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Abstract

Variational inference comprises a family of statistical methods to obtain the optimal approximation of
a target probability distribution using some reference class of distributions and a cost function, com-
monly the Kullback-Leibler (KL) divergence. Recent work on variational inference has yielded a fast,
stable set of mean and covariance evolutions which dynamically yield variational Gaussian approxima-
tions {pLt }t≥0 via a restriction to Gaussian measures of the well-known JKO scheme. The sequence of
Gaussian measures thus generated converges towards the KL-optimal Gaussian approximation of the
VI target e−V : it may also be used to approximate the entire sequence of distributions {pJt }t≥0 gener-
ated by a JKO gradient flow directed at this same target, which supports practical usage of Gaussian
VI as well as fast, approximate modelling of the Fokker-Planck PDE. However, it is not immediately
clear whether this Gaussian sequence offers valid, helpful approximations of the original JKO gradient
flow. In this work, three upper bounds for the sequence of distances {W2(p

L
t , p

J
t )}t≥0 are obtained by

exploiting the Riemannian structure of theW2 manifold and the shared properties of the Gaussian and
JKO evolutions. Numerical simulations support the validity of these bounds and test their performance
in both ordinary and exceptional scenarios. One of the bounds may be computed solely using the Gaus-
sian pLt and the potential V , thus offering a tractable estimator for the suitability of variational Gaussian
approximations which retains the attractive properties of Wasserstein distances whilst avoiding their
computational demands.
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Notation

The following table lists the principal notation used in this work. Please note that this table is only
intended to serve as a general support reference, so it does not cover every instance of mathematical
notation used in this text and unfortunately may not eliminate all ambiguities. Many notational choices
made here are intended to reflect notation used in key references, in order to support further reading.

Symbol Definition

ρ, ϱ, p Probability density (or occasionally a measure: this should
hopefully be clear from context).

µ, ν Probability measure (or occasionally a density).
m The mean of a (typically Gaussian) probability distribution.
Σ The covariance matrix of a (typically Gaussian) probability

distribution.
vt The velocity field associated with a particular JKO/Bures-

JKO evolution pt.
pLt The (Gaussian) Bures-JKO probability density at time t,

evolving to the Lambert et al. ODEs.
pJt The JKO probability evolution at time t, evolving according

to the JKO FPE.
uit One of the three upper bounds for the quantity W2(p

L
t , p

J
t )

obtained in this work.
ct, c

i
t The bound coefficients for u1t , u2t obtained in Chapter 4.

d Dimension of the ambient space.
Sd The space of symmetric matrices of size d× d.
S++
d The space of symmetric positive-definite matrices of size

d× d.
π Target probability density, to be approximated via the JKO

or Bures-JKO schemes.
V Potential function for the target π.
α The modulus of convexity for the potential V .
β The (inverse) temperature of the ambient space, as speci-

fied for the Langevin diffusion and the FPE.
Ω The ambient vector space over which probability distribu-

tions are defined: this is typically Rd, except in Chapter 5
where Ω refers to the specific discrete grid used to perform
a particular experiment.

Π(µ, ν) The set of couplings for the two input probability measures
µ, ν.

T Depending on the context, either: an optimal transport map
T (x), the stopping time of a numerical simulation or part of
the notation for a tangent space (see following entry). The
notation vT is also used throughout this text to denote the
(horizontal) transpose of the (column) vector v.

TpM Tangent space of the member p of a Riemannian manifold
M .

P2(Rd) TheWassersteinW2 manifold of probability measures over
Rd with finite second moments.

BW(Rd) The Bures-Wasserstein manifold over Rd, i.e. the set of
Gaussian probability densities over Rd equipped with the
Wasserstein 2-distance.
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Symbol Definition

〈·, ·〉p p-inner product of the two input arguments.
| · |, || · || The Euclidean norm of the input argument.
∇xf(x) The gradient w.r.t. x of the function f . If x is not specified

and only ∇ is visible, the argument with which to take the
gradient should hopefully be clear from context.

∇ · f(x) The divergence of the function f w.r.t. its argument x.
∆f(x) The Laplacian of the function f w.r.t. its argument x.
∇W2F (p) The Wasserstein W2 gradient (i.e. direction of fastest as-

cent within P2(Rd)) for the functional F , when evaluated at
the point p.

∇BWF (p) The Bures-Wasserstein gradient (i.e direction of fastest as-
cent within BW(Rd)) for the functional F , when evaluated
at the point p.

∂t Shorthand for d
dt , used in some sections,

δ Used to denote first variations; the exact manner in which
this is done is context-dependent - please see Section 2.5
for more details.

Ep(·) The expectation of the input argument w.r.t. the probabil-
ity distribution p. If p is not specified, then the choice of
distribution should hopefully be clear from context.

Wt A standard Brownian motion.
W2(·, ·) The Wasserstein-2 distance between the two input argu-

ments.
W2 Either theWasserstein-2 distance in general, or specifically

the quantityW2(p
L
t , p

J
t ) (particularly in Chapter 5): the cor-

rect interpretation should hopefully be clear from context.
KL(·||·) The Kullback-Leibler divergence between the two input ar-

guments.
I(·|·) The relative Fisher information between the two input argu-

ments.
F (p) A functional defined over probability measures p, most

commonly the context-specific Kullback-Leibler divergence
KL(p||π).
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1
Introduction

1.1. Context
The statistical approach to machine learning seeks to use statistical approaches to uncover relation-
ships from large, complex data sets. The true functions which connect variables of interest are often
unknown and may, in whole or in part, be fundamentally unknowable due to mathematical or practi-
cal restrictions. We must therefore seek approximations of these functions using statistical learning
techniques. A fundamental example of the need to develop such approximations lies at the heart of
Bayesian statistics: consider the goal of developing a stronger understanding about some variable of
interest x which depends on another variable y, using some prior knowledge p(x) together with an
empirical data set p(y|x). In Bayesian statistics, we obtain this posterior understanding p(x|y) from the
prior understanding p(x) and the labelled data p(y|x) through the following relationship:

p(x|y) ∝ p(y|x)p(x) (1.1)

This relationship is simple enough to describe in an abstract sense, but readers familiar with Bayesian
statistics will know that complications arise when we attempt to convert our abstract concept of the pos-
terior into an actual probability distribution, using the probability distributions p(x), p(y|x). The normali-
sation coefficient required for p(x|y) is often intractable, so practitioners must resort to either numerical
approximation (e.g. by numerical integration or Monte Carlo methods) or statistical approximation. In
this latter case, a suitable surrogate for the original function is sought using the available data and
knowledge about its origins: for Bayesian statistics, the objective then becomes to find an approxima-
tion for the posterior. Unfortunately, the quality of these approximations cannot in general be known
before they are tested against new data — which requires new data to be used for testing, along with
time and other resources. If we were able to know the quality of our approximations while they are be-
ing computed, we could potentially exploit this insight to obtain these approximations more efficiently.
The pursuit of this insight is necessary in modern machine learning, where loss functions are used to
guide the parameters of neural networks towards appropriate values. As we shall see, however, there
are certain learning frameworks whose mathematical properties yield further details on approximation
quality without requiring additional data.

Let us now turn our attention towards variational inference (VI), which comprises a broad family of
Bayesian statistical techniques seeking the ”best” approximation of a posterior distribution (see Sec-
tion 2.3 for more details). Within the VI paradigm, the ”best” approximation of the posterior is the
member of a chosen family of probability distributions which minimises the Kullback-Leibler (KL) diver-
gence relative to the posterior: this minimisation is often achieved through some iterative algorithm
which yields a sequence of probability measures converging towards the optimal approximation. On
paper, minimisation of the KL divergence may be achieved through the well-known JKO scheme [57],
which asymptotically achieves the VI objective by propagating the Fokker-Planck Equation (FPE) (2.9)
towards the target posterior, thus generating a converging sequence of probability distributions {pJt }t≥0.

1



1.1. Context 2

One condition which permits the JKO scheme to be applied is for the VI target π to be log-concave, i.e.
it must have the form π ∝ e−V (x) for a convex potential function V : targets of this form arise naturally in
many Bayesian scenarios. Although the JKO scheme offers an interesting and well-studied framework
for researchers modelling the FPE, it is unfortunately not a very practical method to work with if the goal
is to perform VI. Each of the discrete optimisation steps presents a challenging (or even intractable)
optimisation problem for real-world usage, while numerical propagation of the FPE is computationally
expensive and may introduce significant approximation errors.

To address these issues, the JKO scheme was recently employed by Lambert et al. in [65] to perform
VI using Gaussian approximations. More precisely, the authors of [65] were able to demonstrate that a
certain pair of mean-covariance ODEs (3.8) corresponds to a restriction of the JKO FPE to the space
of Gaussian measures (i.e. the ”Bures-JKO scheme”): by propagating these ODEs forward in time, we
obtain a sequence of Gaussian distributions {pLt }t≥0 converging towards the optimal VI approximation
of a given target. We thus obtain a computationally cheaper alternative to the ”full” JKO scheme based
on Gaussian approximations: this alternative applies not just to the asymptotic approximation of the
target but also to the entire sequence of intermediate propagation steps. The intermediate Bures-
JKO step pLt is not intended to serve as an ideal 1 Gaussian approximation of a full JKO step pJt ,
but understanding the suitability of such approximations may nonetheless assist practitioners using
the Bures-JKO ODEs by Lambert et al. (and, through further research, potentially related forms of
Gaussian VI) by offering new stopping criteria and ”early warning systems” for poor initialisation choices.
Of course, these tools are already available via comparison functionals such as KL(·||pJt ): however,
the bounds obtained in this project leverage both the advantages of optimal transport comparisons
and the geometric behaviour of the JKO and Bures-JKO evolutions. Furthermore, the substitution of a
JKO FPE with its Gaussian counterpart may have downstream applications wherever the FPE is used:
having dedicated tools to monitor the quality of this substitution will undoubtedly benefit researchers
and practitioners seeking to do so. The JKO/Bures-JKO dyad thus offers an intriguing case for studying
Gaussian approximations of a dynamical process.

A different dynamical setting where Gaussian approximations are also used is Kalman filtering. Gaus-
sian distributions are used by Kalman filters to model both the uncertainty inherent to their state pro-
cesses and the noise in their measurement processes. This is true both of the original Kalman filter and
of many of its variants, including the Unscented Kalman Filter (UKF), which is a popular algorithm for
tracking and controlling non-linear systems in fields ranging from robotics to economics. As noted by
Lambert et al. in [65] and as we shall see in Section 3.4, the mean-covariance ODEs of the Bures-JKO
scheme are mathematically equivalent to a special case of the continuous-time UKF where the obser-
vation update is disregarded (i.e. where the Kalman gain is set to zero). We may then consider whether
insight into the suitability of Gaussian approximations in the JKO/Bures-JKO case may be translated
into the broader framework provided by the UKF. This would not be a straightforward adaptation due to
the more general stochastic process described by the UKF (consider a potential function which varies
over time) and so such a task lies beyond the scope of this thesis project: however, the work presented
here takes a small step in this direction and hopefully encourages others to continue doing so.

The general question motivating this research project is: what if it were possible to know how appropri-
ate these dynamic Gaussian approximations are — in real time? Of course, we cannot know this with
absolute certainty in real-world settings, due to the unavoidable imperfections in our data collection and
the unpredictability of most real-world dynamic processes. Moreover, the question of what constitutes a
”good” approximation has yet to be settled: in this text, a ”good” approximation is one which minimises
the Wasserstein-2 distance, denoted here with the shorthandW2. Wasserstein distances offer symmet-
ric, flexible comparison metrics which interpret their arguments as distributions of ”mass” which cost
effort to move, which naturally resembles the particle-based interpretation of the JKO-scheme FPE as
a Wasserstein gradient flow (see Subsection 2.1.3 and Section 2.2 for details). The interpretation of
Wasserstein spaces as Riemannian manifolds also offers valuable geometric techniques which were

1In this context, the ”ideal” Gaussian approximation of pJt would be that which minimises some comparison functional of inter-
est, e.g. the forward KL divergence KL(pJt ||·), the reverse KL divergence KL(·||pJt ) or the Wasserstein W2 distance W2(·, pJt ).
In the first case, we know that pLt is not the optimal approximation of pJt due to mismatched moments: see Subsection 4.1.2
for an explanation. For the other two cases listed here, it has not been investigated whether pLt is the optimal approximation of
pJt : however, these possibilities are likely disprovable through similar recourse to the moment-matching arguments used for the
forward KL case above.
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Figure 1.1: the basic scenario considered for this research project — pJt represents a JKO gradient flow converging towards a
target π, and pLt represents a Bures-JKO gradient flow converging towards the optimal approximation of π. The central quantity

of interest is the distance W2(pLt , p
J
t ) and its evolution over time: the W2 distance function offers a powerful, intuitive

geometric comparison between the two gradient flows but is difficult to compute. In this work, three upper bounds u1
t , u

2
t , u

3
t for

W2(pLt , p
J
t ) were obtained and tested. For simplicity, this diagram assumes that pL0 = pJ0 . The terms used here are explained

more thoroughly in Chapter 4.

exploited to obtain the results in Chapter 4. However, Wasserstein distances are usually mathemati-
cally intractable to work with on paper and computationally expensive to work with empirically. A strong
incentive thus arises to obtain reasonable bounds forW2 which permit retaining the benefits of this dis-
tance metric whilst reducing the computational costs otherwise required. The search for such bounds
comprises the objective of this thesis project, which seeks to answer three research questions:

• Is it possible to obtain theoretical upper bounds on W2(p
L
t , p

J
t ), i.e. the W2 distance between a

Bures-JKO and a JKO propagation?
• Can such a bound depend only on some initial value W2(p

L
0 , p

J
0 ), the Gaussian/Bures-JKO prop-

agation {pLt }t≥0 and the potential V ?
• Are these bounds close enough to the true value ofW2(p

L
t , p

J
t ) to be useful?

1.2. Related work
The following section presents a brief summary of the academic literature most relevant to the research
questions posed above. A broader scope of literature evaluations related to this project is distributed
throughout Chapter 2.

During the literature search performed for this project, no publications were found which explicitly at-
tempted to compare the JKO/Bures-JKO pair in the manner proposed above. The reason for this
literature gap is not immediately clear, although a prior lack of applications may have been a factor,
since recent developments such as the ODE-based Bures-JKO scheme in [65] do offer new incentives
for comparisons such as W2(p

L
t , p

J
t ) to be studied in more detail. For two general JKO gradient flows

evolving towards the same target, an explicit formula 2 for d
dt

1
2W

2
2 (·, ·) is known ([90], Thm. 5.24): fur-

thermore, we may controlW2(p
L
t , p

J
t ) using a Grönwall-style bound (see the proof of Corollary 3 in [65]

for an explanation). A similar bound for Fokker-Planck evolutions with non-gradient drifts was obtained
in [11]. The convergence rate of two JKO gradient flows with the same target was studied in more
detail in [112], with a focus on relative entropy and information-based comparisons. In the case where
both gradient flows are Gaussian, readers may be aware that theW2 distance between two Gaussian
measures has a closed-form expression (see (3.1)). Furthermore, it is not immediately clear what the
downstream applications of this Bures-JKO/Bures-JKO pair would be: hence, we will not consider this
case any further.

By contrast, there has been more research into the convergence behaviour of a single gradient flow.
Some work has been performed directly on bounding the behaviour of the JKO FPE, not necessarily via

2To evaluate this formula, the Kantorovich potentials for the W2 distance in d
dt

1
2
W 2

2 (·, ·) must be known, which is a highly
non-trivial requirement. As demonstrated in Chapter 4, however, it is still possible to make productive use of this formula to
bound the derivative d

dt
1
2
W 2

2 (·, ·) even when the Kantorovich potentials are not themselves known.
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theW2 distance ([30], Proposition 3.8). Bounds have also been obtained for alternative JKO-style gra-
dient flows, often involving substitutions of the Kullback-Leibler evaluation function and/or the Fokker-
Planck dynamics ([16], Section 4.2; [10], Thm. 3.4; [13], Proposition 2.9; [71], Thm. 3.7). Research
into the Bures-JKO scheme has also yielded convergence bounds for this particular gradient flow ([31],
Section 5; [65], Corollary 3 and Thm. 4). More general upper bounds on the W2 distance are also
an object of study: well-known examples include the Evolution Variational Inequality ([75], Section 3.1)
and the Talagrand’s transportation inequality [99]; a convenient summary of transport inequalities may
be found in [42], and other controls for Wasserstein distances are listed in [81]. Besides the interpreta-
tion of VI as a Wasserstein gradient flow, Wasserstein distances have also been studied as a tool for
assessing the quality of VI approximations [9, 53] — an application which may also be extracted from
the bounds provided in this report, and which is implicitly employed in Chapter 5.

1.3. This work
The key knowledge contributions generated by this thesis project are:

• Three distinct upper bounds u1t , u2t , u3t were obtained for the W2 distance between the JKO and
Bures-JKO propagations.

• One of these bounds (u3t ) requires only an initial W2 value, the Bures-JKO propagation and the
potential in order to be computed.

• Numerical experiments suggest that these bounds provide reasonable approximations of W2 in
ordinary settings; however, this may not be the case in extreme cases or when the assumption
of log-concavity is broken.

The remainder of this text is structured as follows:

• Chapter 2 provides the essential mathematical background required for this project. Familiarity
is assumed with Bayesian statistics, (measure-theoretic) probability theory, real analysis, vector/-
matrix calculus and some basic functional analysis. Chapter 2 also provides a broader literary
context for this text: the mathematical topics covered here interact both with each other and with
other relevant topics in mathematics and machine learning which readers may be interested in.

• Chapter 3 provides a detailed account of the central result published in [65], which establishes the
Bures-JKO ODEs as being a consequence of a Wasserstein gradient flow. Two distinct proofs of
this result are reproduced here, supported by detailed computations and expanded commentary
intended to deepen readers’ understanding of the Bures-JKO scheme and support the search for
W2 bounds.

• Chapter 4 provides three new upper bounds for theW2 distance between the JKO and Bures-JKO
propagations, along with discussions on their relative theoretical merits and limitations. Two of
these bounds are proposed as conjectures, whereas for the remaining bound a complete proof
is provided.

• Chapter 5 provides the descriptions and outcomes of numerical experiments performed to test
the bounds obtained in Chapter 4. A detailed explanation of the approach used is available in
Chapter 5, along with descriptions and plots of the experimental results, which are then evaluated
and compared with each other.

• Chapter 6 provides reflections on the theoretical and practical results obtained, along with sug-
gested directions for future research.



2
Mathematical Background

2.1. Optimal Transport
This section contains an overview of the background in optimal transport theory and gradient flows
needed for the analysis presented later in this report. The primary reference for the definitions and
notation used in this section is Filippo Santambrogio’s book Optimal Transport for Applied Mathemati-
cians [90]: for a more comprehensive treatment of the concepts presented below, we refer readers to
Santambrogio’s book or to [103].

2.1.1. Preliminaries
The original problem which defines optimal transport theory, first posed by Monge, concerns the most
efficient way to transport mass from one distribution to another. Let X,Y be two sets with sets of prob-
ability measures P(X),P(Y ): furthermore, let c(x, y) be the cost of transporting a particle at location
x ∈ X to y ∈ Y . The Monge Problem (MP) is:

inf
T

{∫
X

c (x, T (x)) dµ(x) : T#µ = ν

}
. (MP)

In the above we have: an initial mass distribution µ ∈ P(X), a target mass distribution ν ∈ P(Y ) and a
possible mapping T : X → Y 1. The objective is to choose a mapping T which minimises the average
transport cost expressed by the integral (i.e. the expectation of c(x, T (x)) under µ). The condition
T#µ = ν, where (T#µ)(A) := µ(T−1(A)) is the pushforward measure of µ through T , ensures that T
actually maps the mass distributed by µ to the mass distributed by ν.

The constraint T#µ = ν makes the Monge Problem difficult to find solutions for. The Kantorovich
Problem allows the question of optimal transport to be framed in a different way:

inf
γ

{∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
. (KP)

Now, instead of considering an optimal transport map T , we consider an optimal transport plan γ :
X × Y → R, whereby γ(x, y) conceptually represents the amount of mass moving from the point
x ∈ X to the point y ∈ Y . If, for a point x, multiple destinations y receive non-zero mass, then
there cannot be a map T associated with γ: hence, the constraint γ ∈ Π(µ, ν) is required, where
Π(µ, ν) := {γ ∈ P(X × Y ) : (πX)#γ = µ, (πY )#γ = ν}. Here, πX and πY represent the projections of
X × Y onto X and Y , respectively.

1In general, µ, ν needn’t be probability measures or have the same total mass, and may instead be general measures.
However, the development of Wasserstein gradient flows and the core research behind this project is defined exclusively for
probability measures, so µ, ν will be assumed as such for the remainder of this report.

5



2.1. Optimal Transport 6

The Kantorovich constraint is easier to work with than the Monge constraint, due to its linearity; as such,
it becomes possible to prove that a solution exists for (KP) under mild conditions. To obtain a form for
this solution, a dual to (KP) is defined:

sup
φ,ψ

{∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y) : φ ∈ Cb(X), ψ ∈ Cb(Y ), φ(x) + ψ(y) ≤ c(x, y)
}
. (DP)

It can be shown that the supremum of this problem is equal to the infimum of (KP). Note that φ : X → R
and ψ : Y → R must be continuous and bounded functions such that φ + ψ ≤ c. If we assume
c(x, y) = h(x − y) for some strictly convex function h, then the solution to (DP) must be obtained
via a pair of functions φ,φc (known as Kantorovich potentials), where φc(y) = infx{c(x, y) − φ(x)}.
Furthermore, a formula for the optimal map T can be obtained in certain cases, such as when µ is
absolutely continuous w.r.t Lebesgue measure:

T (x) = x− (∇h)−1 (∇φ(x)) (2.1)

2.1.2. Wasserstein distances
In (KP), one frequent choice for the cost function c (or, equivalently, for the strictly convex h(x− y)) is
c(x, y) = |x − y|p, for p ∈ [1,∞) ∪ {∞}. By inserting this cost into (KP), we obtain the Wasserstein
p-distance between two measures µ and ν (both defined on a space Ω) 2:

Wp(µ, ν) = min
γ

{∫
Ω×Ω

|x− y|pdγ(x, y) : γ ∈ Π(µ, ν)

}1/p

. (2.2)

The Wasserstein distance is a true distance and can be used to define a metric space, i.e. the Wasser-
stein p-space Wp := (Pp(Ω),Wp) (where Pp(Ω) is the set of Ω probability measures which are Lp-
integrable).

Within the space Wp, we can define curves of measures between µ and ν. To start, let us define
πt(x, y) = (1 − t)x + ty for t ∈ [0, 1]: πt is, of course, a convex combination of two points in Ω. By
considering such combinations of all points in Ω as the pre-images and images of an optimal transport
plan γ, we can define the sequence of measures µt := (πt)#γ, t ∈ (0, 1), which is a curve (more
precisely: a constant-speed geodesic) that moves through Pp(Ω) from µ to ν.

One of the core behaviours we must see along such geodesics is the preservation of mass: if, at some
point x ∈ Ω, the mass assigned by µt is decreasing over time, then that mass must be redirected
somewhere else (and vice versa). This principle underlies the continuity equation:

∂tµt +∇ · (vtµt) = 0 (2.3)

The vector field vt(x) represents the velocities (of mass) at each point x ∈ Ω: the quantity vt(x)µt(x)
is therefore analogous to momentum. The divergence ∇ · (vt(x)µt(x)) represents the net flow of mass
inwards or outwards from the point x, and must balance exactly with the change in mass at x as
represented by ∂tµt(x).

2.1.3. Gradient flows in W2
Let us now restrict our attention to Ω = Rd. By definition, a gradient flow is a system of equations
describing the motion of a particle x(t) starting at some point x(0) ∈ Rd and always moving in the
direction where some function f decreases most rapidly. We can write this definition as follows:

2In general, µ and ν do not need to be defined on a common space for the Wasserstein distance definition to be valid: indeed,
this is one advantage of Wasserstein distances over other comparisons such as the KL divergence (KL). Nonetheless, this
simplifying assumption is frequently made when defining Wasserstein distances, for instance in [65, 90], as many applications
of Wasserstein distances do require comparing measures defined on a common space, e.g. on Rd.
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x(0) = x0

x′(t) = −∇f(x(t))
(2.4)

In the W2 space, we can use the continuity equation as described in (2.3) to obtain the following equa-
tion for a curve of probability measures ϱt ⊂ P2(Ω) and a functional F : P2(Ω)→ R:

∂tϱt −∇ ·
(
ϱt∇

(
δF

δϱ
(ϱt)

))
= 0 (2.5)

It is clear that (2.5) is a special case of (2.3), implying that the term ϱt∇
(
δF
δϱ (ϱt)

)
represents the ”mo-

mentum” of particles distributed according to the evolving measure ϱt. Equation (2.5) employs the term
δF
δϱ (ϱt(x)), which is called the ”first variation”3 in [90]. This is the ”functional derivative” definition of the
first variation, as defined in Subsection 2.5.1, which has the following interpretation in this context: δFδϱ
resembles a ”partial derivative” of F w.r.t. ϱ, and measures the sensitivity of the value of F to a change
in the value of ϱ at a point x ∈ Ω. The velocities of particles distributed by ϱt therefore depend on the
functional F .

The functional F is used to define a ”contour map” of its values over P2(Ω): a particle with an initial
location in this landscape will ”roll downhill” towards a local minimum. This is the fundamental motion
being described by the gradient flow in (2.5). When used by authors within the mathematical, scientific
and machine learning communities, the term ”Wasserstein gradient flow” refers to the particle ϱt and
its evolution in the W2 space over time as dictated by (2.5) or the discretisation (2.6), which explicitly
requires the use of theW2 distance.

For a time step of size τ , it is possible to create a time discretisation of the gradient flow of ϱt (as written
in (2.5)) as an optimisation problem, regularised by the incorporation of the W2 distance:

ϱτ(k+1) ∈ argmin
ϱ∈P(Ω)

(
F (ϱ) +

W 2
2 (ϱ, ϱ

τ
(k))

2τ

)
(2.6)

This provides an implicit Euler scheme which can be used to propagate ϱt through time and, in principle,
perform numerical approximation of (2.5) 4. Indeed, by choosing F appropriately, we can obtain various
PDEs through (2.5); alternatively, we can propagate and/or study these PDEs through the discretisation
(2.6). Prominent examples are the heat equation δtϱ−∆ϱ = 0 and the Fokker-Planck Equation, which
is studied in more detail in Section 2.2. Besides the new mechanism for numerical simulation offered
by (2.6), the characterisation of these equations as Wasserstein gradient flows can facilitate their study
by offering new ways to show the existence of solutions and find properties of these solutions (e.g.
convergence rate, stability).

2.1.4. Applications in machine learning
There are extensive connections between optimal transport theory andmachine learning, covering both
theoretical and practical aspects of both disciplines. An extensive survey of these connections lies
beyond the scope of this project: the purpose behind this subsection is merely to offer an outline of key
appearances of Wasserstein distances and Wasserstein gradient flows in machine learning research.

Wasserstein distances are commonly used by machine learning researchers and practitioners alike.
TheW1 distance for discrete and empirical distributions can be estimated via linear programming meth-

3Readers who are unsure how this term is being used here are directed to Section 2.5, where an attempt has been made to
define and disentangle the various uses of the ”first variation” in relevant literature.

4In practice, theWasserstein distance is often intractable and poses a challenging optimisation problem itself, thus diminishing
the viability of this approach. Nonetheless, there have been attempts to use (modified) JKO discretisations to model certain
systems (e.g. [15, 17, 18]), as well as theoretical efforts to study JKO-based simulations using tractable approximations to the
Wasserstein distance (e.g. [17, 86]). More recently, there has also been research into neural network-based approximations
which make the JKO step tractable (e.g. [82, 109]).
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ods (a fact that is exploited in, e.g. [69, 88]): additionally, the W2 distance for one-dimensional dis-
tributions can be computed analytically using the distribution CDFs. Implementations for computing
the Wasserstein distance can be found in libraries for R and Python [38, 101, 105]. Academically,
the history of applying Wasserstein distances/gradient flows to machine learning problems stretches
at least as far back as 2000 [88]: early applications were found for computer vision tasks (e.g. im-
age retrieval [88], contour matching [43], histogram comparison [69]), with another strand of research
seeking improved computational approximations of Wasserstein distances [84, 94], including the well-
known Sinkhorn approximation [27]. Wasserstein distances have also found numerous applications in
neural network-based models: examples include the Wasserstein GAN [5], Wasserstein-based object
detection [47] and open-set classification in signal processing [113]. More fundamental research into
the benefits and limitations of the usage of Wasserstein distances in ML has also been performed (e.g.
[39, 62, 95]). Conversely, Wasserstein distances have themselves been the subject of approximation
using machine learning models [22, 70], as have Wasserstein gradient flows [1, 74, 106, 109], with this
research broadly seeking improvements in speed, accuracy and versatility over existing approaches
and approximations.

2.2. The JKO scheme and the Fokker-Planck Equation
The ”JKO scheme” refers to the discretisation (2.6), applied to the functional F :

F (ϱ) := F(ϱ) + V(ϱ)

F(ϱ) :=
∫
Ω

(log ϱ(x)) ϱ(x)dx

V(ϱ) :=
∫
Ω

V (x)ϱ(x)dx

(2.7)

Applying (2.7) to (2.6) yields the original problem studied by Jordan, Kinderlehrer and Otto in their
publication [57], after which the ”JKO scheme” is named. The term V (x) is the potential of the stochastic
particle Xt ∈ Ω governed by the following SDE, known as the Langevin diffusion:

dXt = −∇V (Xt) +
√

2β−1dWt (2.8)

Loosely speaking, the particle Xt will move preferentially towards regions of Ω with lower values of
the potential V (Xt): this principle drives modelling applications of the Langevin diffusion in the natural
sciences. The parameter β acts as an ”ambient temperature” which controls the overall speed at
which Xt moves 5. Without loss of generality, we shall in later chapters follow [65] and other relevant
publications by assuming β = 1: for completeness, however, β is displayed in (2.9) and (2.10) below.
At any time t ≥ 0, the marginal probability distribution (density) for the location of Xt in Ω is given by
the Fokker-Planck Equation (FPE):

d

dt
ϱt = β−1∆ϱt +∇ · (ϱt∇V ) (2.9)

The principal contribution made by [57] is that the FPE (2.9) arises as the limiting case as τ → 0 of the
discretisation (2.6) applied to the functional F from (2.7). Under suitable conditions for V (in particular:
convexity), the FPE as described in (2.9) will converge towards the stationary distribution

π(x) :=
1

Z
exp (−βV (x))

Z :=

∫
Ω

exp (−βV (x)) dx.
(2.10)

5This effect is perhaps most visible through the FPE (2.9), where β−1 has a linear influence on the diffusion term ∆ϱt. The
influence of β−1 is ubiquitous throughout the ambient spaceΩ, which is why it is referred to as a ”heat bath” in some publications,
e.g. [51].
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By choosing V to be formed through the combination of a prior probability density and a likelihood
based on data (this is possible, for instance, when both the prior and likelihood are exponential-family
distributions), we can have the FPE (2.9) converge towards a Bayesian posterior. Furthermore, by
inserting V (x) = β−1 log π(x) into (2.7), it follows that this motion towards the posterior is governed by
the KL divergence between ϱt and π. We can see this clearly by rewriting the discretisation (2.6):

ϱτ(k+1) ∈ argmin
ϱ

(
KL (ϱ||π) +

W 2
2 (ϱ, ϱ

τ
(k))

2τ

)
(2.11)

At each time step, the procedure (2.11) will reduce KL
(
ϱ(k+1)||π

)
: this process will be repeated until

no further reduction is possible, i.e. until KL
(
ϱ(k+1)||π

)
has reached a minimum6. The JKO scheme

therefore provides a dynamical mechanism for performing variational inference.

2.3. Variational Inference
2.3.1. Overview
In this section, a brief overview of variational inference is provided. The primary reference used is
Christopher Bishop’s Pattern Recognition and Machine Learning [8].

Variational inference (VI) derives its name from the variational principle whereby an optimal function
is selected by minimising or maximising the value of a functional dependent on that function: a partial
description of the calculus of variations used to perform this optimisation is provided in Section 2.5.
More precisely, variational inference is a Bayesian statistical approach which seeks to minimise some
functional measuring the similarity between a freely-chosen probability density p (freely chosen from
some set P(Ω)) and the Bayesian posterior π. VI is most commonly performed using the Kullback-
Leibler (KL) divergence:

argmin
p∈P(Ω)

{KL(p||π)} (VI)

The Kullback-Leibler divergence between two probability densities is defined as:

KL(p||π) := Ep
(
log
( p
π

))
=

∫
Ω

log
p(x)

π(x)
p(x)dx

(KL)

As a functional for comparing an arbitrary density p with a target posterior π, (KL) has the favourable
property that KL(p||π) ≥ 0, with KL(p||π) = 0 if and only if p = π almost everywhere (w.r.t. some refer-
ence measure). However, it should be noted that, unlike the Wasserstein distance, the KL divergence
is not a true distance metric, as it is not symmetric and does not satisfy the Triangle Inequality.

The objective of variational Bayesian inference is to use the KL divergence to find the best approxima-
tion p∗ to a (typically intractable) posterior π. Note that if π is intractable, then so is (KL). However, it is
possible to reformulate (VI) into a tractable problem as follows, using q(x, y) = q(y|x)q(x) for the prior
q(x) and the likelihood q(y|x) used in the construction of π.

6Depending on the choices of V and P(Ω), this minimum may be local or global. A common simplifying assumption is to
require that V be convex, such that π is log-concave: for suitable choices of P(Ω) (e.g. the set of Gaussian densities), we obtain
a convex landscape from KL (·||π) with a unique minimiser.
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KL(p||π) = Ep(x)
(
log

p(x)

π(x|y)

)

= Ep(x)

log
p(x)
q(x,y)
q(y)


= Ep(x)

(
log

p(x)

q(x, y)

)
+ Ep(x) (log q(y))

= −L(p) + log q(y)

(2.12)

In (2.12), the term log q(y) does not depend on our choice of p, so the question of minimising (KL) is
equivalent to maximising the so-called Evidence Lower Bound (ELBO) L(p) := Ep(x)

(
log q(x,y)

p(x)

)
. Since

the likelihood and the prior may be assumed to have tractable forms, we have a viable expression for
q(x, y) and are able to compute L in practice to perform variational inference.

Different possibilities for obtaining variational approximations of π by making various restrictions to the
possible distributions P(Ω) which we can draw p from. A simple and common choice is to restrict
P(Ω) to be the set of product distributions across the dimensions of Ω, i.e. to assume independence
between the constituent variables of Ω: P(Ω) =

{
p : p(x) =

∏d
i=1 q(xi)

}
. This is known as mean-field

approximation: optimising the ELBO in this setting ican be performed by the expectation maximisation
(EM) algorithm. However, the assumption of independence between the components of p necessarily
implies that any dependencies between the components of x will not be taken into consideration, which
reduces the informativeness of p∗ — perhaps substantially so. This provides a strong incentive to
develop VI using other choices of P(Ω).

2.3.2. Gaussian VI
Gaussian VI, A.K.A. ”variational Gaussian approximation”, is (VI) using Gaussian probability densities
to approximate the posterior π. The restriction to Gaussian densities offers a partial solution to the
dependency problem described at the end of Subsection 2.3.1. If we model a random variable X ∈ Rd
using a Gaussian density, i.e. if X ∼ N(m,Σ), then linear dependencies between the constituent
dimensions of X can be captured by the covariance terms in Σ. Non-linear dependencies cannot be
modelled in this way, but the ability to capture linear dependencies still offers a substantial improvement
over mean-field approximation (from Subsection 2.3.1) and is often sufficient for real-world applications.
Indeed, this and many other favourable properties of Gaussian densities collectively motivate a strong
interest in finding methods to perform Gaussian VI.

The early history of Gaussian VI is enmeshed inside that of machine learning research. During the
literature search performed for this project, the earliest publication found which specifically explores
Gaussian VI is the 1993 paper [50], where Gaussian VI (with diagonal covariances and a Gaussian
posterior) is applied to fit neural network parameters. This method is called ”ensemble learning”7 in
the follow-up paper [6], which extends the work of [50] to incorporate non-diagonal covariances. In
[93], the usage scope of Gaussian VI is extended to the optimisation of hyperparameters for SVM and
Gaussian Process classification. Some years after [50], the publication [52] returns to the idea of using
Gaussian VI to fit neural networks, this time for multi-layer perceptron models. In 2009, the authors of
[78] suggest that prior literature on Gaussian VI up to that point was scant due to the need to estimate
O(d2) parameters (in the covariance), and propose an O(2d) workaround using Gaussian processes.
[19] studied Gaussian VI directly, obtaining various properties including sufficient conditions to establish
convexity and differentiability of the Gaussian VI objective— as required for the publication [65] studied
in detail for this project.

More recent work has continued to uncover new algorithms for performing Gaussian VI, for instance
in [60, 64]. Both of these publications specifically define online algorithms for variational Gaussian

7This name may prove somewhat confusing for readers from the machine learning community, where ”ensemble learning”
now refers to a technique whereby multiple models are trained on part or all of a data set and their outputs combined (q.v. ”Mixture
of Experts”).
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approximation of a posterior — that is, algorithms which do not need to process the entire data set
at once, which can impose significant memory requirements. The follow-up paper [63] offers an alter-
native to the ”R-VGA” algorithm proposed in [64] with reduced memory requirements: extensions and
generalisations of this method are proposed in [33, 56].

2.4. Kalman Filtering
Kalman filtering consists of a family of algorithms which generate sequential estimates of some un-
observed process using observations generated by or otherwise related to that process. The ODEs
provided by [65] for Gaussian VI are claimed by Lambert et al to be equivalent to a special case of the
continuous limit of the Unscented Kalman Filter: this claim is studied more thoroughly in Section 3.4.
However, the connection between 3.8 and 2.19, as explained in 3.4, may not be immediately clear to
readers unfamiliar with the Unscented Kalman Filter. Therefore, a brief introduction to Kalman filtering
is provided here: for more comprehensive explanations, we refer readers to [92].

2.4.1. Basic Kalman Filter
The Kalman Filter (KF) is an algorithm that generates estimates over discrete time steps k = 0, 1, 2, ...
for a state process xk, which is a vector of unobserved variables that evolve over time. Estimates are
obtained by combining initial assumptions about the unobserved vector with observations from a mea-
surement process yk, where at each time step k the observation yk is assumed to depend in a known
(or at least estimable), linear manner on xk. The outcome of this process is a sequence of updates
for the estimated mean vector x̂k and covariance matrix Pk associated with the state process. The KF
contains two steps —a prediction step and an update step— which, while intended to be alternated,
can be performed in any order depending on the availability of observations from yk: this flexibility is
one of the key practical advantages of Kalman filtering.

The prediction step uses the prior mean and covariance estimates of the state process to produce new
estimates of these quantities. Mathematically, this step can be written as follows:

x̂k = Fkx̂k−1 +Bkuk

Pk = FkPk−1F
T
k +Qk.

(2.13)

In the above, the following terms are used:

• x̂k−1: the previous estimate of the mean vector for the state process.
• Fk: the prediction matrix (A.K.A state transition model), which establishes a linear relationship
between x̂k−1 and x̂k.

• uk: known external influences on xk, i.e. a control vector.
• Bk: the control matrix, which converts the control vector into the state process’ coordinate space.
• Qk: the covariance matrix of the noise in the state process, which is assumed to be Gaussian in
nature.

The Kalman Filter’s update step combines the estimates x̂k, Pk with an observation yk and its associ-
ated noise covariance Rk to produce new estimates x̃k, P̃k. This is performed as follows:

x̃k = x̂k +K(yk −Hkx̂k)

P̃k = Pk −KHkPk

K = PkH
T
k

(
HkPkH

T
k +Rk

)−1
.

(2.14)

The additional terms introduced in (2.14) are:

• Hk: the observation model, which specifies the (presumed linear, known) relationship between
the states xk and the observations yk. Equivalently, Hk transforms vectors from the state space
to the observation space.
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• Rk: the covariance matrix of the observation noise, which is assumed to be Gaussian.
• K: the Kalman gain. This term describes the relative influence of yk over x̂k on x̃k. This can be
seen by rewriting x̃k as an interpolation between x̂k and yk: x̃k = (I −KHk)x̂k +Kyk. A ”larger”
K (as measured by its determinant) will place a greater weight on the measurement yk, whereas
a ”smaller” K will favour the prediction x̂k. Importantly for Section 3.4: if K is the zero matrix,
then x̃k depends entirely on x̂k, which is equivalent to using only the Kalman Filter’s prediction
steps without any observations.

Even if no observations are available, the KFmust be initialised with some user-supplied x̂0, P0. Further-
more: in the basic implementation of the filter, all the other terms used above (namely: Fk, uk, Bk, Qk,Hk, Rk)
must be supplied by the user.

The KF can be described as a sequential Bayesian model, in the manner as Hidden Markov Models
(with which Kalman Filters share a common graphical structure), MCMC techniques and many practical
implementations of VI. To briefly summarise this interpretation: at each update step, the KF combines
prior knowledge x̂k with an observation yk to produce a posterior estimate x̃k. This procedure can be
repeated whenever new observations become available, as the Markov property is assumed to hold
along the sequence of hidden states, i.e. p (xk|x0, ..., xk−1) = p (xk|xk1). Under suitable conditions
(linearity, white noise from βt, ηt), the mean and covariance updates prescribed in equations (2.14) are
in fact the optimal estimators (according to the mean-squared error) for these moments of xk. For a
more comprehensive explanation of the Bayesian nature of Kalman filtering, we refer readers to [92],
Section 6.

As presented above, the KF is constructed for a discrete-time Markov process

xk = Fkxk−1 +Bkuk + wk, (2.15)

where wk ∼ N(0, Qk). If each step k → k+1 corresponds to a fixed-size time step∆t, then as we take
the limit of (2.15) as ∆t→ 0 (after finding appropriate infinitesimal versions for Fk,Hk, etc.) we obtain
the continuous-time Markov process:

dxt = F (t)xtdt+B(t)u(t)dt+ dβt

dyt = H(t)xtdt+ dηt
(2.16)

where βt and ηt are independent Brownian motions with diffusion matrices Q(t), R(t) respectively.
Since, from (2.16), we can write dxt = f(xt, t)dt + g(xt, t)dWt (i.e. a generalised Itô process), we
see that the marginal probability density pt of xt obeys the Fokker-Planck equation and is generally
intractable as a result. However, we are still able to obtain information about the location of xt by
tracking its moments. Equations (2.16) represent the state- and measurement-space models of the
Kalman-Bucy Filter (KBF), which prescribes the following ODEs to track the mean x̂t and covariance
Pt of xt ([55], Thm. 7.3):

dx̂t
dt

= F (t)x̂t +B(t)u(t) +K(t) (yt −H(t)x̂t)

dPt
dt

= F (t)Pt + PtF
T (t) +Q(t)− PtH(t)R−1(t)HT (t)Pt

K(t) = PtH
T (t)R−1(t).

(2.17)

2.4.2. Unscented Kalman Filter
One limitation of the basic KF is the assumption of linearity within the state-space and measurement
models, as represented by the matrices Fk,Hk in (2.13) and (2.14), respectively. This limitation is also
inherent to the Kalman-Bucy filter for continuous-time state space models. Let us drop the assumption
of linearity to consider more general continuous-time states taking the form:
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dxt = f(xt, t)dt+ L(t)dβt

dyt = h(xt, t)dt+ V (t)dηt.
(2.18)

In this system of (Itô) SDEs, we have replaced the matrices Ft,Ht with more general non-linear trans-
formations f(·, t), h(·, t). The matrices L(t), V (t) are the dispersion matrices of xt, yt, serving to trans-
form the diffusions βt, ηt into the state- and measurement-space coordinates, respectively. As with
the Kalman-Bucy model in (2.16), the marginal distribution of xt satisfies the FPE and is generally in-
tractable. Furthermore, the generalisation introduced by f and h makes finding optimal solutions for
the mean mt and covariance Pt of xt also intractable [91]. Hence, approximations must be used: one
popular option is the Extended Kalman Filter (EKF), which uses a linearisation (i.e. first-order Taylor
approximation) to generate mean and covariance updates. As with any linearisation, the EKF does not
perform well in highly non-linear settings: this issue prompted the invention of the Unscented Kalman
Filter (UKF), first proposed in [58]. First created for discrete-time systems, the UKF identifies changes
to mk and Pk (i.e. the mean and covariance of the discretised xk, respectively) by tracking a set of
sigma points in the state space over time (i.e. through repeated applications of f ). The sigma points
are chosen such that their mean and covariance equal mk, Pk for all k ≥ 0. For the sake of brevity, the
details of this process (A.K.A. the unscented transform) are omitted here: we refer readers to [91] or
[92], Section 8.8 for full descriptions of the unscented transform and the UKF. Note that the ”Gaussian
cubature” technique referred to by Lambert et al. in [65] (and utilised in Chapter 5) is a variant/special
case of the unscented transform used in the UKF8. The Gaussian cubature method may also be consid-
ered as the multivariate extension of the ”Gaussian quadrature” method for approximating univariate
integrals using sigma points [67]: in academic literature, the terms are sometimes used interchangeably
(e.g. in [65]).

As with the basic KF, it is possible to adapt the UKF to work directly on continuous-time systems such
as (2.18): this is the principal contribution provided in [91], where the Unscented Kalman-Bucy Fil-
ter (UKBF) is defined. This algorithm makes use of the unscented transform to provide the following
trajectories for mt, Pt ([91], eq. (29)):

dmt

dt
= f(X(t), t)wm +K(t) (z(t)− h(X(t), t)wm)

dPt
dt

= X(t)WfT (X(t), t) + f(X(t), t)WXT (t) + L(t)Qc(t)L
T (t)−K(t)V (t)Rc(t)V

T (t)KT (t)

K(t) = X(t)WhT (X(t), t)
(
V (t)Rc(t)V

T (t)
)−1

.

(2.19)

Note that (2.19) has been written using the same notation found in [91] and introduces several new
terms:

• X(t): a matrix containing sigma points.
• wm: a vector containing weights for the sigma points.
• W : a matrix containing weights for the sigma points.
• Qc(t): the diffusion matrix for βt. Note that in [91], the ODEs in (2.19) are defined for general
diffusion processes βt and ηt. In the case that βt is a standard Brownian motion, we haveQc(t) =
I.

• Rc(t): the diffusion matrix for ηt. In the case that ηt is a standard Brownian motion, we have
RC(t) = I.

Without a thorough understanding of the unscented transform and the UKBF, it may not be immediately
clear what the effects of X(t), wm and W are. Thankfully, a set of translations is available in [91], eq.

8This is explained in Section II.C of [44]: in particular, see Table I for a direct comparison of the parameters used by each
model.
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(58) and has been partially reproduced below in (2.20). Through these translations and their accom-
panying explanation in [91], we see that the usage of X(t), wm,W serves to generate approximate
expectations under the marginal law pt of xt.

E (f(xt, t)) ≈ f(X(t), t)wm

E (h(xt, t)) ≈ h(X(t), t)wm

Cov (xt, f(xt, t)) ≈ X(t)WfT (X(t), t)

Cov (xt, h(xt, t)) ≈ X(t)WhT (X(t), t)

(2.20)

We can thus rewrite (2.19) in terms of the approximate expectations given by (2.20):

dmt

dt
≈ E (f(xt, t)) +K(t) (z(t)− E (h(xt, t)))

dPt
dt
≈ Cov (xt, f(xt, t)) + Cov (f(xt, t), xt) + L(t)Qc(t)L

T (t)−K(t)V (t)Rc(t)V
T (t)KT (t)

K(t) ≈ Cov (xt, h(xt, t))
(
V (t)Rc(t)V

T (t)
)−1

.

(2.21)

2.4.3. Connections to VI
As noted above, Kalman filters can be interpreted as sequential Bayesian algorithms: hence, there is
extensive literature describing, investigating or exploiting this connection. However, there is relatively
little literature specifically comparing VI and Kalman filters. The principal reason for this is that the
fundamental VI optimisation problem (VI) is very broad, so it does not automatically correlate with a
Kalman filter setting in the most general case. When VI is adapted to be performed sequentially, how-
ever, the connections become clearer. Indeed, for online Gaussian VI (as defined in Subsection 2.3.2),
the similarities to Kalman filtering are obvious: both methods generate sequential Bayesian updates
to a probability distribution (which we shall assume is stationary) based on a stream of incoming data.
This resemblance was observed, for instance, in [60], where the authors propose (but do not explicitly
show) that their algorithm for online Gaussian VI resembles the UKF. In [64], the main group behind
[65] (i.e. Lambert, Bonnabel, Bach) show that their ”R-VGA” algorithm (which is an ”online” version
of Gaussian VI) is equivalent to the EKF when used on regression problems, and equivalent to the
original KFs when applied to (Bayesian) linear regression with Gaussian noise. Other recent publica-
tions into online Gaussian VI [33, 56] have also considered the interpretation of their models as Kalman
filters, even using Kalman filters as the primary modelling paradigm in some cases [20, 21, 108]. VI
has also been employed as a complexity-reduction technique to simplify the storage and computation
of KF parameters in high dimensions [28], most notably the dispersion matrices.

One useful consequence of the connections between Kalman filtering and VI is the usage of the un-
scented transform/Gaussian cubature techniques to compute approximate expectations for VI and
other sequential Bayesian models, as seen in e.g. [6, 52, 93]. This application is also exploited for
the numerical computations performed in [65].

2.5. Calculus of Variations
This section has been included in order to guide readers unfamiliar with the calculus of variations. The
principle tool from this branch of mathematics that is required here is the first variation of a functional;
unfortunately, there are multiple distinct definitions of the terms ”variation” and ”first variation” used in
the sources referenced in this work. To ease comprehension of the synthesis performed through this
project, the two most relevant definitions of the ”first variation” are presented together in this section,
along with indications as to where each of them is used by authors whose work is used later on. There-
fore, this section is by no means a detailed introduction to the calculus of variations, as descriptions of
several key concepts (e.g. the Euler-Lagrange equation, higher-order variations, symmetries, usage in
physics and machine learning) have been omitted for brevity: rather, Section 2.5 is intended to serve
merely as a clarifying appendix.
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2.5.1. Santambrogio definition (Functional derivative)
In [90] (Definition 7.12), Santambrogio offers the following implicit definition for the first variation of a
functional F : P(Ω) 7→ R ∪ {+∞}. The first variation δF

δϱ (ϱ) is the measurable function which satisfies,
for ϵ ∈ [0, 1] and an arbitrary test function h ∈ P(Ω):

d

dϵ
F (ϱ+ ϵh)

∣∣∣∣
ϵ=0

=

∫
Ω

δF

δϱ
(ϱ) dh. (2.22)

Alternatively, if we take F to be a function of probability densities instead of probability measures (which
is more common in practice and is used for, e.g. descriptions of gradient flows), we can rewrite the
integral above as:

d

dϵ
F (ϱ+ ϵh)

∣∣∣∣
ϵ=0

=

∫
Ω

δF

δϱ
(ϱ)h(x)dx. (2.23)

This definition of the first variation can be found in literature related to optimal transport theory and its
applications, e.g. [23, 24, 36, 110, 111] - with most of these sources citing [90] or the Villani book [104]
as their source for this definition. This may imply that the ”functional derivative” definition of the first
variation has its roots in an influential text in optimal transport theory (e.g. Villani’s book).

The object δFδϱ is also known as the functional derivative in other texts. Informally, δFδϱ (x) is analogous
to a partial derivative, in that it measures the change in the value of F when the value of ϱ changes
at the point x ∈ Ω, specifically towards the value h(x). Naturally, the definition above is only valid if a
function δF

δϱ (ϱ) satisfying (2.22) actually exists. There are further (rather technical) requirements for the
first variation to exist given in [90] (Def. 7.12), but they can be assumed to hold for the application of
this ”first variation” in Subsection 2.1.3 and so are omitted here for simplicity.

To provide examples of how definition (2.23) of the first variation can be applied in practice, let us
consider the functionals F(ϱ) =

∫
Ω
(log ϱ(x)) ϱ(x)dx and V(ϱ) =

∫
Ω
V (x)ϱ(x)dx from (2.7). For F , we

have that

∫
Ω

δF
δϱ

(ϱ) dh =
d

dϵ
F(ϱ+ ϵh)

∣∣∣∣
ϵ=0

=
d

dϵ

∫
Ω

log (ϱ(x) + ϵh(x)) (ϱ(x) + ϵh(x)) dx

∣∣∣∣
ϵ=0

=

∫
Ω

d

dϵ
(log (ϱ(x) + ϵh(x)) (ϱ(x) + ϵh(x))) dx

∣∣∣∣
ϵ=0

=

∫
Ω

(
h(x)

ϱ(x) + ϵh(x)
(ϱ(x) + ϵh(x)) + log(ϱ(x) + ϵh(x))h(x)

)
dx

∣∣∣∣
ϵ=0

=

∫
Ω

h(x)(1 + log(ϱ(x) + ϵh(x)))dx

∣∣∣∣
ϵ=0

=

∫
Ω

h(x)(1 + log ϱ(x))dx.

(2.24)

Following the implicit definition of δFδϱ expressed in (2.23), the last line above implies that δFδϱ (ϱ) =
1 + log ϱ. Applying the same method to V yields

δV
δϱ

(ϱ) =
d

dϵ

∫
Ω

V (x)(ϱ(x) + ϵh(x))dx

∣∣∣∣
ϵ=0

=

∫
Ω

d

dϵ
V (x)(ϱ(x) + ϵh(x))dx

∣∣∣∣
ϵ=0

=

∫
Ω

V (x)h(x)dx.

(2.25)
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As before, the last line above implies that δVδϱ (ϱ) = V .

2.5.2. Lambert et al. definition (Gateaux/Fréchet derivatives)
An alternative definition of the term ”first variation”, used in the key reference [65], is to use the LHS of
(2.22) directly as the first variation δGF w.r.t. ϱ in the direction h:

δGF (ϱ, h) :=
d

dϵ
F (ϱ+ ϵh)

∣∣∣∣
ϵ=0

(2.26)

The expression in (2.26) is also known as the Gateaux derivative of F . This derivative can also be
expressed as:

d

dϵ
F (ϱ+ ϵh)

∣∣∣∣
ϵ=0

= lim
ϵ↘0

F (ϱ+ ϵh)− F (ϱ)
ϵ

. (2.27)

It is also possible to define another derivative of F called the Fréchet derivative. Adapting the definition
provided in [72]: let V,W be two normed vector spaces and let F : U →W for an open subset U ⊂ V .
The Fréchet derivative, if it exists, is the bounded linear operator δF (ϱ, ·) : V → W satisfying, for all
h ∈ V ,

lim
||h||V →0

||F (ϱ+ h)− F (ϱ)− δF (ϱ, h)||W
||h||V

= 0. (2.28)

Alternatively, the condition in (2.28) can be converted into the following form, which shows that the
Fréchet derivative explicitly provides a linear approximation of F at ϱ+ h:

F (ϱ+ h)− F (ϱ)− δF (ϱ, h) = o(||h||V ) (2.29)

The condition that (2.28) must hold for all h ∈ V is quite strong, so the existence of the Fréchet derivative
is in many cases a non-trivial matter. One sufficient condition to establish the existence of the Fréchet
derivative at ϱ ∈ U is if F is analytic in a region containing a diagonal matrix containing the spectrum
of ϱ ([72], Section 2.2). Equivalently, the Fréchet derivative exists if the functional F can be expressed
as a power series (adapted from [59], Section 4.1). If the Fréchet derivative exists, it is equal to the
Gateaux derivative: δF (ϱ, h) = δGF (ϱ, h). Furthermore, the existence of the Fréchet derivative implies
that the Gateaux derivative can provide a linear approximation in the same manner as (2.29). The
Fréchet and Gateaux derivatives possess many of the properties of the ”conventional” derivative, such
as the product rule (required for Section 3.2): δ(FG)(ϱ, h) = δF (ϱ, h)G(ϱ) + F (ϱ)δG(ϱ, h) .

The Fréchet/Gateaux definition of the first variation9 may be more common in mathematical literature,
being found (for example) in [34, 54, 87]. A common source of confusion when encountering these
derivatives in writing is that the Gateaux derivative is typically written with both arguments specified
(e.g. δF (ϱ, h)), whereas this is occasionally omitted for the Fréchet derivative (e.g. δF (ϱ) or even just
δF ). This discrepancy is likely rooted in the fact that the Fréchet derivative should exist for any test
function h, even though the value of this derivative is, in general, not the same for different h.

2.5.3. Comparison and other definitions
The definitions of the term ”first variation” provided in Subsection 2.5.1 and Subsection 2.5.2 are not
equivalent, and will lead to different results when applied to the same functional F . Fundamentally,
this is because the functional derivative (2.22) and the directional derivative (2.26) are different objects
which are not interchangeable. To see this, consider the functional F(ϱ) from (2.7). In Subsection 2.5.1,
we found that the first variation δF

δϱ (ϱ) = 1 + log ϱ. When applying the definition (2.26), it is clear from
(2.24) that we obtain δF (ϱ, h) =

∫
Ω
h(x)(1 + log ϱ(x))dx. In this case, definitions (2.22) and (2.26) are

9Unfortunately, even the term ”Fréchet derivative” is not entirely free from ambiguity: in the textbook [96], the functional
derivative δF

δϱ
is referred to as the ”functional (or Fréchet) derivative”.
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clearly not equal nor interchangeable: the former yields a function of a variable x ∈ Ω, whereas the
latter yields a functional of a functional h (in some set containing P(Ω)) which has been integrated over
the space Ω, thus eliminating any dependency on the value of any point x ∈ Ω.

Unfortunately, there are even more alternative definitions of the term ”first variation” to be found in other
texts. For instance, some authors [41] define the ”first variation” as simply being a small increment in
a certain direction, i.e. ∆F (ϱ, h) := F (ϱ + h) − F (ϱ), which is the linear component of the Fréchet
approximation seen in (2.29).

In his work [80], which established the theoretical framework and justifications for Wasserstein gradient
flows known collectively as ”Otto calculus”, Felix Otto also describes a ”first variation” of a curve ρ(k)(t) :
[0, 1]→ P(Ω) by crafting variations of that curve ρ(k)ϵ (t) involving a parameter ϵ and taking the derivative
d
dϵρ

(k)
ϵ (t)

∣∣∣∣
ϵ=0

, which will find the ”optimal” curve between ρ(k−1) and ρ(k). This definition is also used

by Otto et al. in the earlier paper establishing Wasserstein gradient flows themselves [57]. The ”first
variation” seen here resembles (and is actually a special case of) the Gateaux definition (2.26), with the
set of possible ”directions” for this derivative being restricted to a single curve indexed by time. This
usage of the Gateaux derivative evokes the application of the calculus of variations most commonly
employed in physics, which is to adhere to the principle of stationary action in Lagrangian mechanics by
finding a trajectory which minimises the action integral (A.K.A. the variational principle). Unfortunately,
this can be achieved by setting either the functional derivative (2.22) or the Gateaux derivative (2.26)
to zero, which further contributes to the confusion in literature. Physicists may also define the ”first
variation” through an integral resembling [14]:

δF (ϱ, h) =

∫
h

(
∂F

∂ϱ
+
∂F

∂ϱ′

)
dx (2.30)

Although this may not be obvious at first glance, definition (2.30) is simply a special case of (2.26) when
F is defined to be the integral of a Lagrangian over the state space. Textbook treatments of these forms
of the ”first variation” can be found in [61, 14]: for accessible explanations of the physical interpretation
of this variation, we refer readers to [45, 97].

An alternative approach to these misapprehensions is seen in the book [89] on calculus of variations,
where Santambrogio appears to be avoiding the ”first variation” nomenclature issue entirely by avoiding
use of this term altogether, preferring instead to focus directly on the optimisation problems typically
handled through variational methods. Other authors appear to have adopted a similar approach in their
textbooks, e.g. [100].

A full evaluation of the compatibility and strengths of this set of definitions would likely require a master’s
thesis of its own, and so must be omitted here for brevity.

2.6. Riemannian Geometry
The space P2(Rd)may be interpreted as a Riemannian manifold, which permits concepts from differen-
tial calculus to be applied to Wasserstein gradient flows. In recognition of the seminal publication [80],
which laid out the essential framework for the Riemannian nature of the 2-Wasserstein space, the study
of such manifolds is denoted Otto calculus. Applications are seen, for instance, in Section 3.3, where
we work with gradients over P2(Rd) and BW(Rd) directly (as opposed to working in the product space
Rd × S++

d , which is isomorphic to BW(Rd)). For clarity and brevity, many ideas and results from Otto
calculus (and more broadly Riemannian geometry) have been omitted, with only definitions essential
to understanding Section 3.3 being included here. The material below has been adapted primarily from
Chapter 1.3 of [37] and Section 2 of [77]; an accessible overview of the core results in Otto calculus
may be found in Section 2 of [3].

Loosely speaking, a manifold M is a d-dimensional subspace of an ambient vector space (e.g. RD,
where d < D) which is topologically similar to Euclidean space on a local level. More precisely, M
is a manifold if each point p ∈ M has a neighbourhood Up homeomorphic to an open subset of the
Euclidean space Rd. These homeomorphisms φi and their domains Ui are called charts (Ui, φi): an
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atlas {(Ui, φi)} is a set of charts which collectively cover the entirety ofM . Wemay also define invertible
transition maps τa,b : Ua → Ub; τa,b(r) := φb(φ

−1
a (r)) between two charts (Ua, φa) and (Ub, φb), allowing

them to be compared. If, for a given atlas, all transition maps are smooth (i.e. infinitely differentiable -
denoted C∞), then the atlas is considered smooth andM is a smooth manifold.

For a given point p ∈ M , let us consider all the curves in a smooth manifold M which pass through
p. Without loss of generality, we can parametrise each of these curves as γ : (−1, 1) → M such that
γ(0) = p. By considering the gradient (within the ambient space) of each curve γ as it passes through
p, we can form the tangent space10 TpM of M at p, which is a d-dimensional vector space containing
all possible directional derivatives which can be taken from the point p. More precisely:

TpM := {γ̇(0) : γ : (−1, 1)→M,γ(0) = p} (2.31)

It is possible to imbue manifolds with additional structure that ultimately permits derivatives to be taken.
This is done by equippingM with ametric (A.K.A.metric tensor) g. In essence, g is amapping g : p 7→ gp
which assigns to each point p an inner product gp : TpM ×TpM → R, which allows us to define angles,
lengths (via the induced norm ||·||gp ) and distances (via the induced distancemetric d||·||gp (·, ·)) between
elements of TpM . We write 〈·, ·〉p to denote the use of gp, which in addition to the usual properties for
inner products must also be positive-definite, i.e. 〈r, r〉p > 0, ∀r 6= 0. For a given chart (U,φ) and
a point p ∈ U , it is possible to obtain a coordinate basis {∂i}di=1 for TpM by mapping the canonical
basis {ei}di=1 from Rd via φ−1; for any gp, we may define a (SPD) matrix Gp using Gpi,j = 〈∂i, ∂j〉p
which captures the inner product gp: 〈r, q〉p = rTGpq. If the mappings R(p) = 〈∂i, ∂j〉p vary smoothly
across M (for an appropriate choice of atlas and using transition maps where necessary), then g is a
Riemannian metric and (M, g) is a Riemannian manifold.

Within Riemannian manifolds, many geometric concepts such as angles, volumes and distances may
be defined, thus permitting ideas from calculus to be brought to the manifold setting. For this project,
we are particularly interested in the definition of the gradient ∇F for a function F : M → R. For all
p ∈M , ∇F (p) is the unique element of TpM such that, for an arbitrary curve γ : (−1, 1)→M,γ(0) = p,
the following holds:

〈∇F (p), γ̇(0)〉p =
d

dt

∣∣∣∣
t=0

F (γ(t)) (2.32)

Alternatively, we may consider a specific curve {pt}t∈R ⊂M with a corresponding sequence of tangent
vectors {vt}t∈R, where vt ∈ TptM for all t. Adhering to the notation used in [65], we may thus rewrite
the definition (2.32) for ∇F as follows:

〈∇F (pt), vt〉p =
d

dt
F (pt) (2.33)

Informally speaking, the definition (2.33) of ∇F suggests the following interpretation. At the point pt ∈
M , the object ∇F (pt) is a vector indicating which direction the function F would grow the fastest, if pt
were to move in this direction at time t. However, pt is actually moving in the direction vt: the similarity
between the directions∇F (pt) and vt, captured by the inner product 〈∇F (pt), vt〉p, determines the rate
at which the value of F will change as we follow the true trajectory pt over time.

The construction of TpM raises the question of how to assign elements q ∈M near p to relevant vectors
in TpM and vice versa. These assignments are performed using the logarithmic and exponential maps,
respectively. For a vector v ∈ TpM , let us construct a geodesic γv : [0, 1] → M such that γv(0) = p,
γ̇(0) = v and |γ̇v(0)| = |v| (i.e. γv has constant speed). This geodesic is unique for any given v, and
it has a unique endpoint γv(1) = q: we thus define the exponential map expp(v) = q. Conversely:
if we start from a point q ∈ M , there is a unique vector v such that a geodesic γv joins p and q in

10Note that γ̇(0) will indeed be tangential toM ifM is smooth. IfM contains a discontinuity, inflection point or singularity, then
it is no longer smooth. If M includes linear segments (where tangents are not possible), then there will be discontinuities in the
second derivatives of the transition maps and soM cannot be smooth. Therefore, the smoothness ofM is sufficient to establish
that γ̇(0) is tangent to M .
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Property Value chosen for (P2(Rd),W2) Explanation

g(p)
∫
〈·, ·〉dp

This choice of metric tensor is smooth for
(P2(Rd),W2) and thus endows this space with
Riemannian structure.

TpP2(Rd) {∇φ|φ : Rd → R}

Starting from p, moving in a given direction
within (P2(Rd),W2) is equivalent to applying
some vector field v : Rd → Rd to a set of
particles distributed according to p. It may
be shown that, in order to satisfy the con-
tinuity equation (2.5) for a curve {pt}t≥0 ∈
(P2(Rd),W2), we must have velocities (i.e.
tangents) of the form described here.

expp(∇φ) (id +∇φ)#p
The exponential map is defined so that the
zero vector maps p to itself, i.e. expp(0) =
(id)#p = p.

logp(q) ∇φ− id

The logarithmic map provides the optimalW2

transport displacement between p and q, af-
ter subtracting for the identity displacement.
Using (2.1), we may also write logp(q)(x) =
−T (x).

Table 2.1: a dictionary containing key features of the (P2(Rd),W2) manifold.

the manner described above. We may thus define the logarithmic map logp(q) = v. Note that the
mappings provided by expp(·) and logp(·) depend on the choice of metric tensor g, which determines
”lengths” and ”distances” inM and, consequently, the geodesics they are constructed with (and which
in turn are used to construct expp(·) and logp(·)).

This text is concerned specifically with the (P2(Rd),W2) space and its interpretation as a Riemannian
manifold. The basic characteristics of this manifold have been provided in Table 2.1, along with brief
explanations. Further discussion of this manifold may be found in Subsection 3.3.1. However, a full
justification of the Riemannian structure of (P2(Rd),W2) is omitted: we refer readers to Appendix B of
[65] for suitable explanations.



3
Gaussian Variational Inference

through Wasserstein Gradient Flows

In this chapter, we shall explore in detail the method for performing Gaussian variational inference
established by Lambert et al. in their 2022 publication ”Variational inference via Wasserstein gradient
flows” [65]. This text thus comprises the primary source for the following chapter, with results from
other sources being cited where necessary. In particular, we shall consider two different proofs of
[VI_WGF Thm 1], both provided in [65]: for each of these, the proof has been reproduced in this chapter,
with additional explanations and commentary added where appropriate. In Section 3.4, the connection
between the Lambert et al. method and the Unscented Kalman Filter, proposed in [65], is investigated
more thoroughly.

3.1. Summary
Let us first consider how the JKO scheme, as described in Section 2.2, might be used to describe
Gaussian VI as described in Subsection 2.3.2. Let BW(Rd) be the set of Gaussian densities on Rd,
equipped with theW2 distance which, between Gaussians, has the closed form expression

W 2
2 (p1, p2) = ||m1 −m2||2 + B2(Σ1,Σ2) (3.1)

where B2(Σ1,Σ2) is the squared Bures distance between the covariance matrices

B2(Σ1,Σ2) = tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
. (3.2)

The restriction of the discretisation (2.11) to BW(Rd) is referred to as the ”Bures-JKO scheme” by
Lambert et al., and specifies the following problem:

pt+h ∈ argmin
p∈BW(Rd)

{
KL(p||π) + W 2

2 (p, pt)

2h

}
. (3.3)

Let us now consider the parametrisation of p = N(m,Σ). By applying (3.1) and (3.2), we are able to
obtain the following expression for what Lambert et al. call the ”Bures-JKO scheme”:

argmin
m∈Rd,Σ∈S++

d

{
KL(p||π) + 1

2h
||m−mk,h||2 + B2(Σ,Σk,h)

}
(3.4)

20
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Let the posterior π(x) ∝ e−V (x) for the potential V . Then taking the time-step limit of the scheme (3.3)
leads to the following FPE describing the evolution of the solutions pt:

d

dt
pt = ∆pt +∇ · (pt∇V ). (3.5)

As with the general case in Section 2.2, (3.5) describes the marginal distribution of a particle xt following
a Langevin diffusion with stationary distribution pπ, the closest Gaussian approximation of π according
to the left KL divergence:

dxt = −∇V (xt)dt+
√
2IdWt, (3.6)

The connections between π and (3.5), (3.6) provide opportunities to learn about the posterior. The
diffusion (3.6) may be repurposed into a sampling mechanism which should empirically reconstruct pπ
(q.v. ”Langevin Monte Carlo”). Unfortunately, this method does not scale well to high dimensions (q.v.
the ”curse of dimensionality) and does not provide clear indications of convergence. A more direct
approach would be to discretise (3.5) using Euler schemes, Runge-Kutta methods, etc. and thus track
a sequence of Gaussian approximations to π. However, these techniques will become very expensive
and inaccurate for the PDE (3.5), which must be propagated over an ”infinite” (in practice: very large
— the curse of dimensionality is also an issue here) number of dimensions to reasonably simulate pt.

An alternative approach to learn about π using Gaussian approximations can be found in Särkkä’s
characterisation of the Unscented Kalman Filter [91]. For a Langevin particle xt ∼ pt (where pt evolves
according to the general JKO-FPE (2.9) in P2(Rd) and needn’t be Gaussian), it may be shown ([65],
Appendix B.4) that the mean and covariance of pt behave as follows:

ṁt = −E (∇V (Xt))

Σ̇t = 2I − E (∇V (Xt)⊗ (Xt −mt) + (Xt −mt)⊗∇V (Xt))
(3.7)

By replacing {Xt}t≥0 with a sequence of Gaussian random variables {Yt : Yt ∼ pt = N(mt,Σt)}t≥0, we
can use the same formulas above to track mt and Σt over time and thus obtain a Gaussian-restricted
form of variational inference. Note that in general, the ODEs (3.7) and (3.8) are no longer describing
the same mean and covariance evolutions - see Subsection 4.1.2 for more details.

ṁt = −E (∇V (Yt))

Σ̇t = 2I − E (∇V (Yt)⊗ (Yt −mt) + (Yt −mt)⊗∇V (Yt))
(3.8)

Alongside Gaussian VI, Equations (3.8) also describe a special case of the UKBF: see Subsection 2.4.2
for a description of the UKBF, and Section 3.4 for a more thorough explanation of the interpretation of
(3.8) as an UKBF. Although the specific characterisation of Gaussian VI as the UKBF ODEs (3.8) has
not, to the author’s knowledge, been postulated prior to [65], the connections between KF and VI have,
in general, been thoroughly explored in previous research (see Subsection 2.4.3). In fact, the central
contribution of Lambert et al. in [65] is to show that Gaussian VI may be interpreted as a Kalman filter
because the latter emerges as a Wasserstein gradient flow applied to the former. More precisely, they
show that up to first-order, taking the limit of the Bures-JKO discretisation (3.4) yields precisely the
ODEs (3.8). This result is encapsulated in the following theorem, provided in [65]:

Theorem 3.1 (”VI-WGF” Theorem 1). Let {pt}t≥0 : pt = N(mt,Σt) be the limiting curve obtained via
the Bures-JKO scheme (3.3). Then, for a target posterior π ∝ exp(−V ), the Gaussian parameters
mt,Σt satisfy Särkkä’s system of ODEs as given in (3.8).

Theorem 3.1 provides further justification for the connections between VI and KF seen in Subsec-
tion 2.4.3 by providing a new channel through which to express the former in terms of the latter. Fur-
thermore, this channel allows for specific results about Wasserstein gradient flows and Kalman filters
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to be applied to Gaussian VI, e.g. Corollary 3 in [65]. In [65], Lambert et al. provide three distinct proofs
for Theorem 3.1: their presentation of these proofs omits various computations and technical details
which have been verified in this chapter. Furthermore, the proofs themselves offer further insight into
the system (3.8), the sequence of Gaussian approximations {pt}t≥0 and its relationship to the more
general JKO scheme defined on P(Ω).

3.2. Proof of Theorem 3.1 via Bures-JKO
Here, the proof of Theorem 3.1 provided by Lambert et al. using the Bures-JKO scheme is reproduced.
Additional details of the proof not explicitly stated in [65] are provided. To assist the reader’s compre-
hension of Lambert et al’s original work, we shall for the most part adhere to their notation and follow
the general structure of their proof.

3.2.1. Overview
The objective of Theorem 3.1 is to show that the curve {pt}t≥0 of Gaussian distributions which satisfies
the JKO-FPE (2.9) also satisfies Särkkä’s system of ODEs as given in (3.8). One way of doing so
is to start from a special case of the JKO scheme discretisation (2.11) and take the step-size limit:
this is precisely what Lambert et al. achieve in this proof. We can restrict the search space to that
of Gaussian probability measures by introducing the closed-form GaussianW2 distance found in (3.1),
which reduces the problem (2.11) to finding the mean and covariancem,Σwhich solve the minimisation
problem (3.4).

A solution m̂, Σ̂ for (3.4) is known to exist, as this problem is a special case of the optimisation problem
(13) in [57] (which was shown to have a solution under conditions encompassing this present work).
Let L(m,Σ) := KL(p||π)+ 1

2h ||m−mk,h||2+B2(Σ,Σk,h). We can findm,Σ which minimise L by finding
the stationary points, i.e. where ∇mL = 0 and ∇ΣL = 0 respectively. By considering solutions to
argminL(mt,Σt) for unknown sequences {mt}t≥0, {Σt}t≥0, which arise as the step size h ↘ 0, we
can obtain expressions for ṁt and Σ̇t.

3.2.2. Mean evolution
Let us consider a Gaussian density p = N(m,Σ) and its negative entropy H(p) = Ep(log p(x)). From
Identity B.1, we have ∇mH(p) = 0; from Identity B.2, we have ∇mp(x) = −∇xp(x). We can now take
the gradient:

∇mKL(p||π) = ∇mEp (log p(x)− log π(x))

= 0−∇m
∫
Rd

log π(x)p(x)dx

=

∫
Rd

log π(x) (−∇mp(x)) dx

=

∫
Rd

log π(x) (∇xp(x)) dx.

(3.9)

At this point, Lambert et al. refer to their use of ”integration by parts”, which in this case is applied
component-wise across the elements of the vector∇p(x). By applying integration by parts for univariate
functions, we have

∫
R log π(x) ∂

∂xi
p(x)dxi = limr→∞[log π(x)p(x)]xi=r

xi=−r−
∫
R p(x)

∂
∂xi

(log π(x))dxi. Since
the Gaussian density p(x) → 0 as xi → ∞ for any of the components xi, and since log π(x) ∝ −V (x)
is assumed to be polynomial (or, at least, have bounded growth which is slower than that for the in-
verse exponential p(x)), we have that log π(x)p(x) → 0 as xi → ∞. Therefore, the boundary term
vanishes and, by combining the component-wise results into a single vector, we obtain the desired
result:

∫
Rd log π(x)∇xp(x)dx = −

∫
Rd ∇x log π(x)p(x)dx. We therefore have that

∇mKL(p||π) = −
∫
Rd

∇x log π(x)p(x)dx

= −Ep (∇x log π(x))
(3.10)
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and that

∇mL(m,Σ) = ∇KL(p||π) + 1

h
(m−mt)

= −Ep (∇x log π(x)) +
1

h
(m−mt).

(3.11)

Since m represents a potential evolution step for mt, we can rewrite m = mt+h and consider the limit
limh↘0

mt+h−mt

h := ṁt, which yields:

ṁt = Ep (∇x log π(x))
= −Ep (∇xV (x))

(3.12)

3.2.3. Covariance evolution
From Identity B.4, we have ∇ΣH(p(x)) = − 1

2Σ
−1; from Identity B.5, we have ∇ΣEp (log π(x)) =

1
2Ep

(
∇2
x log π(x)

)
. We are thus able to write:

∇ΣKL(p||π) = ∇Σ(H(p)− Ep (log π(x))

= −1

2
Σ−1 − 1

2
Ep
(
∇2
x log π(x)

) (3.13)

Let us consider TΣ,Σt , which is the optimal transport map between two Gaussian densitiesN(0,Σ) and
N(0,Σt). It is known [7] that TΣ,Σt has the form

TΣ,Σt = Σ− 1
2

(
Σ

1
2ΣtΣ

1
2

) 1
2

Σ− 1
2 (3.14)

and, by extension, that TΣ,Σt = (TΣt,Σ)−1. From [7], we know that the covariance gradient of the
squared Bures distance is:

∇ΣB2(Σt,Σ) = I − TΣ,Σt (3.15)

Recalling the definition L(m,Σ) = KL(p||π) + 1
2h ||m−mk,h||2 + B2(Σ,Σk,h), we obtain:

∇ΣL(m,Σ) =
1

2h

(
I − TΣ,Σt

)
− 1

2

(
Σ−1 + Ep

(
∇2
x log π(x)

))
(3.16)

By setting ∇ΣL(m,Σ) = 0, we aim to find a solution for (3.4). This yields:

I = TΣ,Σt + hΣ−1 + hEp
(
∇2
x log π(x)

)
(3.17)

If we multiply the above expression by Σ separately on the left and the right, we obtain the following
expressions for Σ:

Σ = ΣTΣ,Σt + hI + hΣEp
(
∇2
x log π(x)

)
Σ = TΣ,ΣtΣ+ hI + hEp

(
∇2
x log π(x)

)
Σ

(3.18)
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By summing these together, we obtain a symmetric1 expression for Σ:

Σ =
1

2
TΣ,ΣtΣ+

1

2
ΣTΣ,Σt + hI +

1

2
hΣEp

(
∇2
x log π(x)

)
+

1

2
hEp

(
∇2
x log π(x)

)
Σ (3.19)

For a fixed Σt, we can define the shorthand notation T (Σ) := TΣ,Σt . As noted in Appendix A of [2]: for a
vectorX ∼ N(0,Σ), the Gaussian propertyAX ∼ N(0, AΣAT ) implies that T (Σ)X ∼ N(0, T (Σ)ΣT (Σ),
which must be equal to N(0,Σt) by the definition of T as a transport map. In fact, from the expression
for T (Σ) provided in (3.14), we can directly verify that T (Σ)ΣT (Σ) = Σt:

T (Σ)ΣT (Σ) = Σ− 1
2

(
Σ

1
2ΣtΣ

1
2

) 1
2

Σ− 1
2ΣΣ− 1

2

(
Σ

1
2ΣtΣ

1
2

) 1
2

Σ− 1
2

= Σ− 1
2Σ

1
2ΣtΣ

1
2Σ− 1

2

= Σt

(3.20)

At this point, the remaining objective is to obtain a linear approximation (about t, in terms of h) of Σt+h
using (3.19), which can then be passed into a limit to obtain an expression for Σ̇t. Doing so requires
generic first-order approximations forΣt+h and T (Σt+h). It is tempting to simply define functions of time
f(s) := Σs, g(s) := T (Σs) and use ordinary calculus to obtain such approximations: indeed, inserting
these approximations into (3.19) will yield the desired ODE for Σ̇t. However, this approach assumes
that f(s), g(s) are differentiable at s = t, which is not known a priori. An alternative approach would be to
work with a broader mechanism for linear approximation which, when valid, works for all directions and
thus encompasses the desired case Σt → Σt+h. This notion motivates the use of variational methods2,
more precisely the Fréchet derivative (2.28), which, when it exists, exists in all directions accessible
from the chosen reference point. The corresponding Fréchet linear approximations also exist in all
possible directions, including the desired direction Σ̇t (which, by extension, proves the differentiability
of f(s), g(s) and the existence of Σ̇t).

Ideally, we would simply find an expression for δT (Σt, Σ̇t) and proceed with the linearisation of (3.19):
unfortunately, this task is not tractable when working with the definitions of Fréchet or Gateaux deriva-
tives. To handle any terms involving δT (Σt, Σ̇t) later on, we will need at least an expression relating this
Fréchet derivative to ”known” terms. We can achieve this through the identity T (Σ)ΣT (Σ) = Σt demon-
strated above: since the Fréchet derivative of the right-hand-side is zero, we may be able to simplify
expressions involving δT (Σt, Σ̇t) in the linear approximation of (3.19) later on. The task then becomes
to determine Fréchet differentiabiity of F (Σ) := T (Σ)ΣT (Σ). For the functional3 G(Σ) := Σ,Σ ∈ S++

d ,
the Fréchet derivative exists for all A ∈ S++

d as G clearly has a power series representation (itself).
Furthermore, the definition (2.28) immediately yields δG(Σ,H) = H. For T (Σ), Fréchet differentiability
is not immediately clear, and working with definition (2.28) is unfortunately not tractable. However, we
do know the following:

• The Fréchet derivative obeys the product rule. (As noted in [48], Section 2)
• The Fréchet derivative obeys the chain rule, s.t. the composition of Fréchet-differentiable func-
tionals is itself Fréchet-differentiable. (As noted in [48], Section 2)

• The matrix inverse function is Fréchet differentiable. (Follows from [48], Thm. 3.2 and the fact
that the real scalar function }(a) = a−1 is analytic on the set a > 0)

1Enforcing symmetry in this way ensures that the ensuring linearisations yield symmetric (and thus appropriate) expressions
for Σ. This turns out to be a necessary step, as evidenced by the usage of both results from Identity B.6 to obtain the symmetric
ODE for Σ in (3.8). Alternatively, if we proceeded solely with, e.g. the first expression in (3.18), we would obtain an expression
of the form Σ̇t = ...+ cEp (∇x log π(x)⊗ (x−m)), which is clearly asymmetric in general.

2Lambert et al. appear to acknowledge this reasoning in their work through their mentions of a ”first variation”, which, given the
context, should refer to the Fréchet (or possibly the Gateaux) derivative. Unfortunately, this is not clear from what is presented
in [65]; to make matters worse, the other definition of ”first variation” (i.e. the definition (2.22) from Subsection 2.5.1) is used in
Appendix F of [65].

3The use of the term ”functional” here is somewhat arbitrary and may be confusing to readers expecting a mapping of an
infinite-dimensional operator instead of a finite-dimensional matrix. However, this ambiguity has no impact on the existence or
applicability of the Fréchet derivative to the functions (or functionals) G, T, F , as shown in this subsection. It may be helpful to
interpret a matrix Σ ∈ Rd×d as being an operator (or a function) acting on vectors x ∈ Rd.
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• The matrix square-root function is Fréchet differentiable ([29], Thm. 1.1).

By composing the facts listed above, we obtain that both T (Σ) and F (Σ) are Fréchet differentiable for
all Σ ∈ S++

d . From above, we know that δF (Σ,H) = 0 always, since F is a constant functional for
which, from (2.28), it is clear that the Fréchet derivative is zero for all Σ and directions H. Meanwhile,
we can apply the chain rule to F (Σ) := T (Σ)ΣT (Σ) to obtain:

δF (Σ,H) = δT (Σ,H)ΣT (Σ) + T (Σ)δG(Σ,H)T (Σ + T (ΣΣδT (Σ,H). (3.21)

By setting Σ← Σt and H ← Σ̇t we arrive at

δT (Σt, Σ̇t)Σt + Σ̇t +ΣtδT (Σt, Σ̇t) = 0 (3.22)

Equation (3.22) is a Sylvester equation which offers an implicit definition of the value of δT (Σ,H).
However, an explicit solution for δT (Σ,H) is not needed to proceed with the linearisation of (3.19).
With the existence of suitable linearisations now firmly established, we can now set Σ← Σt+h in (3.19)
and useΣt+h ≈ Σt+hΣ̇t and T (Σt+h) ≈ T (Σt)+δT (Σt, Σ̇t) to obtain the first-order (in h) approximation

Σt+h ≈ Σt + hΣ̇t

≈ hI + 1

2
(T (Σt+h)Σt+h +Σt+hT (Σt+h) + hΣt+hEpt + hEptΣt+h)

= hI +
1

2

(
(I + δT (Σt, Σ̇t))(Σt + hΣ̇t) + (Σt + hΣ̇t)(I + δT (Σt, Σ̇t))

+ h(Σt + hΣ̇t)Ept + hEpt(Σt + hΣ̇t)

)
= hI +

1

2

(
2Σt + hΣ̇t + hΣ̇t + δT (Σt, Σ̇t)Σt +ΣtδT (Σt, Σ̇t) + hdT Σ̇t + hΣ̇tδT (Σt, Σ̇t)

+ h (ΣtEpt + EptΣt) + h2
(
Σ̇tEpt + EptΣ̇t

))
= hI +Σt +

1

2
hΣ̇t +

1

2

(
dΣ+ δT (Σt, Σ̇t)Σt +ΣtδT (Σt, Σ̇t) + hδT (Σt, Σ̇t)Σ̇t

+ hΣ̇tδT (Σt, Σ̇t) + h (ΣtEpt + EptΣt) + h2
(
Σ̇tEpt + EptΣ̇t

))

(3.23)

In (3.23), we see the emergence of the identity (3.22). We may rewrite the term hδT (Σt, hΣ̇t)Σ̇t ≈
hT (Σt+h)Σ̇t − hΣ̇t : if we divide by h then take the limit as h↘ 0, we obtain Σ̇t − Σ̇t = 0. A symmetric
argument leads to the same outcome for the term hΣ̇tδT (Σt, hΣ̇t). By applying these same operations
(dividing by h and setting h ↘ 0) to the entire last line of (3.23) and rearranging terms, we obtain an
expression for Σ̇t using the results from Identity B.6:

Σ̇t = 2I +ΣtEpt + EptΣt

= 2I + Ept (∇x log π(x)⊗ (x−m)) + Ept ((x−m)⊗∇x log π(x)) .
(3.24)

We thus obtain the specified ODE for the Gaussian covariance matrix Σt.

3.3. Proof of Theorem 3.1 via orthogonal projection
An alternative proof of Theorem 3.1 to that provided above can be constructed using Otto calculus.
More precisely: by treating BW(Rd) as a submanifold of P2(Rd), we can find the orthogonal projection
of the gradient of the functional KL(·||π) from P2(Rd) onto BW(Rd). This is the approach used in Ap-
pendix C.1 of [65], which has been reproduced here with additional clarifying details. Furthermore, the
differential machinery enlisted for this proof offers further insight into the relationship between BW(Rd)
and P2(Rd), which is discussed below.
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3.3.1. Preamble
Before proceeding, we must be sure that (P2(Rd),W2) does indeed admit a Riemannian structure such
that differential concepts such as tangents and gradients may be defined. This claim was famously first
made by Otto in [80], with subsequent work such as [4] providing further justification and more recent
publications offering concise summaries to readers seeking to cover this topic in more detail than is
admissible here [32]. In order for orthogonal projections to be possible, we must also ensure that
TpBW(Rd) ⊂ TpP2(Rd) for some point p ∈ BW(Rd). As observed in Appendix B.3 of [65], this will
be the case provided we choose to equip BW(Rd) with the same Riemannian structure as P2(Rd).
The choice of metric tensor is not a trivial consideration: alternative metric tensors have also been
explored for BW(Rd) (or, at least, for the space S++

d ), e.g. in [46, 102]. The manner in which points
q ∈ BW(Rd) near p are associated with vectors v ∈ TpBW(Rd) (i.e. the choices of exponential and
logarithmic maps) also impacts the structure of the space being considered. This issue was noted
in [25] (Appendix A.2), where the proposed solution is to conceptually adhere to optimal transport
principles by defining expp(q) = ∇φp→q − id, for the optimal transport map ∇φp→q between p and q.
This convention ensures that geodesics γp→q : [0, 1]→ P2(Rd) in P2(Rd) (and, by extension, BW(Rd))
conform to optimal transport mappings4.

It is also important to be familiar with how scholars often work with BW(Rd) in practice. Since any
Gaussian density on Rd may be uniquely identified by its mean and covariance, we may construct a
homeomorphism between BW(Rd) and the finite-dimensional vector space Rd × S++

d . Furthermore,
the tangent space TpBW(Rd) is itself homeomorphic to Rd × Sd 5. Since many results are obtained
by working inside these finite-dimensional vector spaces rather than the infinite-dimensional function
spaces, many authors (including Lambert et al. in [65]) use the expressions BW(Rd) and TpBW(Rd)
both for the function spaces and for their associated vector spaces. Where reasonable, we continue to
use this convention here.

The proof provided in this section is valid because of the following observation for the functional F (p) :=
KL(p||π), made by Lambert et al. in [65]: when the gradient ∇W2F (p) in TpP2(Rd) is projected onto
the tangent space TpBW(Rd), we obtain the same result as if we compute ∇BWF (p) within TpBW(Rd)
directly. We can see this by considering the implicit definition of ∇BWF : for a curve {pt}t∈R ⊂ BW(Rd)
and its velocity vectors {vt}t∈R : vt ∈ TptBW(Rd), we have

〈∇BWF (pt), vt〉pt =
d

dt
F (pt) (3.26)

Meanwhile, for ∇W2
F (p), we can use the same curve {pt}t∈R (which also lies in P2(Rd)) to obtain

〈∇W2
F (pt), vt〉pt =

d

dt
F (pt) (3.27)

We may now define the orthogonal projection projBW∇W2F (pt):

projBW∇W2F (pt) := argmin
w∈TptBW(Rd)

||w −∇W2F (pt)||2 (3.28)

4The same convention is also assumed by Altschuler et al. in [2], where in Appendix A.1 an illuminating example of the
importance of vector mapping choice is made. When the Riemannian structure induced by the W2 distance over P2(Rd) is ap-
plied to the subspace of zero-mean Gaussian distributions, the constant-speed W2 geodesic {Σt}t∈[0,1] between two densities
N(0,Σ0) and N(0,Σ1) has the form

Σt = ((1− t)I + tT (Σ))Σ0 ((1− t)I + tT (Σ)) (3.25)
From Section 2.6, we know that logΣ0

(Σ1) = Σ̇0 by definition; in [2], it is shown that logΣ0
(Σ1) = T (Σ)− I. However, if we

directly take the time derivative of (3.25), we obtain Σ̇0 = (T (Σ)− I)Σ+Σ(T (Σ)− I). Hence, following the usual approach to
computing geodesic velocities clearly yields different outcomes to the optimal-transport convention described above.

5We know from Subsection 3.2.3 that T (Σ) optimally maps x ∼ N(0,Σ) to x′ ∼ N(0,Σt) under the W2 distance. We
may extend this procedure to incorporate Gaussians with non-zero mean, such that we have the optimal transport mapping
x 7→ mt + T (Σ)(x −m) between N(m,Σ) and N(mt,Σt) This mapping is an affine transformation: since, by the convention
adopted in the previous paragraph, TpBW(Rd) contains the optimal transport mappings between p and other Gaussians in
BW(Rd), we therefore have that TpBW(Rd) may be parametrised by Rd × Sd.
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Since TptP2(Rd) is a Hilbert space, inside which TptBW(Rd) is a closed subspace6, we may apply
the following basic property of orthogonal projection in Hilbert spaces, which holds true for any v ∈
TptBW(Rd):

〈projBW∇W2
F (pt), v〉pt = 〈∇W2

F (pt), v〉pt (3.29)

From (3.27), we then know that for the vector vt = ṗt:

〈projBW∇W2F (pt), vt〉pt =
d

dt
F (pt) (3.30)

Since projBW∇W2
F (pt) ∈ TptBW(Rd), this implies that projBW∇W2

F (pt) satisfies (3.26), i.e.

∇BWF (pt) = projBW∇W2
F (pt) (3.31)

3.3.2. Core proof
In Appendix B.1 of [65], the inner product for TpP2(Rd) is defined as:

〈v, w〉p :=
∫
〈v, w〉dp (3.32)

The expression 〈v, w〉 inside the integral in (3.32) has varying meanings depending on the nature of
the arguments v, w. If v, w are functions from TpP2(Rd) proper, then 〈v, w〉 refers to the standard L2

inner product. However, since we are able to work with the space Rd × Sd, Lambert et al. may also
write 〈v, w〉 when v, w are finite-dimensional vectors in Rd: in this case, 〈v, w〉 should be interpreted as
the ordinary dot product between vectors. Additionally, if 〈v, w〉 is used when v, w are matrices in Rd×d,
then 〈v, w〉 is the Frobenius inner product between these matrices. In this text, we aim to improve clarity
by writing 〈v, w〉V and 〈v, w〉F for the vector and Frobenius inner products, respectively.

If we work with the parametric space Rd×Sd instead of TpBW(Rd), we may consider the inner product
(which becomes the dot product) between two velocities (ā, S̄), (a, S) ∈ Rd × Sd:

〈(ā, S̄), (a, S)〉p =
∫
〈ā+ S̄(x−mp), a+ S(x−mp)〉Vdp(x)

= Ep

(
d∑
i=1

(
āiai + āiS(x−mp)i + S̄(x−mp)iai + S̄(x−mp)iS(x−mp)i

))

=

d∑
i=1

Ep
(
āiai + āiS(x−mp)i + S̄(x−mp)iai + S̄(x−mp)iS(x−mp)i

)
=

d∑
i=1

(āiai + 0 + 0) + Ep
(
(S̄(x−mp))

TS(x−mp)
)

= 〈ā, a〉V + Ep
(
(S̄(x−mp))

TS(x−mp)
)

(3.33)

The term Ep
(
(S̄(x−mp))

TS(x−mp)
)
may be further simplified:

6We have a homeomorphism between TptBW(Rd) and the finite-dimensional vector space Rd × Sd. A well-known result
from functional analysis states that any finite-dimensional subspace of a Banach space is closed; the homeomorphism permits
us to extend this property to TptBW(Rd).
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Ep
(
(S̄(x−mp))

TS(x−mp)
)
= Ep

(
(x−mp)

T S̄TS(x−mp)
)

= Eptr
(
(x−mp)

T S̄S(x−mp)
)

= Eptr
(
S(x−mp)⊗ (x−mp)

T S̄
)

= tr
(
SEp

(
(x−mp)⊗ (x−mp)

T
)
S̄
)

= tr
(
S̄ΣpS

)
= 〈S̄,ΣpS〉F

(3.34)

We thus have:

〈(ā, S̄), (a, S)〉p = 〈ā, a〉V + 〈S̄,ΣpS〉F (3.35)

Following the result (3.31) obtained in the prefious subsection, the remaining task for proving Theo-
rem 3.1 via orthogonal projection is to determine the value of projBW∇W2

F (pt). To do so, we make
use of (3.35) as well as the identity (asserted in [65] to comprise a special case of Thm. 10.4.13 in [4]):

∇W2
KL(p||π) = ∇ log

p

π
(3.36)

Naturally, (3.36) also applies to the special case ∇BW(Rd)KL(p||π), since BW(Rd) ⊂ P2(Rd). We must
be able to express ∇ log p

π with a pair (ā, S̄) ∈ Rd × Sd, as ∇ log p
π is a vector in TpBW(Rd).

We are now ready to begin computing

∫
〈∇ log

p

π
(x), a+ S(x−mp)〉Vdp(x) = Ep〈∇ log

p

π
(x), a+ S(x−mp)〉V (3.37)

By the bilinearity of the vector dot product, we are able to write:

Ep〈∇ log
p

π
(x), a+ S(x−mp)〉V = Ep〈∇ log

p

π
(x), a〉V + Ep〈∇ log

p

π
(x), S(x−mp)〉V

= 〈Ep∇ log
p

π
(x), a〉V + Ep〈∇ log

p

π
(x), S(x−mp)〉V

(3.38)

Once more by the bilinearity of the dot product7, the second term above can be rewritten as

Ep〈∇ log
p

π
(x), S(x−mp)〉V = Ep〈S∇ log

p

π
(x), x−mp〉V

= Ep〈ΣpS∇ log
p

π
(x),Σ−1

p (x−mp)〉V
(3.39)

From the computations in (B.16), we know that ∇xp(x) = −Σ−1
p (x−m)p(x). We may therefore write:

Ep〈∇ log
p

π
(x), S(x−mp)〉V = Ep〈ΣpS∇ log

p

π
(x),−∇xp(x)

p(x)
〉V

= −
∫ ( d∑

i=1

(
ΣpS∇ log

p

π
(x)
)
i
(∇xp(x))i

)
1

p(x)
p(x)dx

(3.40)

7In this case, we extend this bilinearity to generate the identity 〈v,Aw〉V = 〈Av,w〉V for a symmetric matrix A, which can be
proven by rewriting the equivalent expression 〈v,Aw〉V = vTAw
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Here, Lambert et al. refer once more to their usage of ”integration by parts”, which involves a very
similar component-wise operation to that used in Subsection 3.2.2. Applying univariate integration by
parts to each of the components i = 1, ..., d yields terms of the form limr→∞[

(
ΣpS∇ log p

π (x)
)
i
p(x)]r−r−∫

d
dxi

(
ΣpS∇ log p

π (x)
)
i
p(x)dxi , where ∇∗i is used to denote the gradient operation with the second

derivative taken at the ith position instead of the first. Since, as established in Subsection 3.2.2, the
growth of p dominates both log p and log π, the first term limr→∞[

(
ΣpS∇ log p

π (x)
)
i
p(x)]r−r = 0. We

may recombine the second term across i = 1, ...d to obtain:

Ep〈∇ log
p

π
(x), S(x−mp)〉V =

∫ d∑
i=1

d

dxi

(
ΣpS∇ log

p

π
(x)
)
p(x)dx (3.41)

By the definition of the divergence operator ∇ · (·), we have

Ep〈∇ log
p

π
(x), S(x−mp)〉V = Ep∇ ·

(
ΣpS∇ log

p

π
(x)
)

= Ep

 d∑
i,j=1

(ΣpS)i,j
d

dxidxj
log

p

π
(x)


= Ep〈ΣpS,∇2

x log
p

π
(x)〉F

= 〈EpΣpS,Ep∇2
x log

p

π
(x)〉F

= 〈Ep∇2
x log

p

π
(x),ΣpS〉F

(3.42)

We may now return to (3.38) and write:

Ep〈∇ log
p

π
(x), a+ S(x−mp)〉V = 〈Ep∇ log

p

π
(x), a〉V + 〈Ep∇2

x log
p

π
(x),ΣpS〉F (3.43)

The RHS of (3.43) has the form 〈ā, a〉V + 〈S̄,ΣpS〉F from (3.35), implying that the parameters corre-
sponding to ∇BWF (pt) are:

(ā, S̄) =
(
Ep∇ log

p

π
(x),Ep∇2

x log
p

π
(x)
)

(3.44)

Using the basic Gaussian identities Ep log p = 0 and Ep(∇2
x log p(x)) = −Σ−1, we may rewrite (3.44)

as:

(ā, S̄) =
(
Ep∇ log p(x)− Ep∇ log π(x),Ep∇2

x log p(x)− Ep∇2
x log π(x)

)
=
(
−Ep∇V,Ep∇2

xV − Σ−1
) (3.45)

We thus obtain the projection of ∇W2KL(p||π) onto TpBW(Rd):

projBW(Rd)∇W2KL(p||π) = Ep∇V + (Ep∇2
xV − Σ−1)(· −mp) (3.46)

Using the results ṁt = −ā and Σ̇t = −
(
S̄Σt +ΣtS̄

)
obtained in Appendix B.3 of [65] 8, we thus obtain

ṁt = −Ep∇V and
8Note that, as presented in [65], these equations do not include the negative signs added here - this may be a typographical

error, as the negative signs are necessary to ensure that pt evolves in the right direction. For brevity, a full derivation of these
expressions for ṁt and Σ̇t is omitted here.
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Σ̇t = −(Ep∇2
xV − Σ−1)Σ− Σ(Ep∇2

xV − Σ−1)

= 2I − Ep(∇2
xV )Σ− ΣEp(∇2

xV )
(3.47)

We may thus apply the results from Identity B.6 to obtain:

Σ̇t = 2I − Ep
(
∇xV (x)⊗ (x−m)T + (x−m)⊗∇xV (x)T

)
(3.48)

The pair of ODEs (3.8) has thus been obtained by orthogonally projecting∇W2
KL(p||π) onto TpBW(Rd).

3.3.3. Discussion
From Appendix B.4, we see that∇W2

KL(p||π) prescribes the same directions for mean and covariance
as ∇BWKL(p||π). If we are at a Gaussian p0 and π is not Gaussian, then pJt will be heading out of the
Gaussian subspace. At time t = 0, the means and covariances of pJt and pLt are pointing in the same
direction,. However, since pLt , pJt are not geodesics in general, we cannot track them by tracing out
their tangent vectors (∇W2

KL and ∇BWKL, respectively) and applying the exponential map(s). We
also cannot assume that their means and covariances continue matching after some infinitesimal time
has passed. To see this, consider the cross entropy Ept log π = ṁt when π is skew. After a short time
∆t has passed, the Bures-JKO flow mean will be taking a step of EpLt+δt

log π: pLt+δt is still a Gaussian,
so no skewness can be captured. Meanwhile, the JKO flow mean will be taking a step

More importantly: for the form of VI proposed in this paper, we are working with the ”forward”/”left” KL
divergence, which is known for its ”mode-seeking” behaviour. That is, it will fit a Gaussian around one
of the modes of π, ignoring points further out and underestimating their density. This is in contrast to the
backward/right KL divergence, which attempts to match the moments of pLt and π (as I was previously
looking for). If π is log-concave, then the mean of pLt will converge towards the (only) mode of π, which
may or may not be the mean.

Consequently from the above: the JKO and Bures-JKO flows generally converge to distributions with
different moments. This means that, even if mL

t = mJ
t and ΣLt = ΣJt at a specific time t, they should

not be equal for any time after t as they are heading to different values. In the event that the JKO and
Bures-JKO flows do converge to the same moments (e.g. π is log-concave and symmetric), then we
should be able to prove that that the moments follow the same trajectory to this point.

3.4. Interpretation as an Unscented Kalman Filter
In the introduction to [65], Lambert et al. claim that the ODEs (3.8) comprise ”Särkkä’s heuristic” for
computing the moments of a Langevin diffusion xt, with said heuristic being the UKF as described in
Särkkä’s publication [91]. Supported by the introduction to Kalman filtering given above in Section 2.4,
the aim of this section is to illustrate why this claim is correct and how we gain a new perspective on
Gaussian VI as a result.

Remark: the central insight needed to make this connection is that the ”Unscented Kalman Filter”
quoted in [65] is an ”unobserved” case of the UKBF, whereby no observations from the measurement
process are being incorporated into the flows for mt,Σt. This fact is a necessary consequence of the
characterisation of (3.8) as a form of VI, which does not sample directly from the true posterior π as
other Bayesian methods do. More specifically, we can observe that although the ODEs in (3.8) partially
describe the marginal law pt of a particle xt following a Langevin diffusion (as in (3.6)), no samples of
xt are used to compute (3.8). In fact, this will never be the case for any form of VI, which by definition
consists of taking an expectation over the state space Ω (see Section 2.3 for details) and thus cannot
incorporate information about a single particle xt ∈ Ω. In the context of Kalman filtering, this implies
that the Kalman gain must be zero, since during an ”update” step, the updated estimates will depend
entirely on the previous prediction — and not at all on any hypothetical observation. To summarise
this argument: if the Gaussian VI presented in [65] (or, indeed, any form of variational inference) is
equivalent to a Kalman filter, it must be equivalent to an unobserved version of that filter.
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Särkkä Lambert et al. Explanation

f(x, t) −∇V (x)
This is the drift function from the Langevin dif-
fusion (3.6) used for GVI.

L(t)
√
2I

This is the diffusion term from the Langevin
diffusion (3.6).

Qc(t) I

As specified in the introduction of [65], the
diffusion process used in (3.6) is a standard
Brownian motion, which has diffusion matrix
I.

mt mt The mean vector of xt.
Pt Σt The covariance matrix of xt.
K(t) 0 The Kalman gain for the system.

Table 3.1: a dictionary mapping key terms in the Langevin diffusion for GVI (3.6) to the UKBF ODEs (2.19).

To proceed, we will also need to determine the specific values of the remaining non-zero terms in the
UKBF ODEs (2.19): the results of doing so are provided in Table 3.1. With this information, we are now
ready to formally present and prove Lambert et al.’s claim:

Lemma 3.2. The Gaussian parameter ODEs in (3.8) constitute a special case of the UKBF ODEs in
(2.19). Specifically, equations (3.8) describe an unobserved instance of the UKBF with no information
from the measurement process.

Proof. First: following the remark above, we must have that the Kalman gain K(t) = 0. We can thus
reduce (2.19) to:

dmt

dt
= f(X(t), t)wm

dPt
dt

= X(t)WfT (X(t), t) + f(X(t), t)WXT (t) + L(t)Qc(t)L
T (t).

(3.49)

By using (2.20), we can rewrite (3.49) using expectations:

dmt

dt
= E (f(xt, t))

dPt
dt

= Cov (xt, f(xt, t)) + Cov (f(xt, t), xt) + L(t)Qc(t)L
T (t).

(3.50)

By applying the mappings from Table 3.1, we have:

dmt

dt
= E (−∇V (xt))

dΣt
dt

= Cov (xt,−∇V (xt)) + Cov (−∇V (xt), xt) + 2I.

(3.51)

We now have the desired expression formt. To further simplify the expression for Σt, let us rewrite the
cross-covariance terms in (3.51). Beginning with Cov (xt,−∇V (xt)): by using the linearity of expecta-
tion and the bilinearity of the outer product, we can write
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Cov (xt,−∇V (xt)) = E (xt ⊗−∇V (xt))− E (xt)⊗ E (−∇V (xt))

= E (xt ⊗−∇V (xt))−mt ⊗ E (−∇V (xt))

= E (xt ⊗−∇V (xt))− E (mt ⊗−∇V (xt))

= E ((xt ⊗−∇V (xt))− (mt ⊗−∇V (xt)))

= E ((xt −mt)⊗−∇V (xt))

= −E ((xt −mt)⊗∇V (xt)) .

(3.52)

A symmetric argument yieldsCov (−∇V (xt), xt) = −E (∇V (xt)⊗ (xt −mt)). By applying these results
to (3.51), we thus arrive at the expression for Σt in (3.8) and conclude the proof.

The interpretation of (3.8) as a special case of the UKBF is convenient for the numerical application
of GVI as proposed in [65]. This is due to the use of ”Gaussian quadrature rules”, i.e. the unscented
transform to compute the expectations required by (3.8) in practice. It should also be noted that The-
orem 3.1 uses first-order approximations to arrive at (3.8): this ensures consistency between the two
sets of equations, since the UKBF ODEs (2.19) are themselves merely first-order approximations of
more complex dynamical systems (see [91], Appendix C).



4
Extended Analysis

In this chapter, three upper bounds for the distanceW2(p
L
t , p

J
t ) are proposed and their theoretical prop-

erties discussed. This work builds upon the general background in Chapter 2 and the detailed analysis
performed in Chapter 3 of the Bures-JKO ODEs by Lambert et al. The bounds in Section 4.1 are pre-
sented as conjectures due to an unresolved logical gap in their construction; the bound in Section 4.2
is presented via a theorem with a complete proof.

Remark: for both Section 4.1 and Section 4.2, the following set of assumptions and notation will be
made:

• Let {pJt }t≥0 ⊂ P2(Rd) be a probability density evolving according to the Wasserstein gradient
flow for the JKO scheme, i.e. the FPE (2.9). To enforce this evolution, we equip {pJt } with the
accompanying set of velocity fields {vJt }t≥0 : vJt ∈ TP Jt P2(Rd), vJt := ∇W2

KL(pJt ||π).
• Let {pLt }t≥0 ⊂ BW(Rd) be a probability density evolving according to the Bures-Wasserstein
gradient flow, encapsulated by the ODEs (3.8) for its meanmL

t and covariance ΣLt . {pLt } has the
accompanying set of vector fields {vLt }t≥0 : vLt ∈ TPLt BW(Rd), vLt := ∇BWKL(pLt ||π).

• Let π ∝ e−V : π ∈ P2(Rd) be the stationary target for both {pJt } and {pLt }. We assume V (x) to
be a convex function (i.e. that ∇2V � αI for some α ≥ 0), making π log-concave.

• Let φt, ψt be the c-conjugate Kantorovich potentials corresponding to the optimal transport map-
ping used byW2(p

L
t , p

J
t ).

• Under the specifications of the manifold (P2(Rd),W2) provided in Table 2.1, the term ∇φt de-
scribes the velocity of theW2 geodesic travelling from pLt to pJt , while ∇ψt describes the velocity
of the geodesic travelling from pJt to pLt (see Section 5.4 of [90] for more details). We describe
these vectors with the shorthand notation ∇1 := ∇φt and ∇2 := ∇ψt.

The following results rely on Grönwall’s Lemma, which for convenience is provided below (without
proof):

Lemma 4.1 (Grönwall’s Lemma). If a differentiable function f : [0,∞) → R satisfies the following
inequality for t ∈ (0,∞):

d

dt
f(t) ≤ g(t)f(t) + b(t), (4.1)

where g, b are L1-integrable on (0,∞). Let G(t) :=
∫ t
0
g(s)ds. Then the following holds true for t ∈ [0,∞):

f(t) ≤ eG(t)f(0) +
∫ t

0

eG(t)−G(s)b(s)ds (4.2)

33
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Bound Explanation g(t) G(t) b(t)

u1t Conjecture 4.2 −
√
I(pJt |π)I(pJt |pLt )

KL(pJt ||pLt )

∫ t
0
g(s)ds

||vLt ||L2(pLt )

=
(
|at|2 + tr

(
StΣ

L
t St
))1/2

u2t Conjecture 4.3 −
√
I(pJt |pLt )

W2(pLt ,p̃
J
t )

∫ t
0
g(s)ds

||vLt ||L2(pLt )

=
(
|at|2 + tr

(
StΣ

L
t St
))1/2

u3t Theorem 4.4 −2α −2αt
||vLt − v∗t ||L2(pLt )

=
(
−|at|2 + tr

(
S̃tΣ

L
t S̃t

)
+ EpLt |∇V |

2
)1/2

Table 4.1: the terms used in the three bounds obtained for W2(pLt , p
J
t ) in Chapter 4. The alternative expressions for the

velocity norms are obtained from Identities B.7 and B.8.

The three bounds u1t , u2t , u3t obtained in this chapter all have the form seen in the RHS of (4.2), where
we take f(t) = W2(p

L
t , p

J
t ). The values of the terms in (4.2) for each bound are displayed in Table 4.1.

Building upon the notation used in Appendices B and C of [65], the following shorthands shall be used
throughout this chapter:

at := EpLt (∇xV (x))

St := EpLt
(
∇2
xV (x)

)
− (ΣLt )

−1

S̃t := EpLt
(
∇2
xV (x)

)
− 3(ΣLt )

−1

(4.3)

4.1. Information-based bounds
In essence, the method presented in this subsection relies on the creation of a third ”particle” moving
within P2(Rd), besides pLt and pJt . This particle, which we may call p∗t , is initialised at pJt at time t
and, for time s ≥ t, follows the geodesic γ(t) : γ(0) = pLt , γ(1) = pJt outwards from pJt , i.e. away
from pLt . The speed at which p∗t travels is determined by a coefficient ct which is derived below. We
are thus able to construct an analytically convenient sequence of distances {W2(p

L
s , p

∗
s)}s≥t such that

d
dtW2(p

L
s , p

∗
s) ≥ d

dtW2(p
L
s , p

J
s ) for all s ≥ t, allowing us to apply Grönwall’s Lemma and obtain the

following bounds forW2(p
L
t , p

J
t ):

• {u1t}t≥0 : u1t = eCtW2(p
L
0 , p

J
0 ) +

∫ t
0
||vLs ||L2(pLs )e

Ct−Csds, where ct :=

√
I(pJT |π)I(pJt |pLt )

KL(pJt ||pLt )
and Ct :=∫ t

0
−csds.

• {u2t}t≥0 : u2t = eCtW2(p
L
0 , p

J
0 ) +

∫ t
0
||vLs ||L2(pLs )e

Ct−Csds, where ct :=
√
I(pJt |pLt )

W2(pLt ,p̃
J
t )
, p̃Jt := N(mJ

t ,Σ
J
t )

and Ct :=
∫ t
0
−csds.

The goal is to obtain an upper bound for d
dt

1
2W

2
2 (p

L
t , p

J
t ) and apply Grönwall’s Lemma. To improve the

tractability of such a bound, we should seek to make use of terms which are known — or which are
already being computed, such as the constituent parts of vLt (see Identity B.7 for details). Hence, we
consider possible bounds on d

dt
1
2W

2
2 (p

L
t , p

J
t ) whilst keeping the first term 〈∇1, v

L
t 〉Lt in (4.6) fixed.

4.1.1. A first bound

Conjecture 4.2. In addition to the assumptions listed above, let us assume thatW2(p
L
t , p

J
t ) 6= 0 for all

t ≥ 0. Furthermore, let us define

ct :=

√
I(pJt |π)I(pJt |pLt )
KL(pJt ||pLt )

,

and Ct :=
∫ t
0
−csds. Then we have:
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W2(p
L
t , p

J
t ) ≤ eCtW2(p

L
0 , p

J
0 ) +

∫ t

0

||vLs ||L2(pLs )e
Ct−Csds (4.4)

Proof. Let us begin by stating Theorem 5.24 from [90], adapted to the present context. Using φt, ψt to
denote the Kantorovich potentials associated with the distanceW2(p

L
t , p

J
t ):

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) =

∫
Rd

∇φt · vLt pLt dx+

∫
Rd

∇ψt · vJt pJt dx. (4.5)

Using the inner product g : p 7→ 〈·, ·〉Lt :=
∫
〈·, ·〉dp provided in Table 2.1, we may rewrite (4.5) as a

sum of inner products using the tangent spaces of pLt , pJt . Let us further simplify notation using the
shorthand ∇1 := ∇φt and ∇2 := ∇ψt defined at the start of this chapter:

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) = 〈∇1, v

L
t 〉Lt + 〈∇2, v

J
t 〉Jt (4.6)

Note that each inner product term in (4.6) describes the motion of its respective particle against a
stationary density p located at the other particle, e.g. 〈∇2, v

J
t 〉Jt = d

dt
1
2W

2
2 (p

J
t , p)

1. We might therefore
consider replacing 〈∇2, v

L
t 〉Jt with the corresponding inner product for a particle {p∗t }t≥0 that is at pJt at

time t but is ”faster” than pJt in theW 2
2 sense, i.e.

d

dt

1

2
W 2

2 (p
J
t , p) ≤

d

dt

1

2
W 2

2 (p
∗
t , p) (4.7)

It would also be beneficial for theW 2
2 inner product expression for this particle to have a tractable form:

a convenient choice for p∗t is for p∗t to follow the geodesic from pJt to pLt , i.e. for v∗t = −∇2 = −∇ψt.
However, to ensure that the inequality (4.7) holds, we must introduce a coefficient ct ∈ R to modulate
the velocity of p∗t . A visualisation of the relationship between this new particle and {pLt }t≥0, {pJt }t≥0 is
provided in Figure 4.1. We therefore seek to solve the following for ct:

〈∇2, v
J
t 〉Jt ≤ 〈∇2,−ct∇2〉Jt (4.8)

Using the bilinearity of inner products, we may rearrange (4.8) to obtain:

ct ≤
〈∇2, v

J
t 〉Jt

〈∇2,∇2〉Jt
(4.9)

Using the upper bound for the numerator 〈∇2, v
J
t 〉Jt ≤ W2(p

L
t , p

J
t )
√
I(pJt |π) from Identity B.9, as well

as the fact that 〈∇ψ,∇ψ〉Jt =W 2
2 (p

L
t , p

J
t ), we obtain

ct ≤
√
I(pJt |π)

W2(pLt , p
J
t )

(4.10)

The potential of the Gaussian pLt is quadratic and convex, with a modulus of convexity αLt ≥ 0. The
HWI inequality (Theorem 3 of [79]) therefore applies, which in this setting may be written as:

KL(pJt ||pLt ) ≤W2(p
J
t , p

L
t )
√
I(pJt |pLt )−

αLt
2
W 2

2 (p
J
t , p

L
t ) (4.11)

This inequality may be arranged as
1To see this, simply apply the same process illustrated in this proof, starting with Theorem 5.24 from [90] and using vp = 0.
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W2(p
J
t , p

L
t ) ≥

KL(pJt ||pLt )√
I(pJt |pLt )

+
αLt
2

W 2
2 (pt

J , pLt )√
I(pJt |pLt )

(4.12)

In particular, since αLt ≥ 0, we must have:

W2(p
J
t , p

L
t ) ≥

KL(pJt ||pLt )√
I(pJt |pLt )

(4.13)

Consequently, we have 1
W2(pLt ,p

J
t )
≤
√
I(pJt |pLt )

KL(pJt ||pLt )
and

ct ≤
√
I(pJt |π)I(pJt |pLt )
KL(pJt ||pLt )

(4.14)

We thus obtain an upper bound for ct which does not depend on W2(p
L
t , p

J
t ). If we set ct to be equal

to this bound, we may be violating the condition (4.9): with further assumptions, however, it might
be possible to ensure that this value for ct is theoretically valid. The following subsection provides a
brief discussion on why Conjecture 4.2 is likely true in at least some scenarios, but likely not true in
others. These concerns notwithstanding, we thus choose to set ct to be equal to this bound, where the
numerator vanishes as t→∞ due to the term I(pJT |π) and, if π is not Gaussian, the denominator tends
towards a finite non-zero value. If the bound is valid, we have that

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) ≤ 〈∇1, v

L
t 〉Lt + 〈∇2,−ct∇2〉Jt

= 〈∇1, v
L
t 〉Lt − ct〈∇2,∇2〉Jt

= 〈∇1, v
L
t 〉Lt − ctW 2

2 (p
L
t , p

J
t )

(4.15)

Applying once more the Cauchy-Schwarz expansion used in Identity B.9:

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) ≤W2(p

L
t , p

J
t )||vLt ||L2(PL

t ) − ctW 2
2 (p

L
t , p

J
t )

=W2(p
L
t , p

J
t )
(
||vLt ||L2(PL

t ) − ctW2(p
L
t , p

J
t )
) (4.16)

At this point, note that by the chain rule for univariate calculus we may write

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) =W2(p

L
t , p

J
t )
d

dt
W2(p

L
t , p

J
t ) (4.17)

Multiplying by 2
W2(pLt ,p

J
t )

on both sides of (4.16) thus yields

d

dt
W2(p

L
t , p

J
t ) ≤ ||vLt ||L2(PL

t ) − ctW2(p
L
t , p

J
t ) (4.18)

Assuming the definition of ct is valid, we thus have an inequality fitting the requirements for Grönwall’s
Lemma. Specifically: we may identify the function g(t) = −ct, which, by its smoothness and the fact
that limt→∞ ct = 0 2, is L1 integrable over [0,∞), as well as the function b(t) = ||vLt ||L2(PL

t ). Setting
Ct =

∫ t
0
−csds, we may then write:

2This follows from the fact that I(pJt |π) → 0 as t → ∞, whilst neither of I(pJt |pLt ),KL(pJt ||pLt ) will tend to zero provided
π /∈ BW(Rd).
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Figure 4.1: the basic scenario considered during the search for u1
t and u2

t . The essential ingredient used in the attempted
proofs of Conjecture 4.2 and Conjecture 4.3 is the orange outward-facing vector −ct∇2 which was formally introduced in (4.8).
This vector points in the opposite direction to the W2 geodesic connecting pLt , p

J
t : its magnitude is controlled by ct, for which

values have been proposed in Conjecture 4.2 and Conjecture 4.3.

W2(p
L
t , p

J
t ) ≤ eCtW2(p

L
0 , p

J
0 ) +

∫ t

0

||vLs ||L2(pLs )e
Ct−Csds. (4.19)

4.1.2. Discussion and corollary bound
A full proof of Conjecture 4.2 was unfortunately not attained during this project. The remaining gap
in reasoning stems from the chosen value of ct potentially lying above the upper bound specified by
(4.9) Considering the form of u1t , an excessively large value of ct might cause this bound to ”implode”
by shrinking too rapidly, potentially becoming smaller than W2(p

L
t , p

J
t ) and thus failing to provide a

valid upper bound. This behaviour was not observed during the numerical simulations performed in
Chapter 5, hinting that a complete solution to the conjecture exists. Moreover, it is suspected that
Conjecture 4.2 is true at least when pL0 = pJ0 due to the following rationale. The Cauchy-Schwarz
expansions applied in (4.10) and to the term 〈∇1, v

L
t 〉Lt in the first line of (4.16) should approximately

cancel out, with the latter expansion being larger in scale due to the relatively larger value of I(pLt |π)
versus I(pJt |π)3. The additional inequality 1

W2(pLt ,p
J
t )
≤
√
I(pJt |pLt )

KL(pJt ||pLt )
used to obtain (4.14) is unlikely to

introduce a large error when π is log-concave 4 and so may also be dominated by the Cauchy-Schwarz
expansion of 〈∇1, v

L
t 〉Lt . The sign of this expansion is positive, which would justify the inequality (4.7)

and therefore the validity of u1t .

As shown in Identity B.7, we may rewrite

||vLt ||L2(pLt ) =
(
|at|2 + tr(StΣ

L
t St)

)1/2 (4.20)

The terms at, St arise naturally through the geometric proof of Theorem 3.1 (see Section 3.3) and may
be computed solely using pLt and V (e.g. as intermediate steps in Algorithm 1 of [65]). Unfortunately,
the same cannot be said for Ct. From the use of KL(pJt ||pLt ) and

√
I(pJt |pLt ) in ct, it is clear that u1t

depends on the entirety of the information expressed by pJt . The advantage of using all this information
is that we might expect u1t to be a ”well-informed” (and thus close) bound. The disadvantage is that

3This claim, in particular, is certainly not true if we drop the requirement that pL0 = pJ0 , as we may arbitrarily choose pJ0 such
that I(pJt |π) ≥ I(pLt |π). Further research may hopefully make the criteria for this ”difference of Cauchy-Schwarz bounds” to
apply more precise.

4There are only two ways a large error could be obtained here. First, we would needKL(pJt ||pLt ) to shrink significantly relative
toW2(pLt , p

J
t ): there is a limit to this shrinkage imposed by Talagrand’s transportation inequality (originally proposed in [99]: see

Definition 2 in [79] for a concise explanation). Second, we would need I(pJt |pLt ) to grow significantly relative to 1
W2(p

L
t ,pJt )

: this

could occur if pJt assumes highly entropic, non-log-concave forms (e.g. multimodal forms), but such behaviour is restricted by
the assumption of log-concavity in π.
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in settings where pJt is unavailable (which encompasses many, if not most practical scenarios where
Gaussian VI might be applied), we are unable to compute u1t at all.

A variant of Conjecture 4.2 which does not invoke the HWI inequality5 may be obtained using the
Gelbrich bound forW2(·, ·) (originally proposed in [40]: see Prop. 2.4 in [76] for a compact presentation).
For two measures µ, ν ∈ P2(Rd) we have

W2(µ, ν) ≥W2 (N(mµ,Σµ), N(mν ,Σν)) . (4.21)

TheW2 distance between two Gaussian measures has the known closed-expression (3.1), making the
Gelbrich bound tractable when N(mµ,Σµ), N(mν ,Σν) are known. We may now exploit this tractability
by introducing a second bound u2t , based on the substitution in (4.10) made possible by (4.21). Note
that the proof of this bound suffers from the same incompleteness as Conjecture 4.2: the relevant
commentary provided above for u1t also applies to u2t , which displays similar empirical performance to
u1t in Chapter 5.

Conjecture 4.3. LetW2(p
L
t , p

J
t ) 6= 0 for all t ≥ 0. Let p̃Jt := N(mJ

t ,Σ
J
t ) andW2(p

L
t , p̃

J
t ) 6= 0 for all t ≥ 0.

Let

ct :=

√
I(pJt |π)

W2(pLt , p̃
J
t )
.

and Ct :=
∫ t
0
−csds. Then we have

W2(p
L
t , p

J
t ) ≤ eCtW2(p

L
0 , p

J
0 ) +

∫ t

0

||vLs ||L2(pLs )e
Ct−Csds (4.22)

Proof. The proof follows the same process as that for Conjecture 4.2: for brevity, we shall not reproduce
it in full here. The key difference is that we redefine ct using theGelbrich boundW2(p

L
t , p̃

J
t ) ofW2(p

L
t , p

J
t ).

Starting with (4.9):

ct ≤
〈∇2, v

J
t 〉Jt

〈∇2,∇2〉Jt
(4.23)

As before, we use the upper Cauchy-Schwarz bound for 〈∇2, v
J
t 〉Jt as presented in Identity B.9:

〈∇2, v
J
t 〉Jt ≤W2(p

L
t , p

J
t )
√
I(pJt |π) (4.24)

Note that the Gelbrich boundW2(p
L
t , p

J
t ) ≥W2(p

L
t , p̃

J
t ) implies that

1

W2(pLt , p
J
t )
≤ 1

W2(pLt , p̃
J
t )

(4.25)

We may insert (4.24) and (4.25) into ⟨∇2,v
J
t ⟩Jt

⟨∇2,∇2⟩Jt
as follows:

〈∇2, v
J
t 〉Jt

〈∇2,∇2〉Jt
≤

√
I(pJT |π)

W2(pLt , p̃
J
t )

(4.26)

A new upper bound for ct may thus be prescribed:
5Consequently, it may appear that u2

t does not require α-strong convexity for V at all. However, as we shall see in Subsec-
tion 5.2.4, u2

t may still fail to work correctly in non-convex settings: the reason for this remains unclear.
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ct ≤

√
I(pJT |π)

W2(pLt , p̃
J
t )

(4.27)

Similarly to Conjecture 4.2, the bound (4.27) is suspected to satisfy the requirement (4.23). Further-
more, note that W2(p

L
t , p̃

J
t ) cannot be obtained as a function of W2(p

L
t , p

J
t )

6. We may therefore set
ct =

√
I(pJT |π)

W2(pLt ,p̃
J
t )

and proceed as in the remainder of the proof of Conjecture 4.2.

Remark: although in most cases there are clearly multiple choices7 of µ for which W2(p
L
t , µ̃) = 0, the

condition W2(p
L
t , p̃

J
t ) 6= 0 is less restrictive than it may initially appear. In general, the moments of pLt

and pJt will not converge towards the same final values. Assuming π ∈ P2(Rd), we will havemJ
t → mπ

and ΣJt → Σπ. Meanwhile, pJt will centre itself about a mode of π, displaying the ”mode-seeking
behaviour” that is well-known within the machine learning community when minimising the reverse KL
divergence KL(·||π) (see Section 10.1.2 of [8] for a detailed explanation). Since the mode of π is not
required to coincide with mπ in this setting, it follows that mL

t 6= mJ
t in general. The covariance of pLt

will also shrink to capture a region about the mode of π, and is thus usually ”smaller” than (i.e. has
eigenvalues smaller than) Σπ.

One curious implication of the mode-seeking behaviour of pLt described above is that in general, the
Gaussian VI mean and covariance evolutions (as described by (3.8)) do not actually describe the same
trajectories as the equivalent equations for a JKO flow pJt (as in (3.7)). This outcome may be somewhat
unexpected given the presentation of these evolutions in [65], but is a necessary consequence of
the divergence in moment trajectories described above. A further consequence resulting from this
observation is that KL(pJt ||p) is not minimised by p = pLt , i.e. pLt is not the optimal Gaussian projection
of pJt under KL(pJt ||·): see Identity B.10 for more details.

Both u1t and u2t require the entirety of pJt to be known to the practitioner: as noted above, this assumption
is unrealistic in many modelling/filtering scenarios. A somewhat more plausible scenario might be one
in which some information about pJt is accessible, e.g. its mean and covariance 8, as needed for the
denominator of Conjecture 4.3. It is tempting to construct a bound which requires only the mean and
covariance of pJt using some simplifying assumption for I(pJt |π), such as the following claim:

I(pJt |π)
?
≤ I(pLt |π) (4.28)

If pL0 = pJ0 , then intuitively this assertion seems reasonable, as relative Fisher information tends to de-
crease as its two arguments becomemore similar. However, it is actually possible to disprove this claim
via contradiction, meaning we cannot construct a bound this way without imposing further restrictions
on pLt , pJt : see Appendix A for details.

4.2. Gradient-based bound
An alternative route for obtaining a Grönwall-style bound on W2(p

L
t , p

J
t ) may be found by starting a

new JKO flow9 {p∗s}s≥t ⊂ P2(Rd) at pLt and considering the evolution of W2(p
L
t , p

∗
t ). Specifically, the

following bound is obtained:
6To see this, let us set W2(pLt , µ) = γ, γ > 0 and W2(pLt , µ̃) = ξ, ξ ≥ 0 for some measure µ ∈ P2(Rd). In general, , there is

not a unique µ which satisfiesW2(pLt , µ) = γ: therefore, we cannot find the inverse mapping of the function f : f(γ) = ξ, which
means that we cannot specify ξ = W2(pLt , µ̃) as a function of γ .

7All that is required of µ is for its mean and covariance to match those of pLt . For a fixed Gaussian measure pLt which, like all
Gaussians, has skewness zero, we may consider a set of mean- and covariance-matching probability measures {µϵ}ϵ∈R−{0}
for which the skewness tensor has operator norm ϵ. We thus have a set of distinct, non-Gaussian measures µϵ such that
W2(pLt , µ̃ϵ) = 0 for all ϵ ∈ R− {0}.

8These moments could be estimated, for instance, if practitioners simultaneously run some algorithm to iteratively minimise
the forward KL divergence, which induces ”moment-matching behaviour” when used for Gaussian approximation (cf. the remark
above; see [8], Section 10.1.2 for details).

9i.e. not a Bures-JKO flow: starting at pLt at time t, p∗s moves across P2(Rd) towards π and W2(p∗s , π) → 0 as s → ∞.
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{u3t}t≥0 : u3t := e−2αtW2(p
L
0 , p

J
0 ) +

∫ t

0

e−2α(t−s)
(
tr
(
S̃sΣ

L
s S̃s

)
+ EpLs |∇V |

2 − |as|2
)1/2

ds

We now demonstrate how such a bound may be obtained and comment on its features.

4.2.1. Result

Theorem 4.4. Let the assumptions listed at the start of this chapter hold. Then we have

W2(p
L
t , p

J
t ) ≤ e−2αtW2(p

L
0 , p

J
0 ) +

∫ t

0

e−2α(t−s)
(
tr
(
S̃sΣ

L
s S̃s

)
+ EpLs |∇V |

2 − |as|2
)1/2

ds (4.29)

Proof. Aswith Conjecture 4.2, the objective is to bound d
dtW2(p

L
t , p

J
t ) in amanner suitable for Grönwall’s

Lemma. We begin once more with (4.6) :

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) = 〈∇1, v

L
t 〉Lt + 〈∇2, v

J
t 〉Jt (4.30)

Let us now consider a new particle {p∗t+δt}δt≥0 ⊂ P2(Rd) with p∗t = pLt velocity fields {v∗t+δt}δt≥0 :

v∗t+δt := ∇W2
KL(p∗t+δt||π). Starting at time t, p∗t represents a new JKO-FPE flow from pLt to π. At time

t (i.e. when δt = 0), we may thus write d
dt

1
2W

2
2 (p

∗
t , p

J
t ) = 〈∇1, v

∗
t 〉Lt and introduce it as follows

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) = 〈∇1, v

L
t 〉Lt − 〈∇1, v

∗
t 〉Lt + 〈∇1, v

∗
t 〉Lt + 〈∇2, v

J
t 〉Jt (4.31)

The first two terms above may be combined as 〈∇1, v
L
t − v∗t 〉Lt ; by a Cauchy-Schwarz expansion of the

type employed in Identity B.9, we obtain

〈∇1, v
L
t − v∗t 〉Lt ≤W2(p

L
t , p

J
t )||vLt − v∗t ||L2(pLt ) (4.32)

For the second two terms, note that by the α-strong convexity of V we may write (see Lemma 9 of [23]
or Appendix D of [65]):

KL(p∗t ||π) ≥ KL(pJt ||π) + 〈∇2, v
J
t 〉Jt +

α

2
W 2

2 (p
∗
t , p

J
t )

KL(pJt ||π) ≥ KL(p∗t ||π) + 〈∇1, v
∗
t 〉Lt +

α

2
W 2

2 (p
∗
t , p

J
t )

(4.33)

We may add the two inequalities in (4.33) together and rearrange them to obtain

〈∇1, v
∗
t 〉Lt + 〈∇2, v

J
t 〉Jt ≤ −2αW 2

2 (p
∗
t , p

J
t )

= −2αW 2
2 (p

L
t , p

J
t )

(4.34)

Inserting (4.32) and (4.34) into (4.31) yields

d

dt

1

2
W 2

2 (p
L
t , p

J
t ) ≤W2(p

L
t , p

J
t )||vLt − v∗t ||L2(pLt ) − 2αW 2

2 (p
L
t , p

J
t )

=W2(p
L
t , p

J
t )
(
||vLt − v∗t ||L2(pLt ) − 2αW2(p

L
t , p

J
t )
) (4.35)
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Figure 4.2: the basic scenario considered during the search for u3
t . The essential ingredient used in the proof of Theorem 4.4

is the new JKO gradient flow p∗t , depicted here with an orange arrow. Note that this flow is initialised at pLt and will converge
towards the target π: when decomposed into their components, we should in principle be able to benefit from cancellations
between the velocity vectors vLt , v∗t at time t, which should hopefully lead to a more reliable bound. Moreover, as seen in the
previous subsection, it is possible to construct vLt solely using pLt and V . of p∗t will have Note the orange outward-facing vector

−ct∇2 which was introduced in (4.8).

Aswith the proof of Conjecture 4.2, let us recall that from the univariate chain rule we have d
dt

1
2W

2
2 (p

L
t , p

J
t ) =

W2(p
L
t , p

J
t )

d
dtW2(p

L
t , p

J
t ). Hence, we may cancel outW2(p

L
t , p

J
t ) on both sides of (4.35) to obtain

d

dt
W2(p

L
t , p

J
t ) ≤ ||vLt − v∗t ||L2(pLt ) − 2αW2(p

L
t , p

J
t ) (4.36)

This inequality satisfies the form required for Grönwall’s Lemma: specifically, we may identify g(t) =
−2α (such that G(t) = −2αt) and b(t) = ||vLt − v∗t ||L2(pLt ). Consequently:

W2(p
L
t , p

J
t ) ≤ e−2αtW2(p

L
0 , p

J
0 ) +

∫ t

0

e−2α(t−s)||vLs − v∗s ||L2(pLs )ds (4.37)

Introducing the expression for ||vLs − vJs ||L2(pLs ) found in Identity B.8 yields the final expression

W2(p
L
t , p

J
t ) ≤ e−2αtW2(p

L
0 , p

J
0 ) +

∫ t

0

e−2α(t−s)
(
tr
(
S̃sΣ

L
s S̃s

)
+ EpLs |∇V |

2 − |as|2
)1/2

ds (4.38)

4.2.2. Discussion
Needless to say, the first advantage of the bound u3t over u1t and u2t is that its proof is actually com-
plete. The second immediately visible benefit we obtain from Theorem 4.4 is that u3t requires no further
information about pJt other than the potential that pJt is heading towards. This means that u3t can be
computed solely using pLt and V — which is a more realistic scenario of what practitioners will actually
have available when they attempt to estimate how accurate their Gaussian approximations {pLt } are.
The terms at and S̃t may be approximated numerically (e.g. via the Gaussian quadrature method from
the UKF), and α may be estimated by computing Hessian matrices for each point on a grid of interest
and obtaining the lowest eigenvalue out of all these matrices. Keen readers may observe that to com-
pute u3t we also needW2(p

L
0 , p

J
0 ): in practice, we may choose pJ0 such that this term takes a convenient

value (e.g. zero).

The loss of information about pJt in u3t might lead to the notion that this bound will be less precise than
u1t or u2t . This is indeed a valid hypothesis, which will be tested empirically in Chapter 5. However,
there is also a theoretical argument to be made in favour of u3t actually being a more precise bound
than u1t , u2t . The core of this argument lies in the cancellation of velocity components performed in
Identity B.8, whereby considering the norm of the velocity difference vLt − v∗t allows us to eliminate
various terms which may represent ”common components” of both vLt and v∗t . These cancellations
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may yield a velocity field with a smaller || · ||L2(pLt ) norm than vLt itself, as used in u1t , u2t . Furthermore,

the relative performance of the linear exponent −2αt versus the more complex
∫ t
0

√
I(pJs |π)I(pJs |pLs )

KL(pJs ||pLs )
ds

and
∫ t
0

√
I(pJs |pLs )

W2(pLs ,p̃
J
s )
ds is not intuitively clear, and likely depends substantially on the choices of pL0 , pJ0 and

V .



5
Numerical Experiments

On paper, it is not immediately clear how the bounds forW2(p
L
t , p

J
t ) obtained in Chapter 4 will perform

against this distance and each other when applied to real examples. Therefore, a series of numerical
experiments were performed as part of this project, with the principal findings presented in Section 5.2.

As a reminder, the three bounds forW2(p
L
t , p

J
t ) obtained in Chapter 4 are:

• u1t := eC
1
tW2(p

L
0 , p

J
0 ) +

∫ t
0
||vLt ||L2(pLt )e

C1
t−C1

sds, where c1t :=
√
I(pJt |π)I(pJt |pLt )

KL(pJt ||pLt )
and C1t :=

∫ t
0
−c1sds.

• u2t : the same form as u1t , but replacing c1t , C1t with c2t =

√
I(pJT |π)

W2(pLt ,p̃
J
t )

(where p̃Jt = N(mJ
t ,Σ

J
t )) and

C2t :=
∫ t
0
−c2sds.

• u3t := e−2αtW2(p
L
0 , p

J
0 ) +

∫ t
0
e−2α(t−s)||vLt − v∗t ||L2(pLt )ds, where

||vLt − v∗t ||L2(pLt ) =
(
tr
(
S̃sΣ

L
s S̃s

)
+ EpLs |∇V |

2 − |as|2
)1/2

and S̃t := EpLt ∇
2V − 3(ΣLt )

−1 .

5.1. Setup
Each of the bounds u1t , u2t , u3t relies on several intermediate coefficients which must be numerically
approximated. Approximate values for at, St are obtained as intermediate steps during the numerical
propagation of pLt (see [65], Section 4), and S̃t can be readily obtained from St, so these terms and their
compositions ||vLt ||L2(pLt ), ||vLt − v∗t ||L2(pLt ) do not pose substantial challenges to the simulations below.
The Gelbrich boundW2(p

L
t , p̃

J
t ) is also straightforward to compute once the moments of pJt are known:

these are estimated numerically over the grid pJt is defined on. Similarly, the integrals I(pJt |π), I(pJt |pLt )
and KL(pJt ||pLt ) must also be estimated numerically over a finite grid Ω(N, dx, d). This isotropic grid,
centred at zero for all examples in this report, has a side length N and resolution dx. By obtaining
Hessian matrices for the values of V (x) at each point x ∈ Ω(N, dx, d) (e.g. using finite differences),
we can estimate the modulus of convexity α with the lowest out of all eigenvalues obtained from these
Hessians. The term EpLt |∇V |

2 in u3t is estimated using the same unscented-transform approximation
used by Lambert et al. in [65] to compute at, St.

To prevent division-by-zero errors in c1t , c2t , a small constant ϵ = 10−15 has been added to the denom-
inators of these terms in the code. We may thus encounter scenarios where c1t , c2t actually fall above
their theoretical upper bounds (4.14), (4.27): however, the anticipated margins of error are smaller than
those resulting from approximation inaccuracies and other, more salient numerical issues.

Alongside the coefficients described above, wemust propagate numerical approximations for {pLt }, {pJt }:
in order to adequately assess the fit of each bound, we must also obtain values for W2(p

L
t , p

J
t ) itself.

The Gaussian particle {pLt } is propagated using the code accompanying Lambert et al’s publication [65],

43
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published in the following GitHub repository [66]. This code applies the procedure briefly described in
Section 4.1 of [65]: we estimate the update steps for mL

t ,Σ
L
t by performing fourth-order Runge-Kutta

approximation of (3.8). The expectations EpLt ∇V and EpLt (∇V ⊗ (x − mL
t )) are estimated using the

Gaussian cubature method (for more details, see Subsection 2.4.2). To preserve the positive-definite
property of ΣLt , the code base [66] propagates the principal square root of ΣLt , a separate ODE for
which is provided in Appendix I.2 of [65].

The general JKO flow {pJt } is approximated using the FPlanck Python library [83]. This library performs
grid-based numerical propagation of a probability density pJt ∈ P2(Rd) obeying the FPE using the
method described in the accompanying publication [51]. The principle behind this method is to treat
the FPE as a master equation involving an operator L : Lp := ∆p+ β∇ · (p∇V ), i.e.:

d

dt
pJt = LpJt (5.1)

Assuming the temperature β−1 and potential V are constant over time, then L is also constant over
time and we may obtain pJt from pJ0 as follows ([51], Section IV):

pJt = etLpJ0 (5.2)

Let us discretise pJ0 over a finite grid Ω(N, dx, d) with n = N
dx points along each axis, implying that the

overall grid has size nd. We may treat L as a large (and, in practice, sparse) matrix of dimensions
(nd, nd): in fact, the Markovian nature of the Langevin diffusion xt ∼ pJt makes this discrete L the
transition matrix of a discrete-time, discrete-space Markov chain. This Markov chain is shown in [51]
to satisfy the local detailed balance condition1, which can be exploited to obtain tractable formulas for
the non-zero entries in L (see Eqs. (5), (13), (14) from [51]). Propagation of pJt may then be formed in
a numerically robust manner with the expm_multiply() function from SciPy [105].

As noted previously, proper evaluation of the bounds u1t , u2t , u3t requires the true W2 distances they
are supposed to control. Between discrete distributions such as the discretisations of pLt , pJt , the W2

distance becomes tractable and may be found via linear programming methods. For the experiments
performed here, W2 distances were computed using the emd2() function from the Python Optimal
Transport (POT) library [38]. This function uses the network simplex algorithm, which was found in [12]
to be the best performing out of several contenders: this algorithm iteratively moves towards the true
value of W 2

2 (p
L
t , p

J
t ) and will converge within O((nd)3) time (worst-case). More details on the network

simplex algorithm are omitted here for brevity. Note that, as part of this research, attempts were also
made to use the Sinkhorn approximation to theW2 distance, since this is also possible via the sinkhorn()
function in POT and should theoretically be faster: however, this approach did not perform as intended,
yielding frequent numerical errors (infinite/NaN values) and requiring additional hyperparameter tuning
to use. Hence, the solution utilised was to compute the ”true”W2 distance using emd2() for only a subset
of the discrete time steps used during propagation, which was necessary due to the substantial cost of
theW2 computation — this being the most time- and memory-intensive component of the experiments
seen below.

1Loosely speaking, the local detailed balance condition specifies that the change in entropy (i.e. ”surprise”) caused by a
particular movement of mass is directly correlated with the probability of that transition occurring and inversely correlated with
the probability of the reverse transition occurring. In the setting considered here, wemay bemore specific: the log-ratio between a
transition probability L(xi → xj) and its reverse motion L(xj → xi) should be proportional to the change in entropy∆S(i, j) :=
1
nd (∇V (xi) +∇V (xj)) for the transition xi → xj , i.e.

β−1 log
L(xi → xj)

L(xj → xi)
= ∆S(i, j)

Keen readers may note that we are able to recover a relationship of this format from the global detailed balance condition,
which requires that the Markov process have an equilibrium distribution π:

π(xi)L(xi → xj) = π(xj)L(xj → xi)

The crucial difference is that local detailed balance may still apply in situations where global detailed balance does not, e.g.
because no equilibrium distribution exists. A detailed explanation of local detailed balance lies beyond the scope of this work:
we refer readers to [51] or to [73] for a more thorough treatment of this condition.
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Symbol Parameter Value Explanation
β Inverse tem-

perature
β = 1 The effect of a varying β was not stud-

ied during this research, as doing so
was not believed to offer substantial in-
sight into the behaviour of u1t , u2t , u3t .

T Experiment
end time

In most cases: T =
10

Experiments were run for as long as
needed to display relevant behaviour.

dt Time step
size

Inmost cases: dt =
0.01

For a fixed end time T , smaller ex-
periment time steps naturally incur
a higher real-world time cost: how-
ever, larger time steps were also ob-
served to incur a higher real-world time
cost, due to technical details behind
the expm_multiply() function used by
FPlanck (which, for brevity, must be
omitted here). A large time step will
also introduce inaccuracies in propaga-
tion. dt = 0.01 was found to strike
a well-performing compromise in most
cases.

N Grid side
length

Varies: generally,
8 ≤ N ≤ 20

This parameter was chosen separately
for each experiment, with the overall
objective being to strike a balance be-
tween computational efficiency, exclud-
ing regions where the potential V be-
came too large (which may lead to nu-
merical errors) and not excluding re-
gions of non-trivial mass from the target
π.

dx Grid resolu-
tion along
each axis

In most cases:
dx = 0.4

Wide grid spacing leads to approxima-
tion errors, whereas reducing the spac-
ing very rapidly increases the compu-
tational cost of various steps. dx =
0.4 was empirically found to be a suit-
able compromise that does not leave
remainders when applied to integer-
valued grid lengths.

d Dimensionality
of π

d = 2 Higher values of d would increase the
computational requirements for these
experiments even further, as well as
require non-trivial code adaptations to
preserve the interoperability of the Lam-
bert et al. code base and FPlanck.

skip Interval be-
tween W2

computa-
tions

Varies: generally,
50 ≤ skip ≤ 200

For a given timestep, value of
W2(p

L
t , p

J
t ) requires substantially

more time to compute than any of
its bounds or KL(pJt ||pLt ); moreover,
we needn’t compute the W2 values
for each of the T

dt time steps in order
to understand its overall behaviour.
The skip parameter determines how
many time steps are skipped between
successiveW2 computations: its value
was tuned separately for each exper-
iment to strike a balance between
speed and expressivity.

Table 5.1: general values for key hyperparameters used in the following numerical experiments.
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The inverse temperature β is a free parameter which may be specified for both the Bures-JKO and
FPlanck code libraries. Furthermore, the time and space discretisations required for these experiments
generate several hyperparameters which must be selected manually. The choices for these values
used in this work is provided in Table 5.1. The numerical experiments presented below were performed
using Python 3.11.5 on a Windows 11 computer (Intel Core i7-10510U CPU, 16GB RAM). A summary
of the key software packages and the versions of these packages needed to prevent dependency
conflicts is provided in Table 5.2. The specific parameter values used for each experiment are provided
in Table 5.3.

Software (library) Version
Python 3.11.5
NumPy 1.24.3
SciPy 1.11.4
FPlanck 0.2.2
POT 0.9.5

Table 5.2: required software versions for executing the code created to support this research project.

Experiment pL0 pJ0 T dt N dx skip
Generic N((5, 5), 2I) N((−5, 5), 2I) 60 0.01 20 0.4 1000

Gaussian,
separate
start

N

(
(3, 3),

(
1 0
0 2

))
N((−3, 3), 2I) 20 0.01 20 0.4 50

Gaussian,
same start

N

(
(3, 3),

(
1 0
0 2

))
N

(
(3, 3),

(
1 0
0 2

))
10 0.01 20 0.4 20

Gaussian,
off-grid

N

(
(3, 3),

(
1 0
0 2

))
N

(
(3, 3),

(
1 0
0 2

))
10 0.01 12 0.4 50

Banana N

(
(−5,−2),

(
25 0
0 0.1

))
B

(
(0,−1),

(
2 0
0 0.2

)
, 0.5

)
30 0.01 8 0.2 100

Symm. Bi-
modal

N((0, 5), 2I) N((0, 5), 2I) 10 0.01 20 0.4 50

Asymm.
Bimodal

N ((−5, 0), 2I) N(((0, 0), 2I) 60 0.01 20 0.4 100

Table 5.3: the full specifications of the parameters used for each experiment. Note that β, d are omitted, as for all experiments
β = 1 and d = 2.

5.2. Experiments
Four categories of targets were considered for this work. Each of the seven experiments/case stud-
ies described below was chosen to help illustrate certain aspects of the behaviour of u1t , u2t , u3t . This
section contains a detailed description of each experiment’s setup and results as well as additional
investigations into salient features found therein. A broader comparison between the outcomes of the
experiments is provided in Section 5.3.

5.2.1. Generic target
The target explored in this subsection is intended to serve as an arbitrary, ”typical” member of the set
of log-concave target distributions, and has the form:

π ∝ e−V

V (x) := 0.1|x+ 5|4 + 10−5e−((x0+5)(x1+5))2
(5.3)

The potential V (x) is indeed a convex function, as is visible in Figure 5.1; the modulus of convexity is ap-
proximately 0.1. The first simulation to approximate this target was initialisedwith pL0 = N((5, 5), 2I), pJ0 =
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N((−5, 5), 2I) and run until T = 60. The evolutions of W2(p
L
t , p

J
t ),KL(pLt ||pJt ) as well as the bounds

u1t , u
2
t , u

3
t are displayed in Figure 5.2.

From Figure 5.2, we observe that each of the bounds u1t , u2t , u3t does indeed provide an upper bound for
W2(p

L
t , p

J
t ): furthermore, these bounds converge towards stationary values on a similar timescale as

theW2 distance itself. At t = 0, all three bounds begin atW2(p
L
0 , p

J
0 ) = 9.97860. The information-based

bounds u1t , u2t follow a similar trajectory through the experiment, although u1t is slightly lower throughout.
For t ⪅ 10, we see that u1t and u2t actually rise in value, even thoughW2 is falling: given the construction
of these bounds, this implies that the non-decreasing integral term

∫ t
0
||vLt ||L2(pLt )e

Ct−Csds is growing
more rapidly than the exponential term eCtW2(p

L
0 , p

J
0 ) is shrinking. For t ⪆ 10 we see u1t , u2t contracting,

eventually surpassing u3t down to their equilibrium values u1T = 4.92108, u2T = 6.45727. u3t , on the other
hand, undergoes only a very small increase in the first few timesteps before decreasing to u3T = 7.07805.

5.2.2. Gaussian target
A Gaussian target offers a useful test case for the theoretical results obtained in Chapter 4, as we know
more about the theoretical behaviour of pLt , pJt in this setting and may test our bounds (and our code)
against this knowledge. Let V (x) = (x−mπ)

TΣ−1
π (x−mπ) be a Gaussian potential for

mπ :=

(
0
−2

)
Σπ :=

(
3 1
1 1

) (5.4)

The Gaussian π = N(mπ,Σπ) is log-concave, with α being equal to the smallest eigenvalue of Σ−1
π

2.
Since π is Gaussian, we expect that both pLt and pJt should be able to perfectly approximate it, which

would imply thatW2(p
L
t , p

J
t )→ 0. Let pL0 = N

(
(3, 3),

(
1 0
0 2

))
and pJ0 = N((−3, 3), 2I). The results

of running this experiment until T = 20 are displayed in Figure 5.3.

As in Subsection 5.2.1, u1t , u2t , u3t all correctly provide upper bounds for the value of W2. Starting at
W2(p

J
0 , p

J
0 ) = 6.03470, the value of u3t increases slightly until equilibrium is reached at u3T = 6.87083.

For t ⪅ 4 we see u1t , u2t increasing more sharply than u3t , but around t ≈ 4 the information bound u1t
begins decreasing and thus diverging away from its Gelbrich variant u2t , which continues increasing until
its equilibrium value u2T = 10.66889. u1t , on the other hand, decreases to a stationary value u1T = 6.62913
just below u3T . The proximal cause of the delayed divergence between u1t , u2t is a spike in the value
of c1t relative to c2t , peaking around 5 ≤ t ≤ 7.5: the spiking behaviour is displayed in Figure 5.4. The
underlying source of this spike is unclear and remains an open question.

Another unexpected outcome from the Gaussian experiment, visible in Figure 5.3, is the convergence
of W2(p

L
t , p

J
t ) to the non-zero value W2(p

L
T , p

J
T ) = 0.39957. This issue stems from the restriction of pJt

to the grid Ω(20, 0.4, 2), which means pJt may only move towards the best3 approximation of π possible
entirely on that grid, i.e. such that the sum of mass assigned by pJt over Ω(20, 0.4, 2) is 1. This means
that, on Ω(20, 0.4, 2), pJt can only be almost Gaussian at best, and may not resemble a Gaussian at all
in cases where significant amounts of the target’s mass/information lie outside the grid boundaries —
particularly if the missing mass is distributed unevenly relative to the grid boundaries. Meanwhile, pLt is
propagated entirely independently from our choice of Ω(N, dx, d), with this grid only becoming relevant
for estimating W2(p

L
t , p

J
t ) and other terms used by the three bounds. The values of pLt obtained on

Ω(N, dx, d) for these purposes are sampled from this grid-independent distribution, and so the local (or
restricted) view of pLt we have on Ω(20, 0.4, 2) needn’t resemble (i.e. approximate) the global form of π.

2Due to the method used for computing α in the code for this project, the initial value of α for this experiment was −0.0951.
This was manually corrected before proceeding with propagation and bound computation.

3As a reminder: according to the JKO-FPE (2.9), pJt moves towards the ”best” approximation of π in the VI sense, i.e. by
minimisingKL(p||π). Strictly speaking,KL(·||·) requires p and π to be defined on the same domain: although in practice p = pJt
is restricted in where it may assign non-zero mass, we may nonetheless assume that the domain of pLt is still Rd and that
pJt (x) = 0 for all x outside the boundaries of Ω(N, dx, d). The condition that pJt � π (a technical requirement for KL(pJt ||π) to
exist) is still met in this case.
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Figure 5.1: the potential V (x) and the unnormalised density e−V (x) for the generic potential (5.3).

Figure 5.2: the W2 values for the generic target experiment (skip = 1000), plotted against u1
t , u

2
t , u

3
t . The Kullback-Leibler

divergence KL(pJt ||pLt ) is also plotted here, as it is computationally cheap relative to W2 and helps establish the suitability of
the linear interpolations between W2 values displayed here.

Figure 5.3: the W2 values and bounds for the Gaussian experiment. Note the divergence between u1
t and u2

t starting at t ≈ 4,
as well as the non-zero equilibrium value of W2.
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Figure 5.4: the evolution for the coefficients c1t , c
2
t for the Gaussian experiment. Note the spike in the value of c1t for

5 ⪅ t ⪅ 7.5.

In fact, the restriction of pLt to Ω(N, dx, d) converges towards the best Gaussian approximation of the
portion of π which can be approximated within Ω(N, dx, d): the sum of pLt over this grid needn’t (and
actually won’t) be equal to 1 4.

The crucial consequence of the previous paragraph is that pLt and pJt are generally behaving differently
even as they seek to approximate the same (Gaussian) measure. Therefore, the computed value
of W2(p

L
t , p

J
t ) cannot and should not be precisely zero. We can see this conclusion more clearly by

performing an altered version of the Gaussian experiment described above, setting both pJ0 and pL0 to

be the same Gaussian N
(
(3, 3),

(
1 0
0 2

))
and keeping the previous target π = N(mπ,Σπ). Since

pJt is now following a Gaussian-to-Gaussian trajectory with the same start and end points as pLt , the
geodesic convexity of BW(Rd) in P2(Rd) 5 implies that pJt = pLt and W2(p

L
t , p

J
t ) = 0 for all t ≥ 0.

The results of this ”same-start Gaussian” experiment can be seen in Figure 5.5. As expected, the W2

distance does not remain zero after t = 0 but rather fluctuates between 10−1 and 1 before converging
towards its equilibrium value of 0.39925.

The difference in the behaviour of our numerical approximations of pLt , pJt becomes evenmore apparent
when the Gaussian target’s mean is moved outside the coverage of the grid. Specifically, let us reuse
the starting points from the previous (same-start) Gaussian experiment and set π = N((−8,−8), 2I): to
ensuremπ falls outside the grid area, we set the grid to be Ω(12, 0.4, 2). If we run this ”off-grid Gaussian”
experiment up to T = 10 (by which time convergence has clearly occurred - see Figure 5.6), we find
that mL

T = (−8.07989 − 8.07989), implying pLt was able to properly locate the mass of π: meanwhile,
mJ
T = (−5.63566−5.63566), which lies within the bounds of Ω(12, 0.4, 2) and illustrates how pJt is unable

to properly account for off-grid mass. The Euclidean norm of mL
t −mJ

t , displayed in Figure 5.6, further
demonstrates how pLt , pJt display different numerical behaviour when propagated using this work’s code
base, even when their theoretical behaviour is identical.

The trajectories ofW2(p
L
t , p

J
t ) andKL(pJt ||pLt ) as well as the performance of the three bounds u1t , u2t , u3t

is displayed in Figure 5.7. The spike in the value ofW2 around t ≈ 1 is likely caused by approximation
errors of the sort described above, with W2(p

L
t , p

J
t ) later decreasing to an equilibrium value near zero.

because the grid approximations of both pLt and pJt will place most of their on-grid mass near the target
mean mπ = (−8,−8). The value of KL(pJt ||pLt ) fluctuates near the start of the experiment before

4This is true only in theory. For the experiments themselves, the values of pLt over Ω(20, 0.4, 2) must be normalised so that
they do indeed sum to 1, as this is required for the emd2() function.

5The geodesic convexity of BW(Rd) within P2(Rd) is a consequence of the the fact, noted in Section 3.3 (see Footnote 5),
that the optimal transport map between two Gaussian measures has an affine form, which implies the geodesic connecting these
measures also consists of Gaussian measures. This consequence is briefly explained in Appendix B.3 of [65]: a more complete
treatment of the geometric properties of BW(Rd) can be found in [98].
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Figure 5.5: the evolution of W2, u1
t , u

2
t , u

3
t for the same-start Gaussian experiment. The plot’s y-axis is set to a logarithmic

scale to improve visibility of the behaviour of each value after t = 0, when all values were automatically set to zero for this
experiment. Note that u1

t dips slightly below W2 around t = 1: this inconsistency is due to numerical approximation errors,
which are amplified when working in this special case.

Figure 5.6: the evolution of |mL
t −mJ

t | over the duration of the off-grid Gaussian experiment. If both pLt , p
J
t were able to

incorporate off-grid mass into their moment estimates, then this plot would be zero for all t ≥ 0.
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settling near the unusually high value of 7.81085. This unexpected behaviour is likely the result of
approximation/grid errors and the particular behaviour of the kl_div object from SciPy which was used
to compute these values: as such, it was not investigated further. Some fluctuation is also seen in the
values of u1t , u2t , which may ultimately also be caused by approximation errors. u3t assumes a lower,
more steady trajectory than u1t , u2t , with all three bounds reaching equilibrium from t ⪆ 5 onwards.

Figure 5.7: the evolution of W2,KL, u1
t , u

2
t , u

3
t over the duration of the off-grid Gaussian experiment.

5.2.3. Banana target
The two following subsections consider targets which do not satisfy the log-concave property specified
in Chapter 4. The first of these involves a banana-shaped target, the potential of which is only ”slightly”
non-convex as it still has a uniqueminimiser (see Figure 5.8, in particular the density plot). This potential
function V is defined via transformation of a vector x ∈ Rd using Gaussian parameters mπ,Σπ as well
as a distortion parameter bπ ∈ R, as seen in the first line of (5.5) below. The transformed vector y
is then passed through the same quadratic transformation used in a Gaussian potential. To prevent
numerical errors arising from large potential values, a final transformation is then applied in the last line
of (5.5).

Figure 5.8: the potential V = B(mπ ,Σπ , bπ) (left) and the density (right; represented here as a heat map) for the banana
experiment, defined using the parameter values in (5.6). Note the non-convexity of the potential visible towards the bottom left

of the potential plot (i.e. where x1 < 0: the estimated modulus of convexity over the grid Ω(8, 0.2, 2) is α = −3.3663.
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y = (x0 − (mπ)0, x1 − (mπ)1 − b
(
(x0 − (mπ)0)

2 − (Σπ)0,0
)

Ṽ (x) := yTΣ−1
π y

V (x) :=

√
|x−mπ|2 + Ṽ (x)

(5.5)

We may thus define a banana potential function B(mπ,Σπ, bπ) = V . For the experiment displayed
below, the following parameter values were used:

mπ = (0, 2)

Σπ =

(
0.004 0
0 0.0004

)
bπ = −0.5

pL0 = N

((
−5
−2

)
,

(
25 0
0 0.1

))
pJ0 = B

((
0
−1

)
,

(
2 0
0 0.2

)
, 0.5

)
T = 30

N = 8

(5.6)

The choices of pL0 , pJ0 and V presented in (5.6) are deliberately specific and were not selected randomly
or unintentionally. Rather, this combination of initial and final distributions was found to offer a strong
example of the prominent multi-phase behaviour visible in Figure 5.9, which was also observed for
other parameter choices. Beginning at w2(p

L
0 , p

J
0 ) = 1.68938, both u1t and u2t display two successive

periods of rapid growth followed by slow growth. In the first of these periods (lasting from t = 0 to
t ≈ 0.8), u1t , u2t are almost flat during the slow growth period. However, both u1t and u2t diverge rapidly
away from W2 early on during the experiment and continue growing indefinitely instead of converging
to final upper bounds for W2, which at time T has converged towards the value 0.86577. From t ≈ 4
onwards, we see linear growth in u1t , u2t . The final values of the two bounds displayed in Figure 5.10
are u1T = 81.17605 and u2T = 80.56184.

A partial explanation for the behaviour of u1t , u2t can be seen in Figure 5.11. The two peaks in the plot
of the velocity field norm ||vLt ||L2(pLt ), occurring at t ≈ 1 and t ≈ 5, would (ceteris paribus) lead to
increases in the value of the integral term

∫ t
0
||vLt ||L2(PL

t )e
Ct−Csds for u1t , u2t , which in term would explain

the two rapid growth periods seen in u1t , u2t . However, we are presently unable to explain the double-
peak behaviour of ||vLt ||L2(pLt ) itself, which will not be related to the bimodal phase undergone by pJt
early on in the experiment (see Figure 5.13).

Meanwhile, the coefficients c1t , c2t decrease logarithmically over the duration of the experiment, until
settling into equilibrium values of c1T , c2T ≈ 10−5 after T ≈ 27. This rapid decay means that eventu-
ally, many values of Ct − Cs will have values close to zero for a given value of t, and eCt−Cs will have
many values close to 1: see Figure 5.12 for a visualisation involving u1t (u2t exhibits similar behaviour).
Given the convergence of ||vLt ||L2(pLt ) to the equilibrium value ||vLT ||L2(pLT ) = 2.47893, the integral term∫ t
0
||vLt ||L2(PL

t )e
Ct−Csds will eventually grow approximately linearly in terms of t and dominate the be-

haviour of u1t , u2t - as seen in Figure 5.10. The steady logarithmic decay of c1t , c2t cannot itself be
explained at this time.
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Figure 5.9: the evolution of W2, u1
t , u

2
t ,KL for the banana experiment, displayed for 0 ≤ t ≤ 5. u3

t is excluded as this bound
grows exponentially when α < 0. Note the promiment oscillation of KL(pJt ||pLt ), in particular relative to the stability of

W2(pLt , p
J
t ). This discrepancy most likely arises because pJt briefly becomes bimodal during its evolution from pJ0 to π (see

Figure 5.13). The bimodality will affect the Kullback-Leibler divergence more strongly than the Wasserstein distance, as the
latter only considers the work required to move mass whereas the former considers the ”relative surprise” of seeing a bimodal

distribution instead of a unimodal Gaussian.

Figure 5.10: an extended version of Figure 5.9 which displays the values of W2, u1
t , u

2
t ,KL until the stopping time T = 30 of

the banana experiment. In this plot, the long-term linear behaviour of u1
t , u

2
t is more clearly visible.
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Figure 5.11: the left-hand plot displays the evolution of the velocity field norm ||vLt ||L2(pLt ) for 0 ≤ t ≤ 5. Note the two peaks in
the value of this series which approximately correspond to the periods of rapid growth for u1

t , u
2
t visible in Figure 5.9. The

right-hand plot displays the log-scale evolution of the coefficients c1t , c
2
t for 0 ≤ t ≤ 30: according to the plot, these coefficients

shrink approximately logarithmically before converging to equilibrium values c1T , c2T ≈ 10−5 from t ≈ 27 onwards.

Figure 5.12: two heatmaps showing the values of eC1
t−C1

s for the generic target and the banana target, respectively. Note how
nearly all terms in the generic target heatmap are zero, with only a thin sliver of non-zero terms visible along the diagonal edge
where s ≈ t. Meanwhile, the banana target heatmap shows steady (and eventually linear) growth in the quantity of non-zero
eC

1
t−C1

s values as t increases. Together with the non-zero equilibrium value of ||vLt ||L2(pLt ), the consequence of this pattern is
that the integral term in u1

t will fail to converge.

Figure 5.13: the evolution of pLt , pJt for the banana experiment, captured here at t ≈ 0.5. Note the bimodal nature of pJt visible
in the right-hand plot.
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5.2.4. Bimodal target
Let us now turn our attention towards a ”strongly” non-convex potential which generates a bimodal
distribution. The target for the following experiment is an evenly-weighted mixture of two Gaussian
densities ρ1 = N(m1,Σ1), ρ2 = N(m2,Σ2), which produces a potential of the form

V (x) = log

(
ρ1(x) + ρ2(x)

2

)
(5.7)

Figure 5.14: the potential (left) and the target (right) for the bimodal target. The modulus of convexity computed for this
potential is α = −7.9823.

A bimodal target π ∝ e−V is thus defined for the symmetric bimodal experiment presented in this
subsection: this target and its potential are displayed in Figure 5.14. The two Gaussian components
are:

ρ1 = N ((−5,−5), I)
ρ2 = N(((5,−5), I)

(5.8)

For this experiment, we set pL0 = pJ0 = N((0, 5), 2I), such that the two modes of π are equally distant
from pL0 , p

J
0 : we thus define a symmetric bimodal experiment. The discretised grid used is Ω(20, 0.4, 2)

and the experiment is run until T = 10. The evolution of W2(p
L
t , p

J
t ) for this experiment as well as the

bounds u1t , u2t is displayed in Figure 5.15

Figure 5.15: the evolution of W2, u1
t , u

2
t ,KL for the bimodal target. The gradient-based bound u3

t is excluded as the negative
value α = −7.9823 induces exponential growth in this bound. The remaining bounds u1

t , u
2
t do not appear to be converging

according to this plot: instead, we see long-term linear growth resembling that seen in Figure 5.10.
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Starting from zero, we see that W2(p
L
t , p

J
t ) increases gradually for t ⪅ 3, eventually tapering off to a

stationary value of W2(p
L
T , p

J
T ) = 3.28609. Since pL0 = pJ0 , the two information-based bounds u1t , u2t

display linear growth (with parallel slopes) for t ⪆ 1 and do not converge to equilibrium values. This
behaviour was also seen in Subsection 5.2.3, which suggests that the coefficients c1t , c2t for the bimodal
bounds u1t , u2t are decreasing logarithmically: through Figure 5.16 we confirm that this is the case.

We may also consider how pLt , p
J
t and the bounds u1t , u2t behave when the bimodal target is not sym-

metrically placed between pL0 , pJ0 . Let us define:

ρ1 = N ((0,−5), I)
ρ2 = N ((0, 0), I)

V (x) = log

(
ρ1(x) + ρ2(x)

2

) (5.9)

Furthermore, let us set pL0 = N ((−5, 0), 2I) and pJ0 = N ((0, 5), 2I). An asymmetric bimodal experi-
ment is thus created, whereby both pL0 and pJ0 are closer to ρ2 than ρ1: additionally, the mode ρ2 lies
directly between pJ0 and ρ1. To properly observe the long-term behaviour of W2(p

L
t , p

J
t ) as well as the

information-based bounds u1t , u2t , this experiment must be run until T = 60.

The main results from the asymmetric bimodal experiment are displayed in Figure 5.17. The value of
W2 shows V-shaped behaviour, dropping down fromW2(p

L
0 , p

J
0 ) = 7.04173 all the way down to approx-

imately 0.48903 at t ≈ 3 before slowly climbing again towards W2(p
L
T , p

J
T ) = 2.67910: this trajectory is

a consequence of pJt assuming a unimodal, approximately Gaussian form centred around N(m2,Σ2)
as an intermediate step in its evolution (i.e. before pJt becomes bimodal). We see a similar V-shaped
trajectory forKL(pJt ||pLt ). In contrast, the values of u1t , u2t rise until t ≈ 2 then decrease before gradually
tapering off from t ≈ 20 onwards 6. The inverse correlation between u1t , u2t and W2(p

L
t , p

J
t ) may also

be an outcome of the temporary similarity between pLt and pJt captured in Figure 5.18: however, the
true cause was not uncovered during this project. Another striking feature of Figure 5.17 is the fact that
u1t , u

2
t both drop below the value of W2(p

L
t , p

J
t ) before the end of the experiment. This is most likely a

result of the non-convexity of the asymmetric bimodal potential function, making these bounds formally
inapplicable to the setting of this experiment.

5.3. Evaluation
The final values of W2(p

L
t , p

J
t ) as well as the three bounds u1t , u2t , u3t are available in Table 5.4. The

following section compares the results provided in Section 5.2 with each other and with the discussions
provided in Chapter 4.

Experiment W2 u1T u2T u3T
Generic 0.24290 4.92108 6.45727 7.07805

Gaussian, separate start 0.39957 6.62913 10.66889 6.87083
Gaussian, same start 0.39925 0.61413 5.12652 6.84834
Gaussian, off-grid 0.07558 8.51917 9.41293 2.95951

Banana 0.86577 81.17605 80.56184 2.67× 1088

Symm. Bimodal 3.28609 32.78878 35.45650 1.25× 1069

Asymm. Bimodal 2.85395 2.67910 2.10554 7.09× 10159

Table 5.4: the final values W2(pLT , pJT ), u1
T , u2

T , u3
T at the end of each experiment provided in Chapter 5. The best performing

(i.e. lowest) bound for each experiment is highlighed in bold. Note that according to this criterion, for the asymmetric bimodal
experiment, the ”best performing” bound actually lies below W2 and is thus invalid.

The two cases which best represent appropriate scenarios for the bounds to be used in are the generic
and separate-start Gaussian experiments. In these experiments, both u1t , u2t provided valid approxi-
mations of the distance W2(p

L
t , p

J
t ) and did not implode as was speculated in Subsection 4.1.2, thus

6Readers may have noticed that u1
t , u

2
t do not appear to reach true equilibrium in Figure 5.17, as they adopt a slightly positive

linear growth pattern for t ⪆ 40. This may represent another instance of the linear growth trend seen in the other non-convex
experiments (banana, symmetric bimodal): see Subsection 5.2.3 for a more detailed investigation into this phenomenon.
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Figure 5.16: the evolution of c1t , c2t for the bimodal target. The same logarithmic decay observed in Figure 5.11 is also visible
here form t ≈ 1 onwards.

Figure 5.17: the evolution of W2,KL, u1
t , u

2
t for the asymmetric bimodal experiment. The most prominent features in this plot,

visible over 0 ≤ t ≤ 10, are the V-shaped trajectories of W2(pLt , p
J
t ),KL(pJt ||pLt ) and their inverse correlation with the upwards

peaks visible in the trajectories of u1
t , u

2
t . As with other non-log-concave targets (α = −3.0510), the bound u3

t was excluded
from plotting due to its exponential growth.
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Figure 5.18: a snapshot of the propagation of pLt , pJt over the grid Ω(20, 0.4, 2) at time t = 3. Note that pJt is almost entirely
unimodal and closely resembles pLt , which has already located the mass of the N(m2,Σ2) peak in π. A second mode in pJt
has just started growing when this snapshot was taken, and indicates where later increases in the values of W2(pLt , p

J
t ) and

KL(pJt ||pLt ) originate from.

providing empirical support for Conjecture 4.2 and Conjecture 4.3. The strong performance of u1t also
supports the notion (explored in Chapter 4) that incorporating the entirety of the information contained
in pJt into the bound improves its accuracy. However, this notion is challenged by the comparatively
weak performance of u2t in the generic and separate-start Gaussian experiments, since this bound also
requires knowing the entirety of pJt to compute the relative Fisher information I(pJt |π). The superior per-
formance of u1t for these two experiments may be a result of the additional ”knowledge” incorporated
by the Kullback-Leibler comparison KL(pJt ||pLt ), or of explicitly exploiting the log-concave property re-
quired of π via invoking the HWI inequality to obtainKL(pJt ||pLt ) in the denominator in the first place. The
value of u3t for the generic and separate-start Gaussian experiments is higher than the best performer
u1t , although in the separate-start Gaussian experiment the difference is small. These outcomes pro-
vide evidence against the hypothesis (q.v. Subsection 4.2.2) that the velocity cancellations performed
in the construction of u3t would outperform the incorporation of pJt into u1t . However, we cannot defini-
tively conclude that u1t will outperform u3t based solely on two experiments, so this question remains
open. Furthermore: the values of the gradient-based bound u3t are of comparable magnitude to those
of u1t , u2t in the four experiments with convex potentials (generic and Gaussian). Since pJt may not be
available in most applications of Bures-JKO VI, it is therefore important to note that the results for the
convex experiments support the use of the tractable bound u3t as a substitute for the stronger but less
rigorous and accessible bounds u1t , u2t .

The large values of u3t for the banana and bimodal experiments clearly indicate that this bound is
unsuitable for use with non-convex potentials. It may be tempting to suggest that the same is not
true for u1t , u2t , given that these bounds did not explode during the experiments provided: however,
as noted in Section 5.2, they did not converge, either, even if convergence occurred for W2(p

L
t , p

J
t ).

Moreover, the application of u1t , u2t to non-convex settings may produce other unintended outcomes
such as upper bounds which lie below the quantity they are supposed to control — which was the case
for the asymmetric bimodal experiment.

The remaining experiments (same-start and off-grid Gaussian, asymmetric bimodal) all comprise test
cases selected to elicit special behaviour from the bounds and the experimental setup created to eval-
uate them. It is therefore ill-advised to draw strong conclusions about the performance of u1t , u2t , u3t in
”standard” settings based on their behaviour in these exceptional scenarios. For instance, the bound
performance in the same-start and off-grid Gaussian experiments will almost certainly be affected by
the grid-based approximation and associated numerical errors these experiments were seeking to high-
light. Nonetheless, we may still gain insight into the performance of the bounds from these experiments
precisely by considering their interactions with these numerical artifacts and experimental design goals.
Let us consider the value of u1t in the same-start Gaussian experiment, which is an order of magnitude
smaller (and more accurate) than u2t , u3t : the numerical discrepancies between pLt and pJt may have
led to a smaller denominator for c1t (which relies on the entirety of the differences between pJt and pLt
across the whole grid via KL(pJt ||pLt )) versus c2t , which in turn would have led to a faster contraction
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in the eCtW2(p
L
0 , p

J
0 ) term for u1t . The denominator KL(pJt ||pLt ) of c1t relies on the the discrepancies

between pJt and pLt at each point on Ω(20, 0.4, 2) and so considers regions where both (approximate)
distributions have similarly low mass, whereas the denominator of c2t only considers the first two mo-
ments of pLt , pJr — which, as discussed in Subsection 5.2.2, exhibit anomalous differences during the
propagation of the same-start Gaussian experiment due to limitations of grid-based approximation. The
conclusion supported by this outcome, which aligns with the theoretical differences betweenKL(pJt ||pLt )
andW2(p

L
T , p̃

J
t ), is that u1t is more robust than u2t against errors in approximating the location and spread

of the underlying distributions pLt , pJt . The tradeoff, of course, is that u1t is more sensitive to errors in
shape approximation than u2t : future researchers might consider crafting experiments where the mo-
ments of pLt , pJt match even when their shapes do not.



6
Conclusion

The core motivation underlying this thesis project was to find tools to assess the suitability of the Bures-
JKO scheme pLt (from [65]) as a method of VI, in particular when compared to the original JKO scheme
pJt . The WassersteinW2 distance was chosen to measure suitability, due to the physical and geometric
interpretations of mass, velocity and distance that this metric permits when applied to Wasserstein
gradient flows. The principal mathematical objective for this project was to obtain upper bounds for the
distance W2(p

L
t , p

J
t ): three such bounds u1t , u2t , u3t were obtained in Chapter 4. These bounds were

then empirically tested in Chapter 5 through a series of numerical experiments intended to highlight
both their strengths and weaknesses. The results of these experiments indicate that the bounds offer
useful approximations ofW2(p

L
t , p

J
t ) under suitable conditions.

The ”gradient-based” bound u3t offers a particularly important tool for practitioners seeking to apply Lam-
bert et al’s Bures-JKO technique—or Gaussian VI in general. Since u3t requires only the Gaussian ap-
proximation pLt , the potential function V for the Bayesian target and an initial value forW2(p

L
t , p

J
t ) (which,

for practical purposes, may be set to zero), this bound can be reliably computed even in situations when
pJt is unavailable, as is the case for most real-world statistical modelling scenarios. Moreover, u3t was
found to have comparable empirical performance to the alternative bounds u1t , u2t (which, by requiring
the non-Gaussian pJt to be known, are far more demanding on the practitioner) when the potential is
convex. However, the numerical experiments in Chapter 5 also revealed that u3t explodes in value when
the potential is not convex, making this property a hard requirement for u3t to be applicable. A valuable
direction for future research would be to try and relax the assumption of convexity/log-concavity for u3t
and possibly also for u1t , u2t .

Meanwhile, the ”information-based” bounds u1t and u2t generally displayed improved performance and
robustness to non-convexity when compared to u3t . The empirical performance of these two bounds
was very similar in all but two of the experiments they were tested on (cf. the separate-start and same-
start Gaussian experiments in Subsection 5.2.2). Unfortunately, as noted above, the requirement that
pJt be known (or at least estimated) limits the applicability of u1t , u2t to practical modelling scenarios.
The status of these bounds as conjectural also warrants a more thorough investigation into their valid-
ity and limitations. Further research could additionally seek to refine these bounds by reducing their
dependency on pJt : indeed, u2t itself is the result of attempting to reduce the ”knowledge” of pJt needed
by u1t . An attempt to continue refining u2t was also performed during this project (see Appendix A), but
this was unfortunately unsuccessful.

The experiments performed in Chapter 5 form a crucial component of this project, as they offer essen-
tial insight into the bounds u1t , u2t , u3t by mapping out their performance under various conditions. The
practical challenges which had to be overcome in order to perform these experiments limited their quan-
tity and scope. Therefore, there are more test cases which would further illuminate the performance
of the W2 bounds, including: targets with significant skewness, targets with a potential that is exactly
convex (i.e. where the modulus of convexity α = 0), and—of course—empirical data sets. Additionally,
the restriction to two-dimensional experiments precludes the possibility of seeing if/how theW2 bounds
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behave differently in high-dimensional settings, which are ubiquitous in both the research and practice
of modern machine learning.

During the introduction to this text, a long-term vision for estimating the suitability of Kalman Filter
approximations was presented. Needless to say, this objective was not completed here: indeed, the
bounds u1t , u2t , u3t are not applicable as-is to a general filtering model, where the state transition function
f(x, t) needn’t be static as it is in the Langevin diffusions associated with the JKO and Bures-JKO
schemes. Nonetheless, it may eventually be possible to construct a comparableW2 bound for the UKF
using only the Gaussian parameters produced by this model as well as its model parameters (the most
important of which is the state transition function). The outputs obtained from this thesis project, most
notably Section 3.4 as well as the threeW2 bounds themselves, may hopefully offer future researchers
clues that help solve this challenge.

In summary, this work has made a small contribution to the body of VI literature by presenting newmeth-
ods to estimate the reliability of a dynamic VI technique. These bounds may be of use to practitioners
seeking quality assessments or early stopping criteria for their VI models, and may even assist theo-
retical researchers in optimal transport, PDEs and Bayesian statistics by offering new stepping stones
for proof construction. Consequently, this text has hopefully made the power and attractiveness of
variational inference as a modelling solution.
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A
Further Bound Attempt

In this appendix, a counterexample for the alternative upper bound forW2(p
L
t , p

J
t ) hypothesised at the

end of Subsection 4.1.2 is provided. Let us begin with the constant ct as used in the bound u2t , obtained
in Conjecture 4.3. For u2t , the coefficient ct is defined as being equal to the following upper bound ((4.27)
in Subsection 4.1.2):

ct ≤
√
I(pJt |π)

W2(pLt , p̃
J
t )

(A.1)

The objective is to find an alternative expression for ct where the denominator does not depend on pJt .
One conjectured solution which would realise the objective above is that proposed in Subsection 4.1.2.
We now provide a more formal definition of this conjecture and show why it cannot be true.

Conjecture A.1. Let {pLt }t≥0 ⊂ BW(Rd) be a Bures-JKO evolution and {pJt }t≥0 ⊂ P2(Rd) be a full
JKO evolution, both defined using the same potential function V (x) and target π : π ∝ e−V , π ∈ P2(Rd).
Furthermore, let pL0 = pJ0 . Then for all t ≥ 0 we have

I(pJt |π) ≤ I(pLt |π) (A.2)

Informally, the relative Fisher information measures the average magnitude of the linear approximation
of the log-ratio between its two arguments (with. If the two arguments of I(·|·) become less similar,
then the differences in their log-values should become more pronounced in at least some parts of their
common domain. Since pJt → π as t → ∞ but pLt does not, we would therefore expect I(pJt |π) ≤
I(pLt |π). This reasoning provides some intuition as to why Conjecture Conjecture A.1 might be true.
Furthermore, we may rewrite I(pt|π) = ||∇W2KL||L2(pt); for pJt , we expect the ”size” of its steepest-
descent vector to tend to zero, whereas this will not be the case for a new full-JKO flow p∗t starting at
pLt since this new flow will always have a non-trivial distance to travel. As we shall see, however, it
is possible to find a contradiction within Conjecture A.1 which means it cannot be true without further
qualifying assumptions.

Let us now consider de Bruijn’s Identity, which appears in many slightly different forms across research
literature 1 but which for the purposes of this text may be stated as follows:

Identity A.2 (de Bruijn’s Identity). Let {pt}t≥0 ⊂ P2(Rd) be a JKO evolution following the FPE (2.9) for
a potential function V and a target π ∝ e−V . Then:

d

dt
KL(pt||π) = −I(pt|π) (A.3)

1For examples, see: [107], Theorem 6; [49], Eq. (4); [35], Thm. 7.1; [68], Corollary 5; and[24], Section 8.3.2; — see this last
citation for a derivation of the specific form of de Bruijn’s Identity presented here.
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Note that Identity A.2 applies to both I(pJt |π) and I(pLt |π) 2, so Conjecture A.1 is true if and only if

d

dt
KL(pJt ||π) ≥

d

dt
KL(pLt ||π) (A.4)

However: if KL(pJ0 ||π) = KL(pL0 ||π) and KL(pJt ||π) → 0 as t → ∞ while KL(pLt ||π) tends to some
strictly positive value, then we would actually expect to see d

dtKL(pJt ||π) ≤ d
dtKL(pLt ||π) for at least one

time period due to the Mean Value Theorem from univariate calculus. We have therefore arrived at a
contradiction, meaning Conjecture A.1 cannot be true for all t ≥ 0. Hence, we are unable to use I(pLt |π)
to bound/define ct and thus generate a new bound forW2(p

L
t , p

J
t ). Future research may seek to refine

this conjecture by specifying more stringent criteria which ensure that I(pJt |π) ≤ I(pLt |π) (which would
in turn restrict the valid use cases for the resulting W2 bound), or by finding another replacement for√
I(pJt |π) in ct altogether.

2This is possible by assuming that a new ”full” JKO flow heading towards π may be started at each t ≥ 0.



B
Supplementary Identities

Throughout this work, many minor results are used whose proofs are straightforward but can distract
from a larger argument. To improve the clarity of the main text, these proofs have been collected here.

Most of the identities here are only used in a specific context: their presentation here mimics that
of their origin, so descriptions of terminology, etc. are kept to a minimum. Instead, readers will be
pointed to where the identity has been used, from where they can equip themselves with the necessary
explanations for notation, conditions, et cetera. Identities are provided here in the approximate order
they appear in the main body.

B.1. Identities for Chapter 3
Identity B.1. The entropy of a Gaussian is invariant to translation. What this means in the context of
Theorem 3.1 (specifically on p.22) is that, for a Gaussian probability density ϱ ∼ N(m,Σ):

∇mH(ϱ(x)) = 0, (B.1)

where H(ϱ) := Eϱ(log ϱ) is the (negative) entropy.

Proof. We may expand ∇mH(ϱ(x)) as follows:

∇mH(ϱ(x)) = ∇mE
(
log

(
(2π)−d/2(detΣ)−1/2 exp

(
−1

2
(x−m)TΣ−1(x−m)

)))
= ∇mE

(
log
(
(2π)−d/2(detΣ)−1/2

))
− 1

2
∇mE

(
(x−m)TΣ−1(x−m)

) (B.2)

Using the cyclic property of the trace, we can rewrite:

(x−m)TΣ−1(x−m) = tr
(
x−m)TΣ−1(x−m)

)
= tr

(
(x−m)⊗ (x−m)TΣ−1

) (B.3)

Since the trace and expectation are both linear operators, we can exchange them to obtain:
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E
(
(x−m)TΣ−1(x−m)

)
= E

(
tr
(
(x−m)⊗ (x−m)TΣ−1

))
= tr

(
E
(
(x−m)⊗ (x−m)TΣ−1

))
= tr

(
E
(
(x−m)⊗ (x−m)T

)
Σ−1

)
= tr

(
ΣΣ−1

)
= tr(I)

= d

(B.4)

Since both terms in the last line of (B.2) contain gradients of constants which do not depend on m, we
therefore have ∇mH(ϱ(x)) = 0.

Identity B.2. In the context of Theorem 3.1 (specifically on p.22), we have for a Gaussian density ϱ:

∇mϱ(x) = −∇xϱ(x) (B.5)

Proof. We start by expanding the LHS of (B.5):

∇mϱ(x) = ∇m
(
(2π)−d/2(detΣ)−1/2 exp

(
−1

2
(x−m)TΣ−1(x−m)

))
(B.6)

We can apply the chain rule (for vector calculus) to the term inside the exponential function to obtain:

∇mϱ(x) = (2π)−d/2(detΣ)−1/2 exp

(
−1

2
(x−m)TΣ−1(x−m)

)
∇m

(
−1

2
(x−m)TΣ−1(x−m)

)
(B.7)

The terms to the left of ∇m are equivalent to ϱ(x). For the remaining terms, we can apply the identity
∂
∂v (v

TAv) = (A+AT )v ([85], eq. 86) along with another application of the chain rule to obtain:

∇mϱ(x) = ϱ(x)

(
−1

2
(Σ−1 + (Σ−1)T )(x−m)(−1)

)
(B.8)

Meanwhile, let us note that −∇x
(
− 1

2 (x−m)TΣ−1(x−m)
)
= 1

2 (Σ
−1+(Σ−1)T )(x−m). We thus have:

∇mϱ(x) = ϱ(x)

(
−∇x

(
−1

2
(x−m)TΣ−1(x−m)

))
. (B.9)

Furthermore, it is clear from the product rule for scalar-by-vector derivatives that

∇xϱ(x) = ϱ(x)∇(x)
(
−1

2
(x−m)TΣ−1(x−m)

)
. (B.10)

We therefore obtain:

∇mϱ(x) = −∇xϱ(x) (B.11)

Identity B.3. For a Gaussian density ϱ = N(m,Σ), we have

∇Σϱ(x) =
1

2
∇2
xϱ(x) (B.12)
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Proof. For convenience, let us first define the shorthand exp(...) := exp
(
− 1

2 (x−m)TΣ−1(x−m)
)
. We

can thus write:

∇Σϱ(x) = ∇Σ

(
(2π)−

d
2 (detΣ)−

1
2 exp

(
−1

2
(x−m)TΣ−1(x−m)

))
= (2π)−

d
2∇Σ

(
(detΣ)−

1
2 exp(...)

) (B.13)

Both (detΣ)−
1
2 and exp(...) are scalar functions of Σ; we shall thus apply the product rule and chain

rule for scalar-by-matrix derivatives ([26], Equations C.53 and C.55) to obtain:

∇Σϱ(x) = (2π)−
d
2

((
∇Σ(detΣ)

− 1
2

)
exp(...) + (detΣ)−

1
2 (∇Σ exp(...))

)
= (2π)−

d
2

(
−1

2
(detΣ)−

3
2 (∇Σ detΣ) exp(...) + (detΣ)−

1
2 exp(...)

(
−1

2
∇Σ(x−m)TΣ−1(x−m)

))
(B.14)

By Jacobi’s Formula, we have ∇Σ detΣ = adj(Σ)T = adj(ΣT ) = adj(Σ); furthermore, since Σ is
positive-definite (and thus invertible), we have adj(Σ) = (detΣ)Σ−1. For the second term on the RHS
of (B.14), note that (x−m)TΣ−1(x−m) = tr((x−m)TΣ−1(x−m)) = tr(Σ−1(x−m)(x−m)T ); by [85] eq.
(124) (setting B ← (x−m)(x−m)T and noting its symmetry), we have ∇Σtr(Σ

−1(x−m)(x−m)T ) =
−Σ−1(x−m)(x−m)TΣ−1. Combining these results yields:

∇Σϱ(x) =

(
−1

2

)
(2π)−

d
2 (detΣ)−

1
2 exp(...)

(
−Σ−1

(
(x−m)(x−m)T

)
Σ−1 +Σ−1

)
=

1

2
p(x)

(
Σ−1

(
(x−m)(x−m)T

)
Σ−1 − Σ−1

) (B.15)

Let us now consider the Hessian matrix ∇2
xp(x), which can be rewritten using (B.10) and eq. (85) from

[85] to obtain:

∇2
xp(x) = ∇x(∇xp(x))

= ∇x
(
p(x)

(
∇x
(
−1

2
(x−m)TΣ−1(x−m)

)))
= −∇x

(
p(x)

(
Σ−1(x−m)

)) (B.16)

For a scalar-valued function c(x) and a vector-valued function b(x), we have the identity ∇xc(x)b(x) =
∇xc(x) ⊗ b(x) + c(x)∇xb(x) (which can be checked by taking component-wise derivatives). Applying
this result to (B.16) yields:

∇2
xp(x) = −p(x)

(
−Σ−1(x−m)

)
(Σ−1(x−m))T − p(x)(Σ−1)

= −p(x)
(
−Σ−1(x−m)(x−m)TΣ−1

)
− p(x)Σ−1

= p(x)
(
Σ−1

(
(x−m)(x−m)T

)
Σ−1 − Σ−1

)
= 2∇Σp(x)

(B.17)
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Identity B.4. For a Gaussian density p = N(m,Σ) and the negative entropy H(p) = E(log p(x)), we
have

∇ΣH(p) = −1

2
Σ−1. (B.18)

Proof. We can rewrite (B.18) as

∇ΣH(p) = ∇Σ

(
log
(
(2π)−d/2(detΣ)−1/2

)
− 1

2
E
(
(x−m)TΣ−1(x−m)

))
. (B.19)

Using the trace trick (B.3), we can rewrite E
(
(x−m)TΣ−1(x−m)

)
= E

(
(x−m)(x−m)T

)
Σ−1 = I.

Furthermore, from Equations (B.14) and (B.15) we know that ∇Σ(detΣ)
−1/2 = − 1

2 (detΣ)
−1/2Σ−1.

Therefore, applying the chain rule for scalar-by-matrix derivatives ([26], Eq. C.55) to the term∇Σ log(detΣ)−1/2

we obtain

∇ΣH(p) = 0 +
1

(detΣ)−1/2

−1
2

(detΣ)−1/2Σ−1 + 0

= −1

2
Σ−1

(B.20)

Identity B.5. In the context of Theorem 3.1 (specifically on p.23), we have

∇ΣEp (log π(x)) =
1

2
Ep
(
∇2
x log π(x)

)
(B.21)

Proof. Using the Leibniz integral rule, we can write

∇ΣEp (log π(x)) = ∇Σ

∫
Rd

log π(x)p(x)dx

=

∫
Rd

log π(x)∇Σp(x)dx

(B.22)

Applying Identity B.3, we obtain

∇ΣEp (log π(x)) =
1

2

∫
Rd

log π(x)∇2
xp(x)dx (B.23)

In [65], Lambert et al. claim a double application of ”integration by parts” without providing further de-
tails. In practice, what is required here is component-wise integration by parts, applied in the same
manner as with (3.9) in Subsection 3.2.2. This must be performed twice, with the first yielding integrals
of the form −

∫
R

(
∂
∂xi

p(x)
)(

∂
∂xi

(log π(x))
)
dxi and the second yielding −

∫
R p(x)

(
∂2

∂x2
i
(log π(x))

)
dxi;

in both cases, the terms extracted from these integrals vanish for the same reasons provided in Sub-
section 3.2.2 (the relative growth rates of p(x) and V (x)). We thus obtain:

∇ΣEp (log π(x)) =
1

2

∫
Rd

(
∇2
x log π(x)

)
p(x)dx

=
1

2
Ep
(
∇2
x log π(x)

) (B.24)
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Identity B.6. In the context of Theorem 3.1 (specifically on p.25), we have for p = N(m,Σ):

Ep
(
∇2
x log π(x)

)
Σ = Ep (∇x log π(x)⊗ (x−m)) . (B.25)

Proof. Let us first write out expressions for ∇x log π(x) and ∇2
x log π(x). Using the notation π′

i(x) :=
∂
∂xi

π(x) and π′′
ij(x) :=

∂2

∂xi∂xj
π(x) for clarity, we obtain:

∇x log π(x) =


∂
∂x1

log π(x)
...

∂
∂xd

log π(x)



=
1

π(x)

π
′
1(x)
...

π′
d(x)


(B.26)

∇2
x log π(x) =


∂
∂x1

π′
1(x)
π(x) . . . ∂

∂x1

π′
d(x)
π(x)

...
. . .

...
∂
∂xd

π′
1(x)
π(x) . . . ∂

∂xd

π′
d(x)
π(x)



=
1

π(x)2

 π′′
11(x)π(x)− π′

1(x)
2 . . . π′′

1d(x)π(x)− π′
1(x)π

′
d(x)

...
. . .

...
π′′
1d(x)π(x)− π′

1(x)π
′
d(x) . . . π′′

dd(x)π(x)− π′
d(x)

2


(B.27)

For all i : 1 ≤ i ≤ d, let us define the function gi(x) := (∇x log π(x))i. Then:

∇xgi(x) =


∂2

∂x1∂xi
log π(x)
...

∂2

∂xd∂xi
log π(x)

 (B.28)

By the multivariate version of Stein’s Lemma (referred to by Lambert et al. as ”Gaussian integration by
parts”), we have:

Ep (gi(x)(x−m)) = ΣEp (∇xgi(x)) (B.29)

By setting g(x) := ∇x log π(x) and applying (B.29) across each row of the outer product g(x)⊗ (x−m),
we obtain the results:

Ep (∇x log π(x)⊗ (x−m)) =
(
ΣEp

(
∇2
x log π(x)

))T
= Ep

(
∇2
x log π(x)

)
Σ

(B.30)

By applying a transpose operation to (B.30), we obtain:

Ep ((x−m)⊗∇x log π(x)) = ΣEp
(
∇2
x log π(x)

)
(B.31)
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B.2. Identities for Chapter 4

Identity B.7. For a Bures-JKO flow {pLt }t≥0 and its associated velocity fields {vLt }t≥0, we have

||vLt ||2L2(pLt ) = |at|
2 + tr(StΣ

L
t St), (B.32)

where at = −EpLt ∇V and St = EpLt ∇
2
xV − (ΣLt )

−1.

Proof. From (3.46), we know that vLt (x) = at + St(x−mL
t ). Using |v|2 = v · v to denote the (squared)

Euclidean norm, we may write

|vLt (x)|2 =
(
at + St(x−mL

t )
)
·
(
at + St(x−mL

t )
)

= |at|2 + 2at · St(x−mL
t ) + |St(x−mL

t )|2
(B.33)

The term |ST (x−mL
t )|2 may be further rearranged as follows:

|St(x−mL
t )|2 = St(x−mL

t ) · St(x−mL
t )

=
(
St(x−mL

t )
)T
St(x−mL

t )

= (x−mL
t )
TSTt St(x−mL

t )

= tr
(
(x−mL

t )
TStSt(x−mL

t )
)

= tr
(
StSt(x−mL

t )⊗ (x−mL
t )
T
)

(B.34)

Note that STt = St, since St ∈ Sd (see Section 3.3 for details). Note also that EpLt (at) = at and
EpLt (St) = St, since at, St are themselves expectations of x (plus a constant term in the case of St).
Returning to ||vLt ||L2(pLt ):

||vLt ||2L2(pLt ) = EpLt
(
|vLt |2

)
= EpLt

(
|at|2 + 2at · St(x−mL

t ) + tr
(
StSt(x−mL

t )⊗ (x−mL
t )
T
))

= EpLt
(
|at|2

)
+ EpLt

(
2at · St(x−mL

t )
)
+ EpLt

(
tr
(
STt St(x−mL

t )⊗ (x−mL
t )
T
))

= |at|2 + 2at · StEpLt
(
x−mL

t

)
+ tr

(
StStEpLt

(
(x−mL

t )⊗ (x−mL
t )
T
))

= |at|2 + 2at · 0 + tr
(
StStΣ

L
t

)
= |at|2 + tr

(
StΣ

L
t St
)

(B.35)

Identity B.8. In the context of Theorem 4.4, we observe the following:

||vLt − v∗t ||2L2(pLt ) = tr
(
S̃tΣ

L
t S̃t

)
+ EpLt |∇V |

2 − |at|2 (B.36)

Proof. We follow a similar procedure to the proof of Identity B.7. Beginning with:

vLt − v∗t = at + St(x−mL
t )−∇ log

pLt (x)

π(x)

= at + St(x−mL
t )−∇x(x−mL

t )
T (ΣLt )

−1(x−mL
t )−∇V

(B.37)
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Using ∇x(x − mL
t )
T (ΣLt )

−1(x − mL
t ) = 2(ΣLt )

−1(x − mL
t ) (Eq. (85) in [85]) and the definition S̃t :=

EpLt ∇
2V − 3(ΣLt )

−1, we may write

vLt − v∗t = at + St(x−mL
t )− 2(ΣLt )

−1(x−mL
t )−∇V

= at + S̃t(x−mL
t )−∇V

(B.38)

Let us now consider |vLt − v∗t |2 = (vLt − v∗t ) · (vLt − v∗t ). By the bilinearity of the dot product over Rd, we
obtain

|vLt − v∗t |2 = |at|2 + |S̃t(x−mL
t )|2 + |∇V |2 + 2at · S̃t(x−mL

t )− 2at · ∇V − 2S̃t(x−mL
t ) · ∇V (B.39)

We are now ready to take the expectation ||vLt − v∗t ||2L2(pLt )
=
∫
|vLt − v∗t |2dpLt using the separated

expression (B.39). |at|2 does not depend on x, as at = EpLt ∇V (x) is itself an expectation which uses
pLt . Hence, EpLt |at|

2 = |at|2. For |S̃t(x−mL
t )|2, note that we may repeat the procedure used in (B.34)

to obtain |S̃t(x −mL
t )|2 = tr

(
S̃2
t (x−mL

t )⊗ (x−mL
t )
T
)
and EpLt |S̃t(x −m

L
t )|2 = tr

(
S̃tΣ

L
t S̃t

)
. When

EpLt is applied, the two dot product terms in (B.39) involving a single S̃t(x−mL
t ) vector will vanish, as

S̃t is also comprised of terms which do not depend on x. Combining these observations yields

EpLt |v
L
t − v∗t |2 = |at|2 + tr

(
S̃tΣ

L
t S̃t

)
+ EpLt |∇V |

2 − 2EpLt (at · ∇V ) (B.40)

Since, by the linearity of expectation, we have EpLt (at · ∇V ) = at · EpLt ∇V = at · at, we thus have

EpLt |v
L
t − v∗t |2 = tr

(
S̃tΣ

L
t S̃t

)
+ EpLt |∇V |

2 − |at|2 (B.41)

Identity B.9. In the context of Conjecture 4.2: for a JKO flow {pJt }t≥0 ∈ P2(Rd) and its associated
velocity fields {vJt }t≥0 : vJt = −∇ log

pJt
π , we have

〈∇2, v
J
t 〉Jt ≤W2(p

L
t , p

J
t )
√
I(pJt |π) (B.42)

‘

where ∇2 = ∇pJt
1
2W

2
2 (p

L
t , p

J
t ) for a fixed density pLt and I(pJt |π) denotes the relative Fisher information

between pJt and π.

Proof. First, by applying the Cauchy-Schwarz Inequality to the 〈·, ·〉Jt inner product:

〈∇2, v
J
t 〉Jt ≤ |〈∇2, v

J
t 〉Jt |

≤ ||∇2||L2(pJt )
||vJt ||L2(pJt )

(B.43)

We may rewrite ∇2 = ∇ψ, where ∇ψ = x − T−1
t (x) for the optimal W2 transport map from pLt to pJt .

For the term ||∇2||L2(PJ
t ), this yields

||∇2||L2(PJ
t ) =

(∫
|∇ψ|2pJt dx

)1/2

=

(∫
|x− T−1

t (x)|2pJt dx
)1/2

(B.44)
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By considering (MP), we see that this is nothing more than the Mongé formulation ofW2(p
J
t , p

L
t ). Mean-

while, let us also rewrite the term ||vJt ||L2(PJ
t ):

||vJt ||L2(PJ
t ) =

(∫ ∣∣∣∣−∇ log
pJt
π
(x)

∣∣∣∣2 pJt dx
)1/2

=

(∫ ∣∣∣∣∇ log
pJt
π
(x)

∣∣∣∣2 pJt dx
)1/2

(B.45)

This is precisely the square root of the relative Fisher information I(pJt |π) (Eq. 8 in [79]).

Identity B.10. For a probability measure π ∈ P2(Rd) and a Gaussian measure µ ∈ BW (Rd):

argmin
µ∈BW(Rd)

KL(π||µ) = N(mπ,Σπ) (B.46)

Proof. Let us first write out KL(π||µ). Note that all expectations in this proof are taken w.r.t. π.

KL(π||µ) = E log π − E log µ

= E log π − E
(
log
(
(2π)−d/2

)
+ log

(
|Σµ|−1/2

)
− 1

2
(x−mµ)

TΣ−1
µ (x−mµ)

)
= E log π +

d

2
log 2π +

1

2
log |Σµ|+

1

2
E
(
(x−mµ)

TΣ−1
µ (x−mµ)

) (B.47)

The expectation in the last term can be rearranged as follows:

E
(
(x−mµ)

TΣ−1
µ (x−mµ)

)
= E

(
tr
(
(x−mµ)

TΣ−1
µ (x−mµ)

))
= E

(
tr
(
(x−mµ)(x−mµ)

TΣ−1
µ

))
= tr

(
E
(
(x−mµ)(x−mµ)

TΣ−1
µ

))
= tr

(
E
(
(x−mµ)(x−mµ)

T
)
Σ−1
µ

) (B.48)

Let us now examine the outer product (x−mµ)(x−mµ)
T in more detail. Note that the outer product is

a linear operation in both arguments, i.e. (a−b)(c−d)T = a(c−d)T −b(c−d)T = (a−b)cT −(a−b)dT =
acT − bcT − adT + bdT . Hence:

(x−mµ)(x−mµ)
T = xxT −mµx

T − xmT
µ +mµm

T
µ

= xxT −mµx
T − xmT

µ +mµm
T
µ + xmT

π − xmT
π +mπ(x−mπ)

T −mπ(x−mπ)
T

= x(x−mπ)
T −mπ(x−mπ)

T + x(mπ −mµ)
T −mµx

T +mµm
T
µ +mπx

T −mπm
T
π

= (x−mπ)(x−mπ)
T − x(mπ −mµ)

T + (mπ −mµ)x
T +mµm

T
µ −mπm

T
π

(B.49)

Let us now introduce the expectation into the RHS of (B.49):

E
(
(x−mµ)(x−mµ)

T
)
= Σπ +mπ(mπ −mµ)

T + (mπ −mµ)m
T
π +mµm

T
µ −mπm

T
π

= Σπ +mπm
T
π −mπm

T
µ −mµm

T
π +mµm

T
µ

(B.50)
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Reintroducing Σ−1
µ and the trace operator to the above, we obtain:

E
(
(x−mµ)

TΣ−1
µ (x−mµ)

)
= tr

((
Σπ +mπm

T
π −mπm

T
µ −mµm

T
π +mµm

T
µ

)
Σ−1
µ

)
= tr

(
ΣπΣ

−1
µ

)
+ tr

(
mπm

T
πΣ

−1
µ

)
− tr

(
mπm

T
µΣ

−1
µ

)
− tr

(
mµm

T
πΣ

−1
µ

)
+ tr

(
mµm

T
µΣ

−1
µ

)
= tr

(
ΣπΣ

−1
µ

)
+ tr

(
mT
πΣ

−1
µ mπ

)
− tr

(
mT
µΣ

−1
µ mπ

)
− tr

(
mT
πΣ

−1
µ mµ

)
+ tr

(
mT
µΣ

−1
µ mµ

)
= tr

(
ΣπΣ

−1
µ

)
+mT

πΣ
−1
µ mπ −mT

µΣ
−1
µ mπ −mT

πΣ
−1
µ mµ +mT

µΣ
−1
µ mµ

(B.51)

By the symmetry of Σµ, we have that Σ−1
µ is also symmetric and:

E
(
(x−mµ)

TΣ−1
µ (x−mµ)

)
= tr

(
ΣπΣ

−1
µ

)
+mT

πΣ
−1
µ mπ − 2mT

µΣ
−1
µ mπ +mT

µΣ
−1
µ mµ (B.52)

We can therefore write KL(π||µ) as:

KL(π||µ) = E log π +
d

2
log 2π +

1

2
log |Σµ|+

1

2

(
tr
(
ΣπΣ

−1
µ

)
+mT

πΣ
−1
µ mπ − 2mT

µΣ
−1
µ mπ +mT

µΣ
−1
µ mµ

)
(B.53)

We can find a minimiser for KL(π||µ) using the standard first-order condition for the two parameters
mµ and Σµ. First, we take the derivative w.r.t. mµ:

d

dmµ
KL(π||µ) = −Σ−1

µ mπ +Σ−1
µ mµ (B.54)

By setting this to zero, we see that the optimal m̃µ = mπ. Returning to KL(π||µ), we can setmµ = mπ

to eliminate the terms mT
πΣ

−1
µ mπ − 2mT

µΣ
−1
µ mπ +mT

µΣ
−1
µ mµ. Then, we can obtain the derivative w.r.t.

Σµ using standard matrix calculus identities ([85], eqs. (57) and (104)):

d

dΣµ
KL(π||µ) = 1

2
Σ−1
µ +

1

2

(
−Σ−1

µ ΣπΣ
−1
µ

)
(B.55)

By setting this expression to zero and multiplying by Σµ on either the left or the right, we obtain that
Σ̃µ = Σπ .
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