
Search and Rescue Games
Games on Trees and Graphs

Deon Ha

Search and Rescue Games
Games on Trees and Graphs

by

Deon Ha
to obtain the degree of

MASTER OF SCIENCE

in

APPLIED MATHEMATICS

at the Delft University of Technology,
to be defended publicly on Friday August 27, 2021 at 15:00 AM.

Student number: 4469445
Project duration: December 2, 2020 – August 27, 2021
Thesis committee: Dr. ir. R. J. Fokkink TU Delft, Supervisor

Msc. J. Brethouwer, Supervisor
Prof. dr. F. H. J. Redig, TU Delft
Dr. J. A. M. de Groot, TU Delft

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis is written as part of my master in Applied Mathematics.

In my years as a bachelor and master student I always enjoyed game theory related topics. Therefore, I
reached out to one of my supervisors, Dr. ir. R.J. Fokkink, to write a thesis about a game theory related
problem. He introduced me to Search and Rescue Games and encouraged me to write a thesis about it. Dur-
ing the course of the project I learned a lot about mathematics and game theory in particular. I would like to
thank Dr. ir. R.J. Fokkink and Msc. J. Brethouwer for their continued support and guidance during the course
of the project.

On top of that, I would also like to thank the thesis committee: Dr. ir. R.J. Fokkink, Msc. J. Brethouwer,
Prof. dr. F. H. J. Redig and Dr. J. A. M. de Groot for their time and interest to evaluate my work. Finally, I would
also like to thank my family and friends for their support during the course of the project.

Deon Ha
Delft, August 2021

iii

Abstract

In this thesis report we consider a search and rescue problem in which one or multiple targets/objects are
hidden in some playing field, and must be rescued/found by a searcher. The targets are for example: earth-
quake survivors, lost hikers or prisoners held by an adversary, and are hidden in some section of the play field.
Searching any of the sections of the play field has a certain probability of failing; the searcher might get lost,
trapped or captured herself. The goal is to find the search that maximises the probability of finding all targets,
and to find the hiding spot that minimises it. We define and solve the search and rescue game on a play field
for which movement between any two section of the play field is always possible. We also define and solve
the game played on a tree for which movement is limited by the tree structure. Due to the complexity of this
game, we restrict ourselves to one target. Finally, we extend the game by replacing the play field with specific
types of graphs that are not trees. For some of these graphs, we have found (partial) solutions.

v

Contents

1 Introduction 1

2 Search and Rescue Games 3
2.1 Basic Rules . 3
2.2 Strategies and Pay-off . 3
2.3 Optimal Strategies using Indexibility . 5
2.4 Alternative Optimal Strategies for k = 1 . 11
2.5 Alternative Optimal Strategies for k > 1 . 14

3 Search and Rescue Games on a Tree 19
3.1 Definitions and Rules . 19
3.2 Depth-first Optimal Strategy . 22
3.3 Binary Tree Reconstruction from an Oracle Function . 30

4 Search and Rescue Games on a Graph 35
4.1 Game 1: Search and Rescue Game with Directed Edges . 36
4.2 Game 2: Search and Rescue Game with Undirected Edges . 40
4.3 Game 3: Search and Rescue Game with Directed Endpoint . 42
4.4 Game 3: Behavioural Strategy . 50

5 Conclusion 53

A Appendix 55
A.1 Matlab Code . 55

A.1.1 Chapter 2 - Solve a Search and Rescue Matrix Game . 55
A.1.2 Section 2.4 and 2.5 - Experiment 2.4.1 and 2.5.1 . 57
A.1.3 Section 2.5 - Experiment 2.5.2 . 58
A.1.4 Chapter 4 - Matrix Game Solver . 60
A.1.5 Section 4.1 - Pay-off Matrix for Type One Games . 60
A.1.6 Section 4.2 - Pay-off Matrix for Type Two Games . 61
A.1.7 Section 4.3 - Pay-off Matrix for Type Three Games . 62

A.2 Proofs . 63
A.2.1 Claim: Equality 2.15 . 63
A.2.2 Claim: Equation 2.23 has two Telescopic terms . 63
A.2.3 Claim: Relation 3.23 . 64
A.2.4 Conjecture 4.3.1: Equation 4.36 . 64
A.2.5 Theorem 5: Equation 4.43 . 66

Bibliography 69

vii

1
Introduction

Many search and rescue operations can be extremely dangerous for the searcher. For example, a firefighter
who has to rescue someone from a burning building. At any moment, the firefighter could be trapped him-
self/herself resulting in the loss of two lives. It is therefore useful to model such rescue operations which has
been done in this report. Alpern and Gal [1] and Hohzaki [7] provide a general overview of the literature on
search games. Lidbetter [9] is, as far as we know, the only one to consider a model in which the searcher has
a probability of being trapped/captured herself.

We start by defining the basic game in chapter 2. In this game, the searcher has to find one or more tar-
gets hidden in some play field. The play field is divided into multiple sections in which the hider needs to
hide one or multiple targets. In this chapter, movement between any two sections of the play field is always
possible.

In Chapter 3, we consider the search and rescue game played on a tree. This is, for most part, the same
game, but now played on a tree. Movement between any two sections is now limited by the structure of the
tree. Due to the complexity of the game, we only consider the case in which only one target is hidden and
needs to be found. Chapter 2 and 3 is mostly written using the literature from Lidbetter [9].

Finally, we extend the game on a tree to a game on a graph in chapter 4. Due to the complexity of this
game, we only consider specific types of graphs with one target. In this game, movement between any two
sections is limited by the structure of the graph. However, unlike the previous game it is now possible to reach
a certain section of the graph in multiple ways.

The goal of the report is to investigate how the search and rescue game is played on a graph.

1

2
Search and Rescue Games

Assume that there is a burglar (searcher) and a wealthy man (hider) who owns three houses. The wealthy man
is currently enjoying his vacation abroad leaving his three houses unoccupied. He also likes to keep all his
riches in one of the three houses. To prevent his houses of being burgled, every house has an alarm system.
However, because some alarm systems are old, the burglar can sometimes bypass it and rob the house. In
which house should the wealthy man hide his riches and in what order should the burglar burgle the houses?

The game described above is an example of a search and rescue game where the burglar is the searcher and
the wealthy man is the hider. There are many more examples and adaptations of search and rescue games
that usually have a more darker tone. Think about a kidnapper hiding its victims in one or multiple locations,
a mountain hiker going missing in a dangerous area or someone trapped in a burning building. Because lives
are at stake, time and efficiency are of the essence. It is therefore useful to understand how these type of
games are played and what strategies are optimal for both players.

2.1. Basic Rules
A search and rescue game is a game played between two players: the searcher and the hider. The game is
played on a board/grid of size n, say S ≡ {1,2, ...n} which denotes the hiding locations. The hider needs to
hide k ∈ {1,2, ...n −1} objects/targets in the set of hiding locations S. In the case that k = 1, the hider hides
a single object in one of the n possible locations. The searcher needs to search the hiding locations in some
order until all hidden objects are found. When searching a location i , there is a probability pi ∈ (0,1) that the
search will be successful and all objects hidden in location i will be found. On the other hand, 1−pi is the
probability that the search in location i will be unsuccessful. When this happens, the searcher loses the game
and gains nothing (+0 units) from the hider. However, if the searcher manages to find all hidden objects, she
wins the game and gains +1 unit from the hider.

Figure 2.1: Search and Rescue Game with n = 3

2.2. Strategies and Pay-off
The hider needs to hide k objects in the set of hiding locations S. It is obvious that hiding more than one
object in the same hiding location is non-optimal (and dominated by other strategies). The searcher needs to
search through all hiding locations in some order. Every order in which the hiding locations can be searched
is a permutation of the set S.

3

4 2. Search and Rescue Games

Definition 2.2.1 (Hider’s Pure Strategy). A pure strategy h for the hider is a subset A ⊆ S of size k, i.e.

h ∈ S(k) ≡ {A ⊆ S : |A| = k}.

Definition 2.2.2 (Seacher’s Pure Strategy). A pure strategy σ for the searcher is a permutation

σ : S → S

of S such that σ(i) is the i-th location searched in the permutation σ for i = 1, ...,n.

If the hider and searcher choose their pure strategies h and σ respectively, the pay-off for the searcher is
defined as the probability of successfully finding all hidden objects.

Definition 2.2.3 (Total success probability). The probability that the searcher searches a set A ⊆ S successfully
is given by

f (A) = ∏
i∈A

pi . (2.1)

Definition 2.2.4. The set
Sσi =⋃

{ j ∈ S :σ−1(j) ≤ i } (2.2)

is the set containing the first i locations searched by some permutation σ.

Definition 2.2.5 (Pay-off). The pay-off for the searcher when she uses σ and the hider uses h is given by

P (h,σ) = f (Sσi) = ∏
i∈Sσi

pi (2.3)

where i is minimal such that h ⊆ Sσi . Similarly, the pay-off for the hider is

−P (h,σ) =− ∏
i∈Sσi

pi . (2.4)

Note that the pay-off for the hider is derived from the fact that he gains +0 when he wins and −1 when he
loses. This makes the game a finite-zero-sum game which has several useful properties that will be used later
on. Arguably, the pay-off for the hider could also be defined as

1−P (h,σ) = 1− ∏
i∈Sσi

pi , (2.5)

which is the total winning probability of the hider. This makes the game not a finite-zero-sum game but
a constant-sum game. However, subtracting a constant from the pay-off of a constant-sum game does not
change the optimal strategies. Hence, we can subtract 1 from the pay-off in 2.5 to obtain 2.4 which is the
pay-off of the finite-zero-sum game. Therefore, both games have the same optimal strategies. By defining the
hider’s pay-off as in 2.4, the properties of a finite-zero-sum game can directly be used.

Definition 2.2.6 (Search and Rescue Game). A search and rescue game with n hiding locations and k objects
is a game in which the hider chooses a hiding strategy h as defined in definition 2.2.1, the searcher chooses a
searching strategy σ as defined in definition 2.2.2 and the pay-off for the searcher and hider is given by P (h,σ)
and −P (h,σ) which are defined in definition 2.3 and 2.4 respectively. We denote this game by Γ f where f is the
function defined in 2.1.

Example 2.2.1. Consider the search and rescue game depicted in figure 2.1 where k = 1. The number of search
locations is n = 3, and therefore the hiding locations are S = {1,2,3}. Finally, the success probabilities of search-
ing the hiding locations is given by p = (p1, p2, p3) = (1

2 , 1
3 , 1

5

)
.

The hider has three pure strategies, he can hide the object in either location 1,2 or 3. The pure strategies
of the searcher are all permutations σ of the set S = {1,2,3}, e.g. σ1 : 123 → 123, σ2 : 123 → 132, etc. The
search strategy σ2 tells the searcher to search the hiding locations in the order (1,3,2) which we will simply
abbreviate by σ2 = 132. It is obvious that the search stops midway when the object has been found.

Assume the hider plays h = 3 (i.e. he hides the object in location 3) and the searcher plays σ2. In this case,
the searcher will first search location 1 which will be searched successfully with probability p1 = 1

2 . Because
no object is hidden in location 1, the search continues. The next location that will be searched inσ2 is location

2.3. Optimal Strategies using Indexibility 5

3 which will be searched successfully with probability 1
5 . Combining both probabilities, the probability that

both locations 1 and 3 will be searched successfully is given by p1·p3. Since the hider hid the object in location
3, the search has come to an end. The pay-off for the strategies h = 3 and σ2 is then given by

P (h, s) = f (Sσ2
i) = f (Sσ2

2) = p1p3 = 1

10

where i = 2 is minimal such that h ⊆ Sσ1
i and

Sσ2
2 =⋃

{ j ∈ S :σ−1(j) ≤ 2} = {1}∪ {3} = {1,3}.

However, if the searcher would have started her search in location 3, the pay-off would have been 1
5 . Hence,

the hiding strategy h = 3 can guarantee that the pay-off is at most 1
5 . With the help of mixed strategies, i.e. a

probability distribution over the pure strategies, the hider can further guarantee that the pay-off and also the
value of the game are even lower.

The searcher seeks to maximize the pay-off, whereas the hider seeks to minimise it. The searcher has ex-
actly six pure strategies which is equal to the total number of permutation of the set S. On the other hand,
the hider has exactly three pure strategies which are all hiding locations. Therefore, the game can be seen as
a simple 6×3-matrix game. The corresponding pay-off matrix is given as follows

H
1 2 3



(123) 1
2

1
6

1
30

(132) 1
2

1
30

1
10

S (213) 1
6

1
3

1
30

(231) 1
30

1
3

1
15

(312) 1
10

1
30

1
5

(321) 1
30

1
15

1
5

. (2.6)

Since the matrix game is a finite-zero-sum game by definition 2.2.5 of the pay-off, the game has a value and
optimial strategies exist by the Min-Max Theorem of von Neumann [8] page 13. Since the matrix does not
have a saddle point, the optimal strategy is a mixed strategy. A mixed strategy for the hider is a probability
distribution over all possible locations to hide the object in, i.e. S, and for the searcher it is a probability
distribution over all permutations σ of the set S. The game can now easily be solved using existing matrix
game solvers.

However, these matrix game solvers usually have a limitation to the size of the matrix. The number of rows
of the pay-off matrix correspond to the number of pure strategies of the searcher, which is equal to the total
number of permutations of S, that is n!. This means that the size of the matrix grows rapidly when n becomes
large. Because of this, there is a need to find a more general method to compute the optimal strategies.

2.3. Optimal Strategies using Indexibility
It turns out that a more general optimal strategy can be found without solving a large matrix game, but rather
with the help of term indexibility. The term indexibility comes from the optimisation branch of mathemat-
ics, more specifically in scheduling problems. Bertsimas and Nino-Mora [4] use it to describe dynamic and
stochastic scheduling problems. In these type of scheduling problems, jobs come into a server that need to
be processed in some order. A solution is found by assigning an index to each job and to process the job with
the highest index at every stage. The general solution to the search and rescue game tries to replicate this.

We briefly sketch the idea of the new solution method, a more detailed formulation including proof will
follow later on in the chapter. The idea is that every hiding location i will be assigned an index zi . Then for a
subset A ⊆ S of size k, we define the index of the set A as

zA = ∏
i∈A

zi . (2.7)

It is optimal for the hider to play the mixed strategy q which plays a subset A ⊆ S of size k with some proba-
bility proportional to zA . We denote qA as the probability of playing the subset A in q .

6 2. Search and Rescue Games

The searcher’s optimal strategy is similar to that of the hider. It is optimal for the searcher to play the
mixed strategy s which first searches a subset A ⊆ S of size k before searching the remaining locations in a
uniformly random order with some probability proportional to zA . The order in which the first k locations are
searched in A is irrelevant. We denote s(A) as the strategy that first searches A before searching the remaining
locations in a uniformly random order, and we denote sA as the probability of playing s(A) in s.

In order to define the new solution method, we first need to define the indices zi . These indices follow directly
from the definition of indexibility.

Definition 2.3.1. For i ∈ S and A ⊆ S, define

f A(i) = f (A∪ {i })− f (A) = f (A∪ i)− f (A). (2.8)

Definition 2.3.2 (Indexible). Let f : 2S →R be a positive function that satisfies f (A) < f (B) when B ⊂ A. Then
f is z-indexable if there exists a z = (z1, ..., zn) ∈Rn with zk > 0 for all k such that

f A∪ j (i)

f A∪i (j)
= zi

z j
, i , j ∉ A. (2.9)

where zk is the index of location k.

Note that the total success probability function f defined in 2.1 is indeed a positive function that satisfies
f (A) < f (B) when B ⊂ A. The second part follows from

f A∪ j (i)

f A∪i (j)
= f (A∪ i ∪ j)− f (A∪ j)

f (A∪ i ∪ j)− f (A∪ i)
= pi p j

∏
s∈A ps −p j

∏
s∈A ps

pi p j
∏

s∈A ps −pi
∏

s∈A ps
= p j (1−pi)

pi (1−p j)
= zi

z j
.

Hence, the index of location i is given by

zi = 1−pi

pi
(2.10)

which is equal to the inverse of the odds. Furthermore, since pi ∈ (0,1) the indices also satisfy zi > 0 for all
i . Therefore, the total success probability function f of the search and rescue game Γ f is indeed z-indexable.
As a result, every hiding location will be assigned a value given by the index in 2.10. This index will be used to
define the probabilities qA and sA .

Before defining the probabilities qA and sA and proving the optimality of the strategies q and s, we first state
and prove two important properties of the game Γ f . The following lemmas tell us that in the game Γ f where
we restrict the searcher to strategies of the form s(A), the game becomes symmetrical. Let us first consider
the case k = 1, i.e. the hider hides a single object.

Lemma 1. Let S = {1, ...,n}, k = 1 and consider the search and rescue game Γ f for an arbitrary set function
f : 2S →R. Then for any two hiding locations i , j ∈ S we have P f

(
i , s(j)

)= P f
(

j , s(i)
)
.

Proof. First notice that since s(j) and s(i) are mixed strategies, P f
(
i , s(j)

)
and P f

(
j , s(i)

)
are expected pay-

offs. In the case where i = j , the lemma trivially holds. Therefore, consider the case in which i 6= j . Let
Z = S \ {i , j } and denote P(Z) as the power set of Z .

Assume that the hider and searcher play the strategies i and s(j) respectively. The strategy s(j) always starts
with searching location j . After searching location j , the remaining locations X = S \ { j } are searched in a
uniformly random order until location i has been searched. Hence, note that location i and j must always be
searched. Of course, the search always starts in j and ends in i .

Since X = S \{ j } = Z ∪{i } is searched in a uniformly random order until location i has been searched, there
is a possibility that a random subset R ⊆ Z will be searched before i . To further clarify, the uniformly random
search of X can be thought of as uniformly sampling from X without replacements until location i has been
sampled. The subset R would then be all elements of Z sampled before i . This random subset R can be any
subset of Z which is equivalent to saying that R ∈ P(Z). Let Z1, ..., Zk be all the elements of P(Z) such that
P(Z) = {Z1, ..., Zk }, and let p(Zl) be the probability that the random set R is given by Zl . Then it follows that
with probability p(Zl), the set Zl will be searched after j and before i . Therefore, with probability p(Zl) the
pay-off is equal to

f (j ∪Zl ∪ i)

2.3. Optimal Strategies using Indexibility 7

for all l = 1, ...,k. Hence, the expected pay-off is given by

P f
(
i , s(j)

)= k∑
l=1

f (j ∪Zl ∪ i) ·p(zl).

Now assume the hider and searcher play the strategies j and s(i) respectively. Location i will be searched
first, after which the remaining locations Y = S \ {i } are searched in a uniformly random order until j has
been searched. Note that similar as before, location i and j must always be searched.

Now Y = S \ {i } = Z ∪ { j } is searched in a uniformly random order until j has been searched. Similar as
before, there is a possibility that a random subset R ⊆ Z will be searched before i as a result of the uniformly
random search of Y . Because the random subset R can be any subset of Z , it is equivalent to say that R ∈P(Z).
Let Z1, ..., Zk and p(Zl) be defined as before. Then it follows that with probability p(Zl), the set Zl will be
searched after i and before j . Therefore, with probability p(Zl) the pay-off is equal to

f (i ∪Zl ∪ j)

for all l = 1, ...,k. Hence, the expected pay-off is given by

P f
(

j , s(i)
)= k∑

l=1
f (i ∪Zl ∪ j) ·p(Zl)

=
k∑

l=1
f (j ∪Zl ∪ i) ·p(Zl) = P f

(
i , s(j)

)
.

Lemma 1 states the simplest case of a more general lemma. The lemma tells us that for k = 1, the strategy pair
i and s(j) yield the same expected pay-off as the pair j and s(i). A similar lemma can be stated and proven
for general k where the proof is almost identical.

Lemma 2. Let S = {1, ...,n}, k be a positive integer and consider the search and rescue game Γ f for an arbitrary

set function f : 2S →R. Then for any A,B ∈ S(k) we have P f
(

A, s(B)
)= P f

(
B , s(A)

)
.

Proof. First notice that since s(B) and s(A) are mixed strategies, P f
(

A, s(B)
)

and P f
(
B , s(A)

)
are expected pay-

offs. In the trivial case where A = B , the lemma follows immediately. Therefore, consider the non-trivial case
in which A 6= B . Let Z = S \(A∪B) be the complement of the union of A and B , and denote P(Z) as the power
set of Z .

Assume the hider and searcher use the strategies A and s(B) respectively. The strategy s(B) will first search
the set B after which it will search the remaining locations X = S \ B in a uniformly random order until all
locations of A have been searched. Hence, note that the sets A and B must always be searched. This follows
from the fact that the search always starts with searching all locations of B and ends when all locations of A
are searched.

Since X = S\B = Z∪A is searched in a uniformly random order until all locations of A have been searched,
there is a possibility that a random subset R ⊆ Z will be searched before all locations of A have been searched.
Because R can be any subset of Z , it is equivalent to saying that R ∈ P(Z). Let Z1, ..., Zk be all the elements
of P(Z) such that P(Z) = {Z1, ..., Zk }, and let p(Zl) be the probability that the random set R is given by Zl .
Then it follows that with probability p(Zl), the set Zl will be searched in some order after A and before the
last element of B . Therefore, with probability p(Zl) the pay-off is equal to

f (B ∪Zl ∪ A)

for all l = 1, ...,k. Hence, the expected pay-off is given by

P f
(

A, s(B)
)= k∑

l=1
f (B ∪Zl ∪ A) ·p(Zl).

Now assume the hider and searcher play B and s(A) respectively. All locations in A will be searched first, after
which the remaining locations Y = S\ A are searched in a uniformly random order until all locations of B have
been searched. Once again, the sets A and B must always be searched.

8 2. Search and Rescue Games

Since Y = S\A = Z∪B is searched in a uniformly random order until all locations of B have been searched,
there is a possibility that a random subset R ⊆ Z will be searched before all locations of B have been searched.
Because R can be any subset of Z , it is equivalent to say that R ∈P(Z). Therefore, let Z1, ..., Zk and p(Zl) be
defined as before. Then it follows that with probability p(Zl), the set Zl will be searched in some order after
A and before the last element of B . Therefore, with probability p(Zl) the pay-off is equal to

f (A∪Zl ∪B)

for all l = 1, ...,k. Hence, the expected pay-off is given by

P f
(
B , s(A)

)= k∑
l=1

f (A∪Zl ∪B) ·p(Zl)

=
k∑

l=1
f (B ∪Zl ∪ A) ·p(Zl) = P f (A, s(B)).

Note that for every pure strategy A of the hider there is exactly one matching mixed strategy s(A) for the
searcher and vice versa. And so by restricting the searcher to strategies of the form s(A), both players have
the same number of strategies. As a result of lemma 2, the strategy pairs

(
A, s(B)

)
and

(
B , s(A)

)
have the same

expected pay-off for all A,B ∈ S(k). Therefore, the game Γ f can be made symmetric by restricting the searcher
to strategies of the form s(A). Moreover, the restricted game is then a finite-zero-sum symmetric matrix game.

To show that the restricted game is indeed symmetric, consider the game in example 2.2.1 with pay-off
matrix given in 2.6. Notice that the first and second strategy of the searcher can be combined into the strategy
s(1) by playing both strategies with equal probability. Similarly, the third and fourth, and fifth and sixth strat-
egy can be combined into the strategies s(2) and s(3) respectively. By restricting the searcher to the strategies
s(1), s(2) and s(3), the pay-off matrix becomes

H
1 2 3 s1
1
2

1
10

1
15

S s2
1

10
1
3

1
20

s3
1

15
1

20
1
5

(2.11)

which is indeed symmetrical. The second lemma continues from the restricted symmetrical game and allows
us to define an optimal strategy for both players. It tells us that if a player has a strategy that makes the
opponent indifferent, then this strategy is optimal for both players.

Lemma 3. Consider a zero-sum game with symmetric pay-off matrix in which player one has a mixed strategy
x which makes player two indifferent between all her pure strategies. Then the strategy x is optimal for both
players.

Proof. Let x be the mixed strategy for player one that makes player two indifferent, y be an arbitrary pure
strategy for player two and A the symmetric pay-off matrix. Since x makes player two indifferent, the pay-off
is given by

P (x, y) = xT Ay =V

for all pure strategies y of player two. Now if player two plays the strategy x and player one plays any pure
strategy y , then

P (y , x) = yT Ax = yT AT x

= (
xT Ay

)T

=V T =V = P (x, y).

Here we use that A = AT since A is symmetric. Since y is taken arbitrarily for player one, player two can make
player one indifferent between all his pure strategies. Hence, player one can guarantee a pay-off of at least V
with x whereas player two can hold the pay-off down to at most V with x. Therefore, the strategy x is optimal
for both players.

2.3. Optimal Strategies using Indexibility 9

The original game Γ f can now be solved using a more general method which does not involve solving a large
matrix game. The following theorem states a general solution to the game Γ f .

Theorem 1. Consider the search and rescue game Γ f and suppose f is z-indexable. Then it is optimal for the

hider to use the mixed strategy q which chooses a set A ∈ S(k) with probability qA given by

qA =
∏

i∈A zi

Tk (S)
, ∀A ∈ S(k) (2.12)

with

Tk (S) = ∑
B∈S(k)

∏
i∈B

zi . (2.13)

It is optimal for the searcher to use the strategy s that plays the strategy s(A) with probability proportional to
qA .

The term Tk (S) is the product of all z-indices in a set B summed over all possible sets B ∈ S(k). It can be
thought of as the combined total index of all possible hiding strategies. Let i ∉ A ⊂ S be a hiding location in S.
The fraction

Tk−1(A)zi

Tk (S)

denotes the probability that k−1 objects are hidden in a set A ⊂ S with the last object being hidden in location
i .

Proof. Assume the hider plays the strategy q as defined in the theorem. We will show that this strategy makes
the searcher indifferent between all her pure strategies. Let σ1 be an arbitrary permutation of S and let σ2

be the permutation σ1 in which two adjacent elements are transposed. Note that any permutation σ can be
obtained from σ1 by iteratively transposing two adjacent elements. The idea is to show that by transposing
two adjacent elements of a permutation, the expected pay-off remains unchanged. As a result, all permuta-
tions must have the same expected pay-off. To that end, it is sufficient to prove that σ1 and σ2 have the same
expected pay-off.

Suppose that the element j comes immediately after i in σ1 and that the elements i and j are transposed
in σ2. Clearly, if element j in σ1 comes in position k or earlier, then transposing i and j leaves the expected
pay-off unchanged. Of course, at the bare minimum k locations need to be searched and it does not matter
in which order these k locations will be searched. Hence, suppose this is not the case and let A be the set of
locations searched before i in σ1 (or before j in σ2). Then the difference in expected pay-off is given by

P (q ,σ1)−P (q ,σ2) =
(Tk−1(A)zi

Tk (S)
f (A∪ i)+ Tk−1(A∪ i)z j

Tk (S)
f (A∪ i ∪ j)

)
−

(Tk−1(A)z j

Tk (S)
f (A∪ j)+ Tk−1(A∪ j)zi

Tk (S)
f (A∪ i ∪ j)

)
= Tk−1(A)zi

Tk (S)
f (A∪ i)− Tk−1(A)z j

Tk (S)
f (A∪ j) (2.14a)

+ Tk−1(A∪ i)z j −Tk−1(A∪ j)zi

Tk (S)
f (A∪ i ∪ j)

where f is the total success probability as defined in definition 2.2.3.

Claim. The following equality holds

Tk−1(A∪ i)z j −Tk−1(A∪ j)zi = z j Tk−1(A)− zi Tk−1(A). (2.15)

Proof of claim. See appendix A.2.1.

10 2. Search and Rescue Games

As a result of the claim and by using 2.8 and 2.9, it follows that

P (q ,σ1)−P (q ,σ2) = Tk−1(A)zi

Tk (S)
f (A∪ i)− Tk−1(A)z j

Tk (S)
f (A∪ j)+ Tk−1(A)z j

Tk (S)
f (A∪ i ∪ j)

− Tk−1(A)zi

Tk (S)
f (A∪ i ∪ j)

= Tk−1(A)z j

Tk (S)
f A∪ j (i)− Tk−1(A)zi

Tk (S)
f A∪i (j)

= Tk−1(A)

Tk (S)

(
z j f A∪ j (i)− zi f A∪i (j)

)
= Tk−1(A)

Tk (S)

(
z j f A∪ j (i)− f A∪ j (i)z j

f A∪i (j)
f A∪i (j)

)= 0.

Thus, the strategy q makes the searcher indifferent between all her pure strategies and V = P (q ,σ1) is an
upper bound to the value of the game. Now if we restrict the searcher to strategies of the form s(A), the
restricted game is symmetric by lemma 2 and the strategies q and s are optimal by lemma 3. The value of the
restricted game is therefore equal to V , which is also a lower bound for the value of the unrestricted game.
Hence, the value of the unrestricted game is V and the strategies q and s are indeed optimal.

Theorem 1 allows us define more general optimal strategies for the search and rescue game Γ f . Furthermore,
it has been shown that the total success probability function f defined in 2.1 is indexible and that the index
is given by 2.10. As a result, the probability qA (and also sA) in theorem 1 can be further simplified.

Remark 1. Define the set function

o(A) = ∏
i∈A

1−pi

pi
, ∀A ∈ S(k). (2.17)

Then the probability qA in theorem 1 is proportional to o(A) and given by

qA =
(∑

B∈S(k)

o(B)
)−1

o(A), ∀A ∈ S(k). (2.18)

For k = 1, the set function and probability simplify to

o(i) = 1−pi

pi
and qi =

(∑
j∈S

o(j)
)−1

o(i), ∀i ∈ S. (2.19)

The value V of the game for k = 1 follows from the fact that the hiding strategy q makes the searcher indiffer-
ent. Hence, let σ be the permutation that searches the hiding locations in increasing order from 1 to n. Then
the value of the game is

V = P (q ,σ) =
n∑

i=1
qi

∏
j≤i

p j

=
(∑

j∈S

1−p j

p j

)−1 n∑
i=1

1−pi

pi

∏
j≤i

p j =
(∑

j∈S

1−p j

p j

)−1 n∑
i=1

(1−pi)
∏
j<i

p j (2.20a)

=
(∑

j∈S

1−p j

p j

)−1(
1−∏

i∈S
pi

)
=

(∑
j∈S

o(j)
)−1(

1−∏
i∈S

pi

)
, (2.20b)

where we use that the second sum of 2.20a is telescopic.

Finally, example 2.2.1 can now be solved using 2.19 and it follows that q = s = (1
7 , 2

7 , 4
7) are the optimal strate-

gies. Furthermore, by 2.20b the value of the game is V = 29
210 . Since the game is relatively small, the optimality

of the strategies and the value of the game can easily be verified using the pay-off matrix M in 2.11. Solv-
ing either qT M or M s shows that both strategies make the opponent indifferent between all his/her pure
strategies. The value of the game can be verified by solving qT M s.

2.4. Alternative Optimal Strategies for k = 1 11

2.4. Alternative Optimal Strategies for k = 1
Theorem 1 of the previous section describes how the game Γ f with general k can be solved without solving
a potentially large matrix game. In the case where k = 1, it is optimal for the hider to play a mixed strategy
that mixes all of his n pure strategies, namely h = 1,2, ...,n. The searcher on the other hand is restricted to the
strategies s(1), ..., s(n) which are mixed strategies.

Recall that the strategy s(i) searches location i first before randomizing between all other locations. There-
fore, every strategy s(i) is a mix of several other pure strategies. It is equivalent to the mixed strategy in which
all pure strategies that start in location i are played with equal probability. Hence, every mixed strategy s(i) is
constructed from (n −1)! pure strategies so that the optimal strategy s is a mix of n! pure strategies.

In general, the solution of a matrix game are mixed strategies in which both players mix an equal number
of pure strategies. In the case where k = 1, the hider is mixing n pure strategies, but the searcher is mixing
n!. Naturally, the question arises whether there exist something similar for the searcher. To be more concrete,
does there exist an optimal strategy for the searcher that mixes n pure strategies and can these n pure strate-
gies always form an optimal strategy for any probabilities p. To investigate the existence of such an optimal
strategy, we will make use of numerical results simulated in Matlab. We will restrict ourselves to the case in
which k = 1.

It is numerically possible to solve small search and rescue games by solving the corresponding matrix game.
The first script that is implemented is a very simple matrix game solver, see appendix A.1.1. Given the success
probabilities p of the game Γ f , the pay-off matrix A is first constructed. Every column of the matrix A corre-
sponds to a hiding locations whereas every row to a permutation of S. Using a standard matrix game solver,
the matrix game can be solved to obtain an optimal strategy for both players and also the value of the game.

Running multiple instances of the first script where the probabilities p are taken arbitrarily, it follows
that both the hider and searcher always mix an equal number of n pure strategies. A downside of the stan-
dard matrix game solver used in the script is that it only returns one of the possibly many optimal strategies.
Therefore, we use a second matrix game solver from Avis et al. [2] which is available online. For arbitrary
probabilities p, both solvers show that there exist optimal strategies for the searcher in which she mixes an
equal number of n pure strategies. Moreover, in multiple instances we found that the same n pure strategies
of the searcher formed an optimal strategy. To investigate if such a statement holds for all probabilities p,
we need to verify whether there exist a combination of n pure strategies for the searcher such that they can
always form an optimal strategy.

Let A be the pay-off matrix of size m ×n where m = n!. The values of A are determined by the probabili-
ties p and the hider always plays an optimal mixed strategy in which he mixes all of his n pure strategies. If
the searcher always has an optimal strategy that mixes the same n pure strategies, then we can always restrict
the searcher to these n pure strategies in A without changing the value of the game. The resulting pay-off
matrix A′ is then a submatrix of A of size n ×n and should have the same value as the game with pay-off
matrix A. To further illustrate, take the pay-off matrix in 2.6 for example. The hider has three pure strategies
and therefore his optimal strategy is a mix of three pure strategies. Assume for the moment that we think that
the first, fourth and fifth row strategies of the searcher can always form an optimal strategy. We then restrict
the searcher to these pure row strategy, and the resulting submatrix becomes

A′ =

1 2 3 (123) 1
2

1
6

1
30

(231) 1
30

1
3

1
15

(312) 1
10

1
30

1
5

. (2.21)

Now we solve the restricted game with pay-off matrix A′ and compare the value of the restricted game with the
value of the original game. If the value of both games are the same, then there exists an optimal strategy for
the searcher that is a mix of the three pure row strategies. However, note that the original pay-off matrix A in
2.6 is only defined for a certain p. Hence, to show that the three pure row strategies of the searcher can always
form an optimal strategy, we need to iterate over all possible p and show that the value of the restricted matrix
game is identical to that of the original matrix. To iterate over all possible p, we define a n−dimensional grid
on the interval (0,1)n with a variable number of grid points. Every grid point corresponds to a probability p
and we iterate over all grid points and do the following:

1. Construct the pay-off matrix A from p.

12 2. Search and Rescue Games

2. Construct the restricted pay-off matrix A′ from A using the n predetermined pure row strategies.

3. Solve both matrix games and compare the value of both games

4. Group the grid points depending on whether the values in the previous step agree or disagree.

Experiment 2.4.1. Let n = 4 and k = 1 such that S = {1,2,3,4}. The hider and searcher have n = 4 and n! = 24
pure strategies respectively. Fix p1 = 1

2 , p2 = 1
3 and let p3 and p4 be the points defined in a two-dimensional

grid on the interval (0,1)× (0,1). We consider two smaller experiments that differ in which row strategies the
searcher is restricted to. In the first experiment, we restrict the searcher to the pure strategies:

σ1 = 1234, σ2 = 2341, σ3 = 3412 and σ4 = 4132.

In the second experiment, we restrict the searcher to the following pure strategies:

σ′
1 = 1234, σ′

2 = 2341, σ′
3 = 3412 and σ′

4 = 4123.

The results of experiment 2.4.1 are shown in figure 2.2. Figure 2.2a shows that there are probabilities p3 and
p4 such that the value of the restricted and unrestricted game do not agree. Here, the searcher restricts herself
to the pure strategies σ1,σ2,σ3, and σ4. Since the values do not agree, the pure strategies do not always form
an optimal strategy. On the other hand in figure 2.2b, the searcher is restricted to the pure strategiesσ′

1,σ′
2,σ′

3,
and σ′

4. As shown in the figure, every grid point always has an optimal strategy consisting of the four pure
strategies for the fixed p1 and p2. This is due to the fact that the combination of the pure strategies satisfy
certain properties.

(a) Row strategies: σ1,σ2,σ3, and σ4 (b) Row strategies: σ′
1,σ′

2,σ′
3, and σ′

4

Figure 2.2: Grid points (p3, p4) for experiment 2.4.1

The difference between the two experiments is in the last pure strategy. Notice that in the second experi-
ment, the pure strategies are chosen such that every hiding location is searched first exactly once. Further-
more, the pure strategies also have the property that after searching the first location, the remaining locations
are searched in an increasing order. More specifically, after searching location i , location (i mod n)+ 1 is
searched next. As a result, for every hiding location i and position j there is exactly one pure strategy that
searches location i in position j . Hence, every hiding location is searched an equal amount of times on every
position. It is because of this additional structure that an optimal strategy exist for all grid points and fixed p1

and p2.

Definition 2.4.1. Define the setσ+ which contains the searcher’s pure strategiesσ for which the following holds:

1. The set σ+ has size n (which is equal to the number of pure strategies of the hider).

2. For every hiding location i , there exist exactly one pure strategy σ ∈ σ+ such that σ searches location i
first.

3. For every pure strategy σ ∈σ+, location (i mod n)+1 is searched after i for all locations i .

2.4. Alternative Optimal Strategies for k = 1 13

Further analysis where p1, p2, p3 and p4 are all taken from a 4−dimensional grid show that there always exists
an optimal strategy if the searcher is restricted to the strategies σ+. Moreover, varying the number of hiding
locations n also has no impact on the existence of such an optimal strategy. What’s more is that by restricting
the searcher to the pure strategies in σ+, the game does not necessarily become symmetric as opposed to the
strategy s in theorem 1. An example of this is the matrix in 2.21 where the searcher is restricted to σ+ and the
matrix is clearly not symmetric. However, numerically solving the game shows that the probability of hiding
the object in location i = 1 is equal to the probability of the searcher playing the pure strategy σ ∈ σ+ that
starts in location i = 1. Moreover, these probabilities are exactly the probabilities as defined in theorem 1.
Hence, it looks as if there exist even stronger version of theorem 1 for k = 1 in which both players mix n pure
strategies with similar probabilities. This brings us to the following proposition.

Proposition 2.4.1. Consider the search and rescue game Γ f for k = 1 and suppose f is z-indexable. Then it is
optimal for the hider to use the mixed strategy q which plays a hiding location i ∈ S with probability qi given
by

qi = 1−pi

pi

(∑
j∈S

1−p j

p j

)−1
. (2.22)

Let s′(i) ∈ σ+ be the pure strategy that searches location i first. Then it is optimal for the searcher to use the
strategy s′ that plays the strategies s′(i) with probability qi .

Proof. From the proof of theorem 1, it follows that the hiding strategy q makes the searcher indifferent be-
tween all her pure strategies. Therefore, the pay-off is equal to V = P (q ,σ) for any pure strategy σ of the
searcher. If the strategy s′ makes the hider indifferent between all his pure strategies, then we have that the
pay-off is equal to V = P (h, s′) for any pure hiding strategy h. Hence, we must have that V = P (q ,σ) = P (h, s′)
is the value of the game and that both q and s′ are optimal (otherwise one of the two strategies does not make
the opponent indifferent). Therefore, it is sufficient to show that the strategy s′ makes the hider indifferent
between all his pure strategies.

Assume the searcher plays the strategy s′ and let i and i + 1 be two arbitrary and consecutive pure strate-
gies of the hider. If the expected pay-off for both pure hiding strategies is identical, it must be that all pure
hiding strategies give the same expected pay-off against s′. This follows from the fact that i is taken arbitrarily.
Hence, it is sufficient to show that both pure strategies give the same expected pay-off. The expected pay-offs
for the hiding strategies i and i +1 are given by

P (i , s′) = s′1p1....pi + s′2p2....pi ++ s′i pi

+ s′i+1pi+1....pn p1....pi + s′i+2pi+2....pn p1....pi ++ sn pn p1....pi

=
i∑

x=1
s′x

i∏
y=x

py +
n∑

x=i+1
s′x

n∏
y=x

py

i∏
z=1

pz

P (i +1, s′) =
i+1∑
x=1

s′x
i+1∏
y=x

py +
n∑

x=i+2
s′x

n∏
y=x

py

i+1∏
z=1

pz .

The difference in expected pay-off is found by subtracting the former from the latter.

P (i , s′)−P (i +1, s′) =
i∑

x=1
s′x

i∏
y=x

py +
n∑

x=i+1
s′x

n∏
y=x

py

i∏
z=1

pz −
i+1∑
x=1

s′x
i+1∏
y=x

py

−
n∑

x=i+2
s′x

n∏
y=x

py

i+1∏
z=1

pz

= (1−pi+1)
(i∑

x=1
s′x

i∏
y=x

py

)
− s′i+1pi+1

+ (1−pi+1)
(n∑

x=i+2
s′x

n∏
y=x

py

i∏
z=1

pz

)
+ s′i+1pi+1....pn p1....pi

= (1−pi+1)

((i∑
x=1

s′x
i∏

y=x
py

)
+

(n∑
x=i+2

s′x
n∏

y=x
py

i∏
z=1

pz

))
+ s′i+1pi+1(pi+2....pn p1....pi −1)

14 2. Search and Rescue Games

Now we fill in the probabilities s′i which are given in 2.22 and simplify the expected pay-off to

P (i , s′)−P (i +1, s′) =
(n∑

j=1

1−p j

p j

)−1 · (1−pi+1)

((i∑
x=1

1−px

px

i∏
y=x

py

)
+

(n∑
x=i+2

1−px

px

n∏
y=x

py

i∏
z=1

pz

))

+
(n∑

j=1

1−p j

p j

)−1 · 1−pi+1

pi+1
pi+1(pi+2....pn p1....pi −1)

=
(n∑

j=1

1−p j

p j

)−1 · (1−pi+1)

·
((i∑

x=1
(1−px)

i∏
y=x+1

py

)
+

(n∑
x=i+2

(1−px)
n∏

y=x+1
py

i∏
z=1

pz

)
+

(i∏
y=1

py

n∏
y=i+2

py

)
−1

)
(2.23)

Observe that 2.23 contains two telescopic terms, see appendix A.2.2. Consequently, the difference in expected
pay-off simplifies to

P (i , s′)−P (i +1, s′) =
(n∑

j=1

1−p j

p j

)−1 · (1−pi+1)· (2.24)

(
1−

i∏
y=1

py +
(i∏

y=1
py

)(
1−

n∏
y=i+2

py

)
+

(i∏
y=1

py

n∏
y=i+2

py

)
−1

)
= 0. (2.25)

Proposition 2.22 allows us to define optimal strategies that only mix n pure strategies for k = 1. Furthermore,
the pure strategies that are mixed are fixed and do not change when p changes. They also satisfy certain
properties which are: every location i is searched first exactly once and after searching the first location,
the remain locations are searched in an increasing order. We can also introduce a slightly different set of
pure strategies, say σ−, such that it has the same size as σ+ and also contains pure strategies such that every
location is searched as first exactly once. The only difference is that after searching a location i , the remaining
locations are searched in a decreasing order. Such a set σ− also satisfies the property that every location is
searched in every position exactly once. Hence, it is very likely that a similar proposition holds for the pure
strategies in σ− and that the proof is found in a similar way.

2.5. Alternative Optimal Strategies for k > 1
Proposition 2.4.1 shows that for k = 1, there exist optimal strategies for the game Γ f such that both players
mix an equal number of n pure strategies. Moreover, for every pure strategy mixed in the hider’s optimal strat-
egy there is exactly one pure strategy mixed in the searcher’s optimal strategy such that both are played with
equal probability qi defined in 2.22. Unfortunately, the proposition and optimal strategies are only defined
for k = 1. Therefore, we will investigate whether a generalization of proposition 2.4.1 exists for k > 1 in this
section.

For the sake of our analysis, we will restrict ourselves to the case where n = 5 and k = 2 so that the hiding
locations are given by the set S = {1,2,3,4,5}. The hider hides two objects in any pair of hiding locations of S
independent of their order, i.e. the pure hiding strategies

h = {1,2} = 12 and h = {2,1} = 21

are identical. Similarly, notice that the pure searching strategies

σ1 = 12345 and σ2 = 21345

are also identical. Since the hider hides two objects, it does not matter in what order the first two hiding
locations are searched. As a result, the hider and searcher have(

n

k

)
= n!

k !(n −k)!
= n(n −1)

2
= 10 and

n!

k !
= 60

2.5. Alternative Optimal Strategies for k > 1 15

pure strategies respectively. Numerical results show that by solving the matrix game for abitrary values of p,
there are optimal strategies for the searcher that mix exactly ten pure strategies. Hence we ask ourselves if we
can restrict the searcher to ten pure strategies σ1, ...,σ10 such that for any success probability p = (p1, ..., p5)
there exist a mix of these ten pure strategies that is optimal?

In the case k = 1, we defined a set of pure strategies σ+ as in definition 2.4.1. This pure strategy set satis-
fied certain properties and as a result was able to always form an optimal strategy. For k > 1 we define to
define a slightly different set, say σ∗. Since the hider has

(n
k

) = 10 pure strategies, the set σ∗ needs to con-
tain the same number of pure strategies. Furthermore, because the hider’s pure strategies consist of pairs of
hiding locations, we want every pair of hiding locations to be searched first exactly once. Hence, the pure
strategies in σ∗ must be chosen such that for every pair of hiding locations i and j there is exactly one pure
strategy σ ∈ σ∗ such that σ searches i and j first (in any order). These are essentially the first and second
property of definition 2.4.1 for k > 1.

Finally, the third property is where we try out and test different pure strategy sets. We define multiple sets
of σ∗ that each have a different third property. For each of these sets, we check whether the pure strategies
in this set can form an optimal strategy for general p. This has been done in the following experiment that is
similar to experiment 2.4.1.

Experiment 2.5.1. Let n = 5 and k = 2 such that S = {1,2,3,4,5}. Fix p1 = 1
2 , p2 = 1

3 , p3 = 1
4 and let p4 and

p5 be the points in a two-dimensional grid on the interval (0,1)× (0,1). We consider the following four smaller
experiments in which we restrict the searcher to ten row strategies such that for every pair of hiding locations i
and j with i 6= j there is exactly one pure strategies that searches i and j first. The experiments differ from one
another by the following final property:

Exp. 1 After searching the first two locations, the remaining locations are searched in an increasing order start-
ing from the maximum of the first and second location searched, i.e. if location 1 and 3 are searched first,
then the order of the remaining locations is σ= 13452.

Exp. 2 After searching the first two locations, the remaining locations are searched in an decreasing order start-
ing from the maximum of the first and second location searched, i.e. if location 1 and 3 are searched first,
then the order of the remaining locations is σ= 13254.

Exp. 3 After searching the first two locations, the remaining locations are searched in an increasing order start-
ing from the lowest of the remaining locations, i.e. if location 1 and 3 are searched first, then the order of
the remaining locations is σ= 13245.

Exp. 4 For every pair of hiding locations i and j , if a pure strategy σ searches i and j in position x and y respec-
tively then there is no other pure strategy that does the same nor is there a pure strategy that searches i
and j in position y and x respectively, i.e. if σ searches location 1 and 2 as first and third respectively,
then there is no other pure strategy that does the same nor is there a pure strategy that searches location
2 and 1 as first and third respectively.

Table 2.1 shows four pure strategy sets of size ten to which the searcher is restricted to in experiment 2.5.1.
The first three pure strategy sets focus on searching the locations in either an increasing or decreasing order
similar as in experiment 2.4.1. However, in doing so the strategy sets become less symmetric in the sense that
a location i might be searched in position j more often than location k 6= i in j . This is not the case in the
fourth strategy set which is inspired by the Kirkman’s schoolgirl problem [3].

Table 2.1: Reduced Row Strategies for experiment 2.5.1

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

Exp. 1 12345 13452 14523 15234 23451 24513 25134 34512 35124 45123
Exp. 2 12543 13254 14325 15432 23154 24315 25431 34215 35421 45321
Exp. 3 12345 13245 14235 15234 23145 24135 25134 34125 35124 45123
Exp. 4 12345 23451 34512 45123 51234 24135 41352 13524 35241 52413

The Kirkman’s schoolgirl problem is a well-known problem in the optimization field of mathematics and is
stated as follows: Fifteen girls have to walk in five rows of three to school for seven days. Arrange them daily

16 2. Search and Rescue Games

such that no two girls walk abreast twice. It is a very interesting problem which I previously had not heard of. A
brute force approach would result in checking (15!)7 number of combinations which is enormous. A solution
to this problem has since been found by either combining backtracking and constraint checking [11] or by
constructing a Kirkman triple system [5]. Figure 2.3 shows one of the possible solutions to the schoolgirl
problem. Every numbered small circle represents a schoolgirl which is connected to a coloured line. The
coloured lines connect exactly three girls which represents a grouping of three girls. By rotating the girls in the
outer an inner circle (in the same direction), the grouping of the next days can be found. Although the exact
solution of the Kirkman’s schoolgirl problem is not that important for us, it is still an interesting problem. See
Barnier and Brisset [3], Eric W. [5] and Toal [11] for more about the Kirkman’s schoolgirl problem.

Figure 2.3: Kirkman’s schoolgirl solution redrawn from Toal [11]

Our problem is comparable to the Kirkman’s schoolgirl problem, we have n = 5 girls and n(n−1)
2 = 10 days. The

goal is to order them such that no two girls walk on the same pair of positions twice. The fourth pure strategy
set in table 2.1 is found by shifting a permutation, i.e. moving all elements of the permutation to the left and
moving the first element to the end. The first five pure strategies are found by shifting the trivial permutation
four times. The last five permutations are found by element-wise multiplying the trivial permutation by two
and then working modulo five (where 0 corresponds to 5). This permutation can also be shifted four times,
which gives us exactly ten pure strategies. Notice that this strategy set also has the property that for every two
hiding locations i and j and position k, i and j are searched an equal amount of times in position j . This
extra property was also satisfied by the strategy set defined in definition 2.4.1 for the case k = 1.

The results of experiment 2.5.1 can be found in figure 2.4. The figure shows that for every experiment and
pure strategy set there exist a value p such that the value of the restricted and unrestricted game are not
equal. Interestingly, figure 2.4c and 2.4d show a symmetric result in y = x whereas figure 2.4a and 2.4b do
not. We expected figure 2.4d to show a symmetric result, because it has more symmetrical properties. The re-
maining results being symmetric or asymmetric might be due to the fixed p1, p2 and p3. By fixing these three
values, we focus on a very small subset of (0,1)5 in which certain solution can be symmetric or asymmetric.

Because for every pure strategy set there exist a p such that the value of the restricted and unrestricted
game are not equal, the four pure strategy sets can not form an optimal strategy for general p and proposition
2.22 does not hold for k > 1. This suggests that an optimal strategy for the searcher consisting of the same(n

k

)= 10 pure strategies might not exist after all. To look deeper into the last statement, we need to iterate over
all possible combinations of ten row strategies and verify whether or not they can form an optimal strategy
for general p. The hider has 60 pure strategies of which we need to take a subset of size 10, hence there are
a total of

(60
10

) ≈ 7.5E10 possible subsets which is impossible to run with our current hardware. Therefore, we
will investigate the case where n = 4 and k = 2 in the following experiment.

2.5. Alternative Optimal Strategies for k > 1 17

(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

Figure 2.4: Grid points (p4, p5) for experiment 2.5.1

Experiment 2.5.2. Let n = 4 and k = 2 such that the hider and searcher have six and twelve pure strategies
respectively. We restrict the searcher to a set of six pure strategies. Since the searcher has twelve pure strate-
gies, there are a total of

(12
6

) = 924 possible combinations. Let p1, p2, p3 and p4 be points taken from a four-
dimensional grid on the interval (0,1)4. We iterative check every combination of pure strategies to see if it can
form an optimal strategy for every p.

The runtime of experiment 2.5.2 is mostly dependent on the number of grind points. By taking only a few
number of grid points, the experiment shows that there does not exist a subset of six pure strategies that can
always form an optimal strategy for any p. Moreover, this subset also does not exist when we allow it to have
seven or eight pure strategies. These subsets only exist when they are of size equal or greater than nine. To
conclude, there does not exist a subset of six pure strategies such that a mix of these six can always form an
optimal strategy for any p. Hence, there does not exist a generalisation of proposition 2.22.

The results of experiment 2.5.2 show that the probabilities p influence which pure strategies the searcher
should mix in her optimal strategy. Let x be the number of pure strategies that the hider mixes in his optimal
strategy. We know that for some sub interval of p, there must exist a subset of x pure strategies for the searcher
such that a mix of these x pure strategies is optimal. It might be an idea to divide the interval p into multiple
smaller intervals. On every smaller interval, we could find an optimal strategy for the searcher that consists
of x pure strategies. By combing the solutions of all sub intervals, we would have somewhat of a piecewise
solution for the searcher that always mixes x pure strategies. The problem is in how we divide the interval p
and which pure strategies are optimal on what sub interval of p. We leave these problems to our successor.

3
Search and Rescue Games on a Tree

In the previous chapter, we considered the search and rescue game in which the success probabilities p =
(p1, ..., pn) were independent. That is to say if i and j are two hiding locations and pi and p j are the proba-
bilities of successfully searching i and j respectively, then the total success probability function f is defined
as the product

f (i ∪ j) = pi p j .

In this chapter, we consider the game in which the probabilities are dependent. So now the total success
probability of searching i and j is not necessarily equal to the product of the two individual probabilities.
Following Lidbetter [9], the game is now played on a graph G or more specific, a tree. The hiding locations
are the vertices of the tree which are connected with one another by the edges. The total success probability
function f is now defined by a tree G . Due to the complexity of the game played on a tree, the hider now
hides a single object in any of the vertices of the tree which the search has to find. The searcher has to move
from one vertex to another using the edges, and find the hidden object. She wins if she succeeds and loses
otherwise.

Figure 3.1: Search and Rescue Game on a Tree with Root r

3.1. Definitions and Rules
We start the chapter by first introducing some basic definitions and notation related to graphs and trees.

Definition 3.1.1 (Graph and Tree). A graph G = (V ,E) consists of a vertex set V (G) and an edge set E(G) which
we usually denote by V and E respectively. A tree T is a graph such that any two vertices are connected by exactly
one path, i.e. one finite sequence of edges.

By definition, a tree is always a graph, but a graph is not necessarily a tree. In the remainder of the chapter,
we refer to G as the graph and the tree on which the game is played on.

Definition 3.1.2 (Neighbour Vertices). Two vertices x and y are called neighbours if the edge (x, y) ∈ E(G)
exists.

19

20 3. Search and Rescue Games on a Tree

Definition 3.1.3 (Root and Branches). A root vertex r of a tree is a designated vertex r ∈ V (G) which is the
starting vertex of the tree. The root vertex will be the starting point of the game for the searcher. The branches
of a tree with root r are the connected components when the root vertex and its ingoing/outgoing edges are
removed. The roots of the branches are the neighbours of r in G.

Definition 3.1.4 (Degree and Branch Vertices). The degree of a vertex v is the number of neighbours of v. The
root r is a branch vertex if it has degree 2 and non root vertices are called branch vertices if they have degree 3.
In general, vertices of a tree can have any degree and are therefore not necessarily branch vertices.

Definition 3.1.5 (Leaf). A leaf is a vertex of degree 1 (excluding the root vertex). We denote L(G) or L as the set
containing all leaf vertices of a tree G.

Definition 3.1.6 (Subtree). A subtree G ′ = (V ′,E ′) of a tree G = (V ,E) is a subset of vertices V ′ ⊆ V and edges
E ′ ⊆ E such that G ′ is also a tree. For any vertex v ∈V we denote G(v) as the subtree of G containing all vertices
and edges whose path to r contain v.

Definition 3.1.7 (Binary Tree). A tree G is a binary tree if every non leaf vertex is a branch vertex, i.e. the root
has degree 2 and all non leaf (and non root) vertices have degree 3. We call the tree with only one (root) vertex r
the trivial binary tree.

We are now able to define the search and rescue game on a tree. The set of hiding locations S = {1,2, ...,n} now
corresponds to the vertex set V (G) of a tree G , i.e. every vertex of the tree is a hiding location. The edge set
E(G) is a collection of unordered pairs of vertices (i , j) with i , j ∈V (G) and i 6= j . The searcher has to start the
search at a pre-determined root vertex r ∈V (G) and can only go from vertex a directly to vertex b if the edge
(a,b) ∈ E(G) exists. Because the searcher starts the game at r , the root vertex is always searched first. When
searching vertex i there is a probability pi ∈ (0,1] that the search will be successful and that the hidden object
in i will be found. The probability pi is, unlike the previous search and rescue game, allowed to take on the
value 1 which makes it possible for some hiding locations to always be searched successfully.

The hider has to hide one object in any vertex v ∈ V (G). However, hiding an object in a non-leaf vertex is
a bad choice and being dominated. Of course, the leaf vertices can be thought of as the end points of the tree.
If the hider hides the object in a non-leaf vertex, then there is a leaf vertex that is even further away from the
root such that the searcher has to search even more vertices before finding the object.

For example, consider the search and rescue game on the tree depicted in figure 3.1. It is clear that if the
searcher starts at r , hiding the object in location b is being dominated by hiding in e. If the hider hides the
object in b, he might as well hide it in e such that the searcher needs to search an extra vertex. Hence, the
hider always hides the object in one of the leaf vertices.

Definition 3.1.8 (Hider’s Pure Strategy). A pure strategy h for the hider is a leaf vertex of G, i.e. h ∈ L(G).

The searcher has to search the vertices of the tree in some order. However, she is now restricted by the fact that
she has to start the search at the root r and can only search the remaining vertices using the tree structure.
This means that after searching r , the searcher is only allowed to search the neighbours of r . Recall that for
the regular search and rescue game, the searcher chooses a permutation σ of the hiding locations S and that
the set Sσi contains the first i locations searched by σ. Using the same methodology, we define the search of a
tree as follows.

Definition 3.1.9 (Search of a Tree). A search of a tree G is a permutation

σ : S →V (G)

such that

• The root r is searched first, i.e. σ(1) = r .

• At every step i , the searcher is only allowed to search the vertices v if it is a neighbour of a previously
searched vertex, i.e. ∃x ∈ Sσi−1 : (x,σ(i)) ∈ E(G) ∀i = 2, ...,n.

Note that by this definition, the searcher is allowed to freely move between vertices that have already been
searched without additional penalty. Since the hider only hides the object in leaf vertices, the searcher wants
to search as few non leaf vertices as possible before searching any leaf vertex. Of course, if the hider only hides

3.1. Definitions and Rules 21

in the leaf vertices, searching additional non-leaf vertices before searching a leaf vertex is a bad strategy. To
illustrate, consider the tree in figure 3.1. Let

σ= {r, a,c,d ,b,e} and σ′ = {r, a,b,c,d ,e}

be two searches of G . Both strategies search the leaf vertices in the order c, d and e. The strategy σ does so by
using the shortest path to any leaf vertex, whereas the strategy σ’ does not. Observe that both strategies are
equally good when the object is hidden in e and that σ is a better strategy than σ’ when it is hidden in either
c or d . This is because σ’ will search an extra vertex b in the latter case, thus decreasing the total success
probability (if we define the total success probability similar to definition 2.2.3 for the moment). Therefore, σ
dominates σ’.

Consequently, the searcher’s pure strategies are the permutations of the vertices S such that the leaf ver-
tices are searched using the shortest paths. In other words, the searcher’s pure strategies are the permutations
of the leaf vertices L in which the leaf vertices are searched using the shortest paths.

Definition 3.1.10 (Searcher’s Pure Strategy). Let m = |L| and let X = {1, ...,m} be an ordering of the leaf ver-
tices. A pure strategy σ for the searcher is a permutation

σ : X → L

of L such that

• σ(i) is the i -th leaf vertex searched in the permutation σ for i = 1, ...,m.

• Every leaf vertex σ(i) is searched by searching all vertices on the shortest path from r to σ(i) that have not
been searched already.

Every searcher’s pure strategy corresponds to exactly one search of the tree as defined in definition 3.1.9,
with the only difference being in notation. Lidbetter [9] defines the searcher’s pure strategies as all possible
searches of a tree, which is the same as definition 3.1.9 (which is also the same as definition 3.1.10 plus all
dominated searching strategies). It is unimportant which definition will be used for the proofs later on, we
have chosen to stick with Lidbetter [9] for the proofs.

Let G be a tree that has m = |L(G)| leaf vertices. Then the hider has m pure strategies which are all leaf
vertices. The searcher on the other hand has m! pure strategies, namely all possible permutations of the m
leaf vertices. Here the leaf vertices are searched using the shortest paths. The total success probability func-
tion f is now defined on the leaf vertices. If A is a set of leaf vertices that is searched, then all vertices that are
on the path from r to any x ∈ A should also be searched.

Definition 3.1.11 (Total Success Probability). Let A ⊆ L be a subset of leaf vertices and let A′ ⊇ A be the vertex
set of the subtree spanned by A in G. Then the total success probability function f : 2L → (0,1) is given by

f (A) = ∏
i∈A′

pi and f (;) = 1. (3.1)

In the remainder of the chapter, we will denote A′ as the set defined above for any set of leaf vertices A.

The pay-off is defined similar as in the regular search and rescue game, albeit with the total success probabil-
ity function as in 3.1.

Definition 3.1.12 (Pay-off). The pay-off for the searcher when she plays σ (as in definition 3.1.10) and the
hider plays h is given by

P (h,σ) = f (Sσi) = ∏
i∈(Sσi)′

pi (3.2)

where i is minimal such that h ∈ Sσi . Similarly, the pay-off for the hider is

−P (h,σ) =− ∏
i∈(Sσi)′

pi . (3.3)

Definition 3.1.13 (Search and Rescue Game on a Tree). A search and rescue game on a tree G with m leaf
vertices and one hidden object is a game in which the hider chooses a hiding strategy h as defined in definition
3.1.8, the searcher chooses a searching strategy σ as defined in definition 3.1.10 and the pay-off for the searcher
and hider is given by P (h,σ) and −P (h,σ) which are defined in 3.2 and 3.3 respectively.

22 3. Search and Rescue Games on a Tree

We will now define a small example of the search and rescue game on a tree.

Example 3.1.1 (Search and Rescue Game on a Tree: Figure 3.1). Consider the search and rescue game on the
tree in figure 3.1 where the success probabilities are given next to the vertices. Let r be the root and starting
vertex of the searcher.

The hider can hide the object in one of the leaf vertices: c, d or e, which are his pure strategies. The searcher
needs to choose in what order she will search the leaf vertices. Every order is a permutation of the leaf vertices,
and there are exactly 3! = 6 permutations, namely

σ1 = {c,d ,e}, σ2 = {c,e,d}, σ3 = {d ,c,e}, σ4 = {d ,e,c}, σ5 = {e,c,d}, σ6 = {e,d ,c}.

Recall that these permutations search the leaf vertices using the shortest paths. For example, the pure strategy
σ1 is equivalent to a search that searches the vertices in the order {r, a,c,d ,b,e}.

Assume the hider and searcher play the pure strategies h = c and σ2 respectively. The strategy σ2 will first
search the leaf vertex c by searching all vertices on the shortest path from r to c. The shortest path from r to
c is by going from r to a to c. Since the hider hid the object in c, the pay-off is given by

P (h,σ2) = f (Sσ1
1) = f ({c}) = ∏

i∈{c}′
pi =

∏
i∈{r,a,c}

pi = pr pa pc = 5

32
.

Now assume that the hider plays the pure strategy h = e instead. The strategyσ2 will first search the leaf vertex
c before searching e. To be able to search c, the vertices r and a need to be searched prior to c. Since nothing
is found in c, the searcher can move back to the root r (without additional penalty). From r , the searcher will
now make its way to e. In order to reach e, the vertex b has to be searched first. Since the object is hidden in
e, the pay-off is given by the product of the five searched vertices.

Notice that by searching e after c, the searcher is going from one branch of the tree (the branch with root
a) to the other (the branch with root b) without fully searching the former branch (d has not been searched).
For the optimal strategy defined later on, this property is undesirable. That is, partially searching a branch
of a tree. This means that in the example, the leaf vertices c and d should always be searched consecutively
in any order. These type of searches are called depth-first searches, and it will be shown later on that the
searcher’s optimal strategy consists of depth-first searches.

Definition 3.1.14 (Subsearch). A subsearch α of a search σ is the restriction of σ to some set {i , i +1, ..., j −1, j },
i.e. α describes the sequence of vertices searched in step i to j .

Definition 3.1.15 (Depth-first search). A depth-first search σ of a tree G is a search such that ∀v ∈ V (G), all
vertices of G(v) are searched immediately and without interruption after v in σ.

By restricting the searcher to strategies that are depth-first searches, the searcher has even less pure strategies.
In example 3.1.1, the searcher only has four pure strategies namely:

σ1 = {c,d ,e}, σ3 = {d ,c,e}, σ5 = {e,c,d}, and σ6 = {e,d ,c}. (3.4)

The example can now be solved by first constructing the pay-off matrix

A =

c d e


σ1 5
32

5
128

1
192

σ2 5
128

5
48

1
192

σ3 1
48

1
192

1
15

σ4 1
192

1
72

1
15

(3.5)

which can then be solved using matrix-game solvers. However, this method is once again not feasible for very
large and complicated trees. Therefore, a more general solution method is needed.

3.2. Depth-first Optimal Strategy
In this section, we will introduce a more general method to compute the optimal strategies for the search and
rescue game on a tree. These optimal strategies are defined recursively for both players. The idea is that for
every vertex v we consider the subtree G(v) and its branches. Each branch is assigned a probability of being
played over the others. By multiplying the probabilities, we eventually get a probability distribution over the
leaf vertices for the hider and a probability distribution over all depth-first searches for the searcher, which
are mixed strategies. These strategies are also known as behavioral strategies [6].

3.2. Depth-first Optimal Strategy 23

Definition 3.2.1 (Behavioural Strategy). A behavioural strategy is a probability distribution over the set of all
possible actions at every point in a game.

The optimal strategies make use of an important property of the tree, namely that it is binary. Recall that a
binary tree is a tree in which the root has degree 2 and all other non leaf vertices have degree 3. In general,
search and rescue games can be played on any tree which do not necessarily need to be binary. However,
it is possible to transform any arbitrary tree into a binary tree such that the game played on both trees are
equivalent. That is to say, both games have the same set of leaf vertices and for any set of leaf vertices A, the
total success probability f (A) is the same in both games. Binary trees have the property that every non leaf
vertex has exactly two branches. Therefore, games played on binary trees are easier to analyse. We will now
show how arbitrary non binary trees can be transformed into binary trees.

Figure 3.2: Transforming vertex a of degree 4

Figure 3.3: Removing vertex b of degree 2

To transform an arbitray non binary tree into a binary tree, there are two operations that are repeatedly ap-
plied. The first operation transforms a non leaf vertices of degree greater than 3 (greater than 2 for the root)
into a branch vertex, i.e. a vertex of degree 3 (or 2 for the root), without changing the game. An example of
such a transformation is given in figure 3.2.

Observe that vertex a in the left tree has degree d(a) = 4. By adding vertex x with px = 1 and connecting it
to a and all branches of a except for one, a now has degree 3 and x has degree d(a)−1, which is one less than
what a previously had. We continue to add vertices x until a and all added vertices x have degree of exactly
3. Note that since all added vertices x have px = 1, the new game is equivalent to the old game. Finally, by
repeating this for all non leaf vertices that have degree greater than 3 (or 2 for the root vertex), it follows that
every non leaf vertex now has degree less than or equal to 3.

The second operation removes all non leaf vertices of degree less than 3 (less than 2 for the root) without
changing the game. An example is shown in figure 3.3. First observe that vertex b in the left tree has degree
d(b) = 2. By removing b and connecting the old neighbours of b by a direct edge, the new tree has one
less non leaf vertex that is not a branch vertex. By updating the success probability of the neighbour that is
furthest away from the root as the product of its own success probability and the success probability of the

24 3. Search and Rescue Games on a Tree

removed vertex, the new and old game are equivalent. In our example, we remove b and thus we update
pnew

e = pold
e ·pb = 1

3 · 3
4 = 1

4 . Repeating this operation for all non leaf vertices of degree less than 3 (or 2 for the
root vertex), it follows that the root vertex has at least degree 2 and all other non leaf vertices have degree at
least 3.

By combining both operations, any tree can be transformed such that the root has degree 2 and all other
non leaf vertices have degree 3. Furthermore, both operations do not change the game (i.e. the game played
on the resulting tree is equivalent to the game played on the original tree). Hence, every tree can be trans-
formed into a game equivalent binary tree. Thus, we may restrict our analysis to search and rescue games
played on binary trees. This makes our analysis somewhat easier, because we are now able to use that the
tree only consists of branch vertices (including the root vertex) and leaf vertices.

Before defining the optimal strategy for the hider, we introduce some more notation. For a subset A ⊆ V (G),
we denote

π(A) = ∏
i∈A

pi . (3.6)

For a graph G we write π(G) to express π(V (G)). Denote hG as the hider’s strategy on the tree G and hG (v) as
the probability of hiding the object in vertex v when the game is played on the tree G . Finally, we denote VG

as the value of the game played on the tree G . The optimal hiding strategy can now be defined as follows.

Definition 3.2.2 (Optimal Tree Hiding Strategy). Let G be a binary tree. If G is the trivial binary tree, i.e. it
only has one root vertex r , then trivially

hG (r) = 1 and VG = pr . (3.7)

If G is not the trivial binary tree, then by definition the root r has two branches, say G1 and G2 with roots r1 and
r2 respectively. The probability of hiding the object in branch Gi when the game is played on G is then given by

hG (Gi) =λG

(
1−π(Gi)

VGi

)
, i = 1,2 (3.8)

with λG a normalizing factor given by

λG =
(

1−π(G1)

VG1

+ 1−π(G2)

VG2

)−1

. (3.9)

Let v ∈V (Gi) be a leaf vertex for i = 1,2. Then the probability of hiding the object in v when the game is played
on G is given by a conditional probability on Gi , i.e.

hG (v) = hGi (v)hG (Gi). (3.10)

The formula for the value of the game is given by

VG = prλG
(
1−π(G1)π(G2)

)
. (3.11)

The optimal tree searching strategy will be defined later on. We will focus on the optimal tree hiding strategy
hG for now. Before proving the optimality of the tree hiding strategy and that VG defined in 3.11 is indeed the
value of the game, we give an example of how to apply the tree hiding strategy to the tree depicted in figure
3.1.1.

Example 3.2.1 (Optimal Tree Hiding Strategy for Example 3.1.1). It is easier to execute the tree hiding strategy
starting from the leaf vertices, rather than from the root. This allows all variables to be filled in immediately.
First observe that the tree in figure 3.1.1 is not binary, but can be made binary by the same procedure as in figure
3.3. Then by 3.7, it follows that for the corresponding binary tree

VG(c) = 3

8
, VG(d) =

1

4
, VG(e) = 2

15

and
hG(c)(c) = hG(d)(d) = hG(e)(e) = 1.

3.2. Depth-first Optimal Strategy 25

The tree has two branch vertices, namely a and r . For branch vertex a, it follows from 3.9 that

λG(a) =
(

1−π(G(c))

VG(c)
+ 1−π(G(d))

VG(d)

)−1

=
(

1− 3
8

3
8

+ 1− 1
4

1
4

)−1

= 3

14
.

Then by filling in 3.8 and 3.11 we find

hG(a)(G(c)) = hG(a)(c) =λG(a)

(
1−π(G(c))

VG(c)

)
= 3

14

(
1− 3

8
3
8

)
= 5

14

hG(a)(G(d)) = hG(a)(d) =λG(a)

(
1−π(G(d))

VG(d)

)
= 3

14

(
1− 1

4
1
4

)
= 9

14
.

and

VG(a) = paλG(a)

(
1−π

(
G(c)

)
π
(
G(d)

))= 5

6
· 3

14

(
1− 3

8
· 1

4

)
= 145

896
.

For the root vertex r , it follows that

λG =
(

1−π(G(a))

VG(a)
+ 1−π(G(e))

VG(e)

)−1

=
(

1− 5
6 · 3

8 · 1
4

145
896

+ 1− 2
15

2
15

)−1

= 290

3537
.

Therefore by 3.8 and 3.11

hG (G(a)) =λG

(
1−π(G(a))

VG(a)

)
= 290

3537

(
1− 5

64
145
896

)
= 1652

3537

hG (G(e)) =λG

(
1−π(G(e))

VG(e)

)
= 290

3537

(
1− 2

15
2

15

)
= 1885

3537

and the value of the game is

VG = prλG

(
1−π

(
G(a)

)
π
(
G(e)

))= 1

2
· 290

3537

(
1− 5

64
· 2

15

)
= 13775

339552
.

To conclude, by 3.10 it is optimal for the hider to hide the object in c, d or e with probability

hG (c) = hG (G(a))hG(a)(c) = 1652

3537
· 5

14
= 590

3537

hG (d) = hG (G(a))hG(a)(d) = 1652

3537
· 9

14
= 118

393

hG (e) = hG (G(e))hG(e)(e) = 1885

3537
·1 = 1885

3537

which agrees with the optimal hiding strategy found when solving the matrix game in 3.5. This concludes the
optimal tree hiding strategy example.

To show that the formula for the value VG given in 3.11 is indeed the value of the game, we will first show
that hG guarantees a pay-off of at most VG . Then by introducing the optimal tree searching strategy sG and
showing that the searcher can guarantee a pay-off of at least VG , it follows that VG is indeed the value of the
game and that both strategies are optimal. To that end, we will first show that any depth-first search of G has
expected pay-off VG against the hiding strategy hG .

Recall that the hider’s pure strategies are all leaf vertices, hence a mixed strategy for the hider is a proba-
bility distribution over the leaf vertices. This is the same as a probability distribution over all vertices where
the non leaf vertices are played with probability 0. Let x be such a mixed strategy for the hider and let σ be a
search of G . Then the expected pay-off is given by

P (x,σ) = P (σ) = xσ(1)pσ(1) +xσ(2)pσ(2)pσ(1) + ...+xσ(n)pσ(n)...pσ(1). (3.12)

Here, we will drop the x in P (x,α) and instead write P (σ) when there is no ambiguity. Similarly, the expected
pay-off for some subsearch α of vertices σ({i , i +1, ..., j }) is given by

P (x,α) = P (α) = xα(i)pα(i) +xα(i+1)pα(i+1)pα(i) + ...+xα(j)pα(j)...pα(i). (3.13)

26 3. Search and Rescue Games on a Tree

Lemma 4. Let G be a binary tree and assume the hider plays the hiding strategy hG as defined in definition
3.2.2. Then any depth-first search σ of G has expected pay-off P (σ) =VG .

Proof. Let σ be depth-first search of G . We prove the lemma by induction on the number of vertices of G . If
G only has one vertex r , then trivially by 3.7

P (σ) = pr =VG .

Now assume the lemma holds for trees with fewer than n vertices. Let G be a binary tree with n vertices
including root vertex r . Since G is a binary tree, the root r is a branch vertex and has two branches. Let G1

and G2 be the branches of G . By the induction hypothesis, any depth-first search of Gi has expected pay-off
VGi for i = 1,2. Let σ1 and σ2 be depth-first searches of G1 and G2 respectively. Recall that with probability
hG (Gi) the hider hides the object in Gi . Hence with the induction hypothesis, it follows that

P (σ1) = hG (G1)VG1 and P (σ2) = hG (G2)VG2 .

Assume without loss of generality that σ searches r,σ1 and σ2 in that order. Then σ is a depth-first search of
G and the expected pay-off is

P (σ) = pr
(
P (σ1)+π(G1)P (σ2)

)
= pr

(
hG (G1)VG1 +π(G1)hG (G2)VG2

)
.

Finally, by 3.8 and 3.11 it follows that

P (σ) = pr

(
λG

(
1−π(G1)

)+π(G1)λG
(
1−π(G2)

))
= prλG

(
1−π(G1)π(G2)

)
=VG .

Lemma 4 shows that any depth-first search has an expected pay-off VG against the hiding strategy hG . Hence,
to show that VG is an upper bound to the value of the game it remains to show that depth-first searches are
best responses against hG . Here we once again make use of the term indexibility similar to section 2.3. Previ-
ously, the index was assigned to every hiding location such that a higher index indicates a higher probability
of being searched first. For the game played on a tree, the index is now assigned to a subsearch rather than
to a hiding location such that if two disjoint subsearches can be executed consecutively, then the subsearch
with the higher index should be executed first. For a fixed hider strategy x and subsearch α of vertices A with
π(A) 6= 1, the index is defined as

Ix (α) = I (α) = P (α)

1−π(A)
. (3.14)

Note that the index in 3.14 is well-defined since π(A) 6= 1. The following lemma shows that if two disjoint
subsearches can be executed consecutively, then the subsearch with the highest index has a higher expected
pay-off and hence should be executed first.

Lemma 5. Let x be a fixed hider strategy and let σ be a search. Suppose a subsearch α of σ searches a subset
A ⊆V (G) immediately before a subsearch β ofσ searches a subset B ⊆V (G) disjoint from A with π(A),π(B) 6= 1.
Let σ′ be the search identical to σ where only the order of α and β are interchanged. Then P (σ) ≤ P (σ′) ⇐⇒
I (α) ≤ I (β). Furthermore, P (σ) = P (σ′) ⇐⇒ I (α) = I (β)

Proof. Let C be the vertices searched before α in σ (and β in σ′). Then, the difference in expected pay-off is
given by

P (σ)−P (σ′) = (
π(C)P (α)+π(C)π(A)P (β)

)− (
π(C)P (β)+π(C)π(B)P (α)

)
=π(C)

(
P (α)

(
1−π(B)

)−P (β)
(
1−π(A)

))
=π(C)

(
I (α)

(
1−π(A)

)(
1−π(B)

)− I (β)
(
1−π(B)

)(
1−π(A)

))
=π(C)

(
1−π(A)

)(
1−π(B)

)(
I (α)− I (β)

)
.

The lemma follows immediately from the fact that the first three terms are positive.

3.2. Depth-first Optimal Strategy 27

Lemma 5 will now be used to prove that depth-first searches are best responses to the tree hiding strategy
hG . This will be done by defining an iterative method such that any best response can be transformed to a
depth-first search without changing the expected pay-off. Then by lemma 4, every depth-first search has the
same expected pay-off. Hence, every depth-first search is a best response to hG . This proves that VG is indeed
an upper bound to the value of the game.

Lemma 6. Let G be a binary tree and assume the hider plays the tree hiding strategy hG as in definition 3.2.2.
Then the following statements hold:

1. If v is a branch vertex and σ1 and σ2 are depth-first searches of the branches G1 and G2 of G(v) respec-
tively, then I (σ1) = I (σ2).

2. Any depth-first search σ is a best response to the tree hiding strategy hG and hG ensures that the expected
pay-off is at most VG .

Proof. First, note that G1,G2 ⊂ G(v) ⊆ G . In the remainder of the proof, we let i = 1,2 when we mention Gi

and the like. Since Gi ⊂G(v), it follows for the first statement that

hG (Gi) = hG
(
G(v)

) ·hG(v)(Gi) for i = 1,2.

Recall that hG (Gi) is the probability of hiding the object in the branch Gi when the game is played on the tree
G . Therefore, with lemma 4 it follows that

P (σi) = hG (Gi) ·VGi = hG
(
G(v)

) ·hG(v)(Gi) ·VGi .

Since Gi are the branches of G(v), we apply 3.8 to the term hG(v)(Gi) to obtain

P (σi) = hG
(
G(v)

) ·λG(v) ·
(
1−π(Gi)

)
.

Finally, dividing both sides by
(
1−π(Gi)

)
it follows that

I (σi) = P (σi)(
1−π(Gi)

) = hG
(
G(v)

) ·λG(v). (3.15)

Note that the right-hand side of 3.15 is independent of i , hence I (σ1) = I (σ2) which proves the first statement.

For the second statement, let σ be a best response to hG that is not depth-first. We will show that we can
iteratively change the order of subsearches in σ such that we obtain a depth-first search σ’ that has the same
expected pay-off as σ. First note that since G is a binary tree, there must exist a branch vertex v such that
the branches of G(v) are both given by a single leaf vertex. The subsearch of these branches in σ are trivially
depth-first. Let v be such a branch vertex, Gi be its branches and σi be their respective subsearches in σ.
Then σ searches the branches Gi in a depth-first order, but not necessarily consecutively. Assume w.l.o.g.
that σ searches the branches of G(v) in the order σ1, α, σ2, where α is the subsearch of some subset A ⊂V (G)
disjoint from G(v). Since σ is a best response, it follows by lemma 5 that

I (σ1) ≥ I (α) ≥ I (σ2).

But by part 1, we have that
I (σ1) = I (σ2) = I (α).

Therefore, swapping the order in which σ1 and α are searched in σ leaves the expected pay-off unchanged.
After the swap, the order in which G(v) is searched is: α, σ1, σ2. Furthermore, note that vertex v must be
searched before σ1 and that α does not search v . Let β be the subsearch of the vertices searched after v and
before α in σ such that the order of the search is given by: v , β, α, σ1, σ2. Notice that changing the order
of the search such that v is searched immediately before σ1 does not change the expected pay-off. By doing
so, the only thing that changes is that the subsearches β and α are now searched one step earlier. Hence, the
expected pay-off does not decrease. It also does not increase, otherwise σ would not be a best response.

The subtree G(v) is now searched in a depth-first order in σ without changing the expected pay-off. By
repeating these steps for all v , it follows that all subtrees G(v) are searched in a depth-first order. Now consider
the branch vertices w 6= v such that the branches of G(w) are either leaf vertices and/or the branches G(v).
Then the branches of G(w) are searched in a depth first order, but not necessarily consecutively. Therefore,

28 3. Search and Rescue Games on a Tree

we can again repeat the previous steps to eventually obtain a depth-first search σ′ of G(r) = G that has the
same expected pay-off as σ. Hence, σ′ is also a best response to hG . By lemma 4, any depth-first search has
the same expected pay-off VG against hG . Therefore, any depth-first search is a best response to hG and hG

ensures an expected pay-off of at most VG .

In order to show that VG is the value of the game, it remains to show that there exist a searching strategy
sG such that the searcher can guarantee a pay-off of at least VG . This also directly proves that the strategies
hG and sG are optimal. Before defining the optimal tree searching strategy sG , the following lemma will be
introduced to ensure that the optimal searching strategy sG is well-defined.

Lemma 7. Let G be a binary tree, then the following inequality holds

π(G) ≤VG ≤ 1, (3.16)

where VG is defined as in 3.11.

Proof. The proof is by induction on the number of vertices. If G has only vertex r , then

π(G) = pr =VG ≤ 1.

Assume the lemma holds for trees with fewer than n vertices. Let G be a binary tree with n vertices, r be the
root vertex of G and let G1 and G2 be the branches of G . Since G1 and G2 have fewer than n vertices, it follows
by the induction hypothesis that

π(G1) ≤VG1 ≤ 1

π(G2) ≤VG2 ≤ 1.

It follows that the normalizing factor in 3.9 satisfies

λG =
(

1−π(G1)

VG1

+ 1−π(G2)

VG2

)−1

≥
(

1−π(G1)

π(G1)
+ 1−π(G2)

π(G2)

)−1

= π(G1)π(G2)

π(G2)
(
1−π(G1)

)+π(G1)
(
1−π(G2)

)
≥ π(G1)π(G2)(

1−π(G1)
)+π(G1)

(
1−π(G2)

)
= π(G1)π(G2)

1−π(G1)π(G2)
.

It follows from 3.11 that
VG = prλG

(
1−π(G1)π(G2)

)≥ prπ(G1)π(G2) =π(G).

Furthermore, the normalizing factor in 3.9 also satisfies

λG =
(

1−π(G1)

VG1

+ 1−π(G2)

VG2

)−1

≤ (
1−π(G1)+1−π(G2)

)−1

≤
(
1−π(G1)+π(G1)

(
1−π(G2)

))−1

=
(
1−π(G1)π(G2)

)−1
.

Therefore, it follows that 3.11 also satisfies

VG = prλG
(
1−π(G1)π(G2)

)≤ pr ≤ 1.

It follows from lemma 7 that the formula for the value VG defined in 3.11 is bounded. These bounds are very
intuitive if we think of the pay-offs as probabilities and VG as the value of the game. In the worst case, all
locations need to be searched which corresponds to the lower bound π(G). In the proof of the lemma, it is
shown that pr is an even stricter upper bound to VG . In the best case, only the root vertex r needs to be
searched which is an upper bound. The optimal searching strategy sG can now be defined as follows.

3.2. Depth-first Optimal Strategy 29

Definition 3.2.3 (Optimal Tree Searching Strategy). Let G be a binary tree. If G is the trivial binary tree with
root r , then trivially

qr = 1. (3.17)

If G is not the trivial binary tree, then the tree searching strategy sG is a choice of depth-first searches of G and
described by specifying which branch of the tree is searched first at every branch vertex. Let v be a branch vertex
with branches G1 and G2. The branch G1 is searched first with probability

qG1 =λG

(
1

VG1

− π(G2)

VG2

)
(3.18)

where λ(G) and VG are defined as in the optimal tree hiding strategy in definition 3.2.2. Trivially, G2 will be
searched first with probability 1−qG1 .

The optimal tree searching strategy is a depth-first search in which the probability of searching one branch
before the other is given by qG1 as in 3.18. Let us first verify that the probabilities qG1 and qG2 are well-defined.
It is trivial that both probabilities add up to 1. Hence, we will show that qG1 and qG2 are non-negative. By
lemma 7, it follows that

λ(G) > 0,
1

VG1

≥ 1 and
π(G2)

VG2

≤ 1.

Hence, qG1 is indeed non-negative. A similar argument shows that qG2 is non-negative, and therefore both
probabilities are well-defined. Let us now demonstrate how the optimal searching strategy can be applied to
example 3.1.1.

Example 3.2.2 (Optimal Tree Searching Strategy for Example 3.1.1). Recall that the pure strategies for the
searcher are given in 3.4 which are all depth-first searches of G. We will show that the optimal tree searching
strategy is a mixed strategy that mixes between the four pure strategies in 3.4. First note that

VG(c) = 3

8
, VG(d) =

1

4
, VG(e) = 2

15
, VG(a) = 145

896

and

λG(a) = 3

14
, λG = 290

3537
which were previously calculated in example 3.2.1. For the root vertex r , it follows that

qG(a) =λG

(
1

VG(a)
− π(G(e))

VG(e)

)
= 290

3537

(
896

145
−1

)
= 1502

3537

qG(e) =λG

(
1

VG(e)
− π(G(a))

VG(a)

)
= 290

3537

(
15

2
− 14

29

)
= 2035

3537
.

For branch vertex a, it follows that

qG(c) =λG(a)

(
1

VG(c)
− π(G(d))

VG(d)

)
= 3

14

(
8

3
−1

)
= 5

14

qG(d) =λG(a)

(
1

VG(d)
− π(G(c))

VG(c)

)
= 3

14

(
4−1

)
= 9

14
.

To conclude, the first pure strategy σ1 = {c,d ,e} corresponds to searching vertex a over b with probability qG(a)

and also searching vertex c over d with probability qG(c). Hence, the optimal tree searching strategy plays σ1

with probability

sσ1 = qG(a) ·qG(c) = 3755

24759
.

The probabilities of playing the remaining three pure strategies are obtained in a similar way. It follows that the
optimal tree searching strategy sG is a mixed strategy in which the pure strategies of 3.4 are played according to
the following probabilities

sG = (sσ1 , sσ3 , sσ5 , sσ6) =
(3755

24759
,

751

2751
,

10175

49518
,

2035

5502

)
.

This concludes the optimal tree searching strategy example.

30 3. Search and Rescue Games on a Tree

The following lemma shows that the tree searching strategy sG ensure an expected pay-off of at least VG

against any hider’s pure strategy. Since we have already shown that VG is an upper bound to the value of
the game, the lemma proves that VG is indeed the value of the game and that both strategies hG and sG are
optimal.

Lemma 8. Let G be a binary tree and assume the hider plays a pure hiding strategy h. Then the tree searching
strategy sG ensures an expected pay-off of at least VG .

Proof. The proof is yet again by induction on the number of vertices of G . Let G be a binary tree. First assume
that G only has one vertex r . Then obviously

P (sG) = pr =VG

by 3.7. Now assume the lemma holds for all binary trees with fewer than n vertices. Let G be a binary tree
with n vertices and let r be the root of G . Since G is a binary tree we have that r is a branch vertex. Let G1 and
G2 be the branches of G . The tree searching strategy sG will search both G1 and G2 in a depth-first way after
searching the root r . Assume w.l.o.g. that h ∈V (G1). By applying the induction hypothesis on G1 and G2, and
using 3.18 and 3.11, it follows that

P (sG) ≥ pr
(
qG1VG1 +qG2π(G2)VG1

)
= prλG

(
1

VG1

− π(G2)

VG2

)
VG1 +prλG

(
1

VG2

− π(G1)

VG1

)
π(G2)VG1

= prλG

(
1−π(G1)π(G2)

)
=VG .

Hence, tree searching strategy sG ensures an expected pay-off of at least VG .

From lemma 6 and 8, it follows that formula for the value VG in 3.11 is indeed the value of the game. Further-
more, the tree hiding and searching strategies hG and sG defined in definition 3.2.2 and 3.2.3 respectively are
indeed optimal strategies.

3.3. Binary Tree Reconstruction from an Oracle Function
In the previous sections, the search and rescue game on an arbitrary tree has been defined and solved. This
is done by first transforming the tree into a game equivalent binary tree (if necessary), and then solving the
game played on the binary tree. Every binary tree can be uniquely represented by its total success probability
function f as defined in definition 3.1.11. For example, the tree depicted in figure 3.4 can be represented by a
function f with values given in table 3.1.

Figure 3.4: Tree Reconstruction Using Dilworth Truncation

Typically, only the values of the function f are given by some oracle. As a result, the structure of the tree
and the success probabilities p remain unknown. We know from the previous section that if a function f
has a tree representation, then the corresponding game can be solved. However, this solution makes use of

3.3. Binary Tree Reconstruction from an Oracle Function 31

Table 3.1: Oracle Function f of the Tree in Figure 3.4

S ; a b c d ab ac ad bc bd cd abc abd acd bcd abcd

f 1 4
75

6
35

1
25

1
20

4
175

2
125

1
50

3
175

3
140

1
50

6
875

3
350

1
125

3
350

3
875

the structure of the tree which is now unknown. Therefore, the goal of this section is to find a method to
reconstruct a tree from an oracle function f given that it has a tree representation.

Furthermore, not all oracle functions allow a tree representation. There are certain properties that f must
satisfy in order to allow a tree representation. The goal of this section is to find all necessary requirements on
f such that it has a tree representation, and to find a method to reconstruct a tree from an oracle function f
given that it has a tree representation.

Let us first consider the binary tree in figure 3.4 for which the values of its function f are given in table 3.1.
Since f has a tree representation, we might be able to observe from table 3.1 that f satisfies certain properties.
The first observation is that f is a decreasing set function.

Definition 3.3.1 (Decreasing Set Function). Let L be a set. A set function f : 2L → (0,1) is decreasing iff

f (A) ≥ f (B), ∀A,B ∈ 2L : A ⊆ B. (3.19)

Proposition 3.3.1. Let L be the set of leaf vertices and let f : 2L → (0,1) be an oracle function. If f has a tree
representation, then it must be decreasing.

Proof. The proof is by contradiction. Assume that ∃A,B ∈ 2L : A ⊆ B and f (A) < f (B). Trivially, if A = B then
f (A) = f (B) which is a contradiction. Therefore, assume that A 6= B and let x1, ..., xn be all vertices of A and
let y1, ..., ym be all vertices of B \ A. Since B = (B \ A)∪ A and both sets on the right-hand side are disjoint, it
follows that

f (A) =
n∏

i=1
pxi >

n∏
i=1

pxi

n∏
j=1

pym = f (B),

which is a contradiction. Hence, f must be decreasing.

Proposition 3.3.1 states the first requirement on the oracle function f . The requirement that f is a decreas-
ing set function is very intuitive. If searching a set of leaf vertices has a certain success probability, then by
searching more vertices the total success probability can not be any greater.

The second requirement on the oracle function f is somewhat harder to derive from table 3.1. This re-
quirement is similar to the notion of submodular and supermodular function Narayanan [10].

Definition 3.3.2 (Submodular/Supermodular Function). Let L be a set. A set function f : 2L → (0,1) is sub-
modular iff

f (A∪B)+ f (A∩B) ≤ f (A)+ f (B), ∀A,B ∈ 2L . (3.20)

Similarly, it is supermodular iff

f (A∪B)+ f (A∩B) ≥ f (A)+ f (B), ∀A,B ∈ 2L . (3.21)

Proposition 3.3.2. Let L be the set of leaf vertices and let f : 2L → (0,1) be an oracle function. If f has a tree
representation, then it must be that

f (A∪B) f (A∩B) ≥ f (A) f (B), ∀A,B ∈ 2L . (3.22)

We call functions that satisfy 3.22 multiplicative supermodular functions.

Proof. The proof is by contradiction. Assume ∃A,B ∈ 2L : f (A∪B) f (A∩B) < f (A) f (B). There are two cases:

1: A ∩B = ;. First note that (A ∪B)′ = A′∪B ′ in which the elements of A′∩B ′ are counted twice in the
right-hand side. Hence, it follows that

(A∪B)′ = A′∪ (B ′ \ A′)

in which both sets on the right-hand side are disjoint. By definition 3.1.11, it follows that

f (A∪B) f (A∩B) = ∏
i∈(A∪B)′

pi =
∏

i∈A′
pi

∏
j∈B ′\A′

p j >
∏

i∈A′
pi

∏
j∈B ′

p j = f (A) f (B).

32 3. Search and Rescue Games on a Tree

2: A∩B 6= ;. First observe that the following relation holds

(A∩B)′ ⊆ (A′∩B ′), (3.23)

see appendix A.2.3. Hence, it follows from definition 3.1.11 that

f (A∪B) f (A∩B) = ∏
i∈(A∪B)′

pi
∏

k∈(A∩B)′
pk = ∏

i∈A′
pi

∏
j∈B ′\A′

p j
∏

k∈(A∩B)′
pk

≥ ∏
i∈A′

pi
∏

j∈B ′\A′
p j

∏
k∈A′∩B ′

pk = ∏
i∈A′

pi
∏

j∈B ′
p j = f (A) f (B).

Both cases lead to a contradiction which proves the proposition.

Proposition 3.3.2 states the second requirement of the oracle function f and closely resembles the definition
of supermodular functions, but now the inequality is multiplicative instead of additive. This requirement is
less intuitive than the requirement of f being decreasing. It more or less says that if f has a tree representation
and A and B are two sets of leaf vertices, then the product of the vertices that A′ and B ′ have in common (leaf
and branch vertices) is at most f (A∩B).

The requirement that f is decreasing and multiplicative supermodular are not sufficient to prove that f
has a tree representation. Furthermore, we also can not derive any more requirements solely from looking at
the values in table 3.1. However, there is a third requirement on f that we found when we tried to reconstruct
a tree from a function f .

Conjecture 3.3.1. Let L be the set of leaf vertices and let f : 2L → (0,1) be an oracle function. If f has a tree
representation, then for any subset X ⊆ L there exists a split of X into two non-empty sets A and Ac , and a
constant c such that

c · f (Y) = f (Y ∩ A) f (Y ∩ Ac), ∀Y ⊆ X . (3.24)

We call functions f for which this property holds totally reducible.

It becomes more evident later on (when we try to reconstruct a tree from a function f) why we think that
conjecture 3.3.1 is a necessary requirement on f . For now, let us move on and try to reconstruct a tree from
an oracle function f , given that f has a tree representation.

In Narayanan [10] an operation called the Dilworth Truncation is used to solve a version of the hybrid rank
problem. In this problem, a graph G = (V ,E) needs to be partitioned or split in two sets A and Ac such that
an objective function is minimized. The idea is to use an operation similar to the Dilworth Truncation to
reconstruct a binary tree from an oracle function f . This operation iterative splits a set of leaf vertices into
two groups (branches) by maximizing an objective function. Every split corresponds to a branch vertex that
connects its two branches. Hence, the structure of the tree can be recovered by iteratively splitting the entire
set of the leaf vertices.

Before defining the operation, we introduce the following notation. Let L = {y1, ..., ym} be the set of leaf
vertices. We denote

{y1, ..., yk |yk+1, ..., ym}, 1 ≤ k ≤ m

as the split (or partition) of L into two sets {y1, ..., yk } and {yk+1, ..., ym}. If any of the two sets is not the singleton
set, i.e. the set with only one vertex, then it can be further split in two similar as before. For example, we
denote

{y1, ..., y j ||y j+1, ..., yk |yk+1, ..., yl ||yl+1, ..., ym}, 1 ≤ j < k < l ≤ m

as the split of L similar as before where in addition, the set {y1, ..., yk } and {yk+1, ..., ym} are both split in two
once more. The Dilworth Truncation operation to reconstruct a tree from an oracle function f is stated as
follows.

Definition 3.3.3 (Dilworth Truncation Operation for Binary Tree Reconstruction). Let L = {y1, ..., ym} be the
set of leaf vertices and let f : 2L → (0,1) be some oracle function for which a tree representation exists. For a
subset X ⊆ L, we split X into two non-empty sets A and Ac = (X \ A) such that the excess defined as

e(A, X) = f (A) f (Ac)

f (X)
(3.25)

3.3. Binary Tree Reconstruction from an Oracle Function 33

is maximised over A. Every split of a set X into two sets A and Ac corresponds to a branch vertex x with branches
A and Ac . Let x1, ..., xi be the branch vertices of the splits that occurred prior to x, then the success probability
of x is given by

px = e(A, X)∏i
k=1 pxk

. (3.26)

The tree can be reconstructed by iteratively splitting L until there are only singleton sets left. Let yl be a leaf
vertex which is connected to the branch vertices x1, ..., x j . Then the success probability of yl is given by

pyl =
f (l)∏ j

k=1 pxk

. (3.27)

Let us give a small example of how to apply the Dilworth Truncation operation to reconstruct a tree from an
oracle function f , given that such a representation exists.

Example 3.3.1 (Binary Tree Reconstruction of figure 3.4 from table 3.1). Let L = {a,b,c,d} be the set of leaf
vertices. We first split the entire set L until only singleton sets remain. For the first split, let X = L. There are a
total of seven unique splits

L(1)
1 = {

a
∣∣b,c,d

}
, L(1)

2 = {
b
∣∣a,c,d

}
, L(1)

3 = {
c
∣∣a,b,d

}
, L(1)

4 = {
d

∣∣a,b,c
}
,

L(1)
5 = {

a,b
∣∣c,d

}
, L(1)

6 = {
a,c

∣∣b,d
}
, L(1)

7 = {
a,d

∣∣b,c
}
.

For every split, the excess defined in 3.25 is given by

e
(
{a}, {a,b,c,d}

)= 2

15
, e

(
{b}, {a,b,c,d}

)= 2

5
, e

(
{c}, {a,b,c,d}

)= 1

10
, e

(
{d}, {a,b,c,d}

)= 1

10
,

e
(
{a,b}, {a,b,c,d}

)= 2

15
, e

(
{a,c}, {a,b,c,d}

)= 1

10
, e

(
{a,d}, {a,b,c,d}

)= 1

10
.

The excess is maximised when X is split as in L(1)
2 . Hence, we first split b from the rest as follows{

b
∣∣a,c,d

}
.

This split indicates that there is a branch vertex r (the root) that connects the branches {b} and {a,c,d}. Now we
iteratively continue with the branches of r . Since {b} is a singleton set, we can not split it further. Therefore, we
continue and split the other branch {a,c,d}. Let X = {a,c,d}, then there are a total of three unique splits of X ,
namely

L(2)
1 = {

a
∣∣∣∣c,d

}
, L(2)

2 = {
c
∣∣∣∣a,d

}
, L(2)

3 = {
d

∣∣∣∣a,c
}
.

The excess of every split is equal to

e
(
{a}, {a,c,d}

)= 2

15
, e

(
{c}, {a,c,d}

)= 1

10
, e

(
{d}, {a,c,d}

)= 1

10

and maximised when X is split as in L(2)
1 . Hence, we split {a} from {c,d} as follows{

b
∣∣a∣∣∣∣c,d

}
.

The second split tells us that there is a branch vertex x1, that is connected to r , and connects the branches {a}
and {c,d}. Continuing iteratively, we skip the singleton set {a} and split the branch {c,d}. Note that the branch
only has one trivial split, and therefore we split the entire set L as follows{

b
∣∣a∣∣∣∣c∣∣∣∣∣∣d}

.

The last split of the set {c,d} tells us that there is a branch vertex x2, that is connected to x1 which in turn is con-
nected to r , and connects the branches {c} and {d}. The structure of the tree has now been recovered. It remains
to compute the success probabilities of the vertices.

Note that the root r is connected to x1 which is connected to x2. Furthermore, r splits {b} from {a,c,d}, x1

34 3. Search and Rescue Games on a Tree

splits {a} from {c,d} and x2 splits {c} from {d}. Therefore, by 3.26 it follows that the success probabilities for the
branch vertices are given by

pr = e
(
{b}, {a,b,c,d}

)= 2

5
, px1 =

e
(
{a}, {a,c,d}

)
pr

=
2

15
2
5

= 1

3
, px2 =

e
(
{c}, {c,d}

)
pr px1

=
1

10
2

15

= 3

4
.

For the leaf vertices, note that b is connected to r , a is connected to x1 which is connected to r and both c and
d are connected to x2 which is connected to x1 which is connected to r . Therefore, it follows from 3.27 that the
success probabilities for the leaf vertices are given by

pb = f (b)

pr
= 3

7
, pa = f (a)

pr px1

= 2

5
, pc = f (c)

pr px1 px2

= 2

5
, pd = f (d)

pr px1 px2

= 1

2
.

This concludes the tree reconstruction example.

By iteratively splitting the tree as in definition 3.3.3, it is easy to verify that we eventually obtain a binary tree.
Let X be the set of leaf vertices. Since f has a binary tree representation, we can split X into two sets A and
Ac such that the subtrees spanned by both sets only have the root vertex in common. Such a split is found
exactly when the excess defined in 3.25 is maximised.

Furthermore, since the subtrees only have the root vertex in common, the success probability of the root
vertex must be equal to the excess. For subsequent splits (branch vertices), the subtrees of the sets A and
Ac have one branch vertex (belonging to the current split) and multiple previously restored branch vertices
(belonging to the splits prior to the current one) in common. Hence, the success probability of the branch
vertex belonging to the current split must be exactly as in 3.26.

The success probability of a leaf vertex must also be given as in 3.27, because the leaf vertex is connected
by a sequence of branch vertices. Hence, by dividing the total success probability of a leaf vertex with the
success probabilities of all branch vertices spanned by the subtree of the leaf vertex, we obtain the success
probability of the leaf vertex.

Conjecture 3.3.1 follows from the Dilworth Truncation operation that reconstructs tree from f . It says that if
f has a tree representation, then for any subset of leaf vertices X ⊆ L there exist a split of X into two branches
A and Ac such that

c = f (Y ∩ A) f (Y ∩ Ac)

f (Y)
, ∀Y ⊆ X .

If we think about this in terms of a tree, it is the equivalent of saying that there exist a set of branch vertices B
such that (Y ∩ A)′∩ (Y ∩ Ac)′ = B for all subsets Y ⊆ X . In other words, for any subset of leaf vertices Y ⊆ X ,
f (Y) always contains the product of the success probabilities of the branch vertices in B .

There are two open questions in this section that we leave to our successor. The first question is whether
or not it is possible to prove conjecture 3.3.1. The split X that is needed in the conjecture is most likely the
split with maximal excess. With such a split and using that f has a binary tree representation, it might be
possible to prove the conjecture.

The second question relates to the requirements on the oracle function f such that it has a tree repre-
sentation. In order to prove that a function f has a tree representation, is it sufficient that f is decreasing,
multiplicative supermodular and totally reducible? It might be possible to prove this question by showing
that the Dilworth Truncation operation in definition 3.3.3 is able to reconstruct a binary tree from f , given
that f satisfies the three aforementioned requirements. However, we have yet to find an answer to both of
these questions.

4
Search and Rescue Games on a Graph

In this chapter, we extend the search and rescue game on a tree that has been defined in the previous chap-
ter. Recall that trees are graphs such that any two vertices are connected with exactly one path. In general, a
graph does not necessarily need to be a tree so that there can be more than one path between any two ver-
tices. Therefore, we are interested in how the game changes when it is played on a graph that is not a tree.
By playing the search and rescue game on a graph, the game becomes more complicated. Therefore, we will
restrict ourselves to very simple graphs that have a sink vertex (i.e. a vertex of no return). There might exist a
general solution for graphs that have a sink vertex, this chapter is a first step towards such a solution.

Let n be the number of vertices of the graph. The graphs that we will consider in this chapter have a starting
vertex A (also called a source vertex) and a vertex of no return Z (also called a sink vertex). The remaining
m = n −2 vertices are called the in-between vertices, these in-between vertices are all directly connected to
the source and sink vertex. The edges of the graph can be both directed and/or undirected. With the addi-
tion of the sink vertex Z , it is possible that the game will end prematurely when it has been searched. This
happens independent on whether or not it was searched successfully. Figure 4.1 shows three examples of
the aforedescribed graphs for n = 4, the graphs (and also the corresponding game) differ from one another
depending on the directionality of the edges.

(a) Type 1:
Directed Edges

(b) Type 2:
Undirected Edges

(c) Type 3: Directed
& Undirected Edges

Figure 4.1: Search and Rescue Games on a Graph for n = 4

The game on a graph is similar to that on a tree. The hider hides one object in any of the vertices which the
searcher has to find. The searcher has to start at the source vertex A. Every vertex has a certain probability of
being searched successfully and at any point in the game, the searcher can only search a vertex if the structure
of the graph allows it. Every section in this chapter is dedicated to the game played on one of the three graph
types as in figure 4.1.

Before we jump into the analysis of the games, we define some more notation. For any vertex X of a graph,
we denote h(X) as the pure strategy of the hider that hides the object in vertex X . Furthermore, we denote

35

36 4. Search and Rescue Games on a Graph

hX as the probability of the hider playing h(X). For any in-between vertex X of the graph, we denote s(X)
as the pure strategy of the searcher that searches A, X and then Z in that order. We also denote sX as the
probability of the searcher playing s(X). Similarly, for two in-between vertices X1 and X2 we denote s(X1, X2)
as the pure strategy of the searcher that searches A, X1, X2 and then Z in that order, and we denote sX1 X2 as
the probability of the searcher playing s(X1, X2).

4.1. Game 1: Search and Rescue Game with Directed Edges
In this section, we consider the search and rescue games on the type one graphs as in figure 4.1a. All edges of
the graph are either directed from the source vertex to any in-between vertex, or from any in-between vertex
to the sink vertex. We will refer to the aforedescribed game as the search and rescue game of type one with n
vertices. Figure 4.2 shows three examples of the search and rescue game of type one.

Figure 4.2: Type One Search and Rescue Game for n = 4,5 and 6

The hider hides the object in any of the vertices of the graph. It is trivial that hiding the object in A is being
dominated. Hence, the hider has exactly n −1 pure strategies. The searcher needs to choose through which
in-between vertex she will traverse to the sink vertex. There are exactly m = n−2 in-between vertices, so that
the searcher has m pure strategies. Let us first consider the simplest case where n = 4 (and m = 2) and try to
solve this game. The graph belonging to this game is depicted in figure 4.2.

The searcher has two pure strategies. She can either take the left path with s(B) or the right path with
s(C). The hider on the other hand has three pure strategies, namely h(B), h(C) and h(Z). Since the hider and
searcher only have two and three pure strategies respectively, we can easily compute the pay-off matrix for
this game. In general, the hider and searcher have n−1 and m pure strategies respectively, so that the pay-off
matrix is of size m × (n − 1) which is still feasible for small n. The corresponding matrix game can now be
solved using a standard matrix game solver. For the graph with n = 4, the pay-off matrix is given as follows

B C Z()
(AB Z) p A pB 0 p A pB pZ

(AC Z) 0 p A pC p A pC pZ

. (4.1)

To analyse the search and rescue games of type one, we have written a code that constructs the pay-off matrix
given the success probabilities p = (p A , ..., pZ). The corresponding matrix game can then be solved by a matrix
game solver. The code for the construction of the pay-off matrix can be found in appendix A.1.5, and the code
for the matrix game solver can be found in appendix A.1.4.

The idea is to first solve the simplest case where n = 4 and try to generalise its solution. To that end, we
will need to analyse the behaviour of both players. This is done by generating random probabilities for p
and solving the corresponding matrix game. For every random probability p and corresponding solution, we
observe which pure strategies both players mix in their optimal strategy. By repeating this several times, we
are able to make the following observations:

• The first observation is that the searcher always mixes both of her pure strategies. In other words, the
searcher always plays a mixed strategy s = (sB , sC) which plays s(B) or s(C) with some probability sB and
sC respectively.

4.1. Game 1: Search and Rescue Game with Directed Edges 37

• The second observation is that the hider will not hide the object in Z when pZ ≥ 1
2 . Hence, the hider

plays a mixed strategy h = (hB ,hC ,hZ) = (hB ,hC ,0) which plays h(B) and h(C) with some probability hB

and hC respectively. Furthermore, the probabilities hB and hC are identical to the probabilities sB and
sC respectively.

• The last observation is that the hider will not hide the object in either B or C when pZ < 1
2 . This is

dependent on the probabilities pB and pC , where the vertex with the higher success probability will not
be played. Hence, the hider will mix h(Z) with either h(B) or h(C).

By observation, we now know which pure strategies both players will mix in their optimal strategy. The game
is now easily solved, the result has need summarised in the following theorem.

Theorem 2. Consider the search and rescue game of type one with n = 4. The graph of this game is given in
figure 4.2 with pay-off matrix given in 4.1. The solution of this game is dependent on the success probability pZ .

– If pZ ≥ 1
2 , it is optimal for the searcher to use the mixed strategy s = (sB , sC) which plays s(B) and s(C)

with probability sB and sC respectively given by

s = (sB , sC) =
(

1

pB

,
1

pC

)
λ, λ= 1

1
pB

+ 1
pC

. (4.2)

For the hider, it is optimal to use the mixed strategy h = (hB ,hC ,0) which plays h(B) and h(C) with prob-
ability hB = sB and hC = sC respectively as defined in 4.2. The value of the game is given by

VG =λp A . (4.3)

– If pZ < 1
2 , assume w.l.o.g. that pB ≤ pC . Then it is optimal for the searcher to use the mixed strategy

s = (sB , sC) which plays s(B) and s(C) with probability sB and sC respectively given by

s = (sB , sC) =
(

1

pB

,
1

pC pZ

− 1

pC

)
µ, µ= 1

1
pB

+ 1
pC pZ

− 1
pC

. (4.4)

For the hider, it is optimal to use the mixed strategy h = (hB ,0,hZ) which plays h(B) and h(Z) with prob-
ability hB and hZ respectively given by

h = (hB ,0,hZ) =
(

pC

pB

−1,0,
1

pZ

)
ξ, ξ= 1

pC
pB

−1+ 1
pZ

. (4.5)

The value of the game is given by
VG =µp A . (4.6)

In the case where pC ≤ pB , the optimal strategies are defined in a similar and symmetrical way.

Proof. First observe that the probabilities defined in 4.2, 4.4 and 4.5 are all non-negative and well-defined.
This follows from the fact that

• pB , pC , pZ ∈ (0,1)

• pB ≤ pC , for 4.5

Let pZ ≥ 1
2 and assume the searcher plays s = (sB , sC) as in 4.2. The expected pay-off is dependent on what

hiding strategy the hider plays. The hider has three pure strategies: h = B , h =C and h = Z , and the expected
pay-off against any pure strategy of the hider is given by

B C Z()
λ

pB
·p A pB

λ
pC

·p A pC
λ

pB
·p A pB pZ + λ

pC
·p A pC pZ

B C Z()= λp A λp A 2λp A pZ

B C Z()≥ λp A λp A λp A
,

38 4. Search and Rescue Games on a Graph

where we use that pZ ≥ 1
2 . Hence, the searcher can guarantee a pay-off of at least λp A with s and therefore

VG ≥ λp A . Now assume the hider plays the strategy h = (hB ,hC ,0) with probabilities equivalent to 4.2. Then
the expected pay-off is dependent on what searching strategy the searcher plays. The searcher has two pure
strategies: s = (AB Z) or s = (AC Z), and the expected pay-off against any pure strategy of the searcher is given by()

(AB Z) λ
pB

·p A pB

(AC Z) λ
pC

·p A pC

=
()
λp A

λp A
.

Hence, the hider can ensure that the pay-off is at most λp A with h and therefore VG ≤ λp A . As a result,
VG =λp A is the value of the game and the strategies s and h are indeed optimal.

Now let pZ < 1
2 and assume w.l.o.g. that pB ≤ pC and that the searcher plays s = (sB , sC) as in 4.4. It follows that

the expected pay-off is given by

B C Z()
µp A µp A

(
1

pZ
−1

)
µp A pZ +µp A pZ

(
1

pZ
−1

)
≥

B C Z()
µp A µp A µp A

,

where we use that pZ < 1
2 . Hence, the searcher can guarantee a pay-off of at least µp A with s and therefore

VG ≥µp A . Now assume the hider plays the strategy h = (hB ,0,hZ) as in 4.5. Then the expected pay-off is given
by ()

(AB Z) ξp A pB

(pC
pB

−1
)+ξp A pB

(AC Z) ξp A pC

=
()
ξp A pC

ξp A pC
.

Hence, the hider can ensure that the pay-off is at most ξp A pC with h and therefore VG ≤ ξp A pC . Finally, notice
that

µp A = p A

1
pB

+ 1
pC

(
1

pZ
−1

) = p A pC

pC
pB

+ 1
pZ

−1
= ξp A pC .

As a result, VG =µp A is the value of the game and the strategies s and h are optimal.

Theorem 2 solves the search and rescue game of type one with n = 4. The solution to this game is dependent
on the success probabilities p = (p A , pB , pC , pZ). It is optimal for the searcher to mix all her pure strategies,
whereas it is optimal for the hider to not mix h(A) and one other pure strategy depending on p. By adding
more in-between vertices to the game and by solving the corresponding matrix game, we have discerned that
the solution to the game with general n is a generalisation of theorem 2.

Theorem 3. Consider the search and rescue game of type one with n ≥ 4 vertices and m in-between vertices.
Let X1, ..., Xm be all in-between vertices and let Xk be the in-between vertex with the highest success probability,
i.e.

pXk
≥ pXi

, ∀i = 1, ...,m.

The solution of this game is depedent on the success probability pZ .

– If pZ ≥ 1
m , it is optimal for the searcher to use the mixed strategy s = (sX1 , ..., sXm) which plays any s(Xi)

with probability sXi
given by

sXi
= λ

pXi

, λ=
(m∑

i=1

1

pXi

)−1

, i = 1, ...,m. (4.7)

For the hider, it is optimal to use the mixed strategy h = (hX1 , ...,hXm ,hZ) = (hX1 , ...,hXm ,0) which plays
any h(Xi) with probability hXi

= sXi
as defined in 4.7. The value of the game is given by

VG =λp A . (4.8)

– If pZ < 1
m , it is optimal for the searcher to use the mixed strategy s = (sX1 , ..., sXm) which plays any s(Xi)

with probability sXi
given by

sXi
= µ

pXi

, i ∈ {1, ...,m | i 6= k}, (4.9)

4.1. Game 1: Search and Rescue Game with Directed Edges 39

sXk
= µ

pXk

(
1

pZ

−m +1

)
, µ=

(
1

pXk
pZ

− m +1

pXk

+
m∑

i=1
i 6=k

1

pXi

)−1

. (4.10)

For the hider, it is optimal to use the mixed strategy h = (hX1 , ...,hXm ,hZ) which plays any h(Xi) and h(Z)
with probability hXi

and hZ respectively given by

hXi
=

(pXk

pXi

−1

)
ξ, i = 1, ...,m, (4.11)

hZ = ξ

pZ

, ξ=
(

1

pZ

+
m∑

i=1

(pXk

pXi

−1
))−1

. (4.12)

The value of the game is given by
VG =µp A . (4.13)

Proof. First observe that the probabilities defined in 4.7, 4.9, 4.10, 4.11 and 4.12 are all non-negative and
well-defined. This follows from the fact that

• p A , pZ , pX1 , ..., pXm ∈ (0,1)

• pZ < 1
m , for 4.10

• pXk
≥ pXi

, i = 1, ...,m, for 4.11

Let pZ ≥ 1
m and assume the searcher plays s = (sX1 , ..., sXm) as in 4.7. We will show that with the searching

strategy s, the searcher can guarantee a pay-off of at least λp A . There are two cases:

– The hider hides the object in Xi so that the expected pay-off is given by

P
(
h(Xi), s

)= λ

pXi

·p A pXi
=λp A , i = 1, ...,m.

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)= m∑
i=1

(
λ

pXi

·p A pXi
pZ

)
=

m∑
i=1

λp A pZ = mλp A pZ ≥λp A ,

where we use that pZ ≥ 1
m .

Hence, the searcher can guarantee a pay-off of at least λp A with s and therefore VG ≥ λp A . Now assume the
hider plays the strategy h = (hX1 , ...,hXm ,0) with probabilities equivalent to 4.7. Then the expected pay-off
against any pure strategy s(Xi) of the searcher is given by

P
(
h, s(Xi)

)= λ

pXi

·p A pXi
+0 ·p A pXi

pZ =λp A , i = 1, ...,m.

Hence, the hider can ensure that the pay-off is at most λp A with h and therefore VG ≤ λp A . As a result,
VG =λp A is the value of the game and the strategies s and h are indeed optimal.

Now let pZ < 1
m and assume that the searcher plays s = (sX1 , ..., sXm) as in 4.9 and 4.10. We will show that

with the searching strategy s, the searcher can guarantee a pay-off of at least µp A . There are three cases:

– The hider hides the object in Xk so that the expected pay-off is given by

P
(
h(Xk), s

)= µ

pXk

(
1

pZ

−m +1

)
·p A pXk

=µp A

(
1

pZ

−m +1

)
≥µp A ,

where we use that pZ < 1
m .

40 4. Search and Rescue Games on a Graph

– The hider hides the object in Xi 6= Xk so that the expected pay-off is given by

P
(
h(Xi), s

)= µ

pXi

·p A pXi
=µp A , i ∈ {1, ...,m | i 6= k}.

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)= µ

pXk

(
1

pZ

−m +1

)
·p A pXk

pZ +
m∑

i=1
i 6=k

(
µ

pXi

·p A pXi
pZ

)

=µp A pZ

(
1

pZ

−m +1

)
+ (m −1)µp A pZ =µp A .

Hence, the searcher can guarantee a pay-off of at least µp A with s and therefore VG ≥ µp A . Now assume the
hider plays the strategy h = (hX1 , ...,hXm ,hZ) as in 4.11 and 4.12. Then the expected pay-off against any pure
strategy s(Xi) of the searcher is given by

P
(
h, s(Xi)

)= (pXk

pXi

−1

)
ξ ·p A pXi

+ ξ

pZ

·p A pXi
pZ = ξp A pXk

, i = 1, ...,m.

Hence, the hider can ensure that the pay-off is at most ξp A pXk
with h and therefore VG ≤ ξp A pXk

. Finally,
notice that

µp A = p A

(
1

pXk
pZ

− m +1

pXk

+
m∑

i=1
i 6=k

1

pXi

)−1

= p A pXk

(
1

pZ

− (m −1)+pXk

m∑
i=1
i 6=k

1

pXi

)−1

= p A pXk

(
1

pZ

+
(pXk

pXk

−1
)
+

m∑
i=1
i 6=k

(pXk

pXi

−1
))−1

= p A pXk

(
1

pZ

+
m∑

i=1

(pXk

pXi

−1
))−1

= ξp A pXk

As a result, VG =µp A is the value of the game and the strategies s and h are optimal.

Theorem 3 solves the search and rescue game of type one for general n. It is optimal for the searcher to play
a mixed strategy that mixes all of her pure strategies. For the hider, it is optimal to play a mixed strategy that
mixes all of his pure strategies except for h(A) and one other. This is either h(Z) or h(Xk) depending on the
success probabilities p. This concludes the analysis for the search and rescue games of type one.

For future research, it would be interesting to analyse the game in which there are multiple sink vertices.
These vertices could also be connected to one another so that they in a way form another layer of vertices.
Furthermore, we can also add an entire new layer of in-between vertices such that the searcher needs to go
from A, to a vertex of the first layer followed by a vertex of the second layer before finally reaching a sink ver-
tex. The layers also do not necessarily need to have the same number of vertices. If a solution to this game is
not found akin to theorem 3, it might be possible to find one using behavioral strategies similar to the optimal
strategies found in section 3.2.

4.2. Game 2: Search and Rescue Game with Undirected Edges
In this section, we consider the search and rescue game similar to section 4.1. However, all edges are now
undirected. For convenience, we call this game the search and rescue game of type two with n vertices. Fig-
ure 4.1b and 4.3 show a few examples of the type two search and rescue game.

The hider hides the object in any of the vertices where it is once again trivial that hiding in A is being dom-
inated. Hence, the hider still has n − 1 pure strategies. The searcher is now allowed to search multiple in-
between vertices, unlike in the previous game. She is also allowed to move from the sink vertex back to an
in-between vertex and the game does not end prematurely when the sink vertex has been searched. Hence,
the vertex Z is not a sink vertex anymore but more like a vertex that is furthest away from the root (we will still
call it a sink vertex for convenience). In order to search the sink vertex the searcher needs to have searched at
least one in-between vertex. Therefore, it can be shown that the searcher has (n −2)(n −2)! pure strategies.

4.2. Game 2: Search and Rescue Game with Undirected Edges 41

Figure 4.3: Type Two Search and Rescue Game for n = 4,5 and 6

To analyse the type two games, we use the same approach as in section 4.1. The pay-off matrix for the type
two games can be constructed using the code found in appendix A.1.6. We first attempt to solve the simplest
case where n = 4 by generating random probabilities for p. By solving the corresponding matrix game, we
might be able to find patterns in the optimal strategies for both players. If the optimal strategies have been
found, we try to generalise them for the game with general n. To that end, consider the search and rescue
game of type two with n = 4. The graph corresponding to this game is depicted in figure 4.3 and the pay-off
matrix for this game is given by

B C Z


(AB ZC) p A pB p A pB pC pZ p A pB pZ

(AC Z B) p A pB pC pZ p A pC p A pC pZ

(ABC Z) p A pB p A pB pC p A pB pC pZ

(AC B Z) p A pB pC p A pC p A pB pC pZ

. (4.14)

By generating random probabilities for p and by solving the corresponding matrix game, we are able to make
a few observations:

• The first observation is that there exist a value for pZ , say x, such that the optimal strategies for both
players depend on whether pZ ≥ x or pZ < x. A similar result was also found for the search and rescue
game of type one in the previous section where x = 1

m .

• The second observation is that the hider mixes all of his pure strategies when pZ ≥ x, i.e. the hider plays
h = (hB ,hC ,hZ). Furthermore, the optimal strategy of the hider makes the searcher indifferent between
all her pure strategies. The searcher mixes three out of four of her pure strategies such that the hider is
indifferent between all his pure strategies.

• The last observation is that the hider mixes h(Z) and h(B) or h(C) (whichever vertex has a lower success
probability) when pZ < x. The hider’s optimal strategy makes the searcher indifferent between her pure
strategies (AB ZC) and (AC Z B). The remaining pure strategies of the searcher, (ABC Z) and (AC B Z), give her
a lower pay-off than the aforementioned two. Similarly, the searcher mixes (AB ZC) and (AC Z B) in her
optimal strategy which makes the hider indifferent between h(Z) and h(B) or h(C) (again depending
on whichever vertex has the lower success probability). The remaining pure strategies will give the
searcher a higher expected pay-off than the aforementioned two.

Now that we know which pure strategies both players will mix in their optimal strategy, we try to solve. By first
recovering the optimal strategies for both players depending on the value of pZ , the value of x can be found
by equating the expected pay-offs for both half-spaces.

However, this time the equations are more troublesome even for the simplest case where n = 4. It turns
out that the value for x is a long square root term which is a solution to a quadratic equation. Moreover, both
the optimal strategies and the value for x can not be generalised. Hence, we can not find a general solution
to this game. Nevertheless, we did find the following result.

42 4. Search and Rescue Games on a Graph

Conjecture 4.2.1. Consider the search and rescue game of type two with n ≥ 4 vertices and m in-between
vertices. Let X1, ..., Xm be all in-between vertices and let x be the value such that the optimal strategies for both
players can be separated depending on whether pZ ≥ x or pZ < x. If pZ ≥ x, then it is optimal for the hider to
use the mixed strategy h = (hX1 , ...,hXm ,hZ) which plays h(X) with probability given by

hX =
(

1−pX

pX

)
λ, λ=

(
1−pZ

pZ

)
+

m∑
i=1

(
1−pXi

pXi

)
. (4.15)

By generating random probabilities for p (under the constraint that pZ ≥ x) and solving the corresponding
matrix game, we have observed that conjecture 4.2.1 indeed holds. In order to prove the conjecture, we would
need to show that the searcher is indifferent between all her pure strategies so that the pay-off is at most VG .
We would also need to show that the searcher has a strategy s which can guarantee her a pay-off at least VG .
Since the searcher has way more pure strategies compared to the previous game, this can get quite tedious.

Due to the game being less practical than the previous game, we have not spend as much time analysing
this game compared to the others. Equating pay-offs does not yield a solution, hence it might be possible
to solve the game by solving its subgames first. At the start of the game, the searcher has exactly m options,
each corresponding to searching a certain in-between vertex. Notice that after searching the first in-between
vertex, the remaining game can be seen as a search and rescue game on a tree with one root vertex which is
connected to m leaf vertices. The m leaf vertices are exactly the remaining m−1 in-between vertices and the
sink vertex. By solving all subgames as done in section 3.2, it might be possible to solve the original game.

4.3. Game 3: Search and Rescue Game with Directed Endpoint
The third variation of the search and rescue game that we will consider is a mix of the type one and type two
search and rescue game. The game is similar as the previous two games, but now the edges from the source
vertex to any in-between vertex are undirected, and the edges from any in-between vertex to the sink vertex
are directed. The resulting game will be called the search and rescue game of type three. Figure 4.1c and 4.4
show a few examples of the search and rescue game of type three.

Figure 4.4: Type Three Search and Rescue Game for m = 2,3 and 4

Once again, the hider has n−1 pure strategies corresponding to hiding the object in any vertex (except for the
source vertex). The searcher is allowed to search any number of in-between vertices before searching the sink
vertex. In order to search the sink vertex, the searcher needs to have searched at least one in-between ver-
tex. Once the sink vertex has been searched, the game ends independent on whether or not it was searched
successfully. It can be shown that the searcher has exactly

m∑
i=1

i−1∏
j=0

(m − j)

pure strategies, which is slightly less compared to the search and rescue game of type two. To analyse the
game, we use the same approach as in the previous two sections. The code to construct the pay-off matrix
can be found in appendix A.1.7. We first consider the game in which n = 4 for which the pay-off matrix is
given by

4.3. Game 3: Search and Rescue Game with Directed Endpoint 43

B C Z


(AB Z) p A pB 0 p A pB pZ

(AC Z) 0 p A pC p A pC pZ

(ABC Z) p A pB p A pB pC p A pB pC pZ

(AC B Z) p A pB pC p A pC p A pB pC pZ

. (4.16)

By solving the matrix games which belong to randomly generated values for p, we observe the following:

• Similar to the search and rescue game of type one defined in section 4.1, the optimal strategies are
dependent on whether pZ ≥ 1

2 or pZ < 1
2 .

• The hider plays a mixed strategy h = (hB ,hC ,hZ) that mixes all of his pure strategies when pZ ≥ 1
2 . The

searcher on the other hand plays a mixed strategy s = (sB , sC , sBC ,0) which mixes all of her pure strategies
except for s(C B).

• The hider does not hide the object in either B or C when pZ < 1
2 . This is dependent on the probabilities

pB and pC , where the vertex with the higher success probability will not be played. Hence, the hider will
mix h(Z) with either h(B) or h(C). The searcher plays a mixed strategy s = (sB , sC ,0,0) which mixes all
pure strategies that search exactly one in-between vertex.

By equating the expected pay-offs, we are able to solve the game for n = 4. The following theorem summarises
our results.

Theorem 4. Consider the search and rescue game of type three with n = 4. The graph of this game is given in
figure 4.4 with pay-off matrix given in 4.16. The solution of this game is dependent on the success probability
pZ .

– If pZ ≥ 1
2 , it is optimal for the searcher to use the mixed strategy s = (sB , sC , sBC ,0) which plays s(B), s(C)

and s(BC) with probability sB , sC and sBC respectively given by

sB = (1−pZ)λ, sC = pB

pC

(pC +pZ −2pC pZ)λ, sBC = (2pZ −1)λ, (4.17)

λ= 1

pB +pZ −2pB pZ + pB pZ
pC

. (4.18)

For the hider, it is optimal to use the mixed strategy h = (hB ,hC ,hZ) which plays h(B), h(C) and h(Z)
respectively with probability given by

h = (hB ,hC ,hZ) =
(

1−pB

pB

,
1−pC

pC

,
1

pZ

)
µ, µ= 1

1−pB
pB

+ 1−pC
pC

+ 1
pZ

. (4.19)

The value of the game is given by
VG =µp A . (4.20)

– If pZ < 1
2 , assume w.l.o.g. that pB ≤ pC . Then it is optimal for the searcher to use the mixed strategy

s = (sB , sC ,0,0) which plays s(B) and s(C) with probability sB and sC respectively given by

s = (sB , sC ,0,0) =
(

1

pB

,
1−pZ

pC pZ

,0,0

)
ξ, ξ= 1

1
pB

+ 1−pZ
pC pZ

. (4.21)

For the hider, it is optimal to use the mixed strategy h = (hB ,0,hZ) which plays h(B) and h(Z) with prob-
ability hB and hZ respectively given by

h = (hB ,0,hZ) =
(

pC −pB

pB

,0,
1

pZ

)
η, η= 1

pC−pB
pB

+ 1
pZ

. (4.22)

The value of the game is given by
VG = ξp A . (4.23)

In the case where pC ≤ pB , the optimal strategies are defined in a similar and symmetrical way.

44 4. Search and Rescue Games on a Graph

Proof. First observe that the probabilities defined in 4.17, 4.19, 4.21 and 4.22 are non-negative and well-
defined. This follows from the fact that

• pB , pC , pZ ∈ (0,1)

• pC , pZ ≥ pC pZ , for 4.17

• pZ ≥ 1
2 , for 4.17

• pB ≤ pC , for 4.22

Let pZ ≥ 1
2 and assume the searcher plays s = (sB , sC , sBC ,0) as in 4.17 and 4.18. We will show that with this

searching strategy, the hider is indifferent between all his pure strategies. There are three cases:

– The hider hides the object in B so that the expected pay-off is given by

P
(
h(B), s

)= (1−pZ)λ ·p A pB + (2pZ −1)λ ·p A pB =λp A pB pZ .

– The hider hides the object in C so that the expected pay-off is given by

P
(
h(C), s

)= pB

pC

(pC +pZ −2pC pZ)λ ·p A pC + (2pZ −1)λ ·p A pB pC =λp A pB pZ .

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)= (1−pZ)λ ·p A pB pZ + pB

pC

(pC +pZ −2pC pZ)λ ·p A pC pZ + (2pZ −1)λ ·p A pB pC pZ

=λp A pB pZ .

Hence, the searcher can guarantee a pay-off of at least λp A pB pZ with the strategy s and therefore VG ≥
λp A pB pZ . Now assume the hider plays the strategy h = (hB ,hC ,hZ) as in 4.19. We will show that with this
hiding strategy, the searcher is indifferent between all her pure strategies. There are four cases:

– The searcher plays s(B) so that the expected pay-off is given by

P
(
h, s(B)

)= (
1−pB

pB

)
µ ·p A pB +

(
1

pZ

)
µ ·p A pB pZ =µp A .

– The searcher plays s(C) so that the expected pay-off is given by

P
(
h, s(C)

)= (
1−pC

pC

)
µ ·p A pC +

(
1

pZ

)
µ ·p A pC pZ =µp A .

– The searcher plays s(BC) so that the expected pay-off is given by

P
(
h, s(BC)

)= (
1−pB

pB

)
µ ·p A pB +

(
1−pC

pC

)
µ ·p A pB pC +

(
1

pZ

)
µ ·p A pB pC pZ =µp A .

– The searcher plays s(C B) so that the expected pay-off is given by

P
(
h, s(C B)

)= (
1−pC

pC

)
µ ·p A pC +

(
1−pB

pB

)
µ ·p A pB pC +

(
1

pZ

)
µ ·p A pB pC pZ =µp A .

Hence, the hider can ensure that the pay-off is at most µp A with h and therefore VG ≤µp A . Notice that

µp A = p A

1−pB
pB

+ 1−pC
pC

+ 1
pZ

= p A pB pZ

pZ −pB pZ + pB pZ
pC

−pB pZ +pB

= p A pB pZ

pB +pZ −2pB pZ + pB pZ
pC

=λp A pB pZ .

As a result, VG =µp A is indeed the value of the game and the strategies s and h are optimal.

Now let pZ < 1
2 and assume w.l.o.g. that pB ≤ pC and that the searcher plays s = (sB , sC ,0,0) as in 4.21. We

will show that with this searching strategy, the searcher can guarantee a pay-off of at least ξp A . There are
three cases:

4.3. Game 3: Search and Rescue Game with Directed Endpoint 45

– The hider hides the object in B so that the expected pay-off is given by

P
(
h(B), s

)= ξ

pB

·p A pB = ξp A

– The hider hides the object in C so that the expected pay-off is given by

P
(
h(C), s

)= (
1−pZ

pC pZ

)
ξ ·p A pC = ξp A ·

(
1−pZ

pZ

)
≥ ξp A ,

where we use that pZ < 1
2 .

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)= ξ

pB

·p A pB pZ +
(

1−pZ

pC pZ

)
ξ ·p A pC pZ = ξp A .

Hence, the searcher can guarantee a pay-off of at least ξp A with s and therefore VG ≥ ξp A . Now assume the
hider plays the strategy h = (hB ,0,hZ) as in 4.22. We will show that with this hiding strategy, the pay-off is at
most ηp A pC . There are four cases:

– The searcher plays s(B) so that the expected pay-off is given by

P
(
h, s(B)

)= (
pC −pB

pB

)
η ·p A pB + η

pZ

·p A pB pZ = ηp A pC .

– The searcher plays s(C) so that the expected pay-off is given by

P
(
h, s(C)

)= η

pZ

·p A pC pZ = ηp A pC .

– The searcher plays s(BC) so that the expected pay-off is given by

P
(
h, s(BC)

)= (
pC −pB

pB

)
η ·p A pB + η

pZ

·p A pB pC pZ

= η(p A pC −p A pB +p A pB pC) ≤ ηp A pC ,

where we use that p A pB ≥ p A pB pC .

– The searcher plays s(C B) so that the expected pay-off is given by

P
(
h, s(C B)

)= (
pC −pB

pB

)
η ·p A pB pC + η

pZ

·p A pB pC pZ

= η(p A p2
C −p A pB pC +p A pB pC) = ηp A p2

C ≤ ηp A pC ,

where we use that pC ∈ (0,1).

Hence, the hider can ensure that the pay-off is at most ηp A pC with h and therefore VG ≤ ηp A pC . Finally, notice
that

ξp A = p A

1
pB

+ 1−pZ
pC pZ

= p A pC

pC
pB

−1+ 1
pZ

= p A pC

pC−pB
pB

+ 1
pZ

= ηp A pC .

Therefore, the strategies s and h are optimal and ξp A is the value of the game.

Theorem 4 solves the search and rescue game of type three for n = 4. The solution looks very similar to the
solution found in theorem 2. It is optimal for the hider to either mix all pure strategies or all pure strategies
except for the in-between vertex with the highest success probability. The searcher always mixes the pure
strategies that directly go to the sink vertex, i.e. the pure strategies that search exactly one in-between vertex.
Depending on the probability pZ , the searcher may or may not mix the pure strategy that searches all in-
between vertices in a chronological order.

Since the game has been solved for the simplest case where n = 4, we will now try to generalise its solution
for general n. This is done similar to section 4.1 by adding more in-between vertices to the game, and by
solving the corresponding matrix game.

46 4. Search and Rescue Games on a Graph

Proposition 4.3.1. Consider the search and rescue game of type three with n ≥ 4 vertices and m in-between
vertices. Let X1, ..., Xm be all in-between vertices and let Xk be the in-between vertices with the highest success
probability, i.e.

pXk
≥ pXi

, ∀i = 1, ...,m. (4.24)

Assume that pZ < 1
m . Then it is optimal for the hider to use the mixed strategy h = (hX1 , ...,hXm ,hZ) which plays

any h(Xi) and h(Z) with probability hXi
and hZ respectively given by

hXi
=

(pXk
−pXi

pXi

)
λ, i = 1, ...,m, (4.25)

hZ = λ

pZ

, λ=
(

1

pZ

+
m∑

i=1

(pXk
−pXi

pXi

))−1

. (4.26)

It is optimal for the searcher to use the mixed strategy s = (sX1 , ..., sXm ,0, ...,0) which plays any s(Xi) with prob-
ability sXi

given by

sXi
= µ

pXi

, i ∈ {1, ...,m | i 6= k}, (4.27)

sXk
= 1− (m −1)pZ

pXk
pZ

µ, µ=
(

1− (m −1)pZ

pXk
pZ

+
m∑

i=1
i 6=k

1

pXi

)−1

. (4.28)

The value of the game is given by
VG =µp A . (4.29)

Proof. First observe that the probabilities defined in 4.25, 4.26, 4.27 and 4.28 are all non-negative and well-
defined. This follows from the fact that

• p A , pX1 , ..., pXm , pZ ∈ (0,1)

• Inequality 4.24, for 4.25

• pZ < 1
m , for 4.28

Let pZ < 1
m and assume the searcher plays the mixed strategy s = (sX1 , ..., sXm ,0, ...,0) as in 4.27 and 4.28. We

will show that this searching strategy guarantees a pay-off of at least µp A . There are three cases:

– The hider hides the object in Xk so that the expected pay-off is given by

P
(
h(Xk), s

)= 1− (m −1)pZ

pXk
pZ

µ ·p A pXk
= µp A

pZ

−µ(m −1)p A =µp A

(1

pZ

−m +1
)
≥µp A ,

where we use that pZ < 1
m .

– The hider hides the object in Xi 6= Xk so that the expected pay-off is given by

P
(
h(Xi), s

)= µ

pXi

·p A pXi
=µp A , ∀i ∈ {1, ...,m | i 6= k}.

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)= 1− (m −1)pZ

pXk
pZ

µ ·p A pXk
pZ +

m∑
i=1
i 6=k

(
µ

pXi

·p A pXi
pZ

)
=µp A − (m −1)µp A pZ + (m −1)µp A pZ =µp A .

Hence, the searcher can guarantee a pay-off of at least µp A with s and therefore VG ≥ µp A . Now assume the
hider plays the hiding strategy h = (hX1 , ...,hXm ,hZ) as in 4.25 and 4.26. We will show that the pay-off is at most
λp A pXk

. Let Xa1 ,...,Xa j be some sequence of in-between vertices. There are three cases:

4.3. Game 3: Search and Rescue Game with Directed Endpoint 47

– The searcher plays s(Xk) so that the expected pay-off is given by

P
(
h, s(Xk)

)= 0 ·p A pXk
+ λ

pZ

·p A pXk
pZ =λp A pXk

.

– The searcher plays s(Xi) 6= s(Xk) so that the expected pay-off is given by

P
(
h, s(Xi)

)= (pXk
−pXi

pXi

)
λ ·p A pXi

+ λ

pZ

·p A pXi
pZ =λp A pXk

, ∀i ∈ {1, ...,m | i 6= k}.

– The searcher searches some sequence of in-between vertices Xa1 , ..., Xa j before Z , i.e. she plays s(Xa1 , ..., Xa j)
so that the expected pay-off is given by

P
(
h, s(Xa1 , ..., Xa j)

)= j∑
v=1

((pXk
−pXav

pXav

)
λ ·p A

v∏
w=1

pXaw

)
+ λ

pZ

·p A pZ

j∏
w=1

pXaw

=
j∑

v=1

((pXk

pXav

)
λ ·p A

v∏
w=1

pXaw

)
−

j∑
v=1

(
λ ·p A

v∏
w=1

pXaw

)
+λp A

j∏
w=1

pXaw

=
j∑

v=1

(
λp A pXk

v−1∏
w=1

pXaw

)
−

j−1∑
v=1

(
λ ·p A

v∏
w=1

pXaw

)

=λp A pXk
+

j∑
v=2

(
λp A pXk

v−1∏
w=1

pXaw

)
−

j−1∑
v=1

(
λ ·p A

v∏
w=1

pXaw

)

=λp A pXk
+

j−1∑
v=1

(
λp A pXk

v∏
w=1

pXaw

)
−

j−1∑
v=1

(
λ ·p A

v∏
w=1

pXaw

)

=λp A pXk
+ (pXk

−1)
j−1∑
v=1

(
λ ·p A

v∏
w=1

pXaw

)
≤λp A pXk

,

where we use that pXk
< 1.

Hence, the hider can ensure that the pay-off is at most λp A pXk
with h and therefore VG ≤ λp A pXk

. Finally,
notice that

µp A = p A

(
1− (m −1)pZ

pXk
pZ

+
m∑

i=1
i 6=k

1

pXi

)−1

= p A pXk

(
1− (m −1)pZ

pZ

+
m∑

i=1
i 6=k

pXk

pXi

)−1

= p A pXk

(
1

pZ

− (m −1)+
m∑

i=1
i 6=k

pXk

pXi

)−1

= p A pXk

(
1

pZ

+
m∑

i=1

(pXk
−pXi

pXi

))−1

=λp A pXk
.

Therefore, the strategies s and h are indeed optimal and the value of the game is µp A .

Proposition 4.3.1 solves the search and rescue game of type three for general n when pZ < 1
m . In this case,

it is optimal for the hider to play a mixed strategy that hides in all vertices except for the in-between vertex
with the highest success probability. It is optimal for the searcher to play a mixed strategy that mixes all pure
strategies that search exactly one in-between vertex before the sink vertex.

In the case where pZ ≥ 1
m , the optimal strategies are more troublesome to find. When we tried to gener-

alise the solution found in theorem 4 for general n, we found an optimal strategy for the searcher that is only
defined on a subinterval for pZ . In other words, there is a subinterval

1

m
≤ pZ ≤ x < 1

for some value x such that the optimal strategies are only defined when pZ is in the specified interval. More-
over, the simulations show that when pZ is sufficiently large (i.e. greater than x), there are many optimal
strategies for the searcher which all mix a variety of pure strategies. These optimal strategies have in com-
mon that they do not mix all pure strategies of the searcher that search exactly one in-between vertex. We
have yet to find a pattern for the searcher, however we did find the following for the hider.

48 4. Search and Rescue Games on a Graph

Proposition 4.3.2. Consider the search and rescue game of type three with n ≥ 4 vertices and m in-between
vertices. Let X1, ..., Xm be all in-between vertices and assume that pZ ≥ 1

m . The hider can ensure that the pay-off
is at most λp A with the mixed strategy h = (hX1 , ...,hXm ,hZ) which plays any h(Xi) and h(Z) with probability
hXi

and hZ respectively given by

hXi
=

(
1−pXi

pXi

)
λ, i = 1, ...,m, (4.30)

hZ = λ

pZ

, λ=
(

1

pZ

+
m∑

i=1

(1−pXi

pXi

))−1

. (4.31)

Proof. First observe that the probabilities defined in 4.30 and 4.31 are non-negative and well-defined. We
will show that the searcher is indifferent between all her pure strategies. Let Xa1 ,...,Xa j be some sequence of
in-between vertices. If the searcher plays s(Xi) for some i = 1, ...,m, then the expected pay-off is given by

P
(
h, s(Xi)

)= (
1−pXi

pXi

)
λ ·p A pXi

+ λ

pZ

·p A pXi
pZ =λp A

Now if the searcher searches some sequence of in-between vertices Xa1 ,...,Xa j before Z , i.e. she plays s(Xa1 ,...,Xa j),
then the expected pay-off is given by

P
(
h, s(Xa1 , ..., Xa j)

)= j∑
v=1

((1−pXav

pXav

)
λ ·p A

v∏
w=1

pXaw

)
+ λ

pZ

·p A pZ

j∏
w=1

pXaw

=
j∑

v=1

(
λ

pXav

·p A

v∏
w=1

pXaw

)
−

j∑
v=1

(
λp A

v∏
w=1

pXaw

)
+λp A

j∏
w=1

pXaw

=
j∑

v=1

(
λp A

v−1∏
w=1

pXaw

)
−

j−1∑
v=1

(
λp A

v∏
w=1

pXaw

)

=λp A +
j∑

v=2

(
λp A

v−1∏
w=1

pXaw

)
−

j−1∑
v=1

(
λp A

v∏
w=1

pXaw

)

=λp A +
j−1∑
v=1

(
λp A

v∏
w=1

pXaw

)
−

j−1∑
v=1

(
λp A

v∏
w=1

pXaw

)
=λp A .

Hence, the hider can ensure that the pay-off is at most λp A with the hiding strategy h.

To prove that the strategy h defined in proposition 4.3.1 is optimal for the hider, we need to show that the
searcher has a strategy s such that she can guarantee a pay-off of at least λp A with λ as defined in proposition
4.3.1. For the searcher, we found the following possible optimal strategy.

Conjecture 4.3.1. Consider the search and rescue game of type three with n ≥ 4 vertices and m in-between
vertices. Let X1, ..., Xm be all in-between vertices and assume that(

m −1−
m∑

j=2

j∏
i=2

pXi

)−1

≥ pZ ≥ 1

m
. (4.32)

It is optimal for the searcher to play a mixed strategy s which plays any s(Xi) and s(X1, ..., Xm) with probability
proportional to sXi

and sΩ respectively given by

sX1 = 1− (m −1)pZ +pZ

m−1∑
j=2

j∏
i=2

pXi
, sΩ = mpZ −1, (4.33)

sXm = pX1

pXm

(
pZ +

m∏
j=2

pX j
− (m +1)pZ

m∏
j=2

pX j
+pZ

m∑
j=2

j∏
i=2

pXi

)
, (4.34)

sXi
= pX1

pXi

(
pZ +

i∏
j=2

pX j
−mpZ

i∏
j=2

pX j
+pZ

m−1∑
j=2

j∏
k=2

pXk

)
, i = 2, ...,m −1. (4.35)

4.3. Game 3: Search and Rescue Game with Directed Endpoint 49

The inequality in 4.32 is needed to ensure that the probability sX1 defined in 4.33 is non-negative and well-
defined. Observe that if

sX1 = 1−pZ

(
(m −1)−

m−1∑
j=2

j∏
i=2

pXi

)
≥ 0,

then it must be that the first inequality sign holds. Also observe that

0 <
m∑

j=2

j∏
i=2

pXi
< m −1

so that

0 < m −1−
m∑

j=2

j∏
i=2

pXi
< m −1

and finally (
m −1−

m∑
j=2

j∏
i=2

pXi

)−1

> 1

m −1
> 1

m
.

The non-negativity of 4.34 and 4.35 follow from the fact that

pZ +
(m∏

j=2
pX j

)
+pZ

(m∑
j=2

j∏
i=2

pXi

)
> pZ

(m∏
j=2

pX j

)
+pZ

(m∏
j=2

pX j

)
+pZ

(m∑
j=2

m∏
i=2

pXi

)
= (m +1)pZ

(m∏
j=2

pX j

)
and

pZ +
(i∏

j=2
pX j

)
+pZ

(m−1∑
j=2

j∏
k=2

pXk

)
> pZ

(i∏
j=2

pX j

)
+pZ

(i∏
j=2

pX j

)
+pZ

(m−1∑
j=2

m−1∏
k=2

pXk

)
= mpZ

(i∏
j=2

pX j

)
,

which are both positive terms. It is also easy to see that sXΩ
> 0, because pZ ≥ 1

m . Hence, the probabilities
defined in the conjecture are all well-defined. It has been shown in appendix A.2.4 that the searcher can
gaurantee a pay-off of at least

VG =µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
i=2

pXi

)
(4.36)

with the searching strategy s as defined in conjecture 4.3.1. To show that this strategy and the hiding strategy
defined in proposition 4.3.2 are indeed optimal, it remains to show that

VG =µp A pX1 pZ

(
1+

(m−1∑
j=2

j∏
i=2

pXi

)
=λp A . (4.37)

Proving this can be quite tedious because of the length of µ, but should not be impossible. If one can show
that 4.37 indeed holds, then the search and rescue game of type three for general n would be solved for all

0 < pZ ≤
(
m −1−

m∑
j=2

j∏
i=2

pXi

)−1

.

For the remaining pZ , the optimal strategies remain a mystery. However, we have observed with simulations
that the hiding strategy defined in proposition 4.3.2 is still optimal. And so, the only missing piece is the
optimal strategy for the searcher.

50 4. Search and Rescue Games on a Graph

4.4. Game 3: Behavioural Strategy
In this section, we continue from where we left off in the previous section. For the search and rescue game
of type three with general n, the optimal strategy for the searcher remains unknown for sufficiently large
values of pZ . Therefore, we try a different approach and try to obtain the searcher’s optimal strategy using
behavioural strategies similar to section 3.2.

The idea is to assign probabilities to the edges of the graph. Each edge indicates the probability of being
played over the other. It might be possible to choose the probabilities such that this behavioural strategy
forms an optimal strategy. To that end, we will first try to solve the simplest case where n = 4. We will then try
to generalise its solution. Once again consider the search and rescue game of type three with n = 4. Figure 4.5
shows the graph belonging to this game and the edges with their assigned probabilities.

Figure 4.5: Type One Search and Rescue Game for n = 4,

First observe that the game on the graph in figure 4.5 is identical to that of figure 4.4. Traversing from B to C
in figure 4.5 is equivalent to traversing from B to A to C in figure 4.4. A similar observation can be made when
traversing from C to B . At the start of the game, the searcher needs to make a decision to either search B or
C . As seen in figure 4.5, the searcher will choose B with probability p and C otherwise.

Assume for the moment that she chooses B . She will then have to make the decision to either directly
search Z or to first search C before moving to Z . The former happens with probability q and the latter with
probability 1− q . Similarly, if the searcher chose C at the start instead of B , she will either directly search Z
with probability r or she will first search B and then Z with probability 1− r .

Observe that such a behavioural strategy forms a mixed strategy for the searcher. The pure strategy (AB Z) will
be played when the searcher chooses B over C with probability p, and Z over C with probability q . Hence,
the probability of playing (AB Z) is given by p ·q . In a similar way, the other pure strategies of the searcher are
played with some probability. Hence, the searcher is in fact playing a mixed strategy s = (sB , sC , sBC , sC B). The
probabilities for such a strategy are given by

s = (sB , sC , sBC , sC B) = (
pq, (1−p)r, p(1−q), (1−p)(1− r)

)
. (4.38)

The difficulty lies in determining the probabilities p, q and r . From theorem 4, we know that the hider can
ensure that the pay-off is at most λp A pB pZ with λ as defined in 4.18. Therefore, we want to choose the prob-
abilities p, q and r such that the expected pay-off is at least λp A pB pZ against any pure strategy of the hider.
By trial and error, we have found the following.

Theorem 5. Consider the search and rescue game of type three with n = 4 vertices. Assume that pZ ≥ 1
2 . Then

the behavioural strategy in which

p = (p,1−p) =
(

1

pB

,
1

pC

)
µ, µ= 1

1
pB

+ 1
pC

(4.39)

q = (q,1−q) =
(
1− 2pB pZ −pB

pB pC +pB pZ +pC pZ −2pB pC pZ

,
2pB pZ −pB

pB pC +pB pZ +pC pZ −2pB pC pZ

)
(4.40)

r = (r,1− r) =
(
1− 2pC pZ −pC

pB pC +pB pZ +pC pZ −2pB pC pZ

,
2pC pZ −pC

pB pC +pB pZ +pC pZ −2pB pC pZ

)
(4.41)

4.4. Game 3: Behavioural Strategy 51

forms an optimal mixed strategy for the searcher.

Proof. First observe that the probabilities defined in 4.39 are non-negative and well-defined. For 4.40 it is
sufficient to show that

0 ≤ 2pB pZ −pB

pB pC +pB pZ +pC pZ −2pB pC pZ

≤ 1. (4.42)

Note that since
pB pC , pC pZ ≥ pB pC pZ

we have that

pB pC +pB pZ +pC pZ −2pB pC pZ ≥ pB pZ ,

1

pB pC +pB pZ +pC pZ −2pB pC pZ

≤ 1

pB pZ

,

2pB pZ −pB

pB pC +pB pZ +pC pZ −2pB pC pZ

≤ 2pB pZ −pB

pB pZ

= 2− 1

pZ

≤ 1,

where we use that 1 > pZ ≥ 1
2 . Furthermore, since

2pB pZ −pB ≥ 0,

both the numerator and the denominator are positive. Hence, it must be that 4.42 is non-negative and there-
fore well-defined. In a similar way, we can show that 4.41 is well-defined.

Assume the searcher plays according to the behavioural strategy. This is equivalent to playing the mixed
strategy s = (sB , sC , sBC , sC B) which plays s(B), s(C), s(BC) and s(C B) with probabilities sB , sC , sBC and sC B re-
spectively given by

sB = pq = µ

pB

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

,

sC = (1−p)r = µ

pC

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

,

sBC = p(1−q) = 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

,

sC B = (1−p)(1− r) = 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

.

From theorem 4, we know that the value of the game is VG = λp A pB pZ . So it remains to show that this mixed
strategy can guarantee a pay-off of at least VG . There are three cases:

– The hider hides the object in B so that the expected pay-off is given by

P
(
h(B), s

)= (
µ

pB

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

)
·p A pB + 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pB

+ 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pB pC

=µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

.

– The hider hides the object in C so that the expected pay-off is given by

P
(
h(C), s

)= (
µ

pC

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

)
·p A pC + 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pB pC

+ 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pC

=µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

.

52 4. Search and Rescue Games on a Graph

– The hider hides the object in Z so that the expected pay-off is given by

P
(
h(Z), s

)=µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

, (4.43)

see appendix A.2.5.

Hence, the searcher can guarantee a pay-off of at least

VG =µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

with the mixed strategy s. Finally, notice that

µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

= µ(p A pB pC +p A pB pZ +p A pC pZ −2p A pB pC pZ)

pB pC +pB pZ +pC pZ −2pB pC pZ

+ 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

= µ(p A pB pZ +p A pC pZ)

pB pC +pB pZ +pC pZ −2pB pC pZ

= p A pB pC pZ

pB pC +pC pZ −2pB pC pZ +pB pZ

= p A pB pZ

pB +pZ −2pB pZ + pB pZ
pC

=λp A pB pZ

so that the strategy s is indeed optimal.

For the search and rescue game of type three with n = 4 and pZ ≥ 1
2 , we have now found two optimal strate-

gies for the searcher. Theorem 5 states an optimal strategy which originates from a behavioral strategy. This
optimal strategy mixes all of the searcher’s pure strategies, as opposed to theorem 4 which mixes only three
out of four. Therefore, the optimal strategy that originates from the behavioural strategy is more symmetric
than that of theorem 4, but also has more terms and is therefore more complex. As a result we have yet to find
a generalisation.

Finding a generalisation for theorem 5 is harder than it looks. Finding a behavioural strategy that gives an
optimal strategy for n = 5 already proves to be quite difficult. This is because the probabilities on the edges
change depending on what the searcher has already searcher. To further illustrate, consider the game with
n = 5 depicted in figure 4.4. If the searcher searches B first, she can go from B to C with some probability
x. However, if the searcher goes from A to D , and then to B , she has the option to either search B or directly
search Z . The probability of searching B in this case is not the same as the probability x from the previous
case. To find an optimal behavioural strategy, we would need to introduce more unknown variables which
we would then have to guess (since we do not have enough expressions from the pay-offs to solve for the
unknown variables).

5
Conclusion

In this report we have defined and solved multiple search and rescue games. This includes the standard
search and rescue game, the search and rescue game on a tree, and multiple search and rescue games on
very simple graphs. The graphs that we have considered all have the same characteristics: they have a source
vertex, a sink vertex and multiple in-between vertices. The graphs differ from one another depending on
whether the edges are directed or undirected.

For the basic search and rescue game, the optimal strategies are found by assigning an index

zi = 1−pi

pi

to every location. It is optimal for the hider to hide the objects in some subset A ∈ S(k) with some probability
proportional to the product of the indices of all locations i ∈ A as in theorem 1. With the selfsame probability,
it is optimal for the searcher to first search the locations in A before searching the remaining locations in an
uniformly random order. We have also found a different optimal strategy for the searcher when k = 1, i.e. only
one object is hidden. Instead of searching the remaining objects in an uniformly random order, the searcher
can also search the remaining locations in a chronologically increasing/decreasing order.

For the search and rescue game on a tree, the optimal strategies are found similar to behavioural strategies.
It is optimal for the hider to hide the object in one of the leaf vertices with some probability as in definition
3.2.2. For the searcher it is optimal to search the tree in a depth-first order, where one branch is chosen over
the other with some probability as in definition 3.2.3.

Finally, we have also looked at the search and rescue game played on very simple graphs that are not trees.
The graphs differ from one another depending on the directionality of the edges and we have analysed three
types of graphs:

• Type 1: All edges are directed.

• Type 2: All edges are undirected.

• Type 3: The edges from the source vertex to any in-between vertex are undirected, and the edges from
any in-between vertex to the sink vertex are directed.

The optimal strategies for these games depend on the success probability of the sink vertex pZ .

For the type one graphs, the threshold for pZ is at 1
m and a solution to the game is given in theorem 3.

Depending on the value of pZ , it is optimal for the hider to play a mixed strategy that mixes all of his pure
strategies except for either the pure strategy that hides in the sink vertex, or the pure strategy that hides in the
in-between vertex with the highest success probability. For the searcher, it is optimal to play a mixed strategy
that mixes all of her pure strategies.

53

54 5. Conclusion

For the type two graphs, the threshold for pZ is at some unknown value x. We have yet to find a general
expression for the value of x nor have we found the optimal strategies. We do however have a hunch of what
the hider’s optimal strategies could be when pZ ≥ x. In this case, the hider will play a mixed strategy that
mixes all of his pure strategies with probability proportional to the inverse of the odds as in conjecture 4.2.1.

For the type three graphs, the threshold for pZ is once again at 1
m . Proposition 4.3.1 solves the game when

pZ < 1
m . In this case, it is optimal for the hider to play a mixed strategy that mixes all of his pure strategies

except for the pure strategy that hides in the in-between vertex with the highest success probability. For the
searcher, it is optimal to play a mixed strategy that mixes all pure strategies that search exactly one in-between
vertex before the sink vertex.

In the case where pZ ≥ 1
m , proposition 4.3.2 and conjecture 4.3.1 state the possible optimal strategies

for both players. It is most likely optimal for the hider to play a mixed strategy that mixes all of his pure
strategies. For the searcher, there is an interval on which it might be optimal to play a mixed strategy that
mixes all pure strategies that search exactly one in-between vertex, and the pure strategy that searches all
in-between vertices in chronological order. Outside of this interval, the searcher does not mix all of her pure
strategies that search exactly one in-between vertex. We have yet to prove that these strategies are optimal
nor have we found an optimal strategy for the searcher outside of this interval.

A
Appendix

A.1. Matlab Code
A.1.1. Chapter 2 - Solve a Search and Rescue Matrix Game

%% Solver (P r o b a b i l i t i e s , Trip_Chance)
% Solves a search and rescue matrix game
% Input : P r o b a b i l i t i e s := Array of the success probabi l i ty p = (p_1 , . . , p_n)
% k := Number of objects
% Trip_Chance = Extra f a i l probabi l i ty in p_1 or p_2
% Output : A = Pay− o f f Matrix
% Mod_A = Row−reduced pay− o f f matrix
% Saddle_Point = Boolean detecting saddle point
% Opt_Hider = One hider ’ s optimal st r a te g y
% Opt_Searcher = One searcher ’ s optimal s tr a te gy
% Searcher_Pures = Pure s t r a t e g i e s mixed in Opt_Searcher
% Value = The value of the game
% Mod_A = Pay− o f f matrix reduced to rows in Opt_Searcher

function [A , Saddle_Point , Opt_Hider , Opt_Searcher , Searcher_Pures , Value , Mod_A] = Solver (P r o b a b i l i t i e s , k , Trip_Chance)

% Define r a t i o n a l formatting
format r a t ;

% Define s i z e of pay− o f f matrix
n = length (P r o b a b i l i t i e s) ;
nrColums = nchoosek (n , k) ;
nrRows = f a c t o r i a l (n)/ f a c t o r i a l (k) ;

% Define hider ’ s pure s t r a t e g i e s
Permutations = sortrows (perms (1 : n)) ;
Col_Permutations = unique (Permutations (: , 1 : k) , ’ rows ’) ;
ColStrats = unique (sort (Col_Permutations , 2) , ’ rows ’) ;

% Define searcher ’ s pure s t r a t e g i e s
RowStrats = [] ;
for i = 1 : length (ColStrats)

cRow = ColStrats (i , :) ;
cPermutations = Permutations (: , 1 : k) ;
cMatchingRows = Permutations (find (ismember(cPermutations , cRow, ’ rows ’)) , :) ;
RowStrats = [RowStrats ; cMatchingRows] ;

end

% Empty pay− o f f matrix
A = ones (nrRows , nrColums) ;

% F i l l in pay− o f f matrix
for i = 1 : nrRows

% Current row− s tr a te g y
cRowStrat = RowStrats (i , :) ;

for j = 1 : nrColums

% Current column− st r a te g y
cColStrat = ColStrats (j , :) ;

% Search_Index keeps track of which element in the permutation to search next .
% Counter keeps track of whether a l l objects have been found
Search_Index = 1 ;

55

56 A. Appendix

Counter = 0 ;

% One_Gone and Two_Gone keep track of whether one of the two has been searcherd
% Extra_Once makes sure the extra t r i p probabi l i ty i s only added once
One_Gone = 0 ;
Two_Gone = 0 ;
Extra_Once = 0 ;

while Counter ~= k

% Update current searched element
Searched_Element = cRowStrat (Search_Index) ;

%Update t o t a l success probabi l i ty
A(i , j) = A(i , j) * P r o b a b i l i t i e s (Searched_Element) ;

% Update whether location 1 or 2 has been searched
i f Searched_Element == 1

One_Gone = 1 ;
end
i f Searched_Element == 2

Two_Gone=1;
end

% Check i f one of the hidden objects has been found
i f (ismember (Searched_Element , cColStrat))

Counter = Counter + 1 ;
end

% Add extra t r i p chance to the t o t a l success probabi l i ty
i f One_Gone == 1 && Two_Gone == 1 && Extra_Once==0

A(i , j) = A(i , j) * Trip_Chance ;
Extra_Once = 1 ;

end

% Update the next element to be searched
Search_Index = Search_Index + 1 ;

end
end

end

%% Matrix game solver
Opt_Hider = [] ;
Opt_Searcher = [] ;
Searcher_Pures = [] ;
Mod_A = [] ;

r = [] ; s = [] ; [m, n]= s i z e (A) ;
i f min(max(A))==max(min(A ’))

b=max(A) ; S t r a t e g y _ I s t = [] ; Strategy_IInd = [] ;ms= [] ;
for i =1:n

for j =1:m
i f isequal (b(i) ,A(j , i))

i f isequal (A(j , i) ,min(A(j , :)))
r (length (r)+1)= j ;
s (length (s)+1)= i ;

end
end

end
end
i f (length (r)==1 && length (s)==1)

Answer =[’The Game has a saddle point at the location : − (’ i n t 2 s t r (r) ’ , ’ i n t 2 s t r (s) ’)
and value of the game i s ’ num2str (A(r , s) , 6) ’ . So no mixed s t r at e gy i s needed . ’] ;

% Update Saddle_Point and Value
Saddle_Point = true ;
Value = num2str (A(r , s) , 6) ;

e lse
for i =1: length (r)

ms=[ms ’ (’ i n t 2 s t r (r (i)) ’ , ’ i n t 2 s t r (s (i)) ’) , ’] ;
end
Answer =[’The Game has saddle points at the locations : − ’ ms ’

and value of the game i s ’ num2str (A(r (1) , s (1)) , 6) ’ . So no mixed s tr a te g y i s needed . ’] ;

% Update Saddle_Point and Value
Saddle_Point = true ;
Value = num2str (A(r (1) , s (1)) , 6) ;

end
else

X_a=linprog (− [1 ; zeros (m, 1)] , [ones (n , 1) −A ’] , zeros (n , 1) , [0 ones (1 ,m)] , [1] , [− i n f ; zeros (m, 1)]) ; v=X_a (1 , 1) ; X_a (1 , :) = [] ;
X_b=linprog ([1 ; zeros (n, 1)] , [− ones (m, 1) A] , zeros (m, 1) , [0 ones (1 ,n)] , [1] , [− i n f ; zeros (n , 1)]) ; X_b (1 , :) = [] ;

Answer =[’The Game has no saddle point and value of the game i s ’ num2str (v , 6) ’
and therefore the suggested mixed st r a te g y i s given in mixed s t r at e gy matrix . ’] ;

A.1. Matlab Code 57

% Update Saddle_Point and Value
Saddle_Point = f a l s e ;
Value = num2str (v , 6) ;

% Update optimal s t r a t e g i e s of Searcher and Hider
Opt_Searcher = X_a ;
Opt_Hider = X_b ;

% Find indices used in optimal st r a te g y of searcher
Searcher_Indices = find (Opt_Searcher) ;

% Restore the used permutations in the optimal searcher st r a te g y
for z = 1 : length (Searcher_Indices)

Search_Permutation_Index = Searcher_Indices (z , :) ;
for x = 1 : length (RowStrats (Search_Permutation_Index , :))

Searcher_Pures (z , x) = RowStrats (Search_Permutation_Index , x) ;
end

end

% Construct Pay− o f f matrix using only the pure s t r a t e g i e s played
Row_Strats_Used = find (Opt_Searcher) ;
for i = 1 : length (Row_Strats_Used)

Mod_A = [Mod_A; A(Row_Strats_Used (i) , :)] ;
end

end
end

A.1.2. Section 2.4 and 2.5 - Experiment 2.4.1 and 2.5.1
%% TestValue (Prob , k , Trip_Chance , Steps)
% Test i f the value of the o r i g i n a l and row−reduced game match for f ixed p r o b a b i l i t i e s p_1 , . . , p_ (n− 2) .
% Input : Prob := Array of the success probabi l i ty p := (p_1 , . . , p_ (n−2))
% k := Number of objects
% Trip_Chance := Extra f a i l probabi l i ty in p_1 or p_2
% Steps := The stepsize of the grid

function [] = TestValue (Prob , k , Trip_Chance , Steps)

% Define r a t i o n a l formatting
format r a t ;

% Define stepsize , and the s t a r t and end of the grid
Stepsize = 1/ Steps ;
Grid_Start = Stepsize ;
Grid_End = 1 − Stepsize ;

% Define empty l i s t s to separate grid points
Hypo1 = [] ;
Hypo2 = [] ;

% Define indices of the row s t r a t e g i e s in the row−reduced game
n = length (Prob) + 2 ;

% n = 4 , k = 1
%Index_Row_Strats = [1 , 10 , 17 , 2 0] ; %(1234 2341 3412 4132) %(Exp 2 . 4 . 1 . a)
%Index_Row_Strats = [1 , 10 , 17 , 1 9] ; %(1234 2341 3412 4123) %(Exp 2 . 4 . 1 . b)
%Index_Row_Strats = [6 , 8 , 15 , 2 4] ; %(1432 2143 3214 4321)

% n = 5 , k = 2
%Index_Row_Strats = [1 ,10 ,17 ,19 ,28 ,35 ,37 ,47 ,49 ,55] ; %(Exp 2 . 5 . 1 . 1)
%Index_Row_Strats = [6 ,8 ,15 ,24 ,26 ,33 ,42 ,45 ,54 ,60] ; %(Exp 2 . 5 . 1 . 2)
%Index_Row_Strats = [1 ,7 ,13 ,19 ,25 ,31 ,37 ,43 ,49 ,55] ; %(Exp 2 . 5 . 1 . 3)
%Index_Row_Strats = [1 ,11 ,28 ,31 ,47 ,52 ,55 ,16 ,19 ,41] ; %(Exp 2 . 5 . 1 . 4)

% Solve the o r i g i n a l and row−reduced game and group grid points
for x = Grid_Start : Stepsize : Grid_End

for y = Grid_Start : Stepsize : Grid_End

% Define probabilty p
P r o b a b i l i t i e s = [Prob , x , y] ;
A = [] ;

% Solve o r i g i n a l game for (x , y)
[Old_A , Saddle_Point , Opt_Hider , Opt_Searcher , Searcher_Pures , Old_Value , Mod_A] = Solver (P r o b a b i l i t i e s , k , Trip_Chance) ;

% R e s t r i c t pay− o f f matrix of o r i g i n a l game
for i = 1 : length (Index_Row_Strats)

A = [A ; Old_A (Index_Row_Strats (i) , :)] ;
end

% Solve r e s t r i c t e d game
r = [] ; s = [] ; [m, n]= s i z e (A) ;
i f min(max(A))==max(min(A ’))

58 A. Appendix

b=max(A) ; S t r a t e g y _ I s t = [] ; Strategy_IInd = [] ;ms= [] ;
for i =1:n

for j =1:m
i f isequal (b(i) ,A(j , i))

i f isequal (A(j , i) ,min(A(j , :)))
r (length (r)+1)= j ;
s (length (s)+1)= i ;

end
end

end
end
i f (length (r)==1 && length (s)==1)

Value = num2str (A(r , s) , 6) ;
e lse

for i =1: length (r)
ms=[ms ’ (’ i n t 2 s t r (r (i)) ’ , ’ i n t 2 s t r (s (i)) ’) , ’] ;

end
Value = num2str (A(r (1) , s (1)) , 6) ;

end
else

X_a=linprog (− [1 ; zeros (m, 1)] , [ones (n , 1) −A ’] , zeros (n , 1) , [0 ones (1 ,m)] , [1] , [− i n f ; zeros (m, 1)]) ; v=X_a (1 , 1) ; X_a (1 , :) = [] ;
X_b=linprog ([1 ; zeros (n, 1)] , [− ones (m, 1) A] , zeros (m, 1) , [0 ones (1 ,n)] , [1] , [− i n f ; zeros (n , 1)]) ; X_b (1 , :) = [] ;
Value = num2str (v , 6) ;

end

% Compare values
i f (abs (str2double (Old_Value) − str2double (Value)) < 0.00001)

Hypo1 = [Hypo1 ; P r o b a b i l i t i e s (length (P r o b a b i l i t i e s) −1: length (P r o b a b i l i t i e s))] ;
e lse

Hypo2 = [Hypo2 ; P r o b a b i l i t i e s (length (P r o b a b i l i t i e s) −1: length (P r o b a b i l i t i e s))] ;
end

end
end

% Generate 2d plot of a l l grid points
f i g u r e (1)
grid on ;

% Plot Optimal points
i f (~ isempty (Hypo1))

x1 = Hypo1 (: , 1) ;
y1 = Hypo1 (: , 2) ;
s c a t t e r (x1 , y1 , 1 0 , ’ g ’ , ’ f i l l e d ’) ; ax i s ([0 1 0 1]) ;
hold on ;

end

% Plot Non−Optimal points
i f (~ isempty (Hypo2))

x2 = Hypo2 (: , 1) ;
y2 = Hypo2 (: , 2) ;
s c a t t e r (x2 , y2 , 1 0 , ’ r ’ , ’ f i l l e d ’) ; ax i s ([0 1 0 1]) ;
hold on ;

end

% Set legend
i f (isempty (Hypo1))

legend (’Non−Optimal ’) ;
e l s e i f (isempty (Hypo2))

legend (’ Optimal ’) ;
e lse

legend (’ Optimal ’ , ’Non−Optimal ’) ;
end

% Plot t i t l e s
legend (’ Location ’ , ’ northeastoutside ’) ;
T i t l e _ S t r i n g = ’ ’ ;
for i = 1 : length (P r o b a b i l i t i e s)−2

T i t l e _ S t r i n g = [T i t l e _ S t r i n g , ’ p_ ’ , num2str (i) , ’ = ’ , ’ ’ , num2str (P r o b a b i l i t i e s (i)) , ’ , ’] ;
end
t i t l e ({

[’ Stepsize = ’ , num2str (Stepsize) , ’ , ’]
[T i t l e _ S t r i n g]
%[’ Extra Trip Chance = ’ , num2str (Trip_Chance)]
}) ;

x label ([’ p_ ’ , num2str (length (P r o b a b i l i t i e s) − 1)]) ;
y label ([’ p_ ’ , num2str (length (P r o b a b i l i t i e s))]) ;

A.1.3. Section 2.5 - Experiment 2.5.2
%% ReducedValue (k , Trip_Chance , Steps)
% Test i f there e x i s t a pure st r a te g y set that can always form an optimal s tr a te g y
% Input : k := Number of Objects
% Trip_Chance := Extra f a i l probabi l i ty in p_1 or p_2
% Steps := The stepsize of the grid

A.1. Matlab Code 59

% Output : Res1 := Set of permutations that do not s a t i s f y the statement
% Res2 := Set of permutations that s a t i s f y the statement

function [Res1 , Res2] = ReducedValue (k , Trip_Chance , Steps)

% Define r a t i o n a l formating
format r a t ;

% Define stepsize , and the s t a r t and end of the grid
Stepsize = 1/ Steps ;
Grid_Start = Stepsize ;
Grid_End = 1 − Stepsize ;

% Define a l l combinations of pure s t r at e gy s e t s
n = 4 ;
Num_RowStrats = f a c t o r i a l (n) / f a c t o r i a l (k) ;
Num_ColStrats = f a c t o r i a l (n) / (f a c t o r i a l (k) * f a c t o r i a l (n−k)) ;
Al l_Indices = nchoosek (1 : Num_RowStrats , Num_ColStrats) ;
Reductions_Size = s i z e (Al l_Indices) ;
Num_Reductions = Reductions_Size (1) ;

% Empty pure s tr a te g y set l i s t
Res1 = [] ;
Res2 = [] ;

for z = 1 : 1 : Num_Reductions

% Empty l i s t for p r o b a b i l i t i e s p
Hypo1 = [] ;
Hypo2 = [] ;

% Current pure s tr a te g y combination
Index_Row_Strats = Al l_Indices (z , :) ;
error = 0 ;

for x = Grid_Start : Stepsize : Grid_End
for y = Grid_Start : Stepsize : Grid_End

for x1 = Grid_Start : Stepsize : Grid_End
for y1 = Grid_Start : Stepsize : Grid_End

% Define probabilty p
P r o b a b i l i t i e s = [x , y , x1 , y1] ;
A = [] ;

% Solve o r i g i n a l game for (x , y , x1 , y1)
[Old_A , Saddle_Point , Opt_Hider , Opt_Searcher , Searcher_Pures , Old_Value , Mod_A] = Solver (P r o b a b i l i t i e s , k , Trip_Chance) ;

% Reduce pay− o f f matrix of o r i g i n a l game
for i = 1 : length (Index_Row_Strats)

A = [A ; Old_A (Index_Row_Strats (i) , :)] ;
end

% Solve r e s t r i c t e d game
r = [] ; s = [] ; [m, n]= s i z e (A) ;
i f min(max(A))==max(min(A ’))

b=max(A) ; S t r a t e g y _ I s t = [] ; Strategy_IInd = [] ;ms= [] ;
for i =1:n

for j =1:m
i f isequal (b(i) ,A(j , i))

i f isequal (A(j , i) ,min(A(j , :)))
r (length (r)+1)= j ;
s (length (s)+1)= i ;

end
end

end
end
i f (length (r)==1 && length (s)==1)

Value = num2str (A(r , s) , 6) ;
e lse

for i =1: length (r)
ms=[ms ’ (’ i n t 2 s t r (r (i)) ’ , ’ i n t 2 s t r (s (i)) ’) , ’] ;

end
Value = num2str (A(r (1) , s (1)) , 6) ;

end
else

X_a=linprog (− [1 ; zeros (m, 1)] , [ones (n , 1) −A ’] , zeros (n , 1) , [0 ones (1 ,m)] , [1] , [− i n f ; zeros (m, 1)]) ; v=X_a (1 , 1) ; X_a (1 , :) = [] ;
X_b=linprog ([1 ; zeros (n, 1)] , [− ones (m, 1) A] , zeros (m, 1) , [0 ones (1 ,n)] , [1] , [− i n f ; zeros (n , 1)]) ; X_b (1 , :) = [] ;
Value = num2str (v , 6) ;

end

% Compare values
i f (abs (str2double (Old_Value) − str2double (Value)) < 0.00001)

Hypo1 = [Hypo1 ; P r o b a b i l i t i e s (length (P r o b a b i l i t i e s) −1: length (P r o b a b i l i t i e s))] ;
e lse

60 A. Appendix

Hypo2 = [Hypo2 ; P r o b a b i l i t i e s (length (P r o b a b i l i t i e s) −1: length (P r o b a b i l i t i e s))] ;

% Current combination does not s a t i s f y statement
error = 1 ;

end

i f (error == 1)
break ;

end
end

i f (error == 1)
break ;

end
end

i f (error == 1)
break ;

end
end

i f (error == 1)
break ;

end
end

% Group pure s tr a te g y set combinations
i f (error == 1)

Res1 = [Res1 ; Index_Row_Strats] ;
e lse

Res2 = [Res2 ; Index_Row_Strats] ;
end

end

A.1.4. Chapter 4 - Matrix Game Solver

%% MatrixGameSolver (A)
% Solves a matrix game
% Input : A := Pay− o f f Matrix
% Output : Value := Value of the game
% X_a := Optimal Search Strategy
% X_b := Optimal Hiding Strategy
function [Value , X_a , X_b] = MatrixGameSolver (A)

r = [] ; s = [] ; [m, n]= s i z e (A) ;
i f min(max(A))==max(min(A ’))

b=max(A) ; S t r a t e g y _ I s t = [] ; Strategy_IInd = [] ;ms= [] ; X_a = 0 ; X_b = 0 ;
for i =1:n

for j =1:m
i f isequal (b(i) ,A(j , i))

i f isequal (A(j , i) ,min(A(j , :)))
r (length (r)+1)= j ;
s (length (s)+1)= i ;

end
end

end
end
i f (length (r)==1 && length (s)==1)

Value = A(r , s) ;
e lse

for i =1: length (r)
ms=[ms ’ (’ i n t 2 s t r (r (i)) ’ , ’ i n t 2 s t r (s (i)) ’) , ’] ;

end
Value = A(r (1) , s (1)) ;

end
else

X_a=linprog (− [1 ; zeros (m, 1)] , [ones (n , 1) −A ’] , zeros (n , 1) , [0 ones (1 ,m)] , [1] , [− i n f ; zeros (m, 1)]) ; v=X_a (1 , 1) ; X_a (1 , :) = [] ;
X_b=linprog ([1 ; zeros (n, 1)] , [− ones (m, 1) A] , zeros (m, 1) , [0 ones (1 ,n)] , [1] , [− i n f ; zeros (n , 1)]) ; X_b (1 , :) = [] ;
Value = v ;

end
end

A.1.5. Section 4.1 - Pay-off Matrix for Type One Games

%% Construct_MatrixGame1 (P r o b a b i l i t i e s)
% Constructs the Pay−Off Matrix for Game 1
% Input : P r o b a b i l i t i e s := Array of the success probabi l i ty p = (p_1 , . . , p_n)
% Output : A := Pay− o f f Matrix
% P r o b a b i l i t i e s := Array of the success probabi l i ty p = (p_1 , . . , p_n)
% ColStrats := A l l Hider ’ s Pure S t r a t e g i e s
% RowStrats := A l l Searcher ’ s Pure S t r a t e g i e s
function [A , P r o b a b i l i t i e s , ColStrats , RowStrats] = Construct_MatrixGame1 (P r o b a b i l i t i e s)

A.1. Matlab Code 61

% Define formating of data , e i ther r a t i o n a l or decimal .
format r a t ;

% Matrix s i z e
n = length (P r o b a b i l i t i e s) ;
nrow = n − 2 ;
ncol = n − 1 ;

% Empty matrix
A = ones (nrow , ncol) ;

% Hider ’ s Pure S t r a t e g i e s
ColStrats = 2 :n ;

% Searcher ’ s Pure S t r a t e g i e s
InBetween = transpose (2 : (n− 1)) ;
RowStrats = [ones (s i z e (InBetween)) InBetween ones (s i z e (InBetween)) * n] ;

for i = 1 :nrow

cRowStrat = RowStrats (i , :) ;

for j = 1 : ncol

cColStrat = ColStrats (j) ;

Search_Index = 1 ;
Counter = 0 ;

while Counter ~= 1

% Update current searched element
Searched_Element = cRowStrat (Search_Index) ;

% Update t o t a l success probabi l i ty
A(i , j) = A(i , j) * P r o b a b i l i t i e s (Searched_Element) ;

% Check i f one of the hidden objects has been found
i f (ismember (Searched_Element , cColStrat))

Counter = 1 ;
end

% Check i f cRowStrat can not find the object
i f (Search_Index == s i z e (RowStrats , 2) && Counter ~= 1)

Counter = 1 ;
A(i , j) = A(i , j) * 0 ;

e lse
% Update the next element to be searched
Search_Index = Search_Index + 1 ;

end
end

end
end
end

A.1.6. Section 4.2 - Pay-off Matrix for Type Two Games
%% Construct Pay−Off Matrix for Game 2
function [A , P r o b a b i l i t i e s , ColStrats , RowStrats] = Construct_MatrixGame2 (P r o b a b i l i t i e s)

% Define formating of data , e i ther r a t i o n a l or decimal .
format r a t ;

% Matrix s i z e
n = length (P r o b a b i l i t i e s) ;
nrow = f a c t o r i a l (n−1) − f a c t o r i a l (n− 2) ;
ncol = n−1;

% Empty matrix
A = ones (nrow , ncol) ;

% Hider ’ s Pure S t r a t e g i e s
ColStrats = 2 :n ;

% Searcher ’ s Pure S t r a t e g i e s
Perms = perms (1 : n) ;
RowStrats = sortrows (Perms (find (Perms (: , 1) == 1 & Perms (: , 2) ~= n) , :)) ;

for i = 1 :nrow

cRowStrat = RowStrats (i , :) ;

for j = 1 : ncol

62 A. Appendix

cColStrat = ColStrats (j) ;

Search_Index = 1 ;
Counter = 0 ;

while Counter ~= 1

% Update current searched element
Searched_Element = cRowStrat (Search_Index) ;

% Update t o t a l success probabi l i ty
A(i , j) = A(i , j) * P r o b a b i l i t i e s (Searched_Element) ;

% Check i f one of the hidden objects has been found
i f (ismember (Searched_Element , cColStrat))

Counter = 1 ;
e lse

% Update the next element to be searched
Search_Index = Search_Index + 1 ;

end
end

end
end
end

A.1.7. Section 4.3 - Pay-off Matrix for Type Three Games
%% Construct Pay−Off Matrix for Game 3
function [A , P r o b a b i l i t i e s , ColStrats , RowStrats] = Construct_MatrixGame3 (P r o b a b i l i t i e s)

% Define formating of data , e i ther r a t i o n a l or decimal .
format r a t ;

% Number of v e r t i c e s and inner v e r t i c e s
n = length (P r o b a b i l i t i e s) ;
m = n−2;

% Hider ’ s Pure S t r a t e g i e s
ColStrats = transpose (2 : n) ;

% Searcher ’ s Pure S t r a t e g i e s
Permutations = sortrows (perms (1 : n)) ;
nSearchedLocations = 3 ;
RowStrats = [] ;

while (nSearchedLocations ~= n+1)
% Pure s t r a t e g i e s of s i z e nSearchedLocations
Perms = unique (Permutations (Permutations (: , 1) == 1 & Permutations (: , nSearchedLocations) == n , 1 : nSearchedLocations) , ’ rows ’) ;

% F i l l remaining columns with zeros
[zeroRows , zeroCols] = s i z e (Perms) ;
FilledPerms = [Perms zeros (zeroRows , n−zeroCols)] ;

% Add the s t r a t e g i e s to RowStrats
RowStrats = [RowStrats ; FilledPerms] ;
nSearchedLocations = nSearchedLocations + 1 ;

end

% Empty matrix
ncol = length (ColStrats) ;
nrow = length (RowStrats) ;
A = ones (nrow , ncol) ;

for i = 1 :nrow
% Current Row Strategy
cRowStrat = RowStrats (i , :) ;

for j = 1 : ncol
% Current Column Strategy
cColStrat = ColStrats (j , :) ;

% Variable indicating location searched currently
Search_Index = 1 ;
Counter = 0 ;

% While hidden object has not been found
while Counter ~= 1

% Update current searched element
Searched_Element = cRowStrat (Search_Index) ;

% The l a s t point i s searched and we can ’ t move back
i f (Searched_Element == 0)

A(i , j) = A(i , j) * 0 ;

A.2. Proofs 63

Counter = 1 ;
e lse

% Update t o t a l success probabi l i ty
A(i , j) = A(i , j) * P r o b a b i l i t i e s (Searched_Element) ;

% Check i f one of the hidden objects has been found
i f (ismember (Searched_Element , cColStrat))

Counter = 1 ;
end

% Update the next element to be searched
Search_Index = Search_Index + 1 ;

end
end

end
end
end

A.2. Proofs
A.2.1. Claim: Equality 2.15
To proof: The following equation holds

Tk−1(A∪ i)z j −Tk−1(A∪ j)zi = z j Tk−1(A)− zi Tk−1(A).

Proof. By definition, it follows that

Tk−1(A∪ i)z j −Tk−1(A∪ j)zi = z j ·
(∑

B∈(A∪i)(k−1)

∏
l∈B

zl

)
− zi ·

(∑
B∈(A∪ j)(k−1)

∏
l∈B

zl

)
.

Notice that

(A∪ i)(k−1) ≡ {B ⊆ (A∪ i) : |B | = k −1} = {B ⊆ A : |B | = k −1}∪ {i ∪B : B ⊆ A & |B | = k −2}

in which both sets are disjoint. A similar result follows for the set (A∪ j)(k−1). Therefore, it follows that

Tk−1(A∪ i)z j −Tk−1(A∪ j)zi = z j ·
(∑

B∈A(k−1)

∏
l∈B

zl

)
+ zi z j

(
· ∑

B∈A(k−2)

∏
l∈B

zl

)
− zi ·

(∑
B∈A(k−1)

∏
l∈B

zl

)
− zi z j ·

(∑
B∈A(k−2)

∏
k∈B

zk

)
= z j Tk−1(A)− zi Tk−1(A).

A.2.2. Claim: Equation 2.23 has two Telescopic terms
To proof: The term(i∑

x=1
(1−px)

i∏
y=x+1

py

)
+

(n∑
x=i+2

(1−px)
n∏

y=x+1
py

i∏
z=1

pz

)
+

(i∏
y=1

py

i∏
y=i+2

py

)
−1

has two telescopic terms.

Proof. Consider the terms

i∑
x=1

(1−px)
i∏

y=x+1
py and

n∑
x=i+2

(1−px)
n∏

y=x+1
py

i∏
z=1

pz .

By writing out the summations, it follows that

i∑
x=1

(1−px)
i∏

y=x+1
py = (1−p1)p2...pi + (1−p2)p3...pi + ...+ (1−pi−1)pi + (1−pi)

= 1−p1...pi = 1−
i∏

y=1
py .

64 A. Appendix

and

n∑
x=i+2

(1−px)
n∏

y=x+1
py

i∏
z=1

pz =
(i∏

z=1
pz

)(
(1−pi+2)pi+3....pn + (1−pi+3)pi+4....pn

++ (1−pn−1)pn + (1−pn)
)

=
(i∏

z=1
pz

)
(1−pi+2....pn) =

(i∏
z=1

pz

)(
1−

n∏
y=i+2

py

)

A.2.3. Claim: Relation 3.23

To proof:

(A∩B)′ ⊆ (A′∩B ′).

Proof. Let x ∈ (A ∩B)′. If x is a leaf vertex, then x must be in (A ∩B). Since (A ∩B) ⊂ (A′ ∩B ′), it follows
that x ∈ (A′∩B ′). If x is not a leaf vertex, then there must exist a leaf vertex y ∈ (A ∩B) such that the subtree
spanned by y contains x. Since y ∈ (A∩B) ⊂ (A′∩B ′), it follows that y ∈ A′ and y ∈ B ′. Hence, all vertices that
are in the subtree spanned by y must be in A′ and B ′ which includes x, and therefore x ∈ (A′∩B ′).

A.2.4. Conjecture 4.3.1: Equation 4.36

To proof: The searching strategy s guarantees the searcher an expected pay-off of at least

VG =µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
i=2

pXi

)
.

Proof. Let µ be the normalisation constant, i.e.

µ=
(m∑

i=1
sXi

+mpZ −1

)−1

.

Assume the searcher plays the mixed strategy s as in conjecture 4.3.1. There are four cases:

– The hider plays h(X1) so that the expected pay-off is given by

P
(
h(X1), s

)= (
1− (m −1)pZ +pZ

m−1∑
j=2

j∏
i=2

pXi

)
µ ·p A pX1 + (mpZ −1)µ ·p A pX1

=µp A pX1 −mµp A pX1 pZ +µp A pX1 pZ +µp A pX1 pZ

m−1∑
j=2

j∏
i=2

pXi
+mµp A pX1 pZ −µp A pX1

=µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
i=2

pXi

)
.

A.2. Proofs 65

– The hider plays h(Xm) so that the expected pay-off is given by

P
(
h(Xm), s

)= pX1

pXm

(
pZ +

m∏
j=2

pX j
− (m +1)pZ

m∏
j=2

pX j
+pZ

m∑
j=2

j∏
i=2

pXi

)
µ ·p A pXm

+ (mpZ −1)µ ·p A

m∏
i=1

pXi

=µp A pX1 pZ +µp A

∏m
j=1 pX j

−mµp A pZ

∏m
j=1 pX j

−µp A pZ

m∏
j=1

pX j

+µp A pX1 pZ

m∑
j=2

j∏
i=2

pXi
+mµp A pZ

∏m
j=1 pX j

−µp A

∏m
j=1 pX j

=µp A pX1 pZ −µp A pZ

m∏
j=1

pX j
+µp A pX1 pZ

m∑
j=2

j∏
i=2

pXi

=µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
i=2

pXi

)
.

– The hider plays h(Xi) with i 6= 1,m, so that the expected pay-off is given by

P
(
h(Xi), s

)= pX1

pXi

(
pZ +

i∏
j=2

pX j
−mpZ

i∏
j=2

pX j
+pZ

m−1∑
j=2

j∏
k=2

pXk

)
µ ·p A pXi

+ (mpZ −1)µ ·p A

i∏
j=1

pX j

=µp A pX1 pZ +µp A pX1

∏i
j=2 pX j

−mµp A pX1 pZ

∏i
j=2 pX j

+µp A pX1 pZ

m−1∑
j=2

j∏
k=2

pXk

+mµp A pZ

∏i
j=1 pX j

−µp A

∏i
j=1 pX j

=µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
k=2

pXk

)
,

for i = 2, ...,m.

66 A. Appendix

– The hider plays h(Z) so that the expected pay-off is given by

P
(
h(Z), s

)= (
1− (m −1)pZ +pZ

m−1∑
j=2

j∏
i=2

pXi

)
µ ·p A pX1 pZ

+ pX1

pXm

(
pZ +

m∏
j=2

pX j
− (m +1)pZ

m∏
j=2

pX j
+pZ

m∑
j=2

j∏
i=2

pXi

)
µ ·p A pXm pZ

+
m−1∑
i=2

(
pX1

pXi

(
pZ +

i∏
j=2

pX j
−mpZ

i∏
j=2

pX j
+pZ

m−1∑
j=2

j∏
k=2

pXk

)
µ ·p A pXi

pZ

)

+ (mpZ −1)µ ·p A pZ

m∏
i=1

pXi

=µp A pX1 pZ − (m −1)µp A pX1 p2
Z +µp A pX1 p2

Z

m−1∑
j=2

j∏
i=2

pXi

+µp A pX1 p2
Z +µp A pX1 pZ

∏m
j=2 pX j

− (m +1)µp A pX1 p2
Z

m∏
j=2

pX j
+µp A pX1 p2

Z

m∑
j=2

j∏
i=2

pXi

+
m−1∑
i=2

(
µp A pX1 p2

Z +µp A pX1 pZ

i∏
j=2

pX j
−mµp A pX1 p2

Z

i∏
j=2

pX j
+µp A pX1 p2

Z

m−1∑
j=2

j∏
k=2

pXk

)

+mµp A p2
Z

m∏
i=1

pXi
−µp A pZ

∏m
i=1 pXi

=µp A pX1 pZ +µp A pX1 p2
Z

∑m−1
j=2

∏ j
i=2 pXi

− (m +1)µp A p2
Z

∏m
j=1 pX j

+µp A pX1 p2
Z

∑m
j=2

∏ j
i=2 pXi

+
m−1∑
i=2

(
µp A pZ

i∏
j=1

pX j
−mµp A p2

Z

i∏
j=1

pX j

)
+ (m −2)µp A pX1 p2

Z

m−1∑
j=2

j∏
k=2

pXk

+mµp A p2
Z

∏m
i=1 pXi

=µp A pX1 pZ +2µp A pX1 p2
Z

∑m−1
j=2

∏ j
i=2 pXi

+µp A p2
Z

∏m
i=1 pXi

−µp A p2
Z

∏m
i=1 pXi

+
m−1∑
i=2

(
µp A pZ

i∏
j=1

pX j
−mµp A p2

Z

i∏
j=1

pX j

)
+ (m −2)µp A pX1 p2

Z

∑m−1
j=2

∏ j
k=2 pXk

=µp A pX1 pZ +mµp A pX1 p2
Z

∑m−1
j=2

∏ j
i=2 pXi

+
m−1∑
i=2

µp A pZ

i∏
j=1

pX j
−∑m−1

i=2 mµp A p2
Z

∏i
j=1 pX j

=µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
k=2

pXk

)
.

Hence, the hider is indifferent between all his pure strategies and the searching strategy s guarantees that the
pay-off is at least

VG =µp A pX1 pZ

(
1+

m−1∑
j=2

j∏
k=2

pXk

)
.

A.2.5. Theorem 5: Equation 4.43
To proof:

P
(
h(Z), s

)=µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

.

Proof. Assume the hider plays h(Z) and the searcher plays s as defined in theorem 5. Then the expected

A.2. Proofs 67

pay-off is given by

P
(
h(Z), s

)= (
µ

pB

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

)
·p A pB pZ

+
(
µ

pC

− 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

)
·p A pC pZ

+ 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pB pC pZ

+ 2µpZ −µ

pB pC +pB pZ +pC pZ −2pB pC pZ

·p A pB pC pZ

= 2µp A pZ +
4µp A pB pC p2

Z −2µp A pB pC pZ −2µp A pB p2
Z −2µp A pC p2

Z +µp A pB pZ +µp A pC pZ

pB pC +pB pZ +pC pZ −2pB pC pZ

= 2µp A pZ −2µp A pZ

(
pB pC +pB pZ +pC pZ −2pB pC pZ

pB pC +pB pZ +pC pZ −2pB pC pZ

)
+ µp A pB pZ +µp A pC pZ

pB pC +pB pZ +pC pZ −2pB pC pZ

=µp A · pB pC +pB pZ +pC pZ −2pB pC pZ −pB pC +2pB pC pZ

pB pC +pB pZ +pC pZ −2pB pC pZ

=µp A + 2µp A pB pC pZ −µp A pB pC

pB pC +pB pZ +pC pZ −2pB pC pZ

.

Bibliography

[1] Steve Alpern and Shmuel Gal. The theory of search games and rendezvous, volume 55. Springer Science
& Business Media, 2006.

[2] D. Avis, G. Rosenberg, R. Savani, and B. von Stengel. Enumeration of nash equilibria for two-player
games. Economic Theory, 42(1):9–37, 2010. Online solver available at http://banach.lse.ac.uk. Ac-
cessed: 2020-12-20.

[3] Nicolas Barnier and Pascal Brisset. Solving the kirkman’s schoolgirl problem in a few seconds. In In-
ternational Conference on Principles and Practice of Constraint Programming, pages 477–491. Springer,
2002. Accessed: 2021-04-09.

[4] Dimitris Bertsimas and José Nino-Mora. Conservation laws, extended polymatroids and multiarmed
bandit problems; a polyhedral approach to indexable systems. Mathematics of Operations Research, 21
(2):257–306, 1996. Accessed: 2021-01-13.

[5] Weisstein Eric W. Kirkman’s schoolgirl problem. From MathWorld–A Wolfram Web Resource. https:
//mathworld.wolfram.com/KirkmansSchoolgirlProblem.html. Accessed: 2021-01-13.

[6] Thomas S Ferguson. A Course in Game Theory. World Scientific, 2020. Accessed: 2021-01-26.

[7] Ryusuke Hohzaki. Search games: Literature and survey. Journal of the Operations Research Society of
Japan, 59(1):1–34, 2016.

[8] Samuel Karlin. Mathematical Methods and Theory in Games, Programming, and Economics. Addison-
Wesley Publishing Company, June 2019. ISBN 978-1-483-22400-8. Accessed: 2021-02-27.

[9] Thomas Lidbetter. Search games with multiple hidden objects. SIAM Journal on Control and Optimiza-
tion, 51(4):3056–3074, 2013. Accessed: 2020-12-02.

[10] Hariharan Narayanan. Submodular functions and electrical networks, volume 54. Elsevier, 1997. Ac-
cessed: 2021-04-16.

[11] Ray Toal. Solving the kirkman schoolgirl problem. Online article available at https://cs.lmu.edu/
~ray/notes/kirkman/. Accessed: 2021-04-09.

69

http://banach.lse.ac.uk
https://mathworld.wolfram.com/KirkmansSchoolgirlProblem.html
https://mathworld.wolfram.com/KirkmansSchoolgirlProblem.html
https://cs.lmu.edu/~ray/notes/kirkman/
https://cs.lmu.edu/~ray/notes/kirkman/

	Introduction
	Search and Rescue Games
	Basic Rules
	Strategies and Pay-off
	Optimal Strategies using Indexibility
	Alternative Optimal Strategies for k = 1
	Alternative Optimal Strategies for k > 1

	Search and Rescue Games on a Tree
	Definitions and Rules
	Depth-first Optimal Strategy
	Binary Tree Reconstruction from an Oracle Function

	Search and Rescue Games on a Graph
	Game 1: Search and Rescue Game with Directed Edges
	Game 2: Search and Rescue Game with Undirected Edges
	Game 3: Search and Rescue Game with Directed Endpoint
	Game 3: Behavioural Strategy

	Conclusion
	Appendix
	Matlab Code
	Chapter 2 - Solve a Search and Rescue Matrix Game
	Section 2.4 and 2.5 - Experiment 2.4.1 and 2.5.1
	Section 2.5 - Experiment 2.5.2
	Chapter 4 - Matrix Game Solver
	Section 4.1 - Pay-off Matrix for Type One Games
	Section 4.2 - Pay-off Matrix for Type Two Games
	Section 4.3 - Pay-off Matrix for Type Three Games

	Proofs
	Claim: Equality 2.15
	Claim: Equation 2.23 has two Telescopic terms
	Claim: Relation 3.23
	Conjecture 4.3.1: Equation 4.36
	Theorem 5: Equation 4.43

	Bibliography

