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Abstract

Guidelines dating back 50 years, NASA SP-8007, are employed today in the design of thin-
walled launch vehicle structures. Due to advances in materials, structural designs, and man-
ufacturing techniques since the publication of SP-8007, the development of new knockdown
factors for contemporary launch vehicle structures is an ongoing subject of research. The work
presented herein was performed in collaboration with the NASA Engineering and Safety Cen-
ter on the Shell Buckling Knockdown Factor Project.

A laboratory-scale composite cylindrical shell test article, which had previously been designed
according to a novel scaling methodology, was the subject of simulation and testing. Its inner,
outer, and boundary surface imperfection signatures were measured and implemented in finite
element models for buckling test simulations. These were then used to provide prediction data
for an experiment conducted at NASA Langley Research Center. Buckling loads from the
two pre-test analyses were within 0.08% and 3.7% of the experimental buckling load. The
concurrence of axial shell stiffness, localized strains, and buckling shape evolution was also
established between the experiment and simulations. A slight loading imperfection was found
during the test; however, it was demonstrated through post-test analyses that this did not
affect the buckling load substantially.

The test article’s 0.91 normalized buckling load was much higher than the 0.59 knockdown
factor specified by SP-8007. The correlation between the experimental and simulation re-
sults, as well as their contrast with SP-8007’s prescription, suggests that directly measured
imperfections are capable of playing a role in the development of modern and potentially less
conservative knockdown factors for future launch vehicle structures.
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Chapter 1

Introduction

A crucial aspect of designing the unstiffened thin-walled cylindrical shell structures found
in space launch vehicles is ensuring that they can withstand a specified axially compressive
load without buckling. Once buckled, cylindrical shells may experience a significant reduction
of load capacity and stiffness. Furthermore, the incipient deformations can cause failure of
the constituent material(s). Therefore, judiciousness must be employed when designing these
structures so that this stability phenomenon does not occur during operation.

However, the well-documented imperfection-sensitive nature of thin-walled shells complicates
this matter. While the theoretical buckling load of cylindrical shells can be calculated ana-
lytically, it has been known for around a century that experimental buckling loads are often
lower due to imperfections inherent to manufactured structures [1, 2, 3, 4].

As a result, statistically based “knockdown factors” (KDFs) are used to account for the ob-
served discrepancy when designing such structures. The document containing these industry-
standard guidelines, NASA SP-8007 [5], was last updated in 1968, and consequently its pre-
scriptions do not always account for the designs, materials, and construction techniques uti-
lized in contemporary launch vehicle structures (e.g. sandwich structures with composite face
sheets). Advances in computational mechanics (and measurement devices) since SP-8007’s
last revision have also enabled unique topological imperfections signatures to be modeled
with increasing fidelity, and it will be demonstrated that doing so can predict experimental
buckling loads more accurately than analytical solutions and statistical knockdown factors.

When applied to modern composite shells, SP-8007 has been known to give mixed results
in terms of conservatism. As noted by Hilburger and Starnes Jr. [6], these guidelines may
be unconservative if the statistical data upon which they are based do not reflect the shell
construction method of interest. In 2016, NASA even warned that structural designers should
be prudent when attempting to apply SP-8007 to composite shells [7]. On the other hand, it
is thought that in many cases SP-8007 KDFs may be overly conservative [8, 9, 10, 11, 12]. In
the event that some currently employed KDFs are too conservative, there is an added bonus
that modernized KDFs could lead to decreased structural mass. This in turn could reduce
launch costs, which in 2017 ranged from $10,000 to $100,000 (US) per kilogram [13].



2 Introduction

A leading initiative in devising new knockdown factors is the NASA Engineering and Safety
Center’s Shell Buckling Knockdown Factor Project. In addition to researching full-scale
launch vehicle structures, the project has been investigating the role that laboratory-scale
shells can play in the development process. Delft University of Technology collaborates with
NASA in that effort [14, 15]. The work herein concerns a laboratory-scale composite cylin-
drical shell test article, referred to as NDL-1, which was derived from NASA’s full-scale test
article CTA8.1 and manufactured at NASA Marshall Space Flight Center.
Figure 1.1 shows the process by which NDL-1 was designed from CTA8.1 (this was not
performed by the present author). The employed scaling methodology was developed by
Uriol Balbin et al. [16] and prescribes scaling via parameters derived from nondimensional-
ized anisotropic cylindrical shell buckling equations. Because these equations apply to purely
isolated shells – rather than to test articles that have additional features necessary for ex-
periments – two simplified shell designs were used as intermediaries between the designs of
CTA8.1 and NDL-1; however, neither simplified shell was manufactured.

Figure 1.1: Flowchart showing how the laboratory-scale test article NDL-1 was developed from
the full-size test article CTA8.1.

As Figure 1.1 indicates, CTA8.1 was initially translated into an equivalent simplified full-scale
shell. This was accomplished via iterative numerical analyses, with a priority on matching
the buckling load and axial stiffness as closely as possible. Then the scaling methodology
was applied to the simplified full-scale shell to produce a simplified laboratory-scale shell.
Finally, iterative numerical analyses were conducted to translate the simplified laboratory-
scale shell into NDL-1’s design by attempting to match the stiffness and buckling load, while
simultaneously adding necessary testing features and accounting for the limitations of the
material, manufacturing process, and test-equipment. A key difference between CTA8.1 and
NDL-1 is that the former is a sandwich structure with composite face sheets, while the latter
features a solid composite laminate; this was a consequence of the scaling methodology and
manufacturing considerations.

Thesis Research

The objective of the thesis was to contribute to the development of modern knockdown fac-
tors for composite launch vehicle structures by: simulating NDL-1’s buckling behavior using
measured imperfection data from the manufactured shell itself; providing pre-test buckling
predictions and related simulation data for use during the buckling experiment of NDL-1 at
NASA Langley Research Center; post-processing the test data; and comparing the results
of the simulations and the experiment, thus ultimately assessing the simulations’ validity in
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light of the test. Pre-test simulations are important for use both during testing and after.
They provide reference data for comparison with the experiment as it is happening in real
time, giving test personnel a clearer lens through which to monitor for potentially anomalous
large-scale behavior. When comparing them to post-processed test data, the lens can further
reveal smaller details. As research continues, pre-test simulation techniques may ultimately
enable shorter design cycles and reduce the necessity of project-specific experimental testing.

Report Structure

Chapter 2 provides a review of literature focusing on the use of measured imperfections
in composite cylindrical shell modeling, with an emphasis on comparing simulated data to
experimental results. Additionally, it provides an overview of common themes pertaining to
the intricacies of these simulations.
Chapter 3 presents the specifications of the aforementioned simplified laboratory-scale shell,
which was used in preliminary simulations. These details include geometry, material, and
layup information, along with the analytical buckling load and the knockdown factor pre-
scribed by SP-8007. This chapter additionally elucidates the choices in finite element model-
ing of the simplified shell and the reasons for which they were made.
Simulation data for the simplified shell without imperfections is presented in Chapter 4.
The sensitivity of the simplified shell to eigenmode shape and trigonometric imperfections is
explored in Chapter 5. The former has been used classically in the estimation of experimental
buckling behavior, although it is often considered to give conservative results [17, 18, 19, 20,
21]. The latter was studied in the context of the SP-8007 analytical solution [22], which
specifies the analytical shape with which the simplified shell is expected to buckle.
The influence of two loading imperfections arising from the equipment-article interface are
studied in Chapter 6 also using the simplified shell. These simulations were performed because
in reality, no buckling experiment features perfect load introduction. Furthermore, these
loading imperfections can reduce the observed buckling load.
The nominal specifications of NDL-1 are introduced Chapter 7. Additionally, its measured
inner, outer, and edge imperfection surfaces are presented.
Chapter 8 covers the modeling and simulation of NDL-1. The process by which NDL-1’s
specifications and imperfections were transformed into a finite element model is presented.
A statistical analysis was also performed to verify the shell model’s imperfections were rep-
resentative of the actual measured imperfection signatures. Additionally, adjustments to the
nominal composite material properties are discussed. These adjustments were made based
upon the results of a NASA tensile test, as well as thickness information that was derived
via the interpolated outer and inner imperfection surfaces. The preliminary results of two
simulations are then given.
The experiment, results, and simulation correlation are detailed in Chapter 9. First, the
experimental setup and data acquisition sources are introduced. Then data from test and
simulation are compared side-by-side. These include load-displacement behavior, load-strain
behavior, pre-buckling shape evolution, and post-buckling shape evolution. The concurrence
between the experimental and simulated behavior for each of these metrics is assessed.
Finally, Chapter 10 presents conclusions.
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Chapter 2

Literature Review

A major aspect of developing knockdown factors for launch vehicle structures involves the
numerical estimation of experimental buckling loads. Several approaches have been employed
to this end, although only one is discussed here as others are beyond the scope of the thesis
research. The strategy herein prescribes the utilization of measured imperfections from phys-
ical test specimens in numerical models in order to simulate the buckling behavior of those
unique specimens. The use of directly measured imperfections in estimating experimental
buckling behavior dates back as far as 1979, when Arbocz championed the creation of refer-
ence databases for measured imperfections to enhance the understanding of cylindrical shell
buckling, such as in his work with Abramovich [23].

A review of studies from 2000 through the present is given, specifically with a view to-
wards research in which finite element simulations of composite shells with directly measured
imperfections were compared to experimental results. Following this, a comparative table
summarizes the correlation between numerical and experimental results from several of these
research endeavors. Finally, common themes in the practical matters related to simulating
cylindrical shell buckling experiments are explored.

2.1 Research with Directly Measured Imperfections

In 2000, Bisagni [24] determined that a test article’s experimental and simulated buckling
loads were significantly lower than the analytical buckling load. The middle portion of a
manufactured cylindrical shell’s surface was measured, and its imperfection signature was
implemented into a finite element model. Imperfections in unmeasured areas of the shell
were modeled by linearly tapering the extents of measurement data down to the nominal
shell geometry at the edges. The simulated buckling loads of these models – which were
found through Riks analysis and nonlinear dynamic analysis – were 15% and 20% higher,
respectively, than the experimental buckling load, with the numerical post-buckling load also
overestimating that of the experiment. The experimental, Riks analysis, and dynamic analysis
normalized buckling loads were 0.68, 0.78, and 0.83, respectively.
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Wullschleger and Meyer-Piening [25] published numerical and experimental results for two
composite cylindrical shells, Z32 and Z33, with measured geometric imperfections in 2002.
Nonlinear dynamic analysis of the shell models without imperfections produced buckling
loads of 105 kN and 199 kN, respectively. When geometric imperfections were implemented,
analysis revealed reduced buckling loads of 103 kN and 145 kN, respectively. By comparison,
the average results from experimental tests at the German Aerospace Center (DLR) and the
Swiss Federal Laboratories for Materials Science and Technology (EMPA) gave buckling loads
of 91 kN and 179 kN for Z32 and Z33, respectively. Thus analysis with imperfections over-
predicted the real buckling load by 13% for Z32 and under-predicted the buckling load by
19% for Z33.

In 2002, Hilburger and Starnes Jr. [26] from NASA Langley Research Center published results
of experiments on three solid composite cylindrical shells and compared them each to a range
of numerical analysis predictions, as shown in Figure 2.1. The implemented imperfections
included mid-surface imperfections, thickness variations, ply gaps, and fiber volume fraction
fluctuations. The logic behind producing prediction ranges, rather than discrete predictions,
was to attempt to characterize the uncertainty in some parameters, in addition to the effects
of the imperfections themselves. Such included uncertainties were related to the imperfection
measurement system, nominal fiber volume fraction, and loading. A combinatorial analysis
was used to determine the best and worst cases for each set of parameters in the range. The
experimental buckling loads for all cylindrical shells were reported normalized to the linear
bifurcation load of the C3 model without imperfections (42.59 kip). These were 0.652 for
C1, 0.749 for C2, and 0.803 for C3. Hilburger and Starnes Jr. cited that the experimental
buckling loads were 7.8%, 13.7%, and 17.6% lower than the loads predicted by the cylindrical
shell model analyses without imperfections. They noted, as Figure 2.1 indicates, that the
experimental behavior was well-captured by the predicted bounds for C1, and almost captured
by the ranges of C2 and C3 predictions. For comparison, Hilburger and Starnes Jr. indicated
the NASA SP-8007 KDF is 0.47 for an isotropic shell with the same radius-to-thickness ratio
of 200 as the three composite cylindrical shells manufactured.

Figure 2.1: Experimental results of Hilburger and Starnes Jr. for three cylindrical shells C1, C2,
and C3 compared with analysis-based buckling load prediction ranges [26]. The buckling load on
the vertical axis is normalized to the linear bifurcation load of C3, and the imposed displacement

is normalized to wall thickness on the horizontal axis.
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In 2004, Hilburger et al. [17] followed up on that work. For the cylindrical shell C3, a detailed
comparison was given between FE analyses with several varieties of imperfection signature,
as shown in Table 2.2: the mean imperfection signature of the three cylindrical shells C1-
C3, the mean plus one standard deviation, the mean minus one standard deviation, and
the as-measured signature. With a range of normalized buckling loads from approximately
0.85 to 0.95, the sensitivity of these cylindrical shells to varying imperfection signatures was
illustrated. The mean imperfection signature gave a slightly higher buckling load than the as-
measured signature, while reducing the imperfection by one standard deviation increased the
predicted buckling load. Conversely, increasing the imperfection signature by one standard
deviation decreased the buckling load, which confirms the expectation that more geometric
imperfection amplitude would lead to a lower buckling load. All results of the study are
shown in Table 2.1. The resultant KDFs for the closest measured imperfection simulation
were 0.92, 0.95, and 0.88 for C1, C2, and C3, respectively, while the experimental KDFs were
0.93, 0.88, and 0.82, respectively. This implies errors of -1%, 8%, and 7% on the buckling
load predictions.

Figure 2.2: FEA results of Hilburger et al. for several varieties of geometric imperfection
signature: mean of C1-C3, mean minus one standard deviation, mean plus one standard

deviation, and C3 as-measured [17].

Table 2.1: All results of Hilburger et al. [17].

Hühne et al. [27] combined measured imperfections in numerical models with the Single Per-
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turbation Load Approach (SPLA) in 2008 for six composite cylindrical shells, which comprised
four different designs (Z07 and Z08 were of the same design, Z09 was a second design, Z10
and Z11 were a third design, and Z12 was a fourth). The research was generally meant to
propose new design guidelines for developing launch vehicle structures. The results compared
the analysis of imperfect shells with the SPLA to experimental data and NASA SP-8007
guidelines. It was found that the N1 buckling load plateau of simulations for the six imper-
fect shells showed agreement with the N1 test data, as seen in Figure 2.3. Relative to the
linearly obtained buckling loads for perfect cylindrical shells, the KDFs combining the SPLA
and measured imperfections were approximately 0.55 for Z07 and Z08, 0.86 for Z09, 0.60 for
Z10 and Z11, and 0.88 for Z12. The experimentally obtained KDFs were 0.52 (average of Z07
and Z08), 0.82 (Z09), 0.56 (average of Z10 and Z11), and 0.79 (Z12). This implies errors be-
tween test and simulation of 5%, 4%, 7%, and 11%, respectively for the aforementioned sets of
cylindrical shells. However no comparison to SPLA models without imperfections was given.
Thus, it cannot be concluded from this publication how much the measured imperfections in
the models influenced the simulated N1 loads.

Figure 2.3: Results of Hühne et al. for six composite cylindrical shells’ experimental SPLA tests
and SPLA simulations with the inclusion of measured imperfections [27].

Between 2010 and 2011 researchers at the European Space Agency (ESA), the German
Aerospace Center (DLR), and the University of Innsbruck studied a set of 10 solid laminate
cylindrical shells. This research spawned three publications in which measured imperfections
were related back to experimental results [28, 29, 30]. In the first article from Degenhardt
et al. [28], models with mid-surface imperfections and thickness imperfections in combination
and individually were created. The authors used the classical buckling load of 31.3 kN as the
basis for KDFs rather than the higher simulated buckling load of 38.2 kN from geometrically
perfect cylindrical shells, noting that the difference is due to the clamped edge condition in
the model versus the classical buckling load which accounts only for simply supported edges.
Here, the KDF of each basis is given in the format KDFclassical (KDFF EA,ideal). The mean
of the experimental buckling loads from the 10 specimens, which ranged from 21.3 kN to 25.7
kN, was 23.6 kN. This translated to average resultant experimental KDFs of 0.75 (0.62). The
authors only published data on the numerical models of cylindrical shell Z26 (see Figure 2.4),
which featured an experimental buckling load of 22.43 kN, for resultant experimental KDFs
of 0.72 (0.59). Resultant KDFs from the models with only thickness imperfections, only geo-
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metric imperfections, and both geometric and thickness imperfections were respectively 1.16
(0.95), 1.05 (0.86), and 1.00 (0.82), which translate to relatively large errors of 62%, 46%,
and 39% respectively. The authors suggested that inhomogeneous material properties in the
specimen and loading imperfections were responsible for the discrepancy, and later turned to
stochastic methods to attempt to explain the difference. Despite this, all experimental and
numerical KDFs were well above the SP-8007 KDF of 0.32.

Figure 2.4: Results of Degenhardt et al. for cylindrical shell Z26 simulations and experiment
[28].

Broggi et al. [30] in a second study incorporated fiber volume fraction (FVF) variances into
measured imperfection models. Notably, these FVF imperfections were derived from measured
variations in thickness; the authors attributed variations from the nominal thickness entirely
to changes in resin content, rather than having a proportional increase in fiber content. This
was a sensible assumption, because during the manufacturing process of composites, uncured
resin is able to relocate with greater ease than fibers. Thus, the absolute amount of fiber
in a given area should remain relatively constant. In conjunction with observed thickness
variations, this means that the FVF, a relative quantity, should vary between areas of differ-
ent thickness. The results of their study are shown in Figure 2.5. For cylindrical shell Z26,
the FVF-variation-inclusive model predicted a buckling load of approximately 32 kN, slightly
farther from the experimental result than Degenhardt et al. [28] simulated with measured
imperfections only. Consequently the corresponding KDFs were 1.02 (0.84), for an approxi-
mately 43% error. When assessing the 10 cylindrical shells in aggregate, the average of the
FVF-variation-inclusive models predicted a buckling load of approximately 31.2 kN, resulting
in 1.00 (0.82) KDFs (which was incidentally the same as the Z26 mid-surface with thickness
imperfection model of Degenhardt et al. [28]), whereas the mean experimental buckling load
was 23.6 kN.

The third publication of the set, authored by Broggi and Schuëller [29], built upon the above
research by further incorporating ply-gap imperfections into numerical models with geometric
and thickness imperfections. These ply gaps and thickness imperfections were modelled using
the “moving window averaging technique”. This method effectively recomputed the ABD
matrix of small sub-sections (windows) of the FE model using thickness data that had been
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Figure 2.5: Results of Broggi et al. for 10 cylindrical shell models with measured imperfections,
thickness imperfections, and fiber volume fraction fluctuations, compared with experimental

data [30].

determined from ply gaps. The average simulated buckling load of the 10 models including
geometric imperfections, thickness imperfections, and ply gaps was 30.8 kN, for resultant
KDFs of 0.98 (0.81). For a direct comparison with cylindrical shell Z26 from the study of
Degenhardt et al. [28], the incorporation of ply gaps into the numerical model actually resulted
in slightly worse buckling load prediction of 31.6 kN, with resultant KDFs of 1.01 (0.83).

In 2013, Wu et al. [31] researched the impact of geometric imperfections on the buckling be-
havior on two variable stiffness solid composite cylindrical shells and additionally accounted
for thickness variations due to overlapping fiber tows caused by the filament winding manu-
facturing process. This study was unusual in that the experimental buckling loads of both
Shells A and B were higher than the buckling loads predicted by perfect models. Using the
latter set of values as the baseline reference for the denominator in the KDF calculation,
their experimental results imply KDFs of 1.08 and 1.14, respectively. Models of Shells A and
B with their imperfections resulted KDFs of 1.01 and 0.98, respectively, which correspond
to errors of -7% and -14% relative to the experimental KDFs. The authors speculated that
the variably stiff nature of the shells caused this imperfection insensitivity, although it was
suggested that further exploration was needed for definitive conclusions.

Arbelo et al. [32], studied measured geometric and thickness imperfections individually and
in combination for the test cylindrical shell Z15, along with geometric imperfections for a
second cylindrical shell Z33. Models with only geometric imperfections yielded KDFs of 0.837
and 0.72 for Z15 and Z33, respectively, which corresponded to errors of 13% and -17% with
respect to the experimental KDFs of 0.74 and 0.87. For Z15, thickness imperfections alone
gave a numerical KDF of 0.97, for an error of 32%. The consideration of both geometric
and thickness imperfections very slightly improved the FE-predicted KDF to 0.836 relative
to isolated geometric imperfections. Comparing solely geometric imperfections for Z15 and
Z33, it is clear that those had a greater impact on the buckling load of Z33. NASA SP-8007
guidelines were overly conservative relative to the experimental results of both cylindrical
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shells, as design KDFs of 0.31 for Z15 and 0.48 for Z33 were prescribed.

As part of the German LuFo program, Schillo et al. [33] studied the effects of combinations
of measured geometric imperfections, layup variations, and load imperfections in four FE
models of two filament-wound composite cylindrical shells in 2015. Photogrammetry was used
to measure the geometry of the cylindrical shell, and Fourier analysis was further employed
on this measurement data to obtain a representative mid-surface for implementation in the
models. Additionally, the researchers used microscopy to investigate the as-manufactured
nature of the layup. Thus, an “as-built” set of material properties were derived from analyzing
voids and resin-rich areas, rather than simply basing the models’ material properties on the
nominal material data. For the 11 cylindrical shells tested, load imperfections were detected
via the test setup, and they were described as most likely being caused by tolerances of holes
in the attachment rings that linked the test specimens to the Hexapod test equipment. The
experimental buckling loads are compared with results of four varieties of numerical models in
Figure 2.6 containing: (1) geometric and load imperfections; (2) geometric imperfections with
a load imperfection and the as-built layup; (3) geometric imperfections only; and (4) a load
imperfection only. The average resultant KDFs for each of the categories one through four
were 0.565, 0.57, 0.67 and 0.58, respectively. Given an experimental mean KDF of 0.56, the
corresponding differences between the numerical models and the mean experimental KDFs
were 1%, 2%, 19%, and 4%, respectively. This clearly illustrates the significance that loading
imperfections applied in mutually orthogonal directions to the cylindrical shells’ axes can have
on the buckling behavior (see Figure 2.7). These loading imperfections Fx and Fy resulted
in an average 3.1 kN shear load, which itself is approximately 5% of the mean buckling load.
By contrast, the measured imperfection appears to have had about a fifth of the impact on
the buckling load as the loading imperfection did. The orthotropic NASA SP-8007 KDF for
the same cylindrical shell models was 0.54. So, unlike other studies in which the SP-8007
KDF appears to be overly conservative, it was not the case here, likely due to the loading
imperfections; it is possible that without the presence of such significant shear loads, this may
not have been the result.

Figure 2.6: Numerical versus experimental results for four model variations of Schillo et al. [33].

In a joint study between researchers at the University of Bristol and NASA in 2015, White
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Figure 2.7: Measured loading imperfections resulted in net shear, shown above at the point of
buckling [33].

et al. [34] investigated the effects of modeling variable stiffness solid composite cylindrical
shells with imperfections. Due to the variable tow angles of fibers, individual elements in
the model required their own material properties (e.g. orientation angle). Both thickness
imperfections and geometric imperfections were incorporated into the models. Additionally,
while the authors did not model the epoxy potting in the full FE models, they incorporated
the effective stiffness of the potting into the full models by first making sub-models of the shell
boundary areas with potting (as shown in Figure 2.8) and calculating the effective stiffness of
the end sections via static analyses. Multiple encasement stiffness ratios η were obtained for
each cylindrical shell’s sub-model due to the fact that different lamina stacking sequences were
present at the end of the cylindrical shell (as a result of fiber overlaps). Thus the buckling
sensitivity responses of the full model with varying η are shown in Figure 2.9. It is apparent
however that altering the stiffness of the encased elements did not ultimately have a dramatic
impact on the buckling loads obtained. Overall, the best numerical KDF for Shell A was
within -1% of the experimental KDF, while that of Shell B was within -7% agreement with
the experimental result.

Figure 2.8: Sub-models from which effective stiffness of encased regions of the cylindrical shells
as determined by White et al. [34].
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Figure 2.9: The effect of altering encasement sensitivity on the buckling curves of two variable
stiffness cylindrical shells, with measured geometric and thickness imperfections included [34].

Continuing off of research from the DESICOS project, Khakimova et al. [35] in 2017 inves-
tigated the effects of incorporating individual and combinations of imperfections into solid
composite cylindrical shell models in order to determine how the accuracy of buckling load
and KDF predictions were affected. The types of imperfections considered were geometric
imperfections, thickness imperfections via ultrasonic measurement, and fiber volume fraction
variations. Additionally, the authors analyzed a model incorporating all imperfection types
and potting on the cylindrical shell ends, which helps to facilitate load transfer. For the
specimen Z36, the load-displacement curve is shown in Figure 2.10. It can be seen clearly
that the inclusion of more imperfection types reduced the difference in FEA buckling load rel-
ative to the experimental buckling load; for cylindrical shell Z36, the closest FEA prediction
yielded a KDF of 0.8, whereas the actual experimental test gave 0.71. Similarly, for a second
specimen investigated, Z37, the model with all imperfections gave a KDF of 0.79, while the
test gave 0.65. The corresponding errors between these numerical and experimental KDFs
for Z36 and Z37 are 13% and 22%, respectively. The authors attributed these differences to
loading asymmetries in the test setup, which were observed via strain gauge readings from
the cylindrical shells’ surfaces.

Schultz et al. [36] of NASA studied the buckling behavior of a large-scale composite honeycomb-
core sandwich cylindrical shell CTA8.1 in 2018 via FEA and experimental testing. Using
structured light scanning to measure the inner and outer molds, the authors were able to
derive both mid-surface imperfection (via averaging) and thickness imperfection (via subtrac-
tion) information for incorporation into FE models. Because shell elements of two-dimensional
geometry were used, imperfections were implemented via perturbation of node locations from
their idealized positions to the imperfect mid-surface locations determined from the struc-
tured light scanning. Because the authors furthermore attributed thickness variations in the
cylindrical shell to changes in the core thickness, the thickness imperfection was implemented
by varying the core thickness in each element via the composite layup properties. In addition
to modeling the cylindrical shell, the authors also modeled the rest of the test setup, which
included load-orientation lines and assemblies on the top and bottom of the cylindrical shell,
each consisting of an attachment ring, a transition section, load struts, and a load spider
(in order of proximity to CTA8.1). The pre-test FE analysis buckling load yielded excellent
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Figure 2.10: The effect of incorporating various imperfections on FE buckling analyses [35].

agreement with the experimental test result: 865 kip and 857 kip, respectively, for KDFs of
0.88 and 0.87, which translates to a 0.9% over-prediction. A post-test simulation was also
conducted to account for material nonlinearities, which were measured from destructively re-
moved specimens of CTA8.1. Incorporation of the nonlinear material response also gave good
agreement with the experimental result, with an FEA buckling load of 845kip, which corre-
sponds to an error of -1.4%. The authors noted that while this slightly increased discrepancy
in buckling load was present, the nonlinear material model better reflected the pre-buckling
load-displacement curve of the experiment. Noting that the NASA SP-8007 KDF for CTA8.1
was 0.61, the authors concluded that the guidelines may be overly conservative.

In 2019, Labans and Bisagni [37] sought to investigate the numerical and experimental buck-
ling behavior of a variable stiffness solid composite cylindrical shell and a constant stiffness
quasi-isotropic composite cylindrical shell with measured geometric imperfections. One cylin-
drical shell of each category was manufactured, and the inner and outer surfaces of the shells
were measured via laser and digital image correlation (DIC), respectively. These imperfec-
tions were implemented into numerical models in Abaqus, and dynamic implicit analyses for
each cylindrical shell were conducted. Additionally, eigenvalue analysis was performed on
geometrically perfect cylindrical shells in order to calculate KDFs from each analysis and the
experiments. For the highest resolution variable stiffness model (in which five separate zones
were discretized from continuously varying tow angles), the KDF was 0.77, while KDFs of
0.76 and 0.81 were found for laser-measured and DIC-measured imperfection models of the
constant stiffness cylindrical shell, respectively. In comparison, the experimentally obtained
KDFs were 0.80 for the variable stiffness cylindrical shell and 0.72 for the constant stiffness
cylindrical shell, indicating that numerical models were able to predict the actual buckling
load within 5% for both cylindrical shells (in the case of the DIC-measured constant stiffness
cylindrical shell, the prediction was 12%). While the authors did not calculate a NASA SP-
8007 KDF for the constant stiffness cylindrical shell, a 0.44 KDF could be calculated from
the geometric, material, and layup information provided.
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2.2 Comparison of Data from Simulation and Experiments

Table 2.2 gives an overview of resultant simulated and experimental KDFs for unstiffened
composite cylindrical shells found in the literature. The table is sorted in reverse chronological
order. The number of the reference is given in the first column, and the second column gives
the year of publication. The third column describes the type of material and construction
with the following designations: “CS” for solid composite, “CSV” for solid composite with
variable stiffness, and “CSW” for composite sandwich.

Ref Year Type Specimen or FEA Imperfection Type KDF Error r/tModel Variant Geo Thk Mat Other Exp. FEA SP-8007 % FEA

[37] 2019
CSV 1 (5-zone model) x 0.80 0.77 N/A -4

208
CS

2 (FEA from laser
imperfection) x 0.72 0.76 0.44 5

2 (FEA from DIC
imperfection) x 0.81 12

[36] 2018 CSW Pre-test FEA x x 0.87 0.88 0.61 0.9 149Post-test FEA x x 0.86 -1.4

[35] 2017 CS
Z36 x 0.71 0.85

0.31

21

533x x FVF 0.80 13

Z37 x 0.65 0.86 32
x x FVF 0.79 22

[34] 2015 CSV Shell A x x 1.00 1.00 N/A -1 163
Shell B x x 1.07 0.99 -7 209

[33] 2015 CS

FEA 1 x load

0.56

0.56

0.54

1

142FEA 2 x x load 0.57 2
FEA 3 x 0.67 19
FEA 4 load 0.58 4

[32] 2014 CS Z15
x x

0.74
0.84

0.31
13

540x 0.97 32
x 0.84 13

Z33 x 0.87 0.72 0.48 -17 200

[31] 2013 CSV Shell A x x 1.08 1.01 N/A -7 188Shell B x x 1.14 0.98 -14

[29] 2011

CS

Z26 x x PG 0.72 1.01

0.32

41

1000

Z15, Z17, Z18,
Z20-Z26

x x PG 0.75 0.98 31

[30] 2011 x x FVF 1.00 32

Z26

x x FVF

0.72

1.02 43

[28] 2010
x 1.05 46

x 1.16 62
x x 1.00 39

[27] 2008 CS

Z07, Z08 (avg) x SPLA 0.52 0.55 0.31 5

500Z09 x SPLA 0.82 0.86 0.31 4
Z10, Z11 (avg) x SPLA 0.56 0.60 0.30 7

Z12 x SPLA 0.79 0.88 0.31 11

[17] 2004 CS
C1 vs best FEA x x x 0.93 0.92 0.47 -1

200C2 vs best FEA x x x 0.88 0.95 0.47 8
C3 vs best FEA x x x 0.82 0.88 0.46 7

[25] 2002 CS Z32 x 0.87 0.98 0.48 13 200Z33 x 0.90 0.73 0.48 -19

[24] 2000 CS Dynamic x 0.68 0.83 0.45 21 265Riks x 0.78 14

Table 2.2: Comparison of findings from literature in which experimental results were compared
specifically with FEA that included measured imperfections.

The fourth column specifies either the name of the specimen and/or the variant of the FE
model used as referred to in the given publication. In some cases of multiple shells having the
same nominal specifications, the data is averaged and noted with “avg”. The imperfection
types stated indicate which imperfections were incorporated into the FE models, and they
are given in the fifth through eighth columns: geometric, thickness, material, and other,
respectively. Specific material imperfection abbreviations are: “FVF” for fiber volume fraction
and “PG” for ply gap.

The resultant experimental and FEA KDFs in columns nine and ten represent the experi-
mental or FEA buckling load divided a reference buckling load. In some cases where these
KDFs were not stated explicitly, they were calculated by the present author by dividing the
experimentally or numerically obtained buckling load by the reference buckling load of the
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imperfection-free shell provided in the publication. Typically this reference load was the an-
alytical buckling load, although occasionally linear eigenvalue analysis buckling loads were
reported. If both were provided in a study without a KDF given, the greater of the two
values was used as the reference in the present KDF calculation.

In the eleventh column, the NASA SP-8007 design KDFs were either taken from the literature
when presented by the authors, or calculated by the present author by using the provided
geometry and material specifications of the given literature and the relevant equations of
NASA SP-8007 [5]. Error percentages found in the twelfth column were obtained using the
experimentally obtained KDF as the reference. Finally, the last column gives the radius-to-
thickness ratio (r/t) of the cylindrical shell or set thereof.

From Table 2.2, it can be seen that finite element models with directly measured imperfections
are capable of predicting the experimental buckling loads with a high degree of accuracy in
some cases. However, several studies have noted that other factors such as experimental
loading imperfections can reduce the accuracy of such predictions by large margins.

Figure 2.11 shows data of the experimental KDFs from the studies shown in Table 2.2 plotted
against the radius-to-thickness ratio. The light grey shapes in the background of Figure 2.11
represent data points for composite cylindrical shells aggregated in 2012 by Takano [38], who
comprehensively studied available data to propose a new set of statically based knockdown
factors for composite cylindrical shells. Figure 2.11 also shows the classical NASA SP-8007
KDF prescription, which is a function of a shell’s radius-to-thickness ratio. (For composite
shells, an equivalent radius-to-thickness ratio is calculated via constants of the ABD matrix.)

Figure 2.11: KDFs aggregated by the present author and overlaid with the compilation of
Takano [38], shown in light grey.
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2.3 Modeling and Analysis Considerations

This section details specific practices and trends that were found in the literature with regard
to finite element modeling and simulation of cylindrical shell buckling. Common themes were
extracted and are summarized here.

2.3.1 Imperfection Implementation

Geometric Imperfections

It is often not the case that the geometric imperfection measurement data points correspond
precisely to the regularly spaced axial and circumferential grid coordinates that might be
found in a finite element model of a shell containing no imperfections. Thus, some form of in-
terpolation or curve fitting must be performed in order to translate the measured imperfection
data into the finite element mesh.

Linear interpolation is a simple way of translating measurement data to the FE model. Several
have employed this method including Hilburger and Starnes Jr. [6, 39], Meyer-Piening et al.
[40], Wullschleger and Meyer-Piening [25], and Hilburger [41]. It is surmised that several
previously mentioned studies from the previous sections in which interpolation methods were
not specified may have also used linear interpolation due to its simplicity, although this is not
certain.

Castro et al. [20] and Wang et al. [42] used inverse distance weighted interpolation to translate
measurement data into FE models. For a given mesh location (defined as a circumferential
and axial coordinate set), the interpolated radius is calculated based on a weighted mean of
the experimentally measured imperfection radii. The points to be included in an interpolation
to an individual mesh point may be limited to either a fixed number of nearest neighboring
points or all points within a threshold distance. The weighting term for a given measured-
point/mesh-point pair is the inverse of Euclidean distance of the “unwrapped” cylindrical
surface between the point pairs, which is then raised to a specified power. It is thought that
inverse distance weighted interpolation can help to reduce noise obtained from the measure-
ment system and provide a smoother surface [42].

Fourier analysis differs from the above techniques in that it is not an interpolation method;
rather, it is a type of curve-fitting. Hilburger [41] used Fourier analysis to generate mean
imperfection signatures of three cylindrical shells based upon separate Fourier analysis of each.
It is thought to be useful for comparing the frequency in occurrence of different magnitudes
of variances in shape, which may be characteristic to the given manufacturing technique.
Additionally, it can be used in stochastic methods to generate imperfection patterns. Others
who have employed this interpolation are Schillo et al. [33], Bisagni and Alfano [43], Wagner
and Hühne [44], and Wang et al. [42].

The method chosen to translate geometric imperfection data into the mesh may have some
influence on the numerically obtained buckling load, although this has not been studied
extensively for composite cylindrical shells. However, Wang et al. [42] did compare Fourier
analysis and inverse weighted distance interpolation for metallic cylindrical shells; this resulted
in only a small difference in numerical buckling load.
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Thickness Variations

Thickness imperfection may be calculated or measured directly. In the case of the former,
measurement of the both the inner and outer surfaces are required, and thus subtraction
of the inner surface from the outer surface will lead to a thickness profile of a shell, as for
example Schultz et al. [36] did. Alternately, direct measurement may be conducted on test
specimens, such as Khakimova et al. [35] who opted to use ultrasonic testing for thickness
measurement. Once obtained, thickness imperfections are implemented into models with two-
dimensional shell elements on an element-by-element basis. If solid or continuum elements
are used, the thickness would already be implied by the node locations if inner and outer
surface measurements were taken into account in the FE models. Conversely, if outer surface
and thickness measurements are taken, the inner surface of the FE model would be implied
by the subtraction of the thickness from the outer surface.

Material Imperfections

Several studies presented have used thickness imperfection data to derive positional variances
in fiber volume fraction, a form of material imperfection, from nominal values [30, 35, 41, 45].
All such studies utilized the assumption that variations in thickness were due to changes in
resin content, while absolute fiber volume remained constant. In the cases of Broggi et al.
[30] and Khakimova et al. [35], the recalculation of the lamina properties were obtained via
Chamis’s corrected composition rule [46]. In contrast, Hilburger [41] used the rule of mixtures
to recalculate ply properties. It is not expected by the present author that these varieties of
calculation would lead to drastic differences in buckling behavior in models compared to one
another; however, this has not been demonstrated explicitly in the literature.

Another aspect of material variation implementation relates to the resolution or fidelity at
which material changes are reproduced in models. As a basis for comparison, geometric
imperfections can be reproduced at every node in model, and thus the as-measured geometry
of a cylindrical shell has the resolution of the finite element mesh. To have a similar resolution
with material properties that are assigned to finite elements, every element could ostensibly
have a different material property, leading to finite element model input files containing tens or
hundreds of thousands of material property sets. Hilburger did just that by creating updated
ply properties via programming subroutines on an element-by-element basis. On the other
hand, Khakimova et al., noting the aforementioned issue, created a set of 100 discrete sets of
lamina properties (corresponding to 100 increments of thickness variations from minimum to
maximum), and then assigned the constituent material of each element’s plies to the nearest
corresponding set of material properties.

Additional Notes

Unlike many measured imperfection approach studies, Hilburger and Starnes Jr. [26] produced
a window of buckling behavior predictions rather than single predictions of combinations of
imperfections. Combinatorial analysis was used to create high and low bounds of the ranges.
In practice, this approach to characterizing uncertainty in model parameters could be applied
to any combination of properties. The fact that different measurement systems in the work



2.3 Modeling and Analysis Considerations 19

of Labans and Bisagni [37] produced different FEM buckling load predictions suggests that
it may be useful to produce a range of predictions as Hilburger and Starnes Jr. [26] did.

2.3.2 Modeling Experimental Setups

Potting

Some researchers have included test articles’ potting in finite element models, such as Degen-
hardt et al. [28]. As an alternative strategy to capture the effect of potting on the encased
shell acreage without actually modeling it, some have opted to measure the equivalent stiffness
of the encased areas of the cylindrical shells via sub-model finite element analyses, as shown
in Figure 2.8. Then resultant properties were incorporated back into the full model in those
localized areas, as Hilburger and Starnes Jr. [26], White et al. [34], and Hilburger [41] have
done. In another implementation, Kepple et al. [11, 47] used clamped boundary conditions
applied to all nodes along the top and bottom 20 mm axial length of the cylindrical shell
to simulate the effect of resin encasing that area, without actually modeling the encasement
itself or performing an equivalent stiffness sub-analysis.

Test Setup

Some numerical models have included the entire compression testing equipment setup [36,
48, 49], although this is not commonplace. Figure 2.12 shows such a model of full testing
equipment. Cha and Schultz [48] investigated the effect of modeling the test setup with perfect
sandwich composite cylindrical shell in comparison with modeling the perfect cylindrical shell
with potting only. As seen in Figure 2.13, inclusion of the test setup yielded a slightly higher
buckling load than modeling the cylindrical shell only.

Figure 2.12: Model of the full test setup by Przekop et al. [49].



20 Literature Review

Figure 2.13: Comparison of nonlinear analysis of a perfect sandwich cylindrical shell with
potted regions only (Configuration 1) against the same cylindrical shell with modeled test setup

(Configuration 2) from Cha and Schultz [48].

2.3.3 Additional Modeling Details

Element Choice

The S4R four-node reduced integration shell element of the Abaqus FEA solver has been
featured prominently in unstiffened shell buckling studies of the past 10 years [12, 16, 19, 20,
29, 30, 32, 33, 34, 37, 42, 43, 44, 50, 51, 52, 53, 54] as well as the S4 four-node shell element
[10, 36, 48]. These elements are surface-based (i.e. two-dimensional) and do not account for
transverse shear, unlike the SC8R eight-node continuum shell element of Abaqus [55], which
was only found to have been studied by van Dooren in the context of composite cylindrical
shell buckling [56].

Boundary Conditions and Constraints

In situations where either only the cylindrical shell is modeled or the shell with potting is
modeled (rather than the full test setup), reference nodes are typically created at points
coincident with the cylindrical shell’s nominal axis and planes of the upper and lower edges
[31, 33]. From here, nodes along the shell’s edges are then constrained to the respective
reference point. Corresponding to the non-moving boundary of the experimental setup, the
associated reference point would then be clamped. Similarly, the side of the cylindrical shell
corresponding to location of imposed displacement be constrained to only move along the
shell’s axial direction.

Analysis Type

Implicit and explicit numerical time integration schemes each offer advantages over the other,
which result in certain trade-offs. Implicit analysis solves a system of equations using in-
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formation from the current and next time step simultaneously. This requires large matrix
inversion for every increment, which can be computationally expensive. Explicit analysis
does not have this constraint, only solving one increment at a time, and then moving on to
the next. However, this requires much smaller time increments than implicit analysis both
because the time step must be less than the time it takes a sound wave to pass across an
element, as well as to avoid error accumulating over large periods of simulation. The advan-
tage of explicit analysis is that it can capture the inertial effects present in models. Whether
or not axial compression buckling simulations require these inertial effects to be included,
however, is not entirely straightforward for investigation of pre- and initial buckling behavior
(in contrast to post-buckling). This is because end-shortening rates used in experiments are
on the order of millimeters per minute or less, whereas the overall scale of the cylindrical
shells is often on the order of meters. Some examples of references using implicit analysis are
[11, 18, 28, 32, 33, 47, 54, 57]. Others have used explicit: [16, 19, 24, 27, 52]. In summary,
there is no consistently preferred method throughout the literature.
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Chapter 3

Simplified Shell Description &
Modeling

The equivalent simplified laboratory-scale used in preliminary analyses is introduced in this
chapter. The shell geometry, material properties, and layup are presented. The shell’s ana-
lytical buckling load and corresponding knockdown factor per NASA SP-8007, which thereby
pertain to NDL-1, are introduced. Details of the simplified shell’s finite element model are
then provided.

3.1 Geometry, Material, and Layup

The simplified shell features a mid-surface radius of 400 mm and a height of 1120 mm, as
summarized in Table 3.1.

Mid-Surface Radius Height
[mm] [mm]
400 1120

Table 3.1: Geometry of the simplified laboratory-scale cylindrical shell.

The material properties of Hexcel’s preimpregnated carbon-fiber-epoxy composite IM7-8552
were used. The elastic properties, density, and ply thicknesses of Table 3.2 were taken from
Clarkson [58]. These are henceforth referred to as the “nominal” material properties. The
failure stresses of IM7-8552 were also taken from Clarkson and are specified in Table 3.3.
The fiber-direction failure strains were calculated by dividing the failure stresses by E11.
Transverse failure strains were obtained by dividing the transverse failure stresses by E22.
Similarly, the shear failure strain was taken as the shear failure stress divided by G12.

The layup of the simplified shell is [(23/0/-23)S4]. Figure 3.1 shows the orientation system of
the plies with respect to the outside of the shell and its axis of rotation.
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E11 E22 G12 G13 G23 ν12 ρ Ply Thickness
[GPa] [GPa] [GPa] [GPa] [GPa] [-] [g/cm3] [mm]
140.9 9.72 4.69 4.69 3.58 0.356 1.58 0.175

Table 3.2: Nominal material properties of Hexcel IM7-8552 composite [58].

Direction Failure Stress Failure Strain
[MPa] [µε]

Fiber tensile 2212 15969
Fiber compressive 1731 12280
Transverse tensile 64 6584
Transverse compressive 286 29400
Shear 54 11520

Table 3.3: Failure stresses of Hexcel IM7-8552 composite from Clarkson [58] and calculated
failure strains.

Figure 3.1: Ply rosette as viewed from the outside of the shell. The shell’s axis is parallel with
the 0◦ direction.
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3.2 Analytical Buckling Load

The shell’s 2271-kN analytical buckling load was computed by minimizing Equation 44 of
NASA SP-8007 [5] with respect to the number of axial half waves m and circumferential full
waves n. The knockdown factor prescribed by SP-8007 is determined according its Equations
45 and 46. These results are shown in Table 3.4. The axial half-waves and circumferential full-
waves correspond to the analytical buckling shape that provides the minimum strain energy
state satisfying the equations.

Buckling Load
KDF Axial Half-

Waves
Circumferential

Full-WavesAnalytical Analytical with KDF
[kN] [kN]
2271 1338 0.59 9 0

Table 3.4: Buckling loads, knockdown factor, and mode shapes calculated according to NASA
SP-8007 [5].

3.3 Finite Element Modeling

Abaqus 2017 was employed for all simulations in this report. The simplified shell was mod-
eled in two ways: with the S4R four-node conventional shell element and with the SC8R
eight-node continuum shell element [55]. The former is modeled with surface geometry and
does not consider transverse shear, while the latter is modeled with solid geometry and does
consider transverse shear. This was done to determine if the consideration of transverse shear
compliance made substantial differences in the numerically obtained buckling loads with this
particular laminate. With both element types, only one element through the thickness was
used.

A model of the simplified shell without imperfections is presented in Figure 3.2. Upper and
lower reference nodes were created at the center of the upper and lower edges, respectively.
Nodes along models’ upper edges were constrained to the upper reference nodes, and similarly
all lower edge nodes were constrained to the lower reference nodes. Tie constraints were used,
which have the effect of the making the slave nodes’ (i.e. the edges) degrees of freedom take
on the same translational and rotational displacement values as those of the corresponding
master reference node. This was done to simplify both the application of boundary conditions
to the shell models and to streamline simulation data post-processing; regarding the latter,
the reaction force due to axial compression along the shell’s edge was extracted from the
reference node. (If no reference node had been used, the reaction force of each individual
upper nodes would need to be summated to determine the total reaction load.) The lower
reference node was clamped. The upper reference node’s rotational degrees of freedom were
constrained to zero, as were its X- and Y- translational degrees of freedom as indicated by
the orientation system in Figure 3.2 (i.e. it was only free to move in the Z-direction).

The choice of mesh size was based on the findings of van Dooren [56] and the results of a
convergence study. The latter was conducted with linear eigenvalue buckling analysis. A unit
load was applied to the upper reference node in the axially compressive direction. The metric
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Figure 3.2: All nodes along the top and bottom edges (red) were constrained to a respective
upper or lower reference node (yellow). (10-mesh shown.)

used for assessing convergence was the lowest eigenvalue buckling load. Results are shown in
Figure 3.3. Considering both the convergence of this metric and the computational time in
the same manner as Wang et al. [42], it was determined that a 10-mm mesh (corresponding
to 28,336 elements in Figure 3.3) would be sufficient for conducting preliminary analyses with
both element types. The computation time between the S4R and SC8R models were very
similar, despite the fact that the latter contains double the number of nodes as the former.
The reason is likely that S4R nodes have both translational and rotational degrees of freedom
(for a total of six degrees of freedom per node), whereas SC8R nodes only have translational
degrees of freedom. Thus, both the S4R and SC8R have the same number of degrees of
freedom per element: 24. The models of each element appear to converge to approximately
2285 kN in Figure 3.3, whereas the analytical buckling load is 2271 kN. This slightly higher
numerical analysis value was probably due to the fact that the models featured clamped
boundary conditions, whereas the analytical solution is formulated with simply supported
end conditions [5, 28].
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Figure 3.3: Convergence study of the lowest eigenvalue buckling load for S4R and SC8R shell
models, with computational time indicated. From left to right, the data points correspond to

mesh sizes of 50 mm, 25 mm, 20 mm, 10 mm, 7.5 mm, and 5 mm.
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Chapter 4

Analyses of the Simplified Shell
without Imperfections

Several analyses were performed on the simplified shell without imperfections to determine
agreement with one another and the SP-8007 analytical buckling solution. Eigenvalue analyses
were used to determine the expected buckling load and corresponding displacement (and
thereby axial stiffness), along with potential buckling shapes. Linear static analysis was
conducted to determine the axial stiffness of the shell. Finally, the results of nonlinear dynamic
analysis are presented.

4.1 Eigenvalue Buckling Analyses

The results of eigenvalue buckling load and eigenvalue buckling displacement analyses are
presented in Table 4.1. The lowest three eigenvalue buckling loads were taken from same
simulations as the 10-mm mesh models from the convergence study found in Section 3.3.
Eigenvalue buckling displacement analyses were performed via prescription of an axially com-
pressive unit displacement to the S4R and SC8R models’ upper reference nodes. This was
done to determine the lowest displacement value corresponding to the shells’ first three eigen-
mode buckling load values.

Element
Eigenmode 1 Eigenmode 2 Eigenmode 3 CPU Time
Disp. Load Disp. Load Disp. Load Disp. Load
[mm] [kN] [mm] [kN] [mm] [kN] [s] [s]

SC8R 2.373 2295 2.373 2295 2.375 2297 1107 1132
S4R 2.363 2284 2.363 2284 2.365 2286 1139 1117
Difference -0.4% -0.5% -0.4% -0.5% -0.4% -0.5% 2.9% -1.3%

Table 4.1: Eigenvalue load and displacement analysis results for both elements types. The
percentage difference is taken with respect to the SC8R element.
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Both elements show good agreement in terms of load, displacement, and computational time.
The first eigenmode buckling loads show good agreement with the NASA SP-8007 analytical
load without imperfections: the SC8R model is 1% higher, and the S4R model is only 0.5%
higher. As mentioned in Chapter 3, this is likely due to the clamped edge condition of the
models versus the simply supported condition of the SP-8007 analytical solution. The axial
stiffnesses of each model was calculated by dividing the lowest eigenvalue buckling load by
the lowest eigenvalue buckling displacement. The SC8R and S4R models exhibited stiffnesses
of 967.1 kN/mm and 966.6 kN/mm, respectively (agreement within 0.05%).

Figures 4.1 and 4.2 show the eigenmode buckling shapes for shell models with SC8R elements
and S4R elements, respectively. These first three mode shapes show excellent agreement
between the two element types. The number of axial half-waves (9) and circumferential
full-waves (0) of the third eigenmode shape are in agreement with the analytical solution.

Figure 4.1: The first three eigenmode buckling shapes of the simplified shell modeled with
SC8R elements with a 10-mm mesh. The amplitude of these shapes is equal to 100% the shell’s

4.2-mm wall thickness, magnified 10x.

Figure 4.2: The first three eigenmode buckling shapes of the simplified shell modeled with S4R
elements. The amplitude of these shapes is equal to 100% the shell’s 4.2-mm wall thickness,

magnified 10x.
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4.2 Linear Static Analysis

Linear static analyses were used to check the stiffness of the shell models. To accomplish this,
the lowest eigenmode buckling displacement values presented in Table 4.1 were prescribed
to the upper reference node of the corresponding model in the axially compressive direction
(2.373 mm for the SC8R model and 2.363 mm for the S4R model), and the reaction load at
this node was requested as simulation output data. These results are shown in Table 4.2. The
output loads, and thereby the computed axial stiffnesses, showed excellent agreement with
one another and those obtained via eigenvalue analysis in Section 4.1.

Element Displacement Load Axial Stiffness
[mm] [kN] [kN/mm]

SC8R 2.373 2295 967.1
S4R 2.363 2284 966.6

Table 4.2: Linear static analysis results.

4.3 Nonlinear Dynamic Analysis

Nonlinear implicit dynamic analyses were used to investigate the buckling load of the shell
without imperfections in response to dynamic loading. A displacement rate of 2 mm per sec-
ond was applied to the upper reference node in the axially compressive direction. Simulation
duration was determined by the amount of time required to reach 2.5 mm of displacement,
slightly higher than the eigenvalue displacement of Section 4.1; this was to insure that buck-
ling would occur. The buckling loads and displacements obtained from nonlinear analysis are
indicated in Table 4.3 and show excellent agreement between the two element types, as well
as good agreement with the eigenvalue analyses. As the nonlinear dynamic analysis buckling
loads are lower than the analytical load, the resultant knockdown factors in Table 4.3 are
calculated by dividing the numerical buckling loads by the reference analytical buckling load
of 2271 kN from Table 3.4, as indicated by Equation 4.1.

Element Displacement Load Resultant KDF
[mm] [kN] [-]

SC8R 2.336 2194 0.97
S4R 2.334 2193 0.97

Table 4.3: Nonlinear dynamic analysis buckling load and displacement, alongside the resultant
KDF.

Resultant numerical KDF = numerical load

SP − 8007 analytical load (4.1)

The full load-displacement behaviors from the S4R and SC8R nonlinear dynamic analyses
are compared with the eigenvalue and linear static analyses in Figure 4.3, in addition to
the SP-8007 buckling load. The qualitative stiffnesses indicated by the nonlinear analyses
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show good agreement with those of the eigenvalue and linear static analyses. However, the
nonlinear dynamic analyses display slight stiffness reductions and nonlinearities closer to
buckling, which is expected from this analysis type. The post-buckled region, beginning at
2.34 mm of displacement, features reduced loading capacity and stiffness.

Figure 4.3: Comparison of analyses of the simplified shell without imperfections. Only linear
analysis for the SC8R is shown due to similar results indicated in Table 4.2.



Chapter 5

Eigenmode & Trigonometric
Imperfections

In this chapter, the sensitivity of the simplified shell to eigenmode shape and trigonometric
imperfections was studied with nonlinear dynamic analysis. Eigenmode shape imperfections
have been classically used in the estimation of experimental knockdown factors [17, 18, 19,
20, 21]. The trigonometric imperfection shape was explored as a result of the buckling shape
prescription from the NASA SP-8007 solution. The performance of both the S4R and SC8R
element types was analyzed.

5.1 Eigenmode Shape Imperfections

The eigenmode buckling shapes were extracted during the eigenvalue buckling analysis of
Section 4.1 for implementation as imperfection shapes. The third eigenmode shape was used
(rightmost in Figures 4.1 and 4.2). These were implemented with the *IMPERFECTION
keyword in conjunction with node shape files generated from the eigenvalue buckling analyses.
Imperfection amplitudes corresponding to 5%, 10%, 20%, and 50% of the shell’s nominal 4.2-
mm wall thickness were chosen. An imposed axially compressive displacement rate of 2 mm
per second was applied to the upper reference node. Buckling load results and resultant KDFs
(calculated via Equation 4.1) are given in Table 5.1.

The buckling loads for given imperfection amplitudes are consistent between the two shell
element types. Relative to the shell without imperfections, it is clear that even a 5% imper-
fection amplitude causes a significant reduction in the shell’s buckling load. Further reduction
of the buckling load is achieved with higher imperfection amplitudes.

Figures 5.1 and 5.2 reveal the full load-displacement curves for the SC8R and S4R simulations,
respectively. Both show qualitatively similar behavior. Increasing imperfection amplitudes
are accompanied by decreased pre-buckling stiffnesses, as indicated by the slopes of the curves.
The post-buckled loading capacities for the 5% and 10% imperfection amplitude models do not
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Eigenmode 3 SC8R S4R
Imperfection Load KDF Load KDF
Amplitude [kN] [-] [kN] [-]

0% 2194 0.97 2193 0.97
5% 1702 0.75 1726 0.76
10% 1461 0.64 1488 0.66
20% 1172 0.52 1143 0.50
50% 790 0.35 776 0.34

Table 5.1: Buckling load results from nonlinear dynamic analysis of eigenmode imperfections.
The KDF is taken with respect to the SP-8007 analytical load without imperfection.

change as drastically as the buckling load itself relative to the shell without imperfections.
For the higher 20% and 50% imperfection amplitudes, the transition from pre-buckling to
post-buckling is much less distinct, in that there is a minimal or almost no sudden drop in
loading capacity. In all cases, the post-buckled regime is characterized by low axial stiffness.

Figure 5.1: Third eigenmode imperfection results for the SC8R element model.
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Figure 5.2: Third eigenmode imperfection results for the S4R element model.

5.2 Trigonometric Imperfections

The shape chosen for the trigonometric imperfection analyses were defined by the NASA SP-
8007 analytical solution from Section 3.2 and Table 3.4. The initial trigonometric imperfection
shape w0 was defined by Equation 5.1, where θ is the angular position, z is the axial position,
a is the amplitude, t is the wall thickness, h is the height, m is the number of axial half-waves,
and n is the number of circumferential full-waves. The shape of this imperfection with m = 9
and n = 0 is illustrated in Figure 5.3.

w0(θ, z) = a · t · sin(mπ
h
z)cos(nθ) (5.1)

Figure 5.3: The initial trigonometric imperfection shape applied to the simplified
laboratory-scale shell geometry with m = 9, n = 0, and a = 50% (±2.1 mm with respect to wall

thickness), magnified 3x.
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The initial imperfection shape was implemented into a finite-element model via a MATLAB
script designed to generate node locations specifically with the shape defined by Equation 5.1.
As with the eigenmode imperfections, a displacement rate of 2 mm per second was applied
to the model’s upper reference node in the axially compressive direction.

Table 5.2 shows the buckling load results of the trigonometric imperfection sensitivity anal-
yses. In addition to good agreement between the two elements, the resultant KDFs for each
imperfection amplitude are similar to those of the third eigenmode imperfection sensitivity
study.

Trigonometric SC8R S4R
Imperfection Load KDF Load KDF
Amplitude [kN] [-] [kN] [-]

0% 2194 0.97 2193 0.97
5% 1700 0.75 1698 0.75
10% 1437 0.63 1432 0.63
20% 1125 0.50 1124 0.50
50% 732 0.32 734 0.32

Table 5.2: Buckling load results from nonlinear dynamic analysis of trigonometric
imperfections. The KDF is taken with respect to the SP-8007 analytical buckling load.

The dynamic load-displacement behaviors of the various trigonometric imperfection amplitude
models are compared in Figure 5.4 for the SC8R model and Figure 5.5 for the S4R model.
As with the eigenmode shape imperfections, increased imperfection amplitude leads to a
reduction in buckling load and pre-buckling stiffness.
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Figure 5.4: 9 axial half-wave trigonometric imperfection results for the SC8R element model.

Figure 5.5: 9 axial half-wave trigonometric imperfection results for the S4R element model.
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5.3 Conclusions on Eigenmode and Trigonometric Imperfections

At a given level of imperfection amplitude, the S4R and SC8R models have negligible differ-
ences in the buckling load for both eigenmode and trigonometric shape imperfections. This
may be due to transverse shear within the shell wall being negligible, so the fact that the
SC8R element accounts for transverse shear may not have substantially affected the buckling
load or overall load-displacement behavior. It is possible that when applied to sandwich shell
designs with a transversely shear compliant core material, these element types would not
show the same level of agreement as with this solid laminate shell design.

Comparing the third eigenmode imperfections with this particular trigonometric imperfec-
tion pattern, a specified amplitude percentage gives very similar results. This is likely due to
the fact that both have nine axial half waves. Additionally, the models with trigonometric
imperfections were less stiff than their eigenmode shape counterparts at a given imperfection
amplitude. This may be caused by the trigonometric imperfection waveform reaching a max-
imum amplitude at every peak or valley (i.e. at nine locations, per Figure 5.3), whereas the
third eigenmode shape amplitude is only at a maximum amplitude near the center (see the
two red peaks and one blue valley in Figures 4.1 and 4.2). The result is that the trigonometric
imperfection shell models have a larger net amount of “waviness” for a given amplitude, and
thus they are more compliant.
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Loading Imperfections

Two types of loading imperfection were investigated in order to simulate two different physical
situations that might occur in experimental testing. The first loading imperfection model
attempts to simulate a test in which the upper loading surface “settles” during testing due
to the center-of-load being misaligned with the shell’s axis (this could be due to a load frame
having “play” in its actuation mechanisms). The second type attempts to mimic the behavior
of an upper loading platen that has a fixed angular offset relative to the shell’s upper edge.
A distinguishing feature between the two is that the former results in no reaction moment at
the upper boundary, whereas the latter does. Both sets of simulations used a loading rate 2
mm per second loading rate with nonlinear dynamic implicit analysis.

6.1 Loading Imperfection 1: Settling Platen

This first loading type imperfection was implemented into finite element models by using a
multi-point beam constraint (Abaqus keyword *MPC with the BEAM option) between the top
reference node and the top nodes of the shell model rather than the previously used rigid body
tie constraint. The top reference node was then moved laterally in the X direction (within
the plane of the shell’s top edge) by varying amounts to create an off-axis load application
point, and the reference node was allowed to rotate freely about the Y direction. An example
of this setup is shown in Figure 6.1.

The multi-point beam constraint allows for the reaction forces in the model to be distributed in
proportion to the distance from a given shell edge node to the reference point. Consequently,
if the reference node is placed off-center (see Figure 6.1) and is allowed to rotate about the
Y-axis, the upper boundary of the shell will rotate about the Y-axis during load application.
A displacement rate of 2 mm per second was used with nonlinear implicit dynamic simulation.

The results of varying the top reference node’s center offset are given in Table 6.1. Figure
6.2 shows the load-displacement curves for this imperfection type, and Figure 6.3 indicates
the progression of Y-axis rotation of the top edge until buckling as the imposed displacement
was applied.
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Figure 6.1: Schematic implementation of the “settling platen” load imperfection. Note that
the top reference point (red) is shifted slightly off-center. The yellow lines represent multi-point

beam type constraints.

Center Offset Buckling Load KDF Rotation @ Buckling
[mm] [% of radius] [kN] [-] [◦]
0 0% 2194 0.97 0
5 1.25% 2165 0.95 0.008
10 2.5% 2120 0.93 0.014
20 5% 2035 0.90 0.026

Table 6.1: Summary of “settling platen” loading imperfection sensitivity.

The results indicated that moving the center-of-load off-center by 5% of the shell’s radius
reduces the buckling load of the shell without geometric imperfections by 10% relative to the
analytical buckling load. Furthermore, Table 6.1 and Figure 6.3 indicate that this type of
loading imperfection resulted in the loading boundary rotating by of 0.026◦ at the moment
of buckling.
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Figure 6.2: Load versus displacement results of the “settling platen” loading imperfection.

Figure 6.3: Load versus top edge rotation angle for the “settling platen” loading imperfection.
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6.2 Loading Imperfection 2: Platen with Fixed Angular Offset

The fixed angular offset simulation of this section was conducted to simulate a loading platen
with constant angular tilt relative to the top edge of the shell. This was accomplished via a
two-step analysis. In the first step, an initial rotation was applied to the top reference node
(0.001◦, 0.01◦, 0.05◦, or 0.1◦). Once the rotation angle was reached, an axially compressive
displacement rate of 2 mm per second was applied to the top reference while maintaining the
fixed rotation angle achieved from the previous step.

Results are shown in Table 6.2 and Figure 6.4. The boundary height difference noted in the
second column of Table 6.2 indicates the vertical distance between the highest and lowest
points on the upper shell edge. These analyses indicate that the shell model’s buckling load
begins to respond to upper boundary rotations between 0.001◦ and 0.01◦. After this initial
amount, an increase of the boundary rotation to 0.1◦ has a notable effect on reducing the
shell’s buckling load.

Angular Offset Boundary Height Difference Buckling KDFRange (with 400-mm radius) Load
[◦] [mm] [kN] [-]
0 0 2194 0.97

0.001 0.014 2195 0.97
0.01 0.14 2145 0.94
0.05 0.7 2066 0.91
0.1 1.4 1473 0.65

Table 6.2: Summary of fixed angular platen offset loading imperfection sensitivity.
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Figure 6.4: Load versus displacement results of the fixed platen angle loading imperfection.

6.3 Conclusions on Loading Imperfections

Of the two loading imperfections investigated, even seemingly minor rotational offsets or off-
center loads can reduce the buckling load. Most likely, a loading imperfection experienced in
reality would be closer to the second type in which there is a fixed offset. This imperfection
could be due to misalignment of the platen itself and/or variation between linear actuators
controlling an experimental load frame, if there are multiple actuators controlling the dis-
placement. For “settling platen” imperfection to occur in reality, there would likely need to
be a large amount of “play” in the actuation machinery of the load frame, or the shell being
tested would need to be extremely stiff compared to the load frame such that deformation of
the load frame itself would not be negligible. The KDFs due to loading imperfections show
that even small angular misalignment of the platen – as low as 0.01◦ – can reduce the buckling
load of this shell model without imperfections by 3%.
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Chapter 7

NDL-1 Description & Measured
Imperfection Signature

The test article NDL-1 and its imperfection signature are described in this chapter. First,
NDL-1’s composite shell geometry is presented; it differs slightly from the equivalent simplified
shell studied in the previous chapters. NDL-1’s four constituent layups are then given. The
primary portion of the shell has the same layup as the simplified shell, but three additional
layup sections at each end aid in load introduction. The geometric and material specifications
of NDL-1’s potting and end rings, which are required for experimental testing and also assist
in load transfer, are presented. Then NDL-1’s unique measured imperfection signature is
introduced; this consists of inner, outer, and boundary surface data.

7.1 NDL-1 Specifications

NDL-1 is comprised of a composite shell, four sections of potting that encase the shell’s
ends both on the inside and outside, and four aluminum end rings that in turn surround the
innermost and outermost potting surfaces, as indicated in Figure 7.1.

7.1.1 Shell

The shell of NDL-1 was manufactured via hand layup of 12.5-mm wide tows of the preimpreg-
nated carbon-fiber-epoxy composite IM7-8552 introduced in Chapter 3. The composite shell
geometry is given in Table 7.1 and Figure 7.2. Table 7.2 specifies the four layups that com-
prise the shell: a primary layup (the same as the simplified shell) and three pad-up sections
found on either end of the shell. The same stacking orientation system specified in Figure 3.1
was used. Pad-ups assist in transferring load from the edge regions to the central portion of
the shell [36, 49]. Furthermore, they induce buckling to occur in this central acreage during
testing, thus insuring that the stability phenomenon can be studied in a controlled manner.
The first, second, and third pad-up ply lengths referred to in Table 7.1 correspond to the 90◦,
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Figure 7.1: 3D view of the NDL-1 assembly.

-45◦, and 45◦ plies, respectively. Figure 7.3 further illustrates the ply stacking and pad-up
regions. The shell has a constant nominal inner radius, as the mandrel upon which the shell
was manufactured also had a constant radius; pad-up plies are layered such that the shell
has varying mid-surface and outer radii when comparing the primary section to the pad-up
sections.

Inner Height Pad-up ply length
Radius Total Un-potted 1st 2nd 3rd
[mm] [mm] [mm] [mm] [mm] [mm]
400.1 1224.3 1168.4 104.1 87.6 72.4

Table 7.1: Geometry of the NDL-1 composite shell.

Section Layup
Primary [(23/0/-23)S4]
1st pad-up [(23/0/-23)S3/(23/0/-23/90)S ]
2nd pad-up [(23/0/-23)S3/-45/(23/0/-23/90)S ]
3rd pad-up [(23/0/-23)S2/(23/0/-23/45)S/-45/(23/0/-23/90)S ]

Table 7.2: Section layup definition. The stacking sequences are listed from innermost ply to
outermost ply.

7.1.2 Potting and End Rings

The potting and end rings of NDL-1 act as stabilizing media that provide a partial clamping
effect on the shell’s edges; this is not a fully clamped condition because the potting itself is able
to deform. The potting’s surface area also helps facilitate load transfer from the test apparatus
into the shell by minimizing the risk of damage to the the shell’s edges. The material properties
of the potting and end rings are presented in Table 7.3. Micorox Standard Grout was used
for potting. While its elastic modulus and density were available via the manufacturer [59],
its Poisson’s ratio was assumed to be 0.30. No grade of aluminum was specified, so the
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Figure 7.2: Drawing of the NDL-1 composite shell. Dimensions are in millimeters.

Figure 7.3: Ply stacking schematic indicating the pad-up zones and pad up plies (stacking
illustration courtesy of NASA).
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properties of the end rings were assumed based on typical aluminum properties. NDL-1’s end
ring geometry is given in Table 7.4. The potting fills the volumes between the composite shell
and the rings as indicated in Figure 7.1.

Part Material E ν ρ
[GPa] [-] [g/cm3]

Potting Epoxy 7.6 0.30 1.68
End Rings Aluminum 69 0.33 2.70

Table 7.3: Potting and end-ring properties.

Ring Set Quantity Height Inner Diameter Outer Diameter
[mm] [mm] [mm]

Inner 2 27.9 741.4 754.1
Outer 2 27.9 855.7 868.4

Table 7.4: Geometry of NDL-1’s aluminum end rings.

7.2 Imperfection Measurement Data

NDL-1’s imperfection signature was measured with an ATOS II structured light scanner at
NASA Marshall Space Flight Center. Figure 7.4 shows the edge of the test article being
scanned.

Figure 7.4: Imperfection measurements were taken by a structured light scanner at NASA
Marshall Space Flight Center (photo courtesy of NASA).
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7.2.1 Inner and Outer Surfaces

The inner and outer surface data, shown in Figures 7.5 and 7.6, consisted of approximately
11.5 million and 28 million 3D-scan points, respectively, and correspond to areal densities of
4.1 and 9.5 points per square millimeter. A ring-shaped imperfection can be seen between
axial positions of approximately 125 mm and 175 mm around the entire circumference of both
surfaces. It is thought that the mandrel was doubly machined here during finishing, and that
this shape was then consequently transferred to the shell during manufacturing.

Figure 7.5: Measured inner surface data.

Figure 7.6: Measured outer surface data.
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7.2.2 Boundary Surfaces

The lower and upper boundary surfaces of NDL-1 were measured, as shown in Figures 7.7
and 7.8, respectively. Milling was performed on these surfaces after the shell was potted, and
the boundary surface measurements were taken after this. The number of raw data points
per boundary surface measurement set is approximately 500,000, yielding an areal density of
4.2 points per square millimeter.

Figure 7.7: Measured lower boundary surface data.
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Figure 7.8: Measured upper boundary surface data.
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Chapter 8

NDL-1 Modeling & Preliminary
Simulation Results

This chapter details the process of modeling the test article, material property values used
in the simulations, and preliminary simulation results. First, the modeling procedure is
presented, including details on mesh size, element choice, and the generation of Abaqus
solver input files. The interpolated inner and outer surfaces used in the model are also
presented, including a statistical quality analysis to insure that the these modeled surfaces
were properly representative of the raw 3D-scan data. Additionally, the shell thickness and
mid-surface contours are presented; these were derived from the interpolated inner and outer
surfaces. Aspects relating to the final composite material property values used in simulation
are then discussed, for which the reasons are twofold. First, a NASA tensile test indicated that
the as-manufactured IM7-8552 properties differed from the nominal properties. Furthermore,
the thickness contour derived from the interpolated surfaces indicated the manufactured shell
was thinner than the nominal ply thickness and mean tensile specimen thickness, potentially
warranting additional adjustment of the material property values. Finally, a preliminary set
of results from two pre-experimental simulations with imperfections are presented.

8.1 Test Article Model

8.1.1 Element Type and Mesh Size

The SC8R eight-node continuum shell element was chosen for modeling the test article due
to its solid geometry and ability to account for transverse shear. The former implies that
the inner and outer imperfection surfaces of the measured test article could be conveniently
implemented directly at the SC8R elements’ nodes. If using a surface-geometry-based shell
element (such as the S4R) when attempting to model inner and outer imperfections rather
than only a single surface (e.g. an outer or mid-surface imperfection), each element would
require a unique thickness value to capture both the inner and outer surface imperfections.
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This in turn would necessitate as many section definitions as elements contained in the shell,
leading to large solver input files.

A 5-mm mesh was chosen for the test article model and deemed acceptable based on the
simplified shell convergence study of Chapter 3. This size was used rather than 10 mm in
order to better capture the details of the measured surfaces, with an accepted decrease in
computational efficiency.

8.1.2 Input File Generation

A MATLAB script was written to automate the creation of Abaqus node and element input
files from nominal shell geometry and imperfection data. The flow of data in the script is
summarized as follows.

• Define the nominal test article geometry.

• Define the target mesh size.

• Determine the number of elements along the circumference/height from the target mesh
size.

• Define the circumferential and axial node coordinate grid sets from the element quan-
tities and nominal dimensions.

• Import the inner and outer surface Cartesian 3D-scan point imperfection data.

• Convert the surface imperfection data from Cartesian coordinates to cylindrical coordi-
nates.

• Define the upper and lower trim limits for the surface imperfections; exclude data points
outside of these limits. This step is performed to remove fringes of data points from
the edges. Moreover, these inner and outer surfaces are trimmed at the same levels
to insure even thickness when extrapolating radius values to the shell model’s acreage
that corresponds to the actual shell acreage covered by potting, which could not be
measured.

• From the imperfection 3D-scan point data, interpolate the radial coordinates of inner
and outer surface nodes for every circumferential/axial node coordinate grid set previ-
ously defined.

• Generate the radial locations for potting and end ring nodes.

• Convert the shell, potting, and end-ring node locations from cylindrical coordinates to
Cartesian coordinates.

• Adjust the axial node locations of upper and lower surfaces via linear interpolation of
edge imperfection data.

• Assign the nodes to elements.

• Write the node and element input files.
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8.1.3 Final Mesh Details

The 5-mm mesh size resulted in 123,725 SC8R continuum shell elements for the composite
cylindrical shell. The potting and aluminum rings were modeled respectively with 60,600
and 12,120 C3D8 three-dimensional stress elements. The upper end section of the model
is illustrated in Figure 8.1. Further details of the mesh are given in Table 8.1. As with the
previous simulations, all upper edge nodes of the NDL-1 model (including those of the potting
and end rings) were tied to an upper reference node, and all lower edge nodes were tied to a
lower reference node. The lower reference node was clamped, and the upper reference node
was constrained in all degrees of freedom except for the axial direction. Axial displacement
was applied to the upper reference node, and the reaction force at this node was measured.

Figure 8.1: Detail view of the mesh used in pre-test simulations.

Section Color in Element Quantity Elements along
Figure 8.1 Type of Sections Circumference Height Thickness

Main Cyan SC8R 1 505 203 1
1st Pad-up Red SC8R 2 505 3 1
2nd Pad-up Blue SC8R 2 505 3 1
3rd Pad-up Gold SC8R 2 505 15 1
Potting Purple C3D8 4 505 6 5
End Rings Grey C3D8 4 505 6 1

Table 8.1: Mesh information for the final pre-test simulations.
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8.1.4 Interpolated Imperfection Surfaces

The interpolated inner and outer surfaces used in the final model are shown respectively in
Figures 8.2 and 8.3.

Figure 8.2: Interpolated inner surface.

Figure 8.3: Interpolated outer surface.

As indicated by Figure 7.6, the measurement system was able to capture almost all of the
nominal free (non-potted) height of the cylindrical composite shell’s outer surface. However,
Figure 7.5 reveals that the structured light scanner was unable to capture some of the shell’s
inner surface near the potting. Additionally, Figure 7.5 shows uneven upper and lower edges
of the inner surface (i.e. the maximum and minimum axial data captured varies around the
circumference). This fringing was also present on the outer surface data, although it was much
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less prominent. The reason for the lower quality of inner surface measurement in the edge
regions was likely due to the limited viewing angles and maneuverability of the scanner when
measuring the inner surface from an exterior position, in contrast with the greater motional
freedom when capturing the outer surface.

Consequently, the data sets were trimmed to fall within maximum and minimum axial limits.
Initially, different minimum and maximum limits were applied to the inner and outer surfaces
in order to retain as much of the raw data as possible. However, upon extrapolating the
trimmed edge data to the axial extents of the test article model (i.e. the unmeasured areas
covered by potting) in preliminary interpolation attempts, this led to unrealistic interpolated
thickness in the areas immediately adjacent to and covered by potting. This was due to
the fact that extrapolations occurred from different axial locations for the inner and outer
surfaces. Thus, it was determined that a set of common trimming limits should apply to
both the inner and outer surface data, so as to result in reasonable average ply thicknesses
consistent with the rest of the shell. An upper axial trim location of 553.70 mm and a lower
axial trim location of -551.25 mm were chosen. Node locations outside the aforementioned
axial trim limits were assigned the radius value of the nearest node within the trim limits.
The effect of this is characterized by repeating edge pixels at the tops and bottoms of Figures
8.2 and 8.3.

The influence of three interpolation methods was investigated for transforming the 3D-scan
point data into FE mesh data: nearest-neighbor, linear, and inverse distance weighted.
Nearest-neighbor interpolation is the most computationally efficient, but has a higher risk
for translating noise from the measurement system into the final mesh. Another drawback is
that if the 3D-scan point data has nonuniform density (in contrast to the regularly spaced
mesh grid coordinates), there is a risk that a circumferential/axial mesh coordinate pair cor-
responding to a location far from the nearest 3D-scan point could result in far-away radial
data being interpolated to that mesh point, thus distorting the shape of the model relative
to NDL-1. Linear interpolation is slightly less computationally efficient, but mitigates the
two aforementioned drawbacks of nearest-neighbor interpolation. Finally, inverse distance
weighted interpolation (developed by Castro et al. [20]) was found to be less efficient for
these particular amounts of 3D-scan data and mesh points (requiring either several hours
on a machine with 32GB of RAM, or less time with several terabytes of RAM), but it can
reduce the possibility of measurement noise being translated into the mesh better than the
previous two methods by allowing a specified amount of points within a given radius to con-
tribute to the interpolated value. Ultimately the difference between methods – with respect to
load-displacement behavior and buckling load – was found to be negligible. Thus, linear inter-
polation was selected due to its efficiency and presence in the literature [6, 25, 39, 40, 41, 43].
Linear interpolation was also used to translate the lower and upper boundary edge imperfec-
tion data of Figures 7.7 and 7.8 into the finite element mesh.

Statistical Quality of Imperfection Surface Interpolation

The statistical quality of the interpolated surfaces was assessed in relation to the raw data
to insure that the finite element mesh with imperfections was representative of the measured
3D-scan data. The efficacy of interpolation was evaluated via the frequency distributions of
radial imperfection data, as given in Figures 8.4 and 8.5, which show the relative occurrence of
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given radii in the raw data and the mesh. These histograms consider the middle 1000 mm of
composite shell, which is just within the extent of the primary layup section (nominally 1016
mm in height). Solely on the basis of these plots (and not considering potential non-uniform
density of the 3D-scan data), the inner interpolation shows generally good agreement, and
the outer interpolation shows excellent agreement.

Figure 8.4: Histogram data for raw inner surface data and the interpolated surface for the
middle 1000 mm of shell height.

Figure 8.5: Histogram data for raw outer surface data and the interpolated surface for the
middle 1000 mm of shell height.

A possible reason for the slight variance in distribution shape between the inner surface 3D-
scan point data and its interpolation is non-uniform 3D-scan point density (i.e. the 3D-scan
did not record data points at regularly spaced intervals). In contrast, the mesh points to
which radius values were interpolated were by definition spatially uniform. Table 8.2 shows
the number of 3D-scan points collected in the middle 1000 mm along NDL-1’s height for
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both the inner and outer surfaces. The number of points is segmented into 100-mm axial
intervals. The higher coefficient of variation for the inner surface 3D-scan data than that
of the outer surface potentially explains the minor qualitative difference in shape of the raw
and interpolated radial distribution shapes illustrated in Figure 8.4; in comparison, the outer
surface scan data has a lower coefficient of variation, and correspondingly the radial frequency
distribution shapes of 3D-scan data and the interpolation appear to show better qualitative
agreement.

Axial Window Bound 3D-Scan Points [millions]
Lower [mm] Upper [mm] Inner Surface Outer Surface

400 500 1.09 2.20
300 400 1.22 2.33
200 300 1.34 2.35
100 200 1.10 2.41
0 100 0.91 2.45

-100 0 0.94 2.40
-200 -100 0.94 2.40
-300 -200 0.87 2.33
-400 -300 0.86 2.35
-500 -400 0.84 2.48

Mean 1.01 2.37
Standard Deviation 0.17 0.08

Coefficient of Variation 1.67% 0.33%

Table 8.2: 3D-scan points contained per 100-mm axial window for the middle 1000 mm of shell.
The outer surface shows a more axially uniform distribution of points than the inner surface.

Interpolation-Derived Shell Thickness and Mid-Surface

Figure 8.6 shows the resultant interpolated shell thickness via subtraction of the interpolated
inner surface from the interpolated outer surface. This was possible because the circumferen-
tial and axial mesh coordinates were defined at the same points for both the inner and outer
interpolated surfaces. The layup’s -23◦, 0◦, and 23◦ ply angles are prominent here; this may
be an artifact of the hand-layup process in which the spacing between adjacent tows is not
as consistent as with automation; additionally the ply angle visibility may have been caused
by slight width variations along the unidirectional tape’s length.

The interpolated mid-surface (average of the interpolated outer and inner surface node radii)
is shown in Figure 8.7. Within the primary layup section (middle 1016 mm of the shell),
this information was used to derive a rudimentary imperfection amplitude. This amplitude
was taken as half of the difference between the mid-surface’s maximum and minimum radii
(402.65 mm and 401.58 mm, respectively) in this central region. The resulting imperfection
amplitude is 0.53 mm. With a mean primary layup thickness of 4.14 mm, the amplitude with
respect to wall thickness is 12.8%.
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Figure 8.6: Interpolated thickness.

Figure 8.7: Interpolated mid-surface.
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8.2 Choice of Composite Material Properties for Simulation

The nominal properties of IM7-8552 given in Table 3.2 were modified based on the results of
a NASA tensile test, whose specimens had the same [(23/0/-23)S4] layup as the test article’s
primary section and were deliberately built for this purpose. Results of the tensile test are
given in Table 8.3. The 0◦ modulus and Poisson’s ratio refer to the overall laminate.

Specimen Number 1 2 3 4 5 6 7 Mean
0◦ Modulus [GPa] 107.3 108.7 115.0 109.4 106.1 108.8 105.3 108.7
Poisson’s ratio [-] 1.24 1.29 1.29 1.28 1.27 1.31 1.35 1.29
Width [mm] 25.3 25.4 25.4 25.4 25.4 25.4 25.4 25.4
Thickness [mm] 4.32 4.32 4.32 4.34 4.32 4.39 4.32 4.32

Table 8.3: Summary of the tensile test results from which the calibrated material properties
were derived.

To calibrate the nominal properties of IM7-8552 to the tensile test, “digital” tensile test
simulations were performed with linear static analysis. The goal of this procedure was to
choose E11 and E22 ply property values such that the resultant 0◦ modulus and Poisson’s
ratio of the finite element specimen were within 1% of the mean values of the physical test.
This calibration was similar to the process used by Schultz et al. [36] when performing analysis
for CTA8.1 (although in that case, the experimental calibration reference was a pre-critical
load sequence to determine CTA8.1’s axial stiffness, rather than the results of a coupon-size
tensile test).

Figure 8.8 shows the finite element model of the mean representative experimental tensile
specimen cross-section dimensions – 25.4-mm width and 4.32-mm thickness – that was created
for calibration. No length was specified in the NASA data, so a length of 200 mm was chosen.
The SC8R element was used, with a mesh size of 4.3 mm. The nodes of the left edge of tensile
specimen model were constrained in all degrees of freedom. The nodes on the right edge were
tied to a reference node (all highlighted in red) via a rigid body tie constraint. This reference
node was constrained in all degrees of freedom except for translation in the X direction. A
displacement of 0.2 mm (corresponding to a length-wise strain of 0.1%) was applied to the
reference node in the positive X direction.

Figure 8.8: Finite element model of the representative tensile specimen.

Adjustment of the ply properties was conducted in a two-step process. First, the nominal
E11 ply property was tuned so that the resultant 0◦ modulus of the model matched the
mean of the tensile experiment. The resultant modulus from the model was calculated by
dividing the reaction load at the reference node by the cross-sectional area and then by the
specimen’s longitudinal 0.1% strain. Next, the nominal E22 value was adjusted so that the
model’s resultant Poisson’s ratio matched the experimental mean. The Poisson’s ratio of
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the model was derived from 0◦ and 90◦ strains extracted from a central element. Table 8.4
shows the nominal, intermediate, and calibrated E11 and E22 values and differences in the
two aforementioned metrics relative to the test.

Version

Ply [(23/0/-23)S4] Laminate Property
Property 0◦ modulus Poisson’s Ratio

E11 E22 Test FEA Difference Test FEA Difference[GPa] [GPa] [GPa] [GPa] [-] [-]
Nominal 140.9 9.72

108.7

102.1 -6.0%

1.29

1.16 -10.1%
Iteration 1 155.0 9.72 111.1 2.2% 1.24 -4.1%
Iteration 2 152.2 9.72 109.3 0.6% 1.23 -4.8%
Calibrated 152.2 8.75 108.8 0.1% 1.28 -0.9%

Table 8.4: Iterations for calibrating the modulii of the ply properties to the tensile test.
Percentage differences are taken with respect to the test.

Two iterations of the first step were required to tune E11. The nominal value was initially
increased by 10% to 155.0 GPa; however this resulted in a 0◦ laminate modulus that differed
by more than the 1% threshold. An 8% increase of the nominal E11 was then attempted with
success. Only one iteration of E22 adjustment (-10%) was required such that both metrics
matched the tensile experiment’s means within 1%. The final property set resulting from
this process is contained in the last row labeled “calibrated”. No other ply properties were
adjusted.
After this initial calibration, a set of “recalibrated” properties were determined by scaling
up the calibrated E11 and E22 values of Table 8.4 to account for an observed 4.3% difference
between the test article’s mean primary layup thickness of 4.14 mm and the tensile specimens’
mean 4.32-mm thickness (these correspond to mean ply thicknesses of 0.173 mm and 0.180
mm, respectively). Figure 8.9 shows a three-dimensional view of the shell’s interpolated
thickness compared to an overlay of the shell’s nominal thickness (without imperfections)
given 0.180-mm thick plies, which further illustrates the discrepancy.
It was thought that this thickness difference was caused by more resin being bled-off in the
shell’s manufacturing process than that of the tensile specimens. The logic of recalibration
was based upon the assumption that a given tow should contain the same quantity of fibers
regardless of its cured thickness. It was thus assumed that the load-displacement behavior
of a 0.180-mm-thick ply should have nearly identical behavior to that of a 0.173-mm-thick
ply. By necessity, this would imply that the 0.180-mm and 0.173-mm plies have different
stiffnesses due to the differing cross-sectional area. Thus recalibrated E11 and E22 values
were obtained via multiplication of the calibrated E11 and E22 by the ratio of mean tensile
specimen ply thickness to mean shell ply thickness, as shown in Equations 8.1 and 8.2. The
rest of the properties for the recalibrated material set (e.g. shear modulii), were left the same
as the those of nominal and calibrated properties. Failure properties were not adjusted for the
calibrated or recalibrated material property sets from their nominal values from Clarkson [58],
as this would have required additional assumptions. All three property sets are summarized
in Table 8.5.

E11Recalibrated
= E11Calibrated

ply thicknesstensile specimen

ply thicknessshell
= E11Calibrated

∗ 1.043 (8.1)
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Figure 8.9: Interpolated thickness compared with an overlay corresponding to the mean
0.180-mm tensile test ply thickness.

E22Recalibrated
= E22Calibrated

ply thicknesstensile specimen

ply thicknessshell
= E22Calibrated

∗ 1.043 (8.2)

Property Set E11 E22 G12 G13 G23 ν12 ρ
[GPa] [GPa] [GPa] [GPa] [GPa] [-] [g/cm3]

Nominal 140.9 9.72 4.69 4.69 3.58 0.356 1.58
Calibrated 152.2 8.75 4.69 4.69 3.58 0.356 1.58
Recalibrated 158.7 9.12 4.69 4.69 3.58 0.356 1.58

Table 8.5: Material property sets of Hexcel IM7-8552 composite.

The effect of material property and thickness adjustments on the buckling load was inves-
tigated to determine if substantial changes were to be expected on the shell without imper-
fections. This was done via both the analytical buckling load calculation of the simplified
shell, as well as via nonlinear dynamic analysis of full the test article without imperfections.
The latter test article model was produced by forgoing the imperfection surface interpolation
mentioned in Section 8.1.2 and prescribing the shell’s inner and outer surfaces based on the
nominal inner radius and the ply thicknesses of either 0.175 or 0.173 mm. A displacement
rate of 2 mm per minute was applied to the reference node.

These results are shown in Table 8.6 and Figure 8.10. As indicated by the percentage differ-
ences, the change of materials and ply thicknesses did not affect the buckling load significantly.
A slight increase in axial stiffness relative to the nominal material was observed. As a result
of the similarity in these buckling loads, the nominal analytical buckling load of 2271 kN was
retained as the reference buckling load.
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Material Ply Thickness SP-8007 Nonlinear Dynamic
Buckling Load Difference Buckling Load Difference[mm] [kN] [kN]

Nominal 0.175 2271 [ref] 2197 [ref]
Calibrated 0.173 2219 -2.3% 2131 -3.0%
Recalibrated 0.173 2291 0.9% 2210 0.6%

Table 8.6: Effect of adjusting the material properties and ply thickness on the simplified shell
analytical buckling load alongside the test article nonlinear dynamic analysis buckling loads

without imperfections.

Figure 8.10: Effect of different material properties and thickness on the test article without
imperfections.
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8.3 Preliminary NDL-1 Simulation Results with Imperfections

Prior to the buckling experiment of NDL-1, two simulations with measured imperfections were
conducted: one with the calibrated property set and one with the recalibrated properties. A
displacement rate of 2 mm per minute was applied to the top reference node in the axially
compressive direction. Only pre-test data for the recalibrated simulation was provided to
NASA for use during the experiment.

The buckling loads and resultant knockdown factors are summarized in Table 8.7. The
analytical buckling load of NASA SP-8007 is considered the reference load by which resultant
knockdown factors are derived. Figure 8.11 shows the load versus displacement results for
the both material variants. Buckling was expected to occur at 2.18 mm of axial compression
and at a load between 2075 kN and 2154 kN. These are about 70% and 84% less conservative
than NASA SP-8007.

Model Buckling Load KDF[kN]
SP-8007 Analytical 2271 -
SP-8007 Analytical with KDF 1338 0.59
Calibrated FEA with Measured Imperfections 2075 0.91
Recalibrated FEA with Measured Imperfections 2154 0.95

Table 8.7: Simulation results compared with the SP-8007 analytical solution.

Figure 8.11: Load versus displacement plots of the two pre-test simulations with measured
imperfections.



66 NDL-1 Modeling & Preliminary Simulation Results

Various failure criteria were assessed at the simulation intervals immediately before and after
buckling to investigate if any were met or exceeded. The purpose was threefold: to check that
material failure would not occur prior to buckling, and to determine when and where failure
was expected to occur. This was accomplished by extracting the most critical plies’ failure
criteria values immediately prior to buckling and immediately after buckling (i.e. before and
after the peak load). The points at which these values were extracted from each simulation
are specified in Figure 8.12. The most critical values and plies are presented in Tables 8.8
and 8.9. In the case of both materials, failure was not expected to occur before buckling.
This is indicated by all pre-buckling criteria values being below unity. However, failure was
expected to occur immediately upon buckling, as indicated by the presence of greater-than-
unity criteria values in the post-buckling columns of these tables.

Figure 8.12: Pre-buckling and post-buckling points used for extracting failure criteria.

Failure Criteria
Most Critical

Pre-buckling Post-buckling
Value Ply # Value Ply #

Maximum Stress 0.36 1 1.00 24
Maximum Strain 0.50 2 1.12 24
Tsai-Hill 0.46 3 1.03 24
Tsai-Wu 0.52 3 1.08 24
Hashin Fiber Compressive 0.05 23 0.20 24
Hashin Fiber Tensile 0.02 90◦ pad-up 0.04 1
Hashin Matrix Compressive 0.08 -45◦ pad-up 0.61 1
Hashin Matrix Tensile 0.19 3 1.06 24

Table 8.8: Failure criteria of the calibrated simulation.
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Failure Criteria
Most Critical

Pre-buckling Post-buckling
Value Ply # Value Ply #

Maximum Stress 0.37 23 1.65 24
Maximum Strain 0.50 2 1.63 23
Tsai-Hill 0.47 3 1.82 24
Tsai-Wu 0.54 3 1.87 24
Hashin Fiber Compressive 0.05 23 0.40 1
Hashin Fiber Tensile 0.02 90◦ pad-up 0.14 24
Hashin Matrix Compressive 0.08 -45◦ pad-up 0.97 1
Hashin Matrix Tensile 0.21 3 3.28 24

Table 8.9: Failure criteria of the recalibrated simulation.

Two categories of failure criteria and one of damage initiation were assessed: maximum
allowable, energy-based, and component-damage based. Maximum strain and stress criteria
consider the corresponding allowables; if the strength or strain value is exceeded, the criterion
indicates failure. The Tsai-Hill criterion is energy-based and considers the interaction of
component stresses, just as the von Mises criterion does with isotropic materials [55, 60].
The Tsai-Wu criterion built upon Tsai-Hill by allowing for different strength allowables in
tension and compression [60]. Hashin-Rotem potentially has more physical significance than
Tsai-Wu and Tsai-Hill in that it considers failure of the fiber and matrix material separately.
By contrast, the maximum allowable and energy-based criteria make the simplification of
homogeneity [55, 60, 61]. For the calibrated simulation, Tsai-Wu is the most conservative
(i.e. has the highest value) in both pre- and post-buckling as indicated in Table 8.8. For the
recalibrated simulation Tsai-Wu is also the most conservative in pre-buckling, but the Hashin
Matrix Tensile criterion is most conservative in post-buckling, as indicated in Table 8.9.

Potential sites for failure initiation in the recalibrated simulation are indicated by the maxi-
mum criteria values in Figures 8.13 through 8.15. These figures, showing one of each category
of the aforementioned criteria for pre- and post-buckling, are generally in agreement and
suggest that failure may be expected to occur at axial positions between approximately 100
mm and 200 mm, and at circumferential positions of approximately 23◦, 68◦, or 113◦. Figure
8.16 indicates the radial displacement corresponding to the increment at which post-buckling
failure contours were taken. In combination with the failure criteria figures, it suggests that
failure is expected to occur at locations of outward radial displacement.
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(a) Pre-buckling, Ply 23.

(b) Post-buckling, Ply 24.

Figure 8.13: Most critical plies of the recalibrated simulation according to the Maximum Stress
criterion.
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(a) Pre-buckling, Ply 3.

(b) Post-buckling, Ply 24.

Figure 8.14: Most critical plies of the recalibrated simulation according to the Tsai-Wu
criterion.
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(a) Pre-buckling, Ply 3.

(b) Post-buckling, Ply 24.

Figure 8.15: Most critical plies of the recalibrated simulation according to the Hashin Matrix
Tensile damage criterion.
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Figure 8.16: Radial displacement corresponding to the post-buckling increment at which failure
criteria were assessed.
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Chapter 9

Experimental Results & Simulation
Correlation

An axial compression buckling test was performed by NASA on NDL-1 in June 2019. The
test article is shown in the load frame before testing in Figure 9.1. A displacement-controlled
compression rate of approximately 0.04 mm/min was applied. The test article was loaded to
failure, which as indicated in Section 8.3 was expected immediately upon buckling. Results
from the experiment are explored in this chapter and compared with the simulations.

Figure 9.1: NDL-1 mounted in the load frame at NASA Langley Research Center prior to
testing (photo courtesy of NASA).

Test data came from several sources. Load was measured via a load cell. Displacement was
measured by six direct current differential transducers (DCDTs) positioned around the load
frame, two of which are visible next to the bases of the two front columns in Figure 9.1. All
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DCDT locations are specified in Figure 9.2, along with the circumferential orientations that
are referenced throughout this chapter.

Figure 9.2: Mid-section top-view drawing of the load frame indicating angular locations and
DCDT mounting points. All dimensions are in millimeters.

Figure 9.3 shows the locations and orientations of strain gauges that were affixed to NDL-
1. On both the inner and outer surfaces, 12 axially oriented gauges were spaced at regular
intervals: every permutation of 0◦, 90◦, 180◦, and 270◦ around the circumference with axial
positions of -562 mm, 0 mm (the meridian), and 562 mm. Additionally, four inner and four
outer meridian gauges measured circumferential strain at 0◦, 90◦, 180◦, and 270◦.
Eight digital image correlation (DIC) systems observed the experiment: four low-speed and
four high-speed systems, with each system comprised of two cameras. Pairs consisting of one
low-speed and one high-speed system were positioned facing circumferential positions of the
shell at 45◦, 135◦, 225◦, and 315◦ as indicated in Figure 9.4. As single set of cameras from one
such pair is shown in Figure 9.5. All DIC systems’ fields of view were centered on NDL-1’s
meridian. Images from set of systems were digitally merged. Low-speed DIC recorded the
experiment at one frame per second. Pre-buckling radial and axial displacements were derived
from this data. High-speed DIC captured the buckling event at 20,000 frames per second.
The DIC speckle pattern visible in Figure 9.1 was applied after imperfection measurements
were taken and strain gauges were mounted.
The experimental setup is shown Figure 9.6. Monitoring stations were used to observe full-
field displacements and strains from low-speed DIC along with load and axial displacements
in real time. A sawtooth wave provided a common synchronization signal for all data sources.
Before the final load sequence, shims were introduced between the upper edge of NDL-1
and the upper loading platen to achieve the best possible uniformity of load transfer. The
positions and amounts of shimming shown in Table 9.1 were determined after assessing DIC
data during preliminary sub-critical load sequences.
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Figure 9.3: Strain gauge locations and orientations on the shell.

Figure 9.4: Locations of DIC systems. Approximate fields of view are indicated by blue lines.
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Figure 9.5: A pair of DIC cameras (photo courtesy of NASA).

Figure 9.6: The experimental setup (photo courtesy of NASA).

Circumferential Position Shim Height
[mm]

210◦ - 225◦ 0.0254
225◦ - 285◦ 0.0508
285◦ - 300◦ 0.0254
300◦ - 315◦ 0.0127

Table 9.1: Shimming added around the upper edge of NDL-1 prior to the final load sequence.
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9.1 Load-Displacement

The experimental buckling load is compared with both simulations in Table 9.2. Both simu-
lations match well with the test, particularly the calibrated simulation with agreement within
0.1%. The experimentally obtained KDF is in better agreement with the observations of
Singer et al. [62] – who distinguished different KDF curves based on expertise of manufactur-
ing – than the SP-8007-prescribed 0.59 KDF. According to Singer et al., an expertly made
shell with an equivalent radius-to-thickness ratio of 300 (this equivalent ratio is used for
composite shells) is expected to have a buckling load ratio of approximately 0.8.

Source Buckling Load Error KDF with respect
[kN] to SP-8007

Experimental 2077 [ref] 0.91
Calibrated FEA with Measured Imperfections 2075 -0.08% 0.91
Recalibrated FEA with Measured Imperfections 2154 3.7% 0.95

Table 9.2: Experimental buckling load result of NDL-1 compared with FEA results.

Figure 9.7 shows the load-displacement behavior as derived from DCDTs. The displacement
at buckling and pre-buckling stiffnesses indicated by the DCDTs do not qualitatively match
either simulation well.

Figure 9.7: DCDT load-displacement behavior compared with both simulations.

This was initially puzzling because of the excellent to-be-discussed load-strain agreement
between simulation and experiment. Thus an additional set of axial displacement data was
obtained from low-speed DIC at circumferential positions of 45◦, 135◦, 225◦, and 315◦. Figure
9.8 shows the average displacement from these positions. This axial displacement DIC data
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shows much better agreement with the simulations than the DCDT data.

Figure 9.8: Averaged axial DIC-derived load-displacement behavior compared with both
simulations.

The correlation is quantitatively confirmed by the simulated and experimental pre-buckling
stiffnesses given in Table 9.3. These axial stiffnesses were acquired via the slope of linearly
best-fitting the data sets. Data points after buckling were excluded from this fitting proce-
dure. The first 0.25 mm of imposed displacement was also eliminated from fitting due to
settling at the beginning of the test. Both simulations match well with the experimental
stiffness obtained via DIC, yielding agreements within 0.2% and 3.7% for the calibrated and
recalibrated simulations, respectively. It was thought that the DCDT displacement measure-
ments were inaccurate due to the test article’s high stiffness. As a result of the stiffness, the
treatment of the load frame as rigid relative to NDL-1 was likely an invalid assumption. Since
the DCDTs were mounted to the load frame, they thus would have incorporated deformation
of both the test article and the frame.

Source Stiffness Difference[kN/mm]
Experimental - Axial DIC 955 [ref]
Experimental - Average DCDT 1089 14%
Calibrated FEA with Measured Imperfections 953 -0.2%
Recalibrated FEA with Measured Imperfections 990 3.7%

Table 9.3: Simplified linear stiffness of the NDL-1 experiment via DCDT and axial DIC
compared with both FEA results.

Figure 9.9 allows for investigation of possibility of loading imperfections via the separate
45◦, 135◦, 225◦, and 315◦ DIC information. Linear fits were generated for displacements
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greater than 2 mm to discern circumferential variations in axial displacement leading up to
buckling. Displacement values corresponding to the buckling load are given in Table 9.4. The
variations from 2.170 mm to 2.214 mm indicate a slight loading imperfection may have been
present. From the values in this table, a best-fit plane was derived to represent the potential
orientation of the outer upper edge of NDL-1 at buckling, as shown in Figure 9.10. If the
axial DIC information and fits are accurate, this indicates that at a circumferential position
of 151◦, there may have been up to a 0.003◦ tilt to the shell at the moment of the peak load.
It is also possible that the boundary non-uniformity as measured by DIC did not conform to
a planar shape due to potential deformation of the load frame.

Figure 9.9: Linear-fit axial DIC-derived load-displacement behavior at four circumferential
locations, compared with average DIC displacement and the calibrated simulation.

Source Displacement at DifferenceBuckling [mm]
Experimental - Axial DIC Average Linear Fit 2.194 [ref]
Experimental - Axial DIC 45◦ Linear Fit 2.190 -0.21%
Experimental - Axial DIC 135◦ Linear Fit 2.214 0.91%
Experimental - Axial DIC 225◦ Linear Fit 2.203 0.40%
Experimental - Axial DIC 315◦ Linear Fit 2.170 -1.10%
Calibrated FEA with Measured Imperfections 2.180 -0.63%
Recalibrated FEA with Measured Imperfections 2.177 -0.77%

Table 9.4: Displacement at buckling.

The effect of the potential planar tilt illustrated by Figure 9.10 was investigated through two
post-test simulations. Both the calibrated and recalibrated nonlinear dynamic simulations
with measured imperfections were re-run, but with the additional application of rotation
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Figure 9.10: Best-fit plane to the linearized axial DIC data representing the plane of the top
edge of shell at buckling, from Table 9.4.

to the upper reference node towards the model’s 151◦ circumferential position. This was
accomplished by linearly increasing the angular tilt of the reference node from 0◦ to 0.003◦

during the first 2 mm of axial compression. For axial displacement beyond 2 mm, the 0.003◦

was then held constant.

The buckling loads of these simulations with loading imperfections are presented in Table 9.5
in comparison to the experimental result as well as the simulation results without the loading
imperfections. The inclusion of the planar tilt in simulations did not cause a substantial
reduction in the buckling load. The portion of load-displacement behavior around the moment
of buckling is shown in Figure 9.11. The only qualitatively observed difference between the
simulations with the loading imperfection and without was that the former buckled with
0.18 mm less of axial compression. Up until buckling, the load-displacement curves appeared
nearly identical to the simulations without loading imperfections.

Source Buckling Load Error[kN]
Experimental 2077 [ref]
Calibrated FEA with Measured Imperfections 2075 -0.08%
Calibrated FEA with Measured Imperfections & Load Imperfection 2061 -0.78%
Recalibrated FEA with Measured Imperfections 2154 3.7%
Recalibrated FEA with Measured Imperfections & Load Imperfection 2139 3.0%

Table 9.5: Experimental buckling load result compared with FEA with and without loading
imperfections.
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Figure 9.11: Comparison of adding a planar tilt to the simulations with measured imperfections.
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9.2 Load-Strain

To obtain simulation strains corresponding to the precise gauge locations in Figure 9.3, a
multi-step process was employed. This was because the footprint of each gauge overlapped
areas contained by multiple elements in the FE models. Furthermore the strain gauges’
centers did not coincide with the centers of element faces. First, strain history output was
requested for the nodes of each element face analogous to shell acreage covered by a gauge
(including partially covered elements); this was between six and nine elements per gauge. For
each given gauge location, the distance from its center to each associated elements’ inner or
outer face centers was calculated. Finally, the inverse of this distance was used as a weight
to compute the weighted average of simulation strains corresponding to each gauge location.
Thus the closer an element’s face center to the strain gauge location, the more influence it
had on the calculated strain.
Per axial/circumferential strain measurement location, membrane strains were derived by
averaging the inner and outer strains. Bending strains were computed as half the difference
between inner and outer strains.
Figure 9.12 indicates good agreement between the meridian axial membrane strains of the
simulation and test. There was a slightly larger spread in the experimental strains around the
circumference than in simulation. This may have been partially due to variations in loading
around the circumference of the test article. However, the higher strains at 0◦ and 180◦ than
90◦ and 270◦ suggest that if a loading imperfection was present, it may not have been a
simple planar tilt as indicated in Section 9.1. The meridian axial membrane strain behavior
was primarily linear, with some nonlinearity occurring right before buckling.
The meridian circumferential membrane strains are compared in Figure 9.13. The analysis
correlated well with the experiment. As with the meridian axial membrane strains, the test
article exhibited lower strain at the 0◦ and 180◦ positions than at the 90◦ and 270◦ positions.
All circumferential strains were higher than the axial strains for a given load level. This was
expected due to the [(23/0/-23)S4] layup having greater axial stiffness than circumferential
stiffness. These strains obeyed a similar trend as the axial membrane strains above: primarily
linear behavior up to 1500 kN followed by a nonlinear region between 1500 kN and the buckling
load.
The meridian axial bending strains are shown in Figure 9.14. The simulation correlated well
with the experiment in terms of the nonlinear load-strain behavior. Both indicate that little
axial bending occurred at the meridian below 1500 kN, after which the amount of bending
increased drastically. The experimental spread in this bending strain was likely due to the
influence of the imperfection signature’s circumferential variance.
Figures 9.15 and 9.16 show the axial membrane strains in the lower and upper pad-up re-
gions, respectively. The lower experimental strains showed little variation in stiffness and
good agreement with the simulation. Figure 9.16 indicates a larger experimental spread in
stiffness at the upper gauge position, with the 0◦ and 180◦ gauges showing greater compliance
than the 90◦ and 270◦ gauges, similar to the meridian axial membrane strains. This spread
was not predicted by the simulation, which showed a more consistent behavior among the
circumferential positions.
Bending strains at the lower and upper pad-ups are shown respectively in Figures 9.17 and
9.18. The test and simulation were in better agreement at the lower pad-up than the upper
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pad-up. In particular, the 0◦ and 270◦ upper pad-up gauges indicated less bending compliance
than the simulation predicted. This may have been caused by slight asymmetries in load
introduction. The jagged upper 90◦ experimental bending strain curve in Figure 9.18 was
thought to have been caused by a partial detachment of the inner gauge around 900 kN.

In Figures 9.19 through 9.21, the load versus average strain from each axial position (i.e. a
set of 0◦, 90◦, 180◦, and 270◦ measurements) are compared with both simulations. Figure
9.19 shows the averaged axial membrane strains. Notably, the meridian strains were higher
than the upper and lower strains. This was likely due to the upper and lower gauge positions
corresponding to the third pad-up regions, which have three more plies than the primary
layup at the meridian. Both simulations showed good agreement with the experimental
results, although the calibrated material appears to have given slightly closer results for all
three axial locations. The recalibrated simulation appeared slightly stiffer than the test article
from the standpoint of strain gauges.

On the basis of averaged circumferential membrane strains per Figure 9.20, the test result
indicated higher stiffness than either simulation. The average axial bending strains in Figure
9.21 showed a generally close match between the test and simulations, with the exception of
the upper axial bending stiffness.

Figure 9.12: Meridian axial membrane strains.



84 Experimental Results & Simulation Correlation

Figure 9.13: Meridian circumferential membrane strains.

Figure 9.14: Meridian axial bending strains.
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Figure 9.15: Lower axial membrane strains.

Figure 9.16: Upper axial membrane strains.
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Figure 9.17: Lower axial bending strains.

Figure 9.18: Upper axial bending strains.
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Figure 9.19: Average axial membrane strains compared between the test and both simulations.

Figure 9.20: Average circumferential membrane strains compared between the test and both
simulations.
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Figure 9.21: Average axial bending strains compared between the test and both simulations.
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9.3 Pre-buckling and Buckling Shape Evolution

NDL-1’s radial displacement contours from low- and high-speed DIC are compared to those of
the calibrated simulation in this section. NASA provided all DIC contours with length units in
inches. Scales were removed and regenerated in SI units via MATLAB scripting. As indicated
by Figure 9.4, the DIC systems were unable to achieve full circumferential coverage due to the
load frame’s columns. Hence blank vertical areas appear around the 90◦ and 270◦ positions
of Figures 9.23a through 9.27a, 9.29a through 9.33a, and 9.34. All experimental contours
featured larger radial displacement ranges than the corresponding simulation contours. Thus
the color scales of each individual contour was set according to its own unique minimum and
maximum radial displacement (rather than sharing a common scale). Additionally, since the
DIC contours only included the non-potted shell acreage, simulation contours were produced
to show the same acreage between axial positions of approximately -585 mm and 585 mm.

9.3.1 Pre-buckling

Low-speed DIC was used to capture the general shape of the test article prior to buckling.
Figure 9.22 indicates the loads and axial displacements at which the radial displacement
contours of Figures 9.23 through 9.27 were captured. Figures 9.23 through 9.26 represent
load levels 445 kN (100 kilopound) apart, an interval equal to 21.4% of the buckling load.
Additionally, Figure 9.27 shows the pre-buckling shape at the peak load.

Figure 9.22: Points corresponding to the contours of Figures 9.23 through 9.27.

As imposed axial displacement increases, the pre-buckling figures feature progressively larger
radial displacement of the shell acreage between axial positions of -500 mm and 500 mm. Ex-
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pectedly, there was less radial displacement change in acreage beyond these limits (i.e. closer
to the potted regions). Circumferentially varying radial displacement from the experiment
was evident early in the loading process, particularly in Figures 9.23a, 9.24a, and 9.25a; in
contrast, the simulated radial displacement was much more circumferentially uniform, per
Figures 9.23b, 9.24b, and 9.25b. This may be evidence of a slightly uneven load introduc-
tion in the experiment. Alternatively or additionally, the reference shape from which the
DIC systems measured radial displacement may have been off-center. This is supported by
the experimental radial displacements at the upper and lower edges of these figures; these
edges’ radial displacement around 225◦ remained fixed at about -0.20 mm, whereas that of
the opposite circumferential position (around 45◦) was 0.20 mm.

The nascent pre-buckling pattern is evident in Figures 9.25 and 9.26. Notable features devel-
oped in this interval: a ring shaped groove between 100 mm and 200 mm (coincident with the
mandrel imperfection) and a pattern of axial half-waves and circumferential full-waves. Fig-
ure 9.27 corresponds to the moment before buckling. The experimental location that became
the first buckle was the deep dimple centered at 200◦ and 150 mm. The calibrated simu-
lation agreed with the test in predicting two other dimples around 45◦ and 135◦; it cannot
be seen in Figure 9.27a how deep the dimple at 90◦ was. However, the simulation failed to
predict the deep pre-buckling dimple at 200◦. This may have been due to loading asymmetry,
which further suggested by the circumferentially varying radial displacement. In contrast, the
simulation indicated more circumferentially uniform radial displacement at this load level.

The nine axial half-waves of the experimental and simulated pre-buckling patterns, shown
respectively in Figures 9.27a and 9.27b, agreed with the SP-8007 analytical solution. However,
the number of circumferential full-waves in the simulation (about eight or nine depending on
the axial location) and experiment (around six) differed from SP-8007’s zero. This may have
been due to the imperfection signature itself, which is not accounted for in the analytical
solution.
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(a) Experimental. Axial displacement = 0.45 mm; Load = 445 kN.

(b) Simulation. Axial displacement = 0.46 mm; Load = 444 kN.

Figure 9.23: Radial displacement at 21% of the buckling load.
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(a) Experimental. Axial displacement = 0.92 mm; Load = 890 kN.

(b) Simulation. Axial displacement = 0.93 mm; Load = 889 kN.

Figure 9.24: Radial displacement at 43% of the buckling load.
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(a) Experimental. Axial displacement = 1.39 mm; Load = 1335 kN.

(b) Simulation. Axial displacement = 1.38 mm; Load = 1333 kN.

Figure 9.25: Radial displacement at 64% of the buckling load.
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(a) Experimental. Axial displacement = 1.88 mm; Load = 1779 kN

(b) Simulation. Axial displacement = 1.86 mm; Load = 1778 kN.

Figure 9.26: Radial displacement at 86% of the buckling load.
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(a) Experimental. Axial displacement = 2.19 mm; Load = 2074 kN.

(b) Simulation. Axial displacement = 2.18 mm; Load = 2075 kN.

Figure 9.27: Radial displacement immediately prior to buckling.
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9.3.2 Buckling Event

The buckling evolution of the calibrated simulation and the experiment are compared in
Figures 9.29 through 9.33. The experimental contours of Figures 9.29a through 9.33a were
obtained via high-speed DIC. No information was available regarding exact times, loads,
or axial displacements at which these high-speed DIC frames were taken. Consequently,
these moments could not be precisely identified on the load-displacement plot. However,
they were compared with qualitatively similar simulation contour data to investigate the
buckling propagation. Figure 9.28 indicates the loads and displacements corresponding to
the simulated buckling contours in Figures 9.29b through 9.33b. Additionally, Figure 9.34
shows the buckling pattern as captured via low-speed DIC; this was the only low-speed DIC
frame provided that showed the buckled shape.

Figure 9.28: Points corresponding to the simulated buckling contours of Figures 9.29b through
9.33b.

The first provided high-speed DIC frame is shown in Figure 9.29a. This was used as a
reference for elapsed times noted in the captions of Figures 9.30a through 9.33a. The times of
experimental buckling propagation were calculated by dividing the number of frames elapsed
from this reference frame by the known frame rate of 20,000 frames per second. The contour of
Figure 9.29b was similarly used as the timing reference for simulated buckling propagation; the
elapsed times in the captions of Figures 9.30b through 9.33b were taken from the simulation
data.
Figure 9.29 shows the first experimental and simulated buckles. The experiment featured a
distinct first dimple, whereas the simulation predicted a series of simultaneous initial dimples.
Both the simulation and the experiment were in agreement regarding the axial position of the
initial buckle(s), which was centered on the mandrel imperfection between 100 mm and 200
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mm in Figure 8.7. However, the experimental buckle of Figure 9.29a occurred at 200◦ rather
than 45◦ or 135◦ as predicted by the simulation per Figure 9.29b. This could be explained by
the boundary shimming analysis of Wagner et al. [63], who found initial buckling occurred
at the circumferential position of a shim. Thus the aforementioned potential boundary tilt
centered at 151◦ may have biased the first experimental dimple to occur near it. The physical
shims described in Table 9.1 may have also played a role in influencing the initial buckling
location relative to the simulation, as they were not taken into account in the analysis.

This first experimental dimple then began to propagate into a pattern throughout the struc-
ture as indicated in Figure 9.30a. The range of radial displacement range (-25 mm to 8.6
mm) increased drastically during this transition. This was more than twice the magnitude of
the simulated radial displacement in Figure 9.30b (-8.4 mm to 4.3 mm), which represents a
similar stage in the pattern’s propagation around the shell’s circumference.

Figure 9.31 shows the buckling patterns as they approached the circumferential position
opposite the initial buckling location. The radial displacement range continued to grow.
The fully propagated buckling patterns are shown in Figure 9.32, with further expanding
radial displacement. The experimental radial displacement range (-29 mm to 16 mm) was
nearly double that of the simulation (-17 mm to 6.9 mm). Moreover, the simulation and
experiment differed with regard to the first fully propagated buckling pattern. Both were in
agreement with two axial half-waves, but NDL-1 exhibited seven circumferential full-waves,
while the simulation predicted eight. This may have been why the experimental buckles
were larger than the simulated buckles. It took 7.3 milliseconds from the first provided high-
speed DIC frame of Figure 9.29a to propagate into the first full buckling pattern shown in
Figure 9.32a. The simulation propagation time was of a similar magnitude: 5.1 milliseconds.
This slight difference may have been caused by several factors: temporal alignment mismatch
between the reference frames of Figures 9.29a and 9.29b; different experimental and simulated
displacement rates; implicit analysis default damping parameters that were not tuned to any
experimental values; or the explosiveness of the buckling event that resulted in interaction
with the load frame.

After the first buckling shapes encompassed the shell, the experimental and simulated buck-
ling patterns further evolved in a similar manner. For both, Figure 9.33 shows a reduction of
one circumferential full-wave relative to the patterns of Figure 9.32, which led to six circum-
ferential full-waves in the experiment and seven in the simulation. Figure 9.33a was the last
available high-speed DIC frame.

In addition to loading asymmetry, material failure of the test article during the buckling event
may have caused a different evolution pattern from the simulation. While failure criteria
were output from the simulation to understand when and where failure might occur, material
failure and damage propagation themselves were not modeled. Such details could have had
an effect on the minimum strain energy state of the structure and thus may have influenced
the stability characteristics like the buckling shape and amount of radial displacement.

Figure 9.34 was the only low-speed DIC frame that showed the buckled shape of the shell.
Data provided by NASA indicated this frame corresponded to a load of 663 kN and an
axial displacement of 4.49 mm (as derived from DIC). The latter is more than double the
immediate pre-buckling axial displacement of 2.19 mm; it was not known at the time of writing
if this measurement was valid or not. This contour displays the same buckled pattern of six
circumferential full-waves and two axial half-waves as Figure 9.33a, albeit with substantially
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less radial displacement, ranging from -31 mm to 16 mm. Additionally, Figure 9.34 shows
more uniform radial displacement between each of the outwardly displaced ridges and between
each of the inwardly displaced dimples than those of Figure 9.33a, potentially indicating the
end of the evolution and thus equilibrium. Further, this suggests all high-speed DIC frames
were captured prior to this frame, as the load was decreasing from 2077 kN to 663 kN.

(a) Experimental

(b) Simulation

Figure 9.29: Initial dimples.
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(a) Experimental (2.5 milliseconds after Figure 9.29a)

(b) Simulation (1.2 milliseconds after Figure 9.29b)

Figure 9.30: Buckling propagation.
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(a) Experimental (5.1 milliseconds after Figure 9.29a)

(b) Simulation (3.3 milliseconds after Figure 9.29b)

Figure 9.31: Further buckling propagation.
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(a) Experimental (7.3 milliseconds after Figure 9.29a)

(b) Simulation (5.1 milliseconds after Figure 9.29b)

Figure 9.32: Buckling propagation to the entire circumference.



102 Experimental Results & Simulation Correlation

(a) Experimental (16.3 milliseconds after Figure 9.29a)

(b) Simulation (29.4 milliseconds after Figure 9.29b)

Figure 9.33: Further buckling evolution: one circumferential full-wave less than Figure 9.32.
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Figure 9.34: Low-speed DIC capture of the buckling event. The associated load was 663 kN.
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9.4 Additional Observations

A delamination was found after the buckling test at an axial location of about 0 mm and a
circumferential location of 170◦, as indicated on NDL-1 in Figure 9.35. It was believed to
have occurred as a result of the buckling event. This idea was also supported by the radial
displacement shown in Figure 9.36 after unloading, which reveals an elevated area in the
contour data, along with the outwardly radial displaced area in Figure 9.27a. This elevated
area – indicated by the red ellipse in Figure 9.36 – was approximately the same size as the
hand-circled area of Figure 9.35. While the simulation predicted failure along an outwardly
displaced ridge in between dimples (see Figures 8.15 through 8.13), failure happened at a
lower axial position than expected.

Figure 9.35: The delamination location is outlined in red (photo courtesy of NASA).

The delamination was further investigated in comparison to the interpolated mid-surface and
thickness, as shown in Figures 9.37 and 9.38, respectively. It appeared that this delamination
occurred near, and potentially coincidentally, with a light blue area, which was believed to
be a tow-splice inherent to the manufacturing process.



9.4 Additional Observations 105

Figure 9.36: The delamination area (red ellipse) overlaid with a low-speed DIC contour taken
after unloading NDL-1.

Figure 9.37: The delamination area (red ellipse) overlaid with the interpolated mid-surface.
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Figure 9.38: The delamination area (red ellipse) overlaid with the interpolated thickness.
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Conclusions

This research was part of a collaborative framework between NASA and Delft University of
Technology on the NASA Engineering and Safety Center’s Shell Buckling Knockdown Factor
Project. The objective of this thesis was to contribute to the development of contemporary
knockdown factors for imperfection-sensitive composite launch vehicle structures by creating
pre-test simulations for an experimental buckling test and assessing the validity of the simu-
lations in light of the experiment. A laboratory-scale composite cylindrical shell test article
named NDL-1 was the subject of this investigation.

The research undertaken was accomplished via modeling NDL-1’s unique inner, outer, and
boundary surface imperfections for use in nonlinear dynamic simulations of the experiment.
In addition, two other types of geometric imperfections that may be used to estimate exper-
imental cylindrical shell buckling behavior were explored with an equivalent simplified shell
model. The sensitivity of the shell’s buckling behavior to loading imperfections – which are
an inescapable reality in buckling experiments – was also studied prior to the test on the
simplified shell model, with a view towards understanding the approximate order of influence
of tilted loading edges on the buckling behavior.

Relative to the manufactured test article’s 12.8% maximum mid-surface imperfection ampli-
tude, it was clear that similar magnitude eigenmode and trigonometric imperfections of the
shapes studied provided knockdown factors commensurate with the one prescribed by NASA
SP-8007, 0.59. 10% eigenmode and trigonometric imperfections produced KDFs of 0.64 and
0.63, respectively, whereas the resultant KDF of the experiment was 0.91. Additionally, the
resultant KDF agreement between S4R- and SC8R-element models with the 10% trigonomet-
ric and eigenmode imperfections indicated that transverse shear compliance may have been
negligible for this laminate. Most probably this was due NDL-1’s solid construction, which
forgoes a transversely shear-compliant core material.

It was found that subtle loading imperfections could affect the buckling load of this cylindrical
shell design. The response of the buckling load to loading imperfections began between 0.001◦

and 0.01◦ of planar tilt to the shell’s upper boundary, which respectively reduced the buckling
load of the shell without geometric imperfections by 0% and 3%.
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Two simulations were conducted due to pre-test uncertainties in the material properties of
the shell. A calibrated material variant was created to match the composite material’s elastic
modulii to the results of a tensile test. Then a recalibrated material property set was derived
to account for a 4.3% average ply thickness difference that was observed between the man-
ufactured test article and the tensile test specimens. The logic upon which the recalibrated
material was derived was due to the possibility of more resin being bled off during NDL-1’s
manufacturing process than that of the tensile specimens. The recalibrated assumption thus
stipulated that a cured tow of NDL-1 should have had the same amount of fibers as a cured
tow of the tensile specimen, but with slightly reduced thickness and thus cross sectional area;
as a result, the load-per-area elastic modulii would have increased.

Both simulations showed excellent agreement with the test. The calibrated simulation was
able to predict NDL-1’s buckling load within 0.08% and its axial stiffness within 0.2%. The
recalibrated simulation matched both the buckling load and the stiffness of NDL-1 within
3.7%. The experimental displacement at buckling was within 1% of both simulations. It is
possible that excess resin was not bled off relative to the tensile specimen, and that tow-
spacing gaps caused by the shell’s hand-layup process led to a change in aspect ratio of the
cured tows’ cross sections, while maintaining the same average cross-sectional area relative
to the tensile specimens’ tows. This could explain why the calibrated material simulation
matched with experimental result slightly better than the recalibrated simulation. However,
for conclusive answers on this matter, NDL-1’s material properties should be thoroughly
interrogated through destructive testing to validate material property assumptions. This
would provide insight into additional complexities of the as-manufactured layup properties
such as elastic nonlinearity. In summary, material property assumptions must be carefully
approached, justified, and eventually validated when used in simulation.

A potential loading imperfection was found via DIC-derived axial displacement data around
the moment of buckling. A best-fit plane to the data points indicated a possible 0.003◦ tilt of
the top edge from the horizontal plane towards the 151◦ circumferential position of NDL-1.
Based on the aforementioned loading imperfection sensitivity study, it was not expected that
such a tilt would have affected the buckling load by more than 3%. To verify this assumption,
the calibrated and recalibrated simulations with measured imperfections were re-run with the
addition of this 0.003◦ tilt. The results confirmed that the buckling load was reduced by
only 0.7%. With both measured and loading imperfections considered, the calibrated and
recalibrated post-test simulations showed agreements of -0.8% and 3% with the experiment,
respectively.

The pre-buckling shapes of the simulation and the experiment were qualitatively in agreement:
both featured nine axial half-waves, which was also the prediction of NASA SP-8007. However,
it is uncertain how well this correlation with SP-8007 would hold up in other manufacturing
and simulation situations. This was due to the possibility that an axisymmetric mandrel
imperfection, which was coincident with one of those axial half-waves, influenced the pre-
buckling shape of the experiment and the simulation.

After the peak load, high-speed digital image correlation systems captured the experimental
buckling evolution. A single dimple was first observed, which then propagated into a pattern
of two axial half-waves and seven circumferential full-waves. This shape further evolved into
a pattern of two axial half-waves and six circumferential full-waves. The simulation predicted
two simultaneous initial dimples at the same axial location as the initial experimental dimple,
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but neither was at the same circumferential location as the experiment. These evolved into a
pattern of two axial half-waves and eight circumferential full-waves, which in turn transformed
into a pattern of two axial half-waves and seven circumferential full-waves. Furthermore, the
experimental buckling event was characterized by consistently greater radial displacement
ranges than qualitatively similar stages of the simulation’s buckling evolution.

The simulation’s lack of damage modeling may have caused this discrepancy, as failure was
expected to occur upon buckling. Because the buckling behavior is dictated by a structure’s
minimum strain energy state, the immediately incipient material failure following buckling
may have changed the shell’s minimum strain energy state during buckling propagation, thus
leading to a cascading effect of qualitative differences in radial displacement magnitudes and
patterns between the experiment and simulation.

With respect to the experiment itself, the importance of having multiple measurement sys-
tems cannot be overstated. The first axial displacement measurements were from DCDTs
attached to the load frame. The stiffnesses derived from these DCDTs were not in good
agreement either simulation. However, it was found that the strains for both simulations
were qualitatively in very good agreement. This was initially found to be unusual, as the
strains may be considered a “higher order” measurement than displacements. In other words,
the displacements in the test and the simulation were prescribed, whereas structural and
material responses lie between the imposed displacement input and the surface strains de-
tected by strain gauges. Thus, it did not make sense that a higher order measurement showed
better agreement with simulations than a lower order measurement. Consequently, axial dis-
placement DIC data was used to assess if corroboration could be provided to the other data
sources and simulations. Ultimately, the stiffness data derived from the low-speed DIC sys-
tem provided excellent agreement with the that of the simulations, and further made sense
in the context of the load-strain behavior. It was later determined that the load frame de-
formed substantially during the experiment as a result of the test article’s stiffness; this was
determined to be the cause of the anomalous DCDT measurements.

Overall, NDL-1’s resultant KDF of 0.91 was much less conservative than the NASA SP-8007
KDF of 0.59, even in the presence of a slight loading imperfection. While design KDFs
differ from resultant KDFs via the inclusion of statistical reliability limits, NDL-1’s high
normalized buckling load and its excellent agreement with simulation results indicate that
measured imperfection modeling approaches could play a key role in developing updated and
potentially less conservative knockdown factors for composite launch vehicle structures of the
future.
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