

Delft University of Technology

Instruction Flow-based Detectors against Fault Injection Attacks

Köylü, Troya Çağıl; Reinbrecht, Cezar; Brandalero, Marcelo; Hamdioui, Said; Taouil, Mottaqiallah

DOI
10.1016/j.micpro.2022.104638
Publication date
2022
Document Version
Accepted author manuscript
Published in
Microprocessors and Microsystems

Citation (APA)
Köylü, T. Ç., Reinbrecht, C., Brandalero, M., Hamdioui, S., & Taouil, M. (2022). Instruction Flow-based
Detectors against Fault Injection Attacks. Microprocessors and Microsystems, 94, Article 104638.
https://doi.org/10.1016/j.micpro.2022.104638

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.micpro.2022.104638
https://doi.org/10.1016/j.micpro.2022.104638

Instruction Flow-based Detectors against Fault Injection Attacks

Troya Çağıl Köylüa, Cezar Rodolfo Wedig Reinbrechta, Marcelo Brandalerob, Said Hamdiouia,
Mottaqiallah Taouila

aDelft University of Technology, Delft, South Holland, the Netherlands
bBrandenburg University of Technology, Cottbus-Senftenberg, Brandenburg, Germany

Abstract

Fault injection attacks are a threat to all digital systems, especially to the ones conducting secu-
rity sensitive operations. Recently, the strategy of observing the instruction flow to detect attacks
has gained popularity. In this paper, we provide a comparative study between three hardware-
based techniques (i.e., recurrent neural network (RNN), content addressable memory (CAM),
and Bloom filter (BF)) that detect fault attacks against software RSA decryption. After conduct-
ing experiments with various fault models, we observed that the CAM provides the best detection
rate, the RNN provides the most software/application flexibility, and the BF is a middle ground
between the two. Regardless, all of them exhibit robustness against faults targeted at them, and
obtain a very high detection rate when faults change instructions altogether. This affirms the va-
lidity of monitoring the integrity of the instruction flow as a strong countermeasure against any
type of fault attack.

Keywords: fault injection, countermeasure, machine learning, recurrent neural network, content
addressable memory, Bloom filter

1. Introduction

Fault injection attacks are among the most important threats in current electronic systems [1].
Attackers can provoke hardware faults to modify functionality or steal sensitive data from devices
such as personal computers, smartphones, and smartcards (e.g., bank, personal identification
cards) [2, 3]. Modifying the functionality allows an adversary to take control of the system or
bypass some security mechanism [4], while stealing data can happen by observing the output of
faulty calculations during some cryptographic function [5]. This is an alarming issue, as many
ways to inject faults have been proposed over the years. Examples include voltage underfeed-
ing [6], voltage glitching [7], overclocking [8], clock glitching [2], heating [9], electromagnetic-
based glitching [10], and laser glitching [11]. This paper addresses the issue of protecting asym-
metric cryptography, the software RSA decryption in particular from these attacks. RSA is a very
popular algorithm that is used in a variety of security sensitive applications, such as bank transac-
tions, cloud authentication, and as key exchange protocols for symmetric cryptosystems [12, 13].

Email addresses: T.C.Koylu@tudelft.nl (Troya Çağıl Köylü), C.R.W.Reinbrecht@tudelft.nl (Cezar
Rodolfo Wedig Reinbrecht), marcelo.brandalero@b-tu.de (Marcelo Brandalero), S.Hamdioui@tudelft.nl
(Said Hamdioui), M.Taouil@tudelft.nl (Mottaqiallah Taouil)

Preprint submitted to Microprocessors and Microsystems September 13, 2022

Although hardware implementations are much more efficient, many systems still perform RSA
in software to avoid the area overhead. [14]. Boneh et al. [15], Bao et al. [16], and Lenstra [17]
have all proposed methods that could break RSA implementations using any kind of fault at-
tack technique. Today, due to the increased complexity and high performance requirements of
integrated circuits, current state-of-the-art protections might not be suitable anymore [18, 19].
Therefore, new approaches are required to protect software implementations of RSA.

We can group the protections for software RSA implementation in three: i) prevention, ii)
detection, and iii) redundancy. In prevention, the protective countermeasures aim to prevent the
injection of a fault in the integrated circuit. Passive shields are an example for this category [1].
These shields cover the circuit with extra metal layers in order to make it hard for electromag-
netism or light to inject a fault. Note that such a protection is limited, as they cannot prevent
other threats like voltage or clock-based fault attacks. The detection countermeasures on the
other hand aim to monitor the system behavior to identify when a fault attack happens. Ngo
et al. [20] proposed an active shield to detect laser and EM-based attacks. Their active shield
holds the encoded data and the integrity of it can be checked to determine if it is faulted or not.
However, similar to the passive shields, this countermeasure does not protect against voltage and
clock-based attacks. Another detection approach is based on the monitoring of physical distur-
bances using sensors. Examples include detecting light, voltage fluctuations or clock frequency
variations [1]. The main issue with such countermeasures is their coverage, as a single sensor
typically can only detect one type of fault attack. An overall secure system would require many
sensors to protect against the different types of attack, which is not very practical due to area
and power costs. The third type of detection approaches is based on redundancy. Redundancy
can be added in time [21, 22] or in space [23, 24]. A basic time-based redundancy repeats an
operation later in time and compares both results [25]. A more complex version is to calculate
the inverse operation and compare the result with the input [26]. Other versions that validate the
operation with a completely different operation also exists [27, 28]. Giraud et al. [29] presented
one way of achieving this by adding two additional redundant modular multiplications to RSA
and verifying the integrity using several checksums. In space-based approaches, either multiple
operations can run in parallel at the same time using additional hardware [23, 24] or different
checking mechanisms are added, such as error correction codes/parity checks [24]. However,
in such implementations, a final checker or voter is required to decide if a fault was injected.
In general, redundancy-based techniques can protect a system against all kinds of fault injec-
tion attacks, but come with two major drawbacks. First, the entire security is compromised if
the checker is glitched. Second, these countermeasures have a high overhead: typically, twice
the execution time or twice the hardware usage. Therefore, better low-cost countermeasures are
needed that do not only protect against all types of fault attacks, but are also robust against faults
attacks targeted at them.

In our previous work [30], we proposed a novel and efficient strategy to detect all kinds of
fault attacks. The countermeasure evaluates the order of instructions of an RSA decryption and
detects a fault if the expected instruction flow is broken. We implemented this detector using a
recurrent neural network (RNN), learning simply from the observations of instruction sequences
without faults. In this study, we extend our previous work by introducing a detailed analysis
of the impact of different parameters regarding instruction sequences (e.g., sequence length)
on security. In addition, this study presents two other implementations that meet the proposed
concept. They are content addressable memory (CAM) and Bloom filter (BF). Thereafter, we
make a comprehensive comparison among the implementations, showing the trade-offs related
to security, hardware costs, and application flexibility. Lastly, we performed robustness analysis

2

to compare how secure is each implementation when a fault targets the detector itself. Therefore,
our contributions can be summarized as follows:

• Analytical evaluation of instruction flow sequences in terms of security and cost.

• Proposal of a content addressable memory based fault attack detector.

• Proposal of a Bloom filter based fault attack detector.

• A location-based fault analysis to assess the vulnerability of a processor.

• A comprehensive trade-off analysis between RNN and the two new detectors, in terms of
detection rate of faults and hardware costs.

We organize the rest of the paper as follows. Section 2 provides information about the tools
used by the detectors elaborated in this article. Section 3 describes the threat model considered
in this work. Section 4 presents the detectors. Section 5 presents the experiments and results.
Finally, Section 6 concludes and discusses the significance of the obtained results.

2. Background

This section provides the background required to understand the working principles of the
detectors in the context of this study. First, Subsection 2.1 presents the recurrent neural networks.
Thereafter, Subsection 2.2 describes the Content Addressable Memories. Finally, Subsection 2.3
describes the Bloom Filters.

Before describing the detectors, we will briefly define the context here (more details can be
found in Section 4). In our study, we consider instruction sequences (i.e., collection of a couple
of instructions) as inputs to the detectors. The output on the other hand is a binary value that
states whether the instruction sequence contains a fault or not.

2.1. Recurrent neural network (RNN)

A recurrent neural network is a neural network that is capable to understand the relation of a
dataset over time. For example, given a sequence of elements, an RNN can be trained to predict
the next element in such sequence. This functionality is achieved by incorporating previous state
information using a feedback loop [33].

An RNN consists of one or more layers each containing at least one RNN cell. Figure 1 (a)
shows how such a cell processes information over time. In our case, the information is the about
to be executed instructions that constitute an instruction sequence. During the first time step,
the RNN cell takes the first instruction from the sequence as input at time t0, computes the dot
product of it with the weight matrix W. The result is used as an input to a nonlinear function
f (usually tanh). In the following time steps (i.e., t1, t2, etc.) the same operation is repeated for
the next instructions of the sequence. The only difference here is that the output of the previous
time step is concatenated with the next instruction input before the dot product computation. The
RNN consists of several layers, each containing multiple cells.

The neural network contains two phases: i) a design phase (consisted of training and vali-
dation); and an ii) evaluation phase. During training, the network is trained using a reference
dataset (e.g., instruction sequences without any faults). During validation, the training perfor-
mance is evaluated with another reference dataset. The expectation is that the RNN is able to

3

_

f

delay

input

W

output

⇒
_

f

inputt0

W

outputt0

_

f

inputt1

W

outputt1

(a)

data0

data1
. . .

dataN

search register

query
E

nc
od

er

address

(b)

(c)

Figure 1: Background architectures: (a) RNN cell and its unrolling in time [31]; (b) CAM memory [32]. (c) Bloom
Filter.

predict the next instruction, given the past few instructions in the sequence. Finally, the RNN is
employed in the field, where it uses (instruction sequences that may include faulty instructions)
as input in the evaluation phase.

2.2. Content addressable memory (CAM)

Content addressable memory is a special type of memory, where you query for the location of
a specific content [32]. In other words, it receives data as input and outputs the respective address
in the memory in case such content exists. CAMs are typically used in network applications due
to the dynamic information flowing in networks. For example, if multiple destinations use the
same path, a CAM is able to store all these destinations on the same address. As a result, for this
type of application, the memory usage and performance are optimized.

A typical CAM is illustrated in Figure 1 (b). When a query consisting of an instruction se-
quence is supplied, all rows are searched for a matching instruction sequence. If there is a match,
the matching row address is encoded and supplied as an output. There are two characteristics of

4

such an architecture: (i) it finds out whether the query is stored (and its address if that is the case)
and (ii) it accomplishes this typically in a single clock cycle.

The same phases used in RNN is also applicable to the CAM (i.e., design phase and the
evaluation phase). During the design phase, the reference dataset (i.e., instruction sequences
without any faults) is stored in the CAM. In the evaluation phase, instruction sequences with
faulty instructions could be queried. If the input is found in the CAM, the address of the matched
query is retrieved. Due to its deterministic behavior, there is no need for a validation for CAM.

2.3. Bloom filter (BF)

A Bloom filter is a probabilistic data structure that can be used quickly to check whether
an element belongs to a predefined set or not. A BF can be implemented either in software or
in hardware, and it contains the following key components: i) k different hash functions, and
ii) an m-entry bitmap (representing a set). The hash functions must be independent, uniformly
distributed, and in order to provide fast operations, they also have a computational cost.

Fig. 1 (c) depicts an example of how an element can be added (step a) and looked up (steps a
and b) in a BF. We refer to the operation of adding elements to the Bloom Filter as design phase,
while the look-up operation is referred to as evaluation phase. At the beginning of the design
phase, all entries in the bitmap are first set to 0. Next, each item of the training dataset, i.e.,
instruction sequences without any faults, is processed by the k different hash functions (see step
a). Each hash function produces an integer in the range [0,m − 1], which is used as an index in
the m-entry bitmap. During the design phase, the k bitmap positions indexed by the hashes are
set to 1. This phase ends when all instances of the training dataset are computed, and the bitmap
memory is filled.

Similarly, during the evaluation phase, hash values of instruction sequences that may include
faulty instructions are computed using the same k hash functions (see step a). However, in
contrast to the design phase, the resulting indices are now used to read the content of the bitmap
memory. Hence, the k positions are accessed and their values are fed into an AND operation, as
shown in step b of Figure 1 (c). If the AND returns a 1, there is a probability (depending on k and
m) that the input element belongs to the valid set. Note that for BF, false positives are possible.
If the AND returns a 0 instead, the element is definitely not in the valid set.

Notice that a BF never produces false negatives. In other words, it never identifies an element
as a non-member of the set when it actually does. In the context of this work, this property
ensures that a non-faulty instruction sequence will never be detected as faulty. Additionally, the
accuracy obtained in the evaluation phase can be pre-adjusted using the parameters k and m.
Many works provide mathematical estimates for accuracy bounds based on m and k, and we base
our analysis on the results of [34]. Provided that the hash functions are perfectly random, the
false positive rate (FPR) (i.e., probability that a malicious behavior is mistakenly identified as
non-malicious) can be estimated by Equation 1 [34]:

FPR = (1 − e−
kn
m)k, (1)

where n represents the number of instruction sequences that are part of the set. This equation
allows the parameters to be configured for different levels of accuracy and costs, and hence,
enables a fast and cheap implementation.

5

3. Threat & Attack Model

This section describes the threat model. It discusses the target algorithm, target implementa-
tion, fault models, fault exploitation methods, and fault attacks.

3.1. Target Algorithm - RSA

The target algorithm we aim to protect in this work is RSA [35]. It is an asymmetric cryp-
tographic algorithm that consists of three phases (see Figure 2): key generation, encryption and
decryption. In the key generation phase, a public and a private key are generated based on two
large primes p and q (Steps 1-6 of Figure 2). The public key kpub consists of e (the public expo-
nent) and n (product of two large prime numbers p and q), while the private key kpr consists of
d (the private exponent) and n. The public key is available to everyone and can be used to send
encrypted messages to the receiver. In RSA, the encryption is performed by exponentiating the
message m with the public exponent e, which results in a ciphertext c (Step 9 of Figure 2). When
the ciphertext is received, the receiver can decrypt the original message mdec by exponentiating
the ciphertext with the private exponent d, which is only available to the receiver (Step 11 of
Figure 2).

Sender Receiver

I. Key Generation

1 : Generate two large primes (p, q)

2 : n← p × q

3 : Φ(n)← (p − 1) × (q − 1)

4 : Generate e ∈ {1, 2, . . . ,Φ(n)}

| gcd(e,Φ(n)) = 1

5 : d ← e−1mod Φ(n)

6 : {kpub, kpr} ← {(e, n), (d, n)}

7 : kpub = (e, n)

II. Encryption
8 : Generate message m

9 : Encrypt m: c← memod n

10 : c

III. Decryption

11 : Decrypt c: mdec ← cdmod n = m

Figure 2: The RSA cryptosystem [36].

6

Algorithm 1 square-and-multiply (for RSA decryption) [36].
Input: Private key kpr = (d, n) and ciphertext c
Output: Decrypted message mdec= cdmod n

1: Let db = {db0 , db1 , . . . , dbB} be the base-2 (bit) representation of d
2: mdec ← c
3: for i← B − 1 downto 0 do
4: mdec ← m2

dec mod n . square in every step
5: if dbi = 1 then . branch condition
6: mdec ← (mdec × c) mod n . multiply if the key bit is 1
7: end if
8: end for

Algorithm 2 Chinese remainder theorem (for RSA decryption) [36].
Input: Private key kpr = (d, n), two (secret) large primes (p, q) and ciphertext c
Output: Decrypted ciphertext mdec = m

1: mp ← cd mod p . smaller modulo exponentiation for p
2: mq ← cd mod q . smaller modulo exponentiation for q
3: ap ← q−1 mod p . auxiliary calculation for p
4: aq ← p−1 mod q . auxiliary calculation for q
5: mdec ← ([q × ap]mp + [p × aq]mq) mod n . combination

The security of RSA depends on the selection of prime numbers p and q. As n is public,
as shown in Step 2, an attacker may obtain p and q by brute-forcing the factorization of n. To
overcome this, large numbers are used, typically in the order of 1024 bits and beyond. As a
consequence, the selection of large numbers affects the encryption and decryption performance
(Steps 9 and 11). To speed them up, different algorithms have been proposed. In this paper, we
look at two algorithms for the decryption. The first algorithm uses square-and-multiply (SAM)
(see Algorithm 1) for the exponentiation. SAM decomposes the exponentiation in a series of
iterative square operations and potential multiplications based on the binary representation of
the key. As a result, this algorithm has logarithmic time complexity. The second algorithm is
based on the Chinese remainder theorem (CRT) (see Algorithm 2). This method first computes
the exponentiation for two smaller numbers p and q as modulo (typically also using SAM).
Thereafter, it linearly combines these results to obtain the actual exponentiation in the larger
modulo n. The performance gain in CRT comes from this task division. This algorithm typically
uses the extended Euclidean algorithm [37] to calculate modular inverses of p and q. CRT
provides a performance advantage when big integers are used.

3.2. Target Implementation - RISC-V ISA

In this work, we consider an RSA implementation in software compiled for the RISC-V in-
struction set architecture (ISA), in particular, the 32-bit base architecture (RV32I). RISC-V is an
open source ISA that contains four core instruction formats, either 32, 64, or 128 bits and sev-
eral optional extensions [38]. The four core instruction formats are R-type: used for arithmetic
and logical operations where three registers are involved; I-type: used for short immediate and
loads; S-type: used for loads, stores, and branches; and U-type: used for long immediate and
unconditional jumps. There are several format extensions, such as floating point (extension F)

7

or compressed instructions (extension C), which aim to provide flexibility to adapt the processor
according to the needs of the target application.

The base 32-bit instruction set RV32I includes 47 instructions, which can be grouped into
six types if we consider two additional variants with respect to the four core instruction formats.
These two extra formats are the B-type (used for conditional branches, which is a variation of the
S-type) and J-type (used for unconditional jumps, which is a variation of the U-type). Figure 3
illustrates the format of the different instruction types. In all of them, the least significant seven
bits are used as opcode. Aside from the U-type and J-type formats, bits 12 to 14 are referred to
as function 3 (f3) field. These two fields determine the functionality of the instruction. In the
R-format, which is used for operations where three registers are involved, an additional function
7 (f7) field is used to specify extra functionality details. This field is seven bits wide, from bit
25 to 31. Six of these bits are always 0. The value of the 30th bit is used to further clarify
the instruction. For example, an f3 value of {000}2 may indicate addition or subtraction. If the
30th bit equals 0 (i.e., f7 equals {0000000}2), the operation equals an add, otherwise (when f7 is
{0100000}2) a subtraction is performed. Note that we used the opcode, function f3, and 30th bit
located in function 7 as inputs to the neural network, as these define an instruction. Without loss
of generality, we do not consider out-of-order and speculative executions in this work.

Figure 3: RISC-V RV32I instruction formats [38].

3.3. Fault Models

We used two sets of fault models. Both sets assume that an attacker can inject faults in the
different parts of the systems such as the main memory, processor in general and specific parts
of the processor such as instruction buffer during the sensitive operation. In addition, we assume
that attackers have full observability, i.e., they can observe inputs (ciphertext), as well as faulty
and fault-free outputs (decrypted message).

The first set of fault models can be used by an attacker to determine vulnerable locations in
the system. Therefore, they focus on faults in different locations of the system. There are four
location-based fault models:

1. One fault in memory (OM). This fault model represents one bit flip in the main memory.

2. One fault in processor (OP). In this fault model, one random bit flip occurs in any part of
the processor.

8

3. Multi-bit fault in memory (MM). In this fault model, multiple random bit flips occur in any
part of the main memory (from one to four, where the latter is set to limit the simulation
times). Note that these faults may fall in any place, and hence, they are not necessarily
concentrated in the same or adjacent memory row.

4. Multi-bit fault in processor (MP). In this fault model, multiple random bit flips occur in
any part of the processor (from one to four, again for the same reason).

The second set was introduced by Koylu et al. in [30], in order to evaluate the instruction
fault detection capabilities of a detector. Here, the fault models represent different types of faults
that alter instructions that can take place for example in the instruction memory or the instruction
buffer of the processor. It contains five types of fault models:

1. Single bit fault model. This fault model represents a single bit flip that may happen in any
bit of the instruction.

2. Single byte fault model. A byte fault refers to multiple bit flips within a single byte of the
instruction. Any fault that provokes a change in a random byte falls into this fault model.

3. Branch-to-opposite fault model. This fault model contains bit flips that change a branch
instruction to the opposite branch instruction. As we consider the RISC-V ISA, these bit
flips must happen in the f3 field. As such, the instructions are swapped between branch
equal<->branch not equal, branch less than<->branch greater or equal and branch less
than unsigned<->branch greater or equal unsigned.

4. Instruction-to-instruction fault model I. This fault model extends the previous, by also
including the faults resulting in the change of other instructions to each other. This change
can be in the same format (e.g., from branch equal to branch greater) or into different
formats (e.g., from branch to add). One constraint in this fault model is that only a branch
instruction can be glitched into another branch instruction. The reason for this is that when
a non-branch instruction is glitched into a branch, it is very easy to detect the fault as the
control flow of the program breaks and the program typically crashes.

5. Instruction-to-instruction fault model II. This fault model is the same as the variation I, but
without the branch constraint.

Note that the instruction changing fault models can also cover popular software attacks such
as instruction skips, code injection, buffer overflow, and code reuse [39]. However, we do not
formally investigate them in this paper.

3.4. Fault Exploitation Methods

The exploitation methods show how vulnerabilities can be exploited to break a cryptosystem
by injection of faults. The objective is to identify three main aspects: "how many faults are
needed?", "where should the faults occur?", and "what type of faults are needed?". Two popular
methods against RSA are considered in this paper. These are referred to as Bellcore and Bao.

9

3.4.1. Bellcore Threat Model
One of the first fault exploitation methods against RSA is "Bellcore" [15]. This theoretical

study demonstrated that some particular faults allow malicious parties to break Chinese remain-
der theorem-based RSA implementations (i.e., obtain the key). The attack aims at inserting a
fault into one of the smaller modulo exponentiation (see Algorithm 2) to provoke an erroneous
result. By comparing the wrong output with the correct output from fault-free decryption, the
key can be mathematically retrieved. To understand the attack in more detail, let’s revisit the
smaller modulo exponentiation mp ≡ cd mod p and mq ≡ cd mod q (see also Algorithm 2).
There are two coefficients (a, b) that satisfy the following three properties:

p1. mdec = m ≡ a × mp + b × mq mod n

p2. a ≡ 1 mod p, a ≡ 0 mod q

p3. b ≡ 0 mod p, b ≡ 1 mod q

Let’s assume that a fault occurred during decryption which affected mp only (see line 2 at Algo-
rithm 2). As mp ≡ cd mod p, property p1 will change and the faulty m′p can be expressed by
Equation 2. In case the fault-free mdec is available, a differential calculation can be made; this is
shown in Equation 3. From this equation the value of q could potentially be derived, as shown in
Equation 4. In case the result of Equation 3 is not divisible by p, the value of q can be retrieved.
Hence, RSA can be easily broken as n = p × q. Later, Lenstra et. al showed that the correct
message mdec is even not needed to break the cryptosystem [17].

m′dec ≡ a × m′p + b × mq mod n (2)

mdec − m′dec = (a × mp + b × mq) − (a × m′p + b × mq) = a(mp − m′p) (3)

gcd{a(mp − m′p), n} =

q, if mdec − m′dec mod p , 0.
n, otherwise.

(4)

3.4.2. Bao Threat Model
A second popular fault exploitation method against RSA is presented in Bao et al. [16]. In

this study, two threats are introduced. Both are based on the idea of introducing bit faults to leak
one bit of the secret exponent d at a time. To understand why this strategy works, the decryption
operation can be rewritten in such a way that the key bits are used independently from each other.
This is shown in Equation 5. In this equation, di presents the ith bit of the key and N the bit length
of the modulus n. The values ti depend on the ciphertext c as shown in Equation 6.

mdec ≡ tdN−1
N−1 × tdN−2

N−2 × . . . × td1
1 × td0

0 mod n (5)

ti ≡ c2i
mod n : i ∈ {0, 1, . . . ,N − 1} (6)

The first attack injects a bit fault into the ciphertext. More specifically, one of the ti’s are made
faulty by one bit. It can be quickly observed from the equation that only one of the N terms of
Equation 5 will differ from the correct decryption. Hence, when you divide the faulty output with
the fault-free output, either a 1 is expected (when the involved key bit is 0) or the ratio between

10

them (when the involved key bit is 1). This is shown in Equation 7. Note that the first condition
on this equation, when di = 0, means that m′dec mod n ≡ mdec mod n. Thus, no information
can be gained in this case. For the other case however, an attacker can calculate all possible 1
bit faults on ti’s, and compare it with the result of m′dec

mdec
, which are both assumed to be accessible.

When a match is found, the attacker infers both i and that di = 1. This attack is then repeated to
find other bits of the secret exponent d.

di =

0, if m′dec
mdec
≡ 1 mod n

1, if m′dec
mdec
≡

t′i
ti

mod n
(7)

In the second attack, the bit fault is injected into the secret exponent d. Namely, di is made faulty.
In a similar way, Equation 8 is now applicable. In the equation, both cases di = 0 and di = 1
leak information. The secret bit is 0 or 1 when the division of the correct and faulty decrypted
messages results in ti or 1

ti
, respectively. This attack is then repeated to find the other bits.

di =

0, if m′dec
mdec
≡ ti mod n

1, if m′dec
mdec
≡ 1

ti
mod n

(8)

3.5. Fault Attacks

Fault injection attacks on RSA try to successfully retrieve the key by applying exploitation
methods like the ones presented in the previous subsection. Several techniques can be used to in-
ject faults into a circuit, such as voltage underfeeding or clock glitching. For example, Barenghi
et al. [3] used voltage underfeeding to retrieve the key of a software RSA implementation using
both Bellcore and Bao methods. To perform Bellcore’s method, they corrupted the load in-
structions. To perform Bao’s method, they changed branch instructions to the opposites, during
square-and-multiply (Algorithm 1). To elaborate further on this, the check condition that deter-
mines whether a multiplication should be performed (which depends on the key bit) is typically
implemented with a branch not equal instruction. When this condition is changed to a branch
equal, the effect is equal to having a bit fault in the secret exponent d. Hence, the vulnerability
conditions described by the Bao threat model can be exploited. Schmidt et al. [10] successfully
applied the Bellcore threat model-based attack using an EM spark, which was able to disturb
only one of the modulo computations.

It is important to note here that the conditions of the aforementioned threats can be realized
in a number of ways. Although not explicitly aimed at RSA implementations, many studies show
different fault injection techniques that can potentially be used to achieve Bellcore and Bao ex-
ploitation methods. For example, Amiel et al. [2] tampered with the clock signal of a smartcard
to break data encryption standard (DES). The study by Kim et al. [40], introduced Rowhammer-
ing to flip bits in memory cells by continuously reading data from DRAMs. The importance is
that the attacker does not even have to obtain physical access to the attacked device. Skoroboga-
tov et al. [41] illustrated the same effect by using a flash lamp, whereas Agoyan et al. [11] used
a laser. Finally, Schmidt et al. [42] used ultraviolet light to attack advanced encryption standard
(AES).

The location of where the faults take place is important. In the context of a processor running
an RSA decryption, the attacks can target multiple places to succeed in realizing Bellcore and
Bao threats. These include; (i) injecting faults to the main memory to change associated stored

11

values [40], (ii) injecting faults to the instructions to change the operations and/or the interpreta-
tion of the data [3], and (iii) injecting faults into the internal signals of the processor to change
the interpretation of intermediate results [43]. Our protection focuses on faults that affect the
instructions directly or indirectly in the instruction buffer, which is explained next.

4. Instruction Flow-based Detectors

This section presents a detailed analysis on instruction flow-based detectors. Subsection 4.1
explains the concept of how faults can be detected by observing the program flow at instruction
level. Thereafter, Subsection 4.2 provides a mathematical relation between the detector’s detec-
tion capability (i.e., security) versus its cost. Subsequently, Subsection 4.3 presents our general
methodology to design an instruction-flow based detector. Finally, Subsection 4.4 presents dif-
ferent types of detectors: RNN, CAM, and BF.

4.1. Concept

Our aim is to design a detector that works in parallel to the processor, with the aim of detect-
ing faulty instructions. This requires two main elements: a way to extract meaningful information
from the instructions, and an algorithm to detect faults in them. This subsection focuses on the
ways to extract meaningful information.

Every program runs a specific sequence of instructions that is dictated by its algorithm.
Depending on the data, a program can have multiple execution flows, which creates multiple
valid/fault-free/correct instruction sequences. Note that we use these terms interchangeably. If a
fault occurs, it is very likely that a valid sequence becomes corrupted. This can lead to erroneous
computations or even crashes. Therefore, faults can be detected by investigating the validity of
the sequence of executed instructions. The more instructions an instruction sequence contains,
the easier it is to detect the fault in general, as the order of the instructions is more unique. In
contrast, if the instruction sequence consists of a single instruction only, the probability that a
faulty instruction is still valid is much larger: such as the case when an add instruction is faulted
to a subtract instruction.

A number of studies have investigated a similar concept; we refer to them as control flow in-
tegrity checking [44, 45, 46, 47, 19, 48]. These studies divided the instructions of a program into
blocks and protected them using signature-based integrity checks at the end of each block. Even
though this approach would theoretically determine faulty instructions, it has major drawbacks:
i) a fault injected into the signature checker at the end of a block will render the countermea-
sure inefficient, ii) there are typically no security dependencies between the blocks and hence
if one check is bypassed, checks in the subsequent blocks cannot detect that, iii) the exhaustive
listing of all possible program behavior is costly, and iv) they typically require modifications to
the processor [39]. Our previous work addressed these shortcomings by simply evaluating se-
quences of non-faulty instructions (i.e., the last couple of fetched instructions) continuously in
the processor [30] to determine irregularities when there are faulty ones.

This concept is shown in Figure 4, where wl denotes the window length (i.e., the size of
the instruction sequence, which contains the last wl instructions that are being checked), while
sl represents the sliding length, i.e., how many instructions are skipped between the sequences.
Note that an sl of 1 represents an overlap of wl−1 instructions between two consecutive sequences
(see Figure 4). To prevent instructions from not being checked, sl must be equal to or smaller
than wl. In the following subsection, we provide detailed analysis regarding wl and sl.

12

ins0 ins1 ins2 ins3 ins4 ins5

s0

s1sl

(a)

ins0 ins1 ins2 ins3 ins4 ins5

s0

s1sl

(b)

Figure 4: Illustration of two cases of instruction sequences, with the following parameters as examples: (a) wl = 5, sl = 1
and (b) wl = 4, sl = 2. Two sequences (s0 and s1) are indicated for both cases.

4.2. Analysis
The window wl and sliding length sl impact the security and cost as follows:

• If the probability of randomly changing an instruction to another valid instruction by a fault
injection attack is p, changing an instruction such that it still matches a valid sequence of
more than one instruction is q, where q � p. In this case, an adversary’s success rate is
reduced to q.

• Furthermore, when instruction sequences are validated (e.g., by a detector) instead of sin-
gle instructions, the success rate of an attack (i.e., changing a complete sequence to another
one) becomes Q = qwl . Hence, we have Q � q, which also means that the bigger wl is,
the lower the probability of an attack to succeed.

• An instruction can be validated multiple times, as 1 ≤ sl ≤ wl holds. Specifically, the
instructions are validated in approximately l =

⌈
wl
sl

⌉
different sequences. The lower sl, the

more overlap of instructions in different sequences, and hence, more redundant checks are
performed. This further reduces the adversary success probability Q′ as Q′ < Q.

Based on these observations, a countermeasure can be designed to protect the system by
evaluating instructions sequences. A large wl and small sl is expected to increase the security,
but also come with a higher implementation cost. In order to analyze the trade-off between
security versus cost, we propose two evaluation metrics to represent them. The security can be
expressed in how often an instruction gets checked and how difficult it is to change an instruction
without getting detected by the detector. The latter implies that a bit causing a fault in a valid
sequence must lead to another valid sequence in order to go undetected. Hence, we use the
average Hamming distance between the different sets as a security metric as shown in Equation 9.

S ecurity =
l × 2

N × (N − 1)

N−2∑
i=0

N−1∑
j=i+1

HD(seqi, seq j)
B

. (9)

In this equation, l denotes how often the same instruction is checked in different sequences,
HD the hamming distance between two sequences seqi and seq j normalized with respect to the
number of bits in a sequence B, and N the number of different instruction sequences which can be
approximately represented by N ≈ (I−wl)/sl. Here, I represents the total number of instructions.
Lastly, to calculate the average HD between the instruction sequences the equation is normalized
by the number of different sequence pairs (i.e., [N × (N − 1)]/2).

The security in Equation 9 is directly proportional to the number of instruction checks, and
thus a larger wl and smaller sl increases the security. However, at the same time using such values
will increase the required storage and computational capacity. The storage can be expressed by
the number of bits that need to be stored, while the computation complexity by the number of

13

instructions processed in parallel at a given time. We integrate both concepts in a single cost
metric, as shown in Equation 10.

Cost = N × B × (wl × l), (10)

In this equation, the storage requirement equals the product of number of sequences N and
the number of bits in each sequence B. For the computational capacity, we consider the number
of instructions that are processed from the moment a new instruction is part of the instruction
sequence under process until the moment it is not part of an instruction sequence. Figure 5
provides an example for the instruction inst2 . The amount of instructions that are processed
while inst2 is being checked equals wl × l, which can also be represented as ip = wl ×

⌈
wl
sl

⌉
. For

part (a) of the figure with wl = 3 and sl = 1 this equals ip = 9. For part (b) with wl = 3 and sl = 2
equals ip = 6, and for part (c) with wl = 3 and sl = 3 equals ip = 3.

inst2 inst1 inst0

inst3 inst2 inst1

inst4 inst3 inst2

(a) wl = 3, sl = 1 (ip = 9 instructions)

inst2 inst1 inst0

inst4 inst3 inst2

(b) wl = 3, sl = 2 (ip = 6 instructions)

inst2 inst1 inst0

(c) wl = 3, sl = 3 (ip = 3 instructions)

Figure 5: Number of processed instructions before the last instruction in the first sequence (indicated by red) is released.

We calculated the security and cost metrics for the RSA decryption with and without CRT.
Both algorithms were coded in C language and compiled for the RISC-V ISA. The metrics were
evaluated for {wl, sl} ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], with sl ≤ wl. Next, we only present the results
for CRT case in Figure 6 and Figure 7, since the results for the non-CRT are very similar.

Figure 6 shows the impact of wl and sl on the security, while Figure 7 shows the impact
on the cost metrics. The larger wl the higher the security. However, the cost increases faster
than the security. This analysis ultimately shows that increasing the instruction sequence length
brings more protection but at a higher price. In other words, wl must be chosen carefully, being
high enough to provide adequate protection, while low enough to avoid a high cost. Increasing
parameter sl, denoted as slide in the figure, on the other hand leads to a faster reduction of cost
as compared to the security.

In our previous work, we selected wl = 5 and sl = 1. This seems a reasonable selection as the
cost is not too high. We made this selection for the RNN based on training and validation perfor-
mance (with trial-and-error), as is customary while working with neural networks. This selection
of a low wl value also fitted our goal of lowering the cost of a hardware implementation [30]. In
this work, we use the same wl and sl values for CAM and BF implementations.

14

Figure 6: Protection level analysis for CRT implementation.

Figure 7: Cost analysis for CRT implementation.

4.3. Design
The background section (Section 2) presented different tools that can be used to build instruction-

flow-based detectors. All these methods use a similar design approach consisting of two phases:
design and evaluation. Both phases are described next.

Figure 8: Design methodology of instruction-flow based detectors

4.3.1. Design Phase
The design phase consists of four steps, which are illustrated at the top of Figure 8. The aim

of step 1 (Coding) is to create a software code or a program, in this case, the RSA decryption. For
15

this, we implemented two RSA decryptions in C, one with and one without CRT. Both implemen-
tations generate random public/private keys and a ciphertext. The software implementation also
contains the extended Euclidean algorithm (EEA) needed for CRT. Moreover, both implementa-
tions use square-and-multiply (SAM) for exponentiation. Next, step 2 (Compiling) compiles the
created programs to the target implementation. In this work, we employed the riscv_gcc (ver-
sion 7.1) [49] compiler to generate the binaries. These binaries contain all assembly instructions
required to generate the instruction sequences.

In step 3 (Simulation), we load the generated binaries into the instruction memory of the
RISC-V processor. This processor is written in register-transfer level (RTL) and is part of a
system-on-chip (SoC) containing the processor, cache memory and peripherals. Next, we sim-
ulate this SoC using QuestaSIM from Mentor Systems [50] and Incisive from Cadence Design
Systems [51]. During simulation, instructions are fetched from the instruction memory and are
executed. The simulator saves the sequence of executed instructions into a file as output and
marks those related to the decryption. Lastly, step 4 (Training) uses this file of instruction se-
quences to build a training dataset and perform the training process. When the training is com-
plete, the RNN is able to predict the next instruction from previous ones. To determine whether
a next instruction is valid with an RNN, we need an additional parameter called con fthr, which
we set as the lowest expectance probability of all instructions in the validation set [30]. Con-
sequently, if a run-time instruction has a lower expectance probability than con fthr, the detector
considers it faulty. The CAM saves different correct sequences into its table and BF fills the
bitmap positions after the hash calculations of correct sequences (see also Figure 1.(c)). Conse-
quently, both are able to determine whether an instruction sequence is valid or not. At the end
of this design phase, the detector is ready to be tested for use in the field, which constitutes the
evaluation phase.

4.3.2. Evaluation Phase
The evaluation phase also consists of four steps, as illustrated in the bottom part of Figure 8.

The first two steps are similar to the design phase, where the software programs (Coding) are
compiled to the target processor (Compiling). In step 3 (Execution), the SoC is tested in the
field. During this step, the processor fetches the instructions from its memory. In parallel, those
fetched instructions are copied to a buffer to be used by the detector. Note that at this moment,
the system can be exposed to a fault attack. Lastly, step 4 (Detection) represents the detector
evaluating the sequence of instructions and providing fault detection results. In the presence of
an alarm (i.e., when the detector identifies an invalid sequence), the system can take some action.
This is beyond the scope of this work; however, some examples are restarting the operation or
the system and changing secret keys.

To test the effectiveness of the detector, we simulated the processor with the aforementioned
fault models (see Subsection 3.3) that were applied in the testbench. We argue though that this is
not different from testing in a real environment. The reason is that our detectors are solely trained
on instruction sequences of fault-free operations. Hence, the detectors are up-front not aware of
any faults. Therefore, the detection results are bias-free and give an idea about the performance
against unknown or future attacks.

4.4. Implementation

In this section, we describe the hardware implementation of the three different detectors:
RNN, CAM and BF. All three detectors are intended to be used as a hardware module in the

16

SoC, with inputs (i.e., fetched instructions) provided from the instruction buffer. We omit the
description of the implementation of the RNN as it is provided in [30]. A detailed description of
the other two methods is provided next.

4.4.1. CAM
The hardware implementation of the CAM-based detector, which is illustrated in Figure 9,

consists of three major components: a buffer, table, and an finite state machine (FSM) controller.
The function of the buffer is to collect the last five fetched instructions in a first in-first out (FIFO),
which outputs a 5 × 32 = 160 bit signal. After each newly fetched instruction, the content of the
FIFO is updated by shifting in the newly fetched instruction.

Figure 9: Hardware implementation of CAM-based detector

A CAM is used to identify if the instruction sequence consisting of five instructions is a valid
sequence or not. The internal logic of the CAM compares this input with every existing entry.
The output is 1 (hit) if there is such an entry and hence a valid sequence, or 0 (miss) otherwise
when the sequence is invalid.

The FSM controller makes sure that the initial sequence of five instructions is properly ini-
tialized and synchronizes the communication between the buffer and CAM to ensure that a fault
check happens each time a new instruction is fetched. When a fault is detected, an alarm signal
is raised. Such a signal could for example be an interruption request (IRQ) to the CPU).

4.4.2. BF
As mentioned in Equation 1, the fault detection rate of a BF depends on three parameters: the

number of hash functions k, expected number of elements n that equals the number of different
valid instruction sequences, and number of entries in the bloom filter memory m.

From the simulations, we identified that n = 213 for the CRT implementation, and n = 63
for the non-CRT implementation. The analysis for these given n values and varying k and m is
illustrated in Figure 10. The plots immediately show that a higher m reduces the false positive
rate (FPR). To have a low FPR, we used m = 512 bits in our experiments. In terms of k, k = 2
results in the smallest FPR for the CRT implementation. For the non-CRT case, k = 3 has the
lowest FPR. However, to have a single design for both cases we select k = 2 as this gives overall
the lowest FPR for both designs. The hashes that we select are fnv [52] and murmur [53]. Each of
these hash functions takes a 32-bit input and produces a hash value in a single clock cycle, thus
also enabling one-cycle lookups. With all these parameters selected, we used the architecture
shown in Figure 1.(c) to make the hardware implementation.

17

Figure 10: False positive rate analysis for the Bloom filter

5. Experimental Results

In this section, we describe the experimental setup, the performed experiments, and obtained
results. In the last part, we also evaluate the hardware overhead of the proposed detectors in
terms of area and power.

5.1. Setup

We implemented the RSA implementations using 12-bit keys (without loss of generality)
to speedup simulations. Table 1 shows the design parameters of RNN, CAM and Bloom filter.
We used 750 fault-free decryptions to train the RNN, whereas the validation set consists of 250
fault-free decryptions. We obtained con fthr values of 3.65 for the Chinese remainder theorem
(CRT) and 12.69 for the non-CRT case after the training, using the validation set. The CAM
contains 213 entries (i.e., 213 different instruction sequences as multiple instances of the same
instruction sequence have been added once only) for the CRT and 63 for the non-CRT case (for
reference: the binary of the decryption implementation contains 174 instructions for CRT and
44 for non-CRT). For the Bloom filter, we have k=2 hashes, n=213 sequences for CRT, n=63
sequences for non-CRT, and m=512. Also note that in contrast to RNN which monitors only 11
bits of the instructions, CAM and BF monitor all 32 bits.

We evaluate the overhead of the detectors by synthesizing and mapping them on an FPGA
using as target the device 10AS066N3F40ELG from the ARRIA 10 family [55]. The processor
and the detector are implemented in hardware and the clock frequency was set to 25MHz.

5.2. Performed Experiments

In this subsection we are going to describe the experiments that are used to accomplish the
following goals: (i) make a vulnerability analysis on various fault attack locations, and (ii) evalu-
ate the detector’s performance of attacks on the most vulnerable location. In total there are three
experiments. In the first experiment, we assess how vulnerable the processor is. In the second
experiment, we evaluate and inject faults only in part of the processor (i.e., instruction buffer) to
increase the attack’s success rate. This allows us to compare the detection accuracy of the three
detectors better in the third experiment. Each experiment is further described next:

18

Table 1: Design parameters
RNN

parameter value
s 5
sl 1

#used instruction bits 11
validation ratio 25%

optimizer adam [54]
loss function categorical crossentropy

metrics accuracy
batch size 100

epochs 100
dropout RNN layer: 0.1 (normal, recurrent)

CAM
parameter value

s 5
sl 1

#used instruction bits 32
Bloom filter

s 5
sl 1

#used instruction bits 32
n 213 (CRT) - 63 non-CRT
m 512

hash functions fmv, murmur

5.2.1. Experiment 1 - Vulnerability Assessment of Processor
The aim of the first experiment is to analyze vulnerable parts of a processor against faults.

For this, we injected faults into random locations (including the memory and the processor parts),
using the first set of fault models (see Subsection 3.3). These fault models are one fault in mem-
ory (OM), one fault in processor (OP), multi-bit fault in memory (MM), and multi-bit fault in
processor (MP). The binary of the complete program has a size of 10.4 kB, from which 696 bytes
contain instructions related to the decryption for CRT which equals 696/4 = 174 instructions.
Similarly, the non-CRT decryption part has a size of 176 bytes). Since the total memory size is
64 kB, only 1.06% of the memory contains the target program (0.26% for the non-CRT).

For each fault model, a test set is used that contains single correct decryption and 10000 runs
with injected faults. In some trials, the simulator was not able to inject a fault. This happens for
example when a fault is injected into an undefined signal. These cases have not been considered
in the results.

Note that this experiment covers all possible cases that can lead to an incorrect decryption
result. These include: (i) glitching the memory where the program instructions and data are
stored, (ii) glitching the instructions in the instruction buffer of the processor, and (iii) glitching
the internal processor signals to corrupt intermediate results (like the arithmetic logic unit (ALU)
input or output). Hence, the result of this experiment allows an efficiency comparison of different
fault injection strategies.

5.2.2. Experiment 2 - Vulnerability Assessment of Instruction Buffer
Injection faults randomly in the processor and memory typically lead to a low success attack

rate. To increase this, and hence to to be able to compare the performances of the detectors
better, we repeat the previous experiment but limit the location of faults to the instruction buffer

19

only (see attack case (ii) in Subsection 5.2.1) and use the single bit fault model only (see Sub-
section 3.3). We have created 2000 different decryptions and injected bit flips into one or more
instructions.

5.2.3. Experiment 3 - Detector Evaluation
In this experiment, we evaluate our detectors (RNN, CAM, and BF) by injecting faults to the

instruction buffer only (see attack case (ii) in Subsection 5.2.1). We use all the fault models in
the second set (see Subsection 3.3): single bit, single byte, branch-to-opposite, instruction-to-
instruction-I/II fault models.

5.3. Results
Next, we present the results of the three experiments.

5.3.1. Experiment 1
The results of the first experiment are shown in Table 2. The results are here presented

based on the observed outputs for the different fault models. Four different output categories
are observed. They are: i) expected; ii) crash; iii) successful; and iv) exploitable. Expected
behavior means that the fault did not have an impact on the output of the decryption (omitted
in the table). A crash represents corruption in the execution, which makes the processor hold.
Successful means that the fault(s) have changed the decryption output. Note that not all changes
in the output of the decryption can be exploited by an attack. Exploitable indicates the cases
where faults caused exploitable outputs by Bellcore and/or Bao’s methods (see Subsection 3.4).

Table 2: Vulnerability Assessment of Processor (Experiment 1).
fault CRT non-CRT

model crash successful exploitable crash successful exploitable
OM 0.07% 0.16% 0.12% 0.00% 0.04% 0.00%
OP 0.94% 2.11% 1.50% 0.16% 0.18% 0.06%

MM 0.26% 0.73% 0.49% 0.02% 0.02% 0.02%
MP 3.40% 4.27% 2.75% 1.65% 1.41% 0.01%

The results shows than only a small percentage of the 10000 fault injection trials for each
model (i.e., OM, OP, MM, MP) leads to exploitable cases. This shows that randomly injecting
faults without considering the precise location is not very effective.

Another observation is that attacking the processor in general yields better results than at-
tacking the memory. This is primarily because the actively used memory is small in contrast to
the attack surface. Thus, the majority of the faults do not create an effect. Therefore, from the
results, the best approach is to target the processor with multiple faults.

Note that there are some 0.00% entries in Table 2. These results are due to a low possibility
of occurrence. As an example, for the OM non-CRT case, there are some successful instances.
Such an instance can lead to a vulnerability, but it did not in our sample. The same applies to the
case of no crashes.

5.3.2. Experiment 2
Evaluating the detector based on the first experiment would require many runs for a fair

comparison, as the only limited cases lead to exploitable cases. Therefore, we focus in this
experiment on injecting fault in the instruction buffer only. The results of this experiment are
presented in Table 3, and are represented in a similar manner as the results of Experiment 1.

20

Table 3: Vulnerability Assessment of Instruction Buffer (Experiment 2).
CRT non-CRT

crash successful exploitable crash successful exploitable
34.29% 47.76% 28.84% 33.63% 49.97% 10.02%

The results show that an incomparably larger percentage of the faults create vulnerabilities
when the instruction buffer is targeted. This shows that attacking the instruction buffer is a much
more effective and time-efficient fault injection strategy. Another observation is that the number
of exploitable instances is smaller in percentage in non-CRT, compared to the CRT case. One
contributing factor is that the non-CRT case cannot be exploited with Bellcore.

This experiment indeed shows that glitching the instruction buffer is a better strategy to com-
pare the performance of the three detectors. However, it must be noted that a more localized fault
attack generally requires more knowledge of the design and better fault-attack equipment.

5.3.3. Experiment 3
The results of the third experiment are provided in Tables 4, 5, 6 for RNN, CAM, and BF-

based detectors respectively. The results are grouped in three classes: fault, decryption, and
security detection. The fault detection column contains the rate of traces that were detected by
the detector. The decryption detection column includes the ratio of test cases we can protect, i.e.,
fault detection rate plus the cases where the faults did not affect the decryption result. The secu-
rity detection column contains the ratio of traces that could not be attacked, i.e., the decryption
detection rate plus the cases where Bellcore and Bao exploitation methods (see Subsection 3.4)
did not work. The table also shows additional information by also looking at the number of faults
that have been injected. For example, for fault model 1 we have injected a single bit fault in one
instruction (the first line where f = 1) and a single bit fault in two or more instructions (the
second line where f > 1).

Table 4: Detector Evaluation of RNN-based detectors ((Experiment 3 part (a))
fault decryption security

fault #faults CRT non- CRT non- CRT non-
model (f) CRT CRT CRT

1 f = 1 0.35 0.28 0.70 0.54 0.75 0.88
f > 1 0.65 0.62 0.71 0.69 0.82 0.95

2 f = 1 0.60 0.55 0.80 0.69 0.83 0.95
f > 1 0.88 0.84 0.91 0.86 0.93 0.99

3 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I f = 1 0.91 0.90 0.95 0.91 0.97 0.99
f > 1 0.99 0.99 0.99 0.99 1.00 1.00

4-II f = 1 0.88 0.90 0.95 0.91 0.96 0.99
f > 1 0.99 0.99 0.99 0.99 0.99 1.00

The results show that CAM has a 100% detection accuracy for all cases, BF almost 100%
in all cases and RNN only has a high detection rate when fault models are applied that change
instructions. Note that RNN provides some detection even for bit and byte fault models. This
is because (i) some faults hit on instruction locations that are learned by the RNN and (ii) some
data faults can still disrupt the instruction flow, such as a change in the jump location in a branch
instruction. Overall, the deterministic methods result in higher accuracy.

21

Table 5: Detector Evaluation of CAM-based detectors ((Experiment 3 part (b))
fault decryption security

fault #faults CRT non- CRT non- CRT non-
model (f) CRT CRT CRT

1 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Detector Evaluation of BF-based detectors ((Experiment 3 part (c))
fault decryption security

fault #faults CRT non- CRT non- CRT non-
model (f) CRT CRT CRT

1 f = 1 0.99 0.99 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

2 f = 1 0.99 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

3 f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II f = 1 1.00 1.00 1.00 1.00 1.00 1.00
f > 1 1.00 1.00 1.00 1.00 1.00 1.00

We also evaluated our detector against 10000 correct decryptions that are not part of training,
validation set and test set to realize the impact of false positives. In none of the cases false
positives have been detected and hence, the false positive is 0% for all three detectors.

5.4. Hardware overhead

All detectors have been synthesized on an FPGA technology and compared to the Ariane
core. Table 7 shows the area overhead in percentage for the three detector implementations:
RNN (including a single RNN cell), CAM (for both CRT and non-CRT cases) and BF. Available
resources in absolute value are indicated in parenthesis. Note that the RAM comparison only
considers internal components of the Ariane core, such as caches and buffers (implemented as
SRAM blocks). Hence, no external memory is considered.

Table 7: Area overhead of three detector implementations: RNN, CAM, and BF
tool slice LUTs (4182) slice registers (273) block RAM tiles (32)

RNN 15.57% 2.17% 1300.67%
RNN (1 cell) 1.92% 0.17% 162.58%
CAM (CRT) 2.05% 0.07% 61.35%
CAM (non-CRT) 0.55% 0.03% 26.97%
BF 0.51% 0.17% 154.61%

22

As observed in the table, the RNN-based detector is the most expensive implementation. In
addition to requiring a lot of memory, this implementation leads to increased overhead in the
processor. However, if desired, this implementation can be employed by a single RNN cell. This
would reduce the overhead significantly but increase the computation time significantly.

In contrast, both CAM implementations have a much lower overhead, especially the non-
CRT case, due to limited number of instruction sequences. The memory overhead in CAM
depends linearly on the amount of different instruction sequences that have to be protected. BF
implementation on the other hand is a middle ground between RNN and CAM with respect
to LUT and register usage. However, BF has the same overhead for both CRT and non-CRT
implementations.

6. Conclusion and Discussion

In this study, we extended our instruction sequence-based fault detector for software RSA
with two new implementations. We tested their effectiveness and efficiency using realistic fault
models. The results show in general that the detectors were able to detect faults that affect an
instruction or instruction sequence. We conclude the paper with the following observations:

• Functionality: Our experimental results show that detectors obtained a 100% accuracy
prediction for correct decryptions. Note that this also works for decryptions with different
key lengths as the main part of the decryption contains a key-dependent loop. Increasing
or decreasing the loop size will not change the order of the instruction flow (except on
the boundary of the loop iterations). Similarly, the extended Euclidean algorithm, which
computes the modular multiplicative inverse of a number that is used in CRT also consists
of a limited number of instructions within a loop. Hence, the detectors are able to learn
this very well.

• Security: Experimental results show that our detectors attain a nearly 100% detection
rate for faults that change the instructions for all implementations. For CAM and BF
implementations, nearly any fault in the instruction buffer could be detected. Note that
for successful exploitation, the attacker needs in addition to obtaining an exploitable faulty
output also the correct output. Obtaining the correct output is possible, but is difficult (e.g.,
the attacker needs to have access to the platform and run the same decryption without fault
injection). Getting this correct output is not considered in this discussion, as well as a
strong attacker that is able to find and continuously exploit one of the very few uncovered
cases.

Another important security feature of our detector is the checking mechanism. As the
detector checks for fault in every fetched instruction, one successful glitch on this check
is not enough to break the system for two reasons. First, the instruction that is glitched
and the evaluation that checks its integrity have to be glitched both at the right moments.
Second, when the flow is disrupted, it is likely that the detection will catch faults in consec-
utive instructions as a single instruction is checked multiple times in different sequences
and as a change in instruction flow will be detected as well. This can be observed from
near-perfect detection rates.

• Weaknesses: One vulnerability of the RNN-based detector is the confidence threshold
con fthr value. If an attacker manages to glitch and lower the con fthr value, more faulty

23

decryptions would be seen as correct by the detector. A designer may therefore choose
to harden this by considering multiple copies of con fthr, or use some other form of re-
dundancy like parity checks. The detectors use only input from the instruction buffers to
identify faults. Hence, faults injected into the memory that affect data or faults injected
inside the processor (e.g., an add instruction could be executed as a subtraction) might
not be detectable. However, the results of Experiment 1 in Table 2 clearly show that the
probability of successful injection faults that are exploitable is marginal. Note that even
when a fault injection is successful, only a single bit of the key is typically leaked for Bao.
Hence, it would be very time consuming to recover the complete key by applying such an
approach.

• Robustness: Besides glitching the RSA instructions, an attacker could also glitch the
detector itself. To analyze the resiliency of our detector implementations, we conducted a
number of experiments. Each experiment consisted of 20 trials, in which we evaluated the
detector performance under a random fault configuration, using 1000 correct decryptions
(the ones that are not part of any set, see Subsection 5.3) and the 2000 faulty decryptions
of Instruction-to-instruction fault model II (see Subsection 3.3), both with CRT as a case
study. For the RNN, we injected a random bit or byte fault to the network weights. For
the CAM, we again injected a random bit or byte fault to one of the entries, simulating an
attack against the memory. For the BF, we injected a bit fault to one of the BF entries to
simulate a memory glitch. Moreover, as we wanted to simulate faulty hash calculations, we
injected a bit fault to the same place of each input. Each of the trials yielded a similar result:
a large number of false alarms for correct decryptions, but also a considerable increase in
fault detection capability. Most importantly, the results show that the attacker cannot gain
an advantage by trying to glitch the detector, except for disrupting the operation for correct
decryptions. This is a very unique property of our detector, compared to the state of the
art.

• Comparison: As the experimental results in Section 5.3 indicate, deterministic methods
(CAM and BF) provide more coverage, and create less overhead. On the other hand, RNN
provides a flexibility that is not directly possible in CAM or BF. By setting the value of
con fthr, a user can directly determine the security level of the system. There is a possibility
to adjust the detection rate in relation to Equation 1, by changing values k and m (as n is
fixed). However, this false positive rate is not exact, and does not give the granularity of
setting the con fthr.

Moreover, the scalability of the CAM solution cannot be guaranteed. Theoretically, a
branch-extensive application can produce a great number of different instruction sequences.
This favors the BF solution over CAM, as in essence, it proposes a way to compress the
stored data.

• Uniqueness: The detectors presented in this study can be compared with control flow
integrity checkers [39]. However, as mentioned in Section 4.1, we use a much simpler
instruction validation structure than creating control flow blocks based on program jumps.
To elaborate further, we can make a comparison with the study presented in [19], which
can be considered as a baseline control flow integrity method. In that study, the authors rely
on both using encrypted instructions and comparing block signatures with pre-computed
versions. Although exhaustive pre-computing theoretically covers all valid and invalid
program flows (while our observation-based method is not exhaustive), such an approach

24

creates storage and computational overhead, as well as attacks to the architecture itself
are still a viable strategy: a fault replacing the final signature/message authentication code
(MAC) check can cause faulty instructions to be executed. If that is the case, it is not
possible to retroactively detect a faulty block further in line. By replacing pre-calculated
control flow blocks with valid instruction sequence observations, we can detect faults later,
even when we miss the original fault occurrence. Finally, our detectors do not require any
modifications to the processor, or any encryption/storage of encrypted data, as we only
need to create an interface with the instruction buffer.

In order to address the limitations of the control flow integrity checker proposed in [19],
a number of variations have been proposed. First, the authors in [56] aimed to address
the single point of failure (MAC check) issue. As such, the authors proposed to append
execution history to the current instruction, making the decrypted instruction faulty (thus
detectable) if there was a fault previously. However, especially for complex programs,
this further complicates the control flow, as there is a need to adjust for different branches
during execution. Second, the authors in [48] aimed to remove the need to modify the
processor. As a result, the authors put their integrity checker as a module interacting with
the processor and the memory, similar to our solution. However, their proposal does not
address other shortcomings of control flow studies, as it does one check per instruction
block. Lastly, the authors in [18] aimed to address the complexity of pre-computing by
eliminating the need for determining all possible branch locations beforehand. They used
masks to connect sequences of instructions to the previous ones and encrypt them together.
To accomplish that however, they require an extension to the ISA, damaging general ap-
plicability.

• Generality and flexibility: Although we demonstrated the detection results for two differ-
ent implementations of RSA, our detector can be used for a variety of applications. This
includes RSA algorithms with protections against other attacks such as side-channel anal-
ysis, other software crypto algorithms as AES, triple-DES and Ellyptic curve cryptography
(ECC). Not only crypto algorithms, but also other security sensitive applications such as
banking and secure boot can be protected. The detector can actually be used for multiple
applications when the weights of RNN, table of CAM, or bitmap of BF are adjusted at
runtime.

• Applicability: We have developed our detectors to work in conjunction with the processor.
When employed, the hardware of the detector will be static. When the user wants to
run a specific security sensitive application however, the operating system can load the
associated weights to RNN, or memory entries to CAM and BF. Another possibility is
to include these in the binary. If on the other hand, the device supports reconfigurable
hardware, different RNNs (e.g., with a different number of layers, cells, etc.) or CAM and
BF with different memory sizes can be employed with each application.

One point of concern is the operation of detectors during processor interruptions. When the
processor receives an interruption signal, the execution context changes. Such a signal can
be used to halt the operation of our detector. As such, the detector will not process fetched
interruption handling instructions. When the interruption ends and the previous context
is restored, the detector can continue its work. Our detector should only work when the
processor executes security sensitive applications and switched off by the operating system
otherwise.

25

7. Acknowledgements

The authors would like to thank Ahmet Çağrı Bağbaba for his support with the Incisive
simulator.

References

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerer’s apprentice guide to fault attacks,
Proceedings of the IEEE 94 (2) (2006) 370–382.

[2] F. Amiel, C. Clavier, M. Tunstall, Fault analysis of dpa-resistant algorithms, in: International Workshop on Fault
Diagnosis and Tolerance in Cryptography, Springer, 2006, pp. 223–236.

[3] A. Barenghi, G. Bertoni, E. Parrinello, G. Pelosi, Low voltage fault attacks on the RSA cryptosystem, in: 2009
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE, 2009, pp. 23–31.

[4] B. Giller, Implementing practical electrical glitching attacks, Black Hat Europe (2015).
[5] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pellicioli, G. Pelosi, Low voltage fault attacks to AES, in: 2010

IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), IEEE, 2010, pp. 7–12.
[6] N. Selmane, S. Guilley, J.-L. Danger, Practical setup time violation attacks on AES, in: 2008 Seventh European

Dependable Computing Conference, IEEE, 2008, pp. 91–96.
[7] A. Djellid-Ouar, G. Cathebras, F. Bancel, Supply voltage glitches effects on cmos circuits, in: International Con-

ference on Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., IEEE, 2006, pp.
257–261.

[8] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, A. Tria, et al., Investigation of timing constraints violation as a
fault injection means, in: 27th Conference on Design of Circuits and Integrated Systems (DCIS), Avignon, France,
Citeseer, 2012, p. 11.

[9] S. Govindavajhala, A. W. Appel, Using memory errors to attack a virtual machine, in: IEEE Symposium on Security
and Privacy, Vol. 5, 2003.

[10] J.-M. Schmidt, M. Hutter, Optical and EM fault-attacks on CRT-based RSA: Concrete results, na, 2007.
[11] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria, How to flip a bit?, in: 2010 IEEE

16th International On-Line Testing Symposium, IEEE, 2010, pp. 235–239.
[12] S. Burnett, S. Paine, The RSA security’s official guide to cryptography, McGraw-Hill, Inc., 2001.
[13] P. Kaliyamoorthy, A. C. Ramalingam, Qmlfd based RSA cryptosystem for enhancing data security in public cloud

storage system, Wireless Personal Communications 122 (1) (2022) 755–782.
[14] A. S. Alkalbani, T. Mantoro, A. O. M. Tap, Comparison between RSA hardware and software implementation for

wsns security schemes, in: Proceeding of the 3rd International Conference on Information and Communication
Technology for the Moslem World (ICT4M) 2010, IEEE, 2010, pp. E84–E89.

[15] D. Boneh, R. A. DeMillo, R. J. Lipton, On the importance of checking cryptographic protocols for faults, in:
International conference on the theory and applications of cryptographic techniques, Springer, 1997, pp. 37–51.

[16] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimhalu, T. Ngair, Breaking public key cryptosystems on tamper
resistant devices in the presence of transient faults, in: International Workshop on Security Protocols, Springer,
1997, pp. 115–124.

[17] A. K. Lenstra, Memo on RSA signature generation in the presence of faults, Tech. rep. (1996).
[18] O. Savry, M. El-Majihi, T. Hiscock, Confidaent: Control flow protection with instruction and data authenticated

encryption, in: 2020 23rd Euromicro Conference on Digital System Design (DSD), IEEE, 2020, pp. 246–253.
[19] R. De Clercq, J. Götzfried, D. Übler, P. Maene, I. Verbauwhede, Sofia: software and control flow integrity archi-

tecture, Computers & Security 68 (2017) 16–35.
[20] X. T. Ngo, J.-L. Danger, S. Guilley, T. Graba, Y. Mathieu, Z. Najm, S. Bhasin, Cryptographically secure shield for

security ips protection, IEEE Transactions on Computers 66 (2) (2016) 354–360.
[21] L. Anghel, M. Nicolaidis, Cost reduction and evaluation of a temporary faults-detecting technique, in: Design,

Automation, and Test in Europe, Springer, 2008, pp. 423–438.
[22] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, F. Regazzoni, Countermeasures against fault attacks on software

implemented AES: effectiveness and cost, in: Proceedings of the 5th Workshop on Embedded Systems Security,
ACM, 2010, p. 7.

[23] R. Karri, K. Wu, P. Mishra, Y. Kim, Fault-based side-channel cryptanalysis tolerant rijndael symmetric block cipher
architecture, in: Proceedings 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
IEEE, 2001, pp. 427–435.

[24] R. Karri, G. Kuznetsov, M. Goessel, Parity-based concurrent error detection of substitution-permutation network
block ciphers, in: International Workshop on Cryptographic Hardware and Embedded Systems, Springer, 2003, pp.
113–124.

26

[25] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert, Fault attacks on RSA with CRT: Concrete results
and practical countermeasures, in: International Workshop on Cryptographic Hardware and Embedded Systems,
Springer, 2002, pp. 260–275.

[26] A. Boscher, H. Handschuh, E. Trichina, Fault resistant RSA signatures: Chinese remaindering in both directions.,
IACR Cryptology ePrint Archive 2010 (2010) 38.

[27] A. Shamir, Method and apparatus for protecting public key schemes from timing and fault attacks, uS Patent
5,991,415 (Nov. 23 1999).

[28] D. Vigilant, RSA with CRT: A new cost-effective solution to thwart fault attacks, in: International Workshop on
Cryptographic Hardware and Embedded Systems, Springer, 2008, pp. 130–145.

[29] C. Giraud, An RSA implementation resistant to fault attacks and to simple power analysis, IEEE Transactions on
computers 55 (9) (2006) 1116–1120.

[30] T. C. Koylu, C. R. W. Reinbrecht, S. Hamdioui, M. Taouil, RNN-based detection of fault attacks on RSA, in: 2020
IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[31] C. Olah, Understanding lstm networks (Aug 2015).
URL http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[32] K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory (cam) circuits and architectures: A tutorial and
survey, IEEE journal of solid-state circuits 41 (3) (2006) 712–727.

[33] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khudanpur, Recurrent neural network based language model,
in: Eleventh annual conference of the international speech communication association, 2010.

[34] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey, Internet Mathematics 1 (4) (2004)
485–509. doi:10.1080/15427951.2004.10129096.

[35] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,
Communications of the ACM 21 (2) (1978) 120–126.

[36] C. Paar, J. Pelzl, Understanding cryptography: a textbook for students and practitioners, Springer Science & Busi-
ness Media, 2009.

[37] E. W. Weisstein, Euclidean algorithm (2002).
[38] A. Waterman, K. Asanovic, The risc-v instruction set manual-volume i: User-level isa-document version 2.2,

RISC-V Foundation (May 2017) (2017).
[39] R. de Clercq, I. Verbauwhede, A survey of hardware-based control flow integrity (cfi), arXiv preprint

arXiv:1706.07257 (2017).
[40] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, O. Mutlu, Flipping bits in mem-

ory without accessing them: An experimental study of dram disturbance errors, in: ACM SIGARCH Computer
Architecture News, Vol. 42, IEEE Press, 2014, pp. 361–372.

[41] S. P. Skorobogatov, R. J. Anderson, Optical fault induction attacks, in: International workshop on cryptographic
hardware and embedded systems, Springer, 2002, pp. 2–12.

[42] J.-M. Schmidt, M. Hutter, T. Plos, Optical fault attacks on AES: A threat in violet, in: 2009 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), IEEE, 2009, pp. 13–22.

[43] I. Verbauwhede, D. Karaklajic, J.-M. Schmidt, The fault attack jungle-a classification model to guide you, in: 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography, IEEE, 2011, pp. 3–8.

[44] R. Vemu, J. A. Abraham, Ceda: Control-flow error detection through assertions, in: 12th IEEE International On-
Line Testing Symposium (IOLTS’06), IEEE, 2006, pp. 6–pp.

[45] J. R. Azambuja, M. Altieri, J. Becker, F. L. Kastensmidt, Heta: Hybrid error-detection technique using assertions,
IEEE Transactions on Nuclear Science 60 (4) (2013) 2805–2812.

[46] E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi, L. A. Tambara, P. Rech, H. Quinn, S-seta:
Selective software-only error-detection technique using assertions, IEEE transactions on Nuclear Science 62 (6)
(2015) 3088–3095.

[47] G. Di Natale, O. Keren, Nonlinear codes for control flow checking, in: 2020 IEEE European Test Symposium
(ETS), IEEE, 2020, pp. 1–6.

[48] J.-L. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. S. Merabet, M. Timbert, Ccfi-cache: A transparent
and flexible hardware protection for code and control-flow integrity, in: 2018 21st Euromicro Conference on Digital
System Design (DSD), IEEE, 2018, pp. 529–536.

[49] The risc-v embedded gcc (Jul 2017).
URL https://gnu-mcu-eclipse.github.io/toolchain/riscv/

[50] Questa® advanced simulator.
URL https://www.mentor.com/products/fv/questa/

[51] Incisive enterprise simulator.
URL https://www.cadence.com/en_US/home/tools/system-design-and-verification/
simulation-and-testbench-verification/incisive-enterprise-simulator.html

[52] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, T. Hansen, The fnv non-cryptographic hash algorithm, Ietf-draft

27

(2011).
[53] A. Appleby, Murmurhash 2.0 (2008).
[54] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
[55] Intel Arria 10 FPGAs, accessed at 23-10-2019. Available at: https://www.intel.com/content/www/us/en/products/

programmable/fpga/arria-10.html.
[56] M. Werner, T. Unterluggauer, D. Schaffenrath, S. Mangard, Sponge-based control-flow protection for iot devices,

in: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2018, pp. 214–226.

28

