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Automated driving systems are increasingly prevalent on public roads, but there is cur-
rently little knowledge on the level of workload and stress of drivers operating an auto-
mated vehicle in a real environment. The present study aimed to measure driver
workload and stress during partially automated driving in real traffic. We recorded heart
rate, heart rate variability, respiratory rate, and subjective responses of nine test drivers
in the Tesla Model S with Autopilot. The participants, who were experienced with driver
assistance systems but naïve to the Tesla, drove a 32 min motorway route back and forth
while following a lead car in regular traffic. In one of the two drives, participants performed
a heads-up detection task of bridges they went underneath. Averaged across the two
drives, the participants’ mean self-reported overall workload score on the NASA Task
Load Index was 19%. Moreover, the participants showed a reduction in heart rate and
self-reported workload over time, suggesting that the participants became accustomed
to the experiment and technology. The mean hit (i.e., pressing the button near a bridge)
rate in the detection task was 88%. In conclusion, driving with the Tesla Autopilot on a
motorway involved a low level of workload that decreased with time on task.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Workload and stress in automated driving

Cars that provide combined longitudinal and lateral automated control support have recently been introduced on the
market. Automated driving may be expected to reduce workload and stress as compared to manual driving because the dri-
ver does not have to control the vehicle. However, unless the driving task is fully automated, automated driving may cause
high workload and stress, because the driver needs to supervise both the human-machine interface and the state of the car in
relation to the outside environment (for an illustration, see Fig. 1). More specifically, the driver of an automated car has to
remain attentive to reclaim manual control if required (Casner, Hutchins, & Norman, 2016; Stanton, Young, & McCaulder,
1997) a task that may be demanding and stressful (Hancock, 2015). Furthermore, the type of supervisory control shown
in Fig. 1 may cause out-of-the-loop problems, such as loss of situation awareness and mode errors, which resemble those
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Fig. 1. Manual control (left), supervisory control (middle), and fully automatic control (right). In manual control, the driver controls the car via
manipulators (steering wheel & pedals) and continuously receives information from the car in the environment (i.e., task). In fully automatic driving, the
human has no contribution to the driving task other than to set a destination (or to press an emergency stop button). Hence, the driver is out of the control
loop completely. In supervisory control, the driver interacts with a computer that closes the control loop via sensors and actuators, while the driver
intermittently (1) provides instructions to the computer, (2) receives information via displays, and (3) receives information from the car in the environment.
Adapted from Sheridan (1992).
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observed in aviation and process control (Haslbeck & Hoermann, 2016; Kaber & Endsley, 1997; Metzger & Parasuraman,
2001; see also Stanton &Marsden, 1996). A survey by Dikmen and Burns (2016) among 121 Tesla owners found that automa-
tion failures (e.g., failure to detect lanes) were frequent but not perceived as risky. Furthermore, the majority of respondents
indicated that it is important to remain alert and to be aware of the automation’s limitations.

1.2. Prior research on workload and stress in automated driving

The majority of Human Factors research on driver workload in automated vehicles has been conducted in driving simu-
lators (see De Winter, Happee, Martens, & Stanton, 2014, for a review). Overall, the results indicate that the self-reported
workload as assessed with the NASA Task Load Index is substantially lower in automated driving than in manual driving,
and below 50% on a scale from 0 to 100% (see Table 1 for an overview).

A small number of on-road studies are available. Recently, Endsley (2017) conducted a single-subject naturalistic driving
study using a Tesla Model S over a six-month period. She reported that her situation awareness increased when using
automation because less focus was needed on controlling the vehicle, and more attention could be devoted to looking at traf-
fic and road signage. However, Endsley also experienced various issues of mode confusion and unexpected automation tran-
sitions, as well as a loss of attention. Endsley further found that ratings of satisfaction, usefulness, and trust gradually
increased frommonths 1–2 towards months 5–6, which is in line with the results of a longitudinal naturalistic driving study
on adaptive cruise control with 15 participants (Beggiato, Pereira, Petzoldt, & Krems, 2015). Additionally, overall self-
reported workload was towards the lower end of the scale (Endsley, 2017).

Eriksson, Banks, and Stanton (2017) let 12 test drivers use the Tesla autopilot for about 20 minutes per participant. Par-
ticipants each experienced approximately 12 automation-to-manual control transitions and completed the NASA Task Load
Index after the ride. The mean overall workload was 19%. Stapel, Mullakkal-Babu, and Happee (2019) conducted an on-road
highway driving study in which 15 participants used the Tesla Autopilot for about 20 min. The authors found overall low
levels of workload among participants (between 10% and 43%), with the type of road (busy city ring versus relatively empty
highway) and prior experience with the Tesla Model S being moderator variables (Table 1). In another on-road study, Banks
and Stanton (2016) tested a prototype version of automated longitudinal and lateral control in addition to a driver-initiated



Table 1
Overview of workload measurements on the NASA Task Load Index in automated driving studies (determined in 2017).

Reference Simulator/road Sample size Mean workload

Banks and Stanton (2016) On-road 32 42% (median)
Borojeni, Chuang, Heuten, and Boll (2016) Simulator 21 30%
Damböck, Weißgerber, Kienle, and Bengler (2013) Simulator 24 33%
De Winter, Stanton, Price, and Mistry (2016) Simulator 24 31% (exp. 1)

Simulator 27 31% (exp. 2)
Eriksson et al. (2017) On-road (Tesla) 12 19%
Eriksson and Stanton (2017) Simulator 26 21%
Heikoop et al. (2017) Simulator 22 28%
Large, Banks, Burnett, Baverstock, and Skrypchuk

(2017)
Simulator 30 36% (partial automation), 21% (high

automation)
Manawadu et al. (2015) Simulator 6 (novices) 36%

Simulator 6 (experienced) 30%
McDowell et al. (2008) On-road

(military)
11 40%

Petermeijer, Bazilinskyy, and De Winter (2017) Simulator 24 28% (with auditory and vibrotactile
feedback)

Petermeijer, Cieler, and De Winter (2017) Simulator 18 22%, 36% (with N-Back task)
Saxby, Matthews, Warm, Hitchcock, and Neubauer

(2013)
Simulator 36 34% (exp. 1)
Simulator 56 27% (exp. 2)

Schwalk, Kalogerakis, and Maier (2015) Simulator 24 21%
Stapel et al. (2019) On-road (Tesla) 8 (no experience with

Tesla)
25% (empty highway), 43% (city ring)

On-road (Tesla) 7 (experienced with
Tesla)

10% (empty highway), 24% (city ring)

Young (2000) Simulator 18 23%
Young and Stanton (2004) Simulator 12 12% (exp. 1)

Simulator 12 12% (exp. 2)
Young and Stanton (2007) Simulator 24 (novice drivers) 11%

Simulator 30 (learner drivers) 13%
Simulator 30 (expert drivers) 20%
Simulator 30 (advanced drivers) 24%
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auto-overtaking system. These authors found a relatively high workload on the NASA Task Load Index (median of 42%) dur-
ing 9 min of automated driving per participant.

The discrepancy between the results of Banks and Stanton (2016) and the findings of Eriksson et al. (2017) and Stapel et
al. (2019) may be caused by the fact that the prototype system tested by Banks and Stanton, which included a heads-up dis-
play and offered overtake suggestions, was difficult to use or that participants were still learning how to use it. Because the
participants in Banks and Stanton (2016) drove only 9 min with the automation system, the high workload levels ‘‘may be a
simple reflection of the fact that these ratings were collected during first-time use of the automated system”, (p. 393).

McDowell, Nunez, Hutchins, and Metcalfe (2008) and Davis, Animashaun, Schoenherr, and McDowell (2008) performed
on-road trials with automated military convoys. In these studies, where there was no other traffic and, because they were
military experiments, object detection was of primary importance. The results showed that automated driving reduced
workload and improved performance in object detection in comparison to manual driving.

On-road studies may be expected to yield higher workload than simulator research because the latter involves no phys-
ical risk of accidents. However, in some cases, on-road studies yielded lower workload than simulator-based studies. For
example, the reported workload in Eriksson et al. (2017) was 19%, compared to the 33% in the simulator study of
Manawadu, Ishikawa, Kamezaki, and Sugano (2015). This difference might be attributable to the participant pools, added
events, or secondary tasks. Specifically, the study of Eriksson et al. (2017) involved experienced test drivers and did not
include a secondary task; participants were merely required to take over and relinquish control of the vehicle throughout
the experiment. In Manawadu et al. (2015), critical events were triggered, to which the participants had to respond.

1.3. Aim of the present study

The present study aimed to assess whether on-road automated driving with the Tesla Model S alleviates driver workload
over time. The on-road studies of Eriksson et al. (2017) and Stapel et al. (2019) consisted of approximately 20 min of highway
driving with the automation engaged (excluding a familiarization drive) and did not report on temporal effects. Our study
consisted of 64 min of automated highway driving per participant. In a driving simulator study by Heikoop, De Winter, Van
Arem, and Stanton (2017), use was made of cardiovascular equipment to measure stress and workload; that study found that
participants’ heart rate dropped during the experiment. Our aim was to replicate these findings on-road with the same
equipment as used in the simulator study.
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Additionally, in our study, a simple detection task was used to add task demands on top of the regular monitoring
demands during automated driving. More specifically, in one of the two drives, participants were instructed to press a
handheld button when driving underneath a bridge. The task of detecting bridges is practically convenient in an on-road
experiment because bridges are irregularly spaced, and the locations of bridges are retrievable from Google Maps. This detec-
tion task is conceptually similar to the approach taken in a previous platooning experiment in a driving simulator (Heikoop
et al., 2017). In Heikoop et al. (2017), it was found that the detection task (i.e., to detect red cars on the road) increased self-
reported mental demands compared to not performing a detection task. We expected to find a similar effect in this study.

2. Methods

2.1. Participants

Nine participants (seven males, two females) aged between 25 and 47 years (M = 35.44; SD = 8.26) with 6–30 years of
self-reported driving experience (M = 17.56; SD = 8.46) took part in this experiment. The participants were employees of a
large automotive company. Eight participants indicated that they drove every day and one participant indicated driving
4–6 days a week. Two participants indicated they drove up to 10,000 miles, five up to 20,000, one up to 30,000, and one
up to 50,000 miles in the past year. All participants had completed level-2 driver training, an extended driver training specif-
ically designed for people who drive as part of their job and which serves as a legal requirement for insurance purposes. All
participants had driven various supercars before, and had experience with advanced driver assistance systems (e.g., adaptive
cruise control, lane keeping assist), but had no experience with the Tesla Autopilot. We refrained from recruiting participants
who had experience with automated driving systems, such as the Tesla’s Autopilot, because participants in our previous
experiment were not experienced with automated driving systems either (Heikoop et al., 2017) (and see Stapel et al.,
2019, for a comparison of self-reported workload between automation-experienced drivers and automation-
inexperienced drivers).

No incentive was provided to the participants, and all participants gave written informed consent. The study was
approved by the Ethics Research Governance Office of the University of Southampton under submission ERGO number
19091.

2.2. Apparatus

The experiment was performed with a Tesla Model S 90D with Autopilot as the participants’ vehicle and a Jaguar XF as a
lead vehicle. The lead vehicle was used for safety reasons and for creating a persistent car following task. With a forward-
looking radar, forward-facing camera, and ultrasonic sensors, the Autopilot can steer, adjust speed, detect obstacles, and
apply brakes automatically (‘‘Full self-driving hardware on all cars”, 2015). The Tesla Autopilot can be characterised as level
2 automation (i.e., partial automation) because both steering and speed control are automated, and the driver is still
expected to monitor the driving environment (NHTSA, 2017).

The Traffic-Aware Cruise Control of the participant’s vehicle was set to 1, which was the closest following distance and
which translates to a time headway of about 1 s. This headway corresponds to common headways in highway traffic
(Brackstone & McDonald, 2007; Neubert, Santen, Schadschneider, & Schreckenberg, 1999; Song & Wang, 2010; Treiber,
Kesting, & Helbing, 2006), and was sufficiently short to have a low likelihood of other cars merging in between the partic-
ipant’s vehicle and the lead vehicle.

Participants wore a Dikablis eye-tracker (but data were deemed unusable) and electrocardiography (ECG) equipment
linked to LabChart 8 that captured their cardiovascular and respiratory activity. This ECG equipment consisted of the AD
Instruments PowerLab 26 T Teaching Series, three MLA2505 biopotential electrodes and lead wires with disposable ECG elec-
trode patches, and the MLT1132 respiratory belt transducer. The electrodes were placed in a triangular configuration. For
male participants, one electrode was placed over the xiphoid process, and two electrodes below the far ends of the collar.
For female participants, one electrode was placed at the top of the sternum and two electrodes below the ribs on both sides.
This gender-based distinction was mainly made for comfort purposes (see e.g., Shaffer & Combatalade, 2013). The respiratory
belt was placed over the clothes around the chest.

2.3. Environment

The experiment took place on March 14–18, 2016. Participants drove on the left (slow) lanes of the British dual three-lane
motorways M40, M42, and M5, for which the speed limit is 70 mph (112 km/h). Participants completed two drives during
daytime outside of rush hours. The first drive was completed between entry point 14 of the M40 northbound and M5 north-
bound exit point 3 (Fig. 2). In the second drive, the participants drove back to the starting point. Specifically, the second drive
was completed between the motorway entry point at the service stations after entry point 3 of the M5 southbound and the
M40 southbound until exit point 14. In one of the two drives, participants completed a bridge detection task (see
Section 2.5).



Fig. 2. Map (from Google Maps) displaying the northbound route, starting at entry point 14 of the M40, and ending at exit point 3 of the M5. The
southbound route went in the opposite direction, starting at entry point 3 of the M5, and ending at exit point 14 of the M40.
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2.4. Procedure

All participants received a training trial and completed two drives of approximately 32 min each. Vigilance research has
shown that detection performance exhibits a decay function with time on task (Mackworth, 1964). Furthermore, it has been
found that after 15 min the most substantial deterioration of detection performance has taken place (see a review by
Teichner (1974), reporting that ‘‘at least half of the final loss is completed within the first 15 min" (p. 348)). Because the aver-
age driving trip in Europe and the U.S. is between 20 and 30 min (McKenzie & Rapino, 2011; Pasaoglu et al., 2014), it may be
assumed that the present study is representative of the first exposures to a new automated driving system on public roads.

Before the experiment, the participant performed a test drive on a test track. Upon arrival at the test track site, the par-
ticipant received paper instructions explaining that he/she would be driving within a highly automated platoon. Further-
more, a consent form, a demographics questionnaire, and the pre-task Dundee Stress State Questionnaire (DSSQ) were
provided. After having completed these questionnaires, the participant was taken to the passenger seat of the participant’s
vehicle and introduced to the safety driver, who was a professional driver, trained to intervene in emergencies. The safety
driver sat in the passenger seat throughout the experiment for legal and safety reasons. The safety driver performed a lap
on the test track and showcased the Autopilot, as well as several details of the car. After that lap, the participant and safety
driver changed seats, and the participant drove the car until they were comfortable driving manually and with the Autopilot
feature. Then the ECG electrodes were attached, after which the participant drove to the selected motorway entry point, fol-
lowing the lead vehicle. After entering the motorway, the Autopilot was engaged by the participant, and the experiment
started. The safety driver sat in the seat next to the participant and verbally intervened if the participant did not act appro-
priately or safely. A verbal intervention could be a situation where the participant did not override the automation when he/
she should, for example, when the Autopilot had difficulty keeping the lane in case of diverging lane markers upon approach-
ing an exit ramp. The experimenter sat in the rear seat, monitoring the equipment and making notes of events during the
experiment. Before the first drive, the participant was discouraged from interacting with the safety driver or the experi-
menter for the duration of the experiment. Thus, the interaction between the safety driver and the experimenter was kept
to a minimum.

In the occasions where another vehicle merged in between the participant’s vehicle and the lead vehicle, the participants
were instructed by the safety driver to remain in automated mode and follow this other vehicle. However, if the gap with the
lead vehicle became large, then the participants were calmly instructed to follow the lead vehicle again by overtaking the
outside traffic, while it was emphasised to try to remain in automated mode. An automated lane change could be performed
by using the indicator stalk while holding the steering wheel. All events such as lane changes, merges, and Autopilot (dis)
engagements were recorded by the experimenter using paper and pencil. Summed across the nine participants, a total of
30 and 37 lane changes (of which 16 and 21 automated) occurred for Drive 1 and Drive 2, respectively. A manual override
occurred 9 and 4 times during Drive 1 and Drive 2, respectively.
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At the end of the first drive, the participants exited the motorway and stopped at a nearby parking lot. They were then
provided with the post-task DSSQ and the NASA Task Load Index. Once completed, the participants followed the lead vehicle
to the motorway again and performed the second drive. At the end of the second drive, the participants were again provided
with the post-task DSSQ and the NASA Task Load Index.

2.5. Independent variable – Bridge detection task

The experiment consisted of two drives, either with or without a detection task, in counterbalanced order. Specifically,
five participants completed the second ‘southbound’ drive with the detection task, and four participants completed the first
‘northbound’ drive with the detection task. Without the detection task, participants had to follow the lead vehicle as their
only objective. With the detection task, they also had to detect the bridges they went underneath by pressing a handheld
button (Fig. 3). In the first drive, participants drove underneath 50 bridges, and during the second drive, participants drove
underneath 47 bridges. Photos of the bridges are available as supplementary material. Learning/acclimatization effects were
assessed by comparing the results of the first drive with the results of the second drive.

2.6. Dependent measures

The following measures were recorded per participant, for each of the two drives:

� Time of day (hh:mm).
� Duration of the drive (s).
� Mean speed (km/h), recorded with a GPS application on a smartphone.
� Manual overrides (number of times the participant took over control from the Autopilot to drive manually).
� Manual lane changes (number of manually performed lane changes). Lane changes that were initiated in Autopilot mode
and taken over by the participant to be performed manually were also regarded as manual lane changes.

� Automated lane changes (number of lane changes performed by the participant while remaining in Autopilot mode dur-
ing the lane change).

� Hit rate of the bridges (% of bridges detected). The hit rate was calculated by linking the known locations of the bridges (as
retrieved from Google Maps) with the locations at the moments of button presses (recorded with a GPS application on a
smartphone).
An algorithm was written that matched bridges with the nearest button press in terms of radial distance until all bridges
were assigned to a button press or no button presses were left (each button press could be assigned to one bridge only).
Button presses which followed each other within ⅔ s (i.e., accidental double pressing of the button) were discarded.
Fig. 3. Photo taken during the experiment: the participant on the right presses the handheld button when detecting a bridge. The safety driver is sitting in
the left (passenger) seat. The vehicle in front is the lead vehicle the participant had to follow during the experiment.
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Furthermore, if the nearest button press was more than 1250 m from the bridge, then this bridge was marked as a miss.
The liberal threshold of 1250 was used because there were several sources of inaccuracy in the locations of the button
presses. Specifically, (1) The GPS signal had a limited temporal resolution (0.2 Hz, which at an average speed of
86 km/h amounts to a travelled distance of about 120 m), (2) Some participants pressed the button late (i.e., when being
beneath a bridge) while others pressed the button early (i.e., when the bridge could first be seen), and (3) The GPS record-
ing had limited accuracy (the 50th, 95th, and 99th percentile of the estimated accuracy were 24 m, 249 m, and 965 m,
respectively). By definition, the miss rate equals 100% minus the hit rate (Tanner, Wilson, & Swets, 1954).

� False alarm rate (% of false alarms relative to the number of bridges). A button press was considered a false alarm when
after determining the hits, there were still button presses unaccounted for. Fig. 4 provides an illustration of the hits and
false alarms for Participant #1.

� Heart rate (bpm). The heart rate was regarded as a measure of stress and mental workload (Healey & Picard, 2004;
Mehler, Reimer, & Coughlin, 2012).

� Standard deviation of the normal-to-normal interval (SDNN) (ms), a time-domain measure of mental workload (e.g., De
Waard, 1996; Jorna, 1992). The SDNN was defined as the mean of the standard deviation (SD) of all Normal to Normal
peak intervals (NN) in the ECG signal per 5-min segment along the drive (SDNN index, see Task Force of the European
Society of Cardiology and the North American Society of Pacing and Electrophysiology, 1996). A low SDNN value is inter-
preted as high workload (Fallahi, Motamedzade, Heidarimoghadam, Soltanian, & Miyake, 2016; see also Heikoop et al.,
2017). See Fig. 5 for an illustration of the calculation process.

� Low frequency/high frequency (LF/HF) ratio, a frequency-domain measure of mental workload. This spectral analysis of
the NN interval calculates the power in the low-frequency (LF) 0.04–0.15 Hz range relative to the power in the high-
frequency (HF) 0.15–0.40 Hz range. A high LF/HF ratio is indicative of high workload (Cinaz, Arnrich, La Marca, &
Tröster, 2013; Suriya-Prakash, John-Preetham, & Sharma, 2015). Both the SDNN and the LF/HF ratio were calculated from
the NN intervals after a default NN artefact filter using an open-source MATLAB program (Vollmer, 2015).

� Respiratory rate (bpm). Because the respiratory belt transducer produced a noisy signal (presumably because of in-
vehicle vibrations) and may contain drifts and other artefacts, the signal was filtered with a second-order Butterworth
0.1–1.0 Hz bandpass filter. This frequency range incorporates a typical human respiratory rate of 0.25 Hz. Next, the data
were rank transformed to remove outliers, and subsequently, a discrete Fourier transformation was applied to retrieve
the frequency with maximum amplitude (see Fig. 6 for illustration).

� The Dundee Stress State Questionnaire (DSSQ), a self-report measure of stress and fatigue (Matthews, Szalma,
Panganiban, Neubauer, & Warm, 2013). In this experiment, version 1.3 of the DSSQ was used (Matthews, Campbell, &
Falconer, 2000). Standardized change scores for each scale of the DSSQ were calculated as follows: (post-score � pre-
score)/(standard deviation of the pre-score) (Helton, Warm, Matthews, Corcoran, & Dember, 2002). The scores for the
three scales (Engagement, Distress, and Worry) were calculated by averaging four subscales and averaging them to result
in one score for each element (based on Fairclough & Venables, 2005; Matthews, 2014; Matthews et al., 2002). Task
Fig. 4. Illustration of GPS data and the detection task. In this case, the participant detected all 47 bridges (hit rate = 100%) and had 1 false alarm (false alarm
rate = 2.1%). Where a single dot is visible for two bridges, two button presses appeared in the same GPS sample (the GPS recorded the position every 5 s).



Fig. 5. Illustration of the calculation of SDNN. (A) ECG signal with extracted NN intervals (first 10 s of Drive 1 of Participant #1). (B) Distribution of NN
intervals with the mean and standard deviation of the NN intervals (SDNN = 34.6 ms; based on the first 300 s of Drive 1 of Participant #1).

Fig. 6. Illustration of data processing of the respiratory signal. (A) z-transformed raw signal (first 100 s of Drive 1 of Participant #1). (B) Filtered signal, rank-
transformed and scaled from 0 to 1 (first 100 s of Drive 1 of Participant #1). (C) Amplitude (non-normalized) of a discrete Fourier transform (calculated
using a fast Fourier transform) with identified peak value (based on the entire Drive 1 of Participant #1).
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Engagement consists of the subscales (1) Energetic Arousal, (2) Success Motivation, (3) Intrinsic Motivation, and (4) Con-
centration. Distress consists of (5) Tense Arousal, (6) Hedonic Tone, (7) Control & Confidence, and (8) Anger/Frustration.
Finally, Worry consists of (9) Self-Focused Attention, (10) Self-Esteem, (11) Task-Relevant Interference, and (12) Task-
Irrelevant Interference. We imputed missing answers (4% of the total) using the nearest-neighbour method.

� NASA Task Load Index, a self-report measure to assess workload (Hart & Staveland, 1988). The ‘raw’ approach was used,
which does not apply weights to the scales (Hart, 2006).

The mean speed, duration, heart rate, SDNN, LF/HF ratio, and respiratory rate were calculated from the moment that the
participant was 200 m in front of the first bridge until 200 m after the participant passed the last bridge. SDNN was calcu-
lated as the average across six available 5-min segments.
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3. Results

Table 2 presents the results per participant. Due to the small number of participants in this study, statistical tests are not
reported, as these were deemed unreliable.

Participants drove on average about 32 km per drive, at a mean speed of 86 km/h (Table 2), which is well below the speed
limit of 112 km/h (the speed limit on British motorways is 70 mph, which equals 112 km/h). The difference in duration
between Drive 1 and Drive 2 is caused by the fact that Drive 1 was about 4 km longer than Drive 2. This was due to the
respective entry- and exit points being in different locations.

The 9 participants together took control from the automated driving system 13 times, of which 6 were due to the Autopi-
lot not anticipating the traffic merging between the lead vehicle and participant’s vehicle, 2 due to the Autopilot following
the undesired line at an exit point, 2 due to the participant not trusting the Autopilot to perform correctly, 1 to an unex-
pected disengagement of the Autopilot, and 1 to the participant disengaging the Autopilot without apparent reason. The
remaining Autopilot disengagement occurred for unknown reasons. Furthermore, lane changes were performed 27 and 40
times during the no task and detection task condition, respectively, of which 14 and 16 were manual. The safety driver ver-
bally intervened to take over manual control at two instances, both at the point where the M5 and M42 merge. However, no
dangerous situations occurred during any of the drives.

Table 3 shows the results of the self-report questionnaires. Averaged across the two drives, the mean self-reported overall
workload was 19% (21% in Drive 1, 16% in Drive 2; 18% for no task drives, 19% for detection task drives). The mean (SD) per
item of the NASA Task Load Index was 26% (19%) for Physical Demand, 8% (6%) for Mental Demand, 12% (9%) for Temporal
Demand, 27% (29%) for Performance, 17% (13%) for Effort, and 21% (23%) for Frustration. The DSSQ results showed that par-
ticipants exhibited an overall disengagement from the task, and a worriless attitude towards the task as compared to the pre-
task DSSQ (i.e., the standardized change scores are smaller than 0).
Table 2
Descriptive results (time of day, duration, mean speed, manual overrides, manual and automated lane changes) per participant and drive number.

Participant Time of day Duration (s) Mean speed
(km/h)

Manual
overrides

Manual lane
changes

Automated
lane changes

Drive Drive Drive Drive Drive Drive

1 2 1 2 1 2 1 2 1 2 1 2

1 (NT, DT) 10:52 11:55 2158 1925 80.5 82.9 1 0 2 1 0 2
2 (DT, NT) 14:29 15:18 2032 1892 85.2 84.1 0 1 1 4 5 1
3 (NT, DT) 10:43 11:46 2057 1653 85.4 96.5 2 1 1 4 1 4
4 (DT, NT) 14:40 15:20 1440 1405 85.6 86.1 1 0 2 0 2 2
5 (NT, DT) 10:33 11:28 2073 1871 83.6 85.1 2 0 0 1 3 2
6 (DT, NT) 14:41 15:33 2013 1834 86.1 87.0 0 0 2 2 1 1
7 (NT, DT) 10:25 11:18 1991 1813 87.1 87.9 0 1 1 2 2 3
8 (DT, NT) 14:34 15:34 1928 1800 88.9 88.2 2 0 2 1 1 2
9 (NT, DT) 10:40 11:42 2008 1886 86.1 84.6 1 1 3 1 1 4
Average 2033 1834 85.4 86.9 1.00 0.44 1.56 1.78 1.78 2.33

Note. NT = No Task, DT = Detection Task. Participant #4 did not complete the entire route because the batteries of the car were emptying and the car needed
to be charged. This participant was excluded from the calculation of the average duration.

Table 3
Self-reported overall workload on the NASA Task Load Index and standardized change scores of self-reported stress (DSSQ) per participant and drive number.

Participant Workload score
(%)

DSSQ engagement DSSQ distress DSSQ worry

Drive Drive Drive Drive

1 2 1 2 1 2 1 2

1 (NT, DT) 12 8 �0.10 �0.21 �0.43 �0.49 �0.35 �0.57
2 (DT, NT) 18 14 �0.12 �0.18 �0.97 �1.13 0.17 �0.16
3 (NT, DT) 45 46 �1.10 �0.19 0.67 0.23 �0.78 0.14
4 (DT, NT) 17 3 �0.01 0.26 �0.82 �1.41 �2.34 �1.93
5 (NT, DT) 31 20 �0.37 �0.61 0.40 �0.16 �0.51 �0.72
6 (DT, NT) 14 14 0.18 0.46 �0.30 �0.63 �0.34 �0.32
7 (NT, DT) 9 6 �1.48 �0.52 0.46 0.26 0.49 �0.68
8 (DT, NT) 40 25 �2.60 �1.88 2.67 �0.90 0.81 1.59
9 (NT, DT) 5 7 �1.43 �0.02 1.69 1.13 �1.13 �1.69
Average 21 16 �0.78 �0.32 0.38 �0.34 �0.44 �0.48

Note. NT = No Task, DT = Detection Task.



Table 4
Cardiovascular and respiratory results per participant and drive number.

Participant Heart rate (bpm) SDNN (ms) LF/HF ratio Respiratory rate
(bpm)

Drive Drive Drive Drive

1 2 1 2 1 2 1 2

1 (NT, DT) 61.3 61.9 44.7 46.2 0.79 0.72 15.3 15.7
2 (DT, NT) 99.4 90.4 20.3 33.6 1.52 2.00 N.A. N.A.
3 (NT, DT) 59.7 56.6 50.2 53.9 0.97 0.73 14.1 15.1
4 (DT, NT) 72.2 67.5 48.3 59.4 1.02 1.14 18.5 17.8
5 (NT, DT) 69.0 66.4 55.7 47.7 1.26 1.26 15.6 14.9
6 (DT, NT) 82.1 73.0 43.6 42.4 0.91 0.91 18.4 17.2
7 (NT, DT) 59.2 58.9 44.9 51.5 0.89 0.94 19.2 19.7
8 (DT, NT) 80.4 70.7 35.3 39.5 0.99 0.96 20.2 20.3
9 (NT, DT) 56.6 52.2 93.2 101.3 1.18 1.02 18.4 18.7
Average 71.1 66.4 48.5 52.8 1.06 1.08 17.0 16.5

Note. NT = No Task, DT = Detection Task. The respiratory rate of Participant #2 is not provided, as there was no clear peak value to be identified from the
Fourier transformation.

Fig. 7. Number of hits and misses per participant. The number of false alarms was 1, 0, 0, 0, 1, 0, 0, 0, 2 for Participants 1–9.
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Table 4 shows the results of the physiological measures. An acclimatization effect can be seen, with the heart rate being
lower in Drive 2 than in Drive 1 for 8 out of 9 participants. The SDNN exhibits a negative correlation with the heart rate
(Spearman rank-order correlation = �0.77) (see also Heikoop et al., 2017). Here, for 7 of 9 participants, SDNN was higher
in Drive 2 than in Drive 1. The LF/HF ratio and the respiratory rate remained relatively constant throughout the two drives.

Due to technical issues, participants #3, 4, and 6 had no button press data for 14, 16, and 10 bridges respectively. Hit rates
and false alarm rates were calculated for the remaining number of bridges for these participants. The mean (SD) hit and false
alarm rates of the bridges were 88.0% (16.0%) and 0.9% (1.5%), respectively. The lowest hit rate was 47.1%, whereas two par-
ticipants had hit rates of 100% (Fig. 7). The mean hit rate and mean false alarm rate correspond to a perceptual sensitivity (d0)
of 3.52 and response bias (b) of 7.89 (Stanislaw & Todorov, 1999). These results indicate that participants were well able to
distinguish the bridges from the non-bridges with a conservative response strategy.

4. Discussion

This study aimed to measure levels of workload and stress during automated driving with the Tesla Autopilot. The liter-
ature has shown that automated driving yields low ratings of self-reported overall workload (averaging at 23%, see De
Winter et al., 2014). A previous study using the Tesla Autopilot has found overall workload scores ranging from 10% for expe-
rienced Tesla drivers on an empty highway to 43% on a city ring with drivers who had not driven in the Tesla before (Table 1;
Stapel et al., 2019). Another on-road experiment found high workload for automated driving compared to manual driving,
with overall workload scores for automated driving being 42% (Banks & Stanton, 2016). It was unclear whether the novelty of
the automation in Banks and Stanton (2016) created elevated levels of workload, so they proposed extended exposure to
automation, which was the purpose of the current study.
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Our results of a 2 � 32 min of automated driving found that the mean overall workload as measured with the NASA Task
Load Index was low, with a score of 21% in Drive 1 and 16% in Drive 2. In other words, our results provided an indication that
automated driving involves a level of self-reported workload that is within the range of the workload observed in driving
simulators (see Table 1, showing a minimum overall workload of 11% and a maximum of 36%). The fact that the participants
had to follow a lead vehicle may have contributed to the low overall workload by limiting their decision-making require-
ments. The workload was particularly low for the Physical Demand item, whichmay be because the participants did not have
to move the pedals or steering wheel for large portions of the time. Similarly, the average heart rate and respiratory rate were
close to the resting rates of a typical person (American Heart Association, 2015; Lindh, Pooler, Tamparo, & Dahl, 2009). Thus,
automated driving in the present experiment could not be considered demanding or stressful. Because of the small number
of participants, we refrained from reporting the results of null hypothesis significance tests and recommend that the raw
data in Tables 2–4 be used in future meta-analysis with larger statistical power. However, several results are robust and
may not require larger samples. For example, the overall NASA Task Load Index workload score averaged across the two
drives per participant ranged between 6% and 45% with a 95% confidence interval of 8% to 29%. Hence, it appears to be legit-
imate to conclude that overall workload is ‘low’ and in line with prior research, such as a similar study by Stapel et al. (2019).

Compared to the detection task in Heikoop et al. (2017), participants in the current study performed somewhat worse (hit
rate of 95% in Heikoop et al., 2017; 88% in the present study). Furthermore, self-reported workload in the present study was
not substantially different between the detection task and no task conditions. It is possible that, for safety reasons or due to
the presence of the safety driver sitting next to them, participants in the present study were trying harder to stay alert to the
primary driving task as compared to the participants in the simulator study, thereby having a lower incentive to detect the
bridges. Indeed, with the Tesla Autopilot, participants do have to remain alert due to the potential need to intervene and take
manual control of the vehicle. In a survey study by Dikmen and Burns (2016), 62% of Autopilot users reported that they had
experienced at least one unexpected or unusual behaviour when driving in automated mode. In our experiment, the 9 par-
ticipants combined took over manual control 13 times, for a variety of reasons, and performed 67 lane changes, of which 45%
were manual. The relatively large percentage of manual lane changes may be due to the somewhat cumbersome technique
required to perform an automated lane change. For an automated lane change to succeed, the driver pressed the indicator
stalk while having his/her hands on the steering wheel with enough weight for the Autopilot to recognize their presence. In
our experiment, this often resulted in a slight turn of the steering wheel, disengaging the Autopilot, after which the lane
change had to be performed manually.

Fig. 8 provides a comparison between the results of the current on-road study and two previous driving simulator studies
(Heikoop et al., 2017; Heikoop, De Winter, Van Arem, & Stanton, 2018). The two simulator studies are similar to the current
study as all three studies involved car following in an automated car, drives of 30–40 min duration, identical ECG equipment,
Fig. 8. Comparisons of three independent experiments. Top: The Dundee Stress State Questionnaire (DSSQ). Middle: Cardiovascular measures per 5-min
interval. Bottom: Self-reported overall workload. Experiment 1: Heikoop et al. (2017) (N = 22; 3 � 40 min of simulated driving). Experiment 2: Heikoop
et al. (2018) (N = 33, but N = 29 for heart rate measures; 3 � 40 min of simulated driving). Experiment 3: present experiment (N = 9; 2 � 32 min of on-road
driving). Note: The DSSQ used in Experiment 2 is the short version of the DSSQ. The DSSQ and workload scores were scaled from 0% (minimum possible) to
100% (maximum possible).



514 D.D. Heikoop et al. / Transportation Research Part F 65 (2019) 503–517
and a secondary button-pressing task (detecting bridges in the present on-road study, detecting red cars in the simulator
studies). Of course, the comparison between the three experiments cannot be made one-on-one, as the nature of the exper-
iment and the participant pool varied between the studies, with expert drivers in the on-road study and participants from
the university community in the simulator-based studies. Furthermore, the second simulator study was more demanding
than the first because a think-aloud method and memory task were applied during driving. Despite several differences
between the three studies, interesting observations can be made from Fig. 8. First, it can be seen that participants felt rel-
atively engaged during the on-road study. The relatively high level of engagement may be because the participants in the
present study prioritized safety and tried to stay alert, as noted above. Participants of this on-road study reported relatively
low levels of distress and worry compared to the participants in the simulator studies. This may be because the participants
in the on-road study were expert drivers who were accustomed to driving with advanced driver assistance systems. Further-
more, the overall self-reported workload was low (a mean score of 19% on a scale from 0% to 100%). Both the on-road and
simulator-based studies found that self-reported workload remained approximately constant, heart rate decreased, and
SDNN increased as a function of time. Previous on-road studies into manual driving (Lisper, Laurell, & Stening, 1973;
Schmidt et al., 2009) and partially automated driving using the Tesla Autopilot (Stapel et al., 2019) also found that the heart
rate decreases with time on task. Finally, the LF/HF ratios in the simulator and on the road were within the same range
(Fig. 8). Summarizing, the results from the current on-road experiment provide trends that are similar to results from sim-
ulator studies, with a decrease in heart rate over time and self-reported workload at the low-end of the scale.

5. Conclusions and recommendations

This experiment complements existing research on stress and workload during automated driving (Table 1), and may
form a basis for more extensive research on this topic. The results point to an effect of acclimatization as demonstrated
by a drop in perceived workload over time, and a decrease in heart rate. Our sample was small (N = 9); in order to acquire
higher statistical power, replication studies with more participants are advised. Nonetheless, our study produced insights
into the effects of workload and acclimatization to automation and could serve as a foundation for future research into this
phenomenon.

This experiment used expert drivers, and it remains to be investigated how the results translate to less trained drivers. It
is likely that the participants in this study, who were experienced with various supercars and had completed advanced driver
training, are more adept to novel technology and less likely to be stressed than the general population. Stapel et al. (2019)
found in their on-road study that people who have experience with driving in a Tesla reported a lower workload than people
who had not driven a Tesla before, both during manual and automated driving. Besides prior experience with automated
driving systems, other types of individual differences may also be of relevance for future research. These include age-
related psychometric abilities (e.g., speed of information processing) and factors like boredom proneness and propensity
to daydream, as well as general trust in automation (Körber & Bengler, 2014). Future research should take into account these
effects in order to reach more generalizable conclusions about how people interact with partially automated driving systems.

The methods used for psychophysiological measurement need consideration. Although the LF/HF ratio is regarded as a
valid measure of workload (Cinaz et al., 2013; Suriya-Prakash et al., 2015), the results of the LF/HF ratio in this experiment
did not yield the same time-on-task effects as the self-reported overall workload. The lack of sensitivity of the LF/HF ratio
could be due to various confounding effects such as driver posture, vibrations in the vehicle, or a dependency on the heart
rate itself (as also discussed by Heikoop et al., 2017). Also, the use of a smartphone-based GPS app did not allow for high
accuracy data (see Section 2.6). It is recommended that future researchers use vehicle state data combined with differential
GPS.

The focus of this experiment was on how drivers are affected by automated driving over time. Future on-road research
could include a control condition in which people drive manually (cf. Stapel et al., 2019) or include different levels of
automation such as driving with adaptive cruise control, or adaptive cruise control combined with steer assist (see
Naujoks, Purucker, & Neukum, 2016). In our experiment, control transitions were not wanted, yet occurred several times
per participant. A closed-track on-road experiment (cf. Albert, Lange, Schmidt, Wimmer, & Bengler, 2015; Omae,
Hashimoto, Sugamoto, & Shimizu, 2005) could investigate the psychological effects of transition of control to and from auto-
mated driving in a controlled manner. Furthermore, it could be investigated whether the present findings generalize to driv-
ing tasks situations without a safety driver, and with actual hazards for which manual intervention is necessary. It is possible
that drivers would score better in an environment in which the target stimuli represent actual safety-critical events. Addi-
tionally, it is noted that physiological measures and the NASA Task Load Index capture only certain facets of stress and work-
load. Recent on-road research indicated that using the Tesla Autopilot is associated with higher response times on a
secondary task as compared to manual driving, possibly due to monitoring demands (e.g., monitoring of the roadway or
automation status) or difficulty with multitasking (Biondi, Lohani, Hopman, Mills, Cooper, & Strayer, 2018; Stapel et al.,
2019). Also, it remains to be studied how our findings generalize to other driving scenarios, such as driving during rush
hours. Our experiment could be extended by investigating, for example, the effects on behavioural adaptation and trust,
complementing recent on-road studies with partially automated driving systems by, amongst others, Banks, Eriksson,
O’Donoghue, and Stanton (2018), Fridman, Brown, Kindelsberger, Angell, Mehler, and Reimer (2019), Koskinen, Lyyra,
Mallat, and Tuunainen (2019), Lin, Ma, and Zhang (2018), and Walker, Boelhouwer, Alkim, Verwey, and Martens (2018).
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Finally, we note that other types of automated driving systems, such as Volvo’s Pilot Assist, may not be comparable to our
present findings for the Tesla Autopilot, as the former requires the driver to touch the wheel permanently (Solís-Marcos,
Ahlström, & Kircher, 2018). Whether a hands-on or hands-off approach is optimal in terms of workload and safety remains
a topic for further investigation (see e.g., Wandtner, Schömig, & Schmidt, 2018).
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