and TBV

in the 16 SMAP grid cells in the 2015 study period. The areal mean soil moisture time series from OL simulations

and SMAP is also plotted.
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generally yields smaller bias, particularly in 2016 which is

drier and in the second layer which is more closely cor-

related to SSM. Note that DATu overall produces higher

correlations with in situ data than DATH and DATV,

which may be attributed to the more direct relationship

with soil moisture states. Large bias exists between model

simulations and in situ measurements for RZSM in both

years, as is also demonstrated in Lu et al. (2019). This is

mainly caused by the initialization error resulted from the

poor prior knowledge of the soil moisture profile. Since the

initial soil moisture is assumed uniform along the column,

the soil moisture analysis in the deeper layers will be lower

than the truth after SMAPassimilation, because it takes time

for the deeper layer soil moisture to reach its climatological

values (Lu et al. 2019). Furthermore, in situ measurements

suggest that the soil from the deepest layer is almost always

saturated, which also contributes to the large bias.

Overall, the difference in soil moisture estimates from

assimilating SMAP soil moisture retrievals or TB obser-

vations is not pronounced. This may be mainly explained

by the consistent Teff data as well as RTM parameters

used in the SMAP retrieval system and the model sim-

ulations in this study. The simulated Teff in this study is

generally lower than that used for SMAP soil moisture

retrieval, with a mean gap of 23K for 2015 and 210K

for 2016 for both DATH and DATV. The gap is small

compared to the magnitude of Teff (280–310K), and its

influence on TB is mitigated by the land surface emissivity

(,1). In addition, theRTMparameters used are consistent

with each other, which also contributes to the small dif-

ference in TB estimates.More importantly, since the gap is

consistently negative, themean bias correction adopted for

TB could effectively reduce the gap. It should be noted

that as a result of the relatively short record of the SMAP

data, only short-term bias can be corrected for, which re-

duces the information contained in the SMAP observa-

tions. LST states after updates are not evaluated due to

lack of in situ data, but are expected to have smaller bias

and phase error thanks to the relatively frequent (hourly)

information input from GOES (Lu et al. 2017).

c. Flux estimation

The 30-min H and LE estimates in the whole study

period are assessed against in situ measurements at the

four flux stations in Fig. 7, and the statistical metrics are

also summarized in Table 5. The OL estimates feature

relatively large bias, since the soil wetness and thermal

states are not updated, which has an impact on net radi-

ation estimation. All three assimilation strategies show

improvement over OL simulations, particularly for LE

FIG. 5. (a),(b) Time series of OL and assimilation results for SSM, together with in situ measurements at two

stations in the 2015 study period. The residual and saturated soil moisture used in the modeling are plotted with the

thick and thin dashed lines, respectively. The statistical results are shown in Table 3.
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estimates, which relates to a better characterization of

soil moisture dynamics. Flux estimates from the three

assimilation strategies are in general very similar, since

the differences in soil moisture estimates are not pro-

nounced. As soil moisture influences surface energy fluxes

by constraining energy partitioning through an arctangent-

form relationship, the influence is expected to be large for

dry soil and small for wet soil. As demonstrated in Figs. 5

and 6, the larger soil moisture differences are mostly seen

when the soil wetness is medium or high, where the EF

estimates approach the plateau.While the differencewhen

the soil is dry is limited by the residual soil moisture

threshold.As a result, the small differences in soilmoisture

do not lead to large differences in EF estimates, which is

further reduced by the60.2 uncertainty range given to the

referenceEF.DATV slightly outperformsDATH, indicated

by the smaller RMSD and higher correlation, but the dif-

ference is not significant, and even less visible for the 2016

study period. The scatterplots of 30-min flux estimates

are also provided in the online supplemental material.

The H and LE estimates at daytime (0900–1600 LT)

scale yield similar results (not shown).

Figure 8 shows the KGE between 30-min flux esti-

mates from each pair of assimilation strategies in the

whole study period to check the consistency between

strategies. Overall, the three assimilation strategies yield

very similar flux estimates across the study area for both

H and LE. This is expected since the soil moisture esti-

mates from assimilating different datasets are very con-

sistent and in line with each other. It is demonstrated that

theKGE betweenDATH orDATV andDATu is generally

above 0.8 for 30-minH, while the KGE for 30-min LE is

above 0.9 for most of the area, indicating a very good

agreement between different assimilation strategies.

TheKGE forH is lower than that for LE sinceH is more

susceptible to small variations in environmental factors

(e.g., wind speed). The KGE for 2016 is generally higher

than for 2015 for bothH and LE estimates since the LST

time series contains more information on surface energy

partitioning for drier soil. As a result, the surface energy

fluxes are more tightly constrained by LST dynamics,

which essentially reduces the estimation uncertainty.

Similar results are obtained for results at daytime scale

(not shown).

d. Comparison with univariate assimilation cases

To evaluate the marginal benefit of assimilating data

from either thermal (LST) or passive microwave (soil

TABLE 3. Statistical assessment of soil moisture estimates at different depths against in situ measurements for OL, DATu, DATH, and

DATV (unit of ubRMSD, RMSD, and bias is m3m23). The best performance in each category is shown in bold.

Abrams Stillwater

ubRMSD RMSD Bias R ubRMSD RMSD Bias R

2015

SSM OL 0.043 0.044 20.009 0.73 0.064 0.107 20.085 0.82

DATu 0.040 0.041 20.004 0.75 0.063 0.097 20.074 0.84

DATH 0.039 0.039 20.002 0.77 0.063 0.097 20.074 0.83

DATV 0.037 0.037 0.002 0.78 0.061 0.095 20.073 0.84

Second layer OL 0.044 0.046 20.014 0.65 0.054 0.134 20.122 0.80

DATu 0.038 0.041 20.014 0.73 0.054 0.127 20.115 0.81

DATH 0.039 0.041 20.013 0.73 0.055 0.127 20.115 0.79

DATV 0.038 0.039 20.009 0.72 0.053 0.125 20.113 0.81

RZSM OL 0.030 0.132 20.128 0.63 0.040 0.206 20.202 0.60

DATu 0.036 0.133 20.128 0.59 0.040 0.193 20.188 0.62

DATH 0.037 0.134 20.128 0.56 0.042 0.191 20.187 0.61

DATV 0.031 0.129 20.125 0.62 0.040 0.190 20.186 0.64

2016

SSM OL 0.042 0.048 20.023 0.66 0.063 0.093 20.068 0.68

DATu 0.042 0.045 20.016 0.65 0.056 0.084 20.063 0.76

DATH 0.043 0.046 20.017 0.64 0.060 0.077 20.049 0.72

DATV 0.040 0.041 20.011 0.68 0.061 0.080 20.051 0.70

Second layer OL 0.034 0.035 0.007 0.62 0.054 0.123 20.110 0.67

DATu 0.034 0.035 0.009 0.65 0.049 0.117 20.106 0.76
DATH 0.038 0.038 0.006 0.57 0.050 0.104 20.091 0.72

DATV 0.034 0.037 0.014 0.64 0.053 0.108 20.094 0.69

RZSM OL 0.033 0.131 20.127 0.31 0.041 0.203 20.199 0.71

DATu 0.031 0.120 20.116 0.50 0.039 0.188 20.184 0.79
DATH 0.035 0.129 20.124 0.31 0.053 0.173 20.165 0.30

DATV 0.033 0.115 0.110 0.37 0.052 0.176 20.168 0.28
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moisture or TB) remote sensing, the soil moisture and

flux estimates are further compared to those from four

univariate assimilation cases: (i) LST-only assimi-

lation (DAT), (ii) soil moisture–only assimilation (DAu),

(iii) TBH-only assimilation (DAH), and (iv) TBV-only

assimilation (DAV). The soil moisture estimates at

different depths from univariate assimilation cases

are shown in Table 4. The univariate assimilation

FIG. 6. As in Fig. 5, but for the (a),(b) second layer (5–15 cm) and (c),(d) root-zone soil moisture.
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cases generally lead to improved soil moisture estimates

compared to the OL simulations, shown by either the

reduced ubRMSD or the higher correlation with in situ

measurements. DAT tends to yield larger estimation bias,

whichmay be caused by the indirect relationship between

temperature and soil moisture. DAu, DAH, and DAV

produce very similar soil moisture estimates, which is

consistent with the joint assimilation cases. Comparing the

univariate assimilation cases with the multivariate data

assimilation cases (summarized inTable 3), DATu, DATH,

and DATV yield soil moisture estimates with smaller

ubRMSD than the corresponding univariate assimila-

tion cases (DAu, DAH, and DAV), and the reduction in

the bias is also evident and introduced by the parameter

updating. When LST data are jointly assimilated, the sur-

face energy partitioning is more tightly constrained, which

is expected to benefit soil moisture estimates. Overall, the

multivariate assimilation cases yield better soil moisture

estimates than the univariate assimilation cases.

The statistical assessment of 30-min flux estimates

from the univariate assimilation cases is summarized in

Table 5. Flux estimates from DAu, DAH, and DAV are

very similar as a result of the comparable soil moisture

estimates. DAT yields a small H estimation bias thanks

to the LST and key parameter updates. Likewise, when

only soil moisture information is assimilated (DAu, DAH,

and DAV), the flux estimation bias may be large since

only soil moisture states can be updated (Lu et al. 2017).

The multivariate assimilation cases yield flux estimates

with smaller RMSD and higher correlation with in situ

measurements than the univariate assimilation cases,

particularly in LE estimates. It is worth noting that flux

estimates from DAT can be worse than those from OL

(e.g., H estimates at E34 station). This may relate to a

poor characterization of soil moisture dynamics (Lu et al.

2017), which highlights the importance of assimilating

soil moisture information. Overall, joint assimilation

of LST and soil moisture information outperforms uni-

variate assimilation strategies in flux estimation.

4. Conclusions

In this study, SMAP brightness temperature (TB)

data or soil moisture retrievals are assimilated into a

FIG. 7. Assessment of 30-minH and LE estimates from OL, DATu, DATH, and DATV at four flux stations in the study period. The black

arrows indicate the directions of better estimates in each plot.
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coupled water and heat transfer model with GOES

land surface temperature (LST) retrievals to improve

soil moisture and surface turbulent heat flux esti-

mates. The methodology aims to estimate two key

parameters: a neutral bulk heat transfer coefficient

CHN and a daytime-constant evaporative fraction (EF).

This study is based on a previous research but is aug-

mented by the coupling with a radiative transfer model

(RTM) to enable direct TB assimilation. The method-

ology is tested in an area in the U.S. Southern Great

Plains for two growing seasons (April–October) in

2015 and 2016. Either TB at horizontal (TBH) or vertical

(TBV) polarization is assimilated along with GOES LST

data, and the estimates are compared to in situ ob-

servations and an experiment that assimilates SMAP

Level-3 soil moisture retrievals instead following Lu

et al. (2017).

The agreement between the modeled and SMAP

observed TB is higher for TBV than for TBH. Analysis

of the TB time series of the differences between OL

simulations and SMAP observations suggests that the

difference between simulation and observation is to

some extent related to the soil moisture condition.

All three assimilation strategies improve surface

soil moisture estimates compared to the OL simulation.

Improvement is also seen in deeper layers, though to a

lesser degree than at the surface. Overall, the soil

moisture estimates from different assimilation strategies

are in line with each other, while DATH and DATV tend

to yield smaller estimation bias. Here the soil moisture

profile is initialized randomly and assumed uniform in

order to assess the utilities of assimilating passive

microwave information without ground measurements

a priori. The soil moisture estimates are expected to

benefit from initialization using in situ data and a long

spinup period.

Assimilation also leads to improved H and LE esti-

mates compared to OL estimates. DATu, DATH, and

DATV yield very similar flux estimates at both daytime

and 30-min scale. Since the difference in soil moisture

estimates from different experiments is not pronounced,

the influence on EF estimates is limited, which is further

reduced by the uncertainty range given to the reference

EF estimates. A further comparison with univariate as-

similation cases suggests that joint assimilation of LST

and soil moisture information has the best performance

in soil moisture and flux estimation.

It is worth noting that the performance of TB assim-

ilation depends to a large extent on the bias correction as

well as the characterization of model and observation

FIG. 8. Intercomparison of the KGEs of 30-min H and LE estimates from DATu, DATH, and DATV in the study period.
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errors. In this study, a RTM similar to the one used in the

SMAP Level-2/3 soil moisture retrieval is used for TB

forward simulation. Using another RTMwith a different

parameterization may lead to slightly different results.

Likewise, the choice to have the LST smoother correct

for the bias by updating parameters may affect the re-

sults in a different way than if bias was corrected for a

priori as in Reichle et al. (2010). Regional optimization

of parameters or dynamic online bias correction may

further improve flux estimates.

TABLE 4. Statistical assessment of soil moisture estimates at different depths against in situmeasurements for univariate assimilation cases

(unit of ubRMSD, RMSD, and bias is m3m23).

Abrams Stillwater

ubRMSD RMSD Bias R ubRMSD RMSD Bias R

2015

SSM DAT 0.047 0.048 20.010 0.69 0.060 0.103 20.084 0.84

DAu 0.040 0.041 20.008 0.76 0.065 0.100 20.077 0.83

DAH 0.041 0.042 20.010 0.76 0.064 0.101 20.078 0.83

DAV 0.040 0.040 20.002 0.75 0.063 0.101 20.078 0.83

Second layer DAT 0.047 0.050 20.018 0.63 0.051 0.135 20.125 0.83

DAu 0.038 0.041 20.016 0.74 0.055 0.128 20.116 0.81

DAH 0.044 0.047 20.019 0.66 0.054 0.129 20.117 0.81

DAV 0.044 0.045 20.010 0.65 0.053 0.129 20.117 0.82

RZSM DAT 0.035 0.145 20.140 0.61 0.041 0.212 20.208 0.65

DAu 0.038 0.134 20.128 0.58 0.040 0.193 20.189 0.61

DAH 0.037 0.136 20.131 0.55 0.040 0.196 20.192 0.61

DAV 0.036 0.124 20.119 0.60 0.038 0.192 20.188 0.65

2016

SSM DAT 0.046 0.055 20.030 0.66 0.056 0.098 20.080 0.76

DAu 0.043 0.050 20.025 0.65 0.058 0.087 20.065 0.74

DAH 0.043 0.048 20.022 0.66 0.062 0.088 20.063 0.70

DAV 0.041 0.046 20.020 0.67 0.061 0.087 20.062 0.70

Second layer DAT 0.037 0.037 20.005 0.68 0.050 0.133 20.123 0.73

DAu 0.034 0.034 0.002 0.66 0.050 0.118 20.107 0.75

DAH 0.037 0.037 0.004 0.63 0.052 0.116 20.104 0.70

DAV 0.035 0.035 0.006 0.63 0.052 0.116 20.103 0.70

RZSM DAT 0.028 0.146 20.143 0.60 0.031 0.216 20.214 0.82

DAu 0.030 0.128 20.124 0.56 0.038 0.188 20.184 0.84

DAH 0.031 0.127 20.123 0.50 0.045 0.188 20.183 0.54

DAV 0.035 0.126 20.121 0.25 0.044 0.188 20.182 0.57

TABLE 5. Statistical assessment of 30-min H and LE estimates from OL and different assimilation cases at four flux stations in the

study period.

RMSD (Wm22) R Bias (Wm22)

E09 E34 E32 E36 E09 E34 E32 E36 E09 E34 E32 E36

30-min H OL 114.0 101.3 105.5 100.4 0.11 0.09 0.26 0.48 235.5 21.2 244.0 254.0

DATu 115.7 90.8 109.2 99.7 0.12 0.23 0.29 0.45 242.5 210.6 256.3 250.1

DATH 107.7 100.9 109.1 99.2 0.21 0.14 0.22 0.46 233.0 22.7 233.8 247.6

DATV 105.9 93.1 105.7 100.8 0.28 0.19 0.28 0.48 239.2 223.4 244.7 254.0

DAT 113.9 131.8 108.1 99.7 0.15 20.02 0.20 0.45 222.9 22.8 218.3 227.5

DAu 110.8 90.8 106.6 109.7 0.26 0.16 0.37 0.47 255.2 222.1 259.6 271.4

DAH 112.6 93.3 104.6 102.8 0.23 0.14 0.34 0.51 253.6 218.9 251.7 263.1

DAV 112.3 92.2 106.1 108.5 0.22 0.14 0.34 0.50 252.8 218.7 255.9 271.7

30-min LE OL 150.6 149.0 130.1 103.0 0.54 0.58 0.49 0.51 279.5 295.8 258.0 232.6

DATu 111.0 93.7 101.6 70.9 0.74 0.81 0.67 0.77 244.3 244.3 29.5 4.7

DATH 111.7 102.8 113.5 71.1 0.76 0.77 0.61 0.77 253.0 250.9 232.0 5.4

DATV 103.7 89.1 104.2 71.9 0.80 0.81 0.66 0.77 247.9 233.7 222.0 8.6

DAT 120.6 138.3 117.7 85.9 0.71 0.61 0.60 0.70 256.8 277.5 244.3 220.8

DAu 124.6 115.6 109.7 76.9 0.70 0.75 0.63 0.70 258.5 268.1 240.3 211.4

DAH 130.0 123.4 120.6 85.1 0.64 0.71 0.56 0.65 258.5 274.4 250.2 219.0

DAV 127.8 121.1 116.1 83.9 0.67 0.73 0.58 0.65 259.9 272.6 243.0 212.4
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Here the methodology is applied in an area mainly

covered by grassland and cropland with a temperate

climate. The key to improving surface heat flux esti-

mates through joint LST and TB assimilation lies in the

constraint of soil wetness conditions on surface energy

partitioning and the capability of LST time series to

characterize the surface energy dynamics during the day-

time. The former is expected to be valid for a large range of

land cover types and vegetation conditions, while the latter

is impacted by high soil wetness condition as well as

the cloud cover contamination. For very wet areas, the

magnitude of daytime LST variation is decreased and

the flux partitioning is more energy-limited, which would

weaken the LST constraint on energy partitioning. For

areaswith frequent cloud cover, the availability of remote

sensing LST observations is reduced, which would lead

to larger uncertainties in the flux estimates. Some stud-

ies have suggested that GOES LST time series contains

sufficient information on surface energy partitioning over

forested areas (Xu et al. 2018), while others have suc-

cessfully constrained surface energy partitioning with soil

wetness information over woody savannah (Farhadi et al.

2014). Further in-depth research is needed to evaluate

the performance of the methodology for areas of other

land cover types and climatic conditions. The influence

of canopy structure on solar radiation partitioning and

of different root-zone depth on soil moisture simulation

should also be addressed. In addition, introducing a vege-

tation constraint on energy fluxesmay further improve flux

estimates (Lu et al. 2019), particularly for areas with very

dense vegetation cover. Using a layered heat transfer

model (e.g., heat diffusion model) may also reduce the

impact of uncertainties in the lower boundary condition

on land surface temperature simulation and the phase

error of ground heat flux estimates (Bateni et al. 2013).
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