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Supervised Fuzzy Clustering for Rule Extraction
Magne Setnes

Abstract—This paper is concerned with the application of
orthogonal transforms and fuzzy clustering to extract fuzzy rules
from data. It is proposed to use the orthogonal least squares
method to supervise the progress of the fuzzy clustering algorithm
and remove clusters of less importance with respect to describing
the data. Clustering takes place in the product space of systems
inputs and outputs and each cluster corresponds to a fuzzy
IF-THEN rule. By initializing the clustering with an overestimated
number of clusters and subsequently remove less important
ones as the clustering progresses, it is sought to obtain a suitable
partition of the data in an automated manner. The approach is
generally applicable to the fuzzy -means and related algorithms.
It is studied in this paper for adaptive distance norm fuzzy
clustering and applied to the identification of Takagi–Sugeno
type rules. Both a synthetic example as well as a real-world
modeling problem are considered to illustrate the working and
the applicability of the algorithm.

Index Terms—Clustering methods, fuzzy systems, identification,
modeling, transforms.

I. INTRODUCTION

FUZZY rule-based models are often used to model systems
in an input/output sense by means of IF-THEN rules. It is

desirable that the rule base covers all the states of the system that
are of importance for the considered application. At the same
time, the number of rules should be kept low to increase the
generalizing ability of the model, and to ensure a compact and
transparent model.

Fuzzy rules can sometimes be obtained from human experts.
Knowledge acquisition, however, is a cumbersome task, and for
(partially) unknown systems, human experts are not available.
Therefore, data-driven construction of fuzzy rules from mea-
sured input/output data has received a lot of attention. Such
modeling approaches typically seek to optimize some numer-
ical objective function, while less attention is paid to the com-
plexity of the resulting model in terms of the number of rules [1].
Various methods have been proposed to balance the tradeoff be-
tween model accuracy and complexity, like entropy [2], genetic
algorithms [3], [4], orthogonal transformation methods [5], [6],
similarity measures [7], [8], and statistical information criteria
[9], to mention a few.

This paper is concerned with rule extraction from data by
means of fuzzy clustering in the product space of inputs and
outputs where each cluster corresponds to a fuzzy IF-THEN
rule [10], [11]. It is proposed to use the orthogonal least
squares (OLS) method [5], [12] to remove redundant or less
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important clusters during the clustering process in order to
extract fuzzy rules that capture the important features of the
systems input/output state space in a compact and transparent
rule base. By initializing the clustering with an overestimated
number of clusters, there is an increased possibility that all the
important regions in the data are covered, and the result be-
comes less dependent on the initialization. In [13] the idea was
briefly introduced for the fuzzy-means algorithm, assuming
a zero-order Takagi–Sugeno (TS) fuzzy model. In this paper,
the Gustafson–Kessel (GK) algorithm with adaptive distance
measure [14] is considered, together with the more general TS
fuzzy model, with functional rule consequents.

In the following, Section II describes the assumed fuzzy
model type and how to determine its parameters from data.
The identification by product space clustering is explained in
Section III, while the OLS-based cluster reduction method and
the supervised clustering algorithm are described in Section
IV. The proposed approach is demonstrated in Section V with
two examples. First, the reconstruction from data of a known
rule-based system [15] is considered. It is shown that the
algorithm successfully can detect the structure (premise) of the
data generating rule base. In the second example the algorithm
is applied to a real-world problem of modeling the pressure dy-
namics in a fermenter. The result is favorably compared to that
of a trial-and-error approach with the standard GK algorithm.
Finally, some concluding remarks are given in Section VI.

II. FUZZY MODELING

A. Takagi–Sugeno Fuzzy Model

A fuzzy rule-based model suitable for the approximation of
many systems and functions is the TS fuzzy model [16]. In the
TS fuzzy model, the rule consequents are typically taken to be
either crisp numbers or linear functions of the inputs

IF is THEN
(1)

where is the input variable (antecedent) and is
the output (consequent) of theth rule . The number of rules
is denoted by and is the (multivariate) antecedent fuzzy
set of the th rule

(2)

In the case of univariate membership functions the
fuzzy antecedent in the TS model is typically defined as an
and-conjunction by means of the product operator

(3)
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For the th input the total output of the model is
computed by aggregating the individual rules contributions

(4)

where is the normalized degree of fulfillment of the an-
tecedent clause of rule

(5)

B. Data Driven Identification

The TS model is identified in two steps. First, the fuzzy
antecedents in the rules are determined. The next section
describes how this can be done using fuzzy clustering. In
the second step, the rule antecedents are kept fixed, and least
squares (LS) estimation from data is applied to determine the
consequent parameters, and , of the rules. There are two
main LS approaches. One is to solve independent or local
weighted LS problems—one for each rule. The other is to solve
a global LS problem following from the aggregated output
equation (4). Local LS gives more reliable local models, while
global LS gives a minimal prediction error estimate [17]. In the
following the global LS approach is followed.

Consider a collection of input–output data pairs
where is the dimensional

input vector and is to be approximated
by the model given . Let denote the matrix with
rows . The activation of each rule
is gathered in which is a diagonal matrix in having
the normalized degree of fulfillment as its th diagonal
element. Further, denote the matrix in composed
from matrices obtained by multiplying the matricesand

(6)

Denote the vector in given by

(7)

where for . The model in (4) can now
be written as a regression model

(8)

where is the approximation error. From this, the least squares
solution to the consequent parameter estimation problem can be
written as

(9)

III. I DENTIFICATION BY FUZZY CLUSTERING

Fuzzy clustering methods partition a set of data into a number
of overlapping clusters based on the distance in a metric space
between the data points and the cluster prototypes. Various clus-
tering algorithms can be used depending on the assumed struc-
ture of the identification data and the model type one wants to

obtain [11]. A clustering method that has proven suitable for the
identification of TS fuzzy models is the GK fuzzy clustering al-
gorithm [14]. Unlike the popular fuzzy-means algorithm [18],
the GK algorithm employs an adaptive distance norm in order
to detect clusters of different geometric shapes in the data set.

Each cluster in the product space of the input/output data rep-
resents a rule in the rule base. The goal is to establish the fuzzy
antecedents in the rules (2). These are defined by the fuzzy
clusters found in the data. If desired, univariate membership
functions can be obtained by projections onto the various
input variables spanning the cluster space (for details, see,
e.g., [10], [11]).

A. Fuzzy Partition

From the available input/output data pairs, the regression ma-
trix and the output vector are constructed

(10)

where is the number of samples used for identification.
The antecedent fuzzy sets in (1) are determined by means of
fuzzyclusteringintheproductspaceofthesystemsinputsandout-
puts. Hence, the data set to be clustered is repre-
sented as a data matrix composed from and :

(11)

where each column of contains an
input/output data pair: .

Given and an estimated number of clusters, fuzzy clus-
tering partitions into fuzzy clusters. A fuzzy partition
can be represented as an matrix , whose elements

represents the membership degree ofin cluster
. Hence, theth column of contains values of theth mem-

bership functionin the fuzzy partition, which is taken to be a
pointwise representation of the antecedent fuzzy setof the
th rule (1). The sum of each row of is constrained to one,

but the distribution of membership among thefuzzy subsets
is not constrained. Also, there can be no empty clusters and no
cluster may contain all the objects. This means that the member-
ship degrees in the partition matrix are normalized, and for
the given identification data, the membership values cor-
respond to the normalized degree of fulfillment of the rule an-
tecedents (5). Thus, the membership values in theth column

of the fuzzy partition matrix corresponds to those in the diag-
onal matrix used in (6) to construct the regression matrix
for the least-squares parameter estimation problem in (9). Thus,

diag , where diag denotes a diagonal matrix with
the th element of the vector as the th diagonal element.

B. Gustafson–Kessel Fuzzy Clustering

In adaptive distance norm clustering, each cluster has its own
norm-inducingmatrix whichisobtainedfromthecovarianceof
theclusters (seeAlgorithmIV.2 fordetails).Thedistanceofadata
point to a cluster center is given by the inner-product norm

(12)

where is a vector ofcluster prototypes
which have to be determined. The GK fuzzy clus-
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tering algorithm determines based on the minimization of

(13)

where is a weighting exponent which determines
the fuzziness of the clusters. The minimization of (13) repre-
sents a nonlinear optimization problem, which is solved in an
iterative manner [18]. The cluster algorithm stops when a pre-
determined stopping criterion is fulfilled (convergence).

IV. CLUSTER REDUCTION

An important issue in clustering is the determination of the
relevant number of clusters in the data. Cluster validity tech-
niques [19] have been proposed to assess the goodness of a given
partition considering criteria like the compactness of the clus-
ters and the distance between the clusters. A drawback of such
methods is the need for repetitive clustering of the data using
different number of clusters. Moreover, it can be difficult to
choose a suitable validity measure from among the many mea-
sures proposed in the literature. Another approach is to use some
kind of cluster merging method, like, e.g., the compatible cluster
merging [20] or the extended fuzzy-means method proposed
in [21]. However, unlike the OLS-based cluster reduction de-
scribed below, which considers the output contribution of each
cluster, these methods only consider the structure of the parti-
tion. As such, they do not fully utilize the available output data
for systems identification. In this section, first the OLS reduc-
tion algorithm is described. Then a stopping criterion for the al-
gorithm is introduced and, finally, the supervised GK clustering
algorithm with OLS-based reduction is summarized.

A. OLS Reduction Algorithm

An OLS rule reduction algorithm similar to the one proposed
in [5], [12] is used to supervise the process of clustering. By
initializing the clustering with an overestimated number of clus-
ters, the selection of the most relevant number of clusters is au-
tomated by the OLS algorithm, which selects the clusters in de-
creasing order of importance in a forward regression manner by
evaluating the contribution to the output energy by the corre-
sponding rule.

Given a fuzzy partition matrix obtained from clustering,
the Gram–Schmidt OLS algorithm performs an orthogonal
decomposition , where is an orthogonal matrix
and is an upper-triangular matrix with unity diagonal
elements. is called the orthogonal basis of. Following
the approach in [5], [12], we substitute this orthogonal basis
for in order to determine the individual contributions
of the rules. By using theth column of to construct a
diagonal matrix (i.e., diag ) that replaces
in (6) we obtain ,
and the corresponding regression problem in (8) becomes

, where is the OLS
equivalent of the solution vector in (7). The elementsof
can be determined one-by-one in the orthogonal space in order
to calculate the output energy contribution of the corresponding
rule. The OLS algorithm below is based on the one in [5], [12].
It does not decompose the complete matrix, but selects the

most dominant columns of , corresponding to the
most influential clusters (rules) in the model according to an
estimated error reduction ratio.

Algorithm IV.1: OLS reduction algorithm
Step 1: Select the first vector of the
orthogonal basis
For ,
set , where
is the th column of the fuzzy parti-
tion matrix , and construct the re-
gression matrix , where

diag .
Calculate the corresponding element of
the OLS solution vector

and the error-reduction ratio

Find the rule with the largest error re-
duction ratio

and select the first basis vector and
the first elements of the OLS solu-
tion vector

Step 2: Select the next basis vectors
Repeat for :
For , , calculate

diag
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Find the remaining rule with the largest
error reduction ratio

and select the th basis vector and
the th element of the OLS solution
vector.

Step 3: Remove rules (clusters)
Keep only the parameters of the most
significant rules. For the cluster al-
gorithm, this means that only the cor-
responding columns of are retained
in the remaining optimization.

B. Stopping Criterion for Cluster Selection

In each repetition of step 2 the algorithm selects one of the
remaining rules (clusters) based on the maximum value.
This value represents the error-reduction ratio due to [12]
and is the part of the systems output variance that is explained
by the corresponding rule. Hence, the most significant of the
remaining rules is selected. The user must either pre-determine
the number of steps or define a stopping criterion for the
selection. In [12] it was proposed to terminate at an unspecified

th step when , where is
a chosen tolerance. This approximation accuracy criterion was
also adopted in [5]. However, it is not always straight forward to
determinea priori how well the fuzzy model is going to approx-
imate the given data. Sometimes a high approximation accuracy
is possible, but other times this need not be the case. To over-
come this, we propose to use a criterion concerning the relative
contribution of the rules. In this case, the algorithm is ended at
an unspecified th step when the least important of the se-
lected rules has a contribution to the error reduction less than

compared to the previously selected rules

(14)
This criterion is more comprehensive as it is related to the rel-

ative contribution that each rule has to the approximation capa-
bilities of the rule base containing the rules selected so far. There
is thus no need to specify an approximation accuracy. Using this
criterion, the algorithm will pick the rules needed to approxi-
mate the data, with the constraint that each rule has to have a
certain relative contribution to the error reduction ratio of the
rule base. This contribution is determined by the user and re-
flects the willingness to include detailed rules with a high level
of specificity and little generality in the rule base. For a high
value of , fewer and more general and well separated rules are
constructed (less clusters) than with a low value offor the

(a)

(b)

Fig. 1. Clustering results for two data sets of different complexity obtained
using the proposed supervised cluster algorithm with� = 10% and fuzziness
m = 2. Both cases were initialized with 20 random clusters. The data in the
cluster space (dots), the cluster centers (thick circles), and the main contour
lines of the partitions are shown. (a) Simple data with three lines. (b) Data from
sinusoid function.

same data set. Threshold values in the range 10–20% have been
found to give good results in many cases.

Using a given threshold, for difficult to approximate data
sets, requiring a high number of rules, the algorithm will retain
a higher number of clusters than for data sets of lower com-
plexity. This is illustrated in Fig. 1, which shows the result from
the clustering of two data sets of different complexity. In both
cases, the threshold value was , and the clustering was
initialized with 20 random clusters. The results were obtained
by the supervised cluster algorithm with reduction given in Al-
gorithm IV.2 in the next section.

C. Cluster Algorithm with Reduction

The GK fuzzy clustering algorithm with OLS-based cluster
reductioncannowbewrittendown. In thisalgorithmtheprogress
is supervised by the OLS reduction algorithm presented above.
When the clustering approaches convergence, the reduction al-
gorithm evaluates the contribution of the various clusters and
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Fig. 2. Sugeno’s rule-based system.

selects the most important ones for further optimization by the
cluster algorithm such that the criterion in (14) is met.

Algorithm IV.2: Supervised cluster
algorithm
Given the data , an initially overes-

timated number of clusters ,
the fuzziness parameter , the rule
contribution threshold , and the ter-
mination tolerance . Initialize
randomly.

Repeat for
Step 1: Compute cluster prototypes:

Step 2: Compute covariance matrices:

Step 3: Compute distances to cluster pro-
totypes:

where the .
Step 4: Update the partition matrix:
for
if

else if

Step 5: Run OLS reduction algorithm:
if run OLS algorithm and
keep only the the selected clusters

normalize
until .

The proposed clustering algorithm differs from the standard
GK algorithm [14] by the additional step 5. This step performs
the cluster reduction by means of the OLS algorithm. The intro-
duction of this additional step has no influence on theconver-
gence propertiesof the clustering algorithm. If the OLS algo-
rithm decides to remove one or more clusters, i.e., in
step 5, the clustering will simply proceed without these clusters
in the following iterations. This can be seen as a re-initialization
of the cluster algorithm with the remaining cluster centers.

Theconvergence resultof fuzzy clustering is determined by
the initialization [18]. In the proposed approach the probability
that the most important regions in the data are covered by dif-
ferent clusters is increased by initializing with an overestimated
number of clusters. It can be expected that as the less influen-
tial clusters are removed, the remaining clusters are more
likely to converge to a more suitable optimum than in the case of
a random initialization of the standard GK algorithm with
clusters. This is illustrated in the next section.

V. SYSTEMS IDENTIFICATION EXAMPLES

Two problems are studied to illustrate the working of the pro-
posed method and its applicability. The first example considers
the reconstruction of a known rule base from data. The purpose
is to identify a partition in the data that can be used to con-
struct a rule-base premise that is confirm the premise partition
of the data generating rule base. The second example deals with
a real-world problem of modeling the pressure dynamics in a
fed-batch bioreactor. Sampled data is used, and the goal is to ob-
tain a rule-based model by clustering. The use of the supervised
clustering algorithm is compared to a trial-and-error approach
applying the standard GK clustering algorithm.

In all the experiments reported in this section, the fuzziness
parameter and the termination tolerance were
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TABLE I
FREQUENCY OFTERMINATION WITH THREE, FOUR ORFIVE CLUSTERSDEPENDING ON THENUMBER OF INITIAL CLUSTERS.RESULTS AREBASED ON 1000

RANDOMLY INITIALIZED TRIALS FOR EACH CASE

(a)

(b)

Fig. 3. (a) The partitioning of the premise space and (b) the output surface of
the data generating rule-based system.

used. For supervised clustering, the cluster selection threshold
was kept at .

A. Modeling a Known Rule-Base

We consider the identification of the two input one output TS
type rule-based system studied in [15]. The rule base consist
of four rules as shown in Fig. 2. The premise partition and the
input/output mapping of the rule base are shown in Fig. 3.

The systems surface was uniformly sampled with a small
white noise disturbance. A total of input–output ob-
servations were gathered in a 3 546 pattern
matrix . We know that the data generating system consist of
four rules, but it is not straightforward to say how many clusters
are actually present in the data. Both cluster validity mea-
sures and trial-and-error modeling indicate that from three to
five clusters is a suitable choice. With more than five clusters,
little improvement is gained in fitting the data and, with less than
three clusters, the model output becomes unacceptable.

(a)

(b)

Fig. 4. (a) Premise of a TS rule-based model obtained by fitting trapezoid
membership functions to the projections of the clusters and (b) the
corresponding model surface.

The supervised clustering algorithm was applied to the data
several times with various number of clusters in its random
initialization. It always converged with either three, four, or
five clusters. The results obtained when initializing with various
number of clusters are reported in Table I. For each case, the al-
gorithm was run 1000 times with random initialization, and the
table reports how frequent the algorithm converged with three,
four, or five clusters.

From Table I we see that for most trials, the supervised clus-
tering algorithm determines that there are four clusters in the
data set corresponding to the four rules in the data generating
rule base. The premise and the output of the reconstructed rule
base with four rules are shown in Fig. 4. Here, the antecedent
fuzzy sets were obtained by fitting trapezoid membership func-
tions to the projected clusters [10], [11] and the parameters of
the rule consequents were determined by least squares estima-
tion as in (9).
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(a)

(b)

Fig. 5. Two typical results from GK clustering (m = 2 and� = 0:001). The random initialized GK algorithm with four clusters produced a suboptimal result
in 45 out of 100 trials, while this happened only 14 times with the overinitialized supervised clustering algorithm.(a) Suboptimal clustering result. (b) Correct
clustering result.

Determining a suitable number of clusters is not the only
problem when applying clustering. The convergence result of
a clustering algorithm is dependent on its initialization. For the
studied data, when the standard GK clustering algorithm is ap-
plied with four clusters, the two most common results are the
partitions shown in Fig. 5. The result in Fig. 5(a) is clearly less
representative for the data generating rule base than the result in
Fig. 5(b). When the standard GK algorithm is applied 100 times
with four clusters, it converges 55 times to the correct solution
and 45 times to the suboptimal solution. As discussed in the pre-
vious section, by initializing the supervised clustering algorithm
with an overestimated number of clusters, the convergence re-
sult is expected to improve. This is verified by experiment and,
out of 100 trials with 12 randomly initialized clusters, the su-
pervised clustering algorithm converges 86 times to the correct
solution and only 14 times to the suboptimal solution.

B. Modeling Pressure Dynamics

One of the variables that must be carefully controlled during
a fermentation process is the pressure in the fermenter tank. We

consider the fermenter illustrated in Fig. 6, where air is fed into
the water at a constant flow-rate during fermentation. The
head-space pressureis controlled by the outlet valve . A
process model can be used to control the outlet valve, but also
to enable detection of, e.g., valve failures or clogged filters.

The goal is to identify a fuzzy model of the pressure dynamics

(15)

where is a fuzzy model of the TS type constituted by rules
with a two-dimensional premise:

IF is THEN (16)

where and . Both the
number of rules and the rules them selves have to be deter-
mined. Two approaches are considered for this purpose; first a
trial-and-error approach is followed, then the proposed super-
vised clustering method is applied.

In the trial-and-error approach, the standard GK clustering
algorithm is applied to the measured inputs and outputs

. Each cluster determines a rule in the
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Fig. 6. Experimental setup of a laboratory fermenter tank.

rule base, and the parameters of the linear consequent functions
are determined by a global least squares estimate as in (9). The
used identification data is shown in Fig. 7(a). The modeling is
repeated with the number of clusters varying from 2 to 12. For
each case, clustering is repeated three times with random initial-
ization in order to account for the dependency of the result on
the initialization. Of the three resulting models, the one which
best models the training data is recorded. This model is vali-
dated in a recursive simulation using the validation data shown
in Fig. 7(b).

The results from the trial-and-error approach are summarized
in Fig. 8(a). Typically, the MSE, in fitting the identification data,
decreases as the number of clusters increases. The “learning-
curve” starts to flatten around six clusters. The performance of
the various models in simulating the validation data shows a
decreasing trend until six clusters. With more than six clusters,
the performance does not improve. Judging from the trial-and-
error results, six clusters seems to be a suitable choice.

Now the supervised GK clustering algorithm proposed in Al-
gorithm IV.2 is applied to the identification data. Since the al-
gorithm is less dependent on the initialization, it is applied only
once, starting with 12 randomly initialized clusters. The algo-
rithm converges with six clusters whose cluster centers are sim-
ilar to the ones found with trial-and-error. The validation of the
resulting model is shown in Fig. 8(b).

The total computational costs of the trial-and-error approach;
that is, the cost of clustering, consequent parameter estimation,
evaluation on identification data, and validation in simulation
of the selected models for 2–12 clusters, were about 70810
FLOPS. For the approach using supervised clustering, the
computational costs were about 6610 FLOPS, including
clustering, consequent parameter estimation, evaluation on
identification data, and validation in simulation of the resulting
model. For the considered example, the computational costs of

(a)

(b)

Fig. 7. Measured data used to (a) train and (b) validate the pressure dynamics
model.

the trial-and-error approach is thus more than ten times that of
the approach based on supervised clustering.

VI. CONCLUSION

A method to supervise the process of fuzzy clustering for rule
extraction in order to detect and remove less important clusters
has been presented. The reduction is based on the orthogonal
least squares approach to subset selection presented in [12] and
adopted for fuzzy clustering in this paper. The method is ap-
plicable for obtaining fuzzy rules from data for function ap-
proximation and systems modeling purposes. It helps the user in
the difficult task of selecting an appropriate number of clusters
when applying fuzzy clustering. The user is required to deter-
mine a relative lower threshold for the contribution of the rules
that goes into the rule base. This threshold is used by the al-
gorithm for selecting the appropriate number of clusters (rules)
for the considered data. This parameter is transparent to the user
and can easily be combined with other criteria, e.g., a minimum
number of rules or an accuracy criterion.
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(a)

(b)

Fig. 8. (a) Results from modeling by trial-and-error and (b) the validation in a
recursive simulation of a model (dash-dot line) based on six clusters determined
by the supervised clustering algorithm. In (a), both the MSE in approximating
the identification data and the error in validation by simulation is reported for
various number of clusters.

When initialized with an overestimated number of clusters,
the algorithm determines and keeps only the most important
clusters. This overestimated initialization increases the possi-
bility for the cluster algorithm to detect all the important regions
of the data, thereby decreasing the dependency of the result on
the (random) initialization.

The considered synthetic and real-world examples demon-
strated the improved convergence properties due to the overes-
timated initialization and the algorithms capability of determin-

ing a suitable number of clusters in the data. In the real-world
process modeling example, the proposed supervised algorithm
proved more efficient than a trial-and-error approach.
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