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a b s t r a c t 

In the last few years, the telecommunications scenario has experienced an increase in the volume of in- 

formation generated, as well as in the execution of malicious activities. In order to complement Intrusion 

Detection Systems (IDSs), data mining techniques have begun to play a fundamental role in data analysis. 

On the other hand, the presence of useless information and the amount of data generated by telecom- 

munication services (leading to a huge dimensional problem), can affect the performance of traditional 

IDSs. In this sense, a data preprocessing strategy is necessary to reduce data, but reducing data without 

affecting the accuracy of IDSs represents a challenge. In this paper, we propose a new data preprocessing 

strategy which reduces the number of features and instances in the training collection without greatly 

affecting the achieved accuracy of IDSs. Finally, our proposal is evaluated using four different rule-based 

classifiers, which are tested on real scan and backscatter data collected by a network telescope. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Cyber scanning (scan) has been used for a long time as a

method of discovering communication channels that can be ex-

ploited. The main objective is to scan as many listening ports as

possible and store information from those ones that are receptive

or useful for a specific purpose. In practice, several packets are sent

for different protocols and it is inferred which services are “listen-

ing” by the responses received or not received. This kind of net-

work reconnaissance represents a growing cyber security concern,

because it is the first stage of an intrusion attempt ( Bou-Harb, Deb-

babi, & Assi, 2014 ), which allows an attacker to locate a target and

subsequently exploit its vulnerable system. 

In order to remain hidden, the attackers falsify the source ad-

dress and source port of the packets that make up the attack.

Servers that receive such packets after processing the request send

a response to the false address. This activity is known as backscat-

ter. Backscatter traffic can be easily mistaken for a scan, because

there can be enough falsified addresses that fall within the net-

work space, such that replies from the victim will make it seem
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ike a scanner, i.e. the victim sends unsolicited packets to hosts

hat may not even exist ( Moore, Shannon, Brown, Voelker, & Sav-

ge, 2006 ). 

Nowadays, the volume of data generated from using telecom-

unication services is considerably large, causing Big Data chal-

enges in the network traffic ( Zuech, Khoshgoftaar, & Wald, 2015 ).

or example, a recent research shows that in the second quarter of

he year 2016, a record-setting 21 attacks measured more than 30

illion packets per second (Mpps). 

Also, each packet can have tens of features, which can lead to

 high dimensionality problem caused by too many unnecessary

eatures for the intrusion detection task. Additionally, events rep-

esenting attacks, executed by malicious users known as intruders,

ause millions in losses and damage the prestige of the affected

ompanies ( Yar, 2013 ). In order to analyze such volume of data and

uickly detect which events are associated to a specific attack, it is

ecessary to use an intrusion detection system (IDS) ( Liao, Lin, Lin,

 Tung, 2013 ). An IDS can be a software or device used to monitor

he system or activities in a telecommunication network in order

o detect policy violations or malicious activities, and consequently

enerates reports to the management system. However, due to the

igh amount of data required for analysis, the performance of such

ystems can be affected, and in some cases they may exhaust the

vailable random access memory (RAM) and stop working. 
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In literature, there are two main approaches based on data min-

ng for the intrusion detection problem: (1) the supervised ap-

roach (signature-based IDS), which requires a supervised train-

ng set T to create a classification model ( Kotsiantis, 2007 ), and

2) the unsupervised approach (anomaly-based IDS), where there

s no previous knowledge ( Ghahramani, 2004 ). Our proposal is fo-

used on improving the performance of the supervised approach,

here the signature-based IDSs are one of the most used. 

From the standpoint of classification, the main objective of

uilding a signature-based IDS is to train a rule-based clas-

ifier that can categorize data as normal or attacks ( Herrera-

emenets, Pérez-García, Gago-Alonso, & Hernández-León, 2017 ). In

ntrusion detection scenarios, the training set reduction could be

seful to minimize the consumption of computer resources, such

s RAM, allowing to apply computationally expensive algorithms. 

Obviously, data reduction does result in some loss of data dur-

ng the training phase ( Aggarwal, 2015 ). This fact results in some

oss of useful information, and therefore the classifier accuracy can

e affected during the classification phase. On the other hand, the

untime of data reduction strategies is usually high when they use

arge datasets. 

In this paper, we propose a novel data reduction strategy (DRS)

or improving the supervised classifiers performance. DRS com-

ines features reduction with instances reduction to obtain a re-

uced training set S ⊂ T , providing a high efficiency in the training

hase without greatly affecting the accuracy of classifiers. 

Additionally, we evaluate the performance of a set of rule-based

lassifiers (DTNB, PART, OneR and NNge) using S as the training set.

any works evaluate their proposals by applying cross-validation

ver a specific training dataset, or by using a testing dataset. If

e consider the characteristics of the intrusion detection scenar-

os, where data describing malicious activities can be modified in

rder to make the detection system fail; it would be very interest-

ng to see the performance of the classification models in a real

cenario, during a certain period of time. 

In our work, we try to simulate a real scenario. To do this,

e take a period of 24 h of real network data associated to scan

nd backscatter traffic. The classification models obtained after the

raining stage are evaluated at every hour. This gives us a more

recise idea of how these models behave in a real scenario. In ad-

ition, we show how our proposal increases the speed of the clas-

ifiers during the detection process, which is essential for real-time

etection. 

This paper is organized as follows. Related work about data re-

uction strategies is described in Section 2 . The proposed strategy

s introduced in Section 3 . In Section 4 , the experimental results

sing different classifiers are discussed. Also, a study case is pre-

ented, where the proposed strategy is used as a preprocessing

tep to improve the classifiers performance for scan and backscat-

er detection. Finally, our conclusions and future work are outlined

n Section 5 . 

. Related work 

Data reduction may be in terms of the number of rows

instances) or in terms of the number of columns (fea-

ures) ( Aggarwal, 2015 ). In this sense, three main approaches

ave been proposed: (1) feature selection ( Cheng, Cai, Zhang, Xu,

 Su, 2015; Ganapathi & Duraivelu, 2015; Xia, Fang, & Zhang,

014 ), (2) instance selection ( García, Luengo, & Herrera, 2015;

e Oliveira Moura, de Freitas, Cardoso, & Cavalcanti, 2014; Silva,

ouza, & Motta, 2016 ) and (3) hybrid, where feature selection and

nstance selection are combined ( Chen, Zhang, Jin, & Kim, 2014 ). 

The feature selection algorithms look up the most relevant fea-

ures of the dataset. In this way, only a subset of features from the

nderlying data is used in the analytical process. It facilitates the
nderstanding of the extracted patterns and increases the perfor-

ance of the training phase. 

Most of the proposals that reduce data in these scenarios use

nly one feature selection technique. In our opinion, these propos-

ls do not take advantage of the possibilities that the combination

f such techniques can offer, since different metrics could measure

ifferent information in the features. Therefore, each metric could

elect different features as a final result, with the same level of

ata representativeness. In this sense, our hypothesis is that a bet-

er management of these techniques could lead to a better selec-

ion of the final set of features. 

On the other hand, the presence of redundant or repetitive in-

ormation (represented as instances) in training dataset is common

n these scenarios. In our case, the goal is not to archive the infor-

ation, in which case, the duplicate instances would have a pos-

tive use. The duplication to which we refer is due to errors that

ccur as a result of poor data quality, often because the services

rovided are not integrated. The feature selection methods do not

llow addressing this problem. For this, it is necessary to use in-

tance selection algorithms. 

The instance selection (IS) algorithms obtain a reduced subset S

rom the original training set T , so that S does not contain superflu-

us instances. IS methods can either start with S = ∅ (incremental

ethod) or S = T (decremental method) ( Olvera-López, Carrasco-

choa, Martínez-Trinidad, & Kittler, 2010 ). Incremental methods

btain S by selecting instances from T ( Chou, Kuo, & Chang, 2006;

aicharoen & Lursinsap, 2005 ), while decremental ones obtain S by

eleting instances from T ( Wilson & Martinez, 20 0 0 ). 

According to the strategy used for selecting instances, the algo-

ithms can be divided into two groups: Wrapper and Filter meth-

ds ( Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, et al., 2010 ).

n Wrapper methods, the classifier is used in the selection process,

he instances which do not affect the classification accuracy are re-

oved from T . On the other hand, Filter methods are independent

rom the classifiers and the selection criterion is based on different

euristics. 

Some Filter methods use the clustering approach for instance

election ( Lumini & Nanni, 2006; Olvera-López, Carrasco-Ochoa, &

artínez-Trinidad, 2010 ). Clustering is performed by transforming

 into clusters, then the selected instances are defined as centers of

lusters. Filter methods end up being more efficient than Wrapper

ethods ( Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, et al.,

010 ). Moreover, since their selection criteria is not based on the

sed classifier, the achieved accuracy with S using different classi-

ers can be acceptable. 

In these scenarios, we can not say that instance selection is

ore advantageous than feature selection or vice versa. If only fea-

ure selection is applied, unnecessary information may remain in

he instances, and if only instance selection is applied, unrepre-

entative features of the dataset may remain. A solution to this

roblem has been the proposal of hybrid strategies, which com-

ine both techniques mentioned above. 

In Chen et al. (2014) a hybrid method for intrusion detection is

roposed. In this case, the feature selection process is performed

y the OneR ( Holte, 1993 ) algorithm. Then, a clustering method of

ffinity Propagation ( Frey & Dueck, 2007 ) (AP) is used for the in-

tance selection process. The problem here is that the AP clustering

uns out of memory for 60 0 0 training data instances. Therefore, in

rder to improve the performance and scalability of the method,

hey have implemented a distributed solution for AP clustering us-

ng MapReduce. For a proper performance, such method requires

o use MapReduce with 8 nodes; also each node is equipped with

 quad core at 2.5 GHz CPU with 4 GB RAM. If we take into account

he resources required to process 12872 instances (few data com-

ared to a real scenario), this makes its proposal somewhat expen-

ive in terms of computational resources. In this sense, they use a
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Fig. 1. Scheme of data reduction strategy. 
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network traffic dataset of 12872 instances for training and another

115848 instances for detection, which represents a small dataset

for this scenario; also, it is not possible to observe its scalability

with larger datasets, more characteristic of intrusion detection sce-

narios. 

However, the main problem of the instance selection methods

is the high runtime when large datasets are processed, making

their application unfeasible in some cases, and directly affecting

the hybrid approaches. In this sense, we propose a new hybrid ap-

proach including a feature selection step, where different metrics

are combined to select the final feature set, and a decremental Fil-

ter method for instance selection, which incorporates a fast step to

reduce the number of instances based on a prior relabeling pro-

cess. This reduces the training collection without greatly affecting

the accuracy of the classifier, with low runtime. 

3. Data reduction strategy 

In this section, we introduce our data reduction strategy (DRS).

As shown in Fig. 1 , DRS comprises three main processes: feature

selection, relabeling, and instance reduction. 

First, the feature selection (FS) process is performed in order

to reduce the dimensionality of the training set. Following our hy-

pothesis mentioned above, it was taken into account that the se-

lected methods will use different measures to estimate the correla-

tion between an attribute and a class, indicating the relevance of a

feature to the class. After a study, we determined that the most

commonly used measures can be grouped into three categories:

entropy based (Information Gain, Gain Ratio, and Symmetric Un-

certainty), statistical based (Chi-square), and instance based (Relief

and ReliefF) ( Liu et al., 2016 ). 

In this sense, we use three different algorithms (one represen-

tative from each category): ReliefF (RF), Chi-squared (CHI) Ranking

Filter and Information Gain (IG) Ranking Filter. Additionally, CHI

and IG algorithms have been reported in some comparative stud-

ies as the most effective methods of feature selection for classifi-

cation ( Forman, 2003 ). Thus, our strategy selects features based on

three different measures. This ensures that a single measure is not

sufficient to rule out a feature. 

A FS algorithm A obtain a set of scores P A , by assigning a score

p f ∈ P A to each feature f according to its relevance. In this sense,

when A gets P , its score mean p is computed. Later, if a fea-
A A 
ure f satisfies p f > p A , then f is assigned to a feature set F A . It

s important to note that the three algorithms are executed in par-

llel, which allows to gain more efficiency. Next, the features set

 = F RF ∪ F CHI ∪ F IG is selected as the most representative set. 

After selecting the final features set F , the relabeling process is

arried out to generate new labels for the selected features values.

or dimensionality reduction, the columns representing all features

 �∈ F are removed from T , and consequently a reduced set S is ob-

ained. 

The high volume of data generated in these scenarios require

fficient processing strategies. During the relabeling process, con-

inuous features are discretized. This allows us to map data from

 wide range of numerical values to a very small subset of dis-

rete values. There are two approaches widely used to perform dis-

retization tasks: the supervised and unsupervised one. 

Supervised discretization methods make intensive use of the

lass to partition continuous features, while unsupervised dis-

retization methods are class independent. Failure to take into ac-

ount class information makes unsupervised discretization meth-

ds significantly faster than supervised ones ( Joi ̧t a, 2010 ). Note,

hat in malicious activities detection scenarios there may be dif-

erent types of classes, just to give an example, in the KDD99

ataset ( Olusola, Oladele, & Abosede, 2010 ) there are 23 different

ypes of classes (attacks). 

There are several comparative studies where the k -means al-

orithm is used as an unsupervised discretization method ( Dash,

aramguru, & Dash, 2011; Maslove, Podchiyska, & Lowe, 2012; Van-

ucci & Colla, 2004 ). In these studies it is concluded that the pro-

ess of discretization using k -means produces results more consis-

ent and favorable than other unsupervised methods. In addition,

 -means is an algorithm that uses a minimal quadratic error parti-

ioning to generate an arbitrary number of partitions reflecting the

riginal distribution of the feature, which makes the results simi-

ar to those achieved by the supervised discretization methods. In

rder to gain efficiency, we use the k -means algorithm to generate

he labels during the label generation step. 

The purpose of applying a clustering algorithm as part of the

elabeling process is to search for similar values and group them

nto clusters, such that the distance between values within a clus-

er is as small as possible, and the distance between clusters is as

arge as possible. In this sense, given an integer k , the algorithm is

mplemented in four steps: 

1. Split the objects in k nonempty subsets. 

2. Compute the seed as the centroid (middle point) of the cluster.

3. Assign each object to the closest cluster. 

4. When it is not possible to do more assignments, go to step 2. 

For each selected numerical feature f i , the k -means algorithm

s executed over the set of values taken by f i in S , denoted by V i .

ach of the obtained clusters contains a range of numerical val-

es, which are represented by a unique numerical label. The use

f these clusters allow us to cover feature values that do not exist

n S and are included in the classification stage. 

For example, suppose that in the training phase a feature f 1 
akes values in the set V 1 = { 0, 0.2, 0.3, 0.6, 0.7, 1.0}, and during

he relabeling process, clusters c 1 = [ 0, 0.2, 0.3, 0.6] and c 2 = [ 0.7,

.0] are obtained. Then, in the classification stage, it is required to

lassify a new transaction, in which the feature f 1 takes the value

.9 �∈ V 1 , but 0.9 is in the range of c 2 , therefore it can be classified.

After label generation, the relabeling step is performed. Here,

he numeric features values are replaced by their corresponding

abels, and a unique numerical label is assigned for each non-

umerical feature value. 

Finally, the instance reduction process is performed over the

elabeled training collection. Here, duplicate removing step, as its

ame suggests, removes duplicate instances from S . Notice that an
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Table 1 

Comparative results using KDD99 dataset. 

Classifier TP FP Acc. Strategy 

OneR 0889 0016 9073 baseline 

0864 0018 8884 DRS 

0858 0020 8816 ( Chen et al., 2014 ) 

DTNB 0911 0 0 05 9274 baseline 

0892 0 0 06 9097 DRS 

0888 0 0 06 9091 ( Chen et al., 2014 ) 

NNge 0.917 0018 9298 baseline 

0901 0019 9104 DRS 

0895 0020 9082 ( Chen et al., 2014 ) 

PART 0.915 0 0 06 9307 baseline 

0901 0 0 08 9192 DRS 

0897 0 0 09 9155 ( Chen et al., 2014 ) 
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nstance is a duplicate instance if there is at least another instance

ith the same feature values and class. The result is a reduced

raining collection. This collection is used by a classifier to build

 classification model. 

. Experimentation 

In this section, the classifiers used to evaluate our proposal are

ntroduced. Next, DRS performance is evaluated and compared re-

arding another hybrid strategy using a benchmark dataset. Finally,

 study case is presented, showing the application of DRS in real

cenarios and its advantages. Note that DRS was performed in a

ingle PC equipped with an Intel Quad Core at 3.5 GHz CPU with

2 GB of RAM. 

.1. Classifiers 

In our experiments we used four different classifiers that have

een applied in intrusion detection tasks ( Azad & Jha, 2014; Meer-

Gandhi, Appavoo, & Srivasta, 2010; Panda & Patra, 2009 ). We run

uch classifiers using the Weka 1 framework. In this section, we

riefly introduce each classifiers. 

Non-Nested generalized exemplars ( Sylvain, 2002 ) (NNge) gen-

ralizes instances without nesting or overlap. The generalization is

erformed by merging instances, forming hyperrectangles in fea-

ure space that represent conjunctive rules with internal disjunc-

ion. NNge forms a generalization each time a new instance is

dded to the dataset, by joining it to its nearest neighbour of the

ame class. 

Decision Table/Naive Bayes ( Hall & Frank, 2008 ) (DTNB) splits

he feature set into two groups: one group assigns class probabil-

ties based on Naive Bayes (NB), and the other group based on a

ecision Table (DT). Then, the class probability estimates of the DT

nd NB must be combined to generate overall class probability es-

imates. 

OneR ( Holte, 1993 ) is a basic rule-based classifier. It generates

 one-level decision tree represented as a rule set, where all test

ne attribute. OneR is a simple, cheap method that often comes up

ith quite good rules. 

PART ( Frank & Witten, 1998 ) combines the divide-and-conquer

trategy with separate-and-conquer strategy of rule learning. It

uilds a partial decision tree in each iteration, and the leaf with

he largest coverage is made into a rule. 

.2. Experimental results 

In this section, we evaluate and compare the performance of

RS against the hybrid method proposed by Chen et al. (2014) . The

xperiments were conducted using KDD’99 dataset. 2 This dataset

as been widely used for testing network intrusion detection ap-

roaches, and it is considered a benchmark dataset ( Özgür & Er-

em, 2016 ). The training set T consists of 494021 instances, while

he testing set contains 311029 instances. Each instance contains 41

eatures out of which 9 are discrete and 32 are continuous. Also,

ach instance is labeled as either normal or an attack, with exactly

ne specific attack type. In our experiments, we classify all the in-

tances into two categories, “normal” or “attack”. 

In Chen et al. (2014) , the KDD’99 dataset was evaluated using

 specific configuration, which was the same used in our experi-

ents. But, taking into account that in Chen et al. (2014) it is nec-

ssary to predefine the number of features to be selected, in order

o make a fair comparison, we decided that it will be the same as

he amount of features selected by our proposal. 
1 http://cs.waikato.ac.nz/ml/weka/ . 
2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . 

s  

A  

f  

o

After applying DRS on T , a reduced dataset S was obtained with

0540 instances and 17 features. This represents approximately a

2 % of the number of instances in T , and a 41 % of the number of

eatures in T . On the other hand, after applying ( Chen et al., 2014 )

n T , a reduced dataset was obtained with 63234 instances and

7 features. Note that DRS gets a smaller set, specifically 2694 in-

tances less than the ( Chen et al., 2014 ) proposal. 

In Table 1 , we show the true positives (TP) and false positives

FP) rates, as well as accuracy achieved by each classifier for DRS

nd ( Chen et al., 2014 ) strategies. Also, we include the results using

he original training set without any reduction (baseline). 

Note that despite the considerable reduction of the dataset, the

P, FP and accuracy achieved using DRS do not vary greatly regard-

ng to those obtained using the baseline. Although DRS further re-

uces the training dataset than ( Chen et al., 2014 ) proposal, the

lassifiers reaches better results with DRS. 

Fig. 2 shows the time taken to build the classification model by

ach classifier. The time difference between using baseline and a

eduction strategy is significant. On the other hand, the time dif-

erence between using the dataset reduced by DRS and the dataset

educed by Chen et al. (2014) is practically imperceptible. However,

t is worth clarifying that in all cases DRS slightly exceeds the pro-

osal presented by Chen et al. (2014) . 

The time taken to build the classification model is not the only

dvantage offered by DRS, it also provides a notable improvement

uring the classification process (see Fig. 3 ). DRS allows classifiers

o practically double their speed during the classification. The im-

rovement is more noticeable in classifiers with higher computa-

ional cost. For example, in Fig. 3 (b), the classification time of NNge

s reduced by 46 %, making it 41 s faster regarding the baseline. In

his experiment, our proposal also surpasses the results achieved

y Chen et al. (2014) . 

.3. Scan and backscatter detection: A study case 

In this section we present a study case, where DRS is used to

educe the original training set and improve the performance of

lassifiers to detect scan and backscatter packets. The dataset used

n this experiment is a subset of data collected by a network tele-

cope ( Moore et al., 2006 ) of the Delft University of Technology

ver a period of 16 months. Specifically, the dataset represents

4 h (since November 13, 2015 at 14:11:45 until November 14,

015 at 14:21:47) of scan and backscatter TCP traffic. 

From this dataset, each network packet was processed and rep-

esented as an instance, where each element represents a feature

f the packet (see Table 2 ). Note that we only process valid TCP

egment. A segment is valid unless an invalid part of it was found.

n example of invalid part could be: bad checksum, an illegal value

or a field, or if the length of the packet is too short for a header

r according to a length field. 

http://cs.waikato.ac.nz/ml/weka/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 2. Time taken to build the classification models for KDD’99 dataset. 

Fig. 3. Comparative results about the detection speed of the classifiers for KDD’99 dataset. 
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The network traffic arriving at the network telescope is sent to

unused IP addresses. Therefore, the packets arriving could come

from: scans, backscatter or IP misconfigurations. In order to la-

bel the dataset, we rely on the work of Blenn, Ghiëtte, and Do-

err (2017) , where they propose a strategy to identify when a pack-

age (collected by a network telescope) belongs to the scan or

backscatter traffic. Basically, the idea is that the scan could be sep-

arated from backscatter through the SYN+ACK and RST flags (TCP

flag feature). In this sense, network scans from clients to a server

will feature the SYN flag; on the other hand, backscatters must

thus contain a SYN+ACK for an open port or RST for a closed port. 
After labeling the dataset, we removed the TCP flag feature, in

rder to extract other patterns from the data that could also dis-

riminate between backscatter and scans. After all packets were

rocessed, a labeled dataset with 21470 6 69 instances and 12 fea-

ures was obtained. 

To make our experiment closer to reality, we split the dataset

n hours, and use the first hour subset T for the training, and the

emaining subsets for the testing. The training set T consists of

94544 instances and 12 features. After applying DRS on T , a re-

uced dataset S was obtained with 62768 instances and 8 features

source address, source port, destination address, destination port,
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Table 2 

Features used to represent the dataset. 

Feature Description 

Source address Source IP-address of the sending host. 

Source port Source port of the sending host. 

Destination address Destination IP-address of the receiving host. 

Destination port Destination port of the receiving host. 

Source MAC Source MAC-address of the sending host. 

Destination MAC Destination MAC-address of the receiving host. 

Protocol Protocol used in the data portion of the IP datagram. 

Packet length The number of bytes this packet take. 

IP length The number of bytes in this segment. 

TCP flag Indicates the active control bits in the TCP segment. 

ICMP message ICMP control message. 

TTL The time-to-live (TTL) value can be thought of as an upper bound on the time that an IP datagram can exist in an Internet system. 

ToS The type of service (ToS) field could specify a datagram’s priority and request a route for low-delay, high-throughput, or highly-reliable service. 

Table 3 

Comparative results using S and T for training. 

Classifier TP FP Acc. Class Training set 

OneR 0995 0018 9844 backscatter S 

0982 0 0 05 9844 scan S 

0995 0017 9852 backscatter T 

0983 0 0 05 9852 scan T 

DTNB 10 0 0 0020 9841 backscatter S 

0980 0 0 0 0 9841 scan S 

10 0 0 0020 9843 backscatter T 

0980 0 0 0 0 9843 scan T 

NNge 0.992 0015 9847 backscatter S 

0985 0 0 08 9847 scan S 

0995 0015 9858 backscatter T 

0985 0 0 05 9858 scan T 

PART 0.995 0018 9844 backscatter S 

0982 0 0 05 9844 scan S 

0995 0015 9858 backscatter T 

0985 0 0 05 9858 scan T 
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acket length, IP length, ICMP message and TTL). This represents

n 8 % of the number of instances in T , and a 77 % of the number

f features in T . 

After obtaining the reduced dataset S , we proceeded to check

f the classifiers performance were affected. So we build the clas-

ification models using S for training, and compared their per-

ormances regarding the models built using T for training (see

able 3 ). The classification models were tested using the first hour

ataset. 

As shown in Table 3 , the OneR, NNge and PART classifiers gets

retty much the same results using the original and reduced train-

ng sets. Moreover, the DTNB classifier achieves the same true pos-

tives (TP) and false positives (FP) rates, with only a negligible dif-

erence of 0, 02 % in accuracy (Acc.). After this evaluation, we can

ay that there is no big difference between the results obtained

sing the training sets S and T . 

However, using the training set S brings certain benefits to the

lassifiers. The Fig. 4 shows the time taken to build a classification

odel by each classifier using S and T . In this figure, we can see

hat the time is reduced using S , which becomes more significant

n classifiers such as NNge and DTNB that require more process-

ng time. In addition, the time taken by PART classifier to build its

lassification model is reduced by approximately 90 %. 

Fig. 5 shows another contribution of our proposal, the improve-

ent of detection speed. We can see an improvement of detection

peed in the classifiers when the reduced training set S was used

o build the classification model. This advantage can be very useful

or models that require real-time data analysis. 

Our last experiment was to analyze over 24 h, how the classi-

ers used in our experiments behave. To do this, we evaluated the

lassification model generated by each classifier using the train-
ng set S . As shown in Fig. 6 , the classifiers did not perform well.

he main cause of this poor performance is that very specific rules

ere generated, mainly for the backscatter class, where the rules

efer to specific IP addresses. 

Apparently, PART classifier shows adequate performance, how-

ver this is not due directly to the rules generated, but rather to its

valuation strategy. Such evaluation strategy defines a default rule

o classify those instances that are not covered by any of the rules

enerated. The default rule consists in assigning the most frequent

lass in the training set (in our case scan class). For example, dur-

ng the 10th hour and the 21st hour there is an abrupt drop in the

ccuracy of PART. This is because these datasets contain a large

umber of backscatter packets that could not be covered by the

xisting rules, and therefore the default rule did not cover them

ither. 

IDS are considered as systems under attack, where attackers

hange the way to execute their attacks in order to make the de-

ection system fail. This fact affects the data associated with the

ttacks, which constantly change. Rule-based IDS must be able to

dapt to these changes in the data. Therefore, it is necessary to

onsider a mechanism to periodically update the existing rules,

hich allows to maintain an adequate accuracy level, thus avoid-

ng poor performance of the classifiers over the course of time, as

hown in Fig. 6 . 

. Conclusions 

The training set reduction represents an important step for su-

ervised classification on large volumes of data. But, the dataset

eduction without significantly affecting the accuracy of the clas-

ifiers represents a challenge. In this paper, we present a novel

ata reduction strategy for improving the IDS performance. Exper-

mental results show that our proposal can significantly reduce the

mount of training data, without affecting the classifiers accuracy

oo much. This makes feasible the use of DRS as a preprocessing

ethod for the application of expensive techniques on large vol-

mes of data. 

One of the advantages that DRS offers to rule-based IDS is that

t considerably reduces the time taken to build the classification

odel. Another advantage is that the training set reduction allows

lassifiers to generate rules using only the most representative fea-

ures of the training set. This contributes to reduce the amount of

ules generated and the amount of conditions in them, making the

valuation process less costly, and thus increasing the speed of the

etection process. This contribution is very useful for real-time de-

ection. Another advantage of DRS is that it runs very efficiently on

 computer with discrete features, such as the one used in our ex-

eriments, unlike other proposals which require a more expensive

eployment to achieve an efficiency similar to ours. 
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Fig. 4. Time taken to build the classification models. 

Fig. 5. Comparative results about the detection speed of the classifiers. 

Fig. 6. Accuracy reported by different classifiers during 24 h. 
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As shown in the experiments, our proposal is not limited to

scan and backscatter detection, DRS can also be applied in environ-

ments with similar characteristics to those present in this scenario.

For example, intrusions detection, fraud detection in telecommuni-

cations services, and fraud detection in banking transactions are
nvironments where DRS could be used to improve the perfor-

ance of detection systems. 

Our last experiment demonstrated that over the course of time,

lassifiers begin to lose accuracy, mainly because there is no reg-

lar updating of existing rules, besides the fact that very specific

ules are generated. As a future work, we will integrate our pro-

osal with a rule-based IDS that allows us to update the existing

ules periodically, and evaluate the performance of our proposal in

ther scenarios such as fraud detection in telecommunications ser-

ices, where the volume of data to be processed is considerably

arge, reaching some millions of instances. 
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