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Abstract
Energetic materials have widespread applicability in various fields of engineering as propellants, ex-
plosives, and pyrotechnics. The Netherlands Organisation for Applied Scientific Research (TNO) is
investigating additive manufacturing of solid propellants. As part of this investigation, TNO developed
a new polymer binder mix for solid propellants. The thermomechanical behavior of the solid propel-
lants is not well understood yet. Therefore, TNO is interested in developing computational modelling
schemes for characterizing their behavior. Computational schemes based on the finite element method
(FEM) are developed in this thesis. They are calibrated with matrix-only and solid propellant uniaxial
tension experiments provided by TNO (Figs. 1.4 and 1.5). The developed schemes are compared with
the experiments to better understand the materials behavior and improve the computational models.

The macro-structural behavior of solid propellants is significantly affected by the behavior of the
micro-structure. It is computationally unfeasible to directly consider the micro-structure in macro-
structural FEM. Therefore, computational homogenization (CH) is employed for idealizing the micro-
structure with representative volume elements (RVEs) at a finite number of macroscopic locations.
Micro-structural behavior consists of numerous nonlinear thermomechanical processes. This thesis fo-
cuses in characterizing micro-structural matrix viscoelasticity, continuum matrix damage, and debond-
ing. The brittle and rate dependent behavior of the matrix and the solid propellants is described with
these thermomechanical processes. Other relevant processes such as temperature effects, nonlinear
elasticity, anisotropy, and large strains are not considered.

The experiments exhibit a clear rate dependence throughout the entire loading process, and vis-
coelasticity is hypothesized to play a major role in this dependence. The matrix is idealized as isotropic
and linear viscoelastic (LVE), even though the experiments exhibit anisotropic and state dependent
behavior. The Generalised Maxwell model is employed for viscoelasticity, and parameters thereof are
identified with nonlinear least squares fitting. The fitted matrix-only experiment is accurately approxi-
mated with the Generalised Maxwell model. However, the identified parameters approximate matrix-
only experiments with different strain rates with less accuracy. Loss of accuracy occurs because of
discrepancies between the experimental samples and because of the isotropy and LVE simplifications.

The experimental samples experience a brittle failure that is believed to be caused by matrix micro-
crack damage. Lee’s and Shin’s continuum damage model for brittle particulate composites [20] is
identified as a promising model for investigating the brittle nature of the matrix and the solid propel-
lants. This model uses mathematical homogenization (MH) to describe particulate composites, but
can also be used to describe the matrix-only. However, the model assumes physical constraints that
are not valid for either the matrix or the solid propellants, and suffers from numerically unstable behav-
ior. Two modified versions of the model, which relax the constraints and improve numerical stability, are
proposed for modelling matrix damage in the matrix-only and in perfectly bonded solid propellants. One
describes non-viscous damage and the other describes viscoelastic damage by applying the Gener-
alised Maxwell model. The models assume that damage evolution is caused by micro-crack nucleation
and growth. Both modified models are rate dependent, preventing loss of ellipticity. Because of ex-
perimental limitations, the parameters for crack nucleation and crack growth for negative hydrostatic
stresses can not be identified. Crack growth is more relevant than crack nucleation for brittle damage,
therefore the tensile behavior of the matrix can still be characterized. The fitted matrix-only experiment
is accurately approximated with the modified viscoelastic damage model. However, the identified pa-
rameters approximate matrix-only experiments with different strain rates with less accuracy. Loss of
accuracy occurs for the same reasons as for the viscoelasticity approximation and as a consequence
of the technique employed for reducing numerical instabilities.

Particle debonding is observed in the failure planes of the solid propellants (Fig. 1.1), and is hy-
pothesized to significantly affect their behavior. The Turon model [30] is employed for debonding by
placing interface elements with a bilinear traction separation law (TSL) in the matrix-particle interfaces.
A bilinear TSL is believed to be appropriate because the experiments suggest that interfacial softening
can be approximated as constantly decreasing, provided that the matrix is appropriately modelled. It
is shown that the Turon model can capture free surface propagation in RVEs only for heavily refined
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meshes. Fine meshes are not feasible within a CH context, so free surface propagation is gener-
ally not captured. Early numerical unconvergence was generally observed for physically reasonable
debonding parameters. Therefore, debonding parameters that do not represent the solid propellants
are employed in RVE simulations.

The micro-structure of the solid propellants is investigated by simulating several RVE geometries
with different combinations of constitutive models. The effects of particular thermomechanical pro-
cesses and microscopic geometric components can therefore be determined. The CH investigation
of the macro-structure also considers different combinations of constitutive models and RVE geome-
tries. Within a CH context physically representative debonding parameters can be used without caus-
ing early unconvergence. The fitted solid propellant experiment is well approximated with the full CH
damage-debonding-viscoelastic computational scheme. The approximation is not as accurate as the
matrix-only approximation obtained with the damage-viscoelastic scheme, but is good considering the
simplifications and scope of this thesis, and that free surface propagation is not well captured.

Matrix-only and solid propellant computational results confirm that viscoelasticity is a major source
of rate dependence and that (continuum) matrix micro-crack damage causes brittle failure. They also
suggest that continuum matrix damage is a significant source of rate dependence in the post-damage
regime, and matrix-only experiments agree. Comparing the results for perfectly bonded solid propel-
lants to the results for solid propellants with debonding and to the solid propellant experiments, it is
clear that debonding indeed has a large effect in reducing the ultimate strength of the material. The
full CH damage-debonding-viscoelastic scheme shows promise as a first step towards full character-
ization. Future work can improve the scheme by addressing the issue of free surface propagation
and can build on it by including relevant thermomechanical processes that are not yet implemented.
Recommendations on how to achieve this are given in the final chapter.
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1
Introduction

1.1. General Overview
Energetic materials are a class of material that store chemical energy in their molecular structure. This
energy can be released by external stimuli, e.g. mechanical loading, heat or shock [22]. Energetic
materials have a wide range of practical applications. They can be used as propellants, explosives,
or pyrotechnics [22]. Specific applications of energetic materials include demolition and ground im-
provement in civil engineering, propelling rockets in aerospace engineering, and military uses such as
propelling and detonating bullets.

The Netherlands Organisation for Applied Scientific Research (TNO) is investigating additive man-
ufacturing of solid propellants, an application of energetic materials, using fused deposition modelling
(FDM), a method for 3D-printing solid objects, to improve control of the material’s geometry. The solid
propellants are particulate composites with a polymer matrix and stiff explosive crystals. The failure
plane of TNO’s solid propellant was investigated with an electron microscope, shown in Fig. 1.1. Thrust
is generated by solid propellants when the flammable polymer burns, igniting the explosive crystals.
The rate at which the propellants burn and create thrust depends on their surface area Fig .1.2. Con-
trolling the propellant’s geometry, therewith the burning surface, is of great importance. The application
of FDM motivated TNO to develop a new polymer binder mix for solid propellants.

As a consequence of their applications, solid propellants are often subject to complex loading condi-
tions [4]. Furthermore, the dependence of the thermomechanical behavior of solid propellants on large
deformations, strain rate, micro-geometry, and damage in the form of micro-cracks and debonding is
not yet well understood. Therefore, this material is often characterized experimentally [4]. A more
economical and time efficient alternative is to characterize solid propellants using computational mod-
elling techniques. The behavior of solid propellants is complex because their micro-structural behavior
and properties have a significant effect on their macro-structural response. Furthermore, their micro-
structural behavior is also complex in its own right. Consequently, past and recent research efforts
have been made in developing computational modelling techniques for solid propellants. This thesis
investigates the effects and feasibility of utilizing specific modelling techniques and material models for
characterizing solid propellants. Computational results are compared to available experimental data of
TNO’s material.

1
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Figure 1.1: Electron microscope image of a failure
plane in TNO’s solid propellant [19]

Figure 1.2: Thrust evolution in time for different solid propellant
geometries [19]

1.2. Aim of Research
The aim of this research is to identify and test material models and homogenization techniques that
are believed to be suitable for modelling solid propellants. Three sources of micro-structural material
nonlinearities are investigated: matrix viscoelasticity, continuum damage of the matrix, and debonding
of particles from the matrix. The primary focus is to investigate continuum damage. The effects of the
manufacturing process (FDM) on the propellants is not in the current focus. The objective and focus of
this thesis naturally gives rise to the following research questions:

RQ 1. What are the effects of viscoelasticity and matrix continuum damage in solid pro-
pellants?
RQ 2. What is the effect of grain debonding in solid propellants?
RQ 3. How can the micro/macro transition of solid propellants be modelled computa-
tionally?

1.3. Research Methodology
Considering the specific behavior of solid propellants, material models for capturing the micro-structure
were identified. Namely, the well-known Maxwell model is employed for viscoelasticity, modified ver-
sions of the model developed by H.K. Lee and D.K. Shin [20] are proposed for continuum damage, and
the model developed by A. Turon et. al [30] is employed for debonding. First-order computational ho-
mogenization is used to capture the behavior of the micro-structure in the macro-structural response of
the material. The Maxwell model and the modified continuum damage models were implemented in the
finite element method program of the Computational Mechanics group of TU Delft using the Jem/Jive
libraries for C++. The existing implementations of the Turon interface model [30] and of first-order
computational homogenization were utilized. Temperature, nonlinear elasticity, anisotropy, and large
strains significantly affect the behavior of solid propellants. However, their effects are not investigated
in this thesis.

Tension and compression experiments for different strain rates for the matrix-only and for the solid
propellant materials were performed by A.H. Lasschuit at TNO. The material samples were fabricated
by simply casting them in molds, so FDM was not performed. A.H. Lasschuit produced so-called
preliminary and second round material samples, both of which had experimental flaws. Preliminary
samples were slightly curved and second round experiments had embedded air bubbles. For most
samples, additional experimental errors occurred during the loading process. The experimental load-
displacement results obtained from these samples are shown in Fig. 1.4 for the matrix-only and in
Fig. 1.5 for the solid propellants. Note that throughout the thesis, total displacements and strains
in absolute value are shown in figures. The dimensions of the samples and the applied boundary
conditions (BCs), as idealized in this thesis 1 are shown in Fig. 1.3. The shear BCs weren’t applied
experimentally, but will be applied computationally.

Throughout the thesis preliminary tension experiments are the main subject of analysis. Preliminary
experiments are considered because it is more sensible to characterize slightly curved samples with
a homogeneous matrix than samples where the matrix is heterogeneous due to the existence of air
bubbles. Tension experiments are considered because they show the effects of matrix and debonding
1The actual shape of the experimental tension samples was a ‘dogbone’, not a rectangle. The idealized rectangle corresponds
to the thin part of the dogbone.
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(a) Tension
(b) Compression (c) Shear

Figure 1.3: Macroscopic BCs and dimensions (dimensions in millimeters). Horizontal reactions are sampled for tension and
compression and vertical reaction is sampled for shear

(a) Tension (b) Compression

Figure 1.4: Matrix-only experiments

(a) Tension (b) Compression

Figure 1.5: Solid propellants experiments

damage better than compression experiments. For compression experiments the samples always
failed because they became larger than the load cell, and it is unclear to what extent start-up effects
influenced their responses. Start-up effects trigger an initial response that is not characteristic of the
actual material behavior and occur due to imperfections of the experimental procedures. Furthermore,
the tension and compression behavior of the matrix are significantly different, and this thesis does not
focus in characterizing the anisotropic behavior of the solid propellants.

The effects of computational homogenization and the chosen material models are determined by
investigating the consequences of varying BCs, geometric configurations, material parameters, and
mesh refinement. Furthermore, material parameters that can replicate the experiments are identified.
The purpose of this is to determine the extent to which a model, or a combination of models, can repro-
duce the propellants’ behavior. The available TNO experimental data is not sufficient to properly identify
any of the additional material parameters introduced for matrix damage [20] or debonding [30], and it is
not ideal to identify the parameters introduced by the Maxwell model. All computational analyses in this
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thesis performed with multi-element meshes (i.e. meshes consisting of more than one element) were
performed utilizing 3-noded triangular finite elements. Computational analyses performed with single-
element meshes (i.e. meshes consisting of only one element) were performed with either 4-noded
quadrilateral elements or 8-noded hexahedron elements. Infinitesimal strain theory was considered for
all cases, and plane strain conditions were considered for all 2D analyses.

1.4. Thesis Overview
The thesis follows the logical order for identifying the parameters that the Maxwell viscoelastic model,
the modified versions of the Lee and Shin continuum damage model [20], and the Turon interface
model [30] introduce into the computational modelling schemes constructed to analyze solid propel-
lants. Chapter 3 identifies the linear elastic and linear viscoelastic parameters. Chapter 4 explores
the behavior of the modified continuum damage models and identifies the damage parameters. Chap-
ters 3 and 4 also analyze the response of the matrix for the parameters identified in them. In Chapter
5, the responses of various RVEs with respect to the viscoelastic, the continuum damage, and the
debonding models are explored. This chapter also explores the behavior of the debonding model at
the RVE level. In Chapter 6, the responses of the solid propellants for various micro-structures and
with respect to the different models are explored using CH. This chapter also explores the behavior
of the debonding model at the macro-structural level and then identifies the parameters introduced by
said model. Finally, Chapter 7 concludes the findings of the thesis and presents recommendations for
further research.



2
Literature Review

This chapter introduces the general theory for concepts and numerical frameworks employed in this
thesis. Specific models and frameworks are given as background information in Chapters 3–6, which
make use of specialized theory.

2.1. The Finite Element Method
The finite element method (FEM) is a numerical method for solving partial differential equations (PDEs).
With this method, the numerical frameworks for the computational modelling schemes are constructed
and presented in this thesis. A brief summary of FEM for nonlinear solid mechanics is given here. The
expressions given are for the 2D continuum case, but the extension to 3D continuum is straightforward.
For a detailed description of the subject the reader is referred to a FEM textbook. For the expressions
for interface elements see Section 5.1.2.

In solid mechanics, the quasi-static finite element (FE) continuum formulation arises from first spa-
tially discretizating the so-called weak form of the strong equilibrium equation, which is given by

∇ ⋅ Σ + 𝜌g = 0 (2.1)

Where ∇⋅ is the divergence operator, Σ is the second-order stress tensor, 𝜌 is the material density, and
g is the gravity vector.

A spatially discretized 2D solid object, or a mesh, is shown in Fig. 2.1. The triangles represent
elements and the dotted intersections represent nodes. The displacement field within a triangular
element 𝑒 with nodal displacements a = [𝑎 , 𝑎 ,⋯ , 𝑎 , 𝑎 ]T is approximated as

u (x) = N (x)a (2.2)

Where the matrixN (x) contains polynomials called shape functions. One shape function is associated
to each node. The shape function matrix is given by

N (x) = [ 𝑁 0 𝑁 0 … 𝑁 0 0
0 𝑁 0 𝑁 … 0 𝑁 0 ] (2.3)

Kinematic and constitutive relations are introduced to the spatially discretized form to complete the
formulation. The kinematic relation that arises from infinitesimal strain theory is

𝜖 (x) = B (x)a (2.4)

Where 𝜖 (x) is the strain field in Voigt notation and the kinematic matrix B(x) is given by

B (x) = LN (2.5)

In which the linear differential operator L is given by

LT = 𝜕𝜖
𝜕u = [

0
0

] (2.6)

5
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Figure 2.1: 2D FE mesh. Element domain and
elements that share node are highlighted [26]

Figure 2.2: Full NR incremental-iterative procedure [10]

The constitutive relation is
C = 𝜕𝜎

𝜕𝜖 (2.7)

Where C is the tangent stiffness at a given moment of the loading process and 𝜎 is the stress field.
Both are given in Voigt notation.

For nonlinear problems, the formulation is also discretized in so-called global time steps. These
time steps describe the sequence of events of the quasi-static loading process. They do not represent
a physical dependence in real time. The response of the solid is linearized within each time step. The
FEM continuum formulation for nonlinear problems in solid mechanics is

KΔa = fext − fint (2.8)

Where Δa is the gobal nodal displacement difference between the current time step 𝑡 + Δ𝑡 and the
previous time step 𝑡. The internal force vector f , the external force vector f , and the global stiffness
K are given by

f =∑ZT (∫ BT𝜎 dΩ) (2.9)

f =∑ZT (∫ 𝜌NTg dΩ +∫ NTt dΓ) (2.10)

K = 𝜕f
𝜕u =∑ZT (∫ BTCB dΩ)Z (2.11)

In which, 𝑛 is the number of elements in themesh, t is the external traction, and Z is the locationmatrix
that reflects the topology of the discretization [9]. An element’s domain is represented by Ω and its
boundary by Γ . Computations are performed at locations within the elements called integration points
(IPs), and results are then extrapolated from the IPs to the nodes. Integration is performed numerically
with the results from the IPs. Going forward the subscript notation 𝑒 is dropped for simplicity.

For this formulation, incremental-iterative solution procedures are utilized to avoid drifting 1 of the
solution. This thesis uses displacement control and a full Newton-Raphson (NR) procedure for all
analyses. The relative magnitude by which the solution is allowed to drift away in each time step is
determined by the convergence criteria. An example of a full NR procedure is shown in Fig. 2.2.

2.2. Viscoelasticity
Viscoelasticity is the combination of elasticity and viscosity. It is exhibited when the molecular structure
of a material is reordered upon loading. Elasticity describes a direct non-dissipative correspondence
between stress and strain. When an elastic material is loaded and then unloaded, it returns to its
original undeformed shape following the same load path it took during loading. Viscosity describes a
1Accumulation of error for each time step
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direct dissipative correspondence between stress and strain rate. When a viscous material is loaded
and then unloaded, it continues deforming in the loading direction. A material is said to be viscoelastic
when it exhibits both elastic and viscous properties.

Similarly to elastic materials, viscoelastic materials recover, at least partially, their original shape af-
ter a loading-unloading cycle. However, the loading path and unloading path are different. This means
that like viscous processes, viscoelastic processes dissipate energy. Loading-unloading viscoelastic
behavior is shown in Fig. 2.3. Viscoelastic properties are temperature-dependent, therefore it is impor-
tant to account for energy dissipation. Similarly to elastic and viscous materials, viscoelastic materials
are strain and strain rate-dependent, respectively. Strain rate dependence is shown in Figures 1.4a
and 1.5a of Section 1.3, where stiffer responses are observed for higher strain-rates.

Viscoelasticity is classified as either linear or nonlinear. In linear viscoelasticity (LVE) constitutive
behavior is independent of the state of the material, whereas in nonlinear viscoelasticity (NLVE) con-
stitutive behavior depends on state. Essentially, the governing PDE is linear for LVE2 and nonlinear for
NLVE. LVE obeys the Boltzmann superposition principle, which states that total viscoelastic response
can be additively decomposed into a discrete history of relaxation or creep responses. Mathematically,
the superposition principle implies the following constitutive relation for the relaxation case

𝜎(𝑡) = C(𝑡)𝜖(0) + ∫ C(𝑡 − �̃�, �̃�)�̇�(�̃�)d�̃� (2.12)

Where �̇�(�̃�) is the strain rate, C(𝑡 − �̃�, �̃�) is the relaxation function, and the dependence in �̃� accounts
for material aging [10]. LVE may be applied for small deformations. However, the degree to which it is
applicable depends on each specific material.

Both linear and nonlinear models have been proposed to model the viscoelastic behavior of the
polymer matrix. The linear Maxwell model in combination with the time–temperature superposition
principle 3 were utilized in [4]. Pseudo-strains defined by R.A. Schapery [29] were applied by A. Barua
and M. Zhou [15] to employ an LVE relation. A stress softening function was used by S. Ho [12] to
capture NLVE effects through means of damage.

Figure 2.3: Loading-unloading viscoelastic behavior [24]

2.3. Continuum Damage
Damage is the result of bonds breaking at the molecular level. At larger length scales, damage man-
ifests in the form of micro-cracks, macro-cracks, and other forms of degradation. Continuum damage
mechanics uses continuous damage variables to characterize local material degradation [28]. In a FEM
context, continuum damage represents material degradation in the IPs of regular continuum elements.

Continuum damage models based in a continuum damage mechanics framework may be either
phenomenological or based in physics. Phenomenological models are based on empirical assump-
tions about material behavior and are calibrated experimentally or computationally. These models
2LVE implies nonlinear constitutive relations, so NR procedures are used even for linear PDEs.
3The time–temperature superposition principle states that in LVE viscoelastic properties can be mapped to different temperatures
by a change in time scale [4]
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are attractive for characterizing materials whose physical response is not fully understood or when
experimental data is missing. Phenomenological models are usually easier to implement than physics-
based models. Parameters introduced by phenomenological models usually have to be recalibrated
for all different conditions where they are applied, because they are not inherent to general material
response. Models based in physics are derived from fields such as thermodynamics, micromechan-
ics, and fracture mechanics. They may or may not have empirical aspects, but they are not empirical
in their entirety. Physics-based models have the advantage that they prescribe behavior directly re-
lated to the physics of the material. Therefore, the material parameters they introduce only need to be
experimentally identified once.

Continuum damagemodels may produce premature crack initiation and instantaneous crack growth
when damage becomes highly localized [28]. This is the consequence of the governing PDEs locally
changing ellipticity and the damage rate becoming singular once the material is fully degraded, i.e.
fractured. These issues arise because damage fields defined by damage variables are assumed to be
continuous, but continuum damage models permit damage fields where damage discretely localizes.
This leads to mesh sensitivity issues when applied in an FE context, because finer meshes can capture
nonphysical discrete damage jumps better [28]. Figure 2.4 shows an example of loss of elasticity. The
sample fails prematurely because a so-called localization band forms almost immediately after damage
initiation.

Figure 2.4: Localization band formed by loss of ellipticity

Nonlocal approaches to damage can prevent localization issues by modifying the damage models
and/or the governing PDEs. For instance, the nonlocal approach considers a given region rather than a
single IP. Another solution to localization is to introduce rate dependence in the constitutive formulation.
This can be achieved, for instance, by considering viscoelasticity. Rate dependence stabilizes the rate
boundary value problem (BVP). However, this is only the case when it is sufficiently significant [10].

Significant efforts have beenmade in developing and applying physics-basedmodels to thematrix of
solid propellants. Particular attention has been given to models derived from thermodynamics because
they can be combined with other phenomena in a straightforward fashion. The strain softening function
of Ho’s NLVE model [12] is calibrated based on the recoverable strain energy density thermodynamic
concept. Thermodynamic damage theory was utilized by X. Jingsheng [15] to formulate a damage-
viscoelastic model. A model derived from fracture mechanics andmicromechanics that combines brittle
matrix damage and the inclusion of perfectly bonded elastic particles was proposed by H.K. Lee and
D.K. Shin [20]. A non-viscous and a viscoelastic modified version of this model were applied in Chapter
4. Lee’s and Shin’s formulation and the non-viscous modified model do not include viscoelasticity, but
do introduce rate dependence.

2.4. Cohesive Surface Modelling
Cohesive surface modelling is the application of a cohesive theory of fracture to model discontinuous
damage as the formation of free surfaces in a continuum. A cohesive theory of fracture is a phenomeno-
logical framework closely related to fracture mechanics [25]. Free surface formation can represent a
variety of damage phenomena, such as cracks, debonding, and delamination.

In cohesive surface modelling, the inelastic deformation ahead of the crack tip of newly formed
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surfaces is governed by a phenomenological traction separation law (TSL), which relates cohesive
force (i.e. traction) to displacement jump [25][26]. Three failure modes can be described by TSL’s:
normal (mode I), in-plane shear (mode II), and out-of-plane shear (mode III) decohesion. TSL’s are
formulated as

t = 𝑔([u], 𝛽) (2.13)

Where [u] is the displacement jump, t is the cohesive force and 𝛽 represents the internal variables that
account for the irreversibility of the free surface formation process [26]. Internal parameters such as
cohesive strengths, energy release rates, and coupling parameters for the failure modes determine the
character of the TSL and the state of the internal variables 𝛽. These parameters are identified either
experimentally or computationally.

In FEM, Eq. (2.13) is usually employed in the rate form ṫ = T[u̇] so that the quadratic convergence
of the NR procedure is preserved [26]. The tensor T is called the consistent cohesive tangent and it is
formulated as T = t

[u] .
There are two types of TSL’s: initially elastic (or intrinsic) cohesive laws and initially rigid (or ex-

trinsic) cohesive laws. Fig. 2.5 shows an example of both. Intrinsic laws govern constitutive behavior
throughout the whole deformation process. Extrinsic laws are only applied after the failure criterion 𝑓
is reached. A different constitutive law is in place before failure. Intrinsic TSLs require a high initial
dummy stiffness prior to failure to avoid free surface formation, which can lead to ill-conditioning of the
BVP. Extrinsic laws do not suffer from this shortcoming but their implementation is significantly more
complex.

Various methods exist for cohesive surface modelling. Nowadays, XFEM is the most popular
method. In XFEM, the displacement field of the solution is enriched with an additional term that gen-
erates a displacement jump between one side of a crack relative to the other side. The inclusion of
zero-thickness cohesive interface elements (abbreviated as interface elements) is another widely used
method. Interface elements are placed between the standard continuum elements of mesh, as shown
in Fig. 2.6. This is done ’a priori’ of numerical computations. Interface elements are infinitely thin and
one dimension lower than the standard continuum elements that they connect [27]. They have a set
of duplicate nodes for each of their nodal coordinate. Once failure is initiated, duplicate nodes move
apart from each other forming a free surface.

Figure 2.5: A intrinsic TSL (left) and an extrinsic
TSL (right) [26]

Figure 2.6: Four-noded interface element used to model
a crack [26]

Applying interface elements in the matrix-particle interface is the most common method for charac-
terizing debonding in solid propellants. They are conveniently placed in failure planes known ’a priori’
and they have the advantage that they are decoupled from the viscoelastic and continuum damage
models. Very similar bilinear mixed-mode TSLs were applied by Barua and Zhou [4] and by R. Hu
[13] for modelling debonding in solid propellants. In Chapter 5 interface elements with a bilinear TSL,
proposed by A. Turon et al [30], are utilized.

2.5. Homogenization
Homogenization methods provide a multiscale framework for capturing the properties and behavior
of the micro-structure in the macro-structure. The idea is to construct an equivalent homogeneous
macroscopic material based on microscopic heterogeneity. Homogenization theory is based on the
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concept of a representative volume element (RVE), the principle of separation of scales, and averaging
theorems [26]. An RVE is an idealized microscopic constituent which is assumed to be representative
of the geometry and properties of the whole micro-structure. A view of deformed RVEs in the micro-
structure is shown in Fig. 2.7. The principle of separation of scales states that the microscopic length
scale is much smaller than the characteristic length scale over which the macroscopic loading varies
[26]. Averaging theorems, such as the strain and stress averaging theorems, couple the macro- and
the micro-structures in an energetically consistent manner [3]. They state that certain quantities can be
extrapolated from the micro-structure to the macro-structure by taking their volume average over the
undeformed RVE configuration. Mathematically, averaging theorems can be generalized as

AM =
1
𝑉 ∫ Amd𝑉 (2.14)

Where A is the quantity to extrapolate and 𝑉 is the volume of the undeformed RVE. The superscripts
m and M refer to the micro-structure and the macro-structure, respectively.

Micro-structural fields can be additively decomposed in linear and perturbed contributions 4. The
microscopic displacement field is given by

um (xm) = ΕM (xM)xm + um (xm, 𝑡) (2.15)

and the microscopic strain field is given by

𝜖m(x) = S 𝜎m(x) + 𝜖m(x) (2.16)

Where Ε is the second-order strain tensor, S is the elastic compliance, and a prime denotes a per-
turbed field.

Figure 2.7: Deformed RVEs in the micro-structure [3]

Homogenization methods are divided in three broad categories: mathematical homogenization
(MH), numerical homogenization (NH), and computational homogenization (CH). Exact analytical rela-
tions are obtained from MH, but they are often subject to many constraining assumptions and to simple
geometries [3][26]. In NH, the parameters of a phenomenological effective macro-structural constitutive
relation are determined by fitting the data obtained from numerical computations on a representative
micro-structural sample (referred as cell or unit-cell in literature) [3][26]. Both choosing the macroscopic
phenomenological model and performing the microscopic numerical computations, is done ’a priori’ of
macroscopic analyses. This is a relatively computationally efficient approach, but when the behavior
becomes highly nonlinear the assumed macroscopic model may not be appropriate. In CH, computa-
tions on both the macro- and the micro-structure are performed concurrently to obtain the homogenized
response and tangent stiffness of the macro-structure at each global time step. This accounts for the
evolving state of the micro-structure. Consequently, CH is in general the most precise homogenization
method, but also the most computationally demanding.

Homogenization frameworks are necessary to accurately describematerials where themicro-structure
has a significant effect on the response of the macro-structure. MH was utilized by Lee and Shi [20] to
derive a micromechanical model that accounts for matrix damage and the inclusion of perfectly bonded
particles in particulate materials. Another micromechanical MH-based model was proposed by Yang
4Perturbed fields account for nonlinearities and heterogeneities in the micro-structure.
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et al [36] to model matrix viscoelasticity and matrix-particle debonding for the same type of material.
In Chapter 6, CH is utilized to capture micro-structures where viscoelasticity, continuum damage, and
debonding are present.





3
Linear Elasticity and Linear
Viscoelasticity in the Matrix

The pre-failure behavior of the matrix material is assumed to be mainly governed by viscoelasticity. The
motivation for this assumption is that the material experiences brittle damage, so damage probably ini-
tiates close to the ultimate strength. The elastic behaviour is investigated in this chapter; a material is
said to behave elastically if it does not dissipate energy when it is subjected to loading. Viscoelasticity
is of particular interest as the binder exhibits viscosity. A material exhibits viscosity when the stress de-
pends on the strain and strain-rate. The preliminary tests shown in Fig .1.4 of Section 1.3 are employed
for this purpose.

The identification of the (visco-)elastic behavior is done with the experiments performed by A.H.
Lasschuit [19]. A Poisson ratio and the Young’s modulus are identified from the experiments. These
quantities are utilized for identifying the viscoelastic parameters and as inputs for the continuum dam-
age model introduced in Chapter 4. Anisotropy and nonlinear elasticity are not considered because
these topics are out of the scope of this thesis. However, their implications in the behavior of the matrix
are briefly discussed.

The linear viscoelastic (LVE) Maxwell model is implemented to describe the elastic and viscous
matrix behavior. This model captures the viscoelastic tension response reasonably well, and combining
it with continuum damage is relatively straightforward.

For the simulations presented in this chapter, BCs and sample dimensions are always as prescribed
by Fig. 3.2. The discretizations of the samples are always as prescribed by Fig. 3.1, unless otherwise
stated.

(a) Tension mesh. 2310 nodes and 4410 elements

(b) Compression and shear mesh.
1567 nodes and 2996 elements

Figure 3.1: Meshes utilized for elastic and viscoelastic simulations

13



14 3. Linear Elasticity and Linear Viscoelasticity in the Matrix

(a) Tension
(b) Compression (c) Shear

Figure 3.2: BCs and dimensions (dimensions in millimeters). Horizontal reactions are sampled for tension and compression and
vertical reaction is sampled for shear

3.1. Theoretical Background
3.1.1. Linear Elasticity
In the theory of infinitesimal linear elasticity, the Cauchy stress tensor and the infinitesimal strain tensor
are work-conjugates that define strain energy density. The constitutive relation between stress and
strain is defined as linear, so it is characterized by the same tensorial relation for all states of deformation
[5]. Consequently, the FEM formulation (2.8) only requires one global load step to solve linear elastic
problems for any given loading conditions.

The constitutive equation (2.7) takes the following form in linear elasticity

𝜎(x) = C 𝜖(x) (3.1)

Where C is the linear elastic stiffness, which is given by

C =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤
⎥
⎥
⎥
⎥
⎦

(3.2)

In which the Lamé constants 𝜆 and the 𝜇 are given by

𝜆 = 𝑣𝐸
(1 + 𝑣)(1 − 2𝑣) , 𝜇 = 𝐸

2(1 + 𝑣) (3.3)

Where 𝐸 is the Young’s modulus and 𝜈 is the Poisson ratio. The Lamé constant 𝜇 is the shear modulus,
and it governs elastic response under pure deviatoric deformation. The bulk modulus 𝜅 governs elastic
response under pure dilational deformation, and it is given by

𝜅 = 𝐸
3(1 − 2𝑣) (3.4)

The linear elastic stiffness can be reduced by assuming plane strain conditions, this refers to a 2D
state where there is no out-of-plane strain. The stiffness becomes:

C = 𝐸
(1 + 𝑣)(1 − 2𝑣) [

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0
0 0 1 − 2𝑣

] (3.5)

3.1.2. The Generalised Maxwell Model
The Generalised Maxwell model is one of the most widely utilized LVE models. Its formulation stems
from the premise that the viscoelastic response is determined by the system of linear springs and
dashpots shown in Fig. 3.3, which is also called a Maxwell chain. This system consists of a spring
connected in parallel with 𝑁 so-called Maxwell elements, which are in-series arrangements of a spring
and dashpot. More Maxwell elements can lead to better accuracy, but also to overfitting by numerical
fitting methods. Overfitting can compromise the physical significance of viscoelastic parameters.
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Figure 3.3: Maxwell chain [10].

When material aging is ignored, the Maxwell chain can be mathematically described with the fol-
lowing 1D relaxation function

𝐸(𝑡 − �̃�) = 𝐸 +∑𝐸 exp(−𝑡 − �̃�𝜆 ) (3.6)

Where 𝜆 is the relaxation time of a given Maxwell chain. The relaxation time is formulated as 𝜆 =
𝜂 /𝐸 , where 𝐸 and 𝜂 are the Young’s modulus and the viscous resistance, respectively, of Maxwell
element 𝛼. The 3D generalization of the relaxation function is given by

C(𝑡 − �̃�) = C̄𝐸(𝑡 − �̃�) (3.7)

Where the dimensionless matrix C̄ is given by

C̄ = 1
(1 + 𝑣)(1 − 2𝑣)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 𝑣 𝑣 𝑣 0 0 0
𝑣 1 − 𝑣 𝑣 0 0 0
𝑣 𝑣 1 − 𝑣 0 0 0
0 0 0 − 𝑣 0 0
0 0 0 0 − 𝑣 0
0 0 0 0 0 − 𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

Introducing the relaxation function described by Eq.(3.7) into the relaxation constitutive relation de-
scribed by Eq.(2.12) and expanding the result [10], the incremental stress-strain relation of a given IP
becomes

Δ𝜎 = C̄𝐸 Δ𝜖 +∑ (1 − exp(−Δ𝑡𝜆 ))( 𝐸
Δ𝑡 /𝜆 C̄Δ𝜖 − 𝜎 (𝑡 − Δ𝑡 )) (3.9)

Where Δ𝜎 and Δ𝜖 are the differences in stress and strain between the current and the previous global
time steps, respectively. A time difference parameter Δ𝑡 is introduced by the model. This parameter
alongside the global time discretization determines the loading rate. More specifically, if the BCs are
applied in the form of displacement increments, the loading rate is given by ̇𝜖 = Δ𝑡/Δ𝑡 . Where Δ𝑡
is the displacement increment applied by the BCs at a given global time step. The loading rate ̇𝜖 is
usually referred to as the strain rate in this thesis.

3.2. Elastic Behavior
The matrix exhibits significantly different responses in tension and compression—see Fig. 1.4. This is a
common macroscopic behavior of polymers which stems from their properties at a molecular level [32].
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Polymers are composed of large molecules that form chain-like structures that are very long compared
to their cross-sections [6]. These chains form random coils and are highly entangled with each other
[32]. Consequently, themechanical behavior of polymers is not exclusively determined by themolecular
composition of the chains, but also by their local arrangements and interactions [5]. For instance, a
region of a polymer that is being stretched may behave significantly differently than a region of the same
polymer that is being compressed because the chains in these regions may undergo different motions.
Furthermore, polymer materials can usually sustain very large deformations. As a consequence, the
elastic behavior of polymers at a continuum level are generally anisotropic and nonlinear.

Many nonlinear elasticity continuummodels have been proposed to characterize different materials,
and various methods of implementing these models in a FEM context have been proposed under the
framework of hyperelasticity. Nonlinear elasticity models can characterize the anisotropic and large de-
formation behavior of polymers. TNO’s matrix behaves anisotropically and it can sustain large deforma-
tions in compression, but not in tension. Therefore, hyperelastic (or hyperviscoelastic, if viscoelasticity
is considered) models should probably be considered for a complete computational characterization
of the matrix. Choosing, implementing, and utilizing a hyperelastic model for characterizing a given
material is a daunting task. Especially when the behavior of said material at a molecular level is not
well understood and experimental data is limited, which is the case for TNO’s matrix. This thesis does
not focus in characterizing the anisotropic nature of the matrix and tension experiments are the main
subject of analysis, so considering the effect of large deformations is not necessary. Therefore, hyper-
elastic models are not considered and the elastic behavior of the matrix is idealized as isotropic and
linear elastic.

The tension Young’s modulus for TNO’s matrix material was identified through trial and error, the
Young’s modulus is 𝐸 = 294.62 𝑀𝑃𝑎. This is the Young’s modulus utilized throughout the thesis to
characterize the idealized isotropic linear elastic behavior. The experiment with ̇𝜖 = 4.2 𝜇𝑚/𝑠 is chosen
for identifying the stiffness because it is the one where least experimental issues where observed.
The line obtained from the simulation fitted to the experimental load-displacement curve is shown in
Fig. 3.4a, and the corresponding maximum principal stress field is shown in Fig. 3.5a. Note that the
experimental result shown is offsetted such that start-up effects (see Section 1.3 for definition) are not
shown. That is, the earliest point of the original load-displacement curve where start-up effects are
believed to become negligible is taken as the origin of the offsetted curve. Start-up effects are only
present in a very short range of the original curve, so they are assumed to have little effect on the state
of the experimental sample.

To understand the anisotropic and nonlinear elastic nature of the matrix, the compression exper-
iments (Fig. 1.4b) are briefly discussed. In compression the matrix exhibits two long quasi-linear
branches. This implies that the molecular structure of the matrix undergoes different processes during
each branch. For example, in the first branch compressive action between the chains might be signif-
icant and then become negligible for the second branch, where inter-chain friction might be the main
resisting action. Note, however, that this is just an example, and the exact processes that occur at each
branch are unknown. Prior to the first branch it gradually gains stiffness over a small strain region, in
between the two branches it gradually loses stiffness, and after the second branch it slowly builds stiff-
ness again. It is not known how the matrix behaves after this because the experimental samples failed
prematurely. It is assumed that damage in the matrix was negligible before failure because tension
experiments show that damage occurs in a brittle manner. It is unclear whether the small initial region
where the matrix gradually gains stiffness occurs because of start-up effects or because the matrix
behaves like this in general. Overall, the response of the matrix is less stiff and it takes a different path
in compression compared to tension. The Young’s moduli for both compression quasi-linear branches
were found with the same procedure as for tension. The results found for the first and the second
quasi-linear branches are 𝐸 = 125.85 𝑀𝑃𝑎 and 𝐸 = 66.00 𝑀𝑃𝑎, respectively. The lines fitted to the
compression experiment are shown in Fig.3.4b.

The general behavior of the matrix under arbitrary loading conditions and stress states is not known.
Furthermore, the available experimental data is insufficient to construct a reliable hypothesis for general
behavior. This poses a limitation for modelling the behavior of the matrix that binds solid propellants
in Chapters 5 and 6. The micro-structure of solid propellants develops a variety of stress states for
all types of macroscopic BCs. To see this, see the deviatoric and hydrostatic stress fields shown in
Figures 5.9–5.10 of Chapter 5, which show that stress state varies significantly within RVEs subjected
to simple BCs. This thesis is concerned with computationally reproducing the tension behavior of
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solid propellants. The general anisotropic behavior of the matrix is not known, so going forward, it is
idealized as isotropic. This, however, is a significant simplification. In reality, anisotropy probably has
an important effect in the tension behavior of solid propellants because compression and shear stress
states occur in the matrix of the micro-structure. The properties for the matrix and the particles that are
used throughout the thesis are summarized in Table 3.1.

For reference for the following chapters, linear elastic results for compression and shear simulations
are given here. The compression and shear responses of the matrix are compared in Fig.3.4c, where
the Young’s modulus of the second compression branch is utilized for both cases. The corresponding
maximum principal stress fields are shown in Figures 3.5b and 3.5c.

(a) Tension stiffness identification (b) Compression stiffness identification

(c) Compression and shear comparison

Figure 3.4: Experimental responses and linear elastic simulations

(a) Tension

(b) Compression (c) Shear

Figure 3.5: Maximum principal stress fields for displacement
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𝐸 (𝑀𝑃𝑎) 𝜈 𝐸 (𝑀𝑃𝑎) 𝜈
249.62 0.39 15000 0.32

Table 3.1: Elastic properties of TNO’s matrix (subscript 0) and particles [14] (subscript 1)

3.3. Viscoelastic Behavior
TheGeneralisedMaxwell model is utilized for capturing the viscoelastic behavior of thematrix. Only one
Maxwell element is considered for the Generalised Maxwell model. The viscoelastic parameters are
identified by fitting the incremental stress relation described by Eq.(3.9) to the chosen tensile experiment
with MATLAB’s algorithm for nonlinear least squares fitting. The fitting is performed by considering
the same Poisson ratio, dimensions, and BCs as in the experimental specimen. The output of this
procedure is equivalent to the solution of a four-noded quadrilateral finite element because the stress
and strain fields are uniform in both cases. Therefore, the fitting procedure is said to be performed with
an equivalent single-element mesh, or just single-element mesh for simplicity. The simple configuration
considered for the Generalised Maxwell model can accurately reproduce the region of the experimental
load-displacement curve to which it was fitted, so there is no need for additional Maxwell elements.

The nonlinear least squares fitting start at the origin of the offsetted curve and the cutoff point is cho-
sen at a displacement value that is assumed to be slightly smaller than the displacement necessary for
damage initiation. This criterion is employed to avoid introducing damage effects into the identification
of viscoelastic parameters, and to maximize the amount of data used for the fitting. Two cases are con-
sidered for identifying the viscoelastic parameters, a brittle and a ductile case, where the cutoffs are
80.0% and 7.37% of the displacement before rupture, respectively. Note that the terminology for the
two cases comes from the criterion used for determining the cutoff points. The pre-damage regime is
larger for the brittle case because the damage regime is smaller by definition. Note that damage is not
treated in this chapter, but acknowledging its presence in the experiments is necessary. The purpose
of investigating the two cases is that the exact moment of damage initiation in the experiments is not
known, so it is useful to understand the role of viscoelasticity when damage is assumed to start early
and when it is assumed to start late. The brittle case is a better approximation of reality because the
experiments exhibit brittle failure. The ductile case is investigated for comparison.

The response of the single-element mesh utilized for parameter identification suffers from Poisson
locking, so it is stiffer than the one of the multi-element mesh shown in Fig. 3.1a. Poisson locking
implies that the single-element mesh stores more energy than the multi-element mesh for the same
applied displacement because its deformation is limited to a uniform strain field. Therefore, the BCs
applied in the horizontal direction inhibit the single element from releasing energy by deforming in
the vertical direction. Conversely, the multi-element mesh is inhibited from deforming in the vertical
direction only close to the vertical edges. The ratio between the energy stored by an element that
is free to deform vertically to the energy stored by an element with inhibited vertical deformation is
𝑎 = 1/(1 − 𝜈). For the case of the matrix there is 𝑎 = 1.639. The ratio of stored energy, and
consequently of stiffness, between the single- and the multi-element meshes could be approximated
with 𝑎 . However, a procedure that takes into account the effect that the undeformable vertical edges
have on the multi-element mesh by considering its linear elastic stiffness is constructed instead. The
procedure is described below and is accompanied with an example. The values given in the example
correspond to the brittle case.

1. Obtain the parameters 𝐸 , 𝐸 and 𝜆 for the single-element mesh from nonlinear least square
fitting

𝐸 = 39.59 𝑀𝑃𝑎, 𝐸 = 134.5 𝑀𝑃𝑎, 𝜆 = 184.9 𝑠

2. Set the multi-element mesh quantities 𝐸 /𝐸 and 𝜆 , equal to those of the single-element mesh

𝐸
𝐸 = 𝐸

𝐸 , 𝜆 = 184.9 𝑠

3. Find the scaling factor 𝑎 that determines the ratio between the linear elastic stiffness of the multi-
element mesh (which was obtained in the previous section) and the total stiffness of the single-
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element mesh

𝑎 = 𝐸
𝐸 + 𝐸 = 1.692

4. Obtain the stiffnesses for the multi-element mesh by scaling the single-element mesh stiffnesses
by the scaling factor 𝑎

𝐸 = 𝑎𝐸 = 67.00 𝑀𝑃𝑎, 𝐸 = 𝑎𝐸 = 227.6 𝑀𝑃𝑎

Note that the relaxation times are the same for the single- and the multi-element meshes. This is
because Poisson locking does not affect the time scale over which the material experiences relaxation.
Also note that 𝑎 ≈ 𝑎 , which implies that the undeformable vertical edges have a relatively small effect
on the accumulation of strain energy.

The parameters identified for both the brittle and the ductile cases are shown in Table 3.2. The
single-element mesh and the multi-element mesh responses are compared in Fig. 3.6 for both the
brittle and the ductile case. The figure shows that the procedure used to extrapolate the Maxwell
parameters only induces a small deviation from the original approximation. The deviation is visible for
the brittle case but not for the ductile case. The deviation is larger for the brittle case because the cutoff
point is higher, so the parameter identification involves greater complexity.

(a) Brittle case (b) Ductile case

Figure 3.6: Single-element mesh and multi-element mesh approximations

𝐸 (𝑀𝑃𝑎) 𝐸 (𝑀𝑃𝑎) 𝜆 (𝑠)
218.2 76.43 37.03

(a) Brittle case

𝐸 (𝑀𝑃𝑎) 𝐸 (𝑀𝑃𝑎) 𝜆 (𝑠)
39.59 134.5 184.9

(b) Ductile case

Table 3.2: Viscoelastic parameters for TNO’s matrix material

Utilizing the parameters identified for both the brittle and the ductile cases, the response of the
simulations is compared to the experiments for different strain rates in Figures 3.7 and 3.8. These
comparisons show that the approximation of the experiments with different strain-rates deviate more.
This discrepancy can be attributed to limitations of the Generalised Maxwell model, the parameter
identification, and to experiments.

The brittle case parameters approximate the response of the experiment employed for the fitting
better because the cutoff point is higher. Both cases approximate the ̇𝜖 = 17.7 𝜇𝑚/𝑠 experiment
similarly. The brittle case under-predicts the load for the ̇𝜖 = 1.8 𝜇𝑚/𝑠 experiment, but the ductile case
does not. Thus, the ductile case can still replicate this curve if damage is considered, but the brittle
case cannot.

The responses of the brittle and the ductile cases are shown in Fig. 3.9 for different strain rates.
The brittle case is more sensitive to strain rate than the ductile case. This is because for the ductile
case damage significantly affects pre-failure behavior, so the influence of viscoelasticity is smaller. The
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(a) 1.8 m/s strain rate (b) 4.2 m/s strain rate

(c) 17.7 m/s strain rate

Figure 3.7: Brittle case approximations for different experiments

fields for the maximum principal stress are shown in Fig. 3.10 for both the brittle and the ductile cases.
Both fields have similar distributions, but different magnitudes, as the elastic field shown in Fig. 3.5a
because the strain rates within the specimens are relatively homogeneous.
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(a) 1.8 m/s strain rate (b) 4.2 m/s strain rate

(c) 17.7 m/s strain rate

Figure 3.8: Ductile case approximations for different experiments

(a) Brittle case (b) Ductile case

Figure 3.9: Comparison between the brittle and the ductile case for different strain rates

(a) Brittle case (b) Ductile case

Figure 3.10: Maximum principal stress fields for ̇ . / and displacement
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3.4. Conclusion
The elastic and viscoelastic behaviors of the matrix material were investigated in this chapter employing
isotropic linear elasticity and the Maxwell model for LVE. The Young’s modulus of a material is easy to
identify and carries substantial information. Therefore, the first step to characterize the material was to
identify its tension Young’s modulus from the preliminary tension experiment of strain rate ̇𝜖 = 4.2𝜇𝑚/𝑠.
The matrix exhibits viscoelastic properties, and viscoelastic parameters must be known to characterize
the damage properties of the matrix and the solid propellants in the following chapters. Therefore, the
tension viscoelastic parameters were identified from the same ̇𝜖 = 4.2𝜇𝑚/𝑠 experiment for a so-called
single-element mesh utilizing nonlinear least squares fitting. These parameters were extrapolated to
the case of a multi-element mesh employing a procedure that corrects the Poisson locking experienced
by the single-element mesh. The region of the experiment for which the parameters were fitted was
accurately reproduced. However, the accuracy of the approximations for experiments with different
strain rates was significantly lower for the same parameters. Loss of accuracy occurs because of dis-
crepancies between the experimental samples and because of the isotropy and LVE simplifications. To
improve the quality of the parameters obtained from nonlinear least squares fitting data from relaxation
experiments is necessary. To improve the characterization of the elastic and viscoelastic behaviors
of TNO’s matrix material anisotropy and state-dependency should be considered. Experimental data
from DMA, creep, and loading-reloading experiments would be useful for this purpose.



4
Damage in the Matrix and in Perfectly

Bonded Solid Propellants
The damage-viscoelastic behavior of the matrix is investigated by combining the Generalised Maxwell
model and a modified version of the physics-based continuum damage model proposed by H.K. Lee
and D.K. Shin [20]. Lee’s and Shin’s model was specifically developed for modelling damage in particle
reinforced composites with a brittle matrix and perfectly bonded stiff particles. Solid propellants fit into
this category, except that the particles are not perfectly bonded. Nonetheless, the special case of
perfectly bonded particles is relevant for understanding thematerial andmay be of interest in preliminary
stages of design. Furthermore, the damage model can also be utilized for the matrix-only. The modified
version of Lee’s and Shin’s model is applicable to any class of linear elastic isotropic material, so it is a
non-viscousmodel. The viscoelastic version of the modified model is applicable to any class of isotropic
LVE material. The matrix is assumed to be isotropic and LVE.

The modified damage model and its extension to viscoelasticity are introduced. A numerical com-
parison between the modified model and Lee’s and Shin’s original implementation is presented. This
comparison also serves as a verification that the model was correctly implemented into the FEM pro-
gram. The behavior of the non-viscous modified model is investigated. Parameters are identified in
order to replicate the matrix-only tension experiments (Fig. 1.4a) with the viscoelastic version of the
model. The special case of perfectly bonded particles is also considered and computational results
are compared to the solid propellant tension experiments, Fig. 1.5a. Finally, the suitability of utilizing
the damage-viscoelastic model for the matrix and for the matrix within a computational homogenization
(CH) framework is discussed.

BCs and sample dimensions in this chapter are as prescribed by Fig. 4.2. The meshes for the
corresponding computational samples are shown in Fig. 4.1. These are always utilized unless noted
otherwise. In general, the global time step magnitude is 1.0×10 𝑚 and the maximum total displace-
ment is 1.98 × 10 𝑚. These values always apply unless stated otherwise.

(a) Tension mesh. 601 nodes and 1096 elements

(b) Compression and shear mesh.
1567 nodes and 2996 elements

Figure 4.1: Meshes utilized for the damage model simulations

23
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(a) Tension
(b) Compression (c) Shear

Figure 4.2: BCs and dimensions (dimensions in millimeters). Horizontal reactions are sampled for tension and compression and
vertical reaction is sampled for shear.

4.1. Particle Reinforced Brittle Composite Model
Lee and Shin construct their model [20] by combining the constitutive model for embedded particles
presented by J.W. Ju and T.M. Chen [16], the constitutive model for micro-crack damage presented
by J.W. Ju and K.H. Teng [18], the damage evolution model for micro-crack growth presented by F.
Addessio and J. Johnson [2], and the damage evolution model for micro-crack nucleation presented by
D.R. Curran, D.A. Shockey and L. Seaman [8]. Both constitutive models and the micro-crack growth
model are based in micromechanical fracture mechanics. Mathematical homogenization (MH) is also
employed in the constitutive models to define the macroscopic constitutive relations. The micro-crack
nucleation model is based on observation, but it resembles the rate of nucleation equation from classi-
cal nucleation theory (CNT). This is the most common model to quantify nucleation, where nucleation
marks the transition of one thermodynamic phase to another. The model for embedded particles incor-
porates the stiffening effect of perfectly bonded particles into the undamaged homogenized material. It
is completely decoupled from the formulation of the constitutive model for micro-crack damage. Both
damage evolution models are given in rate form, so they introduce a damage rate dependence into
the composite damage model. The Generalised Maxwell model introduces a viscoelastic rate depen-
dence to the viscoelastic extension of the modified damage model. The formulations that give rise to
the damage and the viscoelastic rate dependencies are completely decoupled, and are motivated by
different physical phenomena.

This section describes the modified version of the damagemodel and its extension to viscoelasticity.
Lee’s and Shin’s original implementation is modified by extending its constitutive damage formulation to
three orthogonal directions (rather than the originally proposed unidirectional formulation), by introduc-
ing a parameter called the threshold micro-crack density, and by considering a different rate of crack
growth equation, i.e. a different damage evolution law.

4.1.1. Constitutive Behavior
The constitutive models utilized by Lee and Shin define the macroscopic constitutive behavior in terms
of the elastic compliance of the matrix S = S and so-called perturbed compliances ⟨S

∗
⟩. The

perturbed compliances are obtained by taking the ensemble average1 of the perturbed part of the
microscopic strain decomposition equation Eq. (2.16), and extrapolating it to the macro-structure by
means of averaging theorems Eq. (2.14). The resulting governing macroscopic compliance is given by

S = S + ⟨S
∗
⟩ (4.1)

Where the perturbed part can be additively decomposed as

⟨S
∗
⟩ = (⟨S

∗
⟩ + ⟨S

∗
⟩ + ⟨S

∗
⟩ + ⟨S

∗
⟩) (4.2)

The superscripts represent the phases of the material. Where (1) is the phase of the first-order contri-
bution due to the existence of particles, (2) is the phase of the first-order contribution due to existence
of micro-cracks, (3) is the phase of the second-order contribution due to pairwise particle interaction,
and (4) is the phase of the second-order contribution due to pairwise interaction of micro-cracks.

The perturbed compliance due to noninteracting particles ⟨S
∗
⟩ is obtained by assuming that par-

ticles do not intersect one another, that they are perfectly bonded to the matrix and statistical homo-
1The average over the ensemble of all statistical realizations of randomly distributed micro-cracks and particles in the RVE.
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geneity2 [16]. Furthermore, it is assumed that particles are spherical, of uniform size and randomly
distributed [16]. The definition of the phase 1 compliance is

⟨S
∗
⟩ =

⎡
⎢
⎢
⎢
⎢
⎣

𝒮 + 2𝒮 𝒮 𝒮 0 0 0
𝒮 𝒮 + 2𝒮 𝒮 0 0 0
𝒮 𝒮 𝒮 + 2𝒮 0 0 0
0 0 0 𝒮 0 0
0 0 0 0 𝒮 0
0 0 0 0 0 𝒮

⎤
⎥
⎥
⎥
⎥
⎦

(4.3)

where

𝒮 = −2𝜙 (5𝜓 + 5𝑣 𝜓 − 2𝜓 + 10𝑣 𝜓 ) (4.4)
𝒮 = −4𝜙 (4 − 5𝑣 )𝜓 (4.5)

in which 𝜓 and 𝜓 are given by

𝜓 = −9𝛼𝜅 − 6𝛽𝜅 + 4𝛽𝜇
36𝛽(3𝛼 + 2𝛽)𝜅 𝜇 (4.6)

𝜓 = 1
8𝛽𝜇 (4.7)

and where 𝛼 and 𝛽 are

𝛼 = 2 (5𝑣 − 1) + 10 (1 − 𝑣 ) ( 𝜅
𝜅 − 𝜅 − 𝜇

𝜇 − 𝜇 ) (4.8)

𝛽 = 2 (4 − 5𝑣 ) + 15 (1 − 𝑣 ) 𝜇
𝜇 − 𝜇 (4.9)

Note that the elastic properties of the matrix and the particles have subscripts (0) and (1), respectively.
Also note that the radius of the particles is not an explicit variable in the definition of this compliance.
Instead, the volume fraction of particles 𝜙 is present to account for the relative amount of particles
present.

The perturbed compliance due to non-interacting micro-cracks ⟨S
∗
⟩ is obtained by assuming that

micro-cracks do not intersect one another and that local homogeneity3 holds [18]. Furthermore, it is
assumed that the faces of all micro-cracks have an normal outward normal vector in the same direction,
meaning micro-cracks lie in parallel planes. The micro-cracks are assumed penny-shaped, of uniform
size and randomly distributed [18]. The definition of the phase 2 compliance for microcracks orthogonal
to the local z-axis is

⟨S
∗
⟩ = 16 (1 − 𝑣 )

3𝐸 (2 − 𝑣 )𝜔

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 2 − 𝑣 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(4.10)

Where 𝜔 is the volume-averaged micro-crack density

𝜔 ≡ 𝑁�̄�
𝑉 (4.11)

For which �̄� is the mean crack radius, 𝑁 is the number of cracks per unit volume, and 𝑉 is the RVE
averaging volume [20].

Micro-crack alignment can be extended to the three local Cartesian axes (x, y and z) by changing
the probability density function (PDF) that describes micro-crack location from 𝑓(n) = 𝑓(e ) to 𝑓(n) =
2In a statistically homogeneous material the averaged material properties are independent of the averaging domain.
3A locally homogeneous material is one where the spatial gradient of the probability density functions of the geometry and the
distribution of micro-cracks are small.
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𝑓(e )+𝑓(e )+𝑓(e ), for which 𝑓(e ) = 𝑓(e ) = 𝑓(e ). Wheren is the outward normal of a micro-crack
and e (with 𝑖 = 𝑥, 𝑦, 𝑧) are the unit basis vectors of the Cartesian coordinate system. The modified
phase 2 compliance for this micro-crack configuration is given by

⟨S
∗
⟩ = 16 (1 − 𝑣 )

3𝐸 (2 − 𝑣 )𝜔

⎡
⎢
⎢
⎢
⎢
⎣

2 − 𝑣 0 0 0 0 0
0 2 − 𝑣 0 0 0 0
0 0 2 − 𝑣 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

⎤
⎥
⎥
⎥
⎥
⎦

(4.12)

This formulation accounts for damage that occurs in orthogonal planes and evolves isotropically. It is
appropriate for the damage evolution model that will be introduced in Section 4.1.2 because deviatoric
and hydrostatic stresses generate damage in said model. For a similar constitutive formulation that
accounts for orthotropic damage evolution, the crack-radius should be assumed to be uniform only for
aligned micro-cracks. Unaligned micro-cracks (i.e. micro-cracks with different n) may have different
crack size. Thus, the PDF that describes micro-crack location, and now also radius, should be written
as 𝑓(n, 𝑐) = 𝑓(e , 𝑐 ) + 𝑓(e , 𝑐 ) + 𝑓(e , 𝑐 ), for which 𝑓(e , 𝑐 ) = 𝑓(e , 𝑐 ) = 𝑓(e , 𝑐 ). Where 𝑐 is
crack radius and 𝑐 are the (uniform) crack radii for specific orthogonal directions. Consequently, there
would be separate damage variables �̄� , 𝑁 , and 𝜔 for each orthogonal plane. For guidance on how to
construct more complex damage constitutive relations see J.W. Ju and K.H. Teng [18].

The perturbed compliance due to the pairwise interaction of particles ⟨S
∗
⟩ is derived based on the

same assumptions as ⟨S
∗
⟩ [16]. The definition of the phase 3 compliance is

⟨S
∗
⟩ =

⎡
⎢
⎢
⎢
⎢
⎣

𝒮 + 2𝒮 𝒮 𝒮 0 0 0
𝒮 𝒮 + 2𝒮 𝒮 0 0 0
𝒮 𝒮 𝒮 + 2𝒮 0 0 0
0 0 0 𝒮 0 0
0 0 0 0 𝒮 0
0 0 0 0 0 𝒮

⎤
⎥
⎥
⎥
⎥
⎦

(4.13)

where

𝒮 = −2𝜙 (15�̄� 𝜓 + 10�̄� 𝜓 + 15𝑣 �̄� 𝜓 + 10𝑣 �̄� 𝜓 + 10�̄� 𝜓 − 4�̄� 𝜓 + 10𝑣 �̄� 𝜓 + 20𝑣 �̄� 𝜓 )
(4.14)

𝒮 = −8𝜙 (4 − 5𝑣 ) �̄� 𝜓 (4.15)

in which

�̄� = 5
4𝛽 [−2 (1 − 𝑣 ) − 5𝑣 − 4𝛼

3𝛼 + 2𝛽 (1 + 𝑣 ) (1 − 2𝑣 )] (4.16)

�̄� = 5
8𝛽 [11 (1 − 𝑣 ) + 5𝑣 − 3𝛼

3𝛼 + 2𝛽 (1 + 𝑣 ) (1 − 2𝑣 )] (4.17)

The perturbed compliance due to the pairwise interaction of particles ⟨S
∗
⟩ is derived based on the

same assumptions as ⟨S
∗
⟩ [18]. The definition of the phase 4 compliance is

⟨S
∗
⟩ = 16 (1 − 𝑣 )

3𝐸 (2 − 𝑣 )𝜔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 (2 − 𝑣 ) �̂� 0 0 0
0 0 0 2�̂� 0 0
0 0 0 0 2�̂� 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.18)

Where �̂� and �̂� depend on the radius of the integration used for the ensemble-averaging operation
[18].
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For the case where micro-cracks are aligned to the three Cartesian axes, the modified phase 4
compliance is obtained by utilizing the same PDF 𝑓(n) that was utilized to obtain the modified phase 2
compliance. For simplification, interactions between unaligned micro-cracks are ignored. The modified
phase 4 compliance is given by

⟨S
∗
⟩ = 16 (1 − 𝑣 )

3𝐸 (2 − 𝑣 )𝜔

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(2 − 𝑣 ) �̂� 0 0 0 0 0
0 (2 − 𝑣 ) �̂� 0 0 0 0
0 0 (2 − 𝑣 ) �̂� 0 0 0
0 0 0 4�̂� 0 0
0 0 0 0 4�̂� 0
0 0 0 0 0 4�̂�

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.19)

Similarly to the modified phase 2 compliance, this expression only allows isotropic damage evolution.
The same modifications as mentioned for the phase 2 compliance should be made to the PDF 𝑓(n, 𝑐)
to permit orthotropic damage evolution.

4.1.2. Damage Evolution: Nucleation and Growth of Micro-Cracks
Damage is assumed to evolve as the consequence of both crack nucleation and growth, which are
assumed to be independent and sequential processes [20]. It is important to note that the quantities
corresponding to the number and size of micro-cracks; 𝑁 and �̄�, respectively, are statistical quantities
[2]. Their purpose is to provide values that result in a globally accurate macroscopic micro-crack density
𝜔.

The rate of micro-cracks nucleation 𝑁 is given by

�̇� = { �̇� exp [ ]
0, 𝜎 < 𝜎

𝜎 > 𝜎 (4.20)

where 𝜎 is the nucleation threshold stress, 𝜎 is the hydrostatic stress, and �̇� and 𝜎 are parameters
which can be identified from impact experiments [8]. Curran, Shockley and Seaman [8] do not mention
how they derived Eq. (4.20), but it is implied that it comes from experimental observation. The authors
claim that all the parameters present in the rate equation are material properties, not phenomenological
parameters. This claim could be justified if the rate equation is indeed a reformulation of CNT for the
specific case of micro-crack nucleation.

Addessio and Johnson [2] describe micro-crack growth utilizing so-called damage surfaces. A
micro-crack is assumed to become unstable (i.e. grow) when its energy state lies outside its dam-
age surface, which is defined by the energy balance of the micro-crack. Microscopic damage surfaces
are transformed into a single macroscopic damage surface by averaging the strain in the macroscopic
region under consideration. Micro-cracks within this region are assumed to become unstable when the
stress state of the region lies outside the macroscopic damage surface [2].

Lee and Shin utilize a macroscopic damage surface that assumes exponential crack-size distribu-
tion. This is at odds with the damage constitutive relations that they employ (Eqs. (4.10) and (4.18)),
which assume uniform crack-size distribution. Nevertheless, the results obtained in the following sec-
tions show that the behavior of the damage model is reasonable in spite of the inconsistent formulation.
The macroscopic damage surface for an isotropic material with exponential crack-size distribution is
defined by

𝐹 (𝑝, 𝑞, �̄�) = {
𝑞 + ( ) [(2 − 𝑣 ) 𝑝 − ̄ ] = 0, 𝑝 < 0

𝑞 − ( ) [(𝜇 𝑝 + 𝜎 ) (𝜇 𝑝 + 𝜎 + √ ) + ] , 𝑝 > 0
(4.21)

In which 𝜎 is the cohesive stress and 𝜇 is the coefficient of friction. The pressure 𝑝, the deviatoric
stress 𝑞 and 𝐾 are given by

𝑝 = −13𝜎 , 𝑞 = √32𝑞 𝑞 , 𝐾 ≡ 𝜋
2
2 − 𝑣
1 − 𝑣 𝛾𝐺 (4.22)
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Where 𝑞 = 𝜎 +𝑝𝛿 . And 𝛾 and 𝐺 are the crack surface energy and the shear modulus, respectively.
The crack-tip speed in a homogeneous isotropic continuum approaches the Rayleigh speed as it

propagates [2]. The Rayleigh wave speed is approximated by the shear wave speed. Therefore, the
rate of crack growth is defined as

̇�̄� = 𝛽 ̇�̄�max tanh (𝑑s) (4.23)

Where 𝑑s quantifies the distance by which the stress state exceeds the damage surface, �̇�max is the
shear wave speed, and 𝛽 is a constant control parameter.

The shear wave speed is given by

̇�̄�max = √
𝐺
𝜌∗ (4.24)

Where 𝐺 is the degraded shear modulus. The expression for this parameter is

𝐺 = 𝐺
1 + 2𝐺𝛽 �̄� (4.25)

in which

𝛽 = {
( )( ) , 𝑝 ≤ 0
( ) , 𝑝 > 0

(4.26)

Equation (4.25) for the degraded shear modulus was defined by Addessio and Johnson [2], and it is
utilized in this thesis. Instead of a degraded shear modulus, Lee and Shin utilized a degraded Young’s
modulus 𝐸∗ that was defined by H.K. Lee and S. Simunović [21]. The behaviors resulting from the
different rate of crack growth relations are compared in Section 4.2.

Lee and Shin defined the parameter 𝑑s as

𝑑s = 𝑞 − 𝐹 (4.27)

This definition is inappropriate for quantifying the overstress because it is the argument of a hyperbolic
tangent function. The magnitude of 𝑑s depends on the units system utilized, so the value returned from
the hyperbolic tangent will be different for different unit systems. Calculations are performed in SI units,
so |𝑑s| ⋙ 10 and consequently, tanh (𝑑s) ≈ 1 and

(tanh( s))
̄ ≈ 0. This means that the rate of crack

growth equation Eq.(4.23) and its algorithmic implementation become independent of overstress. The
distance between the damage surface and the stress state 𝑑s is defined with Eq.(4.27). This makes the
description of crack growth the weakest aspect of the damage model. The consequences of having a
crack growth equation that is independent of state are discussed later in this chapter, when the damage
model is applied. Exploring overstress measures is a complex task that is not in the scope of this study.

4.1.3. Finite Element Implementation and Extension to Viscoelasticity
The constitutive relation proposed by Lee and Shin for their model takes the usual form of damage
formulations. A secant stress-strain relation is given by

𝜎 = C(𝑁, �̄�)𝜖 (4.28)

Where C(𝑁, �̄�) is the secant stiffness, the inverse of the governing macroscopic compliance defined by
Eq. (4.1).

The rate form of the constitutive equation Eq. (4.28) is the starting point for the FE implementation
of Lee’s and Shin’s model. Using the chain rule for derivatives, it is given by

�̇� = C ̇𝜖 + 𝜕C𝜕𝑁�̇�𝜖 +
𝜕C
𝜕�̄�

̇�̄�𝜖 (4.29)

Linearizing the the stress rate �̇� and the strain rate �̇� within a global time step as Δ𝜎 and Δ𝜖, respec-
tively, the constitutive rate equation Eq. (4.29) can be discretized as

𝜎 = 𝜎 + CΔ𝜖 + 𝜕C𝜕𝑁Δ𝑁 Δ𝜖 + 𝜕C𝜕�̄� Δ�̄� 𝜖 (4.30)
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Note that the notation 𝑡 and 𝑡 +Δ𝑡 introduced in Section 2.1 for describing the previous and the current
global time steps was changed to 𝑛 and 𝑛 + 1, respectively. This equation is solved sequentially. That
is, first the second term of the right-hand side is solved and summed with the first term, then the third
term is solved and summed with the other terms, and then the same follows for the fourth term. The
third and the fourth terms are called the softening terms because only they can make the incremental
relation lose positive-definiteness. More specifically, the third term is called the crack-growth softening
term and the fourth term is called the nucleation softening term. It is important to note that despite their
name, these terms may be active even before the material exhibits softening. The softening terms are
proportional to the gradient of the secant stiffness with respect to the damage variables, so they are
large when damage grows abruptly.

The nucleation rate Eq. (4.20) and growth rate Eq. (4.23) equations can be solved by applying the
incremental form of the backward Euler method [20]. Their discretization is given by

𝑁 = 𝑁 + Δ𝑡 �̇� ⋅ exp [(𝜎) − 𝜎no
𝜎 ] (4.31)

�̄� = �̄� + 𝛽Δ𝑡 √ (𝐺)
(𝜌∗) tanh (𝑑s) (4.32)

Where 𝑡 is a time difference parameter and is interchangeable with the parameters �̇� and 𝛽. These
three parameters alongside the global time discretization determine the loading rate. Equations (4.31)
and (4.32) are solved locally within the global time step of interest using the NR method. The local NR

procedure takes the form 𝑥( ) = 𝑥( ) − ( ( ) )
( ( ) )

, where 𝑟(𝑥) is the residual obtained at a local time

step 𝑙 from solving the discretized form of damage variable 𝑥 at a global time step 𝑛 + 1.
Discretized incremental equation Eq. (4.30) can lead to highly unstable numerical behavior for the

implemented version of the damage model. Instabilities occur when after a time step of inelastic de-
formation the response of the following time step becomes elastic again because the stress state goes
back into the damage surface. This can produce oscillations between elastic and inelastic deforma-
tions at the IPs. This process is clearly shown in Fig. 4.3a for a four-noded single-element mesh and
for a three-noded multi-element mesh4 The parameters and dimension of the single-element mesh are
the same as for the multi-element mesh. The local behavior of the multi-element mesh is more stable
because neighboring elements stabilize each other.

Instabilities are caused by large values of the crack-growth softening term. Micro-cracks grow
abruptly at damage initiation because micro-crack size as a function of deformation is not smooth
and not differentiable at this point, see the micro-crack evolution figures in Appendix A and in Lee and
Shin [20]. Therefore, the numerical behavior of a given IP usually becomes unstable at the time step of
crack-growth initiation. Micro-cracks grow at a large rate, even if the stress state is barely outside the
damage surface. Therefore, instabilities also take place when the material is highly degraded, because
the state of stress falls deep into the damage surface. The instabilities are a consequence of the rate
of crack growth equation being independent of state.

A new parameter called the threshold micro-crack density 𝜔 is introduced with the purpose of
reducing numerical instabilities. This parameter specifies a threshold after which the softening terms
are activated. Below this threshold damage may evolve but the softening terms are set to zero. Thus,
the initial non-differentiable part of the crack growth function can be bypassed. Utilizing the threshold
micro-crack density, the discretized incremental constitutive equation is given by

𝜎 = {
𝜎 + CΔ𝜖 𝜔 < 𝜔
𝜎 + CΔ𝜖 + CΔ𝑁 Δ𝜖 + C

̄ Δ�̄� 𝜖 𝜔 ≥ 𝜔 (4.33)

This formulation cannot avoid instabilities when the material is highly degraded.
Lee and Shin suggest to use the following expression as the tangent stiffness C for the global

NR procedure
𝜕Δ𝜎
𝜕Δ𝜖 = C+ 𝜕C𝜕�̄� Δ�̄� +

𝜕C
𝜕𝑁Δ𝑁 (4.34)

4The multi-element mesh simulation corresponds to the case of Fig. 4.8a in which . × .
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(a) Single-element mesh (b) Multi-element mesh

Figure 4.3: Comparison of unstable behavior for different meshes

Note that ≠ , so Eq. (4.34) is a pseudo-tangent stiffness rather than a consistent tangent stiff-
ness.

Computational efficiency is crucial for CH, which is employed in Chapter 6. Lee’s and Shin’s pseudo-
tangent stiffness is not a good choice for efficiently carrying out the NR procedure. In fact, it has
been observed that utilizing it generally delivers worse computational performance than utilizing the
secant stiffness. Figure 4.45 illustrates this for a concrete example. The secant stiffness is not a
good choice for carrying out the NR procedure either because it is always positive-definite, and the
tangential relation loses positive-definiteness during softening. The rate constitutive equation Eq. (4.29)
cannot analytically relate the strain rate ̇𝜖 to the stress rate �̇� with a linear system of equations, so a
consistent tangent stiffness is not possible. It is hypothesized that Quasi-NR methods (also called
Secant-Newton methods) can characterize the tangential relation better than the secant or the pseudo-
tangent stiffnesses, and deliver good computational performance. Choosing which Quasi-NR method
to use must be a judicious decision. The secant stiffness is utilized for the NR procedure in this thesis
for simplicity. But investigating and employing Quasi-NR methods is recommended for future research.

Figure 4.4: NR global iterations per time step for different choices of tangent stiffness

To extend the implemented damage model to viscoelasticity, a relaxation function must be found
and placed into the relaxation constitutive relation described by Eq.(2.12). The resulting integral ex-
pression must be transformed to a close form expression. For this purpose it was attempted to employ
the method utilized by B.J. Yang et al [36], who rigorously extend the same embedded particle con-
stitutive model utilized here and a statistical debonding damage evolution equation to viscoelasticity.
Yang transforms the relaxation constitutive relation to the Laplace domain. There he replaces the elas-
5The simulation corresponds to the case of Fig. 4.38 in which ̇ . / .
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tic parameters with transformed viscoelastic parameters and then transforms the so-called equivalent
elastic problem back to the time domain. It was not possible to apply this method to the damage model
implemented here because the resulting inverse Laplace transformation cannot be solved analytically.

Since Yang’s method could not be applied, the damage model was extended to viscoelasticity in
an approximate manner. The second term of the elastic incremental relation (Eq.(4.33)), which is the
first of the sequential loading process and accounts for the positive-definite part, was replaced by the
viscoelastic incremental relation of the Maxwell model (Eq.(3.9)). The softening terms remain elastic.
The resulting viscoelastic version of the damage model is given by

𝜎 =
⎧⎪
⎨⎪⎩

𝜎 + C Δ𝜖 + ∑ (1 − exp (− )) ( / C Δ𝜖 − 𝜎 (𝑡 − Δ𝑡 )) 𝜔 < 𝜔

𝜎 + C̄𝐸 Δ𝜖 + ∑ (1 − exp (− )) ( / C̄Δ𝜖 − 𝜎 (𝑡 − Δ𝑡 ))+
CΔ𝑁 Δ𝜖 + C

̄ Δ�̄� 𝜖 𝜔 ≥ 𝜔
(4.35)

Where the stiffnesses C and C are obtained from the Young’s moduli 𝐸 and 𝐸 , respectively. The
method used for obtaining this expression is not rigorous, as this expression is derived from a linear
elastic basis and not from a viscoelastic basis. Furthermore, the damage evolution equations are not
extended to viscoelasticity, as only brittle damage is of concern. The physics encapsulated by the
elastic model are lost in the pre-failure damage regime of the viscoelastic model. The equation for the
damage surface is not extended to viscoelasticity either, because it is assumed that elastic damage
surfaces can predict viscoelastic damage initiation sufficiently well.

For a step-by-step description of the algorithmic implementation of the particle reinforced brittle
composite model, see Lee and Shin [20]. It is easy to see how viscoelasticity and 𝜔 fit in their
algorithmic description. Note that their description contains a few errors.

4.2. Numerical Comparison
The non-viscous version of the damage model implemented in this thesis is a modified version of
Lee’s and Shin’s model [20]. The numerical behaviors of this model and of Lee’s and Shin’s original
implementation are compared here. The threshold crack density is set to 𝜔 = 0.00 for ignoring
the effect of this parameter in the comparison. For the BCs and mesh employed, the behavior of the
model is identical for unidirectional and for orthogonal micro-crack configurations. Therefore, the effect
of different micro-crack configurations is not considered in the comparison either. The only difference
between the formulations of both models that can be appreciated in this comparison is that they employ
different rate of crack growth equations.

The figures from Lee and Shin [20] are recreated in Appendix A with the modified model. Some of
these figures are also shown here for specific comparisons. The same parameters, mesh, and BCs are
employed. The behaviors shown in Lee’s and Shin’s figures are not in accordance with the reported
input. This can easily be seen by realizing that the observed linear elastic stiffnesses are not consistent
with the input. Additionally, the strain rate imposed on the BCs is not specified, which is an important
parameter because the model is rate dependent. Their figures suggest that they used different strain
increments for each global time step based on the locations of the sampled data on the strain axis.
The value assigned to the time difference parameter Δ𝑡 is not mentioned. Thus, it is not possible to
determine if the strain rate is constant or variable. Finally, Lee and Shin do not specify the size of the
RVE averaging volume 𝑉. Since Lee and Shin report a part of their input erroneously and do not report
another part of it, the figures obtained from both models cannot be rigorously compared. However,
coarse comparisons regarding the general behaviors of both models are some times possible.

A constant strain increment of Δ𝜖 = 2.5 × 10 is utilized, this value is within the range of strain
increments observed in Lee and Shin [20]. For simplicity, it is assumed that Δ𝑡 = 1.0 𝑠 and 𝑉 =
1.0 𝑚 . Note that even though this value of 𝑉 does not obey the principle of separation of scales, it
does not cause issues because it simply scales the number of micro-cracks per unit volume 𝑁. The
formulations of the modified and the original models only require the ratio 𝑁/𝑉 to be characteristic of
the material.

Different combinations of perturbed compliances as a function of micro-crack density 𝜔 are shown
in Fig. 4.5. These combinations exhibit similar behavior as in Lee and Shin [20]. Their values are
slightly different, because Lee and Shin utilized different parameters. The figure shows that first-order
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perturbed compliances grow linearly and second-order perturbed compliances grow quadratically with
𝜔. It also shows that for high 𝜔 second-order effects (i.e. crack interaction effects) are significant.

(a) Longitudinal compliances (b) Shear compliances

Figure 4.5: First-order-only compliances and combination of first-order and second-order compliances for . and .

The results of most simulations show similar patterns for the modified model and for Lee’s and
Shin’s model. The effects of second order compliances ⟨S

∗
⟩ and ⟨S

∗
⟩ become more noticeable as

the volume fraction 𝜙 and the micro-crack density 𝜔 increase, respectively. Increasing 𝜙 makes the
response stiffer, reduces the deformation necessary for damage initiation, and does not affect the rate
of crack growth or of modulus degradation. Increasing the control parameter 𝛽 increases the rate of
crack growth and of modulus degradation. For the modified model the effect of the control parameter
𝛽 is small, due to the modulus becoming completely degraded almost immediately. Decreasing 𝜔
postpones damage initiation, decreases the initial micro-crack size, and does not affect the rate crack
growth or of modulus degradation.

Although the two versions of the damage model exhibit similar patterns, the numerical values that
they output are different. This suggests that the two crack growth equations predict damage differently.
In Lee and Shin’s model [20] crack growth is (quasi-) linear with deformation, and in the modified model
crack growth is highly nonlinear. Therefore, the modified model reacts brittler than Lee and Shin’s
model. However, it is unknown if this is due to the crack growth equation, different input parameters, or
different strain rates. It is possible that Lee and Shin utilized an adaptive strain rate to avoid excessive
brittleness. This is inferred as it is not mentioned whether Δ𝑡 is a constant.

For the modified model faster crack growth sometimes leads to marginally reduced brittleness,
e.g. Fig. 4.6. Also, loading in one direction can lead to development of stress in the other direction,
(e.g. Fig. 4.7. This occurs because the parameters utilized produce excessively brittle behavior for
which failure occurs immediately after damage initiation. This suggests that extreme brittle post-failure
softening is inaccurate, as the crack-growth softening term acts spuriously. Themodifiedmodel predicts
physically sound behavior when the response of the material is not extremely brittle. For example,
Fig. 4.8 shows that the material becomes more brittle when 𝛽 increases, which is in accordance with
Lee and Shin’s results.

Even though the parameters used by Lee and Shin are unknown, a comparison between the modi-
fiedmodel and Lee and Shin’s model wasmade. Themodifiedmodel exhibits similar patterns, therefore
the model is implemented correctly.
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Figure 4.6: Stress-strain curve for different values of con-
trol parameter

Figure 4.7: Stress-strain curve for first- and second-order
contributions and .

4.3. Non-Viscous Damage of the Matrix
The behavior of the modified model is investigated with the purpose of understanding non-viscous
damage. The model’s behavior is investigated with tension, compression and shear simulations. The
effect of inclusions is also investigated, but only with tension simulations. Furthermore, the effects of
mesh discretization and strain rate are explored with tension simulations. Simulations where damage
is caused by crack growth-only and by both crack growth and crack nucleation together are performed.

The influence of most parameters are explored with tension simulations, in order to stay consistent
with Lee and Shin [20]. The only parameters explored in other load states are the cohesive stress
𝜎 , the friction coefficient 𝜇, and the threshold micro-crack density 𝜔 because their effects are better
appreciated in other load states. The time difference parameter is taken as Δ𝑡 = 1.0 𝑠. This allows
the rates of crack growth and crack nucleation to be defined only by 𝛽 and �̇� , respectively. The ratio
𝑁 /𝑉 is considered as a single parameter, this ratio is called the initial micro-crack distribution. The
motivation for this is that when crack nucleation does not occur the ratio 𝑁/𝑉 is always constant and
equal to the initial micro-crack distribution.

All simulations presented in this section are performed using the elastic parameters in Table 3.1
and the damage parameters in Table 4.1, unless otherwise stated. Table 4.1 contains two different
sets of values, the brittle case and the ductile case. The two cases are investigated to understand how
the modified model behaves for different types of damage, and to compare the behaviors of a brittle
and a ductile matrix. Crack growth for negative hydrostatic stress and nucleation are inhibited, unless
otherwise stated or implied. If the type of BCs applied to a simulation are not explicitly stated, tension
BCs are applied. Micro-cracks are simply referred to as cracks for brevity.

The modified damage model is not susceptible to neither early failure from loss of ellipticity nor to
mesh sensitivity, as will be shown in Sections 4.3.5 and 4.3.6, respectively. This is mentioned now
because it is important to take it into consideration when reading the results presented before the
aforementioned sections.
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Parameter Brittle
Case

Ductile
Case Units

𝛽 4.33 × 10 1.0 × 10 -
𝛾 11.8 0.0406 𝑃𝑎 𝑚

𝑁 /𝑉 1.0 × 10 1.0 × 10 𝑚
𝜔 0.10 0.01 %
𝜎 1.0 × 10 1.0 × 10 𝑁/𝑚
𝜎 5.0 × 10 1.0 × 10 𝑁/𝑚
�̇� 1.0 × 10 1.0 × 10 𝑚 𝑠
𝜎 2.0 × 10 2.0 × 10 𝑁/𝑚
𝜎 1.0 × 10 1.0 × 10 𝑁/𝑚
𝜎 2.0 × 10 2.0 × 10 𝑁/𝑚
𝜇 0.26 0.26 -
𝜌∗ 1169.5 1169.5 𝑘𝑔/𝑚
�̂� 0.987125 0.987125 -
�̂� 0.816686 0.816686 -
Δ𝑡 1.0 1.0 𝑠
𝜔 0.0 0.0 %
𝜙 0.0 0.0 -

Table 4.1: Default damage parameters. Blue value is used by default when nucleation is allowed. Green value is used by default
when crack growth for negative hydrostatic stress is allowed

4.3.1. Tension
The effect of the control parameter 𝛽 on the load-displacement response of a tension specimen is shown
in Fig. 4.8. The parameter affects the magnitude of the ultimate strength, displacement at ultimate
strength, and the rate of softening. Thus, the control parameter determines the overall brittleness of
the material. Where higher values of 𝛽 result in a more brittle response. This occurs because the
parameter directly scales the strain rate, and consequently the rate of crack growth. The effect of the
control parameter on the specimen’s response is greater for the ductile case, because it acts over a
larger loading region. Strain rate dependence is further investigated in Section 4.3.5.

Numerical instabilities are observed for all the curves of the brittle case and for the curve with
𝛽 = 5.0 × 10 of the ductile case. The unstable behavior is not an issue as it arises after failure.
In the tensile experiments TNO’s matrix fails immediately after the ultimate strength. Therefore, this
thesis does not focus in modelling softening behavior. Note that numerical instabilities can occur locally
before their effect is noticeable in the global load-displacement response.

(a) Brittle case (b) Ductile case

Figure 4.8: Response of specimen for different values of control parameter

The effect of varying the initial crack density 𝜔 , crack surface energy 𝛾, and initial crack distribution
𝑁 /𝑉 are shown for the brittle and ductile cases in Figures 4.9 and 4.10, respectively. These three
parameters have the common characteristic that they directly scale the ratio 𝛾/�̄� in the damage surface
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equation Eq. (4.21). The values of 𝜔 , 𝛾, and 𝑁 /𝑉 were chosen such that they scale the ratio 𝛾/�̄�
equally. For example, the orange curve in Fig. 4.9c scales the ratio 𝛾/�̄� in the same manner as the
orange curves in Fig. 4.9a and Fig. 4.9b. The consequence of these three parameters all scaling 𝛾/�̄� is
that they have the same or very similar effect in determining the yield strength and displacement. The
crack surface energy and the initial crack distribution affect the yield values in the same manner. The
initial crack density affects the yield values slightly differently because it degrades the compliances S

∗

and S
∗
, and consequently the stiffness C, even in the elastic regime. However, the initial degradation

should always be negligible. The physical interpretation of why 𝛾/�̄� determines the moment of damage
initiation is straightforward. If more work is needed to generate cracks and if initial cracks are smaller,
then a larger stress is needed to initiate crack growth. The post-damage behavior that 𝜔 , 𝛾 and
𝑁 /𝑉 trigger are different. This is due to the gradient that scales the crack-growth softening term,
which directly depends on the damage quantities 𝜔, 𝑁, and �̄�. This simply means that the number
and size of cracks affects the rate of crack growth. The parameter 𝜔 directly affects 𝜔 and �̄�; the
parameter 𝑁 /𝑉 directly affects 𝜔, �̄� and 𝑁; and the parameter 𝛾 does not directly affect any damage
quantity. Increasing 𝜔 marginally increases the rate of crack growth, as larger cracks are less stable.
Increasing 𝑁 /𝑉 reduces the rate of crack growth, because more energy is necessary for more cracks
to grow the same amount. Furthermore, increasing 𝑁 /𝑉 increases the ultimate strength in the brittle
case and reduces the ultimate strength in the ductile case, because the post-damage effect is greater
for the ductile case. Note that variations of 𝑁 /𝑉 affect the post-damage regime significantly more than
variations of the other parameters. This suggests that the number of cracks per unit volume 𝑁 has a
large impact on the scaling gradient.

(a) Initial crack density (b) Crack surface energy

(c) Initial crack distribution /

Figure 4.9: Response of brittle specimen for different values of , , and /

The effect of the nucleation threshold stress 𝜎 is shown in Fig. 4.11. This threshold determines
when nucleation damage initiates in the same manner as 𝛾 determines the initiation of crack growth
damage. This threshold does not have a direct impact on the softening terms. Variations of 𝜎 affect
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(a) Initial crack density (b) Crack surface energy

(c) Initial crack distribution /

Figure 4.10: Response of ductile specimen for different values of , , and /

the computational responses differently than variations of 𝛾. There are two reasons for this. The first
reason is that when 𝜎 is investigated crack growth and crack nucleation take place concurrently.
This results in crack growth before nucleation, prohibiting the hydrostatic stress from surpassing the
threshold. The second reason is that crack nucleation produces a different behavior than crack growth.
The damage compliances ⟨S

∗
⟩ and ⟨S

∗
⟩ are scaled by �̄� and 𝑁 differently, and the evolution equations

for the two damage mechanisms are also different. In fact, the rate of nucleation equation Eq. (4.20)
depends on state while the rate of crack growth equation Eq. (4.23) does not.

The effect of the crack nucleation rate �̇� is shown in Fig. 4.12. This rate determines brittleness
associated to crack nucleation in the same manner that 𝛽 determines brittleness associated to crack
growth. The large differences observed in Fig. 4.8 between the brittle and ductile case for varying 𝛽
are not observed here, because for both cases �̇� acts over a similar portion of the loading range.

The effect of the constant parameter 𝜎 is shown in Fig.4.13. No physical justification was given for
𝜎 by Curran, Shockley, and Seaman [8] or by Lee and Shin [20]. Therefore, 𝜎 is assumed to be com-
pletely empirical. This parameter determines the importance of overstress on the rate of nucleation.
This is clearly shown for the ductile case, where the effect of overstress is reduced for higher 𝜎 until
it becomes negligible. The overstress does not have a significant impact for the brittle case, except
when 𝜎 is low enough such that it accelerates crack nucleation to the extent where crack growth never
occurs. This is the case for 𝜎 = 2.0 × 10 in the figure. This special case exhibits negligible soften-
ing, suggesting that the nucleation softening term is small. The nucleation softening term is generally
smaller than the crack-growth softening term because materials experience rupture when cracks grow,
not when they nucleate. This suggests that for brittle damage predicting damage initiation is more
important than describing damage evolution. As a side note, this means that if numerical instabilities
are not an issue, the rate of crack growth equation Eq. (4.23) may be acceptable even though it is
independent of state. Consequently, Lee’s and Shin’s original model [20] is applicable for very brittle
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(a) Brittle case (b) Ductile case

Figure 4.11: Response of specimen for different values of threshold stress

(a) Brittle case (b) Ductile case

Figure 4.12: Response of specimen for different values of initial rate of nucleation ̇

materials, provided that numerical instabilities do not compromise results.
The damage and the stress fields at ultimate strength are shown in Figures 4.14 and 4.15, respec-

tively, for simulations with both crack growth and nucleation. Damage and stress distributions are
similar to each other for the ductile case. This is not the case for the brittle case, where spurious non-
symmetrical distributions are observed. Spurious distributions imply that local behavior is numerically
unstable, even though local instabilities are not yet reflected in the global load-displacement response.
This implies that local instabilities do not necessarily compromise global behavior when brittle damage
is considered. Damage concentrates at the vertical edges of the specimen for numerically unstable be-
havior because the strain rate attains its lowest magnitude in those regions. For a detailed investigation
of rate dependence see Section 4.3.5.

The crack nucleation damage mechanism will not be considered in the following sections of this
thesis. The main motivation for this is that the rate of nucleation equation Eq. (4.20) introduces many
material parameters that must be identified with complex experimental techniques. These experiments
are not available for the matrix. Considering crack nucleation would increase the complexity of the
parameter identification and it would reduce the generality of the damage model. Furthermore, it is not
known if the nucleation parameters are phenomenological or material properties. In contrast, the only
parameter that the rate of crack growth equation Eq. (4.23) introduces is the crack surface energy 𝛾,
which is a material property. Finally, it was shown in this section that crack growth is a more relevant
mechanism than crack nucleation for capturing brittle material rupture.
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(a) Brittle case (b) Ductile case

Figure 4.13: Response of specimen for different values of

(a) Crack size ̄ for brittle case (b) Crack size ̄ for ductile case

(c) Crack distribution / for brittle case (d) Crack distribution / for ductile case

Figure 4.14: Damage fields

(a) Deviatoric stress for brittle case (b) Deviatoric stress for ductile case

(c) Hydrostatic stress for brittle case (d) Hydrostatic stress for ductile case

Figure 4.15: Stress fields
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4.3.2. Compression
The crack growth evolution model proposed by Addessio and Johnson [2] allows damage to occur in
a pure compression stress state, in contrast to most continuum damage models. The damage surface
proposed by Addessio and Johnson for a negative hydrostatic stress depends on two additional material
properties: the cohesive stress 𝜎 and the coefficient of friction 𝜇 . The effects of both these properties
are shown in Figures 4.16 and 4.17 for compression simulations. The responses of both the brittle and
the ductile cases appear to be either linear or quasi-linear for any choice of 𝜎 and 𝜇 . The two
parameters only seem to affect the convergence behavior of the numerical solution.

(a) Brittle case (b) Ductile case

Figure 4.16: Response of specimen for different values of cohesive stress

(a) Brittle case (b) Ductile case

Figure 4.17: Response of specimen for different values of friction coefficient

In general, the modified model appears to exhibit early unconvergence for compression behavior
before significant nonlinearities are apparent in the global load-displacement curves. Early unconver-
gence is a consequence of numerical instabilities. These instabilities are often local, and not visible
in global load-displacement curves. The threshold crack density 𝜔 is employed for the case where
𝜎 = 2.0 × 10 , which is different than the default 𝜔 = 2.0 × 10 , to improve numerical stability. The
results are shown in Fig.4.18, which shows that 𝜔 can improve convergence in the presence of non-
linearities. Figures 4.19a and 4.20a show the damage fields at peak load for different values of 𝜔 .
Damage is ubiquitous in the samples where 𝜔 ≠ 0.00. In contrast, cracks do not coalesce when
𝜔 = 0.00, which explains why softening is not exhibited before unconvergence of the numerical solu-
tion. The effect that the magnitude of 𝜔 has on the manifestation of damage depends on brittleness.
Figure 4.18 shows that increasing 𝜔 by 0.10 in the brittle case has a similar effect as increasing it by
0.01 in the ductile case. This occurs because the rate of crack growth is slower in the ductile case, so
instabilities are less severe.
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(a) Load-Displacement curve for brittle case (b) Load-Displacement curve for ductile case

Figure 4.18: Response of specimen for different values of threshold crack density

(a) .
(b) .

Figure 4.19: Brittle case damage fields at peak load for different values of threshold crack density . Peak load corresponds
to ultimate strength when . and to the time step before unconvergence when . .

Crack growth for negative hydrostatic stresses will not be considered in any other section of this
thesis. The compression yield and ultimate strengths of TNO’s matrix are not known with sufficient
confidence. The compression experiments (Fig. 1.4b) always failed as soon as the samples became
larger than the clamps, so experimental errors may have been significant. Therefore, the parameters
𝜎 and 𝜇 cannot be estimated by fitting to the experiments. The drawback of not considering damage
for negative hydrostatic stresses is that shear damage is restricted and underestimated.

Since damage for negative hydrostatic stresses will not be considered, the effects of 𝜎 and 𝜇 are
not investigated for varying values of 𝜔 .
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(a) .

(b) .

Figure 4.20: Ductile case damage fields at peak load for different values of threshold crack density . Peak load corresponds
to ultimate strength when . and to the time step before unconvergence when . .

4.3.3. Shear
Like compression simulations, shear simulations also suffer from numerically instability. Therefore, the
effect of the threshold crack density 𝜔 is investigated in Fig 4.21. The results show that increasing
𝜔 can stabilize shear behavior. However, the stabilizing effect is smaller than in compression. For all
values of 𝜔 the solution becomes unstable before softening. This is because cracks do not coalesce
to form a failure plane, as shown in Fig. 4.22. Failure planes cannot form because damage is inhibited
in regions of negative hydrostatic stress. The hydrostatic and deviatoric stresses for 𝜔 = 0.00 are
shown in Fig. 4.23. The regions with negative hydrostatic stress coincide with the regions of highest
deviatoric stress. Therefore, it is expected that damage would occur in these regions in reality.

(a) Brittle case (b) Ductile case

Figure 4.21: Response of specimen for different values of threshold crack density
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(a) . (b) . (c) .

Figure 4.22: Brittle case damage fields for different values of . At time step before unconvergence

(a) Hydrostatic stress (b) Deviatoric stress

Figure 4.23: Brittle case stress fields for . . At time step before unconvergence

4.3.4. Effects of Inclusion of Particles
The compliances ⟨S

∗
⟩ and ⟨S

∗
⟩ that account for the presence of perfectly bonded particles are com-

pletely decoupled from the damage formulation of the model. They act as constant elastic additions to
the secant compliance S. Therefore, microscopic stress concentrations do not affect damage evolu-
tion. Additional ensemble averaged perturbed compliances that account for crack-particle interactions
are necessary for this purpose [20]. The effect of the compliances ⟨S

∗
⟩ and ⟨S

∗
⟩ is shown in Fig. 4.24

for different volume fractions 𝜙 and without damage. For a volume fraction of 𝜙 = 0.00 the result
coincides with the elastic behavior of the matrix. For volume fractions up to 𝜙 = 0.60 the stiffness in-
creases monotonically with increasing 𝜙, which is expected as the particles are stiffer than the matrix.
For 𝜙 > 0.80 the stiffness becomes negative, which is physically impossible. This suggests that the
compliances ⟨S

∗
⟩ and ⟨S

∗
⟩ are only valid within the range of volume fractions 0.0 ≤ 𝜙 ≤ 𝜙 ≤ 1.0.

That is, the compliances remain positive-definite for values of 𝜙 below a critical volume fraction 𝜙 ,
which is generally less than 1.0. The specific value of 𝜙 varies in a case-by-case basis; and depends
on the elastic properties of the matrix, the elastic properties of the particles, and on how the properties
of both constituents compare to each other.

The effect of 𝜙 in the presence of damage is shown in Fig. 4.25. Brittleness and ultimate strength
increase with increasing 𝜙. Until 𝜙 > 𝜙 , in which case the solution becomes unconverged in the first
time step. This behavior is consistent with the real behavior of the matrix, for which brittleness and
ultimate strength increase with stiffness. The effect of 𝜙 on ultimate strength is much greater for the
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Figure 4.24: Response of specimen for different values of particle volume fraction without damage

ductile case than for the brittle case. In the brittle case failure occurs almost immediately after damage
initiation, which occurs for the same stress state for all 𝜙. Therefore, the elastic stiffness has little effect
in the post-damage regime of the brittle case.

(a) Brittle case (b) Ductile case

Figure 4.25: Response of specimen for different values of particle volume fraction with damage

4.3.5. Effect of Time Discretization
The rate of crack growth equation Eq. (4.23) is a dynamic relation. Consequently, the modified damage
model is strain rate dependent. Strain rate is determined by the the global time step Δ𝑡, the time
difference parameter Δ𝑡 , and the control parameter 𝛽. More precisely, ̇𝜖 ∼ . Figure 4.26
shows that Δ𝑡 and 𝛽 influence the load-displacement and crack evolution responses similarly, in the
absence of numerical instabilities. Note that cracks do not grow for the smallest strain rate, as the
response becomes locally unstable early in the deformation process. So the damage field is similar to
that of Fig. 4.14a.

The effect of strain rate in the presence of numerical instabilities is shown in Fig. 4.27. The default
strain rate of the ductile case is scaled down by a factor of 100, by either decreasing Δ𝑡 or by increasing
𝛽. The figure shows that the global load-displacement and the local stress-strain responses obtained
with the different scaling methods are very different. The stability of the crack-growth softening term
depends on time step size. The term is unstable for both scaling methods, but it is less unstable when
Δ𝑡 is reduced. Finer time discretizations are generally more stable for the same strain rate, because
the scaling gradient (𝜕C/𝜕�̄�) of the softening term is more stable. This can be inferred from Fig. 4.27c,
which shows that crack growth is smoother when Δ𝑡 is reduced. The magnitude of crack growth is
similar for both scaling methods despite the stress states being different. This is because the rate of
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(a) Load-displacement response. Varying global time step (b) Load-displacement response. Varying control parameter

(c) Crack growth response. Varying global time step (d) Crack growth response. Varying control parameter

Figure 4.26: Comparison of the brittle case response for varying values of the global time step and of the control parameter
. Where the strain rate is scaled equally by both parameters

crack growth equation Eq. (4.23) is independent of state.
The strain rate dependence of the model has important consequences regarding damage localiza-

tion. In order to investigate localization, an RVE with 20 particles that represents the micro-structure
of solid propellants is considered. The mesh for this RVE is shown in Fig. D.15 and its specific details
are given in Table D.1. The set 2 parameters shown in Table 4.3 for ̇𝜖 = 4.2𝜇𝑚/𝑠 are the parameters
employed for the simulations performed with this mesh. Figure 4.28 shows the global stress-strain
behavior of the RVE for different strain rates and for different values of the threshold crack density 𝜔 .
Figure 4.29 shows the damage fields at ultimate stress and at maximum displacement for the curves
of Fig. 4.28. The figures show that damage is more localized for lower strain rates, consequently the
ultimate stress is smaller. These results are in agreement with the behavior of TNO’s matrix, which
exhibits higher ultimate strengths for higher strain rates.

The same patterns are observed for𝜔 = 0.00 and𝜔 = 0.10. Cracks grow bigger for𝜔 = 0.10,
but localization still occurs for low strain rates. This means that the 𝜔 parameter, introduced in this
thesis, does not reduce the model’s ability to capture localization. Localization takes place for non-zero
values of 𝜔 because damage localizes even in the absence of the softening terms.

Figure 4.30 compares the localization behavior of the modified damage model to the localization
behavior of an isotropic phenomenological damage model of the form 𝜎 = (1−𝜔 )C𝜖. Where 𝜔
is a damage variable that ranges from zero to one. The phenomenological model is rate-independent
and no non-local technique is applied. Therefore, the phenomenological model predicts failure across a
localization band for a very small applied deformation, as shown in Figures 4.30a–4.30c. This occurs for
all possible sets of model parameters, so early failure is caused by loss of ellipticity. Figures 4.30d–4.30f
show that the modified damage model behaves significantly different for the same strain rate. Damage
concentrates in several locations and numerical instabilities occur. Damage concentrates in several
locations as the damage surface depends on the deviatoric stress, whereas the initiation criterion for the
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(a) Load-displacement (b) Stress-strain at an arbitrary IP

(c) Deformation-crack size at an arbitrary IP

Figure 4.27: Unstable response of the ductile case. Where both and scale the original strain rate by .

phenomenological model depends on the L2 norm of the principal strains. Furthermore, the modified
model inhibits damage in regions of negative hydrostatic stress. A localization band is not observed
due to the significant rate dependence, the inhibition of damage for negative hydrostatic stresses, and
the distorting effect of numerical instabilities on the damage field. Numerical instabilities occur as the
response is excessively brittle for the low strain rate considered. The modified model always generates
numerical instabilities for strain rates that approximate quasi-static loading. This occurs because the
crack-growth softening term initiates abruptly, causing a large discrete drop in stress. This is shown in
Fig. 4.31 for a single-element mesh, where the smallest time step corresponds to a time discretization
of one million steps.

Lee and Shin [20] employed a different rate of crack growth equation than the one employed for
the modified damage model. Their implementation is rate dependent as well. Lee and Simunovic [21]
implemented the same rate of crack growth equation as Lee and Shin [20] for a different constitutive
model. Figure 4.32 shows the rate dependence found by Lee and Simunovic for a single-element
mesh. Their results exhibit a similar rate dependent behavior as the one found in this section with the
modified damage model. Their results do not exhibit numerical stability issues, which might be the case
because they use a different constitutive formulation.
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Figure 4.28: Response of RVE for different strain rates, where ̇ . / .

(a) At peak stress, . × ̇
and .

(b) At max displacement,
. × ̇ and .

(c) At peak stress, . × ̇
and .

(d) At max displacement,
. × ̇ and .

(e) At peak stress, . × ̇ and
.

(f) At max displacement,
. × ̇ and .

(g) At peak stress, . × ̇ and
.

(h) At max displacement,
. × ̇ and .

(i) At peak stress, . × ̇ and
.

(j) At max displacement, . ×
̇ and .

(k) At peak stress, . × ̇ and
.

(l) At max displacement, . ×
̇ and .

Figure 4.29: Damage fields for simulations of Fig.4.28
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(a) At peak load. Phenomenological model (b) At max displacement. Phenomenological
model (c) Global stress-strain response. Phe-

nomenological model

(d) At peak load. Modified
model

(e) At max displacement.
Modified model (f) Global stress-strain response. Modified

model with .

Figure 4.30: Comparison between the modified damage model and a phenomenological continuum model of the form
( )C

Figure 4.31: Convergence to quasi-static loading for a single-element mesh. The ductile case parameters are employed



48 4. Damage in the Matrix and in Perfectly Bonded Solid Propellants

(a) Stress-strain behavior (b) Crack growth behavior

Figure 4.32: Stress-strain and crack growth rate dependence in tension observed by Lee and Simunovic [21] for a single-element
mesh. The element has different dimensions as the tension specimen investigated in this chapter
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4.3.6. Effect of Mesh Discretization
The modified damage model is strongly rate dependent, so it is not susceptible to loss of ellipticity.
Recall from the literature review (Section 2.3) that loss of ellipticity produces singular rates of damage.
Therefore, it causes mesh sensitivity because finer meshes approximate singularities better. Since the
modified model does not suffer from loss of ellipticity and does not have any other source of mesh
sensitivity, it is not mesh sensitive. Figure 4.33 shows that the response of the RVE from the previous
section is very similar for three different mesh refinements. Meshes 1, 2, and 3 are shown in Figures
D.13–D.15, and their details are given in Table D.1. The set 2 parameters shown in Table 4.3 for
̇𝜖 = 4.2𝜇𝑚/𝑠 and for elasticity are employed for the simulations. Except, the global time step is changed
to Δ𝑡 = 2.045 × 10 , meaning the strain rate changes to ̇𝜖 = 8.589 × 10 𝜇𝑚/𝑠. Since the particulate
RVE does not suffer from mesh sensitivity, it directly follows that the macroscopic matrix-only meshes
(Fig. 4.1) are not mesh sensitive either. This is because localization bands form more easily in the
RVE, so the RVE would be more prone to loss of ellipticity than the macroscopic meshes.

Figure 4.33: Response of RVE for different mesh refinements. Strain rate is ̇ . × / .

Throughout this chapter, the initial crack distribution𝑁 /𝑉 has been defined as uniform for all the IPs
within a mesh. Alternatively, one might argue that 𝑁 /𝑉 should be a function of element size because
the RVE averaging volume 𝑉 should scale accordingly to the macroscopic region that it represents.
However, this approach would result in a poorly defined BVP, because the damage initiation criteria
would not be homogeneous for the whole mesh. Recall from Section 4.3.1 that scaling 𝑁 /𝑉 scales
the ratio 𝛾/�̄�, which determines the magnitude of the damage surface. Figure 4.35a shows that if
𝑉 = 0.10𝑉 , where 𝑉 is the volume of a finite element, then the initial damage field is heterogeneous.
Figure 4.35b shows that numerical instabilities take place immediately after the stress state of any IP
leaves its the damage surface. The figure exhibits the same spurious damage distribution discussed
in Section 4.3.1 for Fig. 4.14a. The damage field shifts from heterogeneous to evenly (and spuriously)
distributed in only one time step, 120 NR iterations were necessary for convergence. Figures 4.35c and
4.35d show that the spurious damage distribution persists throughout the entire simulation. The load-
displacement responses of this simulation and two other simulations performed with different meshes
of the same dimensions are shown in Fig. 4.34. The details of the meshes are shown in Table 4.2.

Mesh Nodes Elements
1 601 1096
2 2297 4384
3 8977 17536

Table 4.2: Details for meshes 1, 2, and 3
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Figure 4.34: Ductile case response for different meshes when the initial crack distribution / depends on element size

(a) ̄ before any applied displacement (b) ̄ at first after damage initiation

(c) ̄ at peak load (d) ̄ at max displacement

Figure 4.35: Damage fields for Mesh 3 at different stages of the loading process. / dependent on element size

4.4. Viscoelastic Damage of the Matrix
4.4.1. Behavior of the Matrix and Parameter Identification
Two different sets of damage parameters that can reproduce the results of the matrix-only preliminary
experiment with strain rate ̇𝜖 = 4.2 𝜇𝑚/𝑠 are shown in Table 4.3. Chapters 5–6 utilize these parameters
to investigate the behavior of the solid propellants. The brittle viscoelastic parameters given in Table
3.2a were employed for identifying the damage parameters. Nucleation and crack-growth in regions of
negative hydrostatic stress are not considered, because the available experimental data is insufficient
for investigating these damage mechanisms.

The two sets of parameters correspond to 𝜔 = 0.00 (set 1) and to 𝜔 = 0.10 (set 2). The values
for the parameters were found by simple trial and error. The only predefined condition was that the
crack surface energy 𝛾 must be within 1–100 Pa m, which is a range where the surface energies of
glassy polymers generally lie [11]. Sets 1 and 2 are non-unique in the sense that other parameter
combinations can also reproduce the response of TNO’s matrix for the values of 𝜔 considered. The
damage initiation criteria, the ultimate strength, and the overall brittleness can be controlled in multiple
ways, as was shown in Section 4.3. Conversely, if the crack surface energy 𝛾 would be known from
the manufacturer, the initial damage surface would be uniquely defined by a unique initial crack size �̄� .
The values for the initial crack density 𝜔 , the initial crack distribution 𝑁 /𝑉, and the control parameter
𝛽 would still be indeterminate. However, the bounds over which they yield good approximations to
the experiments would be small. Alternatively, the initial crack density 𝜔 could be set to a predefined
value, in which case 𝑁 /𝑉 would be uniquely defined by Eq. (4.11) and a unique 𝛽 would yield the best
approximation to the experiments.

The motivation for identifying set of parameters for 𝜔 = 0 and for 𝜔 ≠ 0 is to determine the
best balance between numerical stability and accuracy of the experimental approximations. Figures
4.36 and 4.37 show the approximations to the experiments for sets 1 and 2, respectively. Figure 4.38
compares the behavior for different strain rates for each set. The ultimate strength of the experiment
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Parameter Set 1 Set 2 Untis
𝛽 7.07 × 10 1.01 × 10 -
𝛽 3.03 × 10 4.33 × 10 -
𝛽 7.19 × 10 1.03 × 10 -
𝛾 11.8 11.8 𝑃𝑎 𝑚

𝑁 /𝑉 1.0 × 10 1.0 × 10 𝑚
𝜔 0.10 0.10 %
𝜎 1.0 × 10 1.0 × 10 𝑁/𝑚
𝜎 1.0 × 10 1.0 × 10 𝑁/𝑚
𝜌∗ 1169.5 1169.5 𝑘𝑔/𝑚
�̂� 0.987125 0.987125 -
�̂� 0.816686 0.816686 -
Δ𝑡 1.0 1.0 𝑠
𝜔 0.0 0.10 %
𝜙 0.0 0.0 -
Δ𝑡 1.0 × 10 1.0 × 10 m

Table 4.3: Damage parameters for the matrix. Blue value is used when ̇ . / , green value is used when ̇ . / ,
red value is used when ̇ . / . Nucleation is inhibited, so the parameters ̇ and are not shown

with strain rate ̇𝜖 = 1.8𝜇𝑚/𝑠 is approximated better with set 1. The experiment with ̇𝜖 = 17.7𝜇𝑚/𝑠
broke prematurely and therefore the ultimate strength is not representative of the material. However,
set 1 most likely approximated the experiment with ̇𝜖 = 17.7𝜇𝑚/𝑠 better, as higher strain rates produce
more brittle responses. The shortcoming of set 1 is that it produces numerical instabilities, which
are clearly visible in the load-displacement curves with ̇𝜖 = 1.8𝜇𝑚/𝑠 and ̇𝜖 = 4.2𝜇𝑚/𝑠 immediately
after ultimate load. Consequently, the damage fields are spuriously distributed, as shown in Fig. 4.39.
Conversely, instabilities are not visible in the load-displacement curves of set 2, and the damage fields
(Fig. 4.40) are physically feasible. Set 1 approximates the global load-displacement behavior of the
experiments better, but it predicts physically unreasonable local behavior. Set 2 deviates more from
the experiments, but predicts physically sound local behavior. This thesis employs CH to analyze solid
propellants. Therefore, set 2 is utilized in Chapters 5–6 because averaging theorems consider local
behavior for transmitting information between different length scales.

The load-displacement response of the matrix for compression BCs is shown in Fig. 4.41a. The
response is identical for set 1 and set 2, because there is no damage. The observed behavior is
purely viscoelastic. Damage does not occur because the hydrostatic stress is negative everywhere,
as shown in Fig. 4.41b. This poses a limitation for capturing the tensile behavior of solid propellants,
because negative hydrostatic stresses occur in their micro-structure due to the presence of particles.
As mentioned before, damage for negative hydrostatic stresses is not explored because of limitations
of the experimental data.

The load-displacement response of the matrix for shear BCs is shown in Fig. 4.42. Both sets 1 and
2 show numerical instabilities. For set 2 these numerical instabilities are small and only visible for the
strain rate of ̇𝜖 = 1.8 𝜇/𝑠. These instabilities are not a major issue for reproducing the tensile behavior
of the propellants in Chapter 6, because shear is not the dominant load state in the micro-structure.
However, set 2 is not ideal for capturing the behavior of the propellants for any arbitrary load state. A
higher 𝜔 would be required for this purpose. The drawback of increasing 𝜔 is that the ability to
capture the general strain rate dependent behavior may be compromised. An alternative to increasing
𝜔 is to explore and apply rate of crack growth equations that depend on the state of the material. For
recommendations on how to achieve this see Chapter 7.
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(a) Strain rate ̇ . / (b) Strain rate ̇ . /

(c) Strain rate ̇ . /

Figure 4.36: Tension response of specimen for set 1 parameters and different strain rates
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(a) Strain rate ̇ . / (b) Strain rate ̇ . /

(c) Strain rate ̇ . /

Figure 4.37: Tension response of specimen for set 2 parameters and different strain rates

(a) Set 1 parameters (b) Set 2 parameters

Figure 4.38: Tension response of specimen for both sets of parameters and different strain rates

(a) Crack size ̄ at peak load. (b) Crack size ̄ at maximum displacement.

Figure 4.39: Crack-size damage field for tension response. Set 1 parameters
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(a) Crack size ̄ at peak load. (b) Crack size ̄ at maximum displacement.

Figure 4.40: Crack-size damage field for tension response. Set 2 parameters

(a) Load-Displacement curves for different strain rates

(b) Hydrostatic stress at max displacement for ̇ . /

Figure 4.41: Compression response of specimen. Same response for both sets of parameters

(a) Set 1 parameters (b) Set 2 parameters

Figure 4.42: Shear response of specimen for both sets of parameters and different strain rates
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4.4.2. Viscoelastic vs. Non-Viscous Damage for Matrix Characterization
TNO’s matrix-only tension experiments were successfully reproduced with the viscoelastic modified
damage model. The experiments and their brittle failure can only be reproduced when viscoelasticity
is considered. The non-viscous modified damage model cannot reproduce the experiments for brit-
tle behavior because it behaves linear elastically before failure. In contrast, TNO’s load-displacement
curves exhibit significant nonlinearity prior to failure. Figures 4.36 and 4.37 show that the viscoelastic
model can and that the non-viscous model cannot capture pre-failure nonlinearities. They also show
that differences in response between both models become larger for lower strain rates because vis-
cous effects become more significant. It is possible to capture the complete nonlinear behavior of the
experiments with the non-viscous model if damage initiates early in the loading process. But then,
ductile failure is assumed by definition. The matrix is known to exhibit brittle and viscoelastic behavior,
so it necessarily has to be modelled with the viscoelastic modified damage model. The only additional
properties that the viscoelastic damage model introduces in comparison to the non-viscous damage
model are the elastic stiffnesses and the relaxation times of the Generalised Maxwell model. These
properties can be identified from nonlinear least squares fitting and by accounting for Poisson locking,
as was done in Chapter 3.

4.4.3. Behavior of Perfectly Bonded Solid Propellants
The parameters given in Table 4.3, with 𝜙 = 0.60, are employed with the purpose of understanding
the viscoelastic damage of TNO’s solid propellants for the special case of perfectly bonded particles.
Figures 4.43a and 4.43b compare the computationally predicted load-displacement behavior to the ex-
periments. Note that the computational behavior was predicted for perfectly bonded particles, whereas
debonding took place in the experiments. Also recall from Section 4.3.4 that the implemented model
does not account for the effects of stress concentrations in the micro-structure.

Themodel captures the linear elastic regime remarkably well for both sets of parameters and for both
strain rates. Evidently, the spurious behavior observed for high volume fractions 𝜙 in Section 4.3.4 does
not occur for TNO’s solid propellants when 𝜙 = 0.60. The computational results exhibit significantly
greater ultimate strengths and brittler responses than the experiments for both sets of parameters. This
suggests that particle debonding and stress concentrations have an important influence on the behavior
of the solid propellants. Note that the difference in behavior between the strain rates of ̇𝜖 = 4.2 𝜇𝑚/𝑠 and
̇𝜖 = 4.5 𝜇𝑚/𝑠 is larger for the experimental data than for the computational results. It is hypothesized
that this is the case because the experimental specimens may have suffered from manufacturing flaws.
It is also hypothesized that the source of the flaws was either poor interfacial bonding or clumping of the
particles. The quality of the matrix was probably similar for both specimens because they both exhibit
similar linear elastic regimes.

The damage fields in Fig. 4.44 show that local numerical instabilities are present for both sets of
parameters at ultimate strength. The damage field for set 1 is significantly more distorted by these
instabilities than the damage field for set 2. The set 2 load-displacement results are compared to CH
results obtained for perfectly bonded propellants in Chapter 6. This is possible because local numerical
instabilities do not imply that global load-displacement behavior is compromised, as was shown in the
previous section. The results obtained with set 2 are in good agreement with the results of Chapter 6.
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(a) Set 1 parameters (b) Set 2 parameters

Figure 4.43: Tension response of specimen for both sets of parameters and different strain rates

(a) Set 1 parameters (b) Set 2 parameters

Figure 4.44: Crack-size ̄ damage fields at peak load for both sets of parameters

4.5. Conclusion
Two modified versions of Lee’s and Shin’s damage model [20] were introduced in this chapter for inves-
tigating the effect of matrix damage in matrix-only and perfectly bonded solid propellant macroscopic
samples. One version considers non-viscous damage and the other considers viscoelastic damage by
applying the Generalised Maxwell model to the positive-definite term. In contrast to Lee’s and Shin’s
original implementation, the both modified versions consider micro-crack growth in three orthogonal
planes, a new parameter called the threshold micro-crack density 𝜔 , and a different rate of crack
growth equation. The direction of micro-crack growth was modified for better approximating the matrix
and 𝜔 was introduced for reducing numerical instabilities.

Tension, compression, and shear simulations were performed for the investigation. The modified
models generally exhibit numerical instabilities in compression and shear, and also in tension when the
input parameters describe highly brittle responses. Therefore, the effect of the newly introduced 𝜔
was investigated for these cases. The parameter was found to greatly reduce numerical instabilities
as its value increases, thereby fulfilling its intended purpose. The effect of the volume fraction 𝜙 was
investigated for understanding its effect in perfectly bonded solid propellants. The constitutive terms
⟨S
∗
⟩ and ⟨S

∗
⟩ that account for perfectly bonded elastic particles were found to have a limited range

of validity 0 ≤ 𝜙 ≤ 𝜙 ≤ 1. When 𝜙 exceeds the critical volume fraction 𝜙 , physically unfeasible
behavior takes place. This negative result suggests that the model cannot be used to characterize
some particulate composites. Strain rate dependence was investigated to understand its effect and to
determine the extent to which it prevents early failure from loss of ellipticity. The observed dependence
was significant and brittleness was observed as inversely proportional to strain rate (i.e. 𝜖 ∝ ̇𝜖 ).
Both observations are encouraging because rate dependence was always sufficient to prevent loss of
ellipticity and because the experiments exhibit the same brittleness trend. However, the results also
show that numerical instabilities occur as quasi-static loading conditions are approached. This negative
result suggests that the models cannot be employed for very low strain rates.

The viscoelastic damage model was employed for reproducing TNO’s matrix-only experiments.
Nucleation and crack-growth in regions of negative hydrostatic stress were not considered due to limi-
tations in the experimental data. This was not a limitation for reproducing the matrix-only experiments
because negative hydrostatic stresses do not take place. The damage parameters were identified by
trial and error by fitting them to the experiment with strain rate ̇𝜖 = 4.2 𝜇𝑚/𝑠. Identifications were per-
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formed for the cases where 𝜔 = 0.00 and 𝜔 = 0.10 to determine if zero or non-zero 𝜔 is better
for continuing the investigation in the following chapters. The global behavior of the experiments with
different strain rates were approximated better with 𝜔 = 0.00 than with 𝜔 = 0.10, however local be-
havior was significantly distorted. Therefore the parameters found for 𝜔 = 0.10 are more appropriate
for a CH context, because averaging theorems transmit averaged local information between different
scales. Mixed results were obtained for the effect of 𝜔 in the matrix. The parameter permits to use
CH in Chapter 6, but at the cost of some accuracy. Perfectly bonded solid propellants were investigated
by considering a volume fraction of 𝜙 = 0.60. In this case, the local behavior is distorted even with
𝜔 = 0.10. This, however, is not a major drawback because 𝜙 = 0.00 in all the CH computations of
Chapter 6 and because local instabilities do not necessarily compromise global behavior. Therefore,
it will be possible to compare these results to the CH results of perfectly bonded solid propellants of
Chapter 6.

The modified models generally exhibit favorable characteristics for modelling the matrix and per-
fectly bonded solid propellants, and are capable of providing insight about the effect of matrix damage
in these materials. In particular, the models confirm that matrix micro-crack damage produces brittle
failure. The main shortcoming of the modified models is that they exhibit numerical instabilities and that
the technique employed for reducing them also reduces accuracy. Instabilities arise because the rate
of crack growth equation is independent of state, which makes it questionable from a physics stand-
point. The best way to improve these models is to find a suitable state dependent rate of crack growth
equation. Shifting to such equation would drastically reduce numerical instabilities and improve the
characterization of the matrix.





5
Micro-Structural Behavior and

Debonding in the RVE
The micro-structural behavior of solid propellants is investigated by employing the continuum damage-
viscoelastic model presented in Chapter 4 to the matrix and the Turon model for interface elements [30]
to the matrix-particle interfaces. The response of the micro-structure is explored when all constituents
are linear elastic, when only matrix viscoelastic damage is considered, when only interfacial damage
is considered, and when both damage mechanisms act together. For each of these cases, the micro-
structure is idealized utilizing various RVEs in which particles are pseudo-randomly distributed and
which differ in number of particles, particle size, and mesh refinement. The particles are always treated
as linear elastic. The goal of this investigation procedure is to understand how the different damage
mechanisms and micro-structural geometric components affect the behavior of the micro-structure.

The behavior of the Turon model is explored in order to understand the effects of interfacial damage
in solid propellants. The theoretical background for this model and for the FEM formulation of interface
elements is given in this chapter. The Turon model was identified as a suitable model for characterizing
particle debonding because it is thermodynamically consistent for mixed mode loading. This character-
istic is essential for modelling the micro-structure because a variety of loading modes take place within
it as a consequence of its particulate nature. This is true for all types of loading conditions (i.e. BCs).

Tension, compression, and shear BCs are applied to all the RVEs utilized in this chapter. Schematic
representations of the generalized BCs and of the generalized RVE geometry are shown in Fig. 5.1.
The elastic parameters identified in Chapter 3 (Table 3.1) are always employed for the particles, and
also for the matrix when viscoelastic damage is not considered. The brittle viscoelastic parameters
identified in Chapter 3 (Table 3.2a) and the set 2 damage parameters identified in Chapter 4 (Table
4.3) are employed for all cases where viscoelastic matrix damage is considered. A strain rate of ̇𝜖 =
1.68× 10 𝑠 was applied to all simulations presented in this chapter. This is equivalent to the strain
rate (which strictly speaking is a loading velocity, not a strain rate) of ̇𝜖 = 4.2 𝜇𝑚/𝑠 applied to the
experiment utilized for identifying the damage-viscoelastic parameters.

The RVEmeshes considered in this chapter are shown in Appendix D. The number of particles 𝑛𝑓𝑥1
in the RVEs varies from 10 to 100 and the particle size 𝐷𝑓 varies from 10 𝜇𝑚 to 40 𝜇𝑚. RVEs with
uniform and normal particle size distribution are considered. RVEswith normally distributed particle size
are assigned the label v1, v2, or v3, depending on the input utilized for pseudo-random sampling from
the particle size PDF. See Appendix D for a more detailed description of the RVEs and the associated
terminology. As default for meshes with uniform particle size, the number of mesh refinements is
𝑛 = 1, the particle size is 𝐷𝑓 = 30 𝜇𝑚, and the number of particles is 𝑛𝑓𝑥1 = 50. And for meshes
with normally distributed particle size, the number of mesh refinements is 𝑛 = 0, the input version
for particle size generation is 𝑣2, and the number of particles is 𝑛𝑓𝑥1 = 50. If the type of particle size
distribution (i.e. uniform or normal) within an RVE is not explicitly stated, assume a normal distribution.
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(a) Tension (b) Compression (c) Shear

Figure 5.1: BCs applied to the RVEs

5.1. Theoretical Background
5.1.1. The Turon Model for Interface Elements
Turon et al [30] developed a model for interface elements which guarantees a smooth transition be-
tween free surface initiation and free surface propagation for all combinations of failure modes. Free
surfaces are initiated after the cohesive strength 𝜏 is exhausted, or equivalently, when the displace-
ment jump exceeds the initiation criterion Δ . For terminology clarification, note that in the context of
this thesis free surface initiation refers to debonding damage initiation, since debonding is represented
by free surfaces. Free surfaces propagate freely (i.e. without cohesive resistance) after the the critical
energy release rate 𝐺 is exhausted, or equivalently, when the displacement jump exceeds the free
surface propagation criterion Δ . The free surface formation process for the bilinear TSL proposed in
the model is shown in Fig. 5.2. The smooth transition between free surface initiation and propaga-
tion ensures that energy dissipation in loading-unloading-reloading cycles is always positive, satisfying
thermodynamic laws.

Figure 5.2: Bilinear TSL proposed in Turon [30]

The Turon et al [30] model describes a bilinear TSL based on a displacement jump and cohesive
traction. The following notations are utilized in the description of the model. Operations within angle
brackets are defined as ⟨𝑥⟩ = (𝑥 + |𝑥|). Cohesive tractions and displacement jumps are represented
by 𝜏 and Δ , respectively. Where the subscript 𝑗 indicates the loading and/or failure mode. Normal
mode I is denoted by 𝑗 = 3 and tangential modes II and III are denoted by 𝑗 = 1 and 𝑗 = 2, respectively.
The so-called shear cohesive traction and shear displacement jump are defined as

𝜏shear = √(𝜏 ) + (𝜏 ) , Δshear = √(Δ ) + (Δ ) , (5.1)

The norm of the displacement jump 𝜆 and the damage threshold 𝑟 determine when free surfaces
may form and grow. More specifically, free surfaces evolve when 𝜆 > 𝑟. The damage threshold
enforces the Kuhn-Tucker relations, so it is defined as

𝑟 =max{𝑟 , 𝜆 } (5.2)

Where 𝑟 is equal to the initiation displacement jump and 𝜆 is the largest value of the norm of the
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displacement jump that has being achieved. The norm of the displacement jump is defined as

𝜆 = √⟨Δ ⟩ + (Δshear ) (5.3)

The energy release rates for the different modes are given by 𝐺 , 𝐺 , and 𝐺 . And the so-called shear
energy release rate is defined as

𝐺shear = 𝐺 + 𝐺 (5.4)
The proposed free surface initiation criterion 𝑟 = Δ (5.5) and free surface propagation criterion 𝑟 = Δ
(5.6) are given by

(Δ ) = (Δ ) + ((Δshear ) − (Δ ) )𝐵 (5.5)

Δf = Δ Δf + (Δshear Δfshear − Δ Δf ) 𝐵
Δ (5.6)

Where 𝜂 is an experimental parameter which determines the size of the effect on the damage evolution
by the difference between mode I and mode II debonding properties and the difference between the
shear and the total damage states. The quantity 𝐵 is given by

𝐵 = 𝛽
1 + 2𝛽 − 2𝛽 (5.7)

In which the mixed-mode ratio 𝛽 is defined as

𝛽 = Δshear
Δshear + ⟨Δ ⟩

(5.8)

Since the TSL is bilinear, the initiation (5.9) and propagation (5.10) criteria in pure normal and pure
shear deformation are given by

Δ = 𝜏
𝐾 , Δshear =

𝜏shear
𝐾 (5.9)

Δ = 2𝐺 ,
𝜏 , Δshear =

2𝐺shear,
𝜏shear

(5.10)

Where 𝜏 is the normal cohesive strength, 𝜏shear is the shear cohesive strength, 𝐺 , is the normal critical
energy release rate, 𝐺shear, is the shear critical energy release rate, and 𝐾 is the dummy stiffness. All
these quantities are input material parameters.

The proposed constitutive relation is

𝜏 = (1 − d)𝐶 Δ − d𝐶 �̄� ⟨−Δ ⟩ with 𝐶 = �̄� 𝐾 (5.11)

Where 𝐶 is the undamaged tangent stiffness, �̄� is the Kronecker delta, and d is a scalar damage
variable given by

d =
⎧
⎪
⎨
⎪
⎩

0, 𝜆 ≤ Δ & 𝑟 ≤ Δ
, Δ < 𝜆 & 𝑟 < 𝜆 ≤ Δ

[ ( )] , Δ < 𝑟 & 𝜆 ≤ 𝑟 ≤ Δ
1, Δ < 𝜆

(5.12)

The tangent stiffness at a given moment of the loading process is obtained from the rate form of the
constitutive relation, namely �̇� = 𝐶tanΔ̇ . It is given by

𝐶 = { 𝐶 − 𝐾 (1 + �̄� ⟨ ⟩) (1 + �̄�
⟨ ⟩

)𝐻Δ Δ Δ < 𝜆 & 𝑟 < 𝜆 ≤ Δ

𝐶 Otherwise
(5.13)

Where 𝐶 is the secant stiffness and is given by

𝐶 = �̄� 𝐾 [1 − d(1 + �̄�
⟨−Δ ⟩
Δ )] (5.14)

And the quantity 𝐻 is expressed as

𝐻 = ΔfΔ
Δf − Δ

1
𝜆 (5.15)
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5.1.2. Finite Element Formulation of Interface Elements
Turon model’s is implemented for interface elements within the FEM framework. The formulation for
four-noded 1D interface elements is described here.

Suppose that the two faces of an interface element 𝑖𝑒 are called the positive and the negative face.
Then, the displacement jump experienced by this element is given by

[u (x)] = u − u = Nint (a − a ) (5.16)

Where the element’s shape function matrix is formulated as

Nint = [
𝑁 0 𝑁 0
0 𝑁 0 𝑁 ] (5.17)

The contribution of the element towards the internal force vector f is given by

fcoh, = +∫ NT
inttdΓ, fcoh, = −∫ NT

inttdΓ (5.18)

And the stiffness matrix of the element is given by

Kint = [ ∫ NT
intTNintdΓ −∫ NT

intTNintdΓ
−∫ NT

intTNintdΓ ∫ NT
intTNintdΓ

] (5.19)

5.2. Linear Elastic Behavior
The linear elastic behavior of the micro-structure of solid propellants is investigated by considering both
the matrix and the particles in the RVEs as linear elastic.

The effect of mesh refinement on the stress-strain behavior is shown in Fig. 5.3. Mesh refinement
affects the results for tension/compression1 and shear BCs similarly. Mesh refinements 1 and 2 are
closer to each other than mesh refinements 0 and 1. This occurs because in elasticity the order of
convergence of nodal displacements is 𝑂 (ℎ ) for elements with linear shape functions, where ℎ is
a measure of element size [34]. The figure shows that as mesh refinement increases the response
becomes stiffer. This is counter-intuitive because for homogeneous materials coarser meshes are
generally stiffer, however the RVE represents a heterogeneous material. Where stress concentrations
are in regions where particles are close to each other. Figure 5.4 shows that for the finer mesh the mag-
nitudes of the highest stress are generally higher, and that stress concentrations are less spread out.
Conversely, for the coarser mesh stress concentrations occupy larger regions, significantly extending
into the particles, so they are said to change location. Since stresses at regions of stress concentra-
tions are larger and more localized in the soft matrix for the finer mesh, strains are also larger in these
regions (see the strain fields). Larger strains translate to more strain energy, and more strain energy
translates to more external work done by the BCs. Therefore, the change in magnitude and location of
stress concentrations explains why the RVE becomes stiffer for finer meshes. This also explains why
the change in stiffness upon refinement is relatively large compared to a linear elastic BVP.

The effect of particle distribution and particle size 𝐷𝑓 on the stress-strain behavior is shown in
Figures 5.5 and 5.6 for RVEs with particles of uniform and varying size, respectively. Figure 5.5 shows
that for both tension/compression and shear BCs the responses of different RVEs with uniform particle
size are very similar. This occurs because the solutions of linear elastic BVPs are size-independent,
when BCs are scaled accordingly to specimen size. The linear elastic constitutive relation is formulated
in terms of strains and stresses, which are length scale-independent relative measures of force and
deformation. The small differences in response observed in Figure 5.5 are purely a consequence of
the different spatial distributions of particles. The effect of particle distribution is small because the
number of particles considered (i.e. 𝑛𝑓𝑥1 = 50) is high enough such that the different RVEs have
similar averaged responses. That is, stress concentrations appear with similar frequency in all RVEs,
so in order to achieve the prescribed strains the BCs apply similar amounts of external work to all the
RVEs. Figure 5.6 shows that when 𝐷𝑓 varies within the RVEs the responses of the different RVEs are
also very similar. This is because the number of particles is high enough such that the Gaussian PDF
from which 𝐷𝑓 is sampled manifests similarly in the different RVEs. Therefore, even though particle
size distribution is not the same for all RVEs, it is very similar.
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(a) Tension/Compression (b) Shear

Figure 5.3: Effect of mesh refinement for v2 RVE with 50 particles

The effect of the number of particles 𝑛𝑓𝑥1 on the stress-strain behavior is shown in Figures 5.7 and
5.8 for RVEs with particles of uniform and varying size, respectively. The figures show that when outlier
responses exist they correspond to RVEs with relatively low 𝑛𝑓𝑥1 for both types of particle size distri-
bution and for both tension/compression and shear BCs. RVEs with low 𝑛𝑓𝑥1 can have significantly
different responses than RVEs with high 𝑛𝑓𝑥1 because stress concentrations, or the lack of them, af-
fect their response more acutely. As 𝑛𝑓𝑥1 increases responses show less sensitivity to it, because the
overall (or homogenized) properties of the RVE approach statistical homogeneity. Recall that in order
to formulate the constitutive relations that account for microscopic particles (Eqs. (4.3) and (4.13)), the
model presented in Chapter 4 assumed that particulate composites achieve statistical homogeneity
when separation of scales holds. Therefore, the validity of this assumption is confirmed by the results
shown here. Note that the responses of the RVEs subjected to shear BCs show greater scatter than
the responses of the RVEs subjected to tension BCs for both types of particle size distribution. This
suggests that dilational material properties converge faster than distortional material properties, be-
cause dilational behavior affects stress-strain response more for tension/compression than for shear
BCs. Therefore, the following relation is implied 𝐶𝑅(𝜇 ) < 𝐶𝑅(𝐾 ) < 𝐶𝑅(𝜆 ); where 𝐶𝑅(⋅) denotes
convergence rate towards statistical homogeneity and 𝜇 , 𝜆 , and 𝐾 are the homogenized Lamé pa-
rameters and the homogenized bulk modulus, respectively. Note that the bulk modulus 𝐾 converges
faster than the Lamé parameter 𝜆 , as 𝐾 is defined in terms of both Lamé parameters. Figures 5.9 and
5.10 show that hydrostatic pressure fields vary less with respect to 𝑛𝑓𝑥1 in magnitude and distribution
than deviatoric stress fields for both types of BCs, as expected from comparing the tension and shear
responses.

1In linear elasticity BCs that differ only in sign, produce solutions that also differ only in sign. Therefore, when sign is omitted,
tension and compression BCs yield the same result.
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(a) Stress, 0 refinements (b) Stress, 2 refinements

(c) Strain, 0 refinements (d) Strain, 2 refinements

Figure 5.4: Maximum principal stress and strain fields for v2 RVE with 50 particles when subjected to tension BCs for different
mesh refinements

(a) Tension/Compression (b) Shear

Figure 5.5: Effect of particle distribution and particle size for RVEs with uniformly distributed particle size
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(a) Tension/Compression (b) Shear

Figure 5.6: Effect of particle distribution and particle size distribution for RVEs with normally distributed particle size

(a) Tension/Compression (b) Relative differences in ultimate stress between the curves in
Fig. 5.7a

(c) Shear (d) Relative differences in ultimate stress between the curves in
Fig. 5.7c

Figure 5.7: Effect of number of particles for RVEs with particle size
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(a) Tension/Compression (b) Relative differences in ultimate stress between the curves in
Fig. 5.8a

(c) Shear (d) Relative differences in ultimate stress between the curves in
Fig. 5.8c

Figure 5.8: Effect of number of particles for v2 RVEs

(a) Hydrostatic stress, 10 particles (b) Hydrostatic stress, 50 particles (c) Hydrostatic stress, 100 particles

(d) Deviatoric stress, 10 particles (e) Deviatoric stress, 50 particles (f) Deviatoric stress, 100 particles

Figure 5.9: Hydrostatic and deviatoric stress fields for RVE with when subjected to tension BCs. Different refinements
and number of particles are considered
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(a) Hydrostatic stress, 10 particles (b) Hydrostatic stress, 50 particles (c) Hydrostatic stress, 100 particles

(d) Deviatoric stress, 10 particles (e) Deviatoric stress, 50 particles (f) Deviatoric stress, 100 particles

Figure 5.10: Hydrostatic and deviatoric stress fields for RVE with when subjected to shear BCs. Different refinements
and number of particles are considered
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5.3. Damage-Viscoelastic Behavior
The viscoelastic damage behavior of the micro-structure of solid propellants is investigated by applying
the damage-viscoelastic model to the matrix of the RVEs.

The effect of mesh refinement on the stress-strain behavior is shown in Fig. 5.11. The observa-
tions and conclusions from the previous section regarding mesh refinement apply here as well. Stress
concentrations change in magnitude and location upon mesh refinement, as shown in Fig. 5.12. This
implies that damage fields also change in magnitude and location upon mesh refinement, as damage
surfaces (Eq.(4.21)) are defined in terms of stresses. Indeed, Fig. 5.12 shows that the magnitude of the
damage field is generally greater for the finer mesh than for the coarser mesh. Consequently, the global
stiffness of the finer mesh degrades faster. This is shown in Fig. 5.11a, where finer meshes exhibit a
greater softening rate. The figures also show that mesh refinement affects numerical stability and con-
vergence behavior, which occurs because damage evolves differently for different meshes. Note that
the RVE exhibits similar converging behavior upon mesh refinement as in the previous section, which
implies that loss of ellipticity and singular rates of damage are not an issue.

(a) Tension (b) Compression

(c) Shear

Figure 5.11: Effect of mesh refinement for v2 RVE with 50 particles

The effect of particle distribution and particle size 𝐷𝑓 on the stress-strain behavior is shown in
Figures 5.13 and 5.14 for RVEs with particles of uniform and varying size, respectively. The responses
are unaffected by variations of 𝐷𝑓, because the damage-viscoelastic model is formulated in terms
of stress and strain. The responses are not sensitive to particle distribution, because the number of
particles considered (i.e. 𝑛𝑓𝑥1 = 50) is high enough such that the different RVEs have similar averaged
responses. Figures 5.13a and 5.14a show that RVEs subjected to tension BCs are the least sensitive to
variations in𝐷𝑓 and particle distribution. Tension BCs trigger more damage than other BCs because the
RVEs are mostly covered by regions of positive hydrostatic stress. This damage degrades the matrix
in regions of stress concentrations and inhibits the matrix from accumulating strain energy. Figures
5.13c and 5.14c show that RVEs subjected to shear BCs are the most sensitive to variations in 𝐷𝑓 and
particle distribution. This is because more particles are necessary to achieve statistical homogeneity
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(a) Stress, 0 refinements (b) Stress, 2 refinements

(c) Crack size, 0 refinements (d) Crack size, 2 refinements

Figure 5.12: Maximum principal stress and mean crack size ̄ fields for v2 RVE with 50 particles when subjected to tension BCs
for different mesh refinements

and because numerical instabilities take place. Recall from Chapter 4 that a linear recovery of the
stress-strain curve implies numerical instabilities.

The effect of the number of particles 𝑛𝑓𝑥1 on the stress-strain behavior is shown in Figures 5.15
and 5.16 for RVEs with particles of uniform and varying size, respectively. Compared to the linear
elastic results of the previous section, viscoelastic damage reduces stress-strain sensitivity to varia-
tions of 𝑛𝑓𝑥1 for tension BCs, it barely affects sensitivity for compression BCs, and it has mixed effect
on the sensitivity for shear BCs. For tension BCs, damage inhibits regions of stress concentrations
from accumulating strain energy. Therefore, the strain energies that different RVEs store are similar.
Figures 5.17a–5.17c and 5.18a–5.18c show that RVEs subjected to tension BCs indeed experience
significant matrix damage at ultimate strength. In contrast, damage has a relatively small influence in
the stress-strain responses of RVEs subjected to compression BCs, as shown in Figures 5.17d–5.17f
and 5.18d–5.18f. Damage also reduces the scatter of the responses for shear BCs by reducing stress
concentrations. For instance, the 𝑛𝑓𝑥1 = 10 curve of Fig. 5.15e is less of an outlier here compared
to the previous section, with the only difference being the matrix model. Conversely, damage can also
increase sensitivity with respect to 𝑛𝑓𝑥1 for shear BCs. Damage occurs in a preferential direction
when RVEs are subjected to shear BCs, because hydrostatic stresses tend to be positive in the diag-
onal from the lower left to the upper right corner and negative in the other diagonal, as shown Figures
5.10a–5.10c. Consequently, damage introduces an additional dependence on the convergence rate
towards statistical homogeneity of the homogenized shear modulus 𝐶𝑅(𝜇 ), the spatial distribution of
particles across the diagonals. Having an additional dependence decreases 𝐶𝑅(𝜇 ), which is reflected
in the responses of the RVEs with normally distributed 𝐷𝑓, as sensitivity increases with respect to 𝑛𝑓𝑥1.
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(a) Tension (b) Compression

(c) Shear

Figure 5.13: Effect of particle distribution and particle size for RVEs with uniformly distributed particle size

Figures 5.17g–5.17i and 5.18g–5.18i show the damage fields for shear BCs before global numerical
instabilities take place. The figures show that indeed damage occurs in a preferential direction, and that
this preferential direction is more uniformly and clearly marked for RVEs with uniform than for normal
𝐷𝑓 distribution. This implies that statistical homogeneity is achieved faster when the distribution of 𝐷𝑓
is uniform, which explains why the responses of RVEs with uniform 𝐷𝑓 exhibit less scatter than the
responses of RVEs with varying 𝐷𝑓.
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(a) Tension (b) Compression

(c) Shear

Figure 5.14: Effect of particle distribution and particle size distribution for RVEs with normally distributed particle size
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(a) Tension (b) Relative differences in ultimate stress between the curves in
Fig. 5.15a

(c) Compression (d) Relative differences in stress between the curves in Fig. 5.15c
for a strain of .

(e) Shear (f) Relative differences in stress between the curves in Fig. 5.15e
for a strain of .

Figure 5.15: Effect of number of particles for RVEs with particle size
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(a) Tension (b) Relative differences in ultimate stress between the curves in
Fig. 5.16a

(c) Compression (d) Relative differences in stress between the curves in Fig. 5.16c
for a strain of .

(e) Shear (f) Relative differences in stress between the curves in Fig. 5.16e
for a strain of .

Figure 5.16: Effect of number of particles for v2 RVEs
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(a) Tension, 10 particles (b) Tension, 50 particles (c) Tension, 90 particles

(d) Compression, 10 particles (e) Compression, 50 particles (f) Compression, 90 particles

(g) Shear, 10 particles (h) Shear, 50 particles (i) Shear, 90 particles

Figure 5.17: Mean crack size ̄ fields for RVE with when subjected to tension, compression, and shear BCs. For tension
the fields are given at ultimate stress, for compression at the step before unconvergence (the strain is given in the subfigures),
and for shear at . . Different number of particles are considered
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(a) Tension, 10 particles (b) Tension, 50 particles (c) Tension, 90 particles

(d) Compression, 10 particles (e) Compression, 50 particles (f) Compression, 90 particles

(g) Shear, 10 particles (h) Shear, 50 particles (i) Shear, 90 particles

Figure 5.18: Mean crack size ̄ fields for v2 RVE when subjected to tension, compression, and shear BCs. For tension the fields
are given at ultimate stress, for compression at the step before unconvergence (the strain is given in the subfigures), and for
shear at . . Different number of particles are considered
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5.4. Debonding Behavior
5.4.1. Behavior of the Debonding Model
The behavior of the Turon model for interface elements is investigated with the purpose of understand-
ing debonding damage in the micro-structure of the solid propellants. The matrix is treated as linear
elastic so that nonlinearities introduced by the Turon model can be explored in isolation of nonlinearities
introduced by other constitutive models. The default mesh employed in this section has v2 normally
distributed particle size, 50 particles, and no mesh refinements (Fig. D.20). This mesh and the default
debonding parameters of Table 6.1 are employed for all simulations within this section unless stated
otherwise. The cohesive strengths 𝜏 are referred to as the strengths and the energy release rates 𝐺
are referred to as the energies for simplicity.

Parameter Value Units
𝐾 4.0 × 10 𝑁/𝑚
𝜏 5.0 × 10 𝑁/𝑚
𝜏 5.0 × 10 𝑁/𝑚
𝜏 2.5 × 10 𝑁/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝜂 0.5 -

Table 5.1: Default debonding parameters. Blue value is used when when both energies are equal to each other but the strengths
are different. Green values are used when both strengths are equal to each other but the energies are different.

The global stress-strain behavior of the RVE when subjected to tension BCs, when the default
mesh is subjected to four refinements (Fig. D.26), and when the energies are 𝐺 = 𝐺 = 1.125 ×
10 𝐽/𝑚 is shown in Fig.5.19a. The stress-strain response can be divided into five regimes; the linear
elastic regime and four debonding damage regimes. The debonding damage regimes are defined
for describing and understanding how the RVE behaves locally at specific moments of the loading
process. The linearity or nonlinearity of global response is the criterion used for defining each regime
because it is an indicator of local behavior. According to the theory of differential equations, global
behavior is linear only when local behavior is locally linear everywhere. Turon’s TSL is bilinear, so local
nonlinearities only occur when local behavior shifts from linear elastic to softening, from softening to
decohesive, or from softening to unloading. That is, when the slope of the TSL changes. Debonding
regime I takes place while some IPs shift from linear elasticity to softening. Debonding regime II starts
when no new IPs shift to softening, but damage continues to evolve in the IPs that already started
softening. Debonding regime III takes place while softening IPs shift to free surface propagation and/or
unloading. Debonding regime IV starts when no new IPs shift to free surface propagation. Damage
continues evolving in the remaining softening IPs and free surfaces propagate freely in the IPs whose
energies were exhausted. Stress redistribution occurs in regimes I and III, therefore their stress-strain
responses are nonlinear. The softening branch of Turon’s TSL is linear and free surface propagation
requires no energy. Therefore, the stress-strain responses of regimes II and IV are linear. In other
words, the governing PDE is nonlinear in regimes I and III because the constitutive laws act nonlinearly
in some (but not all) IPs, and linear in regimes II and IV because the constitutive laws act linearly
in all IPs. In reality different debonding regimes interact with each other, with one regime generally
dominating over the others. Therefore, when either regime II or IV dominates, the response is generally
not perfectly linear, it is quasi-linear.

Figures 5.19b and 5.19c show the stress fields of the RVE at peak load (early regime III) and at
maximum displacement (late regime IV), respectively. Figure 5.19b shows that stresses concentrate
between slightly damaged interfaces of closely located particles. The overall stiffnesses of regions
located between severly damaged interfaces has been degraded, so stresses have redistributed away
from them. The color contour of Fig. 5.19c is almost uniform. This implies that at regime IV damaged
interfaces have significantly degraded the local stiffness of most of the RVE and stress concentrates in
very small spatial regions.

The global stress-strain responses of the RVE for varying values of the mode I energy 𝐺 , of the



5.4. Debonding Behavior 77

(a) Stress-strain response

(b) Stress field at peak load (c) Stress field at maximum displacement

Figure 5.19: Global stress-strain response and maximum principal stress fields of the specimen when subjected to tension BCs.
Default mesh and parameters are used, except mesh is subjected to 4 refinements and . × / .

mode II energy 𝐺 , and of both energies are shown in Figures 5.20, 5.21, and 5.22, respectively.
All the responses only exhibit debonding regimes I and II, free surface propagation is not initiated at
any IP. In fact, it has been observed that free surface propagation cannot take place in the mesh and
BCs under consideration for any possible set of input debonding parameters. The response of the
mesh is very insensitive to changes in the energies, which determine the local softening stiffness and
the displacement jump for free surface propagation. Lower energies result in marginally softer global
responses, but early unconvergence occurs when the energies are too low. This suggests that in order
to capture debonding regimes III–IV highly refined meshes are necessary. This thesis investigates
solid propellants under various conditions using CH. Therefore, utilizing highly refined meshes would
be computationally unfeasible. Consequently, this thesis only investigates the debonding behavior of
the micro- and the macro-structures of the solid propellants under the context of debonding regimes
I–II.

The responses of the RVE for varying values of the mode I strength 𝜏 and of the mode II strength
𝜏 are shown in Figures 5.23 and 5.24, respectively. The strengths determine the criteria for dam-
age initiation. Therefore, they directly affect the magnitude of the local softening stiffness, the slope of
debonding regime II, and the lengths of the linear elastic regime and of debonding regime I. The figures
show that indeed the linear elastic regimes and debonding regimes I are extended for larger strengths.
However, the strengths appear to have a negligible effect on the slopes of debonding regimes II. This
occurs because the default energies are very large relative to the other debonding parameters. There-
fore softening is negligible, even for relatively large deformations. Instead, the stresses at the IPs
remain almost constant once debonding is initiated.

The responses are more sensitive to changes in the mode II strength, especially for compres-
sion and shear. In fact, compression simulations seem almost unaffected by variations of the mode
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(a) Tension (b) Compression

(c) Shear

Figure 5.20: Response of specimen for different values of mode I energy

I strength. The mode II strength has a larger effect because shear stress states are more ubiquitous
than tension stress states in the RVE for all the BCs applied. Tension stress states cannot occur at
the same time and in the same location as compression stress states, and compression stress states
occupy regions of the RVE for all types of BCs. The extent of these regions, and consequently of the
importance of the mode I strength, depends on the applied BCs. In contrast, shear stress states can
coexist with both compression and tension stress states.

The responses of the RVE for varying values of the experimental parameter 𝜂 are shown in Figures
5.25–5.27. The experimental parameter 𝜂 determines how much the difference between mode I and
mode II debonding properties and the difference between mode II and total damage evolution affect the
response. When debonding properties are the same for both modes (i.e. 𝜏 = 𝜏 and 𝐺 = 𝐺 ), the
value of 𝜂 has no effect on the response by definition. This can be observed in Fig. 5.25. The strengths
have a greater influence than the energies on the response for the input values considered. Therefore,
the value of 𝜂 has a much greater influence on the response when the strengths are not equal to each
other (i.e. 𝜏 ≠ 𝜏 and 𝐺 = 𝐺 ) than when the energies are not equal to each other (i.e. 𝜏 = 𝜏 and
𝐺 ≠ 𝐺 ), as shown in Figures 5.27 and 5.26, respectively. In fact, when the energies are not equal
to each other 𝜂 has a negligible effect on the response, but it does affect numerical stability. Notice that
when the strengths are not equal to each other the effect of 𝜂 is also negligible for compression BCs,
as shown in Fig. 5.27b. This occurs because mode II debonding damage and total debonding damage
are almost the same. In this case mode I debonding damage is negligible, because the vast majority
of the RVE is in a compression stress state.

The responses of the RVE for varying values of the dummy stiffness 𝐾 are shown in Fig. 5.28. Rel-
atively high values of 𝐾 lead to early unconvergence of the numerical solution, as shown in Fig. 5.28a.
Therefore, a value of 𝐾 for which the linear elastic regime accurately approximates the linear elastic
BVPs (i.e. when there are no interface elements) for all BCs under consideration does not exist for the
default mesh. Furthermore, the BVPs are highly conditioned with respect to 𝐾, when the stiffnesses
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(a) Tension (b) Compression

(c) Shear

Figure 5.21: Response of specimen for different values of mode II energy

of the linear elastic regimes are significantly lower than the stiffnesses of the linear elastic BVPs. As
a consequence, working with a 𝐾 that does not cause early unconvergence entails working with an
ill-conditioned BVP. Values of 𝐾 that are not sufficiently large to approximate the linear elastic BVPs
allow non-negligible displacement jumps to occur even before debonding damage is initiated. The
consequences of working with BVPs that suffer from these issues are explored in the next section.

All the figures presented in this section for the default mesh are recreated in Appendix B.1 for the
case where the modified damage model is applied to the matrix. These figures are not discussed
because the debonding parameters generally affect the responses of the BVPs considered in the Ap-
pendix and the BVPs considered here similarly. The only difference worth noting is that free surface
propagation can sometimes take place in the default mesh when matrix damage is considered. Con-
sequently, the BVPs can be more sensitive to changes in the energies—see Fig. B.3a.
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(a) Tension (b) Compression

(c) Shear

Figure 5.22: Response of specimen for different values of mode I and mode II energies and
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(a) Tension (b) Compression

(c) Shear

Figure 5.23: Response of specimen for different values of mode I strength
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(a) Tension (b) Compression

(c) Shear

Figure 5.24: Response of specimen for different values of mode II strength
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(a) Tension (b) Compression

(c) Shear

Figure 5.25: Response of specimen for different values of experimental parameter when both strengths and both energies are
equal to each other
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(a) Tension (b) Compression

(c) Shear

Figure 5.26: Response of specimen for different values of experimental parameter when both strengths are equal to each
other but the energies are different
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(a) Tension (b) Compression

(c) Shear

Figure 5.27: Response of specimen for different values of experimental parameter when both energies are equal to each other
but the strengths are different
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(a) Tension (b) Compression

(c) Shear

Figure 5.28: Response of specimen for different values of dummy stiffness
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5.4.2. Mesh Refinement, Particle Size, and Particle Distribution
The debonding damage behavior of the micro-structure of solid propellants is investigated by applying
the Turon model to the matrix-particle interfaces of the RVEs.

The effect of mesh refinement on the stress-strain behavior is shown in Fig. 5.29. Very fine meshes
are necessary for the solution to converge upon refinement, especially compared to the linear elastic
and the continuum damage cases investigated in the previous sections. This occurs because stress
concentrations and particle geometry are highly sensitive to mesh refinement, as shown in Fig. 5.30. In
turn, the solution of the BVP is highly sensitive to stress concentrations and particle geometry. Stress
concentrations are important because they are located close to the interface elements. Particle geom-
etry is important because the total energy necessary for damage to evolve depends on the length of
matrix-particle boundaries and because the outward normal of these boundaries determines the direc-
tion of damage evolution in the failure mode space, i.e. the mode I–mode II space. Mesh refinement
has a larger effect for tension BCs than for compression and shear BCs because the RVE experiences
greater debonding damage when subjected to tension. Coarser meshes produce stiffer stress-strain
responses than finer meshes because stress concentrations become more acute upon refinement.

(a) Tension (b) Compression

(c) Shear

Figure 5.29: Effect of mesh refinement for v2 RVE with 50 particles

The effect of particle distribution and particle size 𝐷𝑓 on the stress-strain behavior is shown in
Figures 5.31 and 5.32 for RVEs with particles of uniform and varying size, respectively. The responses
of RVEs with uniform particle size distribution are highly sensitive to variations in 𝐷𝑓. RVEs with larger
𝐷𝑓 are stiffer in the linear elastic regime and experience a greater damage rate in the debonding
damage regimes. This occurs because the Turon model relates traction, which is a relative measure
of force, to displacement jump, which is an absolute measure of material translation. Larger RVEs
are subjected to larger total displacements by the BCs, so their interface elements experience larger
displacement jumps. Consequently, the dummy stiffness 𝐾 prescribes larger tractions and the energy
release rates 𝐺 , 𝐺 are exhausted faster. This means that if an RVE and its corresponding BCs are
scaled by a factor 𝑎, then𝐾must be scaled by 𝑎 and 𝐺 and 𝐺 must be scaled by 𝑎 to obtain the same
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response of the unscaled RVE. The responses of different RVEs with normal particle size distribution
are similar because the number of particles considered (i.e. 𝑛𝑓𝑥1 = 50) is high enough such that the
Gaussian PDF from which particle size is sampled manifests similarly in the different RVEs. Since the
Turon model introduces a size effect, it would would be sensible to make 𝐾, 𝐺 , and 𝐺 functions of 𝐷𝑓.
This was not done in this thesis, but is recommended for future work.

The effect of the number of particles 𝑛𝑓𝑥1 on the stress-strain behavior is shown in Figures 5.33
and 5.34 for RVEs with particles of uniform and varying size, respectively. Debonding damage reduces
the sensitivity of the responses with respect to 𝑛𝑓𝑥1 for both types of particle size distribution relative
to the linear elastic case (Section 5.3). This is particularly true in the linear elastic regime, where the
responses of RVEs with different 𝑛𝑓𝑥1 are practically indistinguishable when subjected to tension and
compression BCs and are similar when subjected to shear BCs. This implies that for the choice of
dummy stiffness 𝐾, stress concentrations are reduced because stress concentrations are the main
cause for variations in response in the absence of damage. Comparing the stress fields of Section
5.2 to the linear elastic fields in Figures 5.35 and 5.36, it is clear that indeed stress concentrations
are smaller here. The 𝐾 employed reduces stress concentrations because it significantly softens the
elastic response of the material along the interfaces. This is a spurious effect caused by the value of
𝐾 being too low compared to the stiffness of the constituents of the solid propellants. The value of 𝐾,
however, cannot be increased much without causing early unconvergence of the numerical solution, as
was shown in Section 5.4. The responses of different RVEs exhibit greater variation in the debonding
regime than in the linear elastic regime. The regime II stiffnesses clearly differ more when particle
size is normally distributed than when it is uniformly distributed. This occurs because the size effect
introduced by the Turon is only relevant when particle size distribution is non-uniform. The responses of
RVEs subjected to compression BCs are very similar even in the debonding damage regime because
damage evolves very slowly.
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(a) 0 refinements (b) 1 refinements

(c) 2 refinements (d) 3 refinements

(e) 4 refinements

Figure 5.30: Maximum principal stress fields for v2 RVE with 50 particles when subjected to tension BCs for different mesh
refinements. Fields given for an imposed strain of . .
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(a) Tension (b) Compression

(c) Shear

Figure 5.31: Effect of particle distribution and particle size for RVEs with uniformly distributed particle size
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(a) Tension (b) Compression

(c) Shear

Figure 5.32: Effect of particle distribution and particle size distribution for RVEs with normally distributed particle size
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(a) Tension (b) Relative differences in stress between the curves in Fig. 5.33a
for a strain of .

(c) Compression (d) Relative differences in ultimate stress between the curves in
Fig. 5.33c

(e) Shear (f) Relative differences in ultimate stress between the curves in
Fig. 5.33e

Figure 5.33: Effect of number of particles for RVEs with particle size



5.4. Debonding Behavior 93

(a) Tension (b) Relative differences in stress between the curves in Fig. 5.34a
for a strain of .

(c) Compression (d) Relative differences in ultimate stress between the curves in
Fig. 5.34c

(e) Shear (f) Relative differences in ultimate stress between the curves in
Fig. 5.34e

Figure 5.34: Effect of number of particles for v2 RVEs
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(a) Linear elastic response, 10 particles (b) Debonding response, 10 particles

(c) Linear elastic response, 50 particles (d) Debonding response, 50 particles

(e) Linear elastic response, 90 particles (f) Debonding response, 90 particles

Figure 5.35: Maximum principal stress fields for RVE with when subjected to tension BCs. The fields are given for
the linear elastic and debonding regimes of the response and for different number of particles . The linear elastic fields
correspond to an imposed strain of . and the debonding fields correspond to an imposed strain of . .
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(a) Linear elastic response, 10 particles (b) Debonding response, 10 particles

(c) Linear elastic response, 50 particles (d) Debonding response, 50 particles

(e) Linear elastic response, 90 particles (f) Debonding response, 90 particles

Figure 5.36: Maximum principal stress fields for v2 RVE when subjected to tension BCs. The fields are given for the linear elastic
and debonding regimes of the response and for different number of particles . The linear elastic fields correspond to an
imposed strain of . and the debonding fields correspond to an imposed strain of . .
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5.5. Damage-Debonding-Viscoelastic Behavior
The overall behavior of the micro-structure of solid propellants is investigated by applying the damage-
viscoelastic model to the matrix and the Turon model to the matrix-particle interfaces of the RVEs.

The effect of mesh refinement on the stress-strain behavior is shown in Fig. 5.37. Recall from Sec-
tions 5.2, 5.3, and 5.4.2 that stress concentrations increase in magnitude upon mesh refinement and
stiffen the stress-strain response. Stress concentrations also increase matrix and debonding damage
in the RVE, which in turn reduce stress concentrations. Therefore, competing mechanisms determine
the evolution of stress concentrations, and consequently, of the RVE’s stiffness. When only matrix
damage is considered the mechanism that increases stiffness dominates, and when only debonding
damage is considered the mechanism that decreases stiffness dominates. The figure shows that when
both forms of damage are considered the net effect is a decrease in stiffness. Mesh refinement has a
near negligible effect on stress-strain response for compression and shear BCs because the competing
mechanisms partially counteract each other. Mesh refinement has a larger effect for tension BCs be-
cause the RVE experiences greater matrix and debonding damage when subjected to tension. Figure
5.38 shows the stress and damage fields of the RVE for different meshes at ultimate load. Changes in
stress concentrations upon mesh refinement are less evident here than in previous sections because
both matrix and debonding damage work together in reducing stress concentrations. For this reason,
damage fields provide a clearer depiction of the stress history of the matrix. Coarser meshes exhibit a
greater rate of softening than finer meshes because coarser meshes experience more overall (i.e. vol-
ume averaged) matrix damage. This is contrary to the results of Section 5.3, where only matrix damage
is considered and finer meshes experience more matrix damage. This discrepancy occurs because
when debonding damage is also considered it significantly reduces the magnitude and volume occu-
pied by stress concentrations. Debonding damage increases for finer meshes, thereby reducing stress
concentrations and overall matrix damage.

(a) Tension (b) Compression

(c) Shear

Figure 5.37: Effect of mesh refinement for v2 RVE with 50 particles

The effect of particle distribution and particle size 𝐷𝑓 on the stress-strain behavior is shown in
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(a) Stress, 0 refinements (b) Stress, 2 refinements

(c) Crack size, 0 refinements (d) Crack size, 2 refinements

Figure 5.38: Maximum principal stress and mean crack size ̄ fields for v2 RVE with 50 particles when subjected to tension BCs
for different mesh refinements.

Figures 5.39 and 5.40 for RVEs with particles of uniform and varying size, respectively. The responses
of RVEs with uniform particle size distribution are highly sensitive to variations in 𝐷𝑓. This occurs
because the Turon model introduces a size effect which was discussed in Section 5.4.2. Recall from
Section 5.3 that the damage-viscoelastic model is unaffected by variations of 𝐷𝑓. Therefore, the Turon
model is the unique source of size sensitivity. Also recall that both the Turon model and the damage-
viscoelastic model are not sensitive to particle distribution for the number of particles considered (i.e.
𝑛𝑓𝑥1 = 50). This explains why the different RVEs with normally distributed particle size exhibit very
similar responses.

The effect of the number of particles 𝑛𝑓𝑥1 on the stress-strain behavior is shown in Figures 5.41
and 5.42 for RVEs with particles of uniform and varying size, respectively. In the undamaged regime,
where the response is purely viscoelastic, the responses of RVEs with different number of particles
are almost identical for all BCs considered and for both types of particle size distribution. This occurs
because the value assigned to the dummy stiffness 𝐾 has a significant influence in the local and the
global stiffnesses of the RVEs. For a detailed explanation on why a low value of 𝐾makes the responses
insensitive with respect to 𝑛𝑓𝑥1 in the undamaged regime see Section 5.4.2. Compared to the case
where only debonding damage is considered, we see that when viscoelastic damage is also considered
the stress-strain responses exhibit less scatter when subjected to tension BCs, similar scatter when
subjected to compression BCs, and more scatter when subjected to shear BCs. This is the same pat-
tern observed in Section 5.3 when the matrix is modelled with the damage viscoelastic model instead
of linear elasticity. Figures 5.43–5.44 show that when both debonding and matrix damage are consid-
ered, matrix damage evolves at a lower rate than when only matrix damage is considered (compare to
Figures 5.17–5.18). The main reason for this is that the matrix experiences lower stresses, because
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(a) Tension (b) Compression

(c) Shear

Figure 5.39: Effect of particle distribution and particle size for RVEs with uniformly distributed particle size

𝐾 reduces local stiffness. Energy dissipation caused by debonding damage is only a secondary cause
for the reduction of matrix damage. In fact, debonding damage dissipates much less energy when
matrix damage is considered compared to when it is not. To see this, compare the displacement jumps
shown in this section to the ones shown in Figures 5.35-5.36 of Section 5.4.2. The effect of debond-
ing damage is greatly reduced by the effect of matrix damage because matrix damage reduces stress
concentrations occurring near the interfaces.
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(a) Tension (b) Compression

(c) Shear

Figure 5.40: Effect of particle distribution and particle size for RVEs with normally distributed particle size
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(a) Tension (b) Relative differences in ultimate stress between the curves in
Fig. 5.41a

(c) Compression (d) Relative differences in ultimate stress between the curves in
Fig. 5.41c

(e) Shear (f) Relative differences in ultimate stress between the curves in
Fig. 5.41e

Figure 5.41: Effect of number of particles for RVEs with particle size
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(a) Tension (b) Relative differences in ultimate stress between the curves in
Fig. 5.42a

(c) Compression (d) Relative differences in ultimate stress between the curves in
Fig. 5.42c

(e) Shear (f) Relative differences in ultimate stress between the curves in
Fig. 5.42e

Figure 5.42: Effect of number of particles for v2 RVEs
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(a) Tension, 10 particles (b) Tension, 50 particles (c) Tension, 90 particles

(d) Compression, 10 particles (e) Compression, 50 particles (f) Compression, 90 particles

(g) Shear, 10 particles (h) Shear, 50 particles (i) Shear, 90 particles

Figure 5.43: Mean crack size ̄ fields for RVE with when subjected to tension, compression, and shear BCs. The fields
are given at maximum load. Different number of particles are considered.
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(a) Tension, 10 particles (b) Tension, 50 particles (c) Tension, 90 particles

(d) Compression, 10 particles (e) Compression, 50 particles (f) Compression, 90 particles

(g) Shear, 10 particles (h) Shear, 50 particles (i) Shear, 90 particles

Figure 5.44: Mean crack size ̄ fields for v2 RVE when subjected to tension, compression, and shear BCs. The fields are given
at maximum load. Different number of particles are considered.
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5.6. Conclusion
The micro-structural behavior of solid propellants was investigated in this chapter by considering dif-
ferent combinations of constitutive relations and RVE mesh geometries. Tension, compression, and
shear BCs were considered for all analyses. Stress concentrations were shown to be the main source
of sensitivity with respect to particle distribution, number of particles 𝑛𝑓𝑥1, and mesh refinement. Con-
tinuum matrix damage reduced the magnitude of stress concentrations. As a consequence it reduced
the sensitivity of the RVEs with respect to particle distribution and 𝑛𝑓𝑥1.

The Turon model for interface elements was introduced and investigated to understand and apply
debonding damage. It was shown that the debonding behavior of the RVEs can be decomposed into
four regimes. With unrefined meshes only the first two regimes can manifest before the numerical so-
lution becomes unconverged. This shows that the debonding behavior described by the Turon model
is highly sensitive to mesh refinement, and very fine meshes are necessary to achieve convergence.
Unconvergence can also be caused by high values of the dummy stiffness 𝐾. Due to this, the 𝐾 of
the interface elements cannot be set sufficiently high enough to properly approximate the linear elastic
BVPs (where no interface elements are present) with the linear elastic regimes. Furthermore, condi-
tioning of the numerical solutions with respect to 𝐾 increases as the approximations of the linear elastic
BVPs worsen. In general, the numerical solutions are ill-conditioned for permissible values of 𝐾. Since
a relatively low 𝐾 is utilized, the responses of the RVEs lose sensitivity with respect to particle distri-
bution and 𝑛𝑓𝑥1. This is due to significant displacement jumps in the linear elastic regime, so stress
concentrations become weaker. Additionally, debonding also contributes to reducing stress concentra-
tions in the debonding regime. The Turon model is formulated in terms of tractions and displacement
jumps, so it introduces a size dependency on 𝐷𝑓. When matrix and debonding damage are both con-
sidered, the RVEs exhibit the same behaviors previously mentioned for each form of damage. Stress
concentrations become weaker when both damage mechanisms act together than when only one is
considered as more overall damage takes place.

Within the context of this thesis, the most limiting factor for characterizing the micro-structural be-
havior of solid propellants is the difficulty in capturing debonding damage. The Turon model requires
highly refined RVE meshes for good behavior, which is not feasible within a CH context. In contrast,
the modified viscoelastic damage model generally exhibits good numerical behavior.



6
Macro-Structural Behavior and

Debonding in the Experimental Samples
Themacro-structural behavior of solid propellants is investigated by employing the damage-viscoelastic
model presented in Chapter 4 to thematrix, the Turonmodel for interface elements presented in Chapter
5 to the matrix-particle interfaces, and computational homogenization (CH). The investigation proce-
dure of this chapter is similar to the procedure of Chapter 5, but for the macro-structure instead of the
micro-structure. The effects that geometric and constitutive aspects of the RVEs have on macroscopic
response are investigated. The behavior of the Turon model is investigated to understand how the
problematic aspects of its behavior identified in Chapter 5 extend to a CH context. In this chapter only
tension BCs are applied, with only one compression and one shear exception.

The macroscopic meshes are shown in Fig. 6.1. Three different mesh refinements are considered
for tension simulations. Mesh refinements define element size by applyingGmsh characteristic lengths
defined by 𝐿 = 0.005/(𝑛 +1). Where 𝑛 is the number of times that a mesh has been refined relative
to the base case 𝑛 = 0. The characteristic length for the compression/shear mesh is 𝐿 = 0.0025.
The BCs applied to the meshes are shown in Fig. 6.2. The BCs always apply a strain rate of ̇𝜖 =
4.2 𝜇𝑚/𝑠 and the 𝑛 = 0 mesh is always utilized for tension simulations, unless otherwise noted.

The RVEmeshes considered in this chapter are shown in Appendix D. The number of particles 𝑛𝑓𝑥1
in the RVEs varies from 10 to 100 and the particle size 𝐷𝑓 varies from 10 𝜇𝑚 to 40 𝜇𝑚. RVEs with
uniform and normal particle size distribution are considered. RVEswith normally distributed particle size
are assigned the label v1, v2, or v3, depending on the input utilized for pseudo-random sampling from
the particle size PDF. See Appendix D for a more detailed description of the RVEs and the associated
terminology. As default for meshes with uniform particle size, the number of mesh refinements is
𝑛 = 1, the particle size is 𝐷𝑓 = 30 𝜇𝑚, and the number of particles is 𝑛𝑓𝑥1 = 50. And for meshes
with normally distributed particle size, the number of mesh refinements is 𝑛 = 0, the input version
for particle size generation is 𝑣2, and the number of particles is 𝑛𝑓𝑥1 = 50. If the type of particle size
distribution (i.e. uniform or normal) within an RVE is not explicitly stated, assume a normal distribution.
The mesh with 𝑛𝑓𝑥1 = 50, 𝑣2 size generation input, and 𝑛 = 0 is sometimes referred to as the
”default mesh”.
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(a) Tension mesh with . 21 nodes and 26 elements (b) Tension mesh with . 57 nodes and 84 elements

(c) Tension mesh with . 159 nodes and 266 elements
(d) Compression and
shear mesh. 29 nodes
and 40 elements

Figure 6.1: Macroscopic meshes utilized for CH simulations. For tension meshes, is the number of mesh refinements

(a) Tension
(b) Compression (c) Shear

Figure 6.2: Macroscopic BCs and dimensions (dimensions in millimeters). Horizontal reactions are sampled for tension and
compression and vertical reaction is sampled for shear.

6.1. First-Order Computational Homogenization
First-order computational homogenization (CH) owes its name to the homogenized response that it
describes, which only depends on the first-order macroscopic deformation gradient [3]. It is the simplest
variation of CH and it lays the foundations for more intricate forms of this framework. In CH the macro-
and the micro-structures are evaluated concurrently. A brief description of first-order CH is given here.
For more detail the reader is referred to Phu [26].

The procedure for first-order CH can be broken down in four steps [3]:

1. Defining the geometry and constitutive behavior of the RVE.

2. Prescribing the BCs for themicro-structural BVPs (i.e. imposed on the RVE) frommacro-structural
input.

3. Solving the micro-structural BVPs. From which the solutions are extrapolate the macro-structural
stresses and material tangents.

4. Solving the macro-structural BVP.

Steps 2 and 3 are performed for each macroscopic IP at each global time step.
Step 1 is performed only once, before numerical computations. The principle of separation of scales,

computational efficiency, and the minimum RVE size required to adequately capture homogenized
micro-structural behavior must be considered.

The BCs prescribed in Step 2must fit within the framework imposed by averaging theorems (Eq.(2.14)).
So-called periodic boundary conditions satisfy this requirement and provide more accurate results than
other widely employed BCs, such as prescribed displacement BCs [3][26]. Periodic BCs are always uti-
lized in this chapter. Therefore, the description of CH given in this section continues within the context
of periodic BCs, as prescribed in Fig. 6.3. Periodic BCs state that imposed displacements in opposite
RVE boundaries Γ , are periodic and that the outward normal vectors (and consequently, tractions)
are anti-periodic [26]. Mathematically, these conditions are formulated as

u (x ) = u (x ) , t (x ) = −t (x ) (6.1)
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Periodic BCsmap strains at a macroscopic IP to the displacements of the microscopic controlling nodes
𝑏 = 1, 2, 4 of Fig. 6.3 with

u = [ u u u ] = HT𝜖 (6.2)

Where 𝜖 is the macroscopic strain vector at a given IP, and H is a function of micro-structural coordi-
nates given by

H = 1
2 [

2𝑥 0 2𝑥 0 2𝑥 0
0 2𝑦 0 2𝑦 0 2𝑦
𝑦 𝑥 𝑦 𝑥 𝑦 𝑥

] (6.3)

Figure 6.3: RVE subjected to periodic BCs

In Step 3, the macroscopic stress is extrapolated with the following simplification of the stress-
averaging theorem

𝜎 = 1
𝑉Hf (6.4)

Where the vector f is obtained from solving the micro-structural BVP and it contains the external
forces at nodes 𝑏. The macroscopic material tangent is derived from the variation of microscopic
displacements and forces K𝛿u = 𝛿f. It is given by

C = 1
𝑉HK̄ HT (6.5)

In which K̄ is obtained from static condensation and is given by

K̄ = K −K K K (6.6)

Where 𝑎 denotes the nodes in the RVE that do not belong to the set of controlling nodes.
Finally, The FEM continuum formulation for nonlinear problems in solid mechanics Eq. (2.8) solves

the macro-structural BVP in Step 4.

6.2. Linear Elastic Behavior
The linear elastic behavior of the macro-structure of solid propellants is investigated by considering
both the matrix and the particles in the RVEs as linear elastic.

The effect of mesh refinement on the load-displacement behavior is shown in Fig. 6.4. When finer
microscopic meshes are utilized for the same macroscopic mesh, the response becomes stiffer. This
occurs because stress concentrations in the micro-structure change in magnitude and location upon
microscopic mesh refinement. For a detailed explanation about how mesh refinement affects the re-
sponse of the micro-structure see Section 5.2. Comparing the tension response of the macro-structure
given in Fig. 6.4a to the tension response of the micro-structure given in Fig.5.3a, it is clear that conver-
gence upon refinement is faster for the latter. This implies that when only the micro-structure is refined,
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the order of convergence of the macro-structure is smaller than 𝑂(ℎ ). Where ℎ is a measure of mi-
croscopic element size. Refining only the micro-structure is equivalent to improving the homogenized
constitutive relations without improving the structure of the system of equations utilized to characterize
the macro-structural problem. Therefore, only the order of convergence of the constitutive relations
is 𝑂(ℎ ). Consequently, Figures 6.5a and 6.5b show that when only the micro-structure is refined,
macro-structural stress fields vary negligibly with respect to their distribution but they vary significantly
with respect to their magnitude. Note that the fields are not symmetric. This will be discussed later.

When finer macroscopic meshes are utilized for the samemicroscopic mesh, the response becomes
softer, as shown in Fig. 6.4b. This is in line with the well known fact in FEM that coarser meshes pro-
duce stiffer responses for homogeneous materials. Solid propellants are not homogeneous materials,
but their macro-structure is treated as such in the context of CH. The responses are much less sensi-
tive to variations in macroscopic mesh refinement than to variations in microscopic mesh refinement.
This is the case because contrary to refining the micro-structure, refining the macro-structure does not
improve the characterization of stress concentrations. Refining the macro-structure simply improves
the characterization of the homogenized macro-structure, where stress gradients are smaller. When
only the macro-structure is refined, the order of convergence of the macro-structural problem is 𝑂(𝐻 ).
Where 𝐻 is a measure of macroscopic element size. This order of convergence is identical to that of
classic FEM, because refining the macro-structure is equivalent to improving the solution of the macro-
structural problem for the given homogenized constitutive relations. However, if the micro-structure
is not refined, the accuracy of the homogenized constitutive relations is not improved. Consequently,
Figures 6.5a and 6.5c show that when only the macro-structure is refined, macro-structural stress fields
vary significantly with respect to their distribution but vary very little with respect to their magnitude.

When both the micro- and macro-structures are refined the response becomes stiffer, because
micro-structural mesh refinement has a greater effect than macro-structural mesh refinement. Com-
paring the tension response of the macro-structure given in Fig. 6.4c to the tension response of the
micro-structure given in Fig.5.3a, we see that convergence rate upon refinement is almost identical for
both cases. This suggests that when both the micro- and macro-structures are refined, the order of
convergence is very close to 𝑂(𝑎 ). Where 𝑎 is a measure of both micro- and macro-structural element
size. That is, for 𝑎 to be scaled by a number 𝑛, the characteristic element sizes at both length scales
have to be scaled by 𝑛. It makes sense that the order of convergence is close to 𝑂(𝑎 ) because when
both length scales are refined at the same rate, the order of convergence of the constitutive relations
is 𝑂(ℎ ) and the system of equations utilized to characterize the macro-structure improves with order
𝑂(𝐻 ). Figures 6.5a and 6.5d show that when both length scales are refined, macro-structural stress
fields exhibit significant variation in both distribution and magnitude.

Recall from Chapter 4 that multi-scale homogenisation with perfectly bonded particles can also
be considered through mathematical homogenization (MH). Figure 6.6 shows the effect of mesh re-
finement on the load-displacement response when MH (i.e. Eqs. 4.3 and 4.13) is utilized. The same
meshes considered for the macro-structure throughout this chapter are considered for this analysis plus
the mesh utilized for characterizing the tension samples in Chapter 4 (Fig. 4.1a), which corresponds to
the third refinement. Mesh refinement does not affect the constitutive relations in MH, it only affects the
system of equations utilized for describing the macro-structure. This is exactly the same as when only
the macroscopic mesh is refined in CH. Consequently, both these cases exhibit similarly low sensitivity
to variations in mesh refinement. Note that the MH responses shown in Fig. 6.6 are similar, but not
identical, in magnitude to the CH responses shown in Fig. 6.4. Differences between the CH and the
MH responses occur because the CH and the MH formulations apply different simplifications to their
formulation. Namely, the MH formulation assumes that constitutive behavior is the same in all IPs, that
particle size is uniformly distributed, and that statistical homogeneity is achieved. The CH formulation
assumes that the constitutive behavior at each IP is given by the solution of a micro-structural BVP,
and that the BCs imposed on this BVP are different for each IP. Furthermore, the RVE utilized for the
CH computations is not perfectly statistically homogeneous and it has normally distributed particle size.

The stress fields for the MH load-displacement responses are shown in Fig. 6.7. These are clearly
more symmetric than than the stress fields of Fig. 6.5 obtained from CH. The small asymmetries in the
MH stress fields are exclusively caused by small mesh asymmetries. Conversely, the primary cause for
the strong asymmetries observed in the CH stress fields is that the BCs applied to the micro-structure
are different at each IP. The BCs are different at each IP because they depend on the macroscopic
deformation gradient, which has the same magnitude but different direction at mirror points of the
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(a) Micro-structure only (b) Macro-structure only

(c) Both micro-structure and macro-structure

Figure 6.4: Effect of mesh refinement when v2 RVE with 50 particles is utilized. The subfigures show the number of refinements
utilized for the specified length scales

macro-structure. Periodic BCs are asymmetric by definition, and asymmetric domains have different
microscopic averaged stresses (as defined in Eq.(6.4)) at mirror points of the macro-structure. Note
that for finer macro-structural discretizations CH stress fields become more symmetric. This occurs
because the vertical component of the deformation gradient becomes less pronounced throughout the
macro-structure upon mesh refinement. Which means that the vertical components of the microscopic
BCs generally becomes less significant compared to the horizontal components, so the microscopic
BCs become more symmetric.

The effects of particle distribution, of particle size 𝐷𝑓, and of the number of particles 𝑛𝑓𝑥1 on the
load-displacement behavior are shown in Figures 6.8 and 6.9. The responses are unaffected by varia-
tions of 𝐷𝑓 because linear elasticity is formulated in terms of stress and strain and because CH returns
averaged stresses from the micro-structure to the macro-structure. The responses in Fig. 6.8 are not
sensitive to particle distribution, because the number of particles considered (i.e. 𝑛𝑓𝑥1 = 50) is high
enough such that the different RVEs have similar averaged responses. When outliers exist in Fig. 6.9
they correspond to macro-structures for which their RVEs have relatively low 𝑛𝑓𝑥1. These same be-
haviors regarding variations in particle distribution, in 𝐷𝑓, and in 𝑛𝑓𝑥1 were observed in Section 5.2,
where only micro-structural responses where considered. Note that different specimens exhibit similar,
but not identical, variations in this section and in Section 5.2 because the macroscopic and microscopic
BVPs are intrinsically different.
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(a) 0 refinements in both length scales (b) 2 refinements in micro-structure

(c) 2 refinements in macro-structure (d) 2 refinements in both length scales

Figure 6.5: Maximum principal stress fields at maximum displacement for v2 RVE with 50 particles when subjected to tension
BCs. Different mesh refinements are considered

Figure 6.6: Effect of mesh refinement when MH is utilized for accounting for particles

(a) 0 refinements (b) 1 refinement

(c) 2 refinements (d) 3 refinement

Figure 6.7: Maximum principal stress fields when MH is utilized for different mesh refinements

(a) RVEs with uniformly distributed particle size (b) RVEs with varying particle size

Figure 6.8: Effect of particle distribution and particle size
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(a) RVEs with particle size (b) Relative differences in ultimate stress between the curves in
Fig. 6.9a

(c) v2 RVEs (d) Relative differences in ultimate stress between the curves in
Fig. 6.9c

Figure 6.9: Effect of number of particles
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6.3. Behavior of the DebondingModel and Parameter Identification
The behavior of the Turon model for interface elements is investigated under the context of CH with the
purpose of understanding the effect that micro-structural debonding damage has on the macroscopic
response of the solid propellants. The matrix of the RVE is treated as linear elastic so that nonlinearities
introduced by the Turon model can be explored in isolation of nonlinearities introduced by other consti-
tutive models. The default debonding parameters of Table 6.1 and the default mesh are employed for
all simulations.

Parameter Value Units
𝐾 1.5 × 10 𝑁/𝑚
𝜏 5.0 × 10 𝑁/𝑚
𝜏 5.0 × 10 𝑁/𝑚
𝜏 2.5 × 10 𝑁/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝐺 1.125 × 10 𝐽/𝑚
𝜂 0.5 -

Table 6.1: Debonding parameters for TNO’s solid propellants. Blue value is used when when both energies are equal to each
other but the strengths are different. Green values are used when both strengths are equal to each other but the energies are
different

Figures 6.10–6.12 show the effects that the debonding parameters have in the macroscopic re-
sponse of the solid propellants. In general, the same patterns are observed here as in the investigation
with the Turon model for the micro-structure only, Section 5.4.1. However, there are two major dif-
ferences. The first one is that the responses observed here are more numerically stable than the
microscopic responses observed in Section 5.4.1. In said section the tension response of the micro-
structure exhibited early unconvergence for the cases where 𝐺 = 𝐺 = 1.125×10 𝐽/𝑚 and where
𝐾 ≥ 1.5×10 𝑁/𝑚 . In contrast, the simulations of this section do not become unconverged for these
cases. As a consequence, when CH is applied the energies can have a significant effect in the macro-
scopic response, the linear elastic regime can accurately approximate the linear elastic BVP (where
no interface elements are present), and ill-conditioning with respect to the dummy stiffness 𝐾 can be
avoided. All of this was not possible when only the micro-structure was investigated without CH. Note
that when 𝐺 = 𝐺 = 1.125 × 10 𝐽/𝑚 (Fig. 6.10c) debonding regime II exhibits a slight nonlinearity.
This means that a few free surfaces are propagating, so regime III is interacting, although weakly, with
regime II. Free surface propagation was not possible either for the default mesh when only the micro-
structure was investigated. The second major difference when CH is applied is that when 𝐺 ≠ 𝐺
(Figures 6.10a–6.10b), lower values of either mode I or mode II energy can sometimes produce stiffer
responses than higher values. This may be occurring because when the energies are different to each
other, the macro-structural load path is forced into directions that are less efficient in minimizing po-
tential energy than when the energies are equal to each other. If this is the case, this is a spurious
effect introduced by CH since thermodynamics dictate that minimization of potential energy is always
optimal.

The Turon model exhibits better numerical stability when CH is applied because the microscopic
BCs are different than when only the micro-structure is investigated and because averaged macro-
scopic material tangents are employed. Microscopic BCs are periodic, which allow for a greater di-
versity of stress states than uniform BCs, which are more restrictive. The microscopic BCs are also
adaptive because they change for each global time step. This allows the BCs of the current load step
to ”move along” with macroscopic deformation, which is in turn the manifestation of the microscopic
stresses of the previous load step. Thus, microscopic BCs ”move along” the load paths that they, along
with macroscopic BCs, generate. The averaged macroscopic material tangents are extrapolated from
the micro-structure (Eq.(6.5)), so they are different to the Turon model material tangent (Eq.(5.13)), and
this difference affects the root-finding procedure.

All the figures presented in this section for investigating the Turon model are recreated in Appendix
B.2 for the case where the modified damage model is applied to the matrix. The same investigation
was done without CH in Section 5.4.1. The same contrasts and similarities that were mentioned in said
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section between the case where the matrix is linear elastic and the case where the matrix experiences
viscoelastic damage hold here, where CH is applied.

(a) Varying mode I energy (b) Varying mode II energy

(c) Varying mode I and mode II energies and

Figure 6.10: Response of specimen for different values of the critical energy release rates

A set of debonding parameters that can provide a relatively reasonable approximation to the solid
propellant preliminary experiment with strain rate ̇𝜖 = 4.2 𝜇𝑚/𝑠 is identified. The identified parameters
are the default parameters of Table 6.1. The approximation was not performed with the preliminary
experiment with ̇𝜖 = 4.5 𝜇𝑚/𝑠 because the corresponding experimental sample may have suffered
from manufacturing imperfections, as was noted in Section 4.4.3. The debonding parameters where
identified by simple trial and error and the viscoelastic damage model was employed for the matrix
of the default microscopic mesh. The computational approximation is compared to the experiment in
Fig. 6.14. The approximation is acceptable considering the scope and simplifications of this thesis.
Recall that anisotropy, NLVE, nucleation damage, crack-growth for negative hydrostatic stresses, and
a state dependent crack-growth equation are not considered in this study.

The approximation of Fig. 6.14 utilizes a dummy stiffness 𝐾 for which the response of the linear
elastic regime is softer than the response of the linear elastic BVP. This is clearly not ideal and it is a
mistake which carried over to all the simulations of the next section. Even though the 𝐾 of Table 6.1 is
too low for the linear elastic regime to approximate the linear elastic BVP, it is still within a range where
the solution for the default micro-structural mesh is well-conditioned, as shown in Fig. B.11 of Appendix
B.2. However, note that this might not be the case for finer meshes. Most simulations of this chapter
where debonding takes place are performed with the default mesh, so in general utilizing the default 𝐾
does not have a detrimental effect.
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(a) Varying mode I strength (b) Varying mode II strength

Figure 6.11: Response of specimen for different values of the cohesive strengths

Figure 6.12: Response of specimen for different values of dummy stiffness
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(a) Both strengths and both energies are equal (b) Both strengths are equal, but the energies are not

(c) Both energies are equal, but the strengths are not

Figure 6.13: Response of specimen for different values of the experimental parameter

Figure 6.14: Computational approximation to the experiment for the identified debonding parameters
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6.4. Damage-Viscoelastic, Debonding, and Combined
Damage-Debonding-Viscoelastic Behaviors

The damage-viscoelastic, debonding, and combined damage-viscoelastic-debonding behaviors of solid
propellants are investigated by applying the viscoelastic damage model to the matrix and the Turon
model for interface elements to the matrix-particle interfaces. Results for different mesh refinements,
particle size 𝐷𝑓, and number of particles 𝑛𝑓𝑥1 are given in Appendix C. These results are not discussed
in detail in this section because the same observations made in Chapter 5, where the same analyses
were performed but for the micro-structure only, and Section 6.2, where macroscopic linear elastic
results were discussed in detail, generally hold here. Only important differences and the most inter-
esting results will be discussed. The debonding parameters of Table 6.1 and the continuum damage
parameters of Table 4.3 were employed for all the simulations of this section and of Appendix C.

The macroscopic stress fields of Appendix C exhibit more symmetry than the macroscopic stress
fields of the linear elastic BVP (Fig. 6.5). Damage, either in the matrix or the interfaces, improves
the symmetry of the macroscopic solution because it reduces the intensity of stress concentrations.
Therefore, damage reduces the influence that the direction of the macroscopic displacement gradients
(and consequently, of the microscopic BCs) have on the accumulation of strain energy. Contrary to the
linear elastic case, refining only the macro-structural mesh does affect the macroscopic distribution of
stress in the presence of damage. This occurs because the constitutive laws may vary from one time
step to the next.

CH and MH results are compared in Fig. 6.15 for different 𝑛𝑓𝑥1 when only matrix damage is consid-
ered (no debonding). The effects of stress concentrations on damage evolution are captured by CH,
but not captured by MH. Nevertheless, the CH and MH results are quite similar to each other for all
𝑛𝑓𝑥1, especially in the pre-failure regime. This suggests that stress concentrations do not have a very
large effect in damage evolution for the CH simulations. This is because damage is not concentrated
in the micro-structure for the strain rate considered. Indeed, recall from Section 5.4.2 that when the
microscopic strain rate is ̇𝜖 = 3.36×10 𝑠 , damage is spread throughout the RVE. This same strain
rate was applied here to the CH simulations of the macro-structure, which in turn means that similar
strain rates are experienced by the micro-structure. Notice that CH results for particles with normally
distributed 𝐷𝑓 are slightly closer to the MH result than CH results for uniformly distributed 𝐷𝑓. This is
unexpected, since the MH formulation assumes uniformly distributed 𝐷𝑓. However, 𝐷𝑓 distribution is
just one of the many assumptions within the CH and MH schemes.

(a) RVEs with particle size (b) v2 RVEs

Figure 6.15: Comparison between CH results with different number of particles and MH results

A computational modelling scheme that captures micro-structural viscoelasticity, continuum ma-
trix damage, and particle debonding through means of CH was developed. This complete modelling
scheme is applied for solid propellants for different strain rates and under tension, compression, and
shear BCs. The results are shown in Fig. 6.16.

Tension computational results (Fig. 6.16a) show that ultimate strength increases and that the re-
sponse becomes softer with increasing strain rate. TNO’s matrix-only tension experiments (Fig. 1.4a)
show that both ultimate strength and brittleness increase with increasing strain rate. The computational
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(a) Tension (b) Compression

(c) Shear

Figure 6.16: Macroscopic response of the solid propellants for different strain rates when continuum and debonding damage are
considered

results exhibit a different brittleness trend than TNO’s experiments, because the threshold micro-crack
density 𝜔 is non-zero. Recall from Section 4.4 that when 𝜔 = 0.00, the matrix-only computational
results approximate the brittleness of the experiments better than when 𝜔 ≠ 0.00. Also recall that
𝜔 ≠ 0.00 is utilized to avoid excessive numerical instability. Note that the solid propellant com-
putational results are compared to the matrix-only experiments, because TNO did not provide solid
propellant data for significantly different strain rates. Nevertheless, solid propellants and matrix-only
trends are expected to be similar in tension because both materials are related and because they both
exhibit similar experimental responses (Figures 1.4a and 1.5a).

Compression (Fig. 6.16b) and shear (Fig. 6.16c) results are less numerically stable than tension
results. They exhibit early unconvergence for relatively low strain rates. This occurs because the
modified damage model is less stable for compression and shear than for tension, as was shown in
Sections 4.3.2–4.3.3. The computational results for ̇𝜖 = 17.7𝜇𝑚/𝑠 suggest that the material is stronger
in shear than in tension. However, this apparent difference between shear and tension strength is
exaggerated because the continuum damage model does not allow damage to evolve in regions of
negative hydrostatic stress. Which correspond to approximately half of the effective area of the RVEs
subjected to shear. The computational modelling scheme is better suited for tension BCs than for other
types of BCs.

6.5. Conclusion
The macro-structural behavior of solid propellants was investigated in this chapter by considering differ-
ent combinations of micro-structural constitutive relations and geometries, various micro- and macro-
structural mesh refinements, and CH for homogenizing the micro-structure. In general, the macro-
structure exhibits similar trends and behaviors as those observed in Chapter 5 for the micro-structure.
Only conclusions, not mentioned in said chapter are given here.
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Results for different meshes and all combinations of constitutive models show that stress fields
are significantly asymmetrical for coarse macro-structural meshes, even for symmetrical macroscopic
BCs. This is particularly true for the linear elastic case, because the stress concentrations are strong.
Asymmetries are reduced as macro-structural mesh refinement increases. This implies that relatively
fine macro-structural meshes are necessary for locally reasonable results. Depending on the mesh
resolution needed, this may be unfeasible because of the high computational demands of CH. The CH
results of this chapter and the MH results of Chapter 4 are remarkably similar for the linear elastic case
and for the perfect bond case. This implies that the MH framework may be regarded as a precise and
computationally efficient approach when debonding is not considered. CH was shown to introduce a
numerically stabilising effect whenever the Turon model was considered. Macro-structural CH results
exhibit less sensitivity to mesh refinement than similar micro-structural results of Chapter 5, but do
not converge upon mesh refinement either for relatively coarse RVE meshes. With CH ill-conditioning
with respect to 𝐾 can be avoided, because it is possible to use sufficiently high values of the dummy
stiffness 𝐾 to approximate the linear elastic BVPs (where no interface elements are present) with the
linear elastic regimes. CH also allows to use values of the critical energy release rates 𝐺 and 𝐺 that
are sufficiently small to capture significant softening. However, CH does introduce one drawback to the
Turon model. Sometimes when 𝐺 ≠ 𝐺 internal potential energy is not minimized, which contradicts
thermodynamic laws. These results lead to the encouraging conclusion that CH eliminates numerical
issues associated with 𝐾, reduces RVE meshing requirements for capturing free surface propagation,
and may reduce meshing requirements for achieving convergence upon refinement. However, even
if CH allows the RVE to be less refined for achieving convergence, meshing requirements are still
unfeasible. The results also point to the negative conclusion that materials with 𝐺 ≠ 𝐺 may not be
well characterized with CH-Turon combinations.

The material’s debonding parameters were identified through trial and error by fitting them to the
solid propellant experiment with strain rate ̇𝜖 = 4.2 𝜇𝑚/𝑠 while employing the matrix damage parame-
ters found in Chapter 4. The approximation obtained with these parameters is satisfactory considering
the scope of this study. However, better approximations are possible if limitations of the constitutive
models employed are addressed, and if more thermomechanical aspects of the material are taken into
account. Finally, the total damage-debonding-viscoelastic behavior of the solid propellants was com-
putationally tested for different strain rates in tension, compression, and shear BCs. The numerical
behavior of the computational modelling scheme is better in tension than in both compression and
shear. This occurs because the modified viscoelastic damage model is less numerically stable in com-
pression and shear and because ignoring damage for negative hydrostatic stresses prevents failure
planes from forming in the micro-strucure. Further work is needed for the computational scheme to be
suitable for arbitrary loading conditions. However, its performance is good within the context of this
thesis because the focus was to reproduce TNO’s tension experiments.



7
Conclusion and Recommendations

7.1. Conclusions
This thesis identified and tested suitable material models for modelling the micro-structure of solid pro-
pellants and employed computational homogenization (CH) for characterizing the homogenized macro-
structural behavior of the material. The Generalised Maxwell model was employed for viscoelasticity,
modified versions of Lee and Shin [20] were proposed for matrix damage, and the Turon model for
interface elements [30] was employed for matrix-particle debonding. The constructed computational
modelling schemes were calibrated and compared with the tension experiments of the matrix and the
solid propellants developed by TNO (i.e. Figures 1.4a and 1.5a). The aim of this thesis was to further
understand the effects of the considered mechanical nonlinearities (i.e. viscoelasticity, matrix damage,
and debonding) on the behavior of solid propellants, and to determine if CH and the material models
considered are suitable for characterizing this material. The findings of this thesis are summarized as
answers to the research questions (RQs) that guided this study.

1. What are the effects of viscoelasticity and matrix continuum damage in solid propellants?

TNO’s experiments exhibit a clear rate dependence and a brittle failure, which were hypothe-
sized to be caused by viscoelasticity and micro-crack damage in the matrix, respectively. The
matrix was idealized as isotropic and linear viscoelastic, even though the experiments also ex-
hibit anisotropic and state dependent behavior. The Generalised Maxwell model is employed for
investigating viscoelasticity and the Lee and Shin continuum damage model for brittle particulate
composites [20] was identified as a promising model for modelling micro-crack damage. The Lee
and Shin model uses mathematical homogenization (MH) for modelling particulate composites,
but it can also be used for the matrix-only. The model assumes that micro-cracks grow only in one
direction, which is not in accordance with the matrix, and suffers from numerically unstable behav-
ior. Two modified versions of the model were proposed for relaxing the direction of crack growth
assumption and for improving numerical behavior. One version considers non-viscous damage
and the other considers viscoelastic damage by applying the Generalised Maxwell model to the
positive-definite term. The modified versions consider micro-crack growth in three orthogonal
planes, a new parameter called the threshold micro-crack density 𝜔 , and a different rate of
crack growth equation as Lee and Shin [20]. The rate of crack growth equations employed by
the modified models and by Lee’s and Shin’s original model describe crack growth damage as
a state independent process. This causes numerical instabilities that are partially remedied by
the newly introduced 𝜔 . The modified damage models do not trigger early failure from loss of
ellipticity because of their significant rate dependence.
The available experimental data was insufficient to reliably identify the model parameters intro-
duced by the crack nucleation damage mechanism and by the crack growth initiation criterion for
negative hydrostatic stresses. Therefore, the only damagemechanism that was considered in the
characterization of the matrix was crack growth in regions of positive hydrostatic stress. This did
not impose severe constraints in replicating the behavior of the matrix-only experiments. It was
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shown that crack growth is significantly more relevant to brittle damage than crack nucleation, and
that hydrostatic stress is positive everywhere in the matrix-only tension samples. The matrix-only
experiment with strain rate ̇𝜖 = 4.2 𝜇𝑚/𝑠, for which the model parameters were identified, was
accurately replicated with the modified viscoelastic damage model. The viscoelastic parameters
were identified with nonlinear least squares fitting and the damage parameters were identified by
trial and error. Other matrix-only experiments with different strain rates were replicated with less
accuracy. Loss of accuracy occurs because of discrepancies between the experimental sam-
ples, because of the isotropy and LVE simplifications, and as a consequence of the technique
employed for reducing numerical instabilities. When 𝜔 = 0.00, the damage models agree
with the experiments in that ultimate strength and brittleness are proportional to strain rate (i.e.
𝜎 ∝ ̇𝜖 and 𝜖 ∝ ̇𝜖 ). However, the models exhibit the opposite brittleness trend (i.e. 𝜖 ∝ ̇𝜖)
when 𝜔 = 0.10, which was chosen for modelling the solid propellants in Chapters 5 and 6 for
improved numerical stability.
Perfectly bonded solid propellants were computationally investigated by embedding perfectly
bonded particles into the matrix through both CH and MH. Both homogenization methods yielded
remarkably similar responses even though the CH framework accounts for the effect of micro-
scopic stress concentrations on damage evolution and the MH framework does not. This sug-
gests that for the strain rate of ̇𝜖 = 4.2 𝜇𝑚/𝑠 considered in the CH versus MH comparison, matrix
damage is well distributed (i.e. not heavily localized) in the micro-structure. Indeed, the micro-
structural damage fields of Chapter 5 confirm that damage is well distributed for ̇𝜖 = 4.2 𝜇𝑚/𝑠.
Damage localization would increase if the rate of crack growth equation was state dependent be-
cause damage would concentrate in regions of large overstress. Damage localization would also
increase if damage was allowed in regions of negative hydrostatic stress, which do exist in solid
propellants subjected to tension BCs, because localization bands would form more easily. There-
fore, there is still some uncertainty about the precise effect that microscopic stress concentrations
have on damage evolution.
Overall, the modified damage models are appropriate for modelling matrix damage in solid pro-
pellants. It is worth noting that the models could improve the material’s characterization if crack
growth for negative hydrostatic stress and nucleation damage were included. The main drawback
of the models is that they often generate numerical instabilities, so caution and good intuitive and
mathematical understanding of their behavior are necessary for successful application.
Matrix-only and solid propellant computational results confirm that viscoelasticity is amajor source
of rate dependence and that (continuum) matrix micro-crack damage causes brittle failure. They
also lead to the unexpected result that continuum matrix damage is a significant source of rate
dependence in the post-damage regime, which agrees with matrix-only experiments. The com-
parison between results for perfectly bonded solid propellants and solid propellant experiments
clearly shows that other dissipative processes must also play important roles in determining ulti-
mate strength, stiffness, and overall brittleness. However, the viscoelastic damage model should
also be further modified for improving the characterization of these properties. In particular, state
dependence and damage for negative hydrostatic stresses should be considered. Recommen-
dations on how to improve the model are given in the next section.

2. What is the effect of grain debonding in solid propellants?

Particle debonding is observed in the electron microscope image (Fig.1.1) of the failure plane of
TNO’s solid propellants, and is hypothesized to significantly affect their behavior. The locations of
particle debonding, the matrix-particle interfaces, are known ’a priori’ of numerical computations,
so zero-thickness interface elements were placed in these locations to model decohesion. The
Turon model [30] was employed for describing the behavior of the interfaces with a bilinear trac-
tion separation law (TSL). A bilinear TSL is believed to be appropriate because the experiments
suggest that interfacial softening can be approximated as constantly decreasing, provided that
the matrix is appropriately modelled. The Turon model is thermodynamically consistent for mixed
mode loading, which is important because the micro-structure is subjected to a variety of load
states even for simple macroscopic BCs.
It was shown that when the Turon model is the only source of nonlinearities, the debonding dam-
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age response of the micro-structure can be separated into four so-called debonding damage
regimes that take place sequentially and sometimes interact weakly with each other. However,
very fine RVE meshes are necessary for the four regimes to manifest. If the meshes are not suf-
ficiently fine, the numerical solution becomes unconverged before regimes III and IV take place.
Free surface propagation only occurs in these regimes. Mesh sensitivity is another important
spatial disctretization issue. RVE responses are highly mesh sensitive because fine meshes can
characterize stress concentrations and their consequences better than coarse meshes. Very fine
meshes are necessary to reduce mesh sensitivity and for RVE responses and converge upon
mesh refinement. CH macro-structural responses are less mesh sensitive than RVE responses,
but also require very fine RVE meshes to achieve convergence upon refinement. Using very
fine RVE meshes is not feasible because the macroscopic behavior of the solid propellants is
investigated with CH. Therefore, this study had to settle with characterizing debonding within the
context of regimes I and II only, where interface softening occurs but free surface propagation
does not, and with producing results that do not approach convergence upon mesh refinement.
It was shown that when only the micro-structure is analyzed with the meshes used for solid propel-
lant analyses, assigning physically reasonable values to the dummy stiffness 𝐾 and to the energy
release rates 𝐺 and 𝐺 is not possible. The numerical solution becomes unconverged for high
enough values of 𝐾 and for low enough values of 𝐺 and 𝐺 . Consequently, the linear elastic
regimes cannot approximate the linear elastic BVPs (where no interface elements are present),
the solutions are ill-conditioned with respect to 𝐾, and the rates of softening are unreasonably
slow. When CH is employed for modelling the macro-structure, numerical issues regarding 𝐾
can be avoided and values of 𝐺 and 𝐺 that predict more reasonable rates of softening are
possible.
TNO’s solid propellant experiments are well approximated by the computational scheme that con-
siders debonding and viscoelastic matrix damage under the CH framework. The approximation is
not as accurate as the matrix-only approximation obtained with the damage-viscoelastic scheme,
but is good considering the simplifications and scope of this thesis, and that free surface propa-
gation is not well captured. The accuracy of the approximation is limited by the bilinear character
of the Turon TSL, by the fact that regimes III and IV are not captured, and because anisotropy
and other thermomechanical aspects of the solid propellants are not treated. Overall, the Turon
model is appropriate for delivering functional results when a high degree of accuracy is not im-
perative, but it suffers from serious limitations for fully capturing the physical processes that solid
propellants exhibit.
The answer to the previous RQ concluded that dissipative processes other than viscoelasticity
and matrix damage also play important roles in determining the behavior of the solid propellants.
The comparison between computational results for perfectly bonded solid propellants and results
of the full CH damage-debonding-viscoelastic computational scheme show that debonding is cer-
tainly one of these processes. Thereby confirming the hypothesis about the high significance of
debonding. This is because the simulations for perfectly bonded solid propellants exhibit much
greater strength than the results of the CH damage-debonding-viscoelastic scheme. Comparing
the results of the full scheme to the experiments it is evident that free surface propagation, which
was not well captured, and additional dissipative processes are also important to the behavior of
solid propellants.

3. How can the micro/macro transition of solid propellants be modelled computationally?

The macro-structural behavior of solid propellants is significantly affected by the behavior of the
micro-structure. It is computationally unfeasible to directly consider the micro-structure in macro-
structural FEM. Therefore, a method for approximating macro-structural behavior with a homoge-
nized micro-structure is necessary. CH is hypothesized to be a suitable homogenization method
for modelling the micro/macro transition of solid propellants. This homogenization technique ex-
trapolates the evolving nonlinear behavior of the micro-structure to the macro-structure by linking
both length scales through so-called averaging theorems. Its advantage over more computation-
ally efficient homogenization methods, like MH, is that it allows to explicitly model debonding and
is more precise.
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Perfectly bonded solid propellants were investigated with CH and MH, both of which yielded
similar results (mentioned in RQ 1). This implies that both homogenization methods validate each
other and suggests that explicitly capturing the evolving state of themicro-structure is not essential
for the strain rates considered in the investigation. However, CH may provide significantly better
accuracy than MH for lower strain rates, for which stress concentrations and damage evolution
interact more with each other. The use of CH was shown to have important consequences when
interface elements with a Turon TSL are used for capturing micro-structural debonding damage.
CH improves numerical stability, allows to use physically feasible values of the dummy stiffness 𝐾
and of the energy release rates 𝐺 and 𝐺 , and reduces mesh sensitivity (mentioned in RQ 2).
However, CH also necessitates very fine RVE meshes for capturing free surface propagation and
for achieving convergence upon refinement, which is prohibitively computationally demanding.

Overall, CH is appropriate for extrapolating the behavior of the micro-structural material models
investigated in this thesis to the macro-structure of solid propellants. It improves numerical sta-
bility, reduces mesh sensitivity, and allows to explicitly model debonding. In comparison to MH
it allows to model more complex behavior (debonding cannot be explicitly modelled with MH),
however its high computational cost imposes limitations. The hypothesis pertaining the suitability
of CH for the macro/micro transition is correct.

7.2. Recommendations
Further research is necessary to improve the current understanding of the complex solid propellant
material and to improve the computational modelling schemes employed for characterizing it. Recom-
mendations on how to improve the computational scheme and on potential directions for future research
are presented here.

7.2.1. Constitutive Modelling within the Numerical Schemes Employed
Recommendations for improving constitutive modelling within the context of the numerical schemes
proposed in this thesis are given here.

State dependent rate of crack growth equation
The continuum damage model proposed by Lee and Shin [20] and the modified damage models pro-
posed in this thesis employ rate of crack growth equations that are independent of the state of the
material. State independence is the main reason for the numerical instability exhibited by the modi-
fied models. Employing a state dependent rate of crack growth equation would greatly reduce spuri-
ous loading-unloading oscillations, because the rate of damage evolution would increase smoothly as
damage initiates and decrease smoothly as the material becomes highly degraded. Hence, the non-
positive-definite softening terms would be regulated. A state dependent rate equation can be obtained
by replacing the currently employed absolute overstress measure by a normalized overstress measure.
Alternatively, new rate of crack growth formulations can be identified and their suitability can be tested
for matrix materials.

Consistency between micro-crack size distributions assumed by the constitutive relation and
by the crack growth equations
The constitutive relation and the crack growth (i.e. rate of crack growth and damage surface) equations
employed by Lee and Shin [20] and by the modified damage models assume different micro-crack size
distributions in themicroscopic neighborhoods where cracks evolve. Ju and Tseng [18] assume uniform
micro-crack size distribution for the constitutive relation with the purpose of keeping their mathematical
expressions simple. However, this can lead to unexpected behavior. For example, increasing the
number of micro-cracks 𝑁 was shown to reduce brittleness because more energy is necessary for
all cracks in a microscopic neighborhood to grow together. Conversely, Addessio and Johnson [20]
assume exponential micro-crack size distribution for the crack growth equations based on experimental
observation. Micro-crack size distribution should be the same for the constitutive relation and for the
crack growth equations to improve the physical interpretation and numerical results. To see how to
reformulate the constitutive relation for another micro-crack size distribution, refer to Ju and Tseng
[18].
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Micro-crack planes in different directions
The damage model proposed by Lee and Shin [20] considers crack growth only along micro-crack
planes aligned in a single direction. In contrast, the modified damage models consider crack growth
alongmicro-crack planes aligned to the three orthogonal Cartesian planes. Crack growth was extended
from one to three directions because micro-cracks can grow in arbitrary directions in the matrix. This
is a better representation than unidirectional crack growth, but is still a simplification. As the loading
conditions are simple, this assumption has little effect. However, constitutive relations that better ap-
proximate micro-crack propagation in the matrix are necessary for employing the modified models for
arbitrary loading conditions. Ju’s and Tseng’s constitutive relation [18] can be reformulated to allow
crack growth for any number of arbitrary micro-crack plane directions. Matrix experimental data for
a wide variety of loading conditions would be needed for finding the optimal number of crack growth
directions and their orientations.

Micro-crack growth in regions of negative hydrostatic stress
Micro-crack growth in regions of negative hydrostatic stress was not considered, because the available
experimental data is insufficient for identifying the parameters associated with this damagemechanism.
For tension experiments, this was not an issue because the matrix-only and the solid propellant sam-
ples were mostly covered by regions of positive hydrostatic stress. In contrast, negative hydrostatic
stresses were ubiquitous for compression and shear BCs, resulting in damage underprediction. Con-
sequently, ultimate strength was overpredicted for these BCs and the numerical solutions exhibited
early unconvergence. Allowing micro-crack growth damage to occur in regions of negative hydrostatic
stress would improve numerical behavior. Matrix experimental data for identifying the friction coefficient
𝜇 and the cohesive stress 𝜎 is necessary for this purpose.

Anisotropy and nonlinear viscoelasticity in the matrix
TNO’s experiments show that the matrix material exhibits different stiffnesses and state dependencies
for tension and compression. The matrix was idealized as isotropic and linear viscoelastic (LVE) in
this thesis. Consequently, the developed computational schemes cannot replicate the tension and
compression experiments with the same set of model parameters. Different parameters must be found
for each case, but only tension parameters were identified in this study. It is recommended to include
anisotropy and nonlinear viscoelasticity (NLVE) into the computational schemes to characterize the
behavior of the matrix for any arbitrary load state with a unique set of model parameters. This would
greatly improve the generality of the computational schemes.

Interfacial transition zones
Interfacial transition zones (ITZs) were not considered for solid propellants, because their geometry
and physical properties are not known. ITZs may have a significant effect on the response of the solid
propellants. However, it is necessary to understand their effect to confidently elaborate a full compu-
tational characterization of the material. Considering ITZs may be particularly important to properly
capture the effects of matrix and debonding damage because stress concentrations and debonding
occur in the regions spanned by ITZs. It is recommended to investigate the properties of ITZs and if
necessary to include ITZs in the computational schemes. Incorporating ITZs would improve current
understanding of the solid propellants and may improve computational characterization.

Debonding properties as functions of particle size
The obtained results show that micro- and macro-structural responses vary significantly when the same
debonding properties are employed for RVEs with different particle size. This occurs because debond-
ing models for interface elements relate traction, a relative measure of force, to displacement jump, an
absolute measure of translation. Debonding properties that do not depend on particle size were iden-
tified by fitting them to a solid propellant experiment through trial and error. This was not a major issue
because the number of particles considered was high enough such that effects caused by large and
small particles averaged out to produce a reasonable micro-structural response. If debonding prop-
erties would be identified as functions of particle size the resulting micro-structural responses would
not only be correct in an averaged sense, but also locally within the micro-structure. Furthermore, this
would partially reduce the necessity for considering large numbers of particles in the RVEs.
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7.2.2. Numerical Schemes and Related Constitutive Modelling
Recommendations for improving numerical efficiency, solving related numerical issues, and improv-
ing characterization by improving and generalizing the numerical schemes proposed in this thesis are
given here. Recommendations for addressing constitutive modelling issues linked to numerical scheme
recommendations are also given.

Quasi-Newton Raphson methods for tangential stiffness
The damage rate constitutive equation (Eq. (4.29)) cannot analytically relate the strain rate to the stress
rate with a linear system of equations, so a consistent tangent stiffness is not possible. Lee and Shin
[20] proposed a psuedo-tangent stiffness (Eq. (4.34)) for carrying out the NR procedure. However, it
was observed that this pseudo-tangent stiffness generally delivers worse computational performance
than the secant stiffness, which is not ideal either. It is hypothesized that Quasi-NRmethods can deliver
good computational performance, better than those of the pseudo-tangent and secant stiffnesses. It is
recommended to investigate which Quasi-NR method is most appropriate for the damage models and
the computational schemes.

Characterize macro-structural damage-debonding-viscoelastic behavior only via mathematical
homogenization
The purpose of this thesis was to characterize the macro-structural damage-debonding-viscoelastic be-
havior of solid propellants with CH. An MH framework for characterizing the macro-structural damage-
viscoelastic behavior of perfectly bonded solid propellants was also briefly investigated, mostly for the
purpose of academic comparison. Interestingly, the MH method produced similar results as the CH
method for a fraction of the computational cost. This naturally raises the question of whether or not the
MH method can be extended to include debonding and yield good results. This question is particularly
interesting considering that computational efficiency limitations generally prevent the Turon model form
capturing free surface propagation within a CH framework and prevent the use of mesh-insensitive
meshes whenever the Turon model is employed. Yang et al [36] proposed a statistical debonding-
viscoelastic model that is formulated within the same MH framework as the damage-viscoelastic MH
model presented in this thesis. Therefore, both models are compatible. Combining both models into
a unified damage-debonding-viscoelastic MH model may provide an accurate and cost effective al-
ternative to model solid propellants. If the unified model proves unsuccessful for modelling the solid
propellants, implementing and investigating it would still constitute an interesting academic endeavor.
To further improve the damage-viscoelastic and the potential unified MH models, perturbed compli-
ances that account for the interaction between matrix damage and particles could be formulated.

Machine learning for prediction of RVE behavior
Micro-structural RVE simulations that consider the Turon model for interface elements [30] require
heavily refined meshes for capturing free surface propagation and for their numerical solutions to con-
verge upon mesh refinement (i.e. to achieve mesh insensitivity). Macro-structural CH simulations with
heavily refined micro-structures are unfeasible because of their high computational cost. Therefore,
RVE meshes for which free surface propagation is generally not captured and which do not converge
upon mesh refinement were employed in this thesis. As a solution to this issue, machine learning (ML)
is recommended for predicting the behavior of heavily refined RVE meshes. ’A priori’ micro-structural
computations of RVEs with varying BCs and geometries can be used for predicting the averaged re-
sponses of arbitrary RVEs that are given arbitrary macro-structural inputs. This would make CHmacro-
structural simulations feasible because the macro- and micro-structures do not have to be evaluated
concurrently; the micro-structural output is readily available from the ML predictions. The drawbacks
of this approach are that devising an appropriate ML procedure is not a trivial task and that the ’a priori’
ML process would be very computationally demanding. Nevertheless, the ML process only has to be
performed once, so it is a more efficient approach in the long term than repeatedly performing the usual
concurrent macro-micro CH computations.

Generalising the computational modelling schemes for capturing the effects of FDM
The computational modelling schemes given in this thesis analyze the macro-structures of solid pro-
pellants by homogenizing only their micro-structures. Therefore, the effects of the fused deposition
modelling (FDM) manufacturing process employed by TNO, which introduces a mesoscale, were not
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considered. Generalising the computational modelling schemes to schemes that consider a layered
mesoscale is recommended for capturing the effects of FDM on solid propellants, and more generally,
for analyzing any class of 3D-printed particulate composite. The meso-structure must account for the
thermomechanical processes and effects that the manufacturing process introduces into the behavior
of the solid propellants. Which include delamination damage, heterogeneous matrix properties caused
by thermal gradients, among others. Meso-structural constitutive models must be identified and ap-
plied for capturing these processes and effects. For example, the Turon TSL [30] could be used by
inter-laminar interface elements that capture delamination damage. A generalisation where CH is em-
ployed for concurrent macro-meso-micro computations would be very computationally demanding. It
would clearly be unfeasible if the Turon model for interface elements [30] is employed for debonding
because heavily refined micro-structural meshes would be necessary for capturing free surface propa-
gation. Therefore, it is recommended to generalise the computational schemes by coupling concurrent
macro-meso CH computations with either meso-micro computations that employ the unified damage-
debonding-viscoelastic MH model or the ML approach proposed in the recommendations above. The
principle of separation of scales must hold for these couplings to be valid. If it does not hold, the layered
nature of the solid propellants must be directly incorporated in the macro-structure. This may still be
feasible if the MH or ML approaches are employed because concurrent CH computations would not be
necessary at any level.





A
Numerical Comparison Results

All the figures that Lee and Shin generated for exploring the behavior of their model are recreated here
with the modified model. If the legend of some figure is unclear please refer to Lee and Shin [20], where
the legends are almost identical.

(a) Longitudinal compliances (b) Shear compliances

Figure A.1: First-order-only compliances and combination of first-order and second-order compliances for . and .
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(a) Stress-strain curve for case with . (b) Stress-strain curve for case with .

Figure A.2: Stress-strain response of element for first- and second-order contributions.

(a) Stress-strain curve (b) Crack-size evolution versus strain (c) Shear modulus degradation vs strain

Figure A.3: Response of element for different values of particle volume fraction .

(a) Stress-strain curve (b) Crack-size evolution versus strain (c) Shear modulus degradation vs strain

Figure A.4: Response of element for different values of control parameter .

(a) Stress-strain curve (b) Crack-size evolution versus strain (c) Shear modulus degradation vs strain

Figure A.5: Response of element for different values of initial crack density .



B
Effect of Turon Model Parameters on

Composites with Matrix Damage

B.1. Effect on the Micro-Structure

(a) Tension (b) Compression

(c) Shear

Figure B.1: Response of specimen for different values of mode I energy
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(a) Tension (b) Compression

(c) Shear

Figure B.2: Response of specimen for different values of mode II energy
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(a) Tension (b) Compression

(c) Shear

Figure B.3: Response of specimen for different values of mode I and mode II energies and
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(a) Tension (b) Compression

(c) Shear

Figure B.4: Response of specimen for different values of mode I strength
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(a) Tension (b) Compression

(c) Shear

Figure B.5: Response of specimen for different values of mode II strength
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(a) Tension (b) Compression

(c) Shear

Figure B.6: Response of specimen for different values of experimental parameter
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(a) Tension (b) Compression

(c) Shear

Figure B.7: Response of specimen for different values of experimental parameter when both energies are equal to each other
but the strengths are different
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(a) Tension (b) Compression

(c) Shear

Figure B.8: Response of specimen for different values of experimental parameter when both strengths are equal to each other
but the energies are different
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(a) Tension (b) Compression

(c) Shear

Figure B.9: Response of specimen for different values of dummy stiffness
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B.2. Effect on the Macro-Structure

(a) Varying mode I energy (b) Varying mode II energy

(c) Varying mode I and mode II energies and

Figure B.10: Response of specimen for different values of the critical energy release rates
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Figure B.11: Response of specimen for different values of dummy stiffness

(a) Varying mode I strength (b) Varying mode II strength

Figure B.12: Response of specimen for different values of the cohesive strengths
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(a) Both strengths and both energies are equal (b) Both strengths are equal, but the energies are not

(c) Both energies are equal, but the strengths are not

Figure B.13: Response of specimen for different values of the experimental parameter



C
Computational Homogenization

Analyses Results

C.1. Damage-Viscoelastic Behavior

(a) Micro-structure only (b) Macro-structure only

(c) Both micro-structure and macro-structure

Figure C.1: Effect of mesh refinement when v2 RVE with 50 particles is utilized. The subfigures show the number of refinements
utilized for the specified length scales.
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(a) 0 refinements in both length scales (b) 2 refinements in micro-structure

(c) 2 refinements in macro-structure (d) 2 refinements in both length scales

Figure C.2: Maximum principal stress fields at maximum displacement for v2 RVE with 50 particles when subjected to tension
BCs. Different mesh refinements are considered.

(a) RVEs with uniformly distributed particle size (b) RVEs with varying particle size

Figure C.3: Effect of particle distribution and particle size
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(a) RVEs with particle size (b) Relative differences in ultimate stress between the curves in
Fig. C.4a

(c) v2 RVEs (d) Relative differences in ultimate stress between the curves in
Fig. C.4c

Figure C.4: Effect of number of particles
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C.2. Debonding Behavior

(a) Micro-structure only (b) Macro-structure only

(c) Both micro-structure and macro-structure

Figure C.5: Effect of mesh refinement when v2 RVE with 50 particles is utilized. The subfigures show the number of refinements
utilized for the specified length scales.

(a) 0 refinements in both length scales (b) 2 refinements in micro-structure

(c) 2 refinements in macro-structure (d) 2 refinements in both length scales

Figure C.6: Maximum principal stress fields at maximum displacement for v2 RVE with 50 particles when subjected to tension
BCs. Different mesh refinements are considered.
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(a) RVEs with uniformly distributed particle size (b) RVEs with varying particle size

Figure C.7: Effect of particle distribution and particle size

(a) RVEs with particle size (b) Relative differences in ultimate stress between the curves in
Fig. C.8a

(c) v2 RVEs (d) Relative differences in ultimate stress between the curves in
Fig. C.8c

Figure C.8: Effect of number of particles
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C.3. Damage-Debonding-Viscoelastic Behavior

(a) Micro-structure only (b) Macro-structure only

(c) Both micro-structure and macro-structure

Figure C.9: Effect of mesh refinement when v2 RVE with 50 particles is utilized. The subfigures show the number of refinements
utilized for the specified length scales.

(a) 0 refinements in both length scales (b) 2 refinements in micro-structure

(c) 2 refinements in macro-structure (d) 2 refinements in both length scales

Figure C.10: Maximum principal stress fields at maximum displacement for v2 RVE with 50 particles when subjected to tension
BCs. Different mesh refinements are considered.
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(a) RVEs with uniformly distributed particle size (b) RVEs with varying particle size

Figure C.11: Effect of particle distribution and particle size

(a) RVEs with particle size (b) Relative differences in ultimate stress between the curves in
Fig. C.12a

(c) v2 RVEs (d) Relative differences in ultimate stress between the curves in
Fig. C.12c

Figure C.12: Effect of number of particles
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RVE Meshes

The RVE meshes with psuedo-random particle distributions employed in this thesis are given here. For
these RVEs, the number of particles 𝑛𝑓𝑥1 varies from 10 to 100, the particle size 𝐷𝑓 varies from 10 𝜇𝑚
to 40 𝜇𝑚, and the mesh refinements define element size by applying Gmsh characteristic lengths
defined by 𝐿 = 0.5𝐷𝑓/(𝑛 + 1). Where 𝑛 is the number of times that a mesh has been refined
relative to the base case 𝑛 = 0. Particle size is either uniformly or normally distributed within an RVE.
When particle size is normally distributed, 10 𝜇𝑚 and 40 𝜇𝑚 are the bounds of the Gaussian PDF from
which 𝐷𝑓 is pseudo-randomly sampled. Different input versions 𝑣1, 𝑣2, and 𝑣3 are given to the mesh
generating software for the pseudo-random sampling of 𝐷𝑓 for different RVEs.

The figures given here show the RVEmeshes and Tables D.1–D.2 show the relevant details of these
meshes when interface elements (IEs) are present and when they are not. The figures are captioned
with the mesh ID. The IDs are composed of three elements separated by commas. The first element
refers to the number of refinements 𝑛 done on the mesh. The second element is either the particle
size 𝐷𝑓 in 𝜇𝑚 when particle size is uniformly distributed or the input version 𝑣𝑖 (with 𝑖 = 1, 2, 3) when
particle size is normally distributed. The third element is the number of particles 𝑛𝑓𝑥1 in the mesh.

Note that there are more meshes with uniform particle distribution than meshes with normal particle
distribution. This is because the meshes where generated automatically with 𝐺𝑚𝑠ℎ, and for some
parameter combinations (of refinement, 𝐷𝑓, and 𝑛𝑓𝑥1) the software generated unusablemeshes where
one or more T3 elements are represented by lines instead of triangles.

ID Length Nodes
No IEs

Elements
No IEs

Nodes
With IEs

Elements
With IEs

1,10,50 80.9 2009 3844 2736 4543
1,20,50 162 1973 3786 2693 4482
1,30,10 109 447 820 601 962
1,30,20 153 836 1578 1128 1858
1,30,30 188 1216 2386 1700 2805
1,30,40 217 1582 3020 2163 3579
1,30,50 243 1973 3798 2695 4500
1,30,70 287 2721 5245 3730 6233
1,30,80 307 3117 6026 4271 7150
1,30,90 326 3485 6746 4783 8010
1,30,100 343 3928 7632 5366 9036
1,40,50 324 1993 3832 2721 4536
0,20,20 102 438 818 NA NA
1,20,20 102 765 1457 NA NA
2,20,20 102 2099 4064 NA NA

Table D.1: Details of RVE meshes where particle size is uniformly distributed
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ID Length Nodes
No IEs

Elements
No IEs

Nodes
With IEs

Elements
With IEs

0,v1,50 171 1035 1976 1402 2321
0,v2,10 85.5 225 408 306 477
0,v2,30 115 614 1166 828 1366
0,v2,40 133 811 1544 1100 1813
0,v2,50 147 966 1860 1310 2188
0,v2,90 204 1753 3388 2375 3980
0,v3,50 162 989 1884 1359 2230
1,v2,50 147 1450 2770 1940 3244
2,v2,50 147 3724 7230 4639 8129
3,v2,50 147 13018 25630 14780 27376
4,v2,50 147 48968 97148 52421 100585

Table D.2: Details of RVE meshes where particle size is normally distributed

Figure D.1: ID: 0,10,50 Figure D.2: ID: 0,20,50

Figure D.3: ID: 0,30,10 Figure D.4: ID: 0,30,20
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Figure D.5: ID: 0,30,30 Figure D.6: ID: 0,30,40

Figure D.7: ID: 0,30,50 Figure D.8: ID: 0,30,70
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Figure D.9: ID: 0,30,80 Figure D.10: ID: 0,30,90

Figure D.11: ID: 0,30,100 Figure D.12: ID: 0,40,50
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Figure D.13: ID: 0,20,20 Figure D.14: ID: 1,20,20

Figure D.15: ID: 2,20,20
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Figure D.16: ID: 0,v1,50 Figure D.17: ID: 0,v2,10

Figure D.18: ID: 0,v2,30 Figure D.19: ID: 0,v2,40
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Figure D.20: ID: 0,v2,50 Figure D.21: ID: 0,v2,90

Figure D.22: ID: 0,v3,50 Figure D.23: ID: 1,v2,50
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Figure D.24: ID: 2,v2,50 Figure D.25: ID: 3,v2,50

Figure D.26: ID: 4,v2,50
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