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Preface

Looking back on this journey of study and research, I am grateful that I chose the path of remote sensing.
When I first encountered the field, I knew almost nothing about what “remote sensing” truly was or what
it could do. It lived mostly in textbooks and algorithms, interesting, but distant. That changed during
an internship at an agricultural remote sensing company, when everything became concrete and vivid.
The first time I used satellite imagery to monitor tomato growth, and could tell my family, “I’m using
satellites to see how the crops are doing”. I felt a real connection between technology, the land, and
everyday life.

That renewed connection to the land gradually led me into agricultural remote sensing and crop model-
ing. I am very happy that I chose this topic. At the beginning, the maze of model parameters, unfamiliar
algorithms, and unexpected issues often left me puzzled and frustrated. Yet these challenges taught
me how to read the literature more critically, to debug patiently, and to search for answers step by step.
Completing this thesis has been more than a research task—it has been a personal journey of learning
through uncertainty and growing through repeated attempts.

First and foremost, I would like to express my heartfelt gratitude to my supervisors, Joris, Peter, and
Saket, for their invaluable guidance and steady support throughout this work. I am especially thankful
to Joris, who consistently gave me positive energy and encouragement, both academically and in life. I
am also deeply grateful to Dr. Allard de Wit for generously sharing the latest winter barley phenological
parameters, which substantially advanced this research.

These two years of study in the Netherlands have brought profound growth. I have met many wonderful
people, gained new perspectives, and also experienced the loss of someone important to me. Two
years ago, I was the kind of girl who might feel upset if no one came to pick me up on a rainy day; now I
can cycle in the rain and even find it amusing, the rhythm of raindrops on my coat somehow makes me
feel free. Thank you, Dutch rain, for teaching me resilience in such an unexpected way. The rain that
falls in a person’s life is not always visible to others; each of us goes through our own rainy seasons.
And of course, there is sunlight too.

Shijie Hu
Delft, July 2025
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Abstract

Accurate field-scale crop yield prediction is critical for supporting sustainable agricultural management
under increasing climate variability. Process-based crop growth models, such as WOFOST, provide
a physically consistent framework for simulating crop development and biomass accumulation, but
their predictive performance is often limited by uncertainties in parameterization, inputs, and struc-
tural assumptions. To address these limitations, this study explores the integration of satellite-derived
biophysical parameters into WOFOST using an Ensemble Kalman Filter (EnKF) for dynamic data as-
similation, aiming to improve the accuracy of canopy development and yield estimation for green maize
and winter barley in the Netherlands.

Three biophysical variables, i.e., Leaf Area Index (LAI), CanopyChlorophyll Content (CCC), andCanopy
Water Content (CWC), were retrieved fromSentinel-2 imagery and assimilated individually intoWOFOST
at the parcel scale for the 2022 growing season. Model performance was evaluated against indepen-
dent CBS provincial-scale statistics. The results demonstrate that assimilating LAI significantly im-
proved WOFOST’s simulations of canopy dynamics and yield formation. For green maize, the mean
yield bias was reduced from−3.78 t ha−1 (−27.6%) to−0.11 t ha−1 (−0.81%), and the RMSE decreased
from 3.89 t ha−1 to 0.99 t ha−1, indicating a substantial enhancement in predictive accuracy. In contrast,
CCC and CWC provided limited additional benefit under the current implementation, largely because
they were derived from fixed biochemical coefficients and thus contributed less independent informa-
tion. Sensitivity experiments further revealed that the number, timing, and uncertainty of assimilated
observations strongly affect assimilation performance, with the greatest improvements achieved during
canopy expansion and peak-growth stages.

Overall, this study demonstrates the potential of integrating satellite-derived biophysical parameters
into process-based crop models via EnKF to enhance field-scale yield predictions. Beyond the widely
studied maize applications, our results confirm that the proposed system also performs well for winter
barley, highlighting its broader applicability. While LAI assimilation proved most effective, our exper-
iments with CCC and CWC illustrate both the opportunities and current limitations of incorporating
additional physiological indicators. Future work should therefore focus on advancing the effective as-
similation of CCC and CWC and on developing strategies for multi-variable assimilation, ultimately
enabling more comprehensive and robust crop monitoring under diverse environmental conditions.

Keywords: WOFOST, Sentinel-2, Ensemble Kalman Filter, crop yield prediction, data assimilation
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1
Introduction

1.1. Relevance
Ensuring global food security has become an urgent challenge under the dual pressure of climate
change and population growth. According to the global risks report, global food shortage, together
with global water scarcity, is ranked as the fourth-highest threat to human society over the next decade
(World Economic Forum, 2025). Climate change, extreme weather events, and resource limitations
increasingly undermine the stability of the agricultural system (Masson-Delmotte et al., 2018). Progress
indicators suggest that the world remains on the wrong track in achieving Sustainable Development
Goal 2.2, which aims to eliminate all forms of malnutrition by 2030 (FAO, IFAD, UNICEF, WFP and
WHO, 2024). Tomeet the demands of a population exceeding 90 billion by 2050, global food production
must increase by approximately 70% (Wirsenius et al., 2010).

Achieving this goal requires addressing several interacting challenges, including pest and diseaseman-
agement, agricultural water management, soil health management, and the adoption of sustainable
precision farming practices (Lakhiar et al., 2024; Tilman et al., 2011; UNICEF et al., 2023). Effective
pest and disease management minimizes avoidable yield losses by combining multi-scale surveillance
(field scouting, spore or insect traps, and remote sensing) with economic-threshold decision rules, so
actions are triggered by risk rather than by the calendar; host resistance, crop rotation, and habitat man-
agement lower baseline pressure, while targeted controls applied with precise timing and placement
contain outbreaks and slow resistance evolution. Agricultural water management stabilizes production
by aligning irrigation timing and amounts with crop phenology and evaporative demand, using schedul-
ing based on crop evapotranspiration, soil-moisture sensing, and canopy or thermal indicators, and by
delivering water through drip systems, pulsed application, or variable-rate irrigation; where appropriate,
regulated deficit irrigation conserves water at non-critical stages, and coupling irrigation with fertigation
improves nutrient delivery while managing salinity risks. Soil health management, implemented through
diversified rotations, cover crops, reduced tillage, and organic amendments, builds soil organic matter
and aggregation, enhances infiltration and available water capacity, strengthens microbially mediated
nutrient cycling and disease suppression, and thereby improves yield stability across both wet and dry
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4 1. Introduction

years while reducing erosion and off-site losses.

Precision agriculture (PA) is a data-driven, technology-enabled farm management strategy that moni-
tors, quantifies, and evaluates the needs of specific crops and fields (Gebbers and Adamchuk, 2010).
Building on this foundation, PA integrates multi-source observations from satellites and unmanned
aerial vehicles (UAVs), in-field and proximal sensors, and machinery telemetry with geospatial ana-
lytics, crop growth models, and (where appropriate) machine-learning methods to translate measure-
ments into site-specific actions such as variable-rate irrigation, fertilization, seeding, and crop pro-
tection. A key capability is accurate, in-season crop-yield prediction, which is used to diagnose the
combined effects of pest pressure, nutrient deficiencies, water stress, and soil constraints during the
growing season and to trigger proactive interventions at the right time and place while quantifying de-
cision uncertainty.

1.2. Current State of Art
Nowadays, process-based crop models offer a promising approach to simulating and forecasting crop
yields under varying environmental and management conditions. They are capable of representing un-
derlying physiological processes such as photosynthesis, respiration, and biomass allocation. These
models respond dynamically to environmental inputs such as temperature, solar radiation, precipita-
tion, and soil conditions. Widely used models such as WOFOST, APSIM, and DSSAT have been
extensively applied across scales and regions (Jones et al., 2003; Keating et al., 2003; Van Diepen
et al., 1989). For example, DSSAT has also been evaluated for simulating maize and soybean growth
and yield under rainfed conditions in Maryland, USA, where model predictions showed good agree-
ment with field observations across multiple growing seasons (Akumaga et al., 2023). Furthermore,
Chisanga et al., 2021 evaluated both APSIM and DSSAT-CERES-Maize models in rainfed maize sys-
tems in Zambia, demonstrating their capacity to simulate local yield dynamics under varying seasonal
conditions. In addition to these major crops, crop models have also been successfully applied to less
common species, demonstrating their adaptability across diverse cropping systems. For instance, Shi
et al., 2022 used the WOFOST model to simulate yield of Lycium barbarum L. (goji berry), a perennial
fruit crop in northwestern China. After calibration, the model accurately predicted both summer and au-
tumn harvests, with yield errors below 6%. The wide application highlights the robustness and flexibility
of process-based models in capturing yield responses across diverse crops, climates, and manage-
ment conditions, making them suitable tools for both idealized projections and real-world agronomic
decision-making.

However, despite their strengths, the practical application of process-based crop models remains lim-
ited by three major challenges. First, mechanistic crop models require numerous input parameters,
such as crop variety traits, soil properties, and management practices. However, many of these pa-
rameters are difficult to obtain or vary significantly across regions, leading to high uncertainty in model
parameterization and reduced reliability of the simulation results (Pathak et al., 2012). Secondly, these
models are highly sensitive to meteorological inputs such as solar radiation, temperature, and precip-
itation. However, these weather data often contain measurement errors, spatial interpolation uncer-
tainties, or may be unavailable at the required temporal and spatial resolution. Such uncertainties in
the driving inputs can propagate through the model, leading to significant deviations in simulated crop
growth and yield outcomes. Thirdly, although mechanistic models aim to simulate the entire crop life-
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cycle by incorporating key processes such as photosynthesis, canopy-atmosphere gas exchange, and
soil water and temperature dynamics, many of these physiological and environmental processes are
simplified for computational feasibility. Such simplifications may limit the model’s ability to accurately
capture crop responses under complex or stress-prone environmental conditions (Marin et al., 2017).

In contrast, satellite remote sensing provides an alternative approach towards precision agriculture.
Since the 1970s, satellite remote sensing has been widely applied for non-destructive estimation of
crop yields, offering spatially explicit, frequent, and non-destructive observations that are highly valu-
able for crop monitoring and modeling (Liang and Qin, 2008). Various types of remote sensing tech-
nologies have been employed. Thermal infrared remote sensing enables the estimation of land surface
temperature and evapotranspiration, which are closely related to plant water stress (Zhou et al., 2021).
Active microwave remote sensing, including Synthetic Aperture Radar (SAR), is capable of acquiring
data regardless of cloud cover or lighting conditions and is particularly useful for assessing soil mois-
ture, crop structure, and even biomass under certain conditions (Alebele et al., 2021). Optical remote
sensing, which captures reflectance in visible and near-infrared wavelengths, is widely used for retriev-
ing vegetation indices such as NDVI and EVI, which are proxies for canopy greenness and biomass
(Panda et al., 2010). In particular, Sentinel-2 offers multi-spectral imagery with high spatial resolution
(10-20 meters) and a revisit frequency of five days, making it suitable for near real-time agricultural
applications (Franch et al., 2021). For example, Castro, 2024 used time-series Sentinel-2 imagery to
calculate NDVI for cucumber, bean, and corn fields in Comayagua, Honduras, and developed multi-
ple linear regression models to successfully predict both crop yield and disease occurrence with high
accuracy. With the rapid development of deep learning techniques, more recent studies have lever-
aged advanced neural networks to improve yield estimation accuracy. For instance, Xiao et al., 2024
applied an attention-based convolutional neural network to Sentinel-2 time-series data for field-scale
winter wheat yield prediction, achieving better performance than traditional machine learning models.
These models have successfully used satellite imagery to estimate crop yields at the regional scale
and are widely used due to their simplicity, ease of calculation, and high accuracy.

However, the relationships established through these models are only applicable to local regions and
specific times, and rarely involve the growth mechanisms of crops. This is because most data-driven
models are trained on local datasets and rely heavily on region-specific conditions such as soil proper-
ties, climate, and management practices. Since these models primarily capture statistical correlations
rather than the underlying physiological processes, their performance tends to degrade when applied
to different regions or time periods. Besides, optical Earth observation data are often affected by sub-
stantial temporal gaps, primarily due to cloud cover (Whitcraft et al., 2015). Moreover, the parameters
retrieved from satellite data carry substantial uncertainty and often exhibit systematic bias arising from
sensor calibration and atmospheric correction, view–illumination geometry/BRDF effects, mixed pixels
and scale mismatch, cloud-shadow contamination, and the choice/parameterization of the inversion
model (e.g., NDVI regressions vs. PROSAIL/ML). Because ground truth for calibration/validation is
sparse and not fully representative, these errors can translate into location- and season-dependent
biases that limit transferability. These limitations highlight the need to integrate remote sensing data
with process-based crop models, which simulate crop growth and development based on environmen-
tal conditions and physiological mechanisms. By assimilating remote sensing observations into crop
models, it becomes possible to constrain model uncertainties with real-time data, while benefiting from
the model’s ability to predict future crop states under changing conditions. A growing body of research
has shown that incorporating remote sensing-derived variables into crop growth models enhances their
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performance in simulating crop development and yield. For instance, Ji et al., 2021 coupled time�series
Sentinel-2 imagery with a CASA-WOFOSTmodel to simulate field-scale wheat yield in China, achieving
an 𝑅2 of 0.84, which significantly reduced runtime and offering robustness under complex terrain condi-
tions compared to WOFOST alone. Additionally, Bouras et al., 2023 assimilated Sentinel-2-derived LAI
into a semi-empirical crop growth model (SAFY) using an Ensemble Kalman Filter (EnKF) to estimate
winter wheat yield at 20 𝑚 resolution, achieving a 70% increase in capturing spatial variability and a
53% reduction in RMSE compared to model-only simulations. These studies demonstrate the poten-
tial of integrating remote sensing data into crop models to enhance yield estimation accuracy, spatial
representativeness, and computational efficiency, particularly when adapted to diverse field conditions.

While many existing data assimilation studies rely predominantly on single-source remote sensing vari-
ables such as LAI or vegetation indices, these indicators reflect only limited aspects of crop growth and
often fail to capture critical physiological responses such as chlorophyll dynamics and water status.
Moreover, most of these studies focus on commonly modelled crops like wheat, maize, or rice, with
limited attention to other cereals. In particular, the application of the WOFOST crop model to win-
ter barley remains underexplored in the literature, and no known studies have integrated multi-source
biophysical variables into WOFOST for this crop.

1.3. Research Objectives
Building on the FPCUP framework “Consistent retrieval of crop yields using a data assimilation plat-
form,” which simulated yields with the WOFOST model across the Netherlands, this study proposes
a multi-variable assimilation framework that integrates LAI, Canopy Chlorophyll Content (CCC), and
Canopy Water Content (CWC) retrieved from Sentinel-2 imagery into the WOFOST model using the
EnKF. Simulations are conducted at the parcel scale for both green maize and winter barley in the
Netherlands during the 2022 growing season. In addition, the study evaluates the impact of differ-
ent observation uncertainty quantification strategies on assimilation performance. By extending the
WOFOST model to a less-studied crop and enhancing its predictive capability through multi-source
assimilation, this research provides a more physiologically comprehensive and scalable approach for
regional crop monitoring and yield forecasting.

The aim of this study is to enhance the physiological completeness and predictive capability ofWOFOST
for crop monitoring and yield forecasting. Specifically, we seek to: (i) improve crop-state estimation
by assimilating multiple biophysical variables through a data assimilation approach, (ii) assess the
model’s performance under different assimilation scenarios, and (iii) demonstrate the applicability of
the approach to multiple crop types at the parcel scale.

The remainder of this thesis is structured as follows. Chapter 2 introduces the key concepts relevant to
this study, including the WOFOST crop model, remote sensing techniques, data assimilation methods,
research questions, and study area. Chapter 3 presents the materials and methods, detailing the
model configuration, data sources, assimilation framework, and uncertainty analysis. Chapter 4 reports
the experimental results and sensitivity analyses. Chapter 5 discusses the key findings, limitations,
and implications of the study. Finally, Chapter 6 concludes the thesis with broader implications and
suggestions for future research and applications.



2
Literature Review

This chapter introduces the key concepts and models underpinning this study. Section 2.1 provides
an overview of the WOFOST crop growth model, outlining its structure, principles, and capabilities.
Section 2.2 presents the role of satellite remote sensing in agricultural monitoring, with a focus on
the biophysical variables retrievable from Sentinel-2 imagery. Section 2.3 discusses data assimilation
techniques, particularly the EnKF, and reviews relevant studies in crop yield estimation. Section 2.4
outlines the research questions guiding this work, and Section 2.5 describes the study area and se-
lected crops, including green maize and winter barley, within the context of parcel-level modeling in the
Netherlands.

2.1. Crop Growth Models
A wide range of crop growth models has been developed to simulate canopy development, biomass
production, and yield formation under varying environmental and management conditions. Among the
most commonly used are DSSAT, APSIM, CropSyst, AquaCrop, and WOFOST, which differ in their
modeling approaches, input requirements, and suitability for integration with remote sensing and data
assimilation frameworks (Di Paola et al., 2016). DSSAT employs a suite of crop-specific modules
and combines mechanistic and empirical components to simulate crop phenology, biomass, and soil–
water–nutrient dynamics, but often requires extensive cultivar-specific calibration to achieve accurate
predictions. APSIM offers a highly modular and flexible structure that allows detailed representation of
crop, soil, andmanagement interactions, making it suitable for climate adaptation studies but increasing
model complexity and data demands. CropSyst emphasizes multi-season and multi-crop simulations
with a focus on water, carbon, and nitrogen balances, while AquaCrop simplifies model structure and
parameterization, specializing in yield response to water availability and water-use efficiency, making
it particularly useful in water-limited environments.

In contrast, WOFOST adopts a fully mechanistic and physiologically explicit approach, simulating daily
photosynthesis, respiration, assimilate partitioning, and phenological development. Compared with

7



8 2. Literature Review

DSSAT and APSIM,WOFOST requires fewer cultivar-specific parameters while maintaining a transpar-
ent model structure, which makes it easier to calibrate for less-studied crops and to couple with satellite-
derived observations (Camargo and Kemanian, 2016). Moreover, WOFOST has been extensively
validated and operationally implemented in large-scale systems such as the European Commission’s
MARS Crop Yield Forecasting System and the Global Yield Gap Atlas, demonstrating its robustness
and scalability (Boogaard et al., 2013). Recent studies have also demonstrated that WOFOST outper-
forms DSSAT-based models in simulating crop phenology and biomass accumulation, while showing
greater stability across different sowing dates and agroclimatic conditions, making it more suitable for
regional-scale crop monitoring and integration with satellite-derived observations (Singh et al., 2025).
Therefore, these characteristics make WOFOST an appropriate modeling platform for this study.

2.1.1. The WOFOST Model

WOFOST (World Food Studies) is a process-based, dynamic crop growth simulation model developed
to represent the physiological mechanisms of crop development under both potential and water-limited
conditions (Boogaard et al., 1998; Supit and van Diepen, 1994). Unlike empirical models that rely on
statistical correlations, WOFOST simulates crop growth by explicitly modeling key physiological pro-
cesses, including radiation interception, photosynthesis, phenological development, dry matter accu-
mulation, transpiration, and biomass partitioning. The model operates on a daily time step and supports
detailed simulation from sowing to harvest.

Figure 2.1: Simplified structure of the dynamic explanatory crop growth model WOFOST A. De Wit et al., 2019.

As illustrated in Figure 2.1, the model consists of several interlinked modules that describe interactions
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between the crop, soil, atmosphere, and management inputs. The crop module represents the core
physiological processes, starting from the interception of solar radiation, which drives biomass pro-
duction through gross assimilation. The ASTRO module provides daily solar radiation and day length
data, which, combined with weather variables from the weather module, determine potential assimila-
tion and transpiration rates. The soil module governs water availability in the root zone, affecting actual
transpiration and thus influencing growth under water-limited conditions. Phenological development
is modeled based on accumulated thermal time and is expressed using a Development Stage Index
(DVS). The assimilated biomass is partitioned among plant organs, including roots, stems, leaves, and
storage organs, according to phenological stage, and the resulting LAI dynamically feeds back into light
interception.

This modular structure allows WOFOST to simulate crop growth responses to varying environmental
conditions and management practices with physiological realism. It provides the foundation for inte-
grating remote sensing data and data assimilation techniques in subsequent chapters.

2.1.2. Simulation Structure and Key Processes

WOFOST simulates crop growth by integrating a series of biophysical processes, including light inter-
ception, photosynthesis, phenological development, biomass accumulation and partitioning, and soil
water dynamics. These components are organized into interdependent modules, as illustrated in Fig-
ure 2.1. Below, the key simulation processes are introduced.

1) Light Interception and Photosynthesis. WOFOST estimates daily dry matter production based
on intercepted photosynthetically active radiation (PAR) and crop-specific light use efficiency (LUE).
The intercepted PAR is calculated using the Beer-Lambert law:

PARint = PARinc ⋅ (1 − 𝑒−𝑘⋅𝐿𝐴𝐼) (2.1)

where PARinc is the incident PAR, 𝑘 is the light extinction coefficient, and 𝐿𝐴𝐼 is the leaf area index
Supit and van Diepen, 1994.

The gross assimilation rate (𝐴𝑔) is then calculated by:

𝐴𝑔 = 𝜀 ⋅ PARint (2.2)

where 𝜀 is the light use efficiency (g MJ-1) Boogaard et al., 1998.

2) Respiration and Net Assimilation. Maintenance and growth respiration are subtracted from gross
assimilation to derive the net daily biomass increment:

𝐴𝑛 = 𝐴𝑔 − 𝑅𝑚 − 𝑅𝑔 (2.3)

where 𝑅𝑚 and 𝑅𝑔 represent maintenance and growth respiration, respectively Boogaard et al., 1998.
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3) Phenological Development. Crop development is simulated as a function of temperature using
a Development Stage (DVS) index ranging from 0 (sowing) to 2 (maturity). DVS increases with daily
accumulated temperature above a crop-specific base temperature:

ΔDVS =
𝑇𝑎𝑣𝑔 − 𝑇𝑏𝑎𝑠𝑒

𝑇𝑠𝑢𝑚
(2.4)

where 𝑇𝑎𝑣𝑔 is daily average temperature, 𝑇𝑏𝑎𝑠𝑒 is the base temperature for development, and 𝑇𝑠𝑢𝑚 is
the required thermal time for the current stage Supit and van Diepen, 1994.

4) Biomass Partitioning. The assimilated biomass is partitioned into four organs—leaves, stems,
storage organs (e.g., grains), and roots—based on DVS-specific partitioning coefficients. The result-
ing dynamics of LAI and root depth feed back into radiation interception and soil water extraction,
respectively Boogaard et al., 1998.

5) Water-Limited Production. In water-limited mode, crop transpiration and photosynthesis are con-
strained by soil water availability. Potential transpiration is computed based on atmospheric demand,
while actual transpiration depends on the soil water content in the root zone:

𝑇𝑎 = 𝑇𝑝 ⋅ 𝑓𝑤 (2.5)

where 𝑇𝑝 is the potential transpiration, and 𝑓𝑤 is a reduction factor (0–1) based on soil moisture stress
Boogaard et al., 1998. Water stress also affects leaf expansion, photosynthesis, and biomass parti-
tioning.

2.1.3. Model Inputs and Outputs

1) Meteorological Inputs. WOFOST requires the following daily atmospheric variables to simulate
crop growth processes (Wageningen Environmental Research, 2024a), :

Table 2.1: Daily atmospheric variables required by WOFOST (Wageningen Environmental Research, 2024a)

Variable Unit Description
TMAX ∘C Daily maximum temperature
TMIN ∘C Daily minimum temperature
VAP hPa Mean daily vapor pressure
WIND m s−1 Mean daily wind speed at 2 meters above

ground level
RAIN cm day−1 Daily precipitation, including rainfall and snow

water equivalent
IRRAD J m−2 day−1 Daily global radiation
SNOWDEPTH cm Depth of snow cover (optional)

These meteorological drivers regulate key physiological processes such as photosynthesis, evapo-
transpiration, and phenological development, thereby strongly influencing crop growth and yield forma-
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tion. Solar radiation (IRRAD) provides the primary energy source for photosynthesis and dry matter
accumulation, while temperature (TMAX, TMIN) controls enzyme activity and regulates phenological
development, including germination, leaf expansion, flowering, and grain filling. Vapor pressure (VAP)
and wind speed (WIND) jointly determine atmospheric demand for water, which strongly affects tran-
spiration and canopy cooling. Precipitation (RAIN) and snow cover (SNOWDEPTH) directly govern soil
moisture availability, influencing root water uptake and the onset of water stress. Inaccurate represen-
tation of these drivers can propagate errors through the water, carbon, and energy balance calculations,
leading to unrealistic estimates of biomass accumulation, crop water use, and final yield. Therefore,
accurate and high-resolution weather data are critical to ensure reliable crop growth simulations in
WOFOST.

2) Soil Inputs. To simulate the soil water balance, WOFOST requires a set of parameters that char-
acterize the soil profile. Key variables include the soil moisture retention properties, such as field
capacity and wilting point, which determine the amount of water available for crop uptake under differ-
ent soil moisture conditions. Soil texture and hydraulic conductivity are also essential, as they govern
infiltration rates, drainage, and the overall dynamics of water movement through the soil. In addition,
the specification of initial soil moisture content provides the starting condition for the simulation and
strongly affects early crop development and subsequent stress responses. Finally, maximum rooting
depth and total soil depth define the volume of soil that can potentially be explored by the root system,
thereby constraining both water availability and nutrient uptake. Together, these parameters regulate
root growth, plant water status, and the onset of water stress, and are thus critical for reliable crop
growth and yield simulations.

3) Crop Parameters. Each crop type in WOFOST is defined by a set of physiological and morpho-
logical parameters that describe its growth and development processes. Among these, thermal time
requirements specify the heat accumulation needed to progress through different phenological stages,
thereby determining the crop’s growth duration and maturity. Leaf characteristics, such as specific leaf
area and leaf lifespan, control canopy expansion and turnover, influencing the interception of radiation
and photosynthetic efficiency. Assimilate partitioning factors govern how carbohydrates are distributed
among leaves, stems, roots, and storage organs, directly affecting biomass allocation and yield for-
mation. In addition, parameters related to light-use efficiency and the maximum attainable leaf area
index define the potential photosynthetic capacity and canopy development under optimal conditions.
Finally, maximum rooting depth and critical stress thresholds describe the crop’s ability to access soil
resources and tolerate water or nutrient stress. These parameters are typically derived from field ex-
periments, literature sources, or calibration procedures. In this study, parameterization for maize and
winter barley follows the standard WOFOST crop files, with selected values further adjusted to reflect
regional agronomic knowledge. The detailed parameter values used in the simulations are provided in
the following chapter.

4) Model Outputs. WOFOST provides daily outputs that reflect crop status and environmental inter-
actions. Table 2.2 explains the output from the WOFOST model. This set of results is typical for the
PCSE/WOFOST implementation (Wageningen Environmental Research, 2024b).



12 2. Literature Review

Table 2.2: Summary of key simulation outputs and phenological indicators from PCSE/WOFOST 7.2.

Variable Description

DVS The development stage of the crop, ranging from 0 (sowing/emergence)
to 2 (maturity).

LAIMAX The maximum Leaf Area Index (LAI) reached during the crop’s growth
cycle.

TAGP Total Above-Ground Production: the accumulated dry biomass (kg/ha)
of all above-ground plant organs.

TWSO Total dry weight of storage organs (e.g., grains, tubers) at the end of the
simulation.

TWLV Total dry weight of leaves at the end of the growth cycle.
TWST Total dry weight of stems.
TWRT Total dry weight of roots (below-ground biomass).
CTRAT Cumulative crop transpiration throughout the growth cycle (cm).
RD Final rooting depth (cm), indicating the depth reached by crop roots dur-

ing the simulation.
CEVST Cumulative soil evaporation during the growth cycle (cm).

DOS Date of sowing. May be defined as “None” if simulation starts from emer-
gence.

DOE Day of emergence (DVS = 0).
DOA Day of anthesis (flowering; DVS = 1).
DOM Day of maturity (DVS = 2).
DOH Day of harvest. May be omitted if harvest coincides with maturity.
DOV Day of vernalization completion. Only applicable to crops requiring cold

exposure to induce flowering.

2.1.4. Applications and Limitations

WOFOST has been widely applied in a variety of agricultural studies due to its ability to mechanisti-
cally simulate crop growth and yield under different environmental and management conditions. It has
served as a key component in national-scale crop forecasting systems such as the MARS Crop Yield
Forecasting System in Europe, and has been adopted in both academic and operational settings for
simulating crop performance, evaluating climate impacts, and supporting decision-making in precision
agriculture (A. De Wit et al., 2019). Numerous studies have demonstrated the model’s utility in es-
timating potential yield, monitoring water stress, and analyzing the effects of management scenarios
across diverse regions and crop types. For example, Tao et al., 2020 modified the WOFOST model by
introducing tree age as a dynamic parameter to simulate the growth and yield of perennial jujube trees,
enabling accurate yield estimation across different orchard ages (𝑅2 ≥ 0.856, RMSE ≤ 0.68 t/ha). Xu
et al., 2024 further extended the model’s capacity to simulate nutrient-limited systems by incorporating
a nitrogen dynamics module, successfully capturing the responses of Korla Fragrant pear trees to vary-
ing fertilization regimes, with strong performance across LAI, soil nitrogen, and yield simulations. In
addition, Li et al., 2024 demonstrated the model’s suitability for future climate impact assessments by
coupling WOFOST with CMIP6 projections, predicting spatially varying spring wheat yield responses
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under different emission scenarios, with increases up to 20.2% in the short term. These studies illustrate
the versatility of WOFOST in simulating both annual and perennial crops, under varying environmental
conditions, nutrient regimes, and future climate scenarios.

However, while previous research has explored different model enhancement, there remains a lack of
studies focusing on the joint assimilation of multiple biophysical variables (e.g., LAI, CCC, and CWC)
into the WOFOST model. Additionally, its application to certain crops such as winter barley, espe-
cially at the parcel level under real field conditions in Northwest Europe, has been limited. To address
these gaps, this study aims to enhance yield estimation accuracy by integrating multi-source remote
sensing variables into the WOFOST framework, focusing on maize and winter barley in Drenthe, the
Netherlands. The following section details the methodology developed to achieve this goal.

2.2. Remote Sensing
Remote sensing plays a critical role in monitoring crop growth and forecasting yields, providing spa-
tially continuous and temporally frequent data over large areas. A variety of techniques have been
developed to extract biophysical parameters, such as LAI, CCC, and vegetation indices (e.g., NDVI,
VHI), which serve as proxies for crop health and productivity. These variables are often assimilated into
crop growth models or directly used in machine learning frameworks for yield estimation. Among the
most widely used approaches are optical, thermal, and Synthetic Aperture Radar (SAR) observations,
which differ in their sensing principles and the type of biophysical information they capture. Optical
remote sensing relies on measuring surface reflectance in the visible, near-infrared, and shortwave-
infrared regions of the electromagnetic spectrum, enabling the retrieval of key vegetation traits such
as leaf chlorophyll content, leaf water content and biomass. Through vegetation indices and radiative
transfer modeling, optical techniques provide direct insights into plant photosynthetic activity, pigment
dynamics, and stress responses (Tagliabue et al., 2022). Thermal infrared (TIR) remote sensing com-
plements optical data by providing information on canopy temperature, which can be used to estimate
evapotranspiration, detect heat stress, and quantify water-use efficiency (Anderegg et al., 2024). While
thermal measurements are powerful for understanding crop water relations, their application is often
constrained by coarse spatial resolution, lower revisit frequency, and high sensitivity to atmospheric
conditions, especially when using satellite-based observations. SAR techniques, in contrast, are ac-
tive microwave systems that operate independently of sunlight and penetrate clouds, making them
valuable in regions with frequent cloud cover or low-light conditions. SAR backscatter is sensitive to
canopy structure, biomass, and surface moisture, enabling monitoring of crop height and phenological
development even under cloudy conditions (Wang et al., 2023). However, SAR signals are indirect and
require complex calibration and inversion models to retrieve biophysical parameters accurately, which
complicates operational implementation compared with optical approaches. Therefore, in this thesis, I
focus on optical measures derived from Sentinel-2 imagery, as they provide high spatial resolution and
are well-suited for parcel-scale crop monitoring

2.2.1. Optical remote sensing in Crop Monitoring

Despite the complementary capabilities mentioned above, optical remote sensing remains the pre-
ferred approach for most agricultural monitoring applications. This preference is driven by several
advantages: (1) High physiological sensitivity: optical reflectance directly captures vegetation pigment
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dynamics, canopy structure, and photosynthetic activity; (2) Rich spectral diversity: multispectral and
hyperspectral sensors provide multiple vegetation indices, enabling accurate retrieval of LAI, CCC, and
CWC; (3) High spatial and temporal resolution: missions such as Sentinel-2 (10–20 m, 5-day revisit)
and Landsat allow fine-scale monitoring of crop development across growing seasons; (4) Operational
maturity and accessibility: optical data are widely available, computationally efficient to process, and
supported by standardized workflows for vegetation trait retrieval (Omia et al., 2023). Therefore, in
this study, we exploit Sentinel-2 multispectral imagery to derive biophysical variables through phys-
ically based inversion and vegetation index approaches. Specifically, we focus on leaf area index
(LAI), canopy chlorophyll content (CCC), and canopy water content (CWC) because they jointly cap-
ture canopy structure, photosynthetic capacity, and water status—three pillars that govern growth and
yield formation. Figure 2.2 illustrates the spectral basis for these variables and guides our Sentinel-2
band selection and retrieval strategy.

Figure 2.2: Typical spectral reflectance curve of green vegetation, highlighting chlorophyll absorption (430 − 480 𝑛𝑚 and
660 𝑛𝑚), red-edge sensitivity (700–740 𝑛𝑚), NIR plateau (800–1000 𝑛𝑚), and strong water absorption features

(970, 1200, 1450, 1940 𝑛𝑚). These spectral regions correspond to Sentinel-2 bands used for estimating LAI, CCC, and CWC.
Ai et al., 2020.

LAI quantifies the one-sided green leaf area per unit ground area and is a fundamental control on
light interception, transpiration, and biomass accumulation. Its optical estimation typically exploits the
contrast between visible and near-infrared reflectance and the high sensitivity of the red-edge region
(700–740 𝑛𝑚) to canopy density, using Sentinel-2 bands B4, B5–B7, B8, and B8A. Recent reviews
highlight that hybrid retrieval methods, which integrate vegetation indices with physically based radia-
tive transfer model (RTM) inversion, outperform single-index approaches in both accuracy and temporal
stability (Croci et al., 2022).

CCC represents the total canopy chlorophyll per unit ground area and serves as a direct proxy for photo-
synthetic capacity and nitrogen status. Chlorophyll strongly absorbs radiation in the blue (430–480 𝑛𝑚)
and red (660 𝑛𝑚) regions, while the steep slope of the red-edge provides additional sensitivity to chloro-
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phyll variation. Sentinel-2 bands B2, B4, and B5–B7 are widely used for CCC retrieval through indices
such as the Chlorophyll Index (CIred-edge) and RTM-based inversion. Recent studies confirm that
CCC retrievals derived from Sentinel-2 red-edge bands are robust across different crops and pheno-
logical stages, offering valuable constraints for crop productivity assessments (Delloye et al., 2018).

CWC measures the water stored in foliage per unit ground area and is closely linked to crop water
stress, stomatal regulation, and yield stability. CWC estimation relies on strong water absorption fea-
tures in the short-wave infrared (SWIR) region, particularly near 970, 1200, 1450, and 1940 𝑛𝑚, which
correspond to Sentinel-2 bands B11 and B12. Water-sensitive indices such as the Normalized Differ-
ence Water Index (NDWI) and the Moisture Stress Index (MSI), combined with RTM-based equivalent
water thickness (EWT) inversion, have proven effective for quantifying canopy water dynamics (Kon-
ings et al., 2021).

Together, LAI, CCC, and CWC provide complementary and minimally redundant information: LAI con-
strains canopy structural development, CCC reflects photosynthetic potential, and CWC captures crop
water status. The spectral features highlighted in Figure X therefore justify our optical strategy for re-
trieving these variables from Sentinel-2 imagery, which are subsequently assimilated into theWOFOST
crop growth model to improve state estimation and field-scale yield forecasting.

2.2.2. Available Tools and Processing Platforms

To facilitate the estimation of such parameters, dedicated software tools and processing chains have
been developed. One widely used platform is the Sentinel Application Platform (SNAP), developed
by the European Space Agency. SNAP provides a modular environment for processing and analyz-
ing data from Sentinel-1, Sentinel-2, and Sentinel-3 missions. Through SNAP’s biophysical processor,
users can retrieve key vegetation parameters such as LAI, Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), and CCC from Sentinel-2 reflectance data using semi-empirical inversion
techniques. These derived products are particularly valuable for crop growth monitoring and assim-
ilation into models such as WOFOST or DSSAT. Beyond SNAP, other platforms and methods have
been developed. The Google Earth Engine (GEE) environment allows for scalable, cloud-based pro-
cessing of large volumes of satellite data and includes tools for vegetation index computation, crop
classification, and time series analysis. For instance, machine learning models trained on GEE have
been used to estimate crop phenology and yield by learning temporal patterns in spectral reflectance
curves. Additionally, radiative transfer model (RTM) inversion methods, such as those based on PRO-
SAIL, have been applied to retrieve chlorophyll and structural parameters at fine spatial resolution,
albeit with higher computational cost and complexity. While these tools significantly lower the barrier
for crop-related remote sensing applications, challenges remain. Many parameter retrieval algorithms
are sensitive to atmospheric correction quality and sensor calibration, and often require site-specific
tuning. Furthermore, coarse temporal or spatial resolution may limit their effectiveness for smallholder
fields or intra-seasonal stress detection. Continued integration of multi-source data—optical, thermal,
and SAR—and advances in fusion techniques and uncertainty quantification will be essential for im-
proving the robustness and generalizability of crop parameter estimation.



16 2. Literature Review

2.2.3. Integrating Models with Satellite Remote Sensing

Several recent studies demonstrate contrasting methodological approaches. For instance, applied the
WOFOST crop growth model in combination with remotely-sensed LAI and used the SUBPLEX op-
timization algorithm to minimize simulation errors by adjusting sensitive parameters. This physically-
based data assimilation approach maintains mechanistic interpretability but requires careful calibration
and often underperforms in highly heterogeneous fields due to parameter uncertainty and model rigid-
ity. In contrast, Sagan et al., 2021 explored purely data-driven methods by training convolutional neu-
ral networks (CNNs) on multi-temporal high-resolution imagery from WorldView-3 and PlanetScope.
Their method avoids mechanistic modeling and instead learns spatiotemporal patterns directly from
image sequences. While achieving high accuracy at the field scale (R² > 0.8), this approach is highly
dependent on the availability of labeled yield data and lacks transparency, limiting its transferability
across regions and years. Another hybrid approach was proposed by Wu et al., 2021, who combined
Sentinel-2 NDVI time series with high-resolution cropland masks to enhance regional winter wheat yield
estimation using regression models. This approach effectively leverages spatial detail but still relies
on hand-crafted features (like peak NDVI), which may not generalize well under abnormal climate or
management conditions.

Despite their contributions, all three approaches face limitations. Physically-based models often strug-
gle with parameter estimation under limited ground truth; deep learning models are prone to overfitting
and lack physical consistency; statistical approaches may fail under extreme conditions due to their
empirical nature. Moreover, most studies remain region-specific, and few have addressed uncertainty
quantification comprehensively. Therefore, integrating physical understanding with data-driven flexi-
bility is best operationalized via data assimilation, which combines satellite observations with process-
based models to update crop states/parameters and to explicitly propagate observation and model
errors. Doing so improves transferability beyond region-specific calibrations and yields reliable esti-
mates for decision making.

2.3. Data Assimilation

2.3.1. Overview of Data Assimilation in Crop Modeling

Data assimilation (DA) is a powerful framework that integrates remote sensing (RS) observations with
crop growth models to improve simulation accuracy and real-time forecasting. It aims to bridge the
gap between observation-based monitoring and process-based simulation, leveraging the strengths of
both. In the context of crop modeling, DA techniques are typically classified into three main categories:
parameter assimilation, state variable assimilation, and forcing data assimilation (Jin et al., 2018).

1) Parameter Assimilation. This approach involves adjusting model parameters (e.g., maximum
leaf area index, light-use efficiency, partitioning coefficients) to minimize the discrepancy between sim-
ulated and RS-derived observations. Optimization algorithms such as the Shuffled Complex Evolution
(SCE-UA), Genetic Algorithms (GA), or Bayesian inference (e.g., MCMC) are commonly employed.
Parameter assimilation is often used for retrospective calibration or regionalization, enhancing model
adaptability to specific crops or management practices.
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2) State Variable Assimilation. State variable assimilation updates dynamic variables—such as LAI,
biomass, or canopy water content—during the simulation process, based on real-time observations.
Sequential filtering techniques, especially the Ensemble Kalman Filter (EnKF), have become popular
due to their ability to handle non-linear processes and estimate uncertainty. Particle Filters (PF) and
4D-Variational (4D-Var) methods have also been applied, depending on the model complexity and data
availability. This class of methods is particularly suitable for in-season crop monitoring and forecasting.

3) Forcing Data Assimilation. Rather than modifying model states or parameters, this method in-
corporates RS-derived datasets as direct replacements or corrections for external forcing inputs (e.g.,
solar radiation, precipitation, soil moisture). For instance, assimilating microwave-derived soil moisture
or radiation fluxes can improve water balance estimation in crop models. This approach is effective
when meteorological data is sparse or of low quality.

4) Data-Driven and Hybrid Approaches. In recent years, data-driven models—particularly those
based on deep learning—have emerged as alternatives or complements to traditional process-based
assimilation frameworks. Deep learning methods, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), have been used to learn mappings between multi-temporal
remote sensing data and crop yield or biophysical indicators. Some hybrid approaches incorporate
deep learning into assimilation pipelines, either by estimating model parameters or states, or by serving
as surrogates for specific processes. While these methods offer high flexibility and accuracy in specific
scenarios, they often lack mechanistic interpretability and require large labeled datasets, limiting their
generalizability across time and space.

Each of these DA pathways has distinct advantages and limitations. Parameter assimilation offers
interpretability but is sensitive to overfitting; state variable assimilation captures real-time dynamics but
requires careful treatment of observation errors; and forcing assimilation is flexible but relies heavily
on the accuracy of external RS products. A detailed comparison is provided in Table 2.3. In this study,
we adopt a state variable assimilation strategy based on the Ensemble Kalman Filter, which integrates
multi-source Sentinel-2 derived variables into the WOFOST model to improve crop yield estimation.

Table 2.3: Comparison of data assimilation approaches in crop modeling

Method Description Advantages Limitations
Parameter Assimila-
tion

Adjusts model parameters
(e.g., LUE, LAImax) using
optimization algorithms or
Bayesian methods

Improves model adaptabil-
ity to different crops/sites;
retains physical meaning

Computationally
intensive; risk of
overfitting; limited
for real-time use

State Variable As-
similation

Updates dynamic variables
(e.g., LAI, biomass) based
on observations during
simulation using filters
(e.g., EnKF, PF, 4D-Var)

Real-time correction; han-
dles temporal variability
well; supports uncertainty
quantification

Requires frequent
observations; sen-
sitive to observation
errors and filter
settings

Forcing Data Assim-
ilation

Replaces or corrects driv-
ing inputs (e.g., weather,
soil moisture) using RS
products

Improves input quality; low
computational cost; easy to
implement

Dependent on the
availability and accu-
racy of external RS
products
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2.3.2. Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a widely used sequential data assimilation method for combining
model simulations with observations in a statistically consistent way. Unlike the classical Kalman filter,
which is limited to linear systems, the EnKF approximates forecast error statistics using a Monte Carlo
approach, making it suitable for nonlinear environmental models such as crop growth simulations. The
filter operates by propagating an ensemble of model realizations, each representing a plausible state
of the system given input uncertainties. When new observations become available, the ensemble is
updated using the Kalman gain, which weighs the relative uncertainty in the model forecasts and the
observations (A. d. De Wit and Van Diepen, 2007).

The analysis step updates each ensemble member as follows:

x(𝑖)𝑎 = x(𝑖)𝑓 +K (y(𝑖) −Hx(𝑖)𝑓 ) , 𝑖 = 1,… ,𝑁 (2.6)

where x(𝑖)𝑓 and x(𝑖)𝑎 are the forecast and analysis states for ensemble member 𝑖, y(𝑖) is the perturbed
observation,H is the observation operator, and𝑁 is the ensemble size. The Kalman gainK is computed
as:

K = P𝑓H𝑇 (HP𝑓H𝑇 +R)
−1

(2.7)

Here, P𝑓 denotes the forecast error covariance matrix estimated from the ensemble, and R is the
observation error covariance.

By assimilating observations into the model, the EnKF corrects biases and reduces uncertainty in state
predictions, while preserving the dynamic consistency of the underlying simulation model. In this study,
the EnKFwas implemented to integrate satellite-derived observations into a process-based cropmodel,
as detailed in the following sections.

2.4. Research Questions
While satellite remote sensing has become an essential tool for crop monitoring, and process-based
models such as WOFOST offer detailed mechanistic representations of crop growth, there remains
a clear gap in the integrated use of both approaches. Many previous studies have relied on vege-
tation indices or LAI time series alone for yield estimation, often neglecting underlying physiological
processes. Conversely, purely mechanistic models require accurate, site-specific inputs that are dif-
ficult to obtain at scale. Moreover, most data assimilation frameworks applied in agricultural contexts
focus on assimilating a single variable (typically LAI), with limited consideration of uncertainty propa-
gation and multi-variable fusion. These limitations hinder the robustness and transferability of current
yield forecasting systems, particularly under variable environmental and management conditions.

This study addresses these gaps by exploring how remote sensing–derived vegetation parameters
can be effectively integrated into a process-based crop model using a data assimilation framework.
The objective is to improve parcel-level yield prediction while accounting for uncertainty and leveraging
multi-source observations. To guide this investigation, the following research questions are proposed:
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• Main Research Question:

– How can vegetation parameters derived from remote sensing be effectively integrated into
crop growth models to improve yield prediction accuracy at the field scale?

• Sub-questions:

– To what extent do satellite-driven yield predictions agree with ground-based reference data?

– Which biophysical variables (e.g., LAI, CCC, CWC) most significantly influence yield simu-
lation outcomes?

– How can high-resolution Sentinel-2 observations be dynamically assimilated into models
such as WOFOST using methods like the Ensemble Kalman Filter?

– What are the dominant sources of uncertainty in the prediction system—stemming from
model structure, parameterization, or observational data—and how can these uncertainties
be characterized and minimized?

2.5. Study Area and Crop Description
The area of interest is Drenthe, a province located in the north-east part of the Netherlands (52.9∘N, 6.6∘E).
Drenthe is characterized by (1) relatively flat terrain and intensive crop cultivation, with most of the
province consisting of farmland, which makes it well suited for remote sensing–based agricultural mon-
itoring (Figure 2.3), (2) a temperate maritime climate, with moderate temperatures and relatively even
precipitation throughout the year. Average daily temperatures range from around 5 ∘C in January to
18 ∘C in July, while annual precipitation typically ranges between 800 and 900 millimetres, providing
favourable conditions for crop growth (Time and Date, 2022).

Figure 2.3: Location of the study area in the northeastern Netherlands. The left panel shows the national and provincial context,
highlighting the selected agricultural region in red. The middle panel indicates the distribution of maize (green) and winter barley
fields. The right panel displays a Sentinel-2 true-colour image acquired on August 13, 2022.

This study focuses on two crop types present in the BRP (Basisregistratie Gewaspercelen) parcel
register: maize (green) and barley (winter). Table 2.4 summarizes the number of BRP parcels assigned
to each type of crop in the Drenthe province.

Table 2.4: Number of crop parcels by type in Drenthe (BRP register)

Crop Type Number of Parcels

Maize (green) 4,692
Barley (winter) 94
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Maize (green), also known as silage maize, is primarily grown as a forage crop for livestock. Unlike
grain maize, it is harvested earlier in the season, usually between mid-September and early October,
while still green, in order to preserve its nutritional value as silage. This crop is characterized by its
rapid biomass accumulation and tall canopy structure, which typically results in high LAI values during
peak growth. In WOFOST simulations, maize (green) exhibits a strong sensitivity to temperature and
radiation, with a relatively short growth cycle compared to grain varieties. However, a key limitation is
that WOFOST simulates the full crop cycle until physiological maturity, and does not account for early
harvest practices typical of silage maize in the Netherlands. As a result, the model may overestimate
the actual growing duration and final biomass. In contrast, remote sensing can capture the actual
phenological status of the crop, including abrupt changes in canopy cover caused by early harvest,
making it a valuable complementary tool for monitoring maize (green) development and refining model
outputs.

Winter barley, on the other hand, in contrast, is a cool-season cereal sown in autumn and harvested
the following summer. It is well-adapted to temperate climates and contributes to both grain production
and livestock feed. Due to its early sowing (around September to October), it experiences a dormant
phase during winter and resumes growth in spring. The crop typically reaches its maximum LAI in late
spring to early summer. Its long growing period makes it an important crop for soil cover and erosion
control during the non-growing season of many summer crops.

Together, these two crops represent distinct phenological patterns and land surface dynamics, provid-
ing a valuable contrast for crop growth simulation, yield estimation, and remote sensing-based data
assimilation in this study.



3
Materials and Methods

To address the research questions, we designed a research methodology focuses on three main com-
ponents (Figure 3.1): (1) Workflow design focuses on data preparation and integration, including
compiling climate, soil, crop type, and human-activity datasets, deriving crop-relevant functional traits
from satellite observations, and integrating them into a process-based crop growth model; (2) Work-
flow testing for sensitivity analysis, including defining and testing scenarios by varying observation
uncertainties, the number/timing of observations, and the set of assimilated variables; (3) Workflow
validation for comparing simulated yields with reported yield statistics to estimate uncertainties, iden-
tifying optimal assimilation strategies, and testing model transferability to other sites. Each of these
components will be described in detail in the following sections.

Figure 3.1: Proposed framework for integrating remote sensing data into a crop growth model for yield evaluation.

21



22 3. Materials and Methods

3.1. Workflow Design
This section outlines the experimental framework used to estimate crop yields by integrating remote
sensing and crop growthmodeling. The overall workflow comprises fivemain steps: data pre-processing,
open-loop crop growth modeling, satellite parameter retrieval, model monitoring integration through
data assimilation (Figure 3.2).

In the first step, meteorological and remote sensing data were collected and preprocessed, includ-
ing cloud filtering and variable extraction from GRIB-format weather files. The second step involved
simulating green maize and winter barley growth using the WOFOST model, parameterized with field-
specific inputs and evaluated for sensitivity. Biophysical parameters, i.e., LAI, CCC, and CWC were
retrieved from Sentinel-2 imagery in the third step using the SNAP toolbox. The fourth step applied the
EnKF to assimilate biophysical observations into WOFOST simulations, using perturbed parameter
ensembles and time-varying observation uncertainties. Finally, model outputs were validated against
independent observations to assess predictive performance. The goal was to ensure that the simula-
tion error (RMSE) remained within an acceptable threshold (≤20% MAE) before final interpretation of
results.

Figure 3.2: Overview of the experimental workflow for crop yield estimation using remote sensing and crop growth modeling.

3.1.1. Meteorological Data

The meteorological data used in this study were obtained from the HARMONIE-AROME Cy43 refore-
cast dataset, provided by the Royal Netherlands Meteorological Institute (KNMI). This dataset provides
high-resolution weather model outputs at a spatial resolution of 2×2 km covering the Netherlands, and
is made available through the KNMI Data Platform ((KNMI), 2024a, 2024b). It provides a consistent
and spatially detailed representation of meteorological variables essential for crop growth modelling.

The dataset consists of four files per day, each corresponding to a different initialization time: 00:00,
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06:00, 12:00, and 18:00. Each file contains forecasts extending up to 60 hours at hourly intervals (e.g.,
T+1h, T+2h, ..., T+60h). For the purposes of this study, only the 0-hour forecast step was retained to
represent the daily observed meteorological conditions. The files are in GRIB format, which is com-
monly used for weather model outputs and supports efficient storage and access to multi-dimensional
meteorological data.

To ensure compatibility with the WOFOST crop growth model, the raw meteorological variables ob-
tained from the KNMI reforecast dataset were transformed into daily values following specific proce-
dures (Table 3.1). Hourly temperature data were used to extract the daily minimum and maximum
temperatures, which are required as separate inputs in WOFOST. Wind speed was calculated from
the U and V vector components using the Euclidean norm. Precipitation and global radiation values
were derived from GRIB files ending with 00500_GB, which represent 6-hour accumulated values. Ac-
tual vapor pressure is obtained from relative humidity and saturated vapor pressure calculated through
the Goudriaan equation A. De Wit et al., 2020. The formulas are as follows:

𝐻𝑅 =
𝑒𝑎
𝑒𝑠
× 100% (3.1)

𝑒𝑠 = 0.610588 ×
17.32491 × 𝑇
𝑇 + 238.102 (3.2)

where 𝐻𝑅 is the relative humidity (%), 𝑒𝑎 and 𝑒𝑠 represent the actual vapor pressure (kPa) and the
saturated vapor pressure (kPa), respectively. 𝑇 is the air temperature (°C).

These were summed to obtain daily totals. This harmonized processing ensures that all input variables
conform to the daily resolution and physical format expected by the WOFOST simulation framework.

Table 3.1: Mapping of meteorological variables from KNMI to WOFOST inputs

KNMI Variable WOFOST Input Conversion Method

Temperature [°C] Daily max/min
temperature [°C]

Extract daily minimum and maximum
from hourly temperature bands

Temperature [°C]
and RH [%]

Mean daily vapor
pressure [hPa]

Equation 3.1 and 3.2

U-/V-wind
components [m/s]

Mean daily wind
speed [m/s]

√𝑈2 + 𝑉2

Precipitation
[mm/6h]

Daily precipitation
[mm/day]

Daily accumulated mean from GRIB files
ending with 00500_GB

Global radiation
[J/m²/6h]

Daily global radiation
[J/m²/day]

Daily accumulated mean from GRIB files
ending with 00500_GB

3.1.2. Crop Growth Model Configuration

The WOFOST crop model was implemented using the PCSE (Python Crop Simulation Environment)
framework (“PCSE Documentation”, n.d.). Daily weather inputs, including global radiation, maximum
and minimum temperature, vapor pressure, wind speed, and precipitation, were derived from the KNMI
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reanalysis dataset and converted to WOFOST-required variables as described in Section 3.1.1.

Soil properties were defined using default profile files provided by the PCSE library, specifically the
ec1.soil configuration, which describes a coarse-textured soil type (“PCSE Documentation”, n.d.).
These standard soil files include parameters such as field capacity, wilting point, and rooting depth and
are suitable for water-limited simulations. No site-specific calibration of soil properties was conducted.

Crop-specific parameter files were sourced directly from the official WOFOST crop library, that is,
maize_green_201 for maize (green) and winter_barley_301 for winter barley. These files contain
detailed phenological, morphological, and physiological characteristics of the crops. No modifications
were made to the crop parameters, except for the definition of sowing and harvest dates, which were
specified at the parcel level based on typical cropping calendars in Drenthe. The growth and devel-
opment of crops in WOFOST are primarily governed by a set of physiological parameters that control
the rate and extent of biomass accumulation, phenological progress, and canopy development. In this
study, key parameters from the official WOFOST crop library were used without modification, including:

• TSUM1 and TSUM2: the thermal time requirements (in °C∙day) from emergence to anthesis, and
from anthesis to physiological maturity, respectively. These parameters determine the length of
the vegetative and reproductive stages.

• SPAN: the average lifespan of leaves in days, influencing the rate of senescence and the duration
of active photosynthesis.

• TDWI: the initial dry weight of the plant at emergence (kg/ha), serving as the starting biomass for
the simulation.

These parameters were selected as representative indicators of crop development and canopy dy-
namics, and they play a key role in determining the simulated time series of LAI and yield. They
are summarized in Table 3.2. One thing notable here is that although the parameters VERNBASE
(minimum vernalization days) and VERNSAT (saturated vernalization days) are listed as phenological
parameters for green maize, they do not affect the simulation because maize is a summer crop that
does not require vernalization.

Table 3.2: Key crop parameters used in WOFOST simulations

Parameter Description Maize (green) Barley (winter)

TSUM1 (∘C⋅ day) Thermal time from emergence to anthesis. 695 685
TSUM2 (∘C⋅ day) Thermal time from anthesis to physiological

maturity.
800 812

VERNBASE (day) Base vernalization requirement. 14 9.3
VERNSAT (day) Saturating vernalization requirement. 70 46

Note. Vernalization parameters mainly affect winter cereals; values for non-vernalizing crops are typically ignored by the model
logic.

Due to the large number of maize (green) parcels in the study area, a k-means clustering algorithm
was applied to select a representative subset. Based on the spatial and agronomic attributes, 100
representative maize parcels were selected from the full set. In total, simulations were conducted at
the parcel level for 100 maize and 94 winter barley fields during their respective 2022 growing seasons.
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3.1.3. Satellite Parameter Retrieval

In this study, Sentinel-2 Level-2A surface reflectance data were used to retrieve canopy biophysical
variables over maize and barley parcels in Drenthe, were acquired from the Copernicus Open Access
Hub (“Copernicus Browser”, n.d.). Images were filtered to retain only those with less than 20% cloud
cover over the study area. After quality control, a total of 26 cloud-free or low-cloud-cover images
were available during the study period. Specifically, 10 images were acquired within the green maize
growing season (25 April - 30 October 2022) and 17 images within the winter barley growing season
(14 September 2021 - 30 July 2022). A complete list of selected Sentinel-2 images is provided in
Appendix A. These images formed the basis for retrieving crop biophysical parameters for subsequent
assimilation.

Three biophysical parameters retrieved from Sentinel-2 imagery were utilized: LAI, CCC, and CWC.
All three variables were included as assimilation targets. However, the assimilation framework used
LAI as the sole state variable in the EnKF, while CCC and CWC were indirectly constrained via their
dependence on LAI.

Leaf Area Index (LAI): LAI, defined as the one-sided green leaf area per unit ground surface area
(m²/m²), is a key driver of both radiation interception and transpiration in WOFOST. It directly influences
the potential gross assimilation rate by controlling intercepted photosynthetically active radiation (PAR).
As such, LAI plays a central role in determining crop biomass accumulation and water loss through
transpiration.

Canopy Chlorophyll Content (CCC): CCC is calculated as:

𝐶𝐶𝐶 = 𝐿𝐴𝐼 × 𝐶𝑎𝑏 (3.3)

where 𝐶𝑎𝑏 denotes the average leaf chlorophyll concentration (𝜇𝑔/𝑐𝑚2). CCC reflects canopy-level
photosynthetic capacity and nitrogen status. Although WOFOST does not explicitly simulate CCC,
it is biophysically linked to light use efficiency. In this study, CCC was included as an observational
constraint to ensure the physiological realism of the LAI state update.

Canopy Water Content (CWC): CWC is defined as:

𝐶𝐶𝐶 = 𝐿𝐴𝐼 × 𝐶𝑤 (3.4)

where 𝐶𝑤 represents the leaf water content (𝑔/𝑐𝑚2). CWC is sensitive to canopy moisture status
and serves as an early indicator of drought stress or senescence. Similar to CCC, CWC was not
directly updated in the model but used as an additional criterion for validating the LAI updates during
assimilation.

Sentinel-2 biophysical variables were retrieved using the Biophysical Processor on SNAP. The retrieval
process consists of several steps:

1. Preprocessing and Resampling: Sentinel-2 Level-2A products were first resampled to a uni-
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form 20 m spatial resolution using the SNAP Resampling tool to harmonize spatial grids across
bands.

2. Biophysical Parameter Retrieval: The resampled data were processed with the SNAP Biophys-
ical Processor (S2 Toolbox), which uses a set of neural networks trained on PROSAIL radiative
transfer model simulations to estimate biophysical parameters. These outputs correspond to
top-of-canopy variables, representing the green vegetative portion of the canopy.

The retrieval approach and neural network implementation follow the principles outlined in the Algo-
rithm Theoretical Baseline Document (ATBD) for the Sentinel-2 ToolBox Biophysical Processor. The
networks estimate variables by minimizing the cost between simulated PROSAIL reflectance spectra
and observed reflectance, conditioned on predefined look-up tables and vegetation priors.

To assess the theoretical accuracy of Sentinel-2 derived vegetation biophysical parameters, we refer
to Table 3.3, which summarizes the performance metrics of the neural networks used in the SNAP
biophysical processor. The table reports the coefficient of determination (𝑅2) and root mean square
error (RMSE) for various products retrieved at 20m resolutions from S2A and S2B imagery.

Table 3.3: Retrieval accuracy of Sentinel-2 biophysical parameters at 20m resolution (adapted from SNAP ATBD).

Variable Metric S2A-20m S2B-20m
LAI 𝑅2 0.82 0.82

RMSE 0.90 0.90
CCC (𝜇g/cm2) 𝑅2 0.84 0.84

RMSE 57.99 57.22
CWC (g/cm2) 𝑅2 0.84 0.85

RMSE 0.031 0.023

Among the three variables assimilated in our model, LAI, CCC, and CWC, LAI exhibited a reasonable
retrieval accuracy with 𝑅2 ranging from 0.71 to 0.82, and RMSE values between 0.90 and 1.15. For
CCC, the 𝑅2 values were 0.84, and the RMSE ranged from 57.22 to 57.99 𝜇g/cm2. Similarly, CWC
achieved 𝑅2 values around 0.84–0.85 and RMSEs as low as 0.023 g/cm2. These retrieval uncertain-
ties directly impact the confidence in model calibration and assimilation performance. Although these
metrics were derived under idealized, simulated conditions, they provide a useful benchmark for un-
derstanding potential errors in field-scale retrieval. Moreover, by aggregating pixel-level estimates to
parcel-level means, we reduce the influence of outliers and spatial noise, thereby improving the robust-
ness of subsequent data assimilation steps.

3.1.4. Data Assimilation Framework

The data assimilation (DA) framework is designed to optimally combine remote sensing observations
with process-based crop growth model simulations to improve the accuracy of state and output vari-
ables. By integrating observations into the model during the growing season, the framework continu-
ously corrects the model states, thereby reducing errors caused by uncertainties in model parameters,
meteorological forcing, and initial conditions. The assimilation process starts with an ensemble of
model simulations generated by perturbing model parameters and/or initial states based on prior un-
certainty distributions. At each observation date, the EnKF compares simulated variables (e.g., LAI)
with satellite-derived observations, and updates the ensemble states according to the Kalman gain.
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The updated states are then used as initial conditions for the next simulation step, ensuring that the
model trajectory remains close to the observations while respecting the process-based constraints.

The assimilation strategy varies for the three parameters. While LAI is a direct output of the WOFOST
model and can be assimilated straightforwardly, CCC and CWC are not explicitly simulated as model
state variables. To enable their assimilation, CCC and CWC were expressed as functions of LAI and
constant biochemical coefficients (see Eq. 3.3, 3.4), where Cab and Cw are fixed constants for each
ensemble member throughout the simulation.

The values of Cab and Cw for each ensemble member were derived from the distribution obtained
by dividing remotely sensed CCC and CWC by LAI at corresponding observation dates. From these
empirical distributions, a value is randomly drawn and assigned to each ensemble member at initial-
ization, and remains fixed during assimilation. This design ensures that updates to CCC and CWC are
implemented indirectly by updating LAI through the assimilation algorithm, while maintaining physical
consistency with the model structure. The statistical characteristics of the Cab and Cw distributions are
summarised in Table 3.4.

Table 3.4: Statistical characteristics of the Cab and Cw distributions derived from remotely sensed CCC and CWC divided by
LAI.

Parameter Mean Standard deviation
Cab (𝜇g cm−2) 112 106
Cw (g cm−2) 0.036 0.031

The observation error covariance matrix R plays a crucial role in the Ensemble Kalman Filter by de-
termining the relative weight assigned to the observations during the assimilation step. An accurate
specification of R is essential to balance observational reliability against model uncertainty. In this
study, R was implemented as a diagonal matrix, assuming that observation errors at each assimilation
timestep are uncorrelated in time. In addition, we examined the sensitivity of the assimilation results
to different specifications of R, as discussed in Section 3.2.1. The baseline configuration of R was
defined using the observation error variances of the assimilated variables, computed from their total
uncertainties. For each variable, the standard deviation of the observation error, 𝜎𝑜 was calculated as:

𝜎𝑜 = √0.7 𝜎 2spatial + 0.3 𝜎 2algo (3.5)

where 𝜎spatial represents the spatial variability of the retrievals within the observation footprint, and 𝜎algo
is the algorithmic retrieval error. The weights (0.7 for spatial variability and 0.3 for algorithmic error)
were selected to balance the contribution of the two components, given that the algorithmic error values
are generally larger than the spatial variability estimates (see Table 3.3). This weighting ensures that
neither source of uncertainty dominates the total observation error. The corresponding observation
error variances (𝜎2𝑜 ) form the diagonal elements of R in the baseline configuration.

To account for uncertainty in model parameters and initial conditions, an ensemble of WOFOST simu-
lations was generated by perturbing a set of physiologically meaningful variables related to crop growth
and soil properties. For each ensemble member, these variables were sampled from normal distribu-
tions centered on reference values with specified standard deviations. The perturbation strategy aimed
to reflect plausible variability in crop traits and soil conditions across fields.
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Table 3.5 lists the perturbed parameters used for silage maize, along with their assumed mean and
standard deviation. All parameters were sampled independently. Where applicable, physical bounds
were imposed using truncation to ensure biologically reasonable values (e.g., TDWI constrained be-
tween 30 and 150 g m-2).

Table 3.5: Perturbed parameters and distributions for silage maize ensemble simulations.

Parameter Description Distribution (mean ± std)

TDWI Initial dry weight of the crop (g m-2) 𝒩(60, 30), clipped [30, 150]
WAV Weight of storage organs per seed (g) 𝒩(10, 5)
SPAN Lifespan of leaves (days) 𝒩(33, 5)
TSUM1 Thermal time until anthesis (°C∙d) 𝒩(695, 50)
TSUM2 Thermal time from anthesis to maturity (°C∙d) 𝒩(800, 50)
CVL Carbohydrate conversion efficiency: leaves 𝒩(0.68, 0.2)
CVO Carbohydrate conversion efficiency: storage organs 𝒩(0.67, 0.1)
CVR Carbohydrate conversion efficiency: roots 𝒩(0.69, 0.1)
SMW Soil moisture content at wilting point (m3 m-3) 𝒩(0.30, 0.03)
SMFCF Soil moisture content at field capacity 𝒩(0.46, 0.04)
SM0 Initial soil moisture content 𝒩(0.57, 0.057)

The ensemble size 𝑁 was set to 40 in this study, balancing computational efficiency with the need
for robust statistical representation of forecast uncertainty. While larger ensembles generally improve
the accuracy of the forecast error covariance matrix P𝑓, they also impose higher computational costs,
especially when simulations are run at the parcel level across multiple time steps. Previous studies
in environmental modeling have shown that ensemble sizes between 20 and 50 are often sufficient to
capture the major sources of variability without excessive sampling noise. Preliminary sensitivity tests
conducted in this study indicated that increasing 𝑁 beyond 40 yielded only marginal improvements in
assimilation performance, justifying the chosen ensemble size for practical use.

3.2. Workflow Testing
To evaluate the robustness of the crop yield prediction workflow, three sensitivity analyses were con-
ducted. All experiments were carried out on green maize fields, since it is a major crop in the study
area. A key consideration is the definition of the harvest date. For green maize, the actual harvest
typically occurs before the DOM estimated by the crop model, as the crop is harvested at an earlier
stage of development. To ensure consistency with field management practices and to provide realistic
yield estimates, the harvest date was therefore explicitly defined, and yield was assessed at this point
rather than at DOM. The sensitivity analysis was organized along three dimensions: (1) sensitivity to
observation uncertainty, (2) sensitivity to the number of assimilated observations, and (3) sensitivity to
the choice of assimilated variables. This design allows for a systematic evaluation of how uncertainties
in observational data, data availability, and variable selection influence assimilation outcomes and yield
predictions.
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3.2.1. Sensitivity to Observation Uncertainty

We assessed how the assumed LAI observation uncertainty influences the EnKF analysis. Each ex-
periment used an ensemble of 30 members and a common assimilation window from 2022-04-25 to
2022-10-30 for green maize; meteorology, soil, and management were identical across runs.

For every satellite overpass, the LAI observation at the field coordinate was computed as the mean of
valid pixels inside an 𝑁 × 𝑁 window (𝑁 ∈ {1, 5, 7}). The associated observation standard deviation 𝜎𝑜
combined a spatial representativeness term, 𝜎spatial (the standard deviation of valid pixels within the
window), and an algorithmic retrieval term, as defined in Eq. 3.5. We tested five scenarios:

• S1: window 5 × 5 (baseline).

• S2: window 5 × 5 with uncertainty inflation (𝜎𝑜 × 2).

• S3: window 10 × 10 (no spatial variability, retrieval error only).

• S4: window 3 × 3 (smaller representativeness error).

• S5: window 1 × 1 (no spatial variability, retrieval error only).

These scenarios were designed to systematically evaluate the sensitivity of the EnKF analysis to as-
sumptions about observation uncertainty and spatial representativeness. The baseline configuration
(S1) uses a 5 × 5 window, representing a balance between capturing local heterogeneity and main-
taining a sufficient number of valid pixels for robust LAI estimation. Scenario S2 applies an artificial
inflation of 𝜎𝑜 to test how the assimilation performance responds when the observations are assumed
to be less reliable, thereby assessing the impact of overestimated observation errors. In contrast, S3
adopts a larger 10×10 window, reducing the spatial representativeness error but potentially increasing
the mismatch between satellite-derived LAI and field-scale conditions due to greater spatial averaging.
S4 uses a smaller 3×3 window to explore the effect of reduced sub-pixel heterogeneity on assimilation
accuracy. Finally, S5 isolates the impact of retrieval uncertainty alone by using a single-pixel esti-
mate (1 × 1) and neglecting spatial variability entirely. Together, these scenarios provide a controlled
framework to understand how different uncertainty assumptions influence the assimilation outcome.

3.2.2. Sensitivity to Number of Observations

Accurate crop-state estimation through data assimilation depends not only on the quality of individual
observations but also on their number and timing. In practice, optical satellite data are often irreg-
ular in time due to cloud contamination and acquisition gaps, making it essential to understand how
many observations are needed to meaningfully constrain crop growth dynamics. This experiment was
therefore designed to quantify how the number and temporal distribution of assimilated LAI observa-
tions influence the effectiveness of the EnKF analysis and its predictive performance. In particular,
we evaluate both the marginal benefit of each additional assimilation date and the point of diminishing
returns, which provides practical insights for optimizing satellite acquisition strategies and operational
crop monitoring.

We quantify how the number and timing of assimilated LAI observations affect the EnKF analysis and
key outputs (LAI trajectory and harvest TAGP) for green maize.
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Across all experiments, we assimilate only LAI with an Ensemble Kalman Filter (30 members) over the
period 2022-04-25 to 2022-10-30. Meteorology, soil, management and crop parameters are identical
across experiments. Observation uncertainty follows our baseline error model (Sec. 3.2.1): the per-
datum standard deviation 𝜎𝑜 is the quadratic sum of a spatial representativeness term and a retrieval
term, and the observation-error covariance 𝑅 is diagonal.

For this site–year we retained 6 Sentinel-2 LAI observations for assimilation. We excluded the earliest
overpass because it occurred at a very early phenological stage (LAI near zero, low information con-
tent), and we discarded the last three overpasses because they fell after the harvest date and thus lay
outside the crop cycle. Formally, we assimilated only dates within the in-season window,

𝑆(𝒪) = { 𝑡𝑖 ∈ 𝒪 | 𝑡em < 𝑡𝑖 ≤ 𝑡harv }, |𝑆(𝒪)| = 6, (3.6)

where 𝑡em and 𝑡harv denote (simulated or observed) emergence and harvest dates, respectively.

To assess the effect of observation count, we progressively increased the number of assimilated dates.
Starting from the first available in-season observation, we ran the full simulation using only that single
assimilation date and recorded the resulting LAI and TAGP at harvest. We then repeated the simulation
while adding the next chronological observation, continuing until all six observations were assimilated.
For each scenario, we also computed the ensemble standard deviation of LAI and TAGP at the harvest
date to evaluate whether additional observations reduce output uncertainty. This approach allows us
to quantify both the marginal benefit of each additional assimilation date and the point of diminishing
returns.

3.2.3. Sensitivity to Assimilated Variables

Data assimilation performance depends strongly on which biophysical variables are assimilated, since
different remotely sensed variables provide complementary information about crop canopy status. For
example, LAI primarily constrains canopy structure, CCC reflects photosynthetic capacity and nitro-
gen status, and CWC captures plant water content and stress. Understanding how assimilating each
variable individually, or in combination, influences the model’s predictive skill is therefore essential for
designing efficient assimilation strategies and optimizing the use of available satellite products. This ex-
periment was thus designed to evaluate the relative contributions of LAI, CCC, and CWC observations
to improving state estimation and yield forecasting.

Different remotely sensed variables carry different types of information on crop canopy condition and
may influence the assimilation outcome in distinct ways. As described in Section ??, we expressed
CCC and CWC as the product of LAI and a constant biochemical coefficient, i.e., Cab or Cw, which
is fixed for each ensemble member throughout the simulation. These coefficients were sampled at
initialization from empirical distributions derived by dividing the remotely sensed CCC or CWC by LAI,
and their statistics are given in Table 3.4. This approach allows CCC and CWC to be indirectly updated
via LAI adjustments during assimilation. We tested several assimilation configurations: LAI only, CCC
only and CWC only. In all experiments, the meteorology, soil, management, and crop parameters were
identical, and observation uncertainty followed the baseline error model (Sec. 3.2.1). For each config-
uration, we evaluated the effect on LAI and TAGP trajectories and harvest TAGP, and the ensemble
standard deviation of these variables at harvest, to quantify the relative benefits of assimilating different
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variables or combinations thereof.

3.3. Workflow Validation

3.3.1. Validation Data

For validation, we rely on official agricultural statistics from Statistics Netherlands (CBS). In the Dutch
system, crop areas and yields are self-reported by farmers (via annual agricultural returns) and consol-
idated by CBS together with administrative registers and expert checks before publication. We made
extensive efforts to obtain parcel-level observations for independent validation. However, because the
underlying parcel-level microdata are access-restricted, we could not obtain field-by-field observations
for our study area. We therefore validated our results against province-level CBS statistics available
through the StatLine portal (e.g., Arable crops; production, region, code 85636ENG), which provide
long time series of harvested area, yield, and production for major arable crops. To ensure a like-
for-like comparison, model outputs were aggregated from parcels to the corresponding province–year
units. While this approach offers an authoritative benchmark, it also implies that any field-scale errors
may be partially masked by spatial aggregation, a limitation we acknowledge in the discussion.

3.3.2. Evaluation Methodology

Model performance was evaluated using official provincial statistics from CBS as an independent
benchmark. Since only a single province-level observation was available for the 2022 growing sea-
son, metrics based on temporal or spatial correlation (e.g., 𝑅2) are not applicable.

Instead, as only the aggregated average yield across all fields was available from official statistics,
the validation focused on metrics that measure the agreement between the model estimates and the
observed mean at the aggregated level. Four complementary indicators were employed: aggregated
bias, relative bias, standardized bias (z-score), and root mean square error (RMSE).

Aggregated bias quantifies the difference between the mean simulated yield and the observed average
yield, providing a direct measure of the overall deviation. It is defined as:

Bias = 𝑦̄model − 𝑦̄obs (3.7)

where 𝑦̄model is the mean yield simulated across all fields and 𝑦̄obs is the observed mean yield. A smaller
absolute value of bias indicates that the model estimates are closer to the reference value.

To allow for a scale-independent comparison, the relative bias (%Bias) was also calculated by normal-
izing the aggregated bias with respect to the observed mean:

%Bias = 𝑦̄model − 𝑦̄obs
𝑦̄obs

× 100% (3.8)

This metric expresses the deviation as a percentage, enabling direct interpretation of overestimation
or underestimation relative to the observed average.

Furthermore, a standardized bias (z-score) was used to statistically evaluate whether the simulated
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mean differs significantly from the observed mean. It is calculated as:

𝑧 = 𝑦̄model − 𝑦̄obs
𝑆𝐸 (3.9)

where 𝑆𝐸 = 𝑠
√𝑛

is the standard error of the simulatedmean, 𝑠 is the standard deviation among field-level
simulations, and 𝑛 is the number of fields. A |𝑧| value smaller than 1.96 indicates that the simulated
mean is not statistically different from the observed mean at the 95% confidence level.

Finally, the root mean square error (RMSE) was calculated to quantify the overall deviation of field-level
simulations from the observed mean yield:

RMSE = √1𝑛

𝑛

∑
𝑖=1
(𝑦𝑖 − 𝑦̄obs)2 (3.10)

where 𝑦𝑖 is the simulated yield for field 𝑖.Although individual field observations were unavailable, this
metric provides an aggregatedmeasure of how closely the simulated yields cluster around the validation
reference. Collectively, these metrics offer a comprehensive evaluation of the assimilation performance
in terms of accuracy, relative deviation, statistical consistency, and overall agreement with the observed
yield.

This approach provides a consistent evaluation of model skill at the provincial scale, despite the lack
of parcel-level validation data.
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Results

4.1. Results of Workflow Design

4.1.1. Spatial and Temporal Patterns of Climate Variables

To analyze the spatiotemporal variability of meteorological conditions, the mean daily values of six
climate variables were calculated for each quarter in 2021–2022: global radiation, maximum and min-
imum temperatures, vapor pressure, wind speed, and precipitation.

Figures above illustrate the spatial distribution of six climate variables in each quarter. Overall, the
maps reveal distinct spatial gradients and seasonal variations:

Temperature: Both maximum and minimum temperatures tend to be higher in the southern part of
Drenthe. Several localized hotspots are also observed around built-up areas such as Assen and Em-
men. These elevated temperature zones may be attributed to urban heat island effects and reduced
vegetation cover in these urbanized regions.

Global Radiation: A consistent south–north gradient is observed, with higher radiation in the southern
part of the province and lower values in the northern side.

Vapor Pressure: The spatial distribution of vapor pressure does not exhibit a strong or consistent spa-
tial pattern across the province. However, a general trend of slightly lower vapor pressure in the interior
compared to the peripheral regions can be observed, which may relate to localized land cover and to-
pographic influences. Seasonally, vapor pressure is highest in Q3, reflecting increased atmospheric
moisture during the warmest period of the year, and is lowest in Q1 and Q4, consistent with colder and
drier winter and autumn conditions.

Wind Speed: Wind speed displays clear spatial heterogeneity across Drenthe. Lower wind speeds are
observed in several interior zones of the province, which spatially correspond to forested areas such
as Dwingelderveld and Drentsche Aa National Parks. These vegetated regions likely reduce surface
wind through increased surface roughness and canopy friction. In contrast, higher wind speeds are

33
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Figure 4.1: Spatial distribution of mean daily climate variables in Drenthe, 2021 (September–December).

Figure 4.2: Spatial distribution of mean daily climate variables in Drenthe, Q1 2022 (January–March).
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Figure 4.3: Spatial distribution of mean daily climate variables in Drenthe, Q2 2022 (April–June).

Figure 4.4: Spatial distribution of mean daily climate variables in Drenthe, Q3 2022 (July–September).
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Figure 4.5: Spatial distribution of mean daily climate variables in Drenthe, Q4 2022 (October–December).

seen along the open-field peripheries in the north and southeast. Seasonally, wind speeds peak during
winter (Q1) and drop significantly in summer (Q3), reflecting the overall weakening of synoptic-scale
winds during the warmer months.

Precipitation: Rainfall patterns vary considerably by quarter. The highest rainfall zones are mostly
located in the northern and central parts of Drenthe (e.g., during Q1 and Q3), while the southern zones
experience relatively lower rainfall. These spatial disparities can influence local soil moisture availability
for crops.

These spatial patterns underscore the heterogeneity of environmental conditions within the study area.
Recognizing these differences is critical when simulating crop growth at the parcel level, as microcli-
matic variation may impact growth rate, water stress, and yield distribution.

We further explored the temporal dynamics of meteorological conditions during the growing seasons.
Time series were extracted from two representative adjacent parcels, one cultivated with green maize
and the other with winter barley. As shown in Figure 4.6, the plots depict the daily mean values of six
climate variables. The shaded bands represent±3 standard deviations, calculated from the distribution
of all parcels within the study area, to capture overall variability.
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Figure 4.6: Daily meteorological variables averaged over parcels for winter barley (left) and green maize (right) during their
respective growing seasons. Shaded areas indicate ±3 standard deviation.

The patterns reflect seasonal shifts in temperature and radiation, with higher variability in precipitation
and wind. Winter barley was sown in autumn and exhibited a long growing cycle into early summer,
while green maize was cultivated in a shorter, warmer summer window. These dynamics help contex-
tualize the input conditions for the WOFOST simulations.

4.1.2. Sentinel-2 Derived Biophysical Parameters

The left panel of Figure 4.7 shows a spatial snapshot of Sentinel-2 LAI on 13 August 2022. On that
date, LAI ranged from 0.00 to 12.14 across the study area (mean: 2.16; median: 1.91; P5: 0.29; P95:
4.93; 𝑛 = 6,698,479 valid pixels), revealing pronounced field-scale heterogeneity: high values clus-
tered over intensively cultivated maize fields, while built-up and bare/harvested surfaces exhibited low
LAI. LAI in urbanized areas was generally close to zero but not exactly zero, partly due to vegetation in
parks, roadside trees, and small garden plots, and partly because of mixed pixel effects where coarse
spatial resolution blends non-vegetated surfaces with nearby vegetated areas. These statistics de-
scribe the full AOI. In the right panel, we extracted LAI time series for ten selected green maize field
locations to capture temporal dynamics at representative crop sites. All sites follow a single-peaked
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seasonal trajectory characteristic of maize: low LAI in early season (April–May), rapid canopy devel-
opment during June–July, a peak around late July to mid–August, and decline with senescence and
harvest in September–October. Variations in peak magnitude and timing among locations likely reflect
differences in planting dates, cultivar/field management, and local water availability. Notably, while the
WOFOST open-loop simulation suggests that the DOM occurs around mid–October, the Sentinel-2 ob-
servations indicate that maize harvesting had already commenced by mid–September in many fields,
leading to a more rapid decline in LAI than the model predicts.

Figure 4.7: Spatial and temporal patterns of LAI. Left: Sentinel-2 derived LAI spatial distribution on 13 August 2022. Right:
Seasonal LAI trajectories (April–October 2022) for ten green maize field locations. Locations are colour-coded and labelled
consistently between panels.

Similarly, Figure 4.8 and Figure 4.9 illustrates the spatial distribution and temporal dynamics of CCC
and CWC for green maize in the study area. The spatial snapshots on 13 August 2022 show that
both CCC and CWC exhibit pronounced field-scale heterogeneity: intensively cultivated maize fields
present high values, whereas built-up areas, bare soil, and harvested fields display low values. CCC,
ranging from 0 to 450 𝜇g cm−2, primarily reflects canopy photosynthetic capacity and nitrogen status.
CWC, ranging from 0 to 0.14 g cm−2, is linked to canopy water status and structure.

Figure 4.8: Sentinel-2 derived CCC (left) and CWC (right) spatial distribution on 13 August 2022.

As shown in Figure 4.9, the corresponding time series (April–October) reveal a single-peaked sea-
sonal trajectory for both parameters, characteristic of maize phenology. Values remain low in April–
May, increase rapidly during canopy expansion in June–July, and reach a maximum in early-to-mid
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Figure 4.9: Time series of CCC (up) and CWC (low) for ten green maize field locations.

August. CCC peaks occur nearly synchronously with LAI maxima, indicating that leaf area expansion
and chlorophyll accumulation progress concurrently. CWC peaks generally coincide with LAI but de-
cline more steeply during September, reflecting rapid water loss during senescence and harvest. The
concurrent rise and fall of CCC, CWC, and LAI highlight their coupled biophysical nature, while the
faster decline of CWC underlines its sensitivity to physiological and environmental stress.

4.1.3. Open-loop WOFOST Simulations

This section presents the simulation outputs of the WOFOST crop growth model, prior to any data
assimilation. Simulations were conducted at the parcel level for 100 green maize fields and 94 win-
ter barley fields in Drenthe during the 2022 growing season. The following subsections describe the
spatial and temporal characteristics of simulated LAI, and compare model outputs against Sentinel-2
observations.

To examine the variability in crop development across the study area, we analyzed the maximum simu-
lated LAI (LAImax) and its spatiotemporal distribution. The histogram in Figure 4.10 (top left) illustrates
the distribution of LAImax across 100 green maize fields, which ranges from approximately 3.0 to 4.0,
with most parcels clustering between 3.4 and 3.8. The spatial distribution map (top right) reveals a clear
gradient in LAImax, generally decreasing from the southwestern to the northeastern parts of Drenthe.
This pattern closely resembles the spatial distribution of global radiation discussed earlier, suggesting
that incoming solar radiation may be a key driver of biomass accumulation. Other contributing fac-
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Figure 4.10: Distribution (top left), spatial pattern (top right), and time series (bottom) of LAImax from WOFOST simulations in
100 maize parcels.

tors may include variations in soil water availability. The bottom panel of Figure 4.10 shows LAI time
series at three sample locations representing low, medium, and high LAImax. While the timing of LAI
peaks is broadly similar across sites, there are notable differences in peak magnitude and curve shape,
reflecting spatial heterogeneity.

As shown in Figure 4.11, to evaluate the plausibility of WOFOST-simulated LAI prior to assimilation,
model outputs were compared with Sentinel-2 LAI retrievals at three representative locations selected
in Figure 4.10. The model reproduces the general seasonal trajectory of LAI, including onset, rapid
growth, and decline phases. However, the overall magnitude of simulated LAI is lower than that from
Sentinel-2, which may be attributed to model parameter settings that do not fully represent the actual
crop growth conditions in the study area, although uncertainties in the remote sensing retrievals cannot
be ruled out. Additionally, at the end of the growing season, WOFOST shows a slower decline in LAI,
whereas Sentinel-2 captures an abrupt drop. As mentioned before, this mismatch primarily reflects the
fact that the model assumes senescence to follow a natural physiological process, while in practice,
silage maize is often harvested earlier, leading to a sudden reduction in canopy cover.

These discrepancies emphasize the need for dynamic model updating using satellite observations,
which is addressed through the data assimilation framework in the following section.

4.1.4. Data Assimilation Results

Figure 4.12 show the data assimilation results for one site (52.6501∘N, 6.4941∘E). The EnKF mean
(red) follows the same overall trend as the satellite LAI, with visible but moderate analysis increments at
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Figure 4.11: LAI time series comparison between WOFOST simulations and Sentinel-2 observations at three selected maize
parcels. Red crosses indicate Sentinel-2 derived LAI.

the observation dates (top–right). The ensemble spread contracts immediately after each update and
gradually regrows between updates, which represents textbook filter behaviour and indicates that the
prescribed observation error and background spread are in reasonable balance.The seasonal pattern
is agronomically consistent: a slow increase during early vegetative growth, a rapid ramp-up to a mid-
season peak, and a decline during senescence. Because canopy radiation absorption in WOFOST
scales with 𝑓𝐴𝑃𝐴𝑅 = 1− exp(−𝑘 LAI), LAI corrections applied before and around the peak (when LAI
is in the 2–4 range) have the largest leverage on downstream fluxes, whereas late-season corrections
yield diminishing returns as both 𝑓𝐴𝑃𝐴𝑅 saturates and leaves senesce.

Total above-ground biomass (TAGP, middle–left) responds smoothly to the LAI updates. Small kinks
in TAGP coincide with LAI analysis times, reflecting changes in absorbed PAR and thus daily gross as-
similation. The largest TAGP adjustments occur following early and mid-season LAI increments, when
additional canopy area substantially increases light interception; after the LAI peak, analysis increments
produce smaller TAGP changes because (i) 𝑓𝐴𝑃𝐴𝑅 is closer to saturation and (ii) senescence shortens
the remaining integration window. Importantly, the filter does not induce spurious oscillations or drift:
TAGP remains monotonic and within the ensemble envelope, showing that LAI information propagates
physically through canopy photosynthesis and allocation rather than forcing the biomass state directly.

For green maize, where harvest output is TAGP, concentrating high-quality LAI observations during
the canopy expansion phase and near the seasonal peak maximizes the benefit to biomass predic-
tion, while late-season acquisitions mainly reduce LAI uncertainty with limited effect on TAGP. The
stable spread-reduction without collapse suggests no overconfidence; if further TAGP skill is desired,
improvements will likely come from (i) tighter LAI errors around peak growth and (ii) refining canopy
parameters that control light-use efficiency (e.g., 𝑘, 𝐴𝑀𝐴𝑋𝑇𝐵, 𝐸𝐹𝐹𝑇𝐵), rather than from increasing the
number of late-season updates.
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Figure 4.12: Temporal dynamics of crop growth variables under data assimilation
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Figure 4.13: Time series of simulated LAI for 10 sites during EnKF.

We further investigate the behavior of LAI during the assimilation process. Figure 4.13 summarises LAI-
only EnKF results for ten representative greenmaize sites. Each panel shows the ensemble trajectories
(grey), the EnKF mean (red), and the Sentinel-2 LAI observations with ±1𝜎 (blue). Across sites, the
analysed LAI exhibits a consistent seasonal cycle: a slow increase in early season (May), a rapid rise
during canopy expansion, a mid-season peak, and a gradual decline afterwards. Peak LAI typically lies
between 3 and 5, with inter-site differences in peak timing of about 2-3 weeks and peak magnitude of
roughly ±1 LAI. Late-season LAI converges to 1-2, consistent with senescence and partial ground
exposure. This spatial variability is plausibly driven by soil/management contrasts and mesoscale
weather differences rather than filter behaviour.

At most update dates the observations fall within the ensemble envelope, and the ensemble spread
contracts immediately after assimilation then re-grows between updates. The analysis increments are
moderate, avoiding oscillations; the red curves track the blue points without overfitting. This indicates
a reasonable balance between background spread and observation error, and a stable EnKF across
all sites. The largest and most systematic adjustments occur around the rising limb and near peak
LAI, when corrections most strongly affect absorbed PAR and hence downstream biomass. Post-peak
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updates have smaller impact on the trajectory (saturation of 𝑓𝐴𝑃𝐴𝑅 and ongoing senescence), mainly
tightening uncertainty rather than shifting the mean. However, we also observe that the first observation
on 2 May 2022 has negligible impact on the analysis. This is because the crop is still in its early growth
stage and the associated observation carries large uncertainty. Similarly, the last three observations
after 1 October provide little to no effect. At that time, themaize had already been harvested, resulting in
very low LAI values, while the process-based model ensemble still maintained nonzero canopy states.
Therefore, we consider these three observations ineffective and exclude them from the subsequent
sensitivity tests.

We further illustrate the trajectory of TAGP at the same ten sites during the LAI assimilation process,
as shown in the Figure 4.14.

Figure 4.14: Time series of simulated TAGP for 10 sites during EnKF.

Overall, TAGP increases monotonically throughout the growing season, following an agronomically
consistent pattern: slow accumulation in the early stage, rapid growth during mid-season, and a plateau
after September. The EnKF mean (red) remains within the ensemble envelope and closely follows the
ensemble trajectories (grey), indicating a stable assimilation process without spurious oscillations or
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drift. During the rapid growth phase (June–August), LAI updates lead to visible adjustments in TAGP,
accompanied by a marked reduction in ensemble spread, demonstrating the constraining effect of
observations on model uncertainty. In contrast, during the late season (after October), observations
have little impact on TAGP, mainly serving to maintain ensemble stability. Noticeable differences are
observed across sites, with final TAGP levels ranging from about 12 to 17 𝑡𝑜𝑛𝑠/ℎ𝑎, likely reflecting vari-
ations in local meteorological conditions, soil environments, or observational uncertainty. These results
highlight that LAI assimilation is most influential for biomass prediction during the vigorous growth stage
and also reveal spatial heterogeneity among sites.

TAGP trajectories not only capture the crop growth dynamics but also provide a basis for determining
the harvest date. A programmatic analysis across multiple sites showed that around 1 October 2022,
the daily increments of TAGP had approached zero and consecutive declines were observed, indicating
that above-ground biomass accumulation had essentially ceased and begun to decrease. Since green
maize is typically harvested when total biomass is near its maximum rather than at the physiological
maturity date (DOM) defined by the crop model, we defined 1 October as the harvest date in this study
for subsequent yield evaluation and sensitivity analysis.

With the harvest date, we calculate the TAGP for all the green maize parcels on that day, and plot
the spatial distribution and frequency distribution (see Figure 4.26). We find that the harvest TAGP
range from 11.5 to 15.5 𝑡𝑜𝑛𝑠/ℎ𝑎, with an average value of 13.56 𝑡𝑜𝑛𝑠/ℎ𝑎. Most parcels cluster within
13–14.5 𝑡𝑜𝑛𝑠/ℎ𝑎, while a few parcels deviate toward lower or higher values. It indicates that the yield
estimates after assimilation are overall reasonable and spatially coherent. On the whole, the southern
areas exhibit slightly higher TAGP compared to the northern areas. Such spatial variability indicates
that even on the same harvest day, the final yield of different fields is still influenced by soil conditions,
local climate, and management differences.

Figure 4.15: Spatial distribution (left) and frequency distribution (right) of TAGP on harvest date.

Furthermore, we explore the relationship between maximum LAI and TAGP. Figure 4.26 shows the
spatial distribution of LAIMAX and harvest TAGP. The spatial maps reveal pronounced heterogeneity
across parcels, with higher LAI Max generally corresponding to higher TAGP.
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Figure 4.16: Spatial distribution of maximum LAI (left) and TAGP (right) on the harvest date.

The scatter plot further quantifies this relationship, as shown in Figure 4.17 , a significant positive
correlation Pearson 𝑟 = 0.68) is observed. This suggests a linkage between maximum canopy size
and final biomass. However, the observed spread in the data indicates that TAGP is also influenced
by other factors, such as meteorological conditions, soil properties, and canopy light-use efficiency.

Figure 4.17: Correlation between LAIMAX and TAGP for green maize.

Subsequently, we applied the entire workflow to winter barley, using the same data processing, model
setup, and assimilation procedures to evaluate whether the approach is equally effective for a different
crop species. This is particularly relevant as, to date, very few studies have applied WOFOST to winter
barley, leaving its performance for this crop largely unexplored.
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Figure 4.18: Open-loop simulation results of WOFOST for winter barley in 2022.Top panels show the distributions of simulated
maximum leaf area index (LAIMAX, left) and total storage organ biomass at DOM (TWSO, right). Bottom panels display the
corresponding spatial distributions across all parcels within the study area. LAIMAX is dimensionless, while TWSO is expressed
in 𝑘𝑔/ℎ𝑎.

Figure 4.18 shows the open-loop simulation results (i.e., without data assimilation). Under the current
crop parameter settings, the simulated maximum leaf area index (LAIMAX) is consistently very high
across most parcels (8.0 or above), which shows a clear mismatch compared with the Sentinel-2 LAI
observations (see Figure 4.19). Meanwhile, the simulated total above-ground storage organ biomass
at harvest (TWSO) is considerably underestimated, averaging around 5, 000 𝑘𝑔/ℎ𝑎. For winter barley,
the final grain yield is represented by TWSO, as WOFOST classifies grains as storage organs.

Figure 4.19: Satellite-retrieved LAI time series for six winter barley parcels in the study area, from September 2021 to August
2022.

This discrepancy is most likely caused by inaccurate crop parameterization. A major challenge in sim-
ulating winter barley is the lack of a dedicated crop parameterization within the PCSE/WOFOST frame-
work. In the FPCUP project, winter barley was modeled by reusing the spring barley parameter set
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with only the sowing date adjusted, which is clearly insufficient and leads to unrealistic crop dynamics.
As a result, our initial open-loop simulations failed to reproduce a complete phenological development
cycle for winter barley. To address this issue, we contacted experts at Wageningen University Re-
search for support. Fortunately, their team had recently completed a comprehensive calibration of
phenological parameters for major European crops, and we were able to incorporate the newly cali-
brated values for TSUM1, TSUM2, DLO, VERNSAT, DLC, and VERBASE. However, for several other
key parameters controlling canopy development and senescence, such as the specific leaf area table
(SLATB), leaf lifespan (SPAN), and assimilate partitioning coefficients, we adapted values from winter
wheat due to the lack of winter barley–specific data. This mixed parameterization approach is likely the
main reason for the discrepancies observed in the open-loop simulations, especially the overestimated
LAI. We tested multiple parameter modifications to improve the simulation accuracy, but none of these
adjustments yielded satisfactory results. Therefore, we skipped this step and explored whether data
assimilation of satellite-derived variables could compensate for structural parameter uncertainties and
correct the trajectory of crop state estimates during the growing season.

Figure 4.20: EnKF-assimilated WOFOST time series for one winter barley parcel in the study area (52.9198∘N, 6.3772∘E).
The red line is the EnKF ensemble mean; grey shading denotes the ensemble spread. Panels (left to right, top to bottom):
development stage (–), LAI (m2m−2; blue dots are assimilated Sentinel-2 observations), total above-ground biomass TAGP
(kg ha−1), total storage organ biomass TWSO (kg ha−1; i.e., grain yield), leaf biomassWL (kg ha−1), stem biomassWS (kg ha−1),
root biomass WR (kg ha−1), transpiration rate TRA (cmd−1), rooting depth RD (cm), and root-zone soil moisture 𝜃 (cm3 cm−3).
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Figure 4.20 presents the evolution of key WOFOST state variables for winter barley under the EnKF
assimilation framework during the 2022 growing season for one representative location. Compared
with the open-loop simulations, the data assimilation significantly improves the model’s agreement with
remote sensing observations and reduces uncertainty in the estimated crop states. First, for LAI (top-
right panel), the open-loop simulations largely overestimated peak canopy development, producing
unrealistically high LAIMAX values (> 7.5), which deviated strongly from Sentinel-2 observations. Af-
ter assimilation, the LAI trajectory aligns much more closely with the satellite-derived values throughout
the growing season. Moreover, the stepwise adjustments visible at the observation dates, particularly
during the vegetative and peak-growth phases, clearly demonstrate the corrective influence of the as-
similated measurements on the model trajectory. This indicates that the EnKF successfully constrains
canopy dynamics using Sentinel-2 observations, preventing early-season LAI overshoot. Second, the
improved LAI estimates propagate to other biomass components. The total above-ground biomass
(TAGP) and storage organ biomass (TWSO, i.e., grain yield) show better consistency with expected
winter barley growth patterns after assimilation. In this study, the harvest date of winter barley was set
to 10 July 2022. This decision was based on agricultural news reports on the local harvest period and
the simulated growth curves of TWSO. Around this date, TWSO in most fields reached its peak and
then started to decline, indicating that the crop had entered the maturity stage. Therefore, selecting
this date as the harvest time is both reasonable and representative. While the open-loop underesti-
mated final TWSO (< 5, 000 𝑘𝑔/ℎ𝑎), the assimilation-corrected simulations increase the mean TWSO
toward more realistic levels (7, 000–7, 500 𝑘𝑔/ℎ𝑎), indicating a more accurate representation of assim-
ilate allocation to grains. Finally, the EnKF reduces the ensemble spread (gray shading) for most state
variables, especially LAI and TAGP, implying increased confidence in model predictions.

Overall, these results provide strong support for the modeling framework: even under imperfect crop
parameterization, assimilating Sentinel-2 LAI via EnKF confers a robust corrective effect, improving
canopy and yield simulations while reducing predictive uncertainty relative to the open loop.

4.2. Results of Workflow Testing: Sensitivity Analysis

4.2.1. Sensitivity to Observation Uncertainty

Section 3.2.1 introduces 5 scenarios with different uncertainty strategies. For each scenario, we report
the mean EnKF LAI trajectory (red), the full ensemble (gray), and the corresponding observations with
±1𝜎 (blue) in Fig. 4.21. As scalar metrics we extract LAI at harvest and TAGP at harvest.

Figure 4.21 presents the temporal evolution of LAI under different assimilation scenarios (S1 - S5).
For this experimental site, the 10 × 10 window is entirely located within the field. A clear dependence
on the window size is observed. When the window size is small (e.g. S5, window = 1), the analysis
is strongly influenced by noisy single-pixel observations. This leads to abrupt adjustments during the
growing season and an overall underestimation of LAI in the later stages, reflecting the amplified rep-
resentativeness error. In contrast, a large window (S3, window = 10) over-smooths the observations,
thereby attenuating the peak LAI and reducing the impact of assimilation. Intermediate window sizes
(S1: 5, S4: 3) provide a balanced performance: the model trajectories closely follow the observations
while maintaining realistic ensemble variability. This indicates that moderate spatial averaging can ef-
fectively suppress random noise while preserving local signals. Furthermore, applying inflation (S2,
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Figure 4.21: LAI trajectory under 5 different observation uncertainty scenarios.
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window = 5 with inflation factor = 2) enhances the impact of the observations by increasing ensemble
spread, resulting in an improved fit, especially around the LAI peak. However, excessive inflation may
risk overfitting to noisy observations.

Table 4.1 further complements the temporal patterns in Figure 4.21, providing a quantitative assess-
ment of how window size and inflation affect the final yield estimates. When the window is too small
(e.g., S5, window = 1), TAGP at harvest is markedly underestimated (11.18 𝑡𝑜𝑛𝑠/ℎ𝑎), consistent with
the noisy single-pixel influence and late-season underestimation of LAI observed in Figure 4.21. A large
window (S3, window = 10) attenuates the LAI peak and slightly reduces TAGP relative to intermediate
windows. By contrast, moderate window sizes (S1: 5; S4: 3) achieve a balanced performance, produc-
ing harvest yields in the range of 11.47–11.98 𝑡𝑜𝑛𝑠/ℎ𝑎, while maintaining realistic ensemble variability.
Applying inflation (S2, window = 5 with inflation factor = 2) further enhances the impact of observations,
raising TAGP to 12.05 𝑡𝑜𝑛𝑠/ℎ𝑎, indicating that modest inflation can improve yield estimates, particularly
around the LAI peak.

Table 4.1: Sensitivity of harvest metrics to LAI observation uncertainty.

Scenario LAI at harvest TAGP at harvest (t ha−1)
S1: window size = 5 1.31 11.82
S2: window size = 5, inflation = 2 1.45 12.05
S3: window size = 10 1.30 11.98
S4: window size = 3 1.21 11.47
S5: window size =1 1.21 11.18

In summary, small windows amplify noise, large windows dilute the observational signal, whilemoderate
window sizes (3-5) yield the most consistent and physically realistic assimilation outcomes. Inflation
can further improve performance, but requires careful tuning to avoid over-adjustment.

4.2.2. Sensitivity to Number of Observations

We conducted the sensitivity experiment at all sites; Fig. 4.22 displays four representative cases. Two
consistent patterns emerge. First, LAI and TAGP respond coherently to assimilation: corrections ap-
plied to LAI propagate to TAGP, although the response in TAGP is typically attenuated in magnitude.
Second, increasing the number of assimilated observations generally reduces the ensemble spread
(±1𝜎) for both variables, with the largest reduction occurring from the first to about the third–fourth
observation. We also observed that, the second observation introduces larger uncertainty. This is
possibly because it falls at a phenological breakpoint; the large observed background discrepancy
(𝑦𝑡−𝐻𝑥𝑓𝑡 ) and the high obeservation quality on that date lead the assimilation to assign greater weight
to it, producing a strong correction to LAI that propagates to TAGP; meanwhile, this strong increment
pushes the ensemble into a more sensitive (nonlinear) region of state space, so that, when propagated
to harvest, the uncertainty (spread) increases for some fields.
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Figure 4.22: Stand derivation of LAI and TAGP at harvest when assimilated with different numbers of observations.

We further examined how the timing of observations shapes the assimilation outcome. Updates ap-
plied near phenological breakpoints, most notably Aug 13 produce strong corrections. Short inter-
observation gaps (Aug 10 ,Aug 13; ∼3 d) can amplify the effective influence when temporally correlated
retrieval errors are treated as independent, thereby over-weighting closely spaced pairs and, for some
fields, even increasing the harvest-time spread. Conversely, longer gaps (Aug 13, Aug 25; ∼12 d) al-
low forecast uncertainty to accumulate, enlarging the background covariance and thus the Kalman gain

𝐾𝑡 = 𝑃𝑓𝑡 𝐻⊤ (𝐻𝑃𝑓𝑡 𝐻⊤ + 𝑅𝑡)
−1
, again leading to strong updates. Finally, very late-season observations

tend to sample senescent canopies and can bias LAI (and hence TAGP) downward if heavily weighted.
These patterns suggest prioritizing 3–4 well-placed dates (early growth, peak LAI, early senescence),
down-weighting short-interval pairs (e.g., by thinning or inflating 𝑅 as a function of Δ𝑡), and inflating 𝑅
or terminating assimilation within ∼40-50 d of harvest.

In conclusion, we assessed how the number, spacing and timing of Sentinel-2 LAI observations shape
the EnKF analysis and harvest-time uncertainty for green maize. Across sites, LAI and TAGP respond
coherently to assimilation, with TAGP exhibiting a moderate amplitude. Observation dates near pheno-
logical breakpoints (e.g., July 24 and Aug 25) produce large observed-background discrepancies and
strong analysis increments. Very late-season dates tend to pull the mean downward as they sample
senescent canopies. Short-interval pairs (e.g., Aug 10 to 13) carry temporally correlated retrieval errors
and can be effectively over-weighted if treated as independent, whereas longer gaps (e.g., Aug 13 to 25)
allow forecast variance to grow and thus increase the gain—both mechanisms contributing to stronger
updates. Taken together, these results support a compact design with 3 to 4 well-placed dates (rapid
growth, peak LAI, early senescence), a preferred spacing of 10 to 21 d, adaptive 𝑅 based on pixel vari-
ance/QA, reduced weight or omission of very late-season dates, and thinning/superobservation or Δ𝑡–
dependent inflation of 𝑅 for closely spaced pairs to limit spread growth while retaining high-information
observations.
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Figure 4.23: Stand derivation of LAI and TAGP at harvest against the observation dates

The sensitivity analysis presented above focused on maize. However, due to cloud contamination, only
six valid observations were available during the growing season, which limited the clarity of the results.
To address this limitation, the experiment was extended to winter barley. By relaxing the cloud cover
filter to 50%, we were able to include a greater number of observations and thereby obtain a more
reliable assessment of the sensitivity to observation frequency. As a result, we got 22 observations in
total.

Figure 4.24: Sensitivity of winter barley data assimilation results to the number of assimilated Sentinel-2 observations. Top row:
LAI trajectories with ±1σ uncertainty; bottom row: simulated total above-ground dry matter allocated to storage organs (TWSO).

Figure 4.24 presents the sensitivity of winter barley assimilation results to the number of assimilated
observations at four locations. Two main patterns can be identified. First, the spread of simulated
LAI trajectories decreases markedly as the number of observations increases, particularly beyond 15
observations, indicating that additional data help to better constrain canopy dynamics. Second, in con-
trast to LAI, the predicted TWSO does not converge but instead exhibits persistent fluctuations across
observation scenarios. This can be explained by the fact that yield formation integrates uncertainties
over the entire growing season, making it highly sensitive to small deviations in LAI dynamics, es-
pecially during the reproductive stages. Consequently, while additional observations reduce canopy
uncertainty, they also propagate variability into biomass allocation and final yield estimates.
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Figure 4.25: Time series of LAI and TWSO for winter barley as simulated by WOFOST with EnKF assimilation.

When examining the time series of TWSO, it becomes evident that the 15th observation coincides
with the onset of storage organ formation, at which point TWSO begins to accumulate from zero (see
Figure 4.25). This timing is critical, as prior to this stage assimilation adjustments primarily affect veg-
etative growth, whereas after the reproductive transition even small differences in LAI trajectories are
propagated into biomass partitioning and yield formation. Consequently, while the spread in LAI de-
creases beyond 15 observations, the variability in TWSO estimates increases, reflecting the amplified
sensitivity of yield prediction during the grain-filling stage.

The sensitivity experiments demonstrate that the number and timing of assimilated observations exert
distinct influences on crop-state estimation. For LAI, increasing the number of observations gradually
reduces the spread of simulated trajectories, particularly beyond approximately 15 observations in the
case of winter barley. This convergence indicates that additional observations help to constrain canopy
dynamics, especially during the peak and senescence stages. However, for TWSO, no comparable
convergence is observed. Instead, yield estimates continue to fluctuate as more observations are
added. This divergence can be explained by the fact that yield formation integrates assimilation effects
over the entire growing season. Once storage organ formation begins, even small deviations in canopy
dynamics are amplified and translated into variability in assimilate partitioning and final yield, resulting
in persistent fluctuations in TWSO predictions.

Equally important is the timing of observations. During the vegetative phase, when TWSO remains
zero, additional observations mainly improve LAI estimates but exert limited influence on yield. In
contrast, once the reproductive transition is reached and storage organ accumulation begins, assimi-
lation has a direct impact on yield formation. Observations during this critical window strongly shape
the trajectory of TWSO but also increase uncertainty, highlighting the dual role of timing in enhancing



4.2. Results of Workflow Testing: Sensitivity Analysis 55

prediction skill and propagating variability.

Overall, these findings suggest that while the number of assimilated observations contributes to re-
ducing canopy uncertainty, the effectiveness of assimilation for yield prediction is governed more by
observation timing than by sheer data volume. High-quality observations during canopy expansion,
peak growth, and the onset of grain filling are therefore far more valuable than a greater quantity of
observations indiscriminately distributed across the season. This underscores the importance of strate-
gically designing assimilation schemes that balance observation number with phenological relevance
to achieve robust improvements in both canopy and yield prediction.

4.2.3. Sensitivity to Assimilated Variables

Theoretically, LAI, CCC, and CWC all provide physiological insights into crop development, but they
affect the TAGP differently within the WOFOST model framework. LAI directly determines the light
interception capacity, serving as the primary driver of gross assimilation. CCC is associated with pho-
tosynthetic efficiency, yet it does not directly govern biomass accumulation without changes in canopy
structure. CWCpeaks generally coincide with LAI, with both showing amarked decline frommid-August
to October, reflecting canopy senescence and the progressive loss of water content during maturation
and harvest. Therfore, they have different effects on crop yield. Figure 4.26illustrate the distribution of
harvest TAGP across all parcels under different assimilation scenarios.

Figure 4.26: Distribution histogram of overall TAGP at harvest under different assimilation scenarios.

Without assimilation (Open Loop), TAGP is substantially underestimated, with a mean of 9.93𝑡𝑜𝑛𝑠/ℎ𝑎,
and the distribution is narrow and left-skewed. We also reported a similar pattern in Section 4.1.3,
where the open loop underestimated LAI compared to satellite-retrieved observations. This suggests
that the model is not optimal. But data assimilation effectively corrected this underestimation no matter
which one has been assimilated. In particular, LAI assimilation produced the most “normal” distribution
shape, centered within a reasonable range, with the mean increased to 13.56 𝑡𝑜𝑛𝑠/ℎ𝑎, indicating a
robust balance between model and observations. While CCC assimilation achieved the highest mean
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Figure 4.27: TAGP trajectory for six sites under different assimilation scenarios.

yield (14.78 𝑡𝑜𝑛𝑠/ℎ𝑎), its distribution was more dispersed, suggesting increased uncertainty. CWC
assimilation showed only limited improvements, raising the mean to 11.79 𝑡𝑜𝑛𝑠/ℎ𝑎. This discrepancy
can be attributed to the varying degrees of coupling between the assimilated variables and crop growth.
LAI, as a direct measure of photosynthetically active area, is strongly related to TAGP accumulation; as-
similating LAI therefore effectively corrects growth trajectories and results in a realistic yield distribution.
In contrast, CCC and CWC primarily capture canopy pigment content and water status, respectively,
which aremore sensitive to nutrient availability and short-term environmental fluctuations. Their weaker
coupling to biomass accumulation explains the more dispersed distributions or limited improvements
in TAGP estimates.

Figure 4.27 illustrates the impact of different assimilation schemes on TAGP dynamics. Across all sites,
the open-loop simulations consistently underestimated TAGP in the late growing season. In contrast,
LAI assimilation effectively corrected this bias, producing smooth TAGP trajectories that aligned well
with expected harvest levels, demonstrating the most stable and reliable performance. CCC assim-
ilation, however, occasionally resulted in excessive growth or oscillations at certain sites, likely due
to its sensitivity to nitrogen dynamics and leaf senescence. CWC assimilation provided only limited
constraints, often underestimating TAGP toward the end of the season. Overall, LAI emerges as the
most robust variable for constraining biomass accumulation.
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In conclusion, DA not only corrected the systematic underestimation of crop growth but also revealed
that LAI assimilation provides the most standard and stable outcomes among the tested observation
types.

4.3. Results of Workflow Validation
For validation, we used official agricultural statistics provided by Statistics Netherlands (CBS) through
the StatLine open data portal (dataset code: 85636ENG, Arable crops; production, region). This
dataset contains long-term records (1994–2024, with preliminary estimates for 2025) of harvested area,
crop yields, and total production for major arable crops, including cereals, potatoes, and sugar beet,
at both national and provincial levels. The statistics are compiled based on farm surveys and expert
assessments, and are annually updated and validated by CBS. Given its broad coverage and high
reliability, this dataset provides an authoritative benchmark for evaluating our model-based estimates
of crop productivity. The recorded statistics are reported as fresh weight, whereas WOFOST provides
crop yields in dry weight. Therefore, we converted the reported data accordingly, as shown in Table 4.2

Table 4.2: Conversion of CBS reported fresh weight to dry weight for green maize and winter barley in Drenthe, 2022.

Green Maize Winter Barley
Yield variable TAGP TWSO
Fresh weight (𝑡𝑜𝑛/ℎ𝑎) 45.7 8.4
Dry matter ratio 0.3 0.84
Dry weight (𝑡𝑜𝑛/ℎ𝑎) 13.71 7.06

The yield estimates of green maize derived from the data assimilation framework showed a substantial
improvement compared to the open-loop simulation when validated against independent statistical yield
data (13.71 t ha−1). As shown in Table 4.3, the open-loop model significantly underestimated crop yield,
with a mean bias of −3.78 t ha−1 (−27.6%), an RMSE of 3.89 t ha−1, and a Z-score of −4.18, indicating
a strong systematic underestimation and a statistically significant deviation from the observed mean.
After assimilating satellite-derived canopy variables, the model bias was almost eliminated, decreasing
to−0.11 t ha−1 (−0.81%), while the RMSE dropped to 0.99 t ha−1, corresponding to a∼74.5% reduction
in overall error. The Z-score was also markedly reduced to −0.11, demonstrating that the assimilated
yield estimates were statistically consistent with the independent reference data.

Table 4.3: Validation of simulated green maize yields against independent statistical data (13.71 t ha−1).

Bias (t ha−1) Relative Bias (%) Z-score RMSE (t ha−1)
Open-loop −3.78 −27.6 −4.18 3.89
Assimilated −0.11 −0.81 −0.11 0.99

These results highlight the effectiveness of the data assimilation approach in correcting systematic
errors and improving model accuracy. The reduction in relative bias from −27.6% to −0.8% and the
74.5% decrease in RMSE clearly indicate that the assimilation significantly enhanced the predictive
performance of the WOFOST model. The large reduction in |𝑍|-score (from 4.18 to 0.11) further con-
firms that the assimilated yield estimates fall within one standard deviation of the observed value, un-
derscoring the improved reliability and realism of the yield simulation. Overall, the preceding results
demonstrated that TAGP in the open-loop simulation was substantially underestimated, indicating that
the model failed to capture the actual growth dynamics. With data assimilation, and particularly LAI
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assimilation, the predictions were markedly improved, yielding harvest estimates close to statistical
references. This confirms that integrating satellite-derived LAI into WOFOST effectively corrects sys-
tematic biases and enhances the reliability of yield predictions.



5
Discussion

5.1. Key Findings
This thesis explored the integration of remotely sensed vegetation parameters into the WOFOST crop
growth model through data assimilation, with a particular focus on Sentinel-2 observations and the
EnKF. The results showed that the open-loop simulation systematically underestimated crop yield, in-
dicating that the process-based model alone struggled to capture actual crop dynamics under field
conditions. Assimilating satellite-derived LAI effectively corrected this bias, resulting in trajectories that
were agronomically consistent and harvest estimates that aligned well with statistical references. At the
same time, the spatial and temporal patterns revealed by assimilation confirmed that remote sensing
can provide meaningful corrections to model states when observations are available at critical growth
stages.

A comparison of different biophysical variables further demonstrated that LAI is the most effective
variable for assimilation, whereas CCC and CWC, under the current implementation, provided limited
additional information since they were indirectly constrained by LAI. The analysis also highlighted the
key role of observation quality and frequency, showing that assimilation benefits were most pronounced
when LAI observations were concentrated around the canopy expansion and peak phases. Despite
improvements, uncertainties remain, stemming from incomplete remote sensing observations, model
parameterization, and reliance on prior crop-type information.

Our results demonstrate that assimilating Sentinel-2 LAI observations into the WOFOST model using
the Ensemble Kalman Filter (EnKF) substantially improves the simulation of maize canopy development
and yield estimation. This finding is consistent with previous studies, for example, Guo et al., 2024,
who integrated UAV-derived LAI into WOFOST for summer maize and reported a significant reduction
in yield prediction errors, with RMSE decreasing from 413 to 132 𝑘𝑔/ℎ𝑎 in 2020 and from 392 to 215
kg∙ha�¹ in 2021. Similar to our study, they found that the EnKF effectively corrected LAI trajectories
and improved yield forecasts, even when crop parameterization was suboptimal. For winter barley,
fewer studies are available that explore LAI assimilation into process-based models. Consequently, our
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results provide new insights into the potential of integrating Sentinel-2 LAI within WOFOST for less-
studied crops. Overall, these comparisons confirm that EnKF-based assimilation provides a robust
corrective mechanism across different environments and crop types, while also highlighting the need
for improved crop parameterization and additional observational constraints for optimal performance.

Our assimilation experiments also highlight the intrinsic limitations of the WOFOST model in its open-
loop configuration. Without observational constraints, WOFOST tends to underestimate final yield for
both maize and winter barley, indicating structural limitations in the current crop parameterization and
assimilate allocation schemes. The successful integration of Sentinel-2 LAI through the EnKF demon-
strates that data assimilation can effectively compensate for these deficiencies by dynamically correct-
ing canopy trajectories and improving yield forecasts, even under imperfect model parameterization.
Moreover, our experiments incorporating additional biophysical variables, CCC and CWC, suggest
a promising direction for further model development. While LAI primarily constrains canopy structure,
CCC and CWC provide complementary information on photosynthetic capacity and water status, which
are not fully represented in WOFOST’s current formulation. The observed benefits from multi-variable
assimilation indicate that extending WOFOST to better capture these physiological processes, or cou-
pling it withmodels that explicitly simulate chlorophyll dynamics and canopywater balance, could further
enhance predictive skill and model robustness.

5.2. Limitations
Although the results of this study demonstrate that LAI-based data assimilation substantially improves
the accuracy of WOFOST simulations of crop growth and yield, several limitations remain. These limi-
tations primarily concern the reliance on prior information, methodological assumptions in assimilation,
and constraints of observational and validation data.

Firstly, this study relies on the BRP dataset, which provides detailed parcel boundaries and crop types
as critical prior knowledge for assimilation experiments. In the absence of such high-quality datasets,
the applicability of the framework becomesmore challenging. One alternative is to use remote sensing–
based crop classification to pre-identify crop types. Such classification exploits spectral and struc-
tural differences across crop growth stages and can partially substitute for prior databases. However,
this approach requires reliable training datasets and multi-temporal observations, making it data- and
resource-intensive. Another option is to directly fit remotely sensed LAI time series against crop-specific
growth trajectories, thereby inferring crop type from the shape of the LAI curve. While this avoids the
complexity of full-scale classification, it raises an important question: how many temporal observations
are sufficient to reliably distinguish crops, especially during the early growth stages? Sparse or poorly
timed observations may lead to ambiguity in crop identification. Thus, whether based on classification
or LAI trajectory fitting, crop identification methods require careful trade-offs among accuracy, data
availability, and computational cost.

Secondly, in this study, the assimilation of CCC and CWC was implemented by fixing Cw/Cab param-
eters, meaning that their estimates were largely driven by LAI dynamics. Essentially, CCC and CWC
assimilation did not provide fully independent observational constraints but rather acted as derivatives
of LAI. This dependence may limit the independent contribution of CCC and CWC in constraining crop
growth, thereby reducing the potential benefit of multi-variable assimilation. Future work should inves-
tigate approaches that directly assimilate remotely sensed CCC and CWC products instead of inferring
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them indirectly from LAI trajectories.

Thirdly, the performance of assimilation is also constrained by the availability and quality of observa-
tional and validation data. On the one hand, Sentinel-2 LAI time series are affected by cloud cover and
revisit cycles, leading to missing observations during critical growth stages. If more complete and con-
tinuous remote sensing observations were available, it would be possible to systematically investigate
how observation frequency and quantity influence assimilation performance, thereby informing future
data acquisition strategies. Moreover, LAI retrieval itself carries algorithmic uncertainties and satura-
tion effects, which inevitably propagate into the assimilation results. On the other hand, the CBS yield
statistics used for validation are only available at provincial averages, lacking the field-level resolution
needed to capture local heterogeneity.

5.3. Recommendations to Future Work and Applications
The findings of this study provide several recommendations for future research and practical applica-
tions. First, with respect to spatial aggregation, our experiments showed that moderate window sizes
(3-5 pixels) offer the best trade-off between suppressing random noise and retaining local signals. For
field-scale applications, we therefore recommend this range as a default choice, while future work may
explore adaptive approaches that dynamically adjust window size based on within-window variance
or by filtering out non-agricultural pixels using parcel boundaries. Second, the timing of observations
proved to be more important than their sheer number. Concentrating a limited number of acquisitions
(e.g., 4–6) during the critical growth stages, i.e., from stem elongation through tasseling and grain filling,
yielded the largest improvements in harvest prediction. This suggests that future designs should pri-
oritize observation timing relative to the harvest date when determining minimal observation schemes.
Third, the open-loop simulations revealed that default parameter configurations substantially underes-
timated biomass, highlighting the need for localized parameterization. We therefore recommend incor-
porating joint calibration, where remote sensing observations not only constrain state variables such as
LAI but also inform crop model parameters (e.g., photosynthetic efficiency, temperature thresholds).
Such an approach would yield parameter sets better tailored to local conditions. Fourth, the results
underscored the importance of remote sensing data quality: cloud contamination and noisy pixels can
destabilize assimilation, particularly with small windows. It is thus advisable to implement rigorous pre-
processing, including temporal filtering, gap-filling, and potentially multi-sensor fusion (e.g., Sentinel-2
and Landsat), before assimilation. Ensuring high-quality inputs should be considered a standard step
in any operational framework. Finally, when input meteorological data are incomplete, a combination
of multi-source gap-filling, bias correction, and uncertainty inflation provides a robust strategy. Short
gaps can be bridged with interpolation or nearby stations, medium gaps with bias-corrected reanal-
ysis data, and long gaps with full replacement accompanied by downgraded confidence. Within the
assimilation framework, inflating process noise during these periods reduces the risk of biased forc-
ing. Developing automated workflows that adjust gap-filling and uncertainty treatment according to gap
length represents a promising direction for future research.





6
Conclusion

This thesis has investigated the integration of satellite-derived biophysical parameters into a process-
based crop growth model to enhance field-scale yield prediction under real-world conditions. By as-
similating Sentinel-2–retrieved Leaf Area Index (LAI), Canopy Chlorophyll Content (CCC), and Canopy
Water Content (CWC) into the WOFOST model using the Ensemble Kalman Filter (EnKF), this work
addressed key limitations of conventional crop modeling, including uncertainties in parameterization,
incomplete representation of canopy dynamics, and reduced predictive robustness under heteroge-
neous field conditions.

The results demonstrate that assimilating LAI substantially improves the simulation of canopy devel-
opment and yield formation, reducing biomass biases and aligning predictions more closely with inde-
pendent statistical references. Specifically, for green maize, the assimilation framework reduced the
mean yield bias from −3.78 t ha−1 (−27.6%) in the open-loop simulation to −0.11 t ha−1 (−0.81%),
and lowered the RMSE from 3.89 t ha−1 to 0.99 t ha−1, representing a ∼74.5% reduction in overall
error. The Z-score improved from −4.18 to −0.11, indicating that the assimilated yield estimates were
statistically consistent with the independent reference value. These findings confirm the pivotal role of
canopy structural information in constraining process-based models and demonstrate the significant
potential of data assimilation to enhance yield prediction reliability. Although CCC and CWC assimila-
tion contributed less under the current implementation due to their dependence on fixed biochemical
coefficients, their inclusion provided valuable insights into the challenges of incorporating additional
physiological information and revealed the potential of multi-variable assimilation to enrich model con-
straints. Sensitivity analyses further underscored the importance of observation density, timing, and
uncertainty characterization. In particular, observation frequency and timing during the critical canopy
expansion and reproductive growth stages (DVS ≈ 0.4–1.0) were shown to exert the greatest influence
on assimilation performance, emphasizing the need for strategically designed observation campaigns
to maximize the impact of satellite-based model updates.

Beyond methodological advancement, this study contributes to the broader field of agro-hydrological
modeling by demonstrating the scalability and transferability of a satellite-assisted EnKF framework.
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The successful application to winter barley — a crop that has received relatively limited attention in
data assimilation research — extends the utility of WOFOST beyond its conventional focus on major
cereals and showcases the framework’s adaptability to diverse cropping systems. The findings also
emphasize the importance of linking remote sensing observations with mechanistic modeling to bridge
the gap between empirical yield estimation and physiologically consistent simulation, thus providing
a more reliable foundation for precision agriculture, policy support, and food security planning under
changing climatic conditions.

Looking forward, several avenues merit further exploration. First, improving the retrieval algorithms
and physical parameterization of CCC and CWC could enhance their independent informational value,
allowing for more effective multi-variable assimilation. Second, extending the framework to assimilate
multi-sensor datasets, including SAR- and thermal-derived variables, could provide complementary in-
formation on canopy structure and water status, reducing temporal gaps and observation uncertainty.
Finally, coupling assimilation-based crop models with decision-support systems could transform them
from diagnostic tools into operational platforms, enabling near-real-time forecasting, adaptive manage-
ment, and strategic planning across spatial and temporal scales. Collectively, these future efforts will
advance the integration of remote sensing and crop modeling, paving the way for more comprehensive,
resilient, and scalable agricultural monitoring systems.



7
Implication

7.1. Scientific and Methodological Implications
This study demonstrates the methodological feasibility of dynamically integrating remote sensing ob-
servations into a process-based crop growth model using data assimilation techniques. By assimilating
biophysical parameters such as LAI, CCC, and CWC into WOFOST through the Ensemble Kalman Fil-
ter, the analysis shows that systematic model underestimation in open-loop runs can be corrected, and
harvest predictions can be brought closer to reference statistics. This not only validates the practical
use of remote sensing–model fusion at the field scale but also highlights the methodological value of
state-variable assimilation in crop modeling.

The sensitivity experiments conducted in this study provide further insights into how observation de-
sign shapes assimilation performance. Results showed that moderate spatial aggregation (3–5 pixels)
achieved the best balance between reducing noise and preserving local signals. Likewise, the timing of
observations, particularly during the peak growth stages, was identified as a decisive factor in improving
yield prediction. These findings offer a set of empirically grounded guidelines that future researchers
can adopt when designing assimilation strategies. They also underscore the potential of extending the
framework beyond LAI to include other variables, provided that their retrieval accuracy and temporal
coverage are sufficient.

Finally, the study provides a basis for joint calibration approaches, where remote sensing observations
are not only used to update dynamic states but also to constrain crop model parameters such as photo-
synthetic efficiency or phenological thresholds. This points to a promising direction for advancing crop
modeling methodology, as parameter optimization through assimilation could significantly reduce local
bias and improve the transferability of models across regions and seasons.
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7.2. Practical Implications
For agricultural management, the improved accuracy of yield predictions has direct operational value.
Farmers and advisors can use mid-season estimates of biomass and harvest potential to adjust irriga-
tion scheduling, fertilizer application, and harvest planning. This is particularly important in precision
agriculture contexts, where decisions need to be tailored to individual fields rather than based on re-
gional averages. The study shows that with only a limited number of well-timed satellite acquisitions,
substantial improvements in predictive accuracy can be achieved, making this approach practical and
scalable in real-world farming systems.

For policymakers, the methodology provides a complementary tool to official statistics, which are
typically available only after harvest and at aggregated spatial scales. By delivering near-real-time
estimates of crop growth and yield at field to regional scales, the framework supports more agile
decision-making for food security assessments, subsidy distribution, and agricultural monitoring pro-
grams. Moreover, the integration of free and open satellite data such as Sentinel-2 ensures that the
approach remains cost-effective, which is crucial for public-sector adoption.

In addition, the framework has implications for the insurance and finance sectors. Yield-based in-
surance schemes often suffer from delays and inaccuracies in damage assessment. By assimilating
remote sensing data into crop models, insurers can obtain more accurate and timely estimates of ex-
pected yield losses, enabling faster and fairer compensation processes. This creates opportunities for
integrating Earth observation–based assimilation frameworks into financial risk management tools.

7.3. Societal and Operational Implications
At a broader societal level, the study highlights the potential of assimilation-based crop monitoring
systems to strengthen food security monitoring. In regions with limited ground survey capacity, the
reliance on freely available satellite datamakes the approach attractive for scaling up to national or even
global monitoring programs. Such systems can provide governments and international organizations
with near-real-time, spatially explicit yield estimates, thereby improving early warning systems for food
shortages.

The findings are particularly relevant in the context of climate change, where weather variability and
extreme events increasingly threaten crop productivity. By dynamically integrating observations with
process-based models, the framework enhances the ability to monitor how crops respond to droughts,
heatwaves, or excessive rainfall. This can inform adaptation strategies, such as selecting more resilient
varieties or adjusting planting schedules, and ultimately help build climate-resilient agricultural systems.

Finally, the methodological insights from this study can inform the design of future operational plat-
forms. For instance, automated workflows that combine multi-source satellite data, adaptive obser-
vation strategies, and uncertainty quantification could be developed into decision-support systems for
agriculture. Such platforms would not only benefit farmers and policymakers but also contribute to in-
ternational efforts aimed at ensuring global food security. By bridging methodological advances with
operational needs, the study thus lays the groundwork for both academic innovation and practical de-
ployment.



Appendix A

Table 7.1: Detailed descriptions and values of key crop parameters for green maize in the WOFOST model.

No. Parameter Description Unit Value
Photosynthesis and Growth
1 AMAXTB Maximum assimilation rate vs. development stage 𝜇mol m−2 s−1 [0.0,70.0,...]
2 SLATB Specific leaf area vs. development stage ha kg−1 [0.0,0.0026,...]
3 SPAN Leaf life span days 33.0
4 RGRLAI Maximum relative growth rate of LAI day−1 0.0294
5 TMPFTB Temperature response of photosynthesis - [0.0,0.01,...,42.0,0.56]
Phenology
6 TSUMEM Temperature sum from sowing to emergence ∘C d 110
7 TSUM1 Temperature sum from emergence to anthesis ∘C d 695
8 TSUM2 Temperature sum from anthesis to maturity ∘C d 800
9 DVSEND Development stage at maturity - 2.0
10 TBASE Base temperature for development ∘C 10.0
Partitioning of Assimilates
11 FLTB Fraction to leaves vs. development stage - [0.0,0.62,...]
12 FSTB Fraction to stems vs. development stage - [0.0,0.38,...]
13 FRTB Fraction to roots vs. development stage - [0.0,0.40,...]
14 FOTB Fraction to storage organs vs. development stage - [0.95,0.0,...]
15 CVL Conversion efficiency of assimilates to leaves - 0.68
16 CVS Conversion efficiency of assimilates to stems - 0.658
17 CVR Conversion efficiency of assimilates to roots - 0.69
18 CVO Conversion efficiency of assimilates to storage organs - 0.671
Initial Conditions
19 TDWI Initial total dry matter weight g m−2 50.0
20 RDI Initial rooting depth cm 10.0

sentinel-2 image of the whole AOI

67



68 7. Implication

Table 7.2: List of Sentinel-2 images used in this study.

Acquisition Date Satellite Tile ID Crop Type
2021-09-04 S2B T32ULD Barley
2021-10-04 S2B T32ULD Barley
2021-10-09 S2A T32ULD Barley
2021-10-24 S2B T32ULD Barley
2021-12-21 S2A T32ULD Barley
2021-12-26 S2B T32ULD Barley
2022-01-10 S2A T31UGU Barley
2022-02-26 S2A T31UFU Barley
2022-03-03 S2A T32ULD Barley
2022-03-08 S2A T32ULD Barley
2022-03-11 S2A T32ULD Barley
2022-03-21 S2A T32ULD Barley
2022-03-23 S2A T32ULD Barley
2022-03-26 S2B T32ULD Barley
2022-04-20 S2A T32ULD Barley
2022-04-22 S2B T32ULD Barley
2022-05-02 S2B T31UGU Barley, Maize
2022-05-15 S2B T31UGU Barley, Maize
2022-06-16 S2A T32ULD Maize, Barley
2022-07-19 S2A T32ULD Maize, Barley
2022-07-27 S2A T32ULD Maize, Barley
2022-08-10 S2B T32ULD Maize
2022-08-13 S2B T32ULD Maize
2022-08-25 S2A T32ULD Maize
2022-09-12 S2B T32ULD Maize
2022-10-04 S2B T31ULD Maize
2022-10-09 S2B T32ULD Maize
2022-10-12 S2B T32ULD Maize
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