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Abstract—Average consensus algorithms are used in many
distributed systems such as distributed optimization, sensor
fusion and the control of dynamic systems. Consensus algorithms
converge through an explicit exchange of state variables. In some
cases, however, the state variables are confidential. In this paper,
a privacy-preserving asynchronous distributed average consensus
method is proposed, which decomposes the initial values into two
states; alpha states and beta states. These states are initialized
such that their sum is twice the initial value. The alpha states
are used to communicate with the other nodes, while the beta
states are used internally. Although beta states are not shared,
they are used in the update of the alpha states. Unlike differential
privacy based methods, the proposed algorithm achieves the exact
average consensus, while providing privacy to the initial values.
Compared to the synchronous state decomposition algorithm, the
convergence rate is improved without any privacy compromise.
As the variances of coupling weights become infinitely large, the
semi-honest adversary does not have any range to estimate the
initial value of the nodes given that there is at least one coupling
weight hidden from the adversary.

Index Terms—Privacy-preserving averaging, Distributed aver-
aging, State decomposition, Asynchronous averaging

I. INTRODUCTION

Consensus problems in dynamic systems have been a topic
of interest that have found usage in many research areas
allowing multiple agents to reach an agreement through local
information exchange between the agent and its neighbors [1].
Some of these research areas are sensor fusion [2], control
of swarms and flocks [3] [4] and alignment problems [5].
The traditional consensus algorithms explicitly exchange their
state variables to solve a common function. However, for some
consensus problems such as the multi-rendezvous problem [6]
or energy management in smart grids [7], the initial states
can be confidential. In the former, the agents might not want
to reveal their initial locations, while in the latter, the energy
companies might not want to reveal their individual generation
rates. The challenge to solve the consensus problem while
giving individual nodes a privacy guarantee initiated the fairly
new privacy-preserving distributed optimization research area.

II. RELATED WORK

The research directed towards solving the consensus prob-
lem while preserving the privacy of initial values can be
categorized into two approaches: cryptographic [8] [9] and
non-cryptographic methods [10] [11] [12] [13]. Most of the
cryptographic methods use homomorphic encryption [14] to

encrypt the states that are being transferred. In control and
real-time dynamic systems where processing time is limited,
cryptographic methods become infeasible due to the time the
encryption and the decryption takes. To reduce the time and
complexity, privacy-preserving non-cryptographic consensus
methods have been proposed.

Differential privacy based approaches, e.g. [10] [15], trade
accuracy for privacy. Nodes add noise to the transmitted states
and provide a differential privacy guarantee as defined in
[16] or in [17] for continuous data observations. However, as
proven by [10], differential privacy and exact consensus cannot
be achieved simultaneously. To achieve exact consensus, the
adversary should be prevented from eavesdropping on all of
the communication of the targeted node. Noise-obfuscation
methods [11] [13] use a topological constraint on the graph
and achieve exact consensus through the addition of correlated
noise to the transmitted states. As the added noise is zero-sum
and decaying in magnitude over iterations, the exact average
can be achieved. Due to this noise insertion mechanism, noise
has to be added to the transmitted states until convergence.
In [18] it is shown that achieving the exact average without
any privacy compromise is possible by perturbing the states
once, before starting the consensus process. In this paper, an
asynchronous privacy-preserving consensus average method is
proposed that extends the state decomposition approach [12]
by showing that the same convergence rate as the standard
distributed averaging methods [19] can be achieved, while
promising identical privacy guarantee.

Privacy-preserving asynchronous averaging has been in-
vestigated in [18] [20] and [21]. In [18] Shamir’s secret
sharing scheme [22] is used to hide the initial values from
the adversaries. Perfect secrecy is provided in clique-based
graphs as long as the selected clique at each iteration includes
at least two honest nodes. In [20] an additive secret sharing
scheme is proposed as a preprocessing step where the mutual
information between the processed values and the initial
values approaches zero with the increasing noise variance.
The added noise is arranged such that the exact consensus can
be achieved. The algorithm can be applied to any connected
graph given that there are at least two honest nodes. In [21]
three noise-obfuscation based methods are proposed that adds
correlated and decaying noise to the transmitted states at
each iteration. The authors analyze the rate and conditions
of convergence without quantifying the provided privacy. The
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proposed method in this work, differs from [18] and [20]
in the sense that the network does not include any channel
encryptions and the added noise is additive and multiplicative.
A combination of additive and multiplicative noise might
affect the provided privacy when the noise is sampled from
distributions with small variances. On the other hand, the
proposed method differs from [21] as the noise is added to
the system for a bounded amount of time and the provided
privacy is quantified using an information-theoretic analysis.

III. PRELIMINARIES

We represent an undirected graph G as G = (V,E) with its
node set V = {v1, v2, ..., vN} and its edge set E ⊂ V ×V . The
ith component of the vector x[k] = [x1[k], x2[k], ..., xN [k]]
represents the state of node vi at iteration k. The set of
neighbors of node vi is Ni = {vj ∈ V : (vi, vj) ∈ E}
and its cardinality is given by |Ni|. The goal is to compute
xave = 1

N

∑N
j=1 xj [0] using an asynchronous algorithm, while

hiding the initial states. In this work, we analyze the privacy
against attacks by a passive adversary and an eavesdropper.
Throughout the paper the following assumption is made.

Assumption 1: The graph is connected, undirected and there
are no channel encryptions in the network.

One way to solve the average consensus problem in an asyn-
chronous fashion is to use the randomized gossip algorithm
[19] using the iterations

xi[k + 1] = xi[k] +
1

2
(xj [k]− xi[k]) . (1)

Under Assumption 1 and using independent doubly stochastic
weight matrices [23], it is proven that the state variables
converge almost surely to xave = 1

N

∑N
j=1 xj [0].

A semi-honest adversary is defined to be a node in the
network who follows the protocol steps correctly but tries to
gain more information by collecting the data they receive. An
eavesdropper on the other hand, taps arbitrarily any commu-
nication channel. However, the eavesdropper has no access to
internal state variables that are not shared in the system.

IV. ASYNCHRONOUS STATE DECOMPOSITION

Each node decomposes its state value, say xi[0] ∈ R into
two substates xαi [0] ∈ R and xβi [0] = 2xi[0]− xαi [0] resulting
in an increase in the number of nodes from N to 2N . Notice
that these additional nodes are virtual nodes. Substate xα[k]
is used in the interaction with the other nodes, while xβ [k] is
used as an internal update. Although xβ [k] is never shared, it is
used in the evaluation of xα[k]. Using the state decomposition
approach [12], the update equations become,

xαi [k + 1] = xαi [k] +
1

3
(xαj [k]− xαi [k])+

1

3
(xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] +
1

3
(xαi [k]− xβi [k]) ,

(2)

subject to xαi [0] + xβi [0] = 2xi[0].

Fixing the coupling weights to be 1/3 limits the privacy that
can be provided. For this reason, two phases are proposed: ini-
tialization phase and the consensus phase. In the initialization
phase, the coupling weights are selected from the set of real
numbers under the condition that the sum of all state variables
does not change. Selecting the coupling weights from the set
of real numbers introduces randomness to the system that will
protect the initial values. As the sum of the state variables
does not change, the exact consensus can still be achieved.

During the consensus phase, the update equations are identi-
cal to (1). As privacy is already established in the initialization
phase, the motivation is to let the nodes reach to the average
of their state values. When vi goes through the initialization
update once with all its neighbors, it proceeds to the consensus
phase.

A. Initialization Phase

During the initialization phase, the coupling weights are
selected from the set of all real numbers. The update equations
become

xαi [k + 1] = xαi [k] + aij [k](xαj [k]− xαi [k])

+ ai,αβ [k](xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] + ai,αβ [k](xαi [k]− xβi [k]) ,

(3)

where ai,αβ [k] ∈ R and aij [k] ∈ R. Node vi that will update
its state variable is selected with equal probability pi = 1/N .
Node vi selects a neighboring node vj with probability pj|i =

1
|Ni\Si| where Si is the set of neighbors of vi that it has gone
through the initialization update. The selected nodes update
their alpha and beta states using (3) at iteration k, while all
the other nodes keep their states the same. The initialization
phase of vi ends when it has gone through the update (3) with
all vj ∈ Ni. If there are no neighbors left to go through the
initialization, vi selects a node from the set of neighbors that
finished the initialization to start the consensus phase.

B. Consensus Phase

During the consensus phase, the nodes update their state
variables to reach to the average of their initial values. Each
node that has finished initialization merges their state variables
into one by

xi[k] = (xαi [k] + xβi [k])/2 , vi ∈ N . (4)

Node vi is selected with equal probability pi = 1/N . If vi has
gone through the initialization update with all its neighbors
once, it selects a neighboring node vj with equal probability
pj|i = 1

|Fi| where Fi is defined to be the set of neighbors of
vi that have finished initialization. Given that Fi is not empty,
nodes vi and vj go through the consensus update defined in
(1). If there is no neighbor that has finished initialization, the
update is skipped. Although randomized gossip is selected, any
averaging method can be used during the consensus phase. The
initialization phase can be considered as a preprocessing step
which transforms the initial values into another domain after
which any distributed averaging method can be implemented
in a privacy-preserving manner.
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Theorem 1: Under Assumption 1, the proposed algorithm
converges to the exact average of the initial values almost
surely.
Proof. The coupling weights ai,αβ and aij = aji are
symmetric during the initialization for each node vi ∈ N ,
vj ∈ N and vi 6= vj . Due to this, the sum of the network
across the iterations is preserved. Using (3) and the symmetric
weights,

1

2N

N∑
j=1

(xαj [k] + xβj [k]) =
1

2N

N∑
j=1

(xαj [k + 1] + xβj [k + 1]) .

After the initialization, the nodes merge their state vari-
ables into one through xi[k] = (xαi [k] + xβi [k])/2, which
preserves the sum of the nodes’ states. Using random-
ized gossip algorithm [19], the nodes will converge to
the mean 1

2N

∑N
j=1(xαj [k] + xβj [k]), which is equivalent to

1
N

∑
j=1 xj [0] due to the initial constraint xαi [0] + xβi [0] =

2xi[0].

V. PRIVACY ANALYSIS

Following the convention in [12], privacy is defined as
follows.

Definition 1: The privacy of the initial value xi[0] for any
node vi is preserved if an adversary cannot estimate the value
of xi[0] with any guaranteed accuracy.

The privacy breach is explained by [13], which shows that
if all the neighbors of vi can be listened to by the passive
adversary, the privacy cannot be established. The following
assumption is made to prove privacy.

Assumption 2: One of the coupling weight aij [k] is hidden
from the adversary for each node vi ∈ N, vj ∈ N, vi 6= vj .

Theorem 2: Under Assumptions 1 and 2, the privacy as
defined in Definition 1 will be achieved asymptotically as the
variances of coupling weights go to infinity.
Proof. Let xi[0] be the initial value that the semi-honest
adversary tries to estimate. The initial value can be found using
the relation 2xi[0] = xαi [0] + xβi [0]. Since xαi [0] is released
and known by the adversary, estimating xi[0] is the same as
estimating xβi [0]. There are two cases, which define the privacy
of the initial value. The first one is the known coupling weight
and the second one is the hidden coupling weight.

If the coupling weight can be captured by the adversary,
xαi [k], xαj [k] and aij [k] for vj ∈ Ni will be known and can
be treated as a constant. The information leakage for this case
can be defined as follows,

I(xαi [k + 1];xβi [k]|xαi [k], aij [k], xαj [k]) .

Using (3), the conditional mutual information becomes

I(ai,αβ [k](xβi [k]− xαi [k]);xβi [k]|xαi [k]) .

There should be no information leakage regarding xβi [k]
during this case since xβi [k] is directly related to xi[0] due
to the initial constraint. To establish the privacy, we will show
that

lim
σ2
ai,αβ [k]

→∞
I(ai,αβ [k](xβi [k]−xαi [k]);xβi [k]|xαi [k]) = 0 . (5)

The second case is when vi contacts vm with whom vi
shares a secret coupling weight aim. Let s[T ] denote the sum∑T
k=1 ai,αβ [k](xβi [k]− xαi [k]) that can be obtained by

s[k + 1] = s[k] + xαi [k + 1]− aij [k](xαj [k]− xαi [k]) , (6)

where s[0] = xαi [0], T is the iteration in which vi has finished
going through the initialization update (3) with vj ∈ Ni.
If the adversary is able to listen all the communications of
the targeted node, she can obtain the initial value using s[T ]
and x[T + 1], since xβi [T ] will be disclosed with the first
update of the consensus phase. Assumption 2 guarantees that
ai,αβ [k](xβi [k] − xαi [k]) is blinded by aij [k](xαj [k] − xαi [k])
at least once. For this case the information leakage can be
defined as follows,

I(xαi [k + 1]; ai,αβ [k](xβi [k]− xαi [k])|xαi [k]) .

Using (3), the conditional mutual information becomes

I(ai,αβ [k](xβi [k]− xαi [k]) + aij [k](xαj [k]− xαi [k]);

ai,αβ [k](xβi [k]− xαi [k])|xαi [k]) .

For the privacy to be established, we will show that

lim
σ2
aij [k]

→∞
σ2
ai,αβ [k]→∞

I(ai,αβ [k](xβi [k]− xαi [k]) + aij [k](xαj [k]−

xαi [k]); ai,αβ [k](xβi [k]− xαi [k])|xαi [k]) = 0 . (7)

If (5) and (7) both hold, there will be no information leakage
in the system about the initial values. The mutual information
I(xαi [T ];xi[0]) will be zero since there will be no dependence
between the alpha states and the initial value.

For simplicity of notation, let Wαβ = ai,αβ [k](xβi [k] −
xαi [k]) and Wij = aij [k](xαj [k]−xαi [k]). The iteration number
[k] is omitted in the equations and only written to explicitly
state the next iteration or iteration 0.

First, it will be shown that for a fixed bounded vari-
ance xαi [0], the conditional mutual information I(xαi [k +
1];xβi [k]|xαi [k]) goes to zero as the variance of ai,αβ [k]
goes to infinity. Let xαi [0] be a continuous random variable
with σ2

xαi [0]
< ∞. Define γ = 1

σ2
ai,αβ [k]

and W̄αβ =

γai,αβ [k](xβi [k]−xαi [k]). The conditional mutual information
can be written as follows,

I(xαi [k + 1];xβi |x
α
i , aij , x

α
j ) = I(Wαβ ;xβi |x

α
i ) .

The mutual information is invariant to scaling, that is,

I(γWαβ ; γxβi |γx
α
i ) = I(W̄αβ ; γxβi |γx

α
i ) .

As the variance of ai,αβ [k] goes to infinity, the conditional
mutual information will go to zero. Indeed, we have

lim
σ2
ai,αβ

→∞
I(W̄αβ ; γxβi |γx

α
i ) = lim

γ→0
I(W̄αβ ; γxβi |γx

α
i )

= I(W̄αβ ; 0) = 0 .
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The second case is the update without the knowledge of aij .
Define β = 1

σ2
aij [k]

and W̄ij = βaij [k](xβi [k]−xαi [k]). Mutual

information is invariant to scaling, so that,

I(xαi [k + 1];Wαβ |xαi ) = I(γβxαi [k + 1]; γβWαβ |γβxαi )

= I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi ) .

When the variances of both coupling weights go to infinity,
the conditional mutual information will go to zero.

lim
σ2
aij

→∞
σ2
ai,αβ

→∞

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi ) =

lim
γ→0
β→0

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi ) = I(0; 0) = 0 .

Let T be the iteration at which the initialization has ended.
xα[T ] represents the vector of alpha values obtained starting
from x[0]. During the consensus phase, let W k denote the
information obtained at each iteration to deduce x[0] with
k = {1, 2, ...K} where K is the total number of iterations. The
final mutual information can be represented as I(x[0];W k).
Fixing the coupling weights, enables to find a function
F k(xα[T ]) = W k that will take the xα[T ] as input and will
create the output W k. The random variables will create a
Markov chain x[0] → xα[T ] → W k for k = {1, 2, ...K}.
The data processing inequality [24] shows that

I(x[0];W k) ≤ I(x[0];xα[T ]) = 0, k = 1, ...,K .

No clever manipulation of data can increase the mutual
information. Thus, given that there is at least one coupling
weight aij that is hidden from the adversary, the semi-honest
adversary cannot estimate the initial value of node vi with any
guaranteed accuracy.

A similar privacy proof can be done for the eavesdropper
case. If Assumption 2 holds, the eavesdropper will not have
any range to estimate the initial value with any accuracy as
the variances of coupling weights go to infinity.

In practice, it is not possible to have infinitely large vari-

ances. However, given that
σ2
ai,αβ[0]

σ2
x[0]

=
σ2
aij [0]

σ2
x[0]

=
σ2
xα[0]

σ2
x[0]

= 100
(the range of the coupling weights and alpha states are approx-
imately 10 times the range of the input x[0]), the information
leakage I(xαi [1];xi[0]|xαi [0]) is only 0.01 bits, which can be
considered small.

VI. EXPERIMENTS

To demonstrate the performance of the proposed approach,
a 5-node circular graph is generated. In practical applications,
the transmission power of the nodes in the graph can be
arranged such that the Assumptions 1 and 2 are satisfied;
the graph is connected and one of the coupling weight aij
is hidden from a semi-honest adversary in the network. To
establish the privacy against an eavesdropper who can tap
arbitrarily any channel, homomorphic encryption [25] or secret
sharing schemes with channel encryption [20] can be used.

Fig. 1. Conditional mutual information I(xα[1];x[0]|xα[0]) plot for different
xα[0] and ai,αβ [0] variances sampled from uniform distributions.
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Fig. 2. Convergence rate plot for the proposed approach, state decomposition
[12], synchronous distributed averaging with maximum-degree weights [19]
and the standard randomized gossip.

Two experiments have been done to assess the provided
privacy and convergence properties. The provided privacy rep-
resented by I(xα[1];x[0]|xα[0]) is plotted against increasing
xα[0] and ai,αβ [0] variances in Fig. 1. In words, the term
I(xα[1];x[0]|xα[0]) represents the first case in privacy analysis
which assesses how much information about the initial value
is leaked with the release of the first alpha state given the
knowledge of the initial alpha states and the coupling weights.
A lower result means there is less dependency between xα[1]
and x[0], which suggests that less information about the initial
values can be gained by the knowledge of xα[1].
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The conditional mutual information [26] is estimated us-
ing the non-parametric mutual information toolbox (NPEET)
[27] which uses k-nearest neighbour entropy estimates [28].
The variances σ2

ai,αβ [0]
and σ2

xα[0] are increased with re-
spect to the unit variance σ2

x[0]. Both ai,αβ [0] and xα[0]
are sampled from uniform distributions with variances
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100). For each combination, 104

independent samples are drawn and the conditional mutual
information is estimated. The experiment is repeated over all
variances and the averaged results are plotted in Fig. 1. When
the variances increase, the conditional mutual information
approaches zero. This shows that the new alpha states contain
less information about the initial values with the increasing
variance. A similar result is observed for the second case in
the privacy analysis where the coupling weight aij is unknown.

The convergence rate is assessed with the second experi-
ment. The substate xα[0] and the coupling weights are selected
from the interval [−5, 5], while the initial values are selected
from the interval [1, 2] uniformly at random. As shown in Fig.
2, the convergence rate of the state decomposition approach
is lower than the synchronous distributed averaging with
maximum-degree weight [19] without the privacy-preserving
attribute, because of the increase in the number of nodes due
to the state decomposition. In the proposed approach, the
nodes merge their state variables into one after the initial-
ization. The convergence rate, in this case, is the same as the
randomized gossip algorithm. If the update equations in (2)
are used during the consensus phase, the convergence rate is
lowered significantly. The privacy guarantee can be given in
the initialization phase. Hence, reduction in the convergence
rate can be avoided.

VII. CONCLUSIONS

In this paper, an asynchronous privacy-preserving average
consensus algorithm is proposed using the state decomposition
approach. An information-theoretic privacy analysis is done,
which promises to preserve the privacy of initial values against
an eavesdropper and a semi-honest adversary given that there
is at least one coupling weight hidden from the adversary.
The proposed approach converges to the exact average of the
initial values, while keeping the convergence rate the same as
the standard randomized gossip algorithm. The privacy can be
guaranteed through the addition of the noise for a bounded
amount of time and without sacrificing the convergence rate.
Moreover, the algorithm does not need a trusted third party.
Comparison of privacy-preserving schemes with respect to the
information leakage is left for future work.
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[26] M. Vejmelka and M. Paluš, “Inferring the directionality of coupling with
conditional mutual information,” Phys. Rev. E, vol. 77, pp. 026214, Feb
2008.

[27] G. V Steeg, “Non-parametric entropy estimation toolbox (npeet),” 2000.
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