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Abstract

Long acquisition times impede the routine clinical use of quantitative magnetic resonance
imaging (QMRI). gMRI quantifies meaningful tissue parameters in T1-, T2-, and PD-maps,
as opposed to conventional (qualitative) weighted MRI (wMRI), which only visualises con-
trast between tissues. Although methods exist that generate synthetic wMRI from gMRI,
the inverse problem has not been thoroughly studied yet. A method to generate gMRI from
wMRI would be beneficial as it does not change current clinical workflows and enables ret-
rospective quantitative analysis. This thesis investigates to what extent fully convolutional
networks are successful in generating gMRI from T1-weighted, T2-weighted, PD-weighted
and T2-weighted-FLAIR scans. A set of synthetic wMRI scans from 97 healthy volunteers
was split into training, validation and test sets for development of our models. We varied
model architectures, loss functions and learning rates during training, in order to find the
best performing models. These were able to predict gMRI with median errors of approxi-
mately 5% on the test set. Additionally, we determined the amount of information contained
in the input scans by training models using different combinations of the input. These results
showed that T1-weighted, T2-weighted and PD-weighted scans were the most important.
Models trained on synthetic wMRI were tested on an additional dataset of real wMRI. This
resulted in higher median errors of 27.4%, 12.0% and 8.7% for T1-, T2- and PD-maps re-
spectively. Furthermore, the same models were tested on a third dataset of synthetic tumour
scans and mainly showed errors around the tumour core. These results show that more
research is necessary in order to improve the performances of models generating gMRI to
a clinical standard.
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Introduction

All things are difficult before they are easy.
- Dr. Thomas Fuller

Without it, we would have no non-invasive way of diagnosing or monitoring

certain diseases. Magnetic resonance imaging (MRI), X-ray, and computed
tomography (CT) are only a few different types of imaging modalities that are available
for use in the current day and age. These modalities give different contrast in images
and are able to present us with complementary information in different scenario’s. CT
and X-ray imaging techniques for example, excel at visualising bone, whereas MRI
enables us to acquire an image with a higher contrast between soft tissues.

For many applications in neuro-oncology, MR imaging is the modality of choice due
to its excellent soft-tissue contrast that enables tumours to be distinguishable. Practi-
cally used MRI scans can be separated into qualitative or weighted MRI (wMRI), and
quantitative MRI (QMRI). The former produces images based on relative differences
between tissue whereas the latter quantifies tissue parameters in an absolute manner.

Most clinically acquired MR images are qualitative weighted scans. There are three
tissue-specific parameters that are used to differentiate between tissues: the T1 time,
T2 time and the proton density (PD) (explained in Chapter 2). Weightings from all three
parameters are always present in every qualitative image, although there generally is
one dominant weighting. Each of these mentioned modalities provides a different view
of the MR parameters in the body. Examples of brain images made through important
qualitative imaging modalities are shown in Figure 1.1.

M edical imaging provides us with essential information about our human bodies.

T2-FLAIR

Figure 1.1: Different types of MR images used in practice. From left to right, T1-weighted, T2-weighted, proton density-weighted
and T2-weighted-fluid attenuated inversion recovery (FLAIR) images.
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2 1. Introduction

These qualitative images are useful because they are relatively easy to acquire
and can give appropriate information for many medical applications. General acqui-
sition times of such a brain image fall between 1-3 minutes (1). However, besides
tissue-specific parameters there are also system parameters that influence the final
image. As a result, qualitative images only visualise differences between tissues,
i.e. they visualise tissue contrast. Qualitative images with a large contrast between
tissues usually give enough information to detect and preliminary diagnose various
conditions such as tumours and lesions. However, the problem is that this relative
image nature can lead to large signal differences between images of the same patient
in different scanners or imaging centres (2). This makes it difficult for radiologists to
quantitatively compare images and results, in addition to making it complicated to find
subtle pathological differences between subjects, or for the same subject at different
time points.

To overcome these limitations, tissue-specific parameters may be quantified. These
parameters do not change for a healthy individual (disregarding ageing) and have
shown diagnostic value in preliminary studies (3; 4).

gMRI quantifies the tissue-specific parameters that cause the contrast in wMRI.
In this way, images can be acquired independent of system parameters, leading to
smaller differences for images on a different scanner or at different time points (5; 6)
(These errors mainly still occur due to differences in scanners from different vendors,
or versions of analysis software). As a result, gMRI potentially enables us to capture
small pathological differences between multiple scans of the same patient (Figure
1.2). In this way, tracking the development of tumours may become easier and more
consistent. Currently, promising results have been found regarding the difference in
T1 and T2 values for malignant and benign tumours (4).

Conventional gMRI methods quantify the tissue-specific parameters by making use
of multiple qualitative images. The main downside of acquiring gMRI in this way is a
longer acquisition time. Many methods are studied in order to acquire qMRI maps
quicker (7-9) or simultaneously for multiple parameters (10; 11). Current acquisition
times are around 5-7.5 minutes to gather multiple quantitative maps (12; 13). As such,
these methods are slower than qualitative acquisition methods.

To get gMRI in clinical practice scanning times must be at least as quick as wMRI
acquisition, also examples should be established in which gMRI is undeniably more
beneficial for the patient. Accordingly, a way of generating gMRI from already present
wMRI could have extraordinary potential. gMRI studies would benefit from the signif-

Base scan Follow-up Follow-up Diagnosis

Figure 1.2: Rationale behind quantitative imaging. Multiple visualisations of longitudinal gMRI scans are shown (left). A devel-
oping tumour or lesion would become better detectable in these images over time. Similarly, the intensities of the pathological
voxels would change significantly over time (right). A diagnosis could be made when a certain diagnostic threshold (dotted line)
were to be exceeded.

Voxel intensity




1.1. Contributions 3

icantly quicker acquisition, and quantitative maps can also be generated retrospec-
tively from studies where qualitative data was already present in order to enlarge the
pool of data that can be used for research.

Deep Learning (DL) is a field in which complex image-related problems are solved.
One such way is through image-to-image translation, where MRI scans can be trans-
lated into CT scans (14—16), or where one type of MRI scan can be translated into
another type (17; 18). This has served as inspiration for our study and others, as al-
ready, promising preliminary results for gMRI generation from wMRI have been shown
by Wu et al. (19) and Moya-Saez et al. (20).

This thesis addresses the problem of generating quantitative MRI from different
conventional qualitative MRI scans (T1-weighted, T2-weighted, PD-weighted and T2-
weighted-FLAIR) using DL and employs methodical approaches to find the best per-
forming models to do so.

1.1. Contributions

The contributions of this project are fourfold. Firstly, by studying gMRI generation from
synthetic wMRI, we added information to the small scientific literature. Secondly, we
investigated the importance of the different wMRI scans for the generation of gMRI.
Thirdly, we used synthetic tumour scans to capture the generalisability of our model on
pathological scans. Finally, we studied the ability of our method to work in a real-life
environment by using real clinical scans.

1.2. Outline

This thesis first goes into the technical background on image formation using MRI, and
image processing using artificial intelligence in Chapter 2. In Chapter 3, we will present
the methods of our research by explaining network architectures and the incentive
behind our experiments. Chapter 4 shows the results of our study and quantifies the
performance of our models. Finally, we discuss our results and their impact in Chapter
5.






A Background on MRI and Al

n this background chapter we explain important information about the acquisition
I and analysis of MR images. Section 2.1 describes MRI and gMRI, while Section 2.2

explains DL methods used to analyse images. Ultimately, Section 2.3 concludes
by discussing the state of the art in gMRI generation from wMRI.

2.1. Magnetic Resonance Imaging

Magnetic resonance imaging originated in the last century. What started as purely
experimental physics gradually turned into an application that would be paramount for
healthcare in the years to come. Both Bloch and Purcell laid the basis when observing
resonance signals from atomic nuclei immersed in a magnetic field (21; 22). From here
it took until 1977 before this knowledge was used by Damadian to produce the first
working MRI machine (23). But how do these machines actually work? In this section
we will describe the mechanisms behind spin relaxation in the body and the formation
of images through an MRI scanner.

2.1.1. Spin Relaxation

An MRI scanner uses the magnetic behaviour of particles in our body to make images.
Since hydrogen (H,), stored in water, is the most abundant particle and allows for easy
manipulation of its magnetic moment, it is useful for imaging purposes.

When an H, proton is present in a strong magnetic field, its spin will align along the
direction of this field. Spin is a quantum mechanical property that can be perceived
as a vector signifying the magnetic moment of the particle. In short, the proton be-
haves as a magnet. When looking at many spins, we sum all their magnetic moments
together and talk about the net magnetization vector. When aligned along a strong
magnetic field (BO-field), the net magnetization vector is in equilibrium. However this
equilibrium can be disturbed. A second, weaker magnetic field (B1-field), oriented per-
pendicular to the main field, can be applied momentarily to the system in the form of
a radiofrequency (RF) pulse. By doing this, the orientation of all the spins (and there-
fore the net magnetization vector) changes, but eventually falls back (or relaxes) to
its original alignment (Figure 2.1). The time in which this relaxation happens is mainly
determined by the type of tissue that the spins are in but also depends on the strength
of the magnetic field. Two types of spin relaxation exist as the used magnetic fields
are present in two directions. T1-relaxation (spin-lattice relaxation) is determined as

5



6 2. A Background on MRI and Al

Equilibrium After RF pulse Later

e © o

Figure 2.1: Spin relaxation. A patientis shown in a MRI scanner with the longitudinal (blue) and transverse (green) axis indicated
(left). The evolution of the spin over time is shown for a single proton (right). Initially it will be aligned along the main magnetic
field but this will change due to the RF pulse. Afterwards the magnetisation will fall back to equilibrium again and align as before.
This relaxation process happens at different speeds in different tissues.

A B

Mo ) Mo
/" shortT1

Long T1 Long T2

Magnetisation (Mz)
Magnetisation (Myy)

\\\ Short T2

0 2 a4 6 8 10 0.0 0.2 04 06 0.8 10
Time (seconds) Time (seconds)

Figure 2.2: T1 and T2 relaxation. A: lllustration showing the differences in T1 relaxation for different tissues with a long and
short T1 constant. B: lllustration showing the differences in T2 relaxation for different tissues with a long and short T2 constant.

the time it takes magnetisation in the longitudinal plane to return to equilibrium. T2-
relaxation (spin-spin relaxation) on the other hand, is determined as the time it takes
magnetisation to be completely removed from the transverse plane. The time it takes
magnetisation in the longitudinal plane to return to equilibrium is not equal to the time
it takes magnetisation to be completely removed from the transverse plane.

Relaxation times for both processes differ for various tissues, making it possible
to differentiate tissues by comparing relaxation times (Figure 2.2). The number of
protons in a unit amount of tissue, or the proton density (PD), also enables us to
differentiate between tissues. These three parameters (T1, T2, and PD) are tissue-
specific parameters, since they are related to the type of tissue.

2.1.2. Forming an Image

To form an image, we can measure the amount of magnetisation that is present in
the transverse plane. In order to also capture T1 effects, RF pulses can be used to
flip the magnetisation again to the transverse plane. As the tissue-specific parame-
ters influence the magnitude of this magnetisation, different tissues will give rise to
a different signal. If we transform these magnetisation amounts into pixel intensities,
a 2D image of a slice of our body is obtained where different tissues have different
intensities. When we repeat this process for multiple slices we can reconstruct a 3D
volume of the imaged part of the body.

In general, the signal in the transverse plane will be affected by the T1, T2, and
the PD of the tissue. Their combined effects do not give us a strong signal contrast
between tissues. However, there are multiple methods to influence the signal that is
measured in order to modify the contrast between tissues. As a result, dedicated tech-
niques have been devised to acquire signals that are mainly dependent on one tissue-
specific parameter. Nevertheless, these methods also introduce imaging-specific (or
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TE

Echo

- - B

P »
<« >

TR

Figure 2.3: Spin echo pulse sequence. A 90° RF pulse is used to change the alignment of the magnetisation. Additionally,
the 180° pulse counters signal dephasing. An echo with high signal magnitude arises exactly at time TE. The time in between
consecutive 90° RF pulses is the TR.

acquisition) parameters that influence the signal that we measure. In this chapter, we
will focus on the acquisition of a T1-weighted (T1w) image and therefore explain the
spin echo (SE) and inversion recovery (IR) sequences.

Spin Echo
The SE is the most basic way of acquiring an MRI image (24). An SE consists of the
previously mentioned 90° RF pulse with an additional 180° pulse some time later (Fig-
ure 2.3). Spins dephase during regular spin relaxation because of irregularities in the
strength of the magnetic field and spin-spin interactions. Especially the former results
in a faster signal decay over time, and therefore a lower signal and lower tissue con-
trast that is detectable. The 180° pulse reverses these effects, enabling an echo to be
measured. The time between RF pulses, and therefore the amount of magnetisation
that is recovered or realigned, is crucial for the appearance of the final image. The
time in between the initial RF pulse and the echo is the echo time (TE) and the time
in between consecutive 90° RF pulses is the repetition time (TR). The TE and TR are
imaging-specific parameters that control the magnitude of the signal that we detect
and therefore the contrast visible in an image.

The actual signal that we detect in qualitative MRI is thus dependent on both tissue-
specific and imaging-specific parameters. This relation follows,

S = PDeCTE/T2 (1 — -TR/TD)) (2.1)
where a T1 weighting is acquired by employing a short TE and TR.
Inversion Recovery
An SE sequence can thus be used to acquire a T1w MRI. However, more often a

different method is used, namely the IR sequence (25). This method adds an addi-
tional pulse before a conventional SE (Figure 2.4). This additional pulse inverts the

Tl TE

» &
> <€ »

H LM/\WWAM
AN

TR

A

<
<

v

Figure 2.4: Inversion recovery. Due to the extra inversion pulse, the magnetisation starts to recover governed by T1 effects.
After a certain Tl, a conventional spin echo is used to acquire image signals.



8 2. A Background on MRI and Al

magnetisation by 180°, flipping it from the positive longitudinal axis to the negative lon-
gitudinal axis. The IR sequence is particularly useful for T1-weighting as the inversion
pulse results in recovery of the magnetisation over a larger signal range compared to
an SE, which is governed by the T1. As a result, IR sequences lead to better tissue
contrast than regular SE sequences (26). The addition of an extra pulse brings the
introduction of an additional imaging-specific parameter with it. This parameter, the
inversion time (Tl), is the time between the inversion pulse and the 90° pulse of the
SE.

When taking the Tl into account, the signal evolution from Equation 2.1 changes to

S = PDeCTE/T)(1 — 26T 4 o(-TR/TD) (2.2)

2.1.3. Quantitative MRI

As mentioned in the previous chapter, gqMRI maps are made using multiple conven-
tional MRI scans. There are a multitude of methods for acquiring these maps. These
methods either quantify one relaxation parameter or multiple at once. By doing so, the
actual underlying tissue-specific constants are found and the influences of imaging-
specific parameters on the image are removed. This leads to images that are more
reproducible and leave less room for ambiguities.

In T1-mapping for example, the relaxation curve gets sampled by doing measure-
ments at multiple points in time (Figure 2.5). By fitting an exponential function to these
data points, the underlying T1 time can be found. The use of multiple images is also
performed in T2- and PD-mapping. The possibility of visualising solely tissue-specific
parameters makes it easier to evaluate the scans and compare results to other pa-
tients or institutes.

2.1.4. Synthetic MRI

The quantification of tissue-specific parameters enables us to do more than just con-
struct T1-, T2- and PD-maps. When we have values for T1, T2 and PD, we can plug
these into equations 2.1 & 2.2 to construct wMRI images (27). Additionally we have
to decide on imaging-specific parameters to use (values for TE, TR and TI). The re-
sulting images are not exactly the same as conventional wMRI, but they simulate it.
Such images are called synthetic MRI. Synthetic wMRI images have shown to reach

Mo

Magnetisation (Mz)
(]
N
\
\
\
\
\
\
\
\
\
\
Ay
\
\

Time (seconds)

Figure 2.5: Sampling the T1 decay curve. MRI scans (blue dots) need to be acquired at different time points to collect enough
information to find the underlying relaxation curves (dotted line) and subsequently the tissue parameter for every voxel (in this
case the T1 time).
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a similar diagnostic value as real wMRI images, but the contrast and quality of the
image can still differ (28; 29). This is mainly due to the fact that synthetic images do
not take magnetic field behaviour into account .

2.2. Artificial Intelligence

After acquisition, medical images, such as MRI scans, need to be interpreted correctly
to detect pathologies or assess an individual's health. Radiologists are trained to do
exactly this. To aid radiologists, artificial intelligence (Al) solutions are studied more
and more (30). Al aims to emulate cognitive behaviour in computers to achieve sim-
ilar or better performances than humans on a variety of tasks. Deep learning (DL) is
the most recent and widespread method for doing this. DL employs computer models
or 'neural networks’ which are inspired by the human brain and try to actively learn
associations between an input and the desired output by training and optimising on
large amounts of data. These networks learn by means of a loss function of which
the output signifies to what extent the model is making accurate predictions. The loss
is iteratively minimised by tweaking the weights the model gives to the input and the
intermediate outputs. Eventually, this aims to produce a model that makes correct
predictions. Loss functions are mainly constructed by looking at the differences be-
tween the predicted and actual outcomes. In image based solutions for example, loss
functions are used based on the difference between pixel values.

Two DL methods that are important for image translation problems are fully convo-
lutional networks (FCNs) and generative adversarial networks (GANs). We present
these concepts in the following sections as an introduction to the subsequent chapters.
Additionally, the attention mechanism, a method that can improve model performance,
is explained.

2.2.1. Fully Convolutional Networks

Convolutional neural networks (CNNs) are widely studied for image analysis. CNNs
take an image as input and converge to a single value. This value can signify a binary
prediction made from the image (e.g. sick or healthy), a prediction of a certain clas-
sification of the image (e.g. car, boat or bicycle) or the actual prediction of a certain
value of interest (e.g. distance, length or age). In order to do this, CNNs make use
of a central concept in DL, convolution. This aims to extract essential information and
features from the input image. Convolution is usually followed by a downscaling of
the image in order to make the output focused on smaller and smaller image details.
CNNs additionally use dense layers that ensure that the output prediction is a single
value. FCNs are a subclass of CNNs and also make use of convolution. However,

=

Figure 2.6: The process of convolution. Multiple pixels in the inputimage get combined to form one output pixel (left). Transposed
convolution performs a convolution to end up with an output with the same dimensions as before (right). Here the input image is
padded with zero intensity voxels for matching dimensions.
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Figure 2.7: U-Net architecture. The input image is downsampled iteratively before being iteratively upsampled to its original
size. Long connections between the upsampling and downsampling paths (grey) enable the network to recover information lost
during downsampling. Image reproduced from Ronneberger et al. (31)
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Figure 2.8: The building block of a ResNet. The input, x, first goes through consecutive convolutional layers to produce the
output, F(x). Additionally, the original input, x, is added to the output. Image reproduced from He et al. (32).

as the name implies, FCNs are ’fully convolutional’, i.e. they only make use of con-
volutional layers. The benefit of this is that the outputs can also be an image. FCNs
are therefore often used for segmentation and translation tasks. When using FCNs,
we require to end up with output images of the same size as the input. Therefore, a
second mechanism is used to scale up images, which is called transposed convolu-
tion (or deconvolution). In this type of calculation, zero valued pixels are added as
padding to increase the size of the input. From there, a normal convolution operation
will result in an output with a larger size than the original input. Visualisations of both
calculations are shown in Figure 2.6.

Different types of FCNs exist, of which the U-Net model is one of the most well
known (31). This model initially downscales an image to identify smaller features
before transforming the image back to its original shape (Figure 2.7). Simultaneously,
information is extracted during the downscaling path and introduced in the upscaling
path through long ’skip connections’. These connections skip multiple layers. In this
way, information that has been lost during downsampling can still be recovered.

Anotherimportant architecture is the ResNet by He et al. (32). This model also uses
extra skip connections between layers that cause the high performance of the model.
These skip connections only skip a single layer (Figure 2.8). Due to these connections,
the model can choose to skip the output of a certain layer and instead continue with the
output of the previous layer, i.e. performing an identity mapping. As He et al. showed,
this is beneficial when bigger networks are used, as they prevent such a network from
learning redundant information using the extra layers and parameters it has.

The main difference between the connections in a U-Net and the skip connections
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Figure 2.9: Basic GAN architecture. Both the generator and discriminator networks do not have a fixed architecture. The
calculated loss influences both the generator and discriminator.

in a ResNet is that ResNet’s skip connections are designed to only skip one or two
layers, whereas the connections in a U-Net traverse over many layers.

2.2.2. Generative Adversarial Networks

GANSs were first introduced by Goodfellow et al. (33) as a way to generate images
similar to popular computer vision datasets (e.g. handwritten digits and faces). In the
hope of achieving better results, GANs do not use one network, but two networks: a
generator and a discriminator. Both these networks have opposing goals and compete
against each other, enhancing their performance. The generator generates images
from the input and the discriminator tries to distinguish the generated images from real
images. As opposed to conventional techniques, the loss does not depend on differ-
ences between the images, but it depends solely on the output of the discriminator,
i.e. to what degree the generated images are indistinguishable from the real images.
As both networks optimise, the aim is that the generated images become more and
more similar to the real images until at a certain point in time, the discriminator can
not distinguish generated from real anymore.

The generator and discriminator in a GAN can essentially be any type of neural
network. U-Net- and ResNet-like models are often used as generators, whereas CNN-
based models are regularly used as discriminators. A basic visualisation of a GAN that
generates multiple images can be seen in Figure 2.9.

A relevant GAN model is the ’pix2pix’ model by Isola et al. (34). This model uses
corresponding (paired) input and output images to learn the mapping between the
two.

2.2.3. Attention
A neural network effectively has to learn which parts of the input it should give a high
importance to and in what way it should combine them. To help a network with both
goals, attention was introduced. Attention is a mechanism by which a neural network
can learn the importance of certain parts of the input, in order to arrive at the cor-
rect output. Attention is very popular in language-based tasks (35; 36), but has also
branched out into image-based tasks (37).

A special subclassification of attention, self-attention, uses only the input data in
order to determine important regions in the data. This technique can be used to im-
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prove the modelling of relationships between spatial regions in the image. Utilising
these relationships more effectively can improve model performance in image clas-
sification, segmentation and synthesis. As a result, self-attention has been used in
multiple models that generate images (19; 38), where special attention goes to Wang
et al. (39) and Oktay et al. (40) as they implemented self-attention in U-Net models.

Self-attention in image-based networks is calculated by a combination of compu-
tations that extract meaningful relations from the input data. The implementation of
Zhang et al. (38) calculates attention similar to Vaswani et al. (36). Here, the input is
used to calculate the importance of itself. The input is transformed into three feature
spaces f(x), g(x) and h(x) by an additional convolution operation. The attention map
is then calculated as

eXP S;;

ﬁj,i = (2-3)

ZN
i=1 EXP S;;

where s;; = f(x;)"g(x;). This attention map is then multiplied by h(x) and added to
the original input.

Oktay et al. (40) use a slightly different approach, more suited for U-Nets, as here
f(x) and g(x) are the feature spaces of the input of the current layer and the output
of the skip connection, respectively. These are then added together, transformed
through a convolution and multiplied by the original input of the current layer. As a
result, information extracted from a coarser scale is used to focus on salient features.

2.3. Current State of the Art

As mentioned in Chapter 1, models exist that tackle tasks similar to generating gMRI.
These models are mainly focused on CT generation from MRI and vice versa. But
other interesting research has been done on synthesising T2-weighted (T2w) images
from T1w images (18) and contrast enhanced T1w images from regular T1w images
(39). Additionally, a great inspiration for our project was the knowledge available on
the generation of a missing MRI image out of a standard set of images (17; 41; 42).

When we focus on gMRI generation methods, Wu et al. (19) stands out as they
generated accurate knee qMRI maps from weighted MRI scans. Interestingly, they
succeeded in generating T1-maps directly from a T1w image. Showing that a single
weighted images may already contain sufficient information for the generation of a
quantitative map. The model used is a U-Net with additional self-attention layers.

Additionally, Moya-Séaez et al. (20) came with more evidence that the accurate
generation of brain gMRI maps from qualitative images is possible. They generated
synthetic weighted scans from gMRI and used these to retrieve the original gMRI maps
again. The model they used had a U-Net-inspired encoder-decoder architecture (43)
and only used synthetic T1w and T2w images as input in order to generate T1-, T2-
and PD-maps.

Other studies either mainly focus on generating qMRI from raw (k-space) MRI sig-
nals (44), or try to reduce the amount of weighted scans necessary for conventional
gMRI acquisitions (45).

Our research aims to broaden the gMRI generation literature and to add more
knowledge to be used in further research. Especially by evaluating the performance
of models on real brain scans and scans of brain tumours.
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2.3.1. Comparing GANs and FCNs for qMRI synthesis

GANs and FCNs are both used to solve image translation problems. However, the
gMRl translation methods that explain their methods all use an FCN (19; 20; 44), which
is related to the goal of generating gMRI. For the generation of weighted MR images, it
is difficult to define a loss function using an FCN. Absolute differences between voxels
do not have a considerable meaning since the images are constructed using relative
differences. It is therefore hard for a network that learns from absolute differences to
make consistent relative predictions. In this scenario, GANs are easier to implement
as the discriminator takes care of optimising the performance and no specific loss
function has to be devised. For qMRI generation on the other hand, the image values
are quantitative, meaning they should be similar on every image. The usage of an
FCN is therefore much easier as absolute differences and losses can be employed to
enable the model to learn.
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generation problem. In this chapter, we initially describe our approach and the

differences between conventional approaches (Section 3.1). Afterwards, we
describe the used data (Section 3.2 & 3.3) and deep learning models (Section 3.4 &
3.5) before presenting the motivation behind different experiments in Section 3.6. All
experiments were programmed in Python and used the PrognosAls software package
(version 0.3.5) (46).

This project proposes computational methods based on FCNs to solve the gMRI

3.1. Approach Compared to Conventional Methods

Conventional gMRI generation approaches use multiple weighted scans per tissue-
specific parameter in order to arrive at a quantitative map, e.g. multiple T1w scans
for a T1-map. Our approach only uses one scan per tissue-specific parameter and
tries to use differently weighted scans to obtain the same amount of information. Fig-
ure 3.1 shows the difference in our approach compared to the general approach in
conventional methods of generating gqMRI. Our approach is easier for the patient and
clinic, and has multiple benefits for the clinical acceptance of gMRI which have been
discussed in Section 1.

Noteworthy, our approach is somewhat similar to approaches that aim to generate
multiple qMRI maps simultaneously, for example, MR fingerprinting. If we disregard
the small differences in acquisition time, there are still benefits to generating gqMRI
from wMRI. One benéefit is that in the end real wMRI scans are present (as opposed
to synthetic scans). Secondly, acquiring wMRI is currently still the standard workflow
in clinics. When quantitative maps are acquired after wMRI acquisition, the patient
spends extra time in the MRI scanner, which is often not considered as pleasant.

3.2. Data Acquisition

3.2.1. Synthetic Healthy Volunteer Data

A cohort of brain MRI's from 97 healthy volunteers was acquired under the HARPS
(Harmonization of Resonators based on Physiological Signature) project. For each in-
dividual, gMRI maps were acquired and synthetic wMRI images were calculated dur-
ing post-processing (Figure 3.2). Quantitative maps were obtained using a multiple-
dynamic multiple-echo MR sequence. Subsequently, SyMRI (Synthetic MR, Sweden,
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Figure 3.2: Visualisation of the data acquisition process. Healthy volunteers were scanned in the MRI scanner. gMRI maps
were acquired directly (middle) and the corresponding qualitative images were synthetically calculated at a later stage (right).
Tweaking of the imaging-specific parameters determines the contrast visible on these qualitative image.
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Table 3.1: MRI imaging-specific parameters for synthetic healthy volunteer data. Parameter values are in milliseconds (ms).

MRI type TR TE TI
T1-weighted 500 10 N/A
T2-weighted 4500 100 N/A
T2-weighted-FLAIR 15000 100 3000
PD-weighted 8000 10 N/A

Table 3.2: MRI imaging-specific parameters for real healthy volunteer data. Parameter values are in milliseconds (ms). Small
differences between real and synthetic acquisitions arise due to the nature of the software.

Data MRI type TR TE TI

Real T1-weighted 750 9 N/A
T2-weighted 7288 104 N/A
T2-weighted-FLAIR 8500 117 2418
PD-weighted 3851 9 N/A

Synthetic T1-weighted 750 9 N/A
T2-weighted 7280 104 N/A
T2-weighted-FLAIR 8503 116 2418
PD-weighted 3860 9 N/A

version 0.45.27) software was used to generate synthetic qualitative images. imaging-
specific parameters for all synthetic scans are shown in Table 3.1.

Images were all made on the same 1.5 T MRI system (Signa Artist, GE Healthcare,
Milwaukee, WI, USA). All images had a voxel resolution of 0.61 x 0.61 x 5 mm3.

3.2.2. Tumour Patient Data

Part of the data from the RIGEL (Radiotherapy in IDH mutated Glioma: Evaluation
of Late outcomes) study (Nederlands Trial Register, NL7993) was used as a sec-
ond dataset. The used data consisted of scans from 7 glioma patients which were
scanned in the exact same manner as the dataset of healthy volunteers. The data
of each patient consisted of quantitative maps and synthetic qualitative images that
were acquired with the same parameters as mentioned in Table 3.1.

3.2.3. Real Healthy Volunteer Data

An additional dataset was acquired from two healty volunteers under the HARPS
project. For each volunteer, we acquired real wMRI scans and calculated two sets
of synthetic WMRI scans. The two sets of synthetic scans differed in the choice of
imaging-specific parameters. One set had the same parameters as the real scans,
while the other set had the same parameters as Table 3.1. The imaging-specific pa-
rameters for the real scans and synthetic scans with the same parameters are shown
in Table 3.2. For the real scans, Phased array Uniformity Enhancement (PURE) was
used in order to do a bias field correction.

3.3. Data Processing
The raw DICOM data files were first converted to the NIfTI filetype using decm2niix
(version 1.0.20210317) for easier analysis. Subsequently, brain masks were gener-
ated using the HD-BET software (47). For consistency, the mask of the PD-weighted
MRI was used to mask all scans for every subject.

For the scans with tumours, we created tumour masks using an algorithm by Van
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der Voort et al. (48). We used synthetically generated T2w, PD-weighted (PDw) and
T2-weighted-FLAIR (T2w-FLAIR) scans as input to generate tumour masks. The al-
gorithm also expected a post-contrast T1w scan but as this was not available for our
dataset, a pre-contrast T1w scan was substituted in its place. During evaluation, we
evaluated the model on the full brain and on the tumour mask.

After masking, all scans were cropped to the dimensions of the largest brain mask
in the dataset. As a result, we ended up with scans of the same size with a minimal
amount of background pixels.

Masked and cropped weighted MR images were normalised using Prognosais. We
rescaled the image intensity range from 0.01 to 1. For 2D models, inputs were made
by splitting the processed 3D NIfTI files per slice and removing slices where the brain
masks had a largest connected area of less than 400 mm?. This essentially discarded
empty slices and slices containing tiny segmentations from the data (A threshold of
400 mm? was chosen to ensure that every image contained a reasonable amount of
brain tissue). This also allowed every 2D slice to be a data instance for the model.
Figure A.1 shows processed T1w slices for an example patient.

For 3D models, after doing the same discarding step, not all processed 3D images
had the exact same amount of slices. Images with less slices than the image with the
maximum number of slices were padded with zeros to ensure they had the same size.
In this fashion, for the dataset of healthy volunteers, we arrived at 97 data instances
for 3D models, of which 74 were used for training, 14 were used for validation and 9
were used for testing. For 2D models, scans were divided per patient, which lead to
2607 data instances, of which 1743 were used for training, 653 were used for valida-
tion and 211 were used for testing. All scans of the same patient were either in the
train, validation, or test set. All other datasets were preprocessed in a similar fashion,
resulting in 370 2D slices for the synthetic weighted scans of brain tumours and 60
2D slices for the real weighted scans.

FSL-FAST (FMRIB’s Automated Segmentation Tool, version 5.0) (49) was used
in order to segment white matter, gray matter, and cerebrospinal fluid to be used in
evaluation.

3.4. Model Architectures

Multiple model architectures were studied. We focused on FCNs as these are easy to
implement and have shown to lead to satisfactory results in gMRI generation (20; 44).
All models used a dense layer as the final prediction layer, shaping our problem into
a regression problem.

3.4.1. Regular U-Net

The U-Net by Ronneberger et al. (31), is a model architecture that has shown to
perform well on many image-related tasks. More information about the U-Net can be
found in Section 2.2.1. Our U-Net model is shown in Figure 3.3.

3.4.2. U-ResNet

A second model architecture we investigated was a U-Net model with additional resid-
ual layers, as made famous in He et al. (50). This can result in more accurate pre-
dictions as the model is able to learn identity mappings (Section 2.2.1). Our ResNet
model is shown in Figure 3.4.
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Figure 3.3: U-Net architecture similar to Ronneberger et al. (31). The model consists of downsampling and upsampling paths
with added skip connections. Dropout was used after the convolutional layers in the downsampling path and before convolutional
layers in the upsampling path.
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Figure 3.4: U-ResNet architecture. U-Net with additional residual layers as used in He et al. (50). Dropout was used after the
convolutional layers in the downsampling path and before convolutional layers in the upsampling path.
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Figure 3.5: U-AttenNet architecture. U-Net architecture with attention gating. The attention gate was inspired by Oktay et al.
(40) and Wang et al. (39). Dropout was used after the convolutional layers in the downsampling path and before convolutional
layers in the upsampling path.

3.4.3. U-AttenNet

A third model architecture we investigated was a similar U-Net model with an additional
attention gate. We took inspiration from Oktay et al. (40) and Wang et al. (39) in
order to construct a model with a single additive attention gate. This can achieve
improved performance due to the fact that the attention gate aims to force the network
to use only relevant information from the skip connection (Section 2.2.3). This then
makes it easier for the model to learn the accurate representation of the input-output
relationship and predict correct outputs. Our attention model is shown in Figure 3.5.
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3.5. Model Implementation

3.5.1. Loss Functions
Multiple loss functions were deemed to be promising for accurate gqMRI generation.
The mean squared error (MSE) and the mean absolute error (MAE) are given by

N
1
MSE = = > (0= 9)? (3.1)

1 N
MAE =+ Z 15 = 9 (3.2)

where N is the amount of voxels in the sample, y; is the ground-truth value in voxel i,
and y; is the predicted value in voxel i. In addition, a combination of both MSE and
MAE was used. To broaden the amount of loss functions, normalised versions of the
three previous loss functions were also studied. As an example, the normalised MAE
(nMAE) is given by,

N
1 |(vi — 90l
nMAE = - Z . (3.3)

All loss functions were implemented as ‘'masked’ loss functions, meaning that only
the part of the image representing the brain was used for the loss calculations. Errors
on background pixels were disregarded since these did not contribute to the model
learning meaningful information.

3.5.2. Evaluation

Evaluation of the model predictions was done by using the peak signal-to-noise ratio

(PSNR), root-mean-square error (RMSE) and the structural similarity index (SSIM).
The PSNR is given by,

Irznax
PSNR =10log,, (MSE) (3.4)
where I,,, is the maximum voxel value in the sample. Generally, a higher PSNR
means a higher quality of the generated image.
The RMSE is given by,
RMSE = VMSE (3.5)

The PSNR and RMSE both focus on the differences in voxel values. Distinctively,
the SSIM tries to decompose the luminance, contrast, and structure in an image.
These get compared between two images (51). In this fashion, the SSIM tries to
quantify differences between images in a way a human would perceive them. The
SSIM is given by,

(Zlixlly + C1)(20xy + C3)
Uz +u3 + C)(0f + 05+ Cy)

SSIM(x,y) = (3.6)

where x and y are the two images to be compared, u, and p, are the mean voxel
intensities of x and y, o7 and o are the variances of x and y, and o, is the covariance
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of x and y. C, and C, are small constants that are added in order to account for
situations where 7 + 1, or o7 + o, are very close to zero.

The PSNR and RMSE were customised to only take into account the voxel values
inside the brain masks of the patient and not take into account the background pixels.
Due to the difficulty in customising the SSIM algorithm for this purpose, we decided to
use the whole image (brain and background) for the calculation of the SSIM.

3.6. Experimental Approaches

Our research was developed to investigate the feasibility of gMRI generation using
DL. Since this is an elusive problem, initial experiments need to take place in a con-
trolled environment where the chances of success are highest. Afterwards, if the initial
experiments are positive, we can expose our model to more real-world-like situations
to get an estimate of the actual performance and try to understand the workings of the
model.

Considering this, we proposed the following experiments;

1. Optimisation

In a controlled environment (using synthetic scans), multiple model architectures
and loss functions will be explored to find the model that is best at generating
gMRI. Each experiment will be repeated three times and the best result will be
used to compare with other models.

2. Gaining Knowledge

When we have a well-performing model, we can start to examine the fundamen-
tals that our approach is based on. Experiments are:

* Investigating the amount of information in the input images by studying the
performance when reducing inputs. Here we repeat every experiment five
times.

* Investigating if there is a difference in performance between 2D and 3D mod-
els.

3. Real-world Situations In the clinic, healthy volunteers are not very important,
but the attention needs to go to people with diseases or conditions. Patients with
brain tumours are especially valuable to identify. As we only have access to a
small amount of scans of tumour patients, we have decided to use these scans
only for the testing, and not the training, of the model. For the training of the
model we use the synthetic scans of healthy volunteers.

Additionally, the perfect magnetic field that is used in the calculations of syn-
thetic scans is not always valid. On real MRI scanners, imperfections in the mag-
netic field lead to slightly different weighted images. Validating a gMRI generation
method on actual acquired weighted MRI scans is therefore vital. As we also only
have access to a small amount of real wMRI scans, we will follow a similar ap-
proach as the previous experiments. Therefore, we train our models on synthetic
scans of healthy volunteers and test them on real scans of healthy volunteers.
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sequent sections, we show the best performing models, how much information is

contained in the input images by training models with different combinations of
wMRI scans, and to what extent there is a difference between models using 2D and
3D inputs. Finally, Section 4.4 & 4.5 show the performances of the best models on
synthetic wMRI scans of tumour patients and real wMRI scans, respectively.

I n this chapter we present the findings of the different experiments. In the sub-

4.1. Best Performing Models and Parameters

In initial experiments we constructed models that used synthetic T1w, T2w, PDw and
T2w-FLAIR images as input, and only predicted a T1-map as output. While doing so,
we varied the model architecture, loss function and the learning rate. All models were
trained with a batch size of 8 for 75 epochs, which took roughly 2,5 hours on a RTX
2080 Ti GPU.

4.1.1. Single-Output Models

Table 4.1 shows the results for the top 10 models that generated a T1-map. Here we
see that the U-AttenNet performed best, if accompanied by a MSE loss and a learning
rate of 0.001. The resulting RMSE was 91.6 + 32.9 ms. Comparisons of the model
prediction of the best model and the groundtruth T1-map can be seen for an example
slice in Figure 4.1. In the difference map (Figure 4.1C), it can be seen that the model

Table 4.1: Evaluation metrics for models predicting a T1-map from synthetic input scans. The 10 best performing models are
shown with their loss functions and learning rates, together with the evaluation metrics on the test set. Best model indicated in
bold. Arrows indicate if a metric is desired to be high or low.

Model Loss LR PSNR (dB)T  SSIM1T RMSE (ms)
U-Net MAE 0.01  26.667 £2.905 0.982+0.012 210.928 +77.146
U-Net MAE 0.001 28.079+3.351 0.989+0.008 183.413 +81.031
U-Net MAE 0.0001 23.103+2.914 0.984+0.010 319.361 + 127.254
U-Net MAE+MSE  0.0001 23.241+2.693 0.983+0.011 311.444 + 113.079
U-Net NMAE+nMSE  0.001  27.832+3.206 0.986+0.009 187.445+78.734
U-ResNet  MAE 0.01 26.855 +2.453 0.990 + 0.006 203.182 + 62.634
U-ResNet MAE+MSE  0.01  27.030+2.159 0.982+0.012 197.256 + 53.506
U-AttenNet MSE 0.001 33.837+2.598 0.996 % 0.003 91.645 * 32.863
U-AttenNet  nMAE 0.01 26.325+3.017 0.979+0.013 220.667 + 85.593
U-AttenNet  nMAE 0.001 26.326+2.902 0.983+0.011 219.701 + 80.59
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Figure 4.1: Visual performance comparison for model predicting T1-map. Difference values are cut-off at £500 ms for improved
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Figure 4.2: Boxplot of error percentages for best model generating a T1-map. The image shows the distribution of the error
percentages that we acquire after comparing the model prediction and groundtruth of all images in the test set.

overpredicts (red regions) and underpredicts (blue regions) different regions of the
T1-map. These regions seem to coincide with different tissues in the brain. Mainly
regions with high T1 values like the CSF are underpredicted while white matter is
overpredicted. These former errors are less pronounced when examining the relative
error (Figure 4.1D), due to the large T1 value of CSF.

When we use the best model to calculate the percentual error (Figure 4.1D) of
every sample in the test-set and create a boxplot showing the distribution of all error
percentages, we find that the median error of the best performing model is 3.75%
(Figure 4.2).

4.1.2. Multi-Output Models

Subsequently, we investigated models that generated all three quantitative mappings
(T1, T2 and PD) from synthetic T1w, T2w, PDw and T2w-FLAIR images, as this was
our original goal. Table 4.2 shows the performances for the best three models. The
results show that there is no single model that can achieve the best performance
for all three quantitative maps. The lowest error on the T1-map was similar to the
performance of models with only a T1-map output. We also see that the U-AttenNet
model with MAE loss and a learning rate of 0.001 seems to perform the best overall
at generating multiple quantitative maps.

Additionally, we investigated the visual performances of the models predicting mul-
tiple quantitative maps. Figure 4.3 shows the comparisons of the best overall model’s
predictions and the groundtruth quantitative maps for a representative slice.

Figure 4.4 shows the distribution of the percentual error for all samples in the test
set. Here we again see the differences between the error of different quantitative
maps for the same model.
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Table 4.2: Evaluation metrics for models predicting multiple quantitative maps from synthetic input scans. The 3 best performing
models are shown with their loss functions and learning rates, together with the evaluation metrics on the test set. Best results
indicated in bold. Arrows indicate if a metric is desired to be high or low. *PD values not in ms but in a.u.

Model Loss LR Map PSNR(dB)T  SSIM1 RMSE (ms)! |
U-Net nMAE 0.0001 T1 20.571+£2.411 0.956 £ 0.026 418.956 + 132.547
T2 22.795+3.442 0.975+0.016 27.403 +12.102
PD 28.710£3.748 0.980 £0.018 5.454 +2.800
U-AttenNet MAE 0.001 T1 32.660 £2.781 0.995+0.004 105.635 + 40.695
T2 25788 £3.011 0.973+£0.020 18.978 £7.284
PD 26.620 £2.998 0.957 +0.032 6.672+2.373
U-AttenNet MSE 0.001 T1 34.242 £2.784 0.996 £ 0.003 88.194 * 34.686
T2 20.750 £2.659 0.938 £0.040 33.528 + 11.657
PD 23192 £2.623 0.928 £0.049 9.779 +2.832
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Figure 4.3: Visual performance comparison for models predicting multiple quantitative maps. From top to bottom, T1-, T2- and
PD-map predictions. Difference values are cut-off at different values for improved visualisation. Error percentages are cut-off
at 50% for improved visualisation. A: Groundtruth quantitative map. B: Model prediction. C: Difference between prediction and
groundtruth. D: Error percentage map showing the percentual error relative to the true quantitative values.
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Figure 4.4: Boxplots of error percentages for best models generating multiple quantitative maps. The image shows the distribu-
tion of the error percentages that we acquire after comparing the model prediction and groundtruth of all images in the test set

for the three best models.



26 4. Results

4.2. Effect of Varying the Amount of Input Scans

Next, we varied the amount of input images for the best performing models of the
previous experiment. All models here were trained for 200 epochs, which took roughly
5,5 hours on a RTX 2080 Ti GPU.

4.2.1. Single-Output Models

Figure 4.5 shows the output of models predicting a T1-map, compared to the ground-
truth for an example slice. Models that did not have access to all weighted images still
show reasonable predictions, however, performances seem to get better when more
inputimages are used. We also see that different models underpredict and overpredict
the T1 values on different locations. This can be due to the different input data that
the models have, or due to a different optimisation path that the models took.

Table 4.3 gives the evaluation metrics for the same models, showing that a model
with all weighted images as input can perform better than models with less weighted
images. Nevertheless, the difference between the two best performing models is
small.
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Figure 4.5: Effect of input images on performance for the generation of a T1-map. A: Model prediction of T1-map for different
amounts of model inputs. B: Error maps showing the difference in T1 between prediction and groundtruth for different amounts
of model inputs. Error values are cut-off at 500 ms for improved visualisation. C: Error percentage maps showing the difference
in T1 between prediction and groundtruth as a percentage of the groundtruth T1 value for different combinations of model inputs.
Error percentages are cut-off at £50% for improved visualisation.

Table 4.3: Evaluation metrics of models predicting a T1-map using different inputs. Best performances are indicated in bold.
Arrows indicate if a metric is desired to be high or low.

Input PSNR(dB)T  SSIM 1 RMSE (ms)
Al 30.233+£2.693 0.992+0.005 139.376 * 51.085
Tiw, T2w, PDw  29.859 + 3.306 0.995+ 0.004 149.046 + 64.785
Tiw, T2w 23.734+2.446 0.970+0.019 290.583 + 85.656

T1w 16.049 £2.192 0.899 +0.064 699.075 + 188.851



4.2. Effect of Varying the Amount of Input Scans 27

4.2.2. Multi-Output Models
The same experiments were done for models generating multiple quantitative maps.
Figure 4.6 shows the model predictions compared to the groundtruth. Difference maps
and error percentage maps can be seen in Figures A.3 & A.4. Evaluation metrics are
shown in Table 4.4. Here we see that, again, overall model performances increase
when using more input data.

T1-T2-PD-FLAIR T1-T2-PD

Groundtruth T1

Groundtruth T2

Groundtruth PD

Figure 4.6: Effect of input images on performance for the generation of multiple quantitative maps. The figure shows model
prediction of T1-, T2-, and PD-maps for models with access to different combinations of the input data (left to right).

Table 4.4: Evaluation metrics of models predicting multiple quantitative maps using different inputs. Input images and evaluation
metrics on the test set are shown. Best results indicated in bold. Arrows indicate if a metric is desired to be high or low. 1PD

values not in ms but in a.u.

Input Map PSNR (dB) T SSIM T RMSE (ms)! |
All T1 33.385+3.338 0.996 +0.003 100.104 + 48.480
T2 20.114 £2.878 0.936 £+ 0.039 36.471 + 14.092
PD  24.243+2943 0.947 +0.038 8.834 +3.737
T1w, T2w, PDw  T1 31.146 £ 3.401 0.995+0.004 129.150 + 58.220
T2 20.261 +£2.861 0.936 +0.040 35.807 + 13.627
PD 25.196 +2.769 0.950 * 0.037 7.863 * 2.654
Tiw, T2w T1 27.074 £3.271 0.985+0.011 204.572 + 84.482
T2 21.690 £2.656 0.957 £0.025 30.051 *10.078
PD 14.959 +3.005 0.868+0.081 25.486 +8.430
T1w T1 22,208 £2.603 0.971+0.016 348.181 £ 107.922
T2 19.071 £2.709 0.939 £0.033 40.871 + 14.631
PD 22475+3.230 0.913+0.056 10.846 +3.768
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4.3. Effect of Input Dimensionality

Up until now, we have investigated the performances of models that use 2D slices as
input. The following experiments consider models that use 3D input image data. For
these models we used a batch size of 2. We trained models for 500-1000 epochs,
which took 1.5-3 days on a RTX 2080 Ti GPU. We experimented with a 3D version of
the best performing 2D model for predicting T1-maps. While doing so, we investigated
multiple learning rates in order to find the best performing model. Table 4.5 shows the
evaluation metrics of the models. From this we see that the model with the lowest
learning rate performed best.

When we compare this performance with the performance of the best 2D model, we
find very small differences (Table 4.6). The mean performance of the 2D model seems
to be slightly better, but the standard deviation of the results from the 3D models is
smaller. This could be due to the fact that we also evaluate on full 3D scans.

Similar results were also found when comparing 2D and 3D models that predicted
multiple outputs (Table A.1).

Table 4.5: Evaluation metrics for 3D models predicting a T1-map. Best performing models and evaluation metrics in bold.

Model Loss LR PSNR (dB) T SSIM 1T RMSE (ms) |

U-AttenNet MSE  0.01 10.683 +1.112 0.588 £0.106 1266.985 + 154.491
U-AttenNet MSE  0.001 9.185 + 0.907 0.524 +0.116  1501.435 + 151.328
U-AttenNet MSE 0.0001 33.475%*1.528 0.997 £0.001 92.726 * 19.181

Table 4.6: Comparison of evaluation metrics for 2D and 3D models predicting a T1-map. Best evaluation metrics shown in bold.
Arrows indicate if a metric is desired to be high or low.

Best 2D Model Best 3D model
PSNR (dB) T  33.837 £2.598 33.475 + 1.528

SSIM 1T 0.996 + 0.003 0.997 £ 0.001
RMSE (ms) ! 91.645 +32.863 92.726 + 19.181
Median Error  3.75% 4.26%

4.4. Performance on Scans with Pathologies

4.4.1. Single-Output Models

We used the best performing model from Section 4.1.1 (taking synthetic T1w, T2w,
PDw and T2w-FLAIR images as input) on the additional dataset of brain tumours to
predict T1-maps. Figure 4.7 shows a visual comparison of the model prediction and
groundtruth for a single slice. Here, we see that our model is good at predicting the
healthy tissue and the tumour core. However, around the tumour core some tissue ex-
ists where our model prediction leads to a higher error. Table 4.7 gives performance
metrics for the model performance on the whole dataset. It shows that the perfor-
mance is better when we only evaluate on the tumour. Figure 4.8 shows the distri-
bution of error percentages for the model evaluated on the full brains, healthy brains
and on the tumours. Here, minimal differences between evaluating on the healthy or
full brain, and tumour are visible.

After the experiments from Section 4.1.1, we tried to improve on the performance
of the best model generating a T1-map from synthetic scans of healthy volunteers.
We were able to train a model that reached a lower error on the test set than the low-
est error shown in Table 4.1, by training this model for a longer time. This model thus
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performed better on synthetic scans than the model used in the previous paragraph.
However, when we used this model to predict the T1-maps from the dataset of syn-
thetic scans of brain tumours, we found a larger error than we reached in Table 4.7.
Figure A.5 shows a visual comparison between the model prediction and groundtruth
T1-map for an example slice. This lack of generalisability shows that improving the
performance on the synthetic scans of healthy volunteers too much can result in over-
fitting and a worse performance on other datasets.

4.4.2. Multi-Output Models

To predict multiple quantitative maps, we used the overall best model from Section
4.1.2. Results for a single slice can be seen below in Figure 4.9. Here we see that
errors are, again, mainly present around the tumour core. The absolute and relative
errors are high for predictions made on the T2-map. Table 4.8 shows the evaluation
metrics on the full dataset. Here we see an odd behaviour of the SSIM increasing for
T1- and T2-maps when only consi