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Summary

Urban public transportation often exhibits pronounced spatio-temporal imbalances in passenger de-
mand, resulting in capacity shortages during peak periods and excessive idle capacity during off-peak
times. Meanwhile, with the expansion of e-commerce, urban freight demand continues to grow, mak-
ing the use of idle public transportation space for freight transport an ideal approach. This study
proposes an optimization framework for integrated passenger-freight co-transportation using Modular
Autonomous Vehicles (MAVs), formulating a Mixed-Integer Quadratically Constrained Programming
(MIQCP) Path-based model based on a space-time network to address the Modular Autonomous Unit
(MAU) Routing Problem. The model integrates Fixed-Route Transit (FRT) and Demand-Responsive
Transit (DRT), allowingMAUs to dynamically couple/decouple across different routes to meet the spatio-
temporal demands of passengers and freight, with the objective of minimizing total operational costs.
To tackle the computational complexity of large-scale instances, a customized Adaptive Large Neigh-
borhood Search (ALNS) algorithm is designed, incorporating two initial solution generation methods
(GUROBI and Greedy heuristic) and iteratively optimizing solutions through destroy and repair opera-
tions. A real-world case study based on the Shanghai bus network validates the effectiveness of the
proposed approach. The results demonstrate that the MAU co-transportation system can effectively
utilize vehicle compartment space to simultaneously transport passengers and freight, significantly re-
ducing empty load rates, leading to a substantial reduction in operating costs. Without using the co-
transportation mode, the number of MAUs used would increase significantly, accompanied by a 3.9%
cost increase. Compared to the traditional combination of public transit and delivery vans, costs are
reduced by 83.4%. This co-transportation modular transit system, with its unique flexibility, can provide
efficient and low-cost transportation services for both passengers and freight within cities.
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1
Introduction

Current urban public transportation systems typically use buses operating along fixed routes and on
fixed schedules. Meanwhile, passenger demand fluctuates in time and space, such as peak and off-
peak hours, and between residential and office areas. Often during off-peak hours, passenger demand
decreases significantly, and buses can often be observed to have a large amount of wasted capacity. In
recent years, urban freight demand has continued to grow alongside the expansion of e-commerce. For
operators, there is a growing interest in utilizing the excess capacity of buses for freight transport. This
trend of passenger and freight co-transportation brings new opportunities and challenges to improving
the efficiency of urban transportation systems.

There are many difficulties in building a co-transportation system. Firstly, daily fluctuations in urban
passenger demand make it challenging to balance public transport operating costs and passenger
waiting times (Shi and X. Li 2021). During off-peak hours when passenger demand is low, maintaining
the same bus arrival frequency as during peak periods leads to low space utilization and increased
operating costs. However, reducing bus frequencies would result in longer waiting times for passen-
gers, thereby decreasing service satisfaction. At the same time, since freight vehicles are restricted
by emission zones and time windows, the cost of freight receiving and delivery services in the cities is
currently high. In complex urban road environments, integrating passenger and freight transport raises
capacity allocation, route planning, and scheduling issues. To address these challenges, researchers
are continuously exploring new technologies and flexible transport solutions.

In the early stages of the research, Machado, Pimentel, and Sousa (2023) proposed retrofitting some
buses so that part of their interior space is used for passenger transport while the remaining space
is allocated for freight transportation. However, this modification still struggles to serve as an optimal
solution due to the fixed passenger and freight space allocation. Modular Autonomous Vehicle (MAV)
can reduce capacity redundancy since the capacity of a single Modular Autonomous Unit (MAU) is
smaller than that of a traditional bus. However, as a product of recent advancements in autonomous
driving technology, research on MAUs is still in its early stages, with most studies focusing solely on
passenger demand and operating on a single bus line. For integrated passenger-freight transport
systems, current research primarily focuses on transportation along fixed lines (Lin and F. Zhang 2024)
or treats MAUs as taxis capable of transporting freight (Hatzenbühler et al. 2024), starting from a depot
to execute a series of pre-booked tasks before returning to the origin. These studies on passenger and
freight intermodal transport of MAUs often ignore the transportation network formed by multiple routes
and their dynamic coordination. This study developed a system model for passenger and freight co-
transportation to address the research gap by completing the routing allocation for each MAU on the
network.

NExT Company has currently designed a mature MAV system (NEXT Modular Vehicles 2024), as
shown in Figure 1.1, which can achieve coupling/decoupling while in motion and can open front and
rear carriage doors when coupled. This function ensures that passengers can freely move between
multiple coupled MAUs, making transfers between different routes more convenient. Additionally, NExT
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Company has proposed a feature that allows freight to be transferred to different MAUs through auto-
mated machinery, enabling more flexible freight pick-up and delivery across different routes by moving
freight between modules when MAUs are coupled. One of the important advantage of NExT Com-
pany’s MAV over traditional public transportation is that the autonomous driving feature reduces labor
costs, with only energy costs during operation, and provides greater flexibility. It can precisely fulfill
passenger demands when they arise, controlling passenger waiting time at stations. Meanwhile, when
there is spare capacity in the carriage, it can meet freight demands within designated time windows.

Figure 1.1: NExT Company’s MAV

This study proposes a MAV Routing Problem and models the problem as a Mixed-Integer Quadratically
Constrained Programming (MIQCP) model based on a Space-Time Network, integrating autonomous
units and paths. The Space-Time Network includes depots and stops at all discrete timestamps, con-
nected by Travel arcs, Delivery arcs, Transfer arcs, and Waiting arcs to form paths. The MAU in this
study is designed to function both as a bus, transporting passengers and freight along fixed bus lines,
and as a delivery vehicle, transporting freight between pick-up and delivery stops outside the lines.
Additionally, each MAU is capable of operating across multiple lines. The model aims to find the mini-
mum cost required for MAUs to fulfill all transportation demands. The results display the transportation
paths for each MAU and the allocation of each transportation demand. A customized Adaptive Large
Neighborhood Search (ALNS) algorithm is employed to compute the results, with its quality compared
against exact solutions obtained from the GUROBI solver in small-scale tests. Two initial solution meth-
ods are used: one selects a small number of demand-containing paths for GUROBI computation, and
the other applies a Greedy heuristic method to quickly assign all demands to MAUs. The ALNS itera-
tively destroys and reconstructs parts of the current solution to find better solutions. The destruction
and repair processes are divided into two levels: Path-level, involving large-scale deletion and recon-
struction of entire paths, and Arc-level, involving deconstruction and reconstruction of selected paths.
The algorithm is customized with multiple operators tailored to the MAV Routing Problem, including de-
stroy operators (Path-level: Random Destroy, Worst Cost Destroy, Demand-based Destroy; Arc-level:
Arc Removal Destroy, Arc Search Destroy) and repair operators (Path-level: Random Repair, Greedy
Repair, Utility Maximization Repair; Arc-level: Arc Insertion Repair, Chain Repair, Hybrid Repair), with
operator weights dynamically adjusted using Roulette Wheel Selection. The ALNS uses Simulated
Annealing (SA) as the acceptance criterion, accepting not only improved solutions but also worse so-
lutions with a certain probability to escape local optima. By dynamically adjusting the destruction rate
and operator scoring mechanism, this ALNS achieves a balance between local optimization depth and
global search breadth. Daily passenger demand at stations along fixed bus lines can be accurately
estimated for specific time periods (Zhou et al. 2016), and since that the bus timetable is known, the
vast majority of passengers are assumed to arrive at stations according to the timetable, reducing their
waiting time. Additionally, pick-up and delivery demands for freight can be predicted in advance using
GPS positioning technology (Holguín-Veras, Amaral, and Rivera-Gonzalez 2024). By obtaining real
data from Shanghai, this study verified the model and algorithm using real cases. This enables the
models and algorithms of this study to be widely used in modular transit systems for passenger and
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freight co-transportation in various cities.

The structure of the remainder of this thesis is as follows. Section 2 discusses the research questions
of this study and outlines the approach to addressing them. Section 3 reviews related literature and
summarizes the contributions of this study. Section 4 provides the problem description. In Section 5, a
Mixed-Integer Quadratically Constrained Programming (MIQCP)model for the MAV Routing Problem is
established. Then, in Section 6, a customized ALNS algorithm is designed, and its operational process
is detailed. Section 7 presents the computational results, comparing the accuracy and computational
time of different methods, and includes a case study based on real-world bus lines and pick-up and
delivery stops in Shanghai. Section 8 offers conclusions and directions for future research.



2
Research questions

To establish a passenger and freight co-transportation system using MAUs within cities, the following
core questions need to be answered:

Is passenger and freight co-transportation in modular transit systems worthy of large-scale application
within cities?

The main research question is answered by the following sub-questions. Table 2.1 shows these sub-
questions and provides solutions:

Table 2.1: Sub-questions for research and corresponding solutions

Sub-questions Methods

1) What aspects does the network of this study consider? Space-Time Network
2) What kind of mathematical model is best suited to solve this
MAU Routing Problem?

Path-basedMixed Integer Linear
Programming

3) What methods are used to solve the optimization model? GUROBI and Heuristic Method
(Adaptive Large Neighborhood
Search)

4) How do solution methods perform at different scales? Numerical experiments based
on simulated data

5) Compared with separate modular transit system and traditional
transportation system, how big is the advantage of MAV?

Numerical experiments based
on real data

This research examines the necessity and feasibility of establishing a passenger and freight co-transportation
modular transit system within cities to improve transportation efficiency and cost. Due to the complex-
ity of the problem, large-scale solvers often struggle to find high-quality solutions within an acceptable
time frame. Heuristic algorithms offer the potential for greater computational efficiency. In general,
these research questions aim to demonstrate the significant potential of this system in terms of flexibil-
ity, space utilization, and sustainability, making it a worthy candidate for development as a new type of
transportation system.
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Literature review

At present, the research on the Passenger-Freight intermodal transport problem ofModular Autonomous
Vehicles (MAV) is in its infancy, and there are still many gaps to be explored. Therefore, this section
mainly reviews the construction of Space-Time networks in the Passenger-Freight intermodal transport
problem of other transportation modes and the current research status of MAVs.

3.1. Passenger-Freight intermodal transport based on the Space-
Time network

Passenger-Freight intermodal transport has been used for decades for long-haul transport, such as
air transport (Mason 1967) and rail transport (Yang, Xie, and Wang 2024). The modeling approach of
constructing a Space-Time network to optimize the shared capacity of the two services can integrate
different modes of transportation, support the dynamic changes in passenger and cargo demand, and
flexibly adjust transportation routes and schedules (L. Li, Negenborn, and De Schutter 2013). In or-
der to solve the problem of integrating passenger and freight services on the same railway network
and maximize the transportation efficiency and cost-effectiveness of the network, S. Li et al. (2023)
imposed constraints on train, station capacity and freight delays, then calculated the minimum service
and routing costs. Only in recent years has short-haul transport, especially intermodal transport within
cities, begun to gain popularity (Zhu et al. 2023).

Passenger-Freight intermodal transport by bus is one of the most realistic forms in the cities and is most
similar to the Modular Autonomous Vehicles (MAVs) studied in this thesis. Zeng and Qu (2022) built
the network taking into account customer pick-up time windows, loading/unloading service duration,
and the power supply needs of electric buses. To minimize operating costs, a Mixed Integer Linear
Programming model is developed to meet the bus schedule for passenger travel needs, cargo delivery
needs and charging requests. Machado, Pimentel, and Sousa (2023) further considered the uncer-
tainty of cargo demand and establishes a model through demand scenarios in different time and space.
The buses in the current study all need to be modified, with fixed passenger and cargo capacity, and
there will still be problems with redundant passenger or cargo compartments in reality. The dynamic
demand of passengers for direct access cannot be met by buses, and other modes of transportation
are required for the last mile (Machado, Pimentel, and Sousa 2023). The small capacity of each unit
and the coupling/decoupling characteristics of MAVs can effectively make up for the shortcomings of
buses in urban intermodal transport (Shi and X. Li 2021).

3.2. Optimization methods related to MAU
In recent years, with the development of autonomous driving technology, the emergence of modular
vehicles has opened up new directions for the exploration of public transportation networks. When
establishing the optimal timetable for each bus route based on the minimum cost network flow model,
Hassold and Ceder (2014) proposed to use multiple small vehicles to replace the original planned mod-
els. The results showed that this method can significantly reduce operating costs and improve service
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quality. Modular autonomous vehicles (MAVs) can change the formation by changing the number of
composed MAUs according to the time-varying passenger demand at different stations (Shi and X. Li
2021), so more research is currently focused on establishing a cost-controlled public transportation
network that serves passengers with travel needs.

Liu, Qu, and X. Ma (2021) proposed that each MAU can freely visit customers outside the checkpoint,
and deal with the first-mile and last-mile passenger pick-up problem by determining the best route and
scheduling strategy. A Mixed Integer Linear Programming that not only focuses on vehicle operating
costs, passenger waiting and in-vehicle costs, but also adds penalties for not responding to passenger
needs is designed. To solve this problem, they used a customized dynamic programming with valid
cuts in the first stage to effectively arrange the dynamic time and route of vehicles, and proposed
an effective and fast heuristic method in the second stage to solve the dynamic allocation and path
problem, and obtained a plan for real-time allocation and scheduling of vehicles in a region. Tang et al.
(2024) considered that the areas between stations should be distinguished, and the service areas and
routes of the day are selected according to the passengers’ online reservations one day in advance,
which will cause some passengers to walk to another nearby station that will be served. The MAU will
separate from the MAV fleet at the starting point of the selected section and reconnect with the fleet at
the end of these sections. They developed an Optimization model to determine the deviated sections
and the number of MAUs to be separated, as well as the corresponding schedule, to minimize the
waiting time of passengers and the total cost of operator operation. The results are obtained using the
DICOPT solver and show that the number of door-to-door passengers would affect the total cost. The
more such passengers there are, the higher the waiting time and walking time cost will be, while the
in-vehicle time and vehicle operation cost will be reduced.

Xia, J. Ma, Sharif Azadeh, and W. Zhang (2023) focused on the uncertainty of passengers’ time-
dependent demand, and seeked the lowest-cost and best robust MAV time-varying and station-varying
capacity allocation plan and the corresponding schedule. Due to the random nature of passenger arrival
rate, the number of MAVs will change over time in a trip, and different MAVs will have different numbers
of MAUs at the same station. Amodel of the Timetable andDynamic Capacity Allocation (TT-DCA) prob-
lem is proposed and extended by the Data-Driven Distributionally Robust Optimization (DRO) method
to consider the uncertainty of passengers’ arrival time. The Integer L-shaped (IL) method can better
solve this problem. The results show that the allocation strategy of time-varying and station-varying
capacity can lead in both maximum and average vehicle congestion levels, indicating that the waste of
space in the vehicle can be effectively reduced. According to Xia, J. Ma, and Sharif Azadeh (2024a),
the passenger demand for direct access was added to the fixed route, and the MU at any station can
be separated from the MAV to complete the DRT service, and after completing the service, it can con-
tinue to couple with the MAV that coincides with the time. The Mixed Integer Linear Programming
model is established to generate a globally optimal co-mobility schedule and service route (minimizing
the weighted sum of passenger and operating costs). By using a customized Adaptive Large Neigh-
borhood Search (ALNS) algorithm combined with the GUROBI solver, it is found that the OT-FC-DRT
strategy makes the number of operating vehicles and operating costs higher than the OT-FC strategy,
but reduces the waiting time cost and average in-vehicle time of passengers. If the cost weight is ad-
justed to favor the operator, the DRT service may be sacrificed. Furthermore, the dynamic constraint of
passengers transferring between different routes was added by Xia, J. Ma, and Sharif Azadeh (2024b),
so that the model can realize the function of finding a scheduling scheme and schedule that utilizes
fewer MUs while establishing multi-line circulation. Based on the Integer L-shaped (IL) method, the
Rolling Horizon Framework (RH) has been proposed to address efficiency issues found in numerical
experiments based on Beijing’s bus network data. It works by dynamically and incrementally solving
the problem to adapt to the real-time changes and uncertainties in demand. For the three modes of
Fixed-capacity, Partially flexible-capacity and Completely flexible-capacity, the costs for passengers
do not differ much in different cases, but the Completely flexible-capacity mode has huge advantages
in terms of operating costs and the number of vehicles used. However, if more attention is paid to
the interests of passengers, the operating costs will increase, but the proportion of transfers within the
vehicle can be increased, making it more convenient for passengers to transfer.

The use of MAVs for passenger and freight transport is a relatively new concept. Due to the low de-
mand of passengers during off-peak periods, there is more redundancy in vehicles, while the rise of
e-shopping has increased the demand for sending and receiving goods. MAVs that can quickly con-
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nect and detach are a promising solution for a co-modal system that integrates public transportation
services and last-mile logistics (Lin, Nie, and Kawamura 2022). Hatzenbühler et al. (2023) proposed
two independent dedicatedMAUs for passengers and freight. Theymodeled theModular Multi-purpose
Pickup and Delivery Problem (MMP-PDP) by considering the travel time cost, travel distance cost, fleet
size cost, and the cost of unserved requests. The transportation mode only involves demand response
type. Under the condition of meeting the time window constraints, the corresponding group of MAVs
are arranged to depart from the depot and complete a series of tasks of picking up and dropping off
passengers and goods in the shortest path before returning to the depot. Experiments show that while
the operating cost is reduced by 48%, the travel time is also much shorter than that of ordinary fleets.
Lin and F. Zhang (2024) proposed a different concept, where the same MAU serves both passengers
and cargo. The number and task allocation of MAUs can be adjusted at any station to minimize the
waiting time cost of passengers and the operating cost of operators. A fixed route in both directions is
established, but since the two directions share the module inventory at the same station, the planning
of both directions will affect each other. In order to simplify the established Mixed Integer Program-
ming problem, the time coordinate is shifted to focus on the time when each MAV departs from the
first station. A two-stage heuristic algorithm is used to solve this problem. The first stage determines
the number and the timetable of vehicles that need to be scheduled, and the second stage develops a
high-quality lower bound to optimize vehicle grouping and freight allocation. They finally found that an
increase in freight demand and an increase in the maximum allowed platoon length can further reduce
the total cost.

The following Table 3.1 shows the current research status of Modular autonomous vehicles (MAVs) and
the research direction of this thesis. At present, most of the research on MAVs with only passengers
is exploring the service mode that combines Fixed-route transit (FRT) and Demand-responsive transit
(DRT). Such an intermodal mode can better reduce the empty vehicle rate and improve passenger
satisfaction. However, there are fewer studies on passenger-freight intermodal transport, and most of
them are one of the two service forms of FRT (Lin and F. Zhang 2024) and DRT (Hatzenbühler et al.
2024). The combination of these two service forms has been found to be more effective in previous
studies on only passengers, so it is necessary to explore the impact of the combination of these two
service forms on the cost control of MAVs’ passenger-freight i2ntermodal transport.
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Pas: Passenger, Fre: Freight, FRT: Fixed-route transit, DRT: Demand-responsive transit, DP: Dynamic
programming, IL: Integer L-shaped, ALNS: Adaptive large neighborhood search algorithm, RH: Rolling
horizon framework
Publications Demand Transport

Mode
Flexibility of Vehi-
cle Formation

Objective Solution

Liu, Qu, and X.
Ma (2021)

Pas FRT + DRT Docked/undocked
at each stop

Operating cost, Wait-
ing time cost, Travel
time, Penalty cost for
unserved demand

DP + Heuris-
tic

Xia, J. Ma,
Sharif Azadeh,
and W. Zhang
(2023)

Pas FRT Docked/undocked
at each stop

Operating cost, Wait-
ing time cost

IL

Tang et al.
(2024)

Pas FRT + DRT Docked/undocked
at selected stops

Vehicle ownership,
Operating cost,
Maintenance cost,
Waiting time cost,
Travel time

Solver (DI-
COPT)

Xia, J. Ma, and
Sharif Azadeh
(2024a)

Pas FRT + DRT Docked/undocked
at each stop

Operating cost, Wait-
ing time cost, Travel
time

ALNS +
Solver
(GUROBI)

Xia, J. Ma, and
Sharif Azadeh
(2024b)

Pas FRT + DRT
(network)

Docked/undocked
at each stop

Operating cost, Wait-
ing time cost

IL + RH

Hatzenbühler
et al. (2023)

Pas + Fre DRT Docked/undocked
at terminals only

Operating cost,
Vehicle ownership,
Travel time, Penalty
cost for unserved
demand

ALNSA
+ Solver
(CPLEX)

Lin and F.
Zhang (2024)

Pas + Fre FRT Docked/undocked
at each stop

Operating cost (ve-
hicles and stations),
Waiting time cost,
freight handling cost

Two stage
Heuristic

this thesis Pas + Fre FRT + DRT
(network)

Docked/undocked
at each stop

Operating cost ALNS +
Solver
(GUROBI)

Table 3.1: Comparison of Various MAVs Studies
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Problem description

This study considers the transportation services of multiple bus lines in a region during operation. The
fixed lines have starting and ending points, set as depots, denoted by d ∈ D. The remaining stops
are denoted by s ∈ S. There are transfer stops between different lines, intersections of two lines.
These stations are represented by different numbers s on different lines but are spatially the same.
Independent of the lines, the freight pickup and delivery stops are also denoted by s ∈ S, but these
stops can change daily for providing door-to-door service. Modular Autonomous Vehicles (MAVs) pick
up and drop off passengers only on fixed routes, while for freight, they can automatically move within
the region to respond to demand at pickup and delivery stops.

In the bus system, the distribution of passengers typically exhibits dynamic characteristics at different
times and different stations. During peak hours, the number of passengers is usually significantly
higher than during off-peak hours, which results in more redundancy of MAUs during off-peak periods.
Therefore, utilizing the remaining vehicle capacity to transport goods during off-peak periods, while
meeting passenger transportation demands, is a more effective method to improve utilization. Adopting
a flexible grouping mode that combines passenger and freight transport can significantly reduce the
operational cost losses caused by the idleness of MAUs while ensuring service levels. Each MAU can
couple/decouple at various stations and can be used for both passenger and freight transport. Since
the automatic robot can assist the freight to move between different connected MAUs, as shown in
Figure 4.1, and passengers can also freely shuttle between MAUs, as shown in Figure 4.2, this study
assumes that both passengers and freight can reach the correct MAU before transferring, so there will
be no penalty for transfers included in the cost. Tomaximize the utilization of vehicle space, passengers
and freights can coexist in the same MAU when operating on fixed routes. However, if an MAU needs
to go to a pick-up and delivery stop, it cannot have passengers on board. This transport mode is shown
in Figure 4.3. Considering that MAUs can have different entrance and exit stations and time windows,
each MAU is denoted by k ∈ K, and has a capacity limit Q.

This thesis focuses on the MAV Routing Problem in a multi-depot system with intersecting MAV bus
lines, employing flexible grouping and rerouting modes to meet both passenger and freight transporta-
tion demands. The objective of the mathematical model is to minimize the operational costs of all used
MAUs. It is assumed that the schedules of MAVs, the number of MAUs, node locations, and the quan-
tities of passenger/freight transportation demands are known. The bus timetable is known (FRT), but
when a MAU is free, it can start at any time to perform the task of transporting freight and assist in
completing some passenger demands (DRT). Additionally, the paths between each station are asso-
ciated with pre-determined operational costs (proportional to travel time), and it is assumed that the
power consumption is the same whether there are passengers or freight in the MAU. The main reason
why the cost of MAU is linked to travel time is that this study mainly considers the operating costs that
operators need to pay and travel time affects energy consumption and battery efficiency. The longer
the electric bus runs, the higher the energy consumption, resulting in higher operating costs. And for
the same driving distance, in order to compare the difference in cost between peak hours and off-peak
hours, it is more accurate to use time as the objective. The purpose of the study is to determine the
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4.1. Space-Time network 10

Figure 4.1: Freight movement between MAUs

Figure 4.2: Passenger movement between MAUs

Figure 4.3: MAV transport mode

space-time trajectories of all operating MAUs. To describe the Space-Timemovements of vehicles, pas-
sengers, and freight in the bus system, the Space-Time network representation method is introduced
in the modeling process.

4.1. Space-Time network
The Space-Time network can clearly capture the working status and movement trajectory of each MAU
at different timestamps. In the network, MAUs with coinciding Space-Time states automatically form
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a column of MAVs. To construct the Space-Time network, the time range is discretized into a set of
timestamps according to a time granularity, denoted as T = {t0, t1, ..., tT }. The timestamp is divided
into 1-minute intervals, so there are 1440 timestamps in one day. Depots and Stops are expanded
into a series of Space-Time vertices at discrete timestamps. A Space-Time vertex can be represented
in a unified form as (d, t) or (s, t), indicating the location of an MAU at timestamp t. The set NR

represents all Space-Time vertices. The movement of MAUs can be represented by directed arcs
between Space-Time vertices. The set of Space-Time arcs is denoted by AR, where each Space-Time
arc is represented as (d, t, s, t′) or (s, t, s′, t′) or (s, t, d, t′), describing the movement process of an MAU
from the starting point to the destination. t represents the timestamp at station i, and t′ = t+ ta, where
ta is the travel time from station i to station j. ta is a three-dimensional matrix, as traffic conditions vary
at different timestamps, and travel times differ for the two directions between stops. Additionally, travel
times between the same two stations can vary at different timestamps. The travel time is expressed as
follows:

ta =


t0 s0 s1 · · · dn
d0 t0a0

s0 t0a1

...
. . .

sn t0an

∣∣∣∣∣∣∣∣∣∣∣

t0 sn sn−1 · · · d0
dn t0an+1

sn t0an+2

...
. . .

s0 t0a2n

× T (4.1)

The travel time between stations, for example, from timestamp t0, the travel time from stop sn to depot
dn is denoted as t0an . And there will be T (the number of all timestamps) matrices of this type.

A detailed description of nodes, arcs and paths is provided. Nodes are divided into stations and depots.
Arcs are divided into travel arcs, delivery arcs, transfer arcs, and waiting arcs. Paths are formed by
connecting these arcs in the order of stations and timestamps.

(1) Nodes

Depot Node: The set of these nodes is denoted as Nd, indexed by nd : (d, t). These nodes represent
the starting and ending stations of all routes. For example, (d1, t0) and (d2, t0) represent the starting
and ending points of Line 1 at the first timestamp. Each route has a pair of corresponding depots as
starting and ending points at each timestamp.

Stop Node: The set of these nodes is denoted as Ns, indexed by ns : (s, t). These nodes represent all
stops except the starting and ending stations of fixed routes. For example, (s1, t0) is the stop node for
the first stop of Line 1 at the first timestamp. Each stop on each route at each timestamp has a unique
identifier. Delivery and pick-up nodes outside the fixed routes start after the numerical identifiers of the
stops on all routes. Some stops on fixed routes are transfer stops, meaning that although the station
numbers are different on different routes, their physical locations are the same.

(2) Arcs

Traveling Arc: The set of these arcs is denoted as At, describing the movement of MAUs between
stations on a fixed route, indexed by (i, t, j, t′). i and j are stops only on the fixed route or depots.

At ∈ {(i, t, j, t′) |i = (dn, sn, sn+1, . . . , dn+1, sn+m) , j =
(
sn, sn+1, . . . , dn+1, sn+m, . . . , dn

)
, t′ = t+ ta}

Delivery Arc: The set of these arcs is denoted as Ad, describing the movement of MUs between
delivery nodes outside the fixed routes or connecting to stops or depots on the fixed routes, indexed
by (i, t, j, t′). The attributes are similar to those of travel arcs, but the connected stations are different.

Ad ∈ {(i, t, j, t′) |i = (dn, sn, sn+1, . . . , dn+1, sn+m) , j =
(
sn, sn+1, . . . , dn+1, sn+m, . . . , dn

)
, t′ = t+ ta}

Transfer Arc: The set of these arcs is denoted asAr, describing themovement of MAUs between stops
on different routes that share the same physical location, indexed by (i, t, j, t′). i and j are predefined
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stops, and MAUs can move freely between transfer nodes. t′ = t +∆, where ∆ is the predetermined
transfer time required for MAUs.

Ar ∈ {(i, t, j, t′) |i = (sn, sn+m) , j = (sn+m, sn) , t
′ = t+∆}

Waiting Arc: The set of these arcs is denoted as Aw, describing the state where MAUs remain sta-
tionary, indexed by (i, t, i, t′). i represents predefined stations where MAUs can wait, including depots,
transfer stops, and all delivery stops outside the fixed routes. t′ = t+Ω, where Ω is the predetermined
waiting time.

Aw ∈ {(i, t, i, t′) |i = (dn, sn) , t
′ = t+Ω}

(3) Paths

Each path is composed of a certain number of different types of arcs, and each path has two direc-
tions: forward and backward. The starting point of a path should begin at a depot and end at a depot.
Additionally, the second set of stations and timestamps of the previous arc must match the first set of
stations and timestamps of the subsequent arc. Only when both conditions are satisfied can a feasible
path be formed. And since passengers can only be transported on fixed routes, all paths are further
divided into passenger paths and freight paths. Passenger paths include all depots and stops on a
fixed bus line, while freight paths additionally include all delivery and pick-up stops.

4.2. Demand
This study assumes that daily passenger and freight demand are known in advance. Expressing de-
mand as the quantity on each arc is due to the difficulty in predicting precise transportation needs for
specific passengers or freight, while arc-based demand, derived from statistical data, is more reliable
and easier to obtain. Additionally, although the demand model does not capture specific passenger
or freight boarding and alighting behaviors but represents them in groups (number of passengers or
freight arriving at a station within a certain period of time), this approach is more suitable for scenarios
with substantial transportation demand within a region.

For passenger demand, since the bus lines’ schedules are known, demand is concentrated before the
bus is expected to arrive. Therefore, from timestamp t to timestamp t′, if there are n passengers with
transportation demand from stop s to stop s′, it will be represented as ei = {(s, t, s′, t′) : n}. For freight
demand, due to its lower time sensitivity, it only needs to be transported within a certain time window.
If there are n pieces of freight that need to be sent out from stop s between timestamp (t, t′) and arrive
at stop s′ between timestamp (t′′, t′′′), it will be represented as fi = {(s, (t, t′), s′, (t′′, t′′′)) : n}. Due to
the greater time flexibility of freight, this will enable more efficient scheduling strategies for MAU across
different time periods in a day.

4.3. Problem illustrations
To clearly illustrate the trajectories of MAUs in this study for transporting passengers and freight within
a Space-Time network, as shown in Figure 4.4, a group of MAUs conducted a trip that simultaneously
accommodated Fixed-route transit (FRT) and Demand-responsive transit (DRT), demonstrating the
flexibility of MAUs in a multi-route passenger-freight integrated transport system. Additionally, Figure
4.5 supplements the location and load status of each MAU at every timestamp. For the location status,
for example, d0 indicates that the MAU is stationed at depot d0 at this timestamp, while s1, s2 indicates
that the MAU is traveling between stops s1 and s2 at this timestamp.

Three assembled MAUs, numbered k1, k2, and k3, form a MAV, and depart simultaneously from the
depot d0 on Line 1, starting at node (d0, t0). At the starting point, k1 carries both passengers and freight,
while k2 and k3 transport only passengers. After traveling for one unit of timestamp via the travel arc
(d0, t0, s0, t1), they arrive at the next stop. At this point, k2 and k3 have sufficient capacity to handle the
demand from s1 to s2, allowing k1 to fulfill a demand-responsive transit within the time window. The
passengers in k1’s carriage transfer to k2 or k3, enabling k1 to detach and perform a delivery task. At
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Figure 4.4: MAU’s transport trajectory on the Space-Time Network

Figure 4.5: MAU’s Position and Loading/Unloading status at each timestamp

timestamp t2, k1 arrives at the delivery and pick-up stop s6 and unloads all freight in its carriage, while
k2 and k3 arrive at s1. Since k3 has sufficient capacity to meet the demand on (s1, t2, s2, t5), the idle
k2 can transfer to Line 2 via the transfer arc (s1, t2, s4, t3) to continue service, transporting passengers
from the geographical locations s1 and s4 to s3 via (s4, t3, s3, t5). The passenger and freight demand on
(s2, t5, d1, t7) exceeds k3’s capacity. After waiting for one timestamp via the waiting arc (s6, t2, s6, t3),
the idle k1 travels to s2 and reassembles with k3 into a single MAU at t5. Ultimately, k1 and k3 arrive at
the terminal d1 on Line 1 at t7, while k2 arrives at the terminal on Line 2 at t7.

In this example, although all three MAUs depart from node (d0, t0) on Line 1, they take three differ-
ent paths to complete the transportation tasks. Through dynamic formation, line switching, and spa-
tiotemporal coordination, the MAUs significantly enhance the operational efficiency and adaptability of
passenger and freight co-transportation in modular transit systems.



5
Mathematical formulations

This thesis proposes amathematical model for theMAURouting Problem ofMulti-functional Autonomous
Units (MAUs) in a passenger-freight Space-Time Network, aiming to minimize total transportation costs
while satisfying passenger and freight demand constraints. The problem is based on a network struc-
ture comprising depots, stops, and timestamps, considering MAU path selection, passenger and freight
transport capacity constraints, and restrictions on MAU formations on the same arc. The model deter-
mines the path allocation for utilized MAUs, the fulfillment of passenger and freight demands, and the
balance of MAUs entering and leaving depots. The following mathematical model is formulated as
a Mixed-Integer Quadratically Constrained Programming (MIQCP)problem, integrating the objective
function and constraints to ensure efficient optimization of transportation plans in complex networks.

The problem involves Multi-Depot, Space-Time Network, MAUs, and passenger-freight intermodal
transportation. Since the Path-based Model pre-generates feasible paths p, it offers greater flexibility
and conciseness compared to other models, making it the preferred choice for addressing this problem.
Firstly, because the network incorporates both time and space dimensions, the path-based model elim-
inates the need for additional constraints to ensure continuity in space and time, thereby simplifying
optimization decisions. At the same time, path-based decision-making aligns better with the formation
flexibility of MAVs. By selecting paths, MAUs avoid real-time computation of all possible arc combi-
nations, reducing complexity. Furthermore, since passenger transport operates only on fixed routes
while freight is picked up and delivered at all nodes, capacity allocation becomes more intuitive. This
approach allows for a clear definition of whether a path is carrying passengers or freight.

In the following sections, all sets, parameters and decision variables are introduced in detail and the
complete mathematical model is presented.

5.1. Notations
All sets establish the foundation for entities and their relationships within the MAU transportation sys-
tem, creating a structured representation for indexing vehicles K, paths P , demands E&F , and physi-
cal infrastructure. Parameter settings quantify the system’s operational characteristics and constraints,
including demand volumes γe&λf , vehicle capacity Q, and more. By adjusting these parameters, dif-
ferent scenarios can be simulated to observe the impact of changes in demand or capacity on decision-
making. The core decision variable yke,a, which the model seeks to optimize, determines the allocation
of vehicles on paths and directly influences costs. The auxiliary variables yke,a and zkf,a play a critical
role in tracking the passenger/freight loading status of vehicles and the fulfillment of demand quantities
on each arc. Table 5.1 shows the notations and explanations of the sets, parameters, and decision
variables used in the model

14
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Table 5.1: Notation and Description for the Model

Notation Description
Sets
D Set of depots, D = {1, 2, ..., |D|}, indexed by d
S Set of stops, S = {1, 2, ..., |S|}, indexed by s
I Set of stations, I = {1, 2, ..., |I|}, indexed by i, j
T Set of timestamps, T = {1, 2, ..., |T |}, indexed by t, t
N Set of nodes, N = {(1, 1), (2, 2), ..., |I, T |}, indexed by n
A Set of arcs, A = {(1, 1, 2, 2), (2, 2, 2, 3), ..., |I, T, J, T ′|}, in-

dexed by a
P Set of paths of MU k, P =

{(at1, ..., |At|, |Ad|, |Ar|, |Aw|), ...}, indexed by p
K Set of MAUs, K = {1, 2, ..., |K|}, indexed by k
E Set of sectional passenger demand, E = {1, 2, ..., |E|}, in-

dexed by e
F Set of freight group demand, F = {1, 2, ..., |F |}, indexed by

f

Parameters
cp Costs of path p
Q Maximum capacity of each MAU k
G Maximum number of MAU formations on the same travel

arc or delivery arc
ρ Passenger and freight capacity occupancy ratio
γe Total volume of sectional passenger demand e
λf Total volume of freight group demand f
B−

d,p Number of MAUs leaving depot d in path p
B+

d,p Number of MAUs entering depot d in path p
θpa Binary, if arc a is in the path p, the value is 1, otherwise 0

Decision Variables
xkp Binary, if MAU k passes through the path p, the value is 1,

otherwise 0
yke,a Integer, number of sectional passenger demand e carried

by MAU k on arc a
zkf,a Integer, number of freight group demand f carried by MAU

k on arc a
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5.2. Objective and Constraints

min
∑
k∈K

∑
p∈P

cpx
k
p (5.1a)

s.t.
∑
p∈P

xkp ≤ 1 ∀k ∈ K (5.1b)

yke,a ≤ γe
∑
p∈P

θpax
k
p ∀k ∈ K, e ∈ E, a ∈ A (5.1c)

zkf,a ≤ λf
∑
p∈P

θpax
k
p ∀k ∈ K, f ∈ F, a ∈ A (5.1d)

∑
a∈A

∑
k∈K

yke,a = γe ∀e ∈ E (5.1e)∑
a∈A

∑
k∈K

zkf,a = λf ∀f ∈ F (5.1f)

∑
p∈P

∑
e∈E

θpay
k
e,ax

k
p +

1

ρ

∑
p∈P

∑
f∈F

θpaz
k
f,ax

k
p ≤ Q ∀k ∈ K, a ∈ A (5.1g)

∑
k∈K

∑
p∈P

θpax
k
p ≤ G ∀a ∈ A (5.1h)

xkp ∈ {0, 1} ∀k ∈ K, p ∈ P (5.1i)
yke,a ∈ [0, γe] ∀k ∈ K, e ∈ E, a ∈ A (5.1j)
zkf,a ∈ [0, λf ] ∀k ∈ K, f ∈ F, a ∈ A (5.1k)

Objective Function: The objective (5.1a) is tominimize the cost of all paths that MAU k passes through.
Since the cost is directly linked to the length of travel time, this means that the solution which this study
is looking for is to assign each vehicle the lowest total path travel time.

Path Assignment Constraint: Constraint (5.1b) ensures that each MU k select at most one path p.

Demand Capacity Constraints: Constraint (5.1c) ensures that for each MU k, the volume of sectional
passenger demand e transported does not exceed the total amount of that demand γe, and that transport
is allowed only when the path p selected by the MAU k supports the sectional passenger demand.
Constraint (5.1d) ensures that for each MU k, the volume of freight group demand f transported does
not exceed the total amount of that demand λf , and that transport is allowed only when the path p
selected by the MAU k supports the freight group demand.

Demand Satisfaction Constraints: Constraint (5.1e) ensures that all sectional passenger demands
γd are met. Constraint (5.1f) ensures that all freight group demands λf are met.

Vehicle Capacity Constraint: Constraint (5.1g) ensures each MAU k on the path p, its total load
(passengers and freight) shall not exceed the capacity Q. At the same time, ρ is added to flexibly
adjust the different capacity occupancy rules between passengers and freight.

Vehicle Grouping Constraint: Constraint (5.1h) ensures that the number of MAU formation on each
arc does not exceed G. During peak hours, the MAU can be controlled to prioritize passenger demand
rather than freight demand.

The optimization model comprehensively considers multiple key constraints to ensure the accuracy of
path allocation, providing a feasible verification framework for the subsequent design of the ALNS algo-
rithm. Path allocation, demand capacity, demand satisfaction, flow conservation, and vehicle capacity
and grouping constraints collectively form the feasible region boundaries of the solution.



6
Solution methods

When selecting a computational method suitable for this MAU Routing Problem, it is considered that the
model needs to simultaneously optimize the routing of each MAU, platoon formation, the integration of
passenger and freight, and fleet size. This introduces a large number of binary decision variables (xkp)
for assigning and integer variables (yke,a and zkf,a) for demand allocation, along with nonlinear quadratic
constraints such as capacity limits, which increase the complexity of the solution process. For small-
scale instances, exact solvers like GUROBI can find optimal solutions within an acceptable time frame.
However, for medium or large-scale instances, exact methods relying on branch-and-bound algorithms
face exponential growth in solution time as the number of variables increases for NP-hard problems,
potentially leading to memory shortages. In practical operations, since transportation planning requires
near-real-time rapid decision-making, the computational speed of exact solvers is insufficient, whereas
heuristic methods can provide near-optimal solutions with minimal gaps in a shorter time.

Compared to other heuristics, the Adaptive Large Neighborhood Search (ALNS) algorithm can balance
diversification and intensification, avoiding the risk of getting trapped in local optima while also main-
taining convergence speed. The adaptive mechanism of ALNS allows for dynamic weight adjustments
based on operator performance and enables the destruction and repair of large solution structures,
enhancing search efficiency and solution diversity. Furthermore, the ALNS algorithm can be adjusted
to account for modular formation characteristics, making it particularly suitable for scenarios where
passenger and freight are integrated within the same MAU.

Based on these observations, this section focuses on designing a hybrid Adaptive Large Neighborhood
Search (ALNS) algorithm at the arc and path levels to find high-quality solutions within acceptable
computational time. Two initial solution generation methods are compared. First, a small number of
feasible paths are generated based on demand, and then GUROBI or heuristic methods are used
to obtain initial solutions. Building on this, ALNS is employed to explore feasible solutions that meet
demand with lower costs. The overall process of the algorithm is shown in the Figure 6.1:

For this MAVRouting Problem, the solution of the ALNS algorithmmust pass the following four feasibility
checks:

1. All passenger and freight demands are satisfied without exceeding the capacity of each MAU;
2. The carriage of each MAU can be in states with only passengers, only freight, or both passengers

and freight simultaneously;
3. After completing the transportation demand task on an arc, the MAU’s capacity must be released,

meaning that a single MAU should be able to fulfill multiple demands along a single path;
4. The number of MAU groups on each arc cannot exceed the limit.

17
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Figure 6.1: Overall flowchart of algorithm

6.1. Adaptive Large Neighborhood Search algorithm
Shaw (1997) first proposed a Local Search algorithm that employs greedy local search and utilizes
a larger neighborhood to avoid local minima. Ropke and Pisinger (2006) extended this approach,
improving it into the Adaptive Large Neighborhood Search (ALNS) algorithm. Traditional local search
techniques typically explore only a limited subset of solutions, making only small modifications to the
current solution and easily getting trapped in local optima. ALNS, however, can remove a significant
portion of the solution and reconstruct it in a single iteration, while also allowing the use of multiple
destruction and repair methods within the same search process, providing greater flexibility in finding
optimal solutions.

ALNS consists of three main components: an initial solution, destruction/repair operations, and an
acceptance criterion. The ALNS algorithm starts with an initial solution, which serves as the starting
point for the iterative search process. In each iteration, the algorithm performs a series of operations
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aimed at improving the current solution. These operations include destruction (removing a portion of
the current solution using a specified removal operator) and repair (reinserting the removed portion
using an insertion operator). The solution obtained after each iteration is called the incumbent solution
and is evaluated through the acceptance criterion to determine whether it is accepted. Throughout the
iterative process, the algorithm continuously updates the current solution based on the results of the
destruction and repair operations, enabling ALNS to explore different regions of the solution space to
find better solutions.

The score updating procedure tracks the performance of each heuristic algorithm, guiding the search
process toward the most promising regions of the solution space. In each iteration, removal and in-
sertion heuristic algorithms are applied to the current solution, and the scores of these operators are
continuously updated. If a heuristic algorithm finds a new global best solution or discovers an unvisited
solution that is accepted by the acceptance criterion, its score increases. However, if it performs poorly,
failing to improve the solution or explore new regions, its score may decrease or remain unchanged.
A higher score indicates that the heuristic algorithm is more successful in finding good solutions. This
dynamic scoring mechanism ensures that the algorithm prioritizes recently high-performing heuristics,
thereby improving search efficiency and the quality of solutions.

The new solution generated by modifying the current solution through the application of removal and
insertion heuristic algorithms is referred to as the proposed solution. Whether to accept or reject this
solution is determined probabilistically, inspired by the Simulated Annealing (SA) algorithm, based on
the difference in the objective function values between the current solution Sol and the proposed so-
lution Sol′, as well as the current temperature parameter T . Table 6.1 illustrates the framework of the
ALNS algorithm in this study.

Table 6.1: Framework of the ALNS algorithm

6.2. Acceptance criterion
The ALNS algorithm uses Simulated Annealing (SA) as the acceptance rule. The main idea of SA in
ALNS is not only to accept improved solutions, but also to provide opportunities for accepting worse
solutions. The SA process starts with a high initial temperature, allowing the acceptance of worse
solutions to explore the solution space. As the process continues, the temperature gradually decreases,
tending towards accepting improved solutions. According to Metropolis guidelines, if the objective
function value of the new solution f(Sol)′ is better than the current solution f(Sol), the new solution is
accepted. Otherwise, a random number rand between 0 and 1 is generated, and the new solution is
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acceptedwith probabilityP = e−
f(Sol′)−f(Sol)

T > rand. This probabilistic mechanism allows the algorithm
to jump out of local optima in the early stage and gradually converge to high-quality solutions in the
later stage. After each iteration, the temperature T is updated using the expression T · ψ, where ψ is
the cooling rate. In this study, the initial temperature T0 is set to 100, and the cooling rate ψ is 0.995.
The principles used by SA in the ALNS algorithm are shown in Table 6.2.

Table 6.2: Simulated Annealing in ALNS algorithm

6.3. Generation of initial solution
In order to shorten the time for generating the initial solution, both methods use a small number of
feasible paths for decision making, which are called demand paths. All feasible paths are called valid
paths, denoted as Pvalid. Demand paths are a subset of valid paths, extracted from valid paths based
on arcs with transportation demands, denoted as Pdemand. This can effectively reduce the number of
decision variables that need to be considered in the initialization method.

6.3.1. GUROBI solver method
Although the GUROBI solver performs poorly with large-scale data, it can quickly and accurately ob-
tain optimal decisions for small-scale data, providing a better starting point for ALNS compared to
random generation or simple heuristics. This allows ALNS to converge to a satisfactory solution with
fewer iterations, significantly reducing overall runtime. Additionally, solutions derived from the mathe-
matical model always pass feasibility checks, avoiding the difficulty of finding feasible initial solutions
under complex constraints in a short time. This hybrid strategy of exact solver and heuristic algorithms
fully leverages their complementary strengths: GUROBI’s mathematical optimization capability quickly
identifies a high-quality starting point, while ALNS’s neighborhood search ability further explores and
improves the solution space.

6.3.2. Greedy heuristic method
This method maximizes the coverage capability of MAUs through iterative allocation to satisfy unas-
signed demand on paths. Priority is given to selecting paths with high coverage-to-cost ratios based
on demand, where the cost can be balanced using this formula to obtain paths that satisfy the remaining
transportation demand requirements:

sp =
1

√
cp

∑
e∈E

ue
∑
a∈P

αa
e +

1

ρ

∑
f∈F

uf
∑
a∈P

βa
f

 (6.1)
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where ue = γe−
∑

a∈A

∑
k∈K yke,a represents the unassigned passenger demand, αa

e is a binary variable
indicating whether this arc can transport this passenger demand, and

∑
e∈E ue

∑
a∈P α

a
e represents the

total unassigned passenger demand that the path can cover. Similarly, uf = λf −
∑

a∈A

∑
k∈K zkf,a

represents the unassigned freight demand, βa
f is a binary variable indicating whether this arc can trans-

port this freight demand, and 1
ρ

∑
f∈F uf

∑
a∈P β

a
f represents the total unassigned freight demand that

path p can cover.

A three-stage process is adopted: First, vehicles are allocated to paths to satisfy passenger demand.
Under the constraint of adhering to capacity limits, MAUs with available capacity can satisfy freight
demand, as first satisfy:

yke,a ≤ min(ue, Q−
∑
e∈E

yke,a) ∀k ∈ K, a ∈ A (6.2)

then satisfy:

zkf,a ≤ min

uf , Q−
∑
e∈E

yke,a −
1

ρ

∑
f∈F

zkf,a

 ∀k ∈ K, a ∈ A (6.3)

THen, all MAUs assigned to the same arc are checked for grouping situations. All demands must be
satisfied under mandatory constraints, as ue = 0 and uf = 0. However, exceeding the maximum fleet
size for a single arc may occur. This happens because this constraint are not subject to high-priority
requirements. In subsequent ALNS algorithms, this can be effectively addressed through disruption
and insertion processes. This iterative startup method can find an initial solution in a very short time
and can greatly accelerate the solution speed.

6.4. Destroy heuristics
This study categorizes destroy operators into two levels: path and arc. Path-level destruction removes
entire paths, which can release large solution spaces and significantly reconstruct MAU path allocation,
while Arc-level destruction preserves useful portions of paths and more precisely removes arcs that
have no demand but occupy costs. Figure 6.2 shows the path-level destroy process, while Figure 6.3
shows the arc-level destroy process. Each type of operator has its own advantages and disadvantages,
working together to maintain the depth of local optimization while providing the breadth of global search.
This section explains the rationale and principles behind using these ALNS removal heuristic methods.

Figure 6.2: Path-level destroy process

6.4.1. Dynamic destroy rate
The destruction rate is a parameter that controls the proportion of vehicle paths removed from the
solution in each iteration, denoted by ξ and constrained within [min ξ,max ξ]. This ensures that each
destruction operation has a certain degree of disturbance, avoiding the algorithm being too conser-
vative while preventing excessive destruction that would lead to complete randomization of the so-
lution. When no better solution is found after a certain number of iterations, the destruction rate is
increased using ξ′ = min(max ξ, ξ + 0.05) to encourage the algorithm to explore new solution spaces.
When a better solution is found, the counter is reset to 0, and the destruction rate is decreased using
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Figure 6.3: Arc-level destroy process

ξ′ = max(min ξ, ξ − 0.02) to make the algorithm more inclined to perform fine optimization within the
neighborhood of the current solution. The dynamic change process is shown in Table 6.3. The target
number of vehicle allocation paths to be removed for each operator is:

Soltarget = max(1, ⌊Solactive × ξ⌋) (6.4)

where Solactive is the set of vehicles that have already been allocated paths in the current solution.
However, the actual number of removals is constrained to avoid completely destroying the solution by:

Solremove = min(Soltarget, ⌊Solactive − 1⌋) (6.5)

Table 6.3: Dynamic destroy rate process

6.4.2. Path-level destroy operator
(1) Random Destroy

The core principle of Random Destroy is to disrupt the structure of the current solution by randomly
selecting and removing a certain number of vehicle routes. Although it is the most basic destruction
strategy, it is highly important. The primary reason for using this operator is its ability to provide essen-
tial diversity to the algorithm. When trapped in a local optimal solution, it can unbiasedly explore various
corners of the solution space, effectively preventing premature convergence. Additionally, randomness
helps the algorithm escape its current search trajectory, offering fresh reconstruction opportunities for
the subsequent repair phase. This random perturbation mechanism is key to maintaining the algo-
rithm’s long-term search vitality and often unexpectedly discovers new regions containing high-quality
solutions. The specific steps are shown in Table 6.4.

(2) Worst Cost Destroy
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Table 6.4: Random Destroy Process

The design principle of Worst Cost Destroy is based on a key optimization intuition: the highest-cost
routes often represent the least efficient resource allocations in the current solution, making their re-
moval most likely to yield significant cost improvements. This operator is distinctly goal-oriented, tar-
geting routes with suboptimal costs and providing the algorithm with a clear direction for improvement.
Since a few high-cost routes typically contribute disproportionately to the total cost, removing them can
create the greatest potential for improvement in the subsequent repair phase. Moreover, the presence
of high-cost routes often suggests that the current route selections may be suboptimal, indicating the
potential for alternative solutions with more efficient resource utilization. The specific steps are shown
in Table 6.5.

Table 6.5: Worst Cost Destroy Process

(3) Demand-based Destroy

The design principle of Demand-based Destroy is rooted in the concept of optimizing transportation effi-
ciency, which involves reconfiguring vehicle routes with low demand service efficiency, as identified by
the key index ‘efficiency = number of transportation demand / path cost’. During off-peak periods, there
may be vehicle routes with relatively low passenger and cargo loads or low service demand density.
Even if these routes have modest costs, low-efficiency vehicles often indicate resource waste, suggest-
ing suboptimal route planning that results in insufficient vehicle loads. By removing these inefficient
vehicles, the algorithm creates opportunities to reorganize and optimize demand allocation, forcing the
repair phase to seek solutions that better utilize vehicle capacity and serve higher-value demands more
effectively. The specific steps are shown in Table 6.6.

6.4.3. Arc-level destroy operator
(1) Arc Removal Destroy

The core of Arc Removal Destroy is to remove a certain number of non-demand arcs from an allocated
path, and then select the segment containing the most demand from the disconnected segments as
the new path. First, the paths with the most non-demand arcs are selected. For a path, the target num-
ber of non-demand arcs to be removed is controlled within the range Atarget = random (1, ξ ×Aactive),
where Aactive refers to the total number of arcs contained in this path, and the actual number of re-
movals satisfies Aremove = min(Atarget, Anon−demand), where Anon−demand refers to the number of all
non-demand arcs on this path. After completing the removal steps, there will be multiple segments
containing demand remaining, and only the segment containing the most demand is retained to avoid
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Table 6.6: Demand-based Destroy Process

the situation where arcs with demand have only one unique connectable non-demand arc, providing
more exploration space in the repair phase. The specific steps are shown in Table 6.7.

Table 6.7: Arc Removal Destroy Process

(2) Arc Search Destroy

Arc Search Destroy is a destruction operator based on transportation efficiency analysis of each arc.
First, similar to Demand-based Destroy, the least efficient paths are found, but the entire path to which
the MAU is assigned will not be removed. Then the transportation efficiency of each arc on the path
to be destroyed is calculated according to the formula Efficiency(ai) = 1

c(ai)
[γ(ai) +

1
ρλ(ai)], where

γ(ai) is the number of passengers transported by arc ai, λ(ai) is the freight quantity, and c(ai) is the
cost required to pass through this arc. After sorting each arc segment, the ξ least efficient ones will
be removed. Since non-demand arcs have a numerator of 0 in the efficiency calculation, most of them
will be preferentially removed. If more than half of the arcs serve no demand, random selection will be
performed. Through destroying empty arcs or low-value arcs with excessively high costs, this provides
a better foundation for subsequent repair operators. The specific steps are shown in Table 6.8.

6.5. Insertion heuristics
To repair the removed vehicle paths or arc segments, ALNS requires insertion heuristic methods to
regain new complete solutions. This study employs three path-level repair operators: Random Repair,
Greedy Repair, and Utility Maximization Repair, along with three arc-level repair operators: Arc Inser-
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Table 6.8: Arc Search Destroy Process

tion Repair, Chain Repair, and Hybrid Repair. The destroy operators at path and arc levels are matched
with corresponding repair operators at the same level to ensure repair quality. Figure 6.4 shows the
path-level repair process, while Figure 6.5 shows the arc-level repair process. This section explains
the reasons and principles behind using these ALNS insertion heuristic methods.

Figure 6.4: Path-level repair process

6.5.1. Candidate paths
To improve algorithm efficiency, after certain demands are removed by the destroy operator, the algo-
rithm does not blindly search through all possible paths. Instead, it prioritizes paths that are highly re-
lated to the removed demands, known as candidate paths. During the repair process, candidate paths
serve two main roles. First, the search space is significantly reduced, excluding many meaningless
paths and thereby substantially accelerating the algorithm’s runtime. Second, this study establishes a
path relevance scoring mechanism, where paths capable of serving multiple removed demands receive
higher scores, enhancing the quality of the repair.

6.5.2. Path-level repair operator
(1) Random Repair

The working principle of Random Repair in this study involves selecting the feasible candidate paths
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Figure 6.5: Arc-level repair process

which can cover the deleted demands and performing random selection under the premise of feasibility.
The primary reason for using this operator is its ability to effectively counteract the search stagnation
that may occur in the ALNS algorithm during prolonged iterations. When the solution structures remain
similar over an extended period, random repair can break this regularity, maintaining the algorithm’s
creativity. The specific steps are shown in Table 6.9.

Table 6.9: Random Repair Process

(2) Greedy Repair

Greedy Repair evaluates the value of each candidate path using the efficiency index ‘number of trans-
portation demand / path cost’, prioritizing the allocation of vehicles to paths that can serve the most
demands at the lowest cost. The algorithm calculates the demand-to-cost ratio for each candidate path
to obtain its service value score, selecting the path with the highest input-output efficiency for priority
allocation. While the greedy strategy may not guarantee a global optimum, it offers high computational
efficiency, enabling the rapid repair of an incomplete solution post-destruction into a complete feasible
solution. The specific steps are shown in Table 6.10.

(3) Utility Maximization Repair

Utility Maximization Repair selects paths with higher opportunity costs, where high opportunity cost
means that the path achieves a good balance between predicted passenger capacity and cost. For
each candidate path in the solution pool that can repair the removed demand, the utility value is first
calculated through Utility(pi) = 1

c(pi)
[(γ(pi) +

1
ρλ(pi)) × (1 + Bcapacity)], where γ(pi) is the maximum

number of passengers that can be transported on the path, λ(pi) is the maximum amount of freight that
can be transported, c(pi) is the cost of this path, andBcapacity is the capacity utilization rate reward used
to expand the advantage of paths with higher average capacity utilization rates. Then the regret value
is calculated as Regret(pi) = (Utilitymax − Utility(pi))− 0.1×max(0, cmax − c(pi)), where Utilitymax

is the highest utility value among all paths, and cmax is the highest cost among all paths. The regret
value is a quantification of decision risk, with lower regret values representing better input-output ratios
for this path investment. Finally, a comprehensive score is used to find the optimal trade-off between
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Table 6.10: Greedy Repair Process

each path’s utility and risk control, with the scoring formula being Utility score(pi) = (0.7× Utility(pi)

Utilitymax
)+

(−0.3× Regret(pi)
Regretmax

). Paths with higher scores will be preferentially selected and allocated demand in a
progressive manner, seeking to allocate the highest-scoring path among the remaining paths that can
satisfy unallocated demand. The specific steps are shown in Table 6.11.

Table 6.11: Utility Maximization Repair

6.5.3. Arc-level repair operator
(1) Arc Insertion Repair

Arc Insertion Repair can find the optimal insertion scheme for removed demand, enabling paths to
maintain feasibility while minimizing insertion costs. Each removed arc with demand is assigned a
fixed time window, and value ranking is performed through passenger quantity γ(ai) and freight quantity
λ(ai). Arcs with more passenger demand and higher value will be preferentially selected, followed by
attempting all possible insertion positions in the currently destroyed paths through enumeration. After
successfully inserting one position, the remaining demand will continue to attempt insertion into this
path. When no suitable arc can be inserted, the lowest-cost non-demand arc is found to repair the
path to complete feasibility, calculating the cost required to use this path. After evaluating the insertion



6.5. Insertion heuristics 28

cost of each position, the most efficient scheme is selected, as the path with the highest score in this
formula: Efficiency(pi) =

1
c(pi)

[γ(pi) +
1
ρλ(pi)]. Since this operator exhaustively searches all possible

insertion combinations, it can ensure finding locally optimal solutions. The specific steps are shown in
Table 6.12.

Table 6.12: Arc Insertion Repair Process

(2) Chain Repair

Chain Repair outputs optimized and reorganized complete paths by inputting all broken arc segments
and unsatisfied demand. Its objective is

min
∑

pi∈P (
∑

fragments(pi)
cfragments(pi) +

∑
connections(pi)

cconnections(pi))

where connections(pi) includes arcs with demand as well as non-demand arcs used for connections.
This operator selects the path set with the minimum total cost from all feasible combinations, with
the capability of combining multiple paths, optimizing from an overall reconstruction perspective. The
specific steps are shown in Table 6.13.

Table 6.13: Chain Repair Process

(3) Hybrid Repair



6.6. Operator Selection Mechanism 29

When an originally short path has a certain number of arcs removed, the length of remaining arc seg-
ments may not meet the preservation conditions, leading to the entire path being removed, while some
paths are not completely destroyed, resulting in mixed destruction. When mixed destruction occurs,
the algorithm can intelligently identify and assign the Hybrid Repair operator for restoration. For paths
with existing segments, Arc Insertion Repair is used, and if there is demand that cannot be allocated,
path-level Greedy Repair is employed for allocation. This operator can first handle high-certainty de-
mand, then process remaining demand with minimal waste. The specific steps are shown in Table
6.14.

Table 6.14: Hybrid Repair Process

6.6. Operator Selection Mechanism
The Destroy and Insertion operators adopt a roulette wheel selection strategy, which maintains the
weight of each operator to dynamically adjust the selection probability. Specifically, the selection prob-
ability of operator i is calculated by the formula Pi =

wi∑n
j=1 wj

, where wi is the current weight of operator
i, and

∑n
j=1 wj is the sum of all operator weights of the same type. All operators have an initial weight

of 1.0, ensuring that each operator has an equal chance of being selected at the beginning of the algo-
rithm. When an operator combination produces an improvement, the corresponding operator weights
are updated according to wt+1

i = wt
i × (1 + α); when no improvement is produced, the weights are

updated according to wt+1
i = wt

i × (1 − 0.5α), where α is the weight update factor. This selection
mechanism enables superior operator combinations to obtain higher selection probabilities, thereby
improving overall search efficiency.



7
Numerical experiments

To verify the performance of the proposed approaches, this section first tests some small-scale data to
examine the gap and effectiveness between the algorithms, and then conducts numerical experiments
on a real case study. The proposed algorithm is coded in Python on a Windows 11 personal computer
with 13th Gen Intel(R) Core(TM) i7-13700H and 32G RAM. GUROBI 12.1.1 is used to solve the MAV
Routing Problem model.

7.1. Impact of Space-Time Network scale on different solution meth-
ods

The scale of the model is primarily determined by the number of stations and timestamps. An increase
in the number of timestamps and stations both leads to an increase in the number of nodes in the Space-
Time Network, which in turn causes a rise in the number of paths and, consequently, more demand.
This section divides the experiments into two parts: fixed timestamps and fixed station numbers, to
compare the solution quality and computational speed of different methods. Additionally, the number
of fixed stations will be further divided into two aspects: changes in the number of lines and changes
in the number of pickup and delivery stops.

The calculation of costs involves 1 timestamp representing 1 minute. MAU’s per-minute travel cost
depending on its energy consumption, travel speed, and local electricity price. The average energy
consumption of MAU is 22 kWh/100km (Solar Impulse Foundation 2025), and it is assumed to operate
at an average speed of 30km/h in urban settings (including driving and stopping). The average price
for public charging in the Netherlands is €0.43/kWh (EV Connect 2025). The per-minute electricity cost
for MAU can be calculated using the following formula:

Cost (€/min) = Energy consumption (kWh/100km)× Speed (km/h)
100

× Electricity cost (€/kWh) (7.1)

The result is a cost of €0.0473/min. Regarding other parameters, based on the NEXT Company
database (NEXT Modular Vehicles 2024), A MAU carriage has a capacity Q of 15 passengers, and
this study assumes that 2 pieces of freight occupy the capacity of 1 passenger, as ρ is 2. Therefore,
the same carriage can accommodate 30 pieces of freight. Additionally, to prevent MAV formation on
the road due to the MAU’s composition, the number of coupled unitsG is limited to 3. Furthermore, due
to the limited number of timestamps, the travel time is set to be relatively compact, ranging between 1
and 3 minutes.

To investigate the impact of increasing the number of lines on the performance of different algorithms,
the timestamp is fixed at 20. As shown in Table 7.1, the first column represents the parameters adjusted
in the experiment, denoted as T − L− PD, where T is the number of timestamps, L is the number of
fixed bus lines, and this experiment uses 2, 3, and 4 lines, with each line fixed at 8 stations, including
2 depots and 6 intermediate stops. Among them, stops s2 and s7 are geographically identical and
connected by a transfer arc. The delivery and pick-up stops outside the lines are fixed at 4, denoted

30
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as PD. Figure 7.1 illustrates this space network using 2 lines as an example. The second column in
Table 7.1 represents the number of paths to be traversed in the current experiment, the fourth column
represents the optimal solution obtained by the algorithm, which indicates the total travel time of all
MAUs in this network. The fifth column represents the total operational cost calculated based on the
travel time. The sixth and seventh columns represent the time taken to obtain the initial solution and
the time spent by the algorithm, respectively. The eighth column represents the total computation time
to complete the experiment.

Table 7.1: Comparison of algorithms for different number of lines

Instance
Number
of paths
tra-
versed

Solution method Objective Computational time (sec)
(T-L-PD) Travel

time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

20 - 2 - 4 40280 GUROBI – – – – >21600.0
GUROBI+ALNS 154 7.28 204.5 23.9 228.4
Greedy heuristic+ALNS 162 7.66 0.3 28.3 28.6

20 - 3 - 4 67327 GUROBI – – – – –
GUROBI+ALNS 198 9.37 471.3 33.2 504.5
Greedy heuristic+ALNS 214 10.12 0.4 52.6 53.0

20 - 4 - 4 84301 GUROBI – – – – –
GUROBI+ALNS 290 13.72 1181.7 184.4 1366.1
Greedy heuristic+ALNS 328 15.51 0.9 201.5 202.4

Figure 7.1: Spatial network for experiments with fixed timestamp numbers (20-2-4)

Due to the large number of stations and the dispersed nature of demand, the GUROBI solver struggles
to find any solution within 6 hours for a network with 2 lines, 15 passenger demands, and 5 freight
demands. In terms of initial solution computation time, the Greedy heuristic method is significantly
faster than the GUROBI method, which solves a small-scale path problem with demand. However, the
initial solution quality of the GUROBI method is better, leading to shorter subsequent computation times
for ALNS. The computation time of the GUROBI method increases exponentially with the number and
dispersion of demands, resulting in a growing gap in total computation time compared to the Greedy
heuristic + ALNS algorithm as the network size expands. In addition, in the 20-2-4 experiment, the gap
between the optimal solutions obtained by the two methods was 5.2%, while in the 20-4-4 experiment,
the gap reached 10.3%. The solution quality obtained by the GUROBI+ALNS algorithm is consistently
better than that of the Greedy heuristic+ALNS algorithm.

Next, the experiment fixes the number of lines at 2, still using 20 timestamps, with the number of pick-up
and delivery stops set to 2, 4, and 6 cases, while the passenger demand remains unchanged, and the
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freight demand increases proportionally with the number of pick-up and delivery stops. For example,
the connection scenario with 4 pick-up and delivery stops uses the same spatial network as the 20-2-4
configuration, as shown in Figure 7.1. As shown in Table 7.2, since the stops outside these fixed lines
can serve to connect different lines, compared to the stops on the fixed lines, each additional pick-up
and delivery stop causes the number of paths to be traversed to grow exponentially.

Table 7.2: Comparison of algorithms for different number of pick-up and delivery stops

Instance
Number
of paths
tra-
versed

Solution method Objective Computational time (sec)
(T-L-PD) Travel

time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

20 - 2 - 2 6876 GUROBI 134(78.4)6.34 – – 1714.6
GUROBI+ALNS 136 6.43 19.2 8.5 31.7
Greedy heuristic+ALNS 140 6.62 0.2 9.1 9.3

20 - 2 - 4 40280 GUROBI – – – – >21600.0
GUROBI+ALNS 154 7.28 204.5 23.9 228.4
Greedy heuristic+ALNS 162 7.66 0.3 28.3 28.6

20 - 2 - 6 92478 GUROBI – – – – –
GUROBI+ALNS 208 9.84 2099.1 87.1 2186.2
Greedy heuristic+ALNS 237 11.2 2.3 113.1 115.4

In the smallest-scale experiment, theGUROBI solver obtained the optimal solution, with theGUROBI+ALNS
method achieving an optimal solution with a gap of 1.5%, and the Greedy heuristic+ALNS method at
4.5%. Combined with the previous experiment that varied the number of lines, it can be observed that
GUROBI is highly sensitive to the spatial network’s expansion in terms of computational speed. When
using GUROBI to generate initial solutions, it is evident that adding two more pick-up and delivery stops
increases the computation time by approximately tenfold. In contrast, the heuristic methods are less af-
fected. To further validate the gap with the exact solutions obtained by the GUROBI solver, the number
of stations was reduced to decrease the dispersion of demand across the spatial network.

To further verify the gap between the exact solution obtained by the GUROBI solver, the number of
timestamps was reduced to decrease the spatial dispersion of demand. A fixed number of stations is
used, and the algorithm’s quality was tested by progressively increasing the number of timestamps. As
shown in Figure 7.2, the experiment utilized two fixed lines. Additionally, there were two delivery and
pick-up stops, namely s12 and s13, where s12 can connect to s3 and s6, and s13 can connect to s2, s7,
and s8. As shown in Table 7.3, this experiment used 12 groups of tests, with timestamps ranging from
10 to 120, increasing by intervals of 10.

Figure 7.2: Spatial network for fixed station number experiments

Taking the experiment with 10-2-2 as an example, Table 7.4 shows the paths assigned to each MAU
in the Space-Time network and the demand on each corresponding arc. From the results, it can be
observed that some demands are split, or the remaining capacity of the carriages is utilized for freight
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Table 7.3: Comparison of algorithms for different number of timestamps

Instance
Number
of paths
tra-
versed

Solution method Objective Computational time (sec)
(T-L-PD) Travel

time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

10 - 2 - 2 153 GUROBI 69(56.7) 3.26 – – 2.2
GUROBI+ALNS 69 3.26 1.1 2.8 3.9
Greedy heuristic+ALNS 71 3.45 0.2 3.1 3.2

20 - 2 - 2 26905 GUROBI 102(69.0)4.82 – – 1440
GUROBI+ALNS 103 4.92 23.6 20.5 44.1
Greedy heuristic+ALNS 107 5.20 0.3 27.3 27.6

30 - 2 - 2 250244 GUROBI – – – – >21600.0
GUROBI+ALNS 155 7.33 48.7 216.6 265.3
Greedy heuristic+ALNS 155 7.33 0.4 233.6 234.0

40 - 2 - 2 429590 GUROBI – – – – –
GUROBI+ALNS 159 7.52 82.2 297.5 379.5
Greedy heuristic+ALNS 163 7.71 0.6 420.1 420.7

50 - 2 - 2 654375 GUROBI – – – – –
GUROBI+ALNS 180 8.51 538.6 394.6 933.2
Greedy heuristic+ALNS 187 8.85 1.1 602.8 603.9

60 - 2 - 2 840069 GUROBI – – – – –
GUROBI+ALNS 212 10.03 630.2 662.6 1292.8
Greedy heuristic+ALNS 215 10.17 1.3 788.1 789.4

70 - 2 - 2 1049975 GUROBI – – – – –
GUROBI+ALNS 244 11.54 1085.0 691.5 1776.5
Greedy heuristic+ALNS 258 12.20 1.7 1403.9 1405.6

80 - 2 - 2 1247367 GUROBI – – – – –
GUROBI+ALNS 292 13.81 1864.5 704.8 2569.3
Greedy heuristic+ALNS 303 14.33 2.3 2040.6 2042.9

90 - 2 - 2 1463988 GUROBI – – – – –
GUROBI+ALNS 376 17.78 2068.9 1187.6 3256.5
Greedy heuristic+ALNS 391 18.49 3.1 2543.8 2546.9

100 - 2 - 2 1677193 GUROBI – – – – –
GUROBI+ALNS 402 19.01 3249.7 1781.5 5031.2
Greedy heuristic+ALNS 435 20.58 4.0 3367.8 3371.8

110 - 2 - 2 1859714 GUROBI – – – – –
GUROBI+ALNS 424 20.06 4953.2 2414.9 7368.1
Greedy heuristic+ALNS 458 21.66 4.8 3750.7 3755.5

120 - 2 - 2 2073843 GUROBI – – – – –
GUROBI+ALNS 445 21.05 10772.5 2987.1 13759.6
Greedy heuristic+ALNS 460 21.79 7.6 6876.9 6884.5

transportation. Regarding the composition of MAVs, for instance, k1 and k2 form an MAV in some
segments of the path, while k3 and k4, for example, travel together throughout the entire journey. Ad-
ditionally, for example, k9 does not perform any transportation tasks and is an MAU traveling empty to
balance depot flow.

In small-scale tests, the GUROBI solver is able to provide exact solutions. In the Objective column,
the exact integer solution obtained by the GUROBI solver is accompanied by the relaxed solution
in parentheses. In two sets of experiments, the gaps between these two solutions were 17.9% and
32.4%, respectively, fully demonstrating the complexity of the model. Through comparison, the solu-
tion quality of both the GUROBI+ALNS algorithm and the Greedy heuristic method+ALNS algorithm
fell within an acceptable range, as shown in Figure 7.3. In the 10-2-2 experiment, the gap between the
GUROBI+ALNS algorithm’s solution and GUROBI’s solution was 0.0%, while the gap for the Greedy
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Table 7.4: Experimental results example (10-2-2)

MAU id and Demand Arc: start station (start timestamp) → end station (end timestamp)

k0 d0(0) →
s0(2)

s0(2) →
s1(4)

s1(4) →
s2(6)

s2(6) →
d1(8)

Passenger demand e0 : 10 - - e3 : 15 - - -
Freight demand f0 : 10 f1 : 30 - - - - -
k1 d0(0) →

s0(2)
s0(2) →
s1(4)

s1(4) →
s2(6)

s2(6) →
d1(8)

Passenger demand e0 : 10 e1 : 15 e2 : 15 e3 : 15 - - -
Freight demand - - - - - - -
k2 d2(1) →

s3(2)
s3(2) →
s4(4)

s4(4) →
s5(6)

s5(6) →
d3(8)

Passenger demand e7 : 10 e8 : 5 e10 : 5 e11 : 5 - - -
Freight demand - f2 : 20 f5 : 10 f6 : 10 - - -
k3 d0(2) →

s0(3)
s0(3) →
s6(4)

s6(4) →
s0(5)

s0(5) →
s1(6)

s1(6) →
s4(7)

s4(7) →
s3(8)

s3(8) →
d2(9)

Passenger demand e12 : 15 - - e9 : 10 e14 : 10 - -
Freight demand - f7 : 10 f8 : 10 f9 : 10 - - f10 : 20
k4 d0(2) →

s0(3)
s0(3) →
s6(4)

s6(4) →
s0(5)

s0(5) →
s1(6)

s1(6) →
s4(7)

s4(7) →
s3(8)

s3(8) →
d2(9)

Passenger demand e12 : 10 e13 : 10 - e9 : 15 e14 : 5 e15 : 5 e16 : 5
Freight demand - - - - - - f10 : 10
k5 d2(3) →

s3(4)
s3(4) →
s4(5)

s4(5) →
s5(6)

s5(6) →
d3(8)

Passenger demand - - - e8 : 15 - - -
Freight demand - - f4 : 25 - - - -
k6 d1(3) →

s2(5)
s2(5) →
s1(6)

s1(6) →
s0(8)

s0(8) →
d0(9)

Passenger demand e4 : 5 - e5 : 5 - - - -
Freight demand - f13 : 10 - - - - -
k7 d3(3) →

s5(5)
s5(5) →
s4(6)

s4(6) →
s1(7)

s1(7) →
s0(8)

s0(8) →
d0(9)

Passenger demand - - - - - - -
Freight demand - f12 : 15 f11 : 30 f14 : 10 f3 : 5 - -
k8 d3(3) →

s5(5)
s5(5) →
s4(6)

s4(6) →
s1(7)

s1(7) →
s0(8)

s0(8) →
d0(9)

Passenger demand e19 : 5 e17 : 5 - e18 : 10 e20 : 5 - -
Freight demand - f12 : 20 f11 : 10 - - - -
k9 d1(3) →

s2(5)
s2(5) →
s1(6)

s1(6) →
s0(8)

s0(8) →
d0(9)

Passenger demand e4 : 15 - - e6 : 10 - - -
Freight demand - - - f3 : 10 - - -

heuristic method+ALNS algorithm was 2.9%. In the 20-2-2 experiment, the gap for the GUROBI+ALNS
algorithm was 0.9%, while the gap for the Greedy heuristic method+ALNS algorithm was 4.7%. Al-
though the GUROBI+ALNS algorithm requires more time to solve, its solution quality is superior, closely
approaching the exact solution. However, starting from the 30-2-2 experiment, due to the excessive
number of paths and demands to be searched, the GUROBI solver failed to produce any results within
6 hours. In contrast, the Greedy heuristic method+ALNS algorithm was able to find a result in 234
seconds. While this method significantly improves computational speed, it sacrifices some solution
quality.

As the number of timestamps and demands increases, as shown in Figure 7.4, the computational
time gap between the GUROBI+ALNS algorithm and the Greedy heuristic method+ALNS algorithm be-
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Figure 7.3: Comparison of the quality of the optimal solution of the algorithms

comes increasingly significant. In the 70-2-2 experiment, the total time difference between the twometh-
ods was 370.9 seconds, while in the 100-2-2 experiment, the time difference expanded to 1659.4 sec-
onds. In the largest-scale experiment, 120-2-2, the time difference between the two methods reached
6875.1 seconds, with the computational time of the GUROBI+ALNS algorithm nearly double that of
the Greedy heuristic method+ALNS algorithm. It can be predicted that when the number of stations is
fixed, an increase in the number of timestamps will lead to a progressively larger computational time
gap between the two methods.

Figure 7.4: Comparison of algorithms computational time

By combining the results of experiments with a fixed number of timestamps and stations, the following
observations can be made:
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1. Compared with the exact optimal solutions obtained by the GUROBI solver in small-scale ex-
periments, the solutions from the GUROBI+ALNS algorithm are very close to the exact solutions,
while the solutions from the Greedy heuristic method+ALNS algorithm exhibit a slightly larger gap
but remain within an acceptable range.

2. When the number of timestamps is fixed, increasing the number of stops in fixed lines, pick-
up and delivery stops, and demands leads to a progressively more noticeable superiority in the
solution quality of the GUROBI+ALNS algorithm compared to the Greedy heuristic method+ALNS
algorithm. However, when generating initial solutions, the computational time of the GUROBI
method increases exponentially with the number of stations, especially when the number of pick-
up and delivery stops increases. In contrast, the computational speed advantage of the Greedy
heuristic method+ALNS algorithm will become increasingly evident.

3. When the number of stations is fixed, increasing the number of timestamps and demands does not
lead to a significant gap in solution quality between the GUROBI+ALNS algorithm and the Greedy
heuristic method+ALNS algorithm. The overall computational time for both methods increases
steadily, but the Greedy heuristic method+ALNS algorithm remains faster, with the gap widening
as the number of timestamps increases.

4. In the Space-Time Network of the MAU Routing Problem, both methods’ computational speed
of generating initial solutions is influenced by the number of paths to traverse and the number
of demands. When expanding through the spatial dimension, the computational time growth
rate for both the Greedy heuristic initialization method and the GUROBI initialization method is
significantly faster than when expanding through the temporal dimension. This is because, under
the influence of the time window of freight demands, a greater number of stations, especially pick-
up and delivery stops, leads to a faster increase in path diversity compared to a greater number of
timestamps, resulting in a more significant increase in demand paths. The GUROBI initialization
method requires more time, which limits the scale of experiments using this method to some
extent. However, since the Greedy heuristic initialization method quickly covers demands based
on path scores, the increase in computational time is much less noticeable.

5. The computational time of the ALNS algorithm is insensitive to either dimension (spatial or tem-
poral) and is mostly affected by the quality of the initial solution. Higher-quality initial solutions
accelerate the algorithm’s convergence process and avoid repeated repair processes due to failed
feasibility checks, resulting in shorter computational times. Consequently, the ALNS algorithm
using the GUROBI initialization method typically converges faster than when using the Greedy
heuristic initialization method. In summary, the ALNS algorithm tailored for the MAU Routing
Problem can converge within a limited number of iterations in all instances.

7.2. Sensitivity analysis of passenger and freight capacity occu-
pancy ratio

The passenger and freight capacity occupancy ratio ρ represents the size of the freight, where a larger
ρ indicates that the freight occupies less space within the carriage. This section uses a 60-2-2 network
to perform a sensitivity analysis on ρ. The cost variations are examined for ρ values of 2, 3, 4, 5, and 6,
under the condition that passenger demand and freight demand remain constant and Q is set to 15. As
shown in Table 7.5, the required number of MAUs and the cost results obtained from two initialization
methods are recorded.

Figure 7.5 illustrates the trend of cost changes under different passenger and freight capacity occu-
pancy ratios. As ρ increases, more freight can be accommodated within the MAU space. Freight that
previously required multiple MAUs for transport can now be handled by fewer MAUs, leading to a grad-
ual reduction in the number of MAUs used and, consequently, a decrease in the additional travel costs
associated with MAU usage. When ρ = 4, a significant reduction is observed, with the number of
MAUs used decreasing by 4 compared to when ρ = 2, resulting in a cost reduction of 16.1%. This
is primarily because, in this experiment, freight demand frequently consists of around 45 to 50 units,
while demands exceeding 50 units are rare. Consequently, when ρ = 5 or ρ = 6, the optimization
results show no further cost reduction. The changes in MAU quantity and operational costs caused by
ρ primarily depend on the freight demand between pairs of stations and secondarily on the passenger
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Table 7.5: Result of sensitivity analysis of passenger and freight capacity occupancy ratio

ρ Solution method Number of
MAU used

Travel time
(min)

Cost (euro)

2 GUROBI+ALNS 19 212 10.03
Greedy heuristic+ALNS 19 215 10.17

3 GUROBI+ALNS 18 203 9.60
Greedy heuristic+ALNS 19 207 9.79

4 GUROBI+ALNS 15 178 8.42
Greedy heuristic+ALNS 15 182 8.61

5 GUROBI+ALNS 14 174 8.23
Greedy heuristic+ALNS 15 181 8.56

6 GUROBI+ALNS 14 174 8.23
Greedy heuristic+ALNS 15 180 8.51

demand within the time window. If the passenger demand on the arcs between two stations within the
freight transport time window is consistently high, additional MAUs are still required to transport freight
even when ρ is large, making it challenging to achieve significant reductions in optimized operational
costs.

Figure 7.5: Operating costs at different passenger and freight capacity occupancy ratios

7.3. Sensitivity analysis of operators
Among all customized operators, the path-level Utility Maximization Repair operator and the arc-level
Chain Repair operator are logically complex, involving multiple layers of functions. The Utility Maximiza-
tion Repair method requires multiple traversals to evaluate candidate paths, iteratively calculating path
utility, capacity utilization, and regret values. Conversely, the Chain Repair operator attempts to com-
bine all remaining path segments into complete paths, involving repetitive path connection checks and
demand allocation optimization. These two operators play unique roles in exploring complex solution
spaces and optimizing path combinations, but their intricate processes can increase the computational
time of the entire ALNS algorithm. To assess the contribution of these two insertion operators to the
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overall solution quality and to balance with computational speed, the following experiments were de-
signed.

The experiments were conducted using a spatial layout same as the fixed number of stations, and
three groups of experiments with timestamp counts of 50, 60, and 70 were set up for mutual compari-
son, focusing on the computational time and solution quality changes of the ALNS algorithm. The nine
operators other than the Utility Maximization Repair operator and the Chain Repair operator were col-
lectively referred to as basic operators. Table 7.6 and Table 7.7 respectively present the computational
time and optimal solutions for the GUROBI + ALNS method and the Greedy heuristic + ALNS method
under different operator combination conditions.

Table 7.6: Sensitivity analysis of operators for GUROBI + ALNS method

Operator selection 50-2-2 60-2-2 70-2-2
Calculation
time (sec)

Objective
(Travel
time)

Calculation
time (sec)

Objective
(Travel
time)

Calculation
time (sec)

Objective
(Travel
time)

ALNS with basic
operators

217.8 225 434.4 265 481.2 305

ALNS with basic
operators + Utility
Maximization Re-
pair operator

271.9 198 495.6 248 501.9 287

ALNS with basic
operators + Chain
Repair operator

293.2 182 531.3 220 539.6 249

ALNS with full oper-
ators

394.6 180 662.6 212 691.5 244

Table 7.7: Sensitivity analysis of operators for Greedy heuristic + ALNS method

Operator selection 50-2-2 60-2-2 70-2-2
Calculation
time time
(sec)

Objective
(Travel
time)

Calculation
time (sec)

Objective
(Travel
time)

Calculation
time (sec)

Objective
(Travel
time)

ALNS with basic
operators

332.5 243 434.4 279 772.1 335

ALNS with basic
operators + Utility
Maximization Re-
pair operator

415.4 222 543.6 237 965.3 285

ALNS with basic
operators + Chain
Repair operator

448.8 188 616.3 213 1142.0 261

ALNS with full oper-
ators

602.8 187 788.1 215 1403.9 258

In terms of computational time, removing these two operators allows the algorithm to complete in nearly
half the original time. In the same cases, the Chain Repair operator, which is more complex for global
optimization compared to the Utility Maximization Repair operator, often requires more computational
time, but the solution quality is very close to that obtained using all operators. In the 60-2-2 experiment
with the Greedy heuristic + ALNSmethod, the solution quality even surpassed that of using all operators,
with the largest gap across all experiments being 3.6%. In contrast, although the Utility Maximization
Repair operator requires less computational time, its solution quality is poorer, with an average gap
of around 9.5% compared to the solution using full operators. Additionally, in several experiments,
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it exhibited lower weight usage, but still provided some improvement over solution using only basic
operators.

The experimental results indicate that omitting the Chain Repair operator significantly reduces solution
quality. Although using the complete set of operators generally yields better near-optimal solutions in
nearly all cases, removing these two operators can be considered when decisions need to be made
in a shorter time. In large-scale problems, retaining the Chain Repair operator is more beneficial for
maintaining solution quality. As the problem scale increases, the combination of basic operators and
the Chain Repair operator saves more time per iteration, making it worthwhile to trade a small portion
of solution quality for a 20% reduction in computational time.

7.4. Case study
This section validates the advantages of MAVs compared to traditional buses and delivery vans in the
real road network and actual demand scenario of Changning District, Shanghai, China. The spatial net-
work of this study is illustrated in Figure 7.6. Two regional bus lines were selected, where Line 72 con-
sists of 8 stations (d0, s0, s1, s2, s3, s4, s5, d1), and Line 54 consists of 7 stations (d2, s6, s7, s8, s9, s10, d3).
Additionally, there are 4 pick-up and delivery stops outside the fixed lines (s11, s12, s13, s14). s2 and
s7 are the intersection points of the two lines, connected via a transfer arc. Among the pick-up and
delivery stops outside the fixed lines, s11 and s12 are interconnected, with s11 connected to s9 and s12
connected to s3. Similarly, s13 and s14 are interconnected, with s13 connected to s0 and s1, and s14
connected to s8.

Figure 7.6: Spatial network of the case study MAV route in Shanghai region

The study selects the morning period from 8:00 to 9:30 as the temporal network, comprising 90 times-
tamps. The peak period is from 8:00 to 9:00, while the off-peak period is from 9:00 to 9:30. For the
same distance, the travel time during the peak period ranges from 4 to 7 minutes, whereas during the
off-peak period, it reduces to 2 to 5 minutes. For the fixed lines, the bus timetable operates at a fre-
quency of every 15 minutes during the peak period (8:00, 8:15, 8:30, 8:45) and every 20 minutes during
the off-peak period (9:00). Idle MAVs can depart at any time to assist in fulfilling the remaining passen-
ger demand and freight demand. Passenger demand data were obtained from statistics provided by
the Shanghai Municipal Transportation Commission. Freight demand data were estimated based on
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the regional parcel throughput provided by Cainiao with the time window for freight demand spanning
all 90 timestamps.

This case study continues to use the parameter information from Section 1, where Q = 15, ρ = 2, and
G = 3. As shown in Table 7.8, due to the wide range of the demand distribution, the GUROBI solver
was unable to find any solution within 12 hours. The GUROBI initialization method, even with a reduced
number of paths, still failed to produce any results within 8 hours. Therefore, subsequent analyses are
based on the solutions obtained from the Greedy heuristic + ALNS algorithm.

Table 7.8: Case Result

Solution method Objective
travel time
(min)

Initial solution
time (sec)

Algorithm
time (sec)

Total compu-
tational time
(sec)

GUROBI – – – >43200
GUROBI+ALNS – >28800 – –
Greedy heuristic+ALNS 1054 28.1 8058.2 8086.3

A total of 30 MAUs are deployed in this operation. The detailed path assignments for each MAU are
presented in Appendix A. As illustrated in Figure 7.7, freight transportation is seldom selected during
peak hours due to the overwhelming passenger demand. During off-peak periods, each MAU has
more remaining capacity, which can be better utilized by freight. During off-peak periods, traditional
bus system, in order to balance passenger waiting times, find it difficult to significantly reduce the
frequency of departures, resulting in a large amount of redundant capacity in the vehicles. To better
demonstrate the flexible utilization of space by MAU, Figure 7.8, taking k25 as an example, illustrates
the entire process of fulfilling both partial passenger demand and freight demand.

Figure 7.7: Distribution of demand over time

If a co-transportation transit system is not used and a strategy of transporting passengers and freight
separately is adopted instead, 38 MAUs are required, with the specific path assigned to each MAU
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Figure 7.8: Example of MAU flexible transport

detailed in Appendix B. Since the passenger demand on an arc during off-peak periods typically does
not exceed 10 people, a significant amount of idle capacity arises. This capacity is not fully utilized by
freight, leading to an increase in the number of vehicles used and a corresponding rise in operational
costs.

The electricity cost for one MAU in China is €0.036 per minute. For comparison, it is assumed that
traditional buses and delivery vans are also electrically powered, with the same electricity cost of €0.089
per minute. According to the bus timetable (Bendibao 2025), a total of 5 departures are required from
each of the 4 depots, with 4 departures during peak periods, each taking an average of 35 minutes
to complete a transport task, and 1 departure during off-peak periods, each taking an average of 28
minutes to complete a transport task. The total time required to complete all tasks is 672 minutes. For
freight demand, delivery vans are used to meet all freight requirements, departing from 4 depots to
serve a total of 15 stations with freight demand. The solution is obtained using the Traveling Salesman
Problem (TSP) model, with the objective of minimizing the travel time through all demand points, where
the travel time is based on the average transit time of each arc.

min

14∑
i=0

14∑
j=0,j ̸=i

tijxij (7.2a)

s.t.

14∑
j=0,j ̸=i

xij = 1 ∀i ∈ {0, 1, . . . , 14} (7.2b)

14∑
i=0,i ̸=j

xij = 1 ∀j ∈ {0, 1, . . . , 14} (7.2c)

ui − uj + 15xij ≤ 14 ∀i, j ∈ {1, 2, . . . , 14}, i ̸= j (7.2d)
xij ∈ {0, 1} ∀i, j ∈ {0, 1, . . . , 14}, i ̸= j (7.2e)
ui ∈ [1, 14] ∀i ∈ {1, 2, . . . , 14} (7.2f)

According to the solution obtained from the GUROBI solver, one delivery van departs from each of
the four depots, with a total minimum time of 142 minutes to complete all freight demand. Since both
traditional buses and delivery vans require drivers, the cost must include the salaries of all drivers
(Shanghai Municipal Human Resources and Social Security Bureau 2025), with an average hourly
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wage of €6.5 per driver. As bus drivers can continue to perform return transport tasks after reaching
the depot, a total of 12 bus drivers and 4 delivery van drivers are required.

Table 7.9: Cost Comparison between MAU and traditional bus & delivery van

Transport Method Objective
travel time
(min)

Electricity
cost (euro)

Labor cost
(euro)

Total Oper-
ating cost
(euro)

MAU co-transportation 1054 37.94 – 37.94
MAU separate transportation 1097 39.49 – 39.49
Traditional bus + delivery van 814 72.45 120.37 228.45

As shown in Table 7.9, the MAU co-transportation system offers significant operational cost advantages.
Within this one-and-a-half-hour period case, it saves €1.52 compared to the separate transportation
system and €190.48 compared to a traditional bus and delivery van system. Compared to a modular
transit system without passenger and freight co-transportation, the cost difference in this case is only
3.9%. However, as freight demand and scale of instances increase, this could lead to considerable
cost inefficiencies. In contrast, the cost difference with the traditional transportation system reaches
83.4%. Using MAUs not only reduces labor costs but also leverages the smaller capacity of each
MAU compartment. During peak periods, MAUs transport passengers, and during off-peak periods,
when passenger demand on an arc is low, they can utilize idle capacity to transport freight, significantly
reducing capacity waste. Although the total travel time of the traditional transportation system is shorter,
the larger vehicle size results in higher unit electricity consumption, leading to electricity costs nearly
double those of the MAU system.
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Conclusion

This study proposes a passenger and freight co-transportation system utilizing Modular Autonomous
Units (MAUs) to fulfill all transportation demands on a network with minimal electricity consumption
operational costs. MAUs can couple/decouple on any route segment, providing passenger and freight
transportation services on multiple fixed bus lines (FRT), as well as freight transportation services be-
tween pick-up and delivery stops generated by daily express demands that are not on fixed lines (DRT).
Through transfer arcs and delivery arcs, each MAU can move between different lines. A network is es-
tablished using Space and Time dimensions, where each passenger demand has precise station and
time information, and each freight demand is assigned a set of time windows. Based on this, a path-
based model for the MAU Routing Problem is developed to satisfy every demand task in the network.
A customized Adaptive Large Neighborhood Search (ALNS) algorithm, dividing the destruction and re-
pair processes into path-level and arc-level, is employed to tackle the computational challenges of this
complex network problem.

Due to the expansion of the overall network in both spatial and temporal dimensions, the demand
quantity also increases accordingly. This study provides two methods for generating initial solutions—
GUROBI and Greedy heuristic—which, when combined with the ALNS algorithm, can significantly re-
duce the computation time required to obtain the optimal solution. In small-scale experiments, com-
pared to the exact optimal solution obtained by the GUROBI solver, the solution quality of both methods
is proven to be within an acceptable range. The GUROBI-based algorithm deviates by no more than
1.5%, while the Greedy heuristic algorithm, despite greatly improving computation speed, deviates
by no more than 5%. Computational results based on the Shanghai regional network demonstrate
the advantages of the ALNS algorithm. Compared to traditional buses and delivery vans, MAUs can
efficiently utilize vehicle space to transport both passengers and freight simultaneously, significantly
reducing the additional operational costs caused by idle capacity within compartments. Without using
a co-transportation system, even when employing MAUs for transportation, an additional 3.9% oper-
ational cost is incurred. In contrast, compared to traditional transportation systems, operational costs
are reduced by 83.4%. Therefore, the use of this co-transportation modular transit system provides
operators with an opportunity to reduce operational costs while meeting all transportation demands.

Overall, these findings confirm that the use of a passenger and freight co-transportation modular transit
system enables operators to significantly reduce operational costs and represents a worthwhile urban
internal transportation system to replace traditional public transit and delivery systems. To achieve
more efficient MAU allocation on the Space-Time Network, operators should encourage close cross-
functional collaboration between MAU scheduling and demand forecasting teams, supported by the
robust heuristic methods for large-scale instances proposed in this study, ensuring that FRT and DRT
services mutually reinforce each other. The insights and methods proposed in this research are also
broadly applicable to similar vehicle allocation scenarios combining fixed-route and demand-responsive
services, providing a more flexible and sustainable methodological platform for the emerging urban
transportation field.
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8.1. Discussion and future work
Although the proposed model and results provide encouraging evidence that the passenger and freight
co-transportation modular transit system can improve operational efficiency and cost savings, there are
still some limitations. First, the current system only supports passenger transportation on fixed lines.
Based on the results, demand-responsive freight transportation with time windows can operate effi-
ciently, and passenger demand with precise timing could also be explored for transportation between
nodes beyond fixed lines. Additionally, more detailed information on real-time passenger behavior,
freight uncertainty, and geographically specific traffic patterns could enhance the accuracy of quanti-
tative estimates and guide more targeted management strategies. Furthermore, while the customized
ALNS algorithm proposed in this study has been validated to compute large-scale cases within an ac-
ceptable time frame, it still requires significant time for ultra-large-scale networks, making it difficult to
meet the real-time requirements of operators. To address these limitations, the following directions for
future research are proposed.

A valuable extension would be to expand passenger transportation to nodes beyond fixed lines, en-
abling a more comprehensive demand-responsive transportation (DRT) mode. However, transporting
individual passengers incurs high costs for both operators and passengers, so the clustering of passen-
ger demand must be considered. Future research could introduce passenger demand clustering mech-
anisms, such as through clustering algorithms (e.g., K-means) or spatiotemporal heatmap analysis of
passengers’ origin-destination patterns, allowing MAUs to dynamically pick up and drop off passengers
between non-fixed-line nodes. This would not only enhance the system’s flexibility but also prevent effi-
ciency losses due to excessive dispersion. Meanwhile, such an extension may require redesigning the
Space-Time Network, incorporating more dynamic arcs to support door-to-door passenger services.

Another direction is to integrate uncertainty into the model to address the real-time variability of pas-
sengers and freight. The current deterministic assumptions may lead to estimation biases, failing to
account for factors such as random passenger arrivals or cancellations, unexpected freight delays,
and traffic variations caused by urban congestion or weather conditions. To tackle these uncertainties,
future research could employ Robust Optimization or Stochastic Programming methods, such as Dis-
tributionally Robust Optimization (DRO), to model the uncertain distribution of demand. By leveraging
historical data or Monte Carlo simulations to generate scenario trees, MAU routes can be optimized to
minimize operational costs under worst-case scenarios. This would make the co-transportation modu-
lar system more adaptive.

Finally, to address the computational challenges of ultra-large-scale networks, Column Generation and
Row Generation methods can be explored to enhance solution performance. The generation approach
decomposes the main problem into path generation subproblems, dynamically adding efficient paths
(e.g., solving a shortest path variant via the pricing problem) to progressively approach the optimal
solution with faster computation speed, making it particularly suitable for this Path-based MAU Routing
Problem.

In summary, the expansion of passenger transport to DRT, the incorporation of uncertainty factors,
and the integration of advanced decomposition methods demonstrate that the passenger and freight
co-transportation modular transit system can indeed achieve further improvements in operational per-
formance. Although many directions remain to be explored in future research, this study provides prac-
tical methodological guidance in both modeling and algorithms. In an urban transportation industry that
prioritizes speed, flexibility, and cost competitiveness, the seamless integration of public transport and
logistics services will be a key pathway to achieving sustained growth and success.
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A
Detailed MAU path distribution of case

study for co-transportation system

In the case study from 8:00 to 9:30 in the morning in Changning District, Shanghai, China, by using
passenger and freight co-transportation system, a total of 30 MAUs are used. Table B.1 shows the
routes assigned to all MAUs:

Table A.1: MAU path distribution of case study

Vehicle ID Path

k0 d0(8 : 00) > s0(8 : 04) > s1(8 : 08) > s2(8 : 15) > s7(8 : 19) > s8(8 : 25) >
s9(8 : 29) > s10(8 : 33) > d3(8 : 38)

k1 d1(8 : 00) > s5(8 : 05) > s4(8 : 12) > s3(8 : 19) > s2(8 : 25) > s7(8 : 30) >
s8(8 : 35) > s14(8 : 39) > s13(8 : 45) > s0(8 : 52) > s1(8 : 56) > s2(9 : 00) >
s3(9 : 03) > s12(9 : 06) > s11(9 : 08) > s9(9 : 11) > s8(9 : 15) > s7(9 : 18) >
s6(9 : 21) > d2(9 : 25)

k2 d2(8 : 00) > s6(8 : 07) > s7(8 : 11) > s8(8 : 15) > s9(8 : 20) > s10(8 : 27) >
d3(8 : 31)

k3 d3(8 : 00) > s10(8 : 04) > s9(8 : 11) > s8(8 : 16) > s7(8 : 23) > s2(8 : 30) >
s1(8 : 36) > s0(8 : 43) > d0(8 : 48)

k4 d0(8 : 15) > s0(8 : 19) > s1(8 : 26) > s2(8 : 32) > s7(8 : 36) > s8(8 : 40) >
s9(8 : 47) > s10(8 : 51) > d3(8 : 56)

k5 d1(8 : 15) > s5(8 : 20) > s4(8 : 26) > s3(8 : 33) > s2(8 : 38) > s7(8 : 44) >
s8(8 : 48) > s9(8 : 55) > s10(8 : 59) > d3(9 : 04)

k6 d1(8 : 15) > s5(8 : 22) > s4(8 : 28) > s3(8 : 35) > s2(8 : 41) > s1(8 : 46) >
s0(8 : 49) > d0(8 : 53)

k7 d2(8 : 15) > s6(8 : 20) > s7(8 : 25) > s2(8 : 30) > s3(8 : 35) > s4(8 : 39) >
s5(8 : 45) > d1(8 : 50)

k8 d3(8 : 15) > s10(8 : 21) > s9(8 : 27) > s8(8 : 31) > s7(8 : 37) > s6(8 : 44) >
d2(8 : 49)

k9 d0(8 : 30) > s0(8 : 35) > s1(8 : 41) > s2(8 : 48) > s3(8 : 54) > s4(8 : 59) >
s5(9 : 03) > d1(9 : 08)

k10 d1(8 : 30) > s5(8 : 35) > s4(8 : 41) > s3(8 : 47) > s2(8 : 54) > s1(8 : 56) >
s0(9 : 01) > d0(9 : 04)

k11 d2(8 : 30) > s6(8 : 37) > s7(8 : 43) > s8(8 : 48) > s9(8 : 53) > s10(8 : 59) >
d3(9 : 03)

k12 d3(8 : 30) > s10(8 : 34) > s9(8 : 38) > s8(8 : 45) > s7(8 : 52) > s2(8 : 57) >
s1(9 : 02) > s0(9 : 05) > d0(9 : 08)

Continued on next page
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Table A.1: MAU path distribution of case study

Vehicle ID Path

k13 d3(8 : 32) > s10(8 : 37) > s9(8 : 43) > s8(8 : 49) > s7(8 : 55) > s6(9 : 00) >
d2(9 : 04)

k14 d0(8 : 35) > s0(8 : 40) > s1(8 : 47) > s2(8 : 53) > s7(8 : 58) > s6(9 : 02) >
d2(9 : 07)

k15 d3(8 : 38) > s10(8 : 42) > s9(8 : 48) > s8(8 : 54) > s7(9 : 01) > s2(9 : 05) >
s1(9 : 08) > s0(9 : 11) > d0(9 : 15)

k16 d3(8 : 42) > s10(8 : 47) > s9(8 : 52) > s8(8 : 59) > s7(9 : 03) > s2(9 : 06) >
s3(9 : 10) > s4(9 : 13) > s5(9 : 17) > d1(9 : 21)

k17 d0(8 : 45) > s0(8 : 49) > s1(8 : 53) > s2(8 : 58) > s3(9 : 03) > s4(9 : 07) >
s5(9 : 11) > d1(9 : 15)

k18 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) >
s0(9 : 11) > d0(9 : 14)

k19 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) >
s0(9 : 11) > d0(9 : 14)

k20 d3(8 : 45) > s10(8 : 52) > s9(8 : 56) > s8(9 : 03) > s7(9 : 08) > s6(9 : 10) >
d2(9 : 13)

k21 d0(8 : 48) > s0(8 : 53) > s1(8 : 59) > s2(9 : 05) > s7(9 : 09) > s6(9 : 13) >
d2(9 : 16)

k22 d3(8 : 48) > s10(8 : 53) > s9(8 : 59) > s8(9 : 04) > s7(9 : 08) > s2(9 : 12) >
s1(9 : 15) > s0(9 : 19) > d0(9 : 23)

k23 d2(8 : 50) > s6(8 : 54) > s7(8 : 58) > s8(9 : 03) > s9(9 : 07) > s10(9 : 11) >
d3(9 : 15)

k24 d0(8 : 50) > s0(8 : 54) > s1(8 : 58) > s2(9 : 03) > s3(9 : 07) > s4(9 : 11) >
s5(9 : 15) > d1(9 : 19)

k25 d0(8 : 55) > s0(8 : 58) > s13(9 : 02) > s0(9 : 05) > s1(9 : 09) > s2(9 : 11) >
s3(9 : 15) > s4(9 : 18) > s5(9 : 21) > d1(9 : 24)

k26 d0(8 : 55) > s0(8 : 59) > s1(9 : 03) > s2(9 : 07) > s3(9 : 11) > s4(9 : 15) >
s5(9 : 19) > d1(9 : 23)

k27 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) >
s0(9 : 27) > d0(9 : 30)

k28 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) >
d3(9 : 26)

k29 d3(9 : 00) > s9(9 : 05) > s11(9 : 09) > s8(9 : 13) > s14(9 : 16) > s1(9 : 19) >
s0(9 : 22) > d0(9 : 25)



B
Detailed MAU path distribution of case

study for separate transportation
system

In the case study from 8:00 to 9:30 in the morning in Changning District, Shanghai, China, by using
passenger and freight separate system, a total of 30 MAUs are used. Table B.1 shows the routes
assigned to all MAUs:

Table B.1: MAU path distribution for passenger and freight demand

Vehicle ID Path

MAU for passenger demand:
k0 d0(8 : 00) > s0(8 : 04) > s1(8 : 08) > s2(8 : 15) > s7(8 : 19) > s8(8 : 25) >

s9(8 : 29) > s10(8 : 33) > d3(8 : 38)
k1 d1(8 : 00) > s5(8 : 05) > s4(8 : 12) > s3(8 : 19) > s2(8 : 25) > s7(8 : 31) >

s6(8 : 36) > d2(8 : 41)
k2 d2(8 : 00) > s6(8 : 07) > s7(8 : 11) > s8(8 : 15) > s9(8 : 20) > s10(8 : 27) >

d3(8 : 31)
k3 d3(8 : 00) > s10(8 : 04) > s9(8 : 11) > s8(8 : 16) > s7(8 : 23) > s2(8 : 30) >

s1(8 : 36) > s0(8 : 43) > d0(8 : 48)
k4 d0(8 : 15) > s0(8 : 19) > s1(8 : 26) > s2(8 : 32) > s7(8 : 36) > s8(8 : 40) >

s9(8 : 47) > s10(8 : 51) > d3(8 : 56)
k5 d1(8 : 15) > s5(8 : 20) > s4(8 : 26) > s3(8 : 33) > s2(8 : 38) > s7(8 : 44) >

s8(8 : 48) > s9(8 : 55) > s10(8 : 59) > d3(9 : 04)
k6 d1(8 : 15) > s5(8 : 22) > s4(8 : 28) > s3(8 : 35) > s2(8 : 41) > s1(8 : 46) >

s0(8 : 49) > d0(8 : 53)
k7 d2(8 : 15) > s6(8 : 20) > s7(8 : 25) > s2(8 : 30) > s3(8 : 35) > s4(8 : 39) >

s5(8 : 45) > d1(8 : 50)
k8 d3(8 : 15) > s10(8 : 21) > s9(8 : 27) > s8(8 : 31) > s7(8 : 37) > s6(8 : 44) >

d2(8 : 49)
k9 d0(8 : 30) > s0(8 : 35) > s1(8 : 41) > s2(8 : 48) > s3(8 : 54) > s4(8 : 59) >

s5(9 : 03) > d1(9 : 08)
k10 d1(8 : 30) > s5(8 : 35) > s4(8 : 41) > s3(8 : 47) > s2(8 : 54) > s1(8 : 56) >

s0(9 : 01) > d0(9 : 04)
k11 d2(8 : 30) > s6(8 : 37) > s7(8 : 43) > s8(8 : 48) > s9(8 : 53) > s10(8 : 59) >

d3(9 : 03)

Continued on next page
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Table B.1: MAU path distribution for passenger and freight demand

Vehicle ID Path

k12 d3(8 : 30) > s10(8 : 34) > s9(8 : 38) > s8(8 : 45) > s7(8 : 52) > s2(8 : 57) >
s1(9 : 02) > s0(9 : 05) > d0(9 : 08)

k13 d3(8 : 38) > s10(8 : 42) > s9(8 : 48) > s8(8 : 54) > s7(9 : 01) > s2(9 : 05) >
s1(9 : 08) > s0(9 : 11) > d0(9 : 15)

k14 d3(8 : 42) > s10(8 : 47) > s9(8 : 52) > s8(8 : 59) > s7(9 : 03) > s2(9 : 06) >
s3(9 : 10) > s4(9 : 13) > s5(9 : 17) > d1(9 : 21)

k15 d0(8 : 45) > s0(8 : 49) > s1(8 : 53) > s2(8 : 58) > s3(9 : 03) > s4(9 : 07) >
s5(9 : 11) > d1(9 : 15)

k16 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) >
s0(9 : 11) > d0(9 : 14)

k17 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) >
s0(9 : 11) > d0(9 : 14)

k18 d3(8 : 45) > s10(8 : 52) > s9(8 : 56) > s8(9 : 03) > s7(9 : 08) > s6(9 : 10) >
d2(9 : 13)

k19 d0(8 : 48) > s0(8 : 53) > s1(8 : 59) > s2(9 : 05) > s7(9 : 09) > s6(9 : 13) >
d2(9 : 16)

k20 d3(8 : 48) > s10(8 : 53) > s9(8 : 59) > s8(9 : 04) > s7(9 : 08) > s2(9 : 12) >
s1(9 : 15) > s0(9 : 19) > d0(9 : 23)

k21 d2(8 : 50) > s6(8 : 54) > s7(8 : 58) > s8(9 : 03) > s9(9 : 07) > s10(9 : 11) >
d3(9 : 15)

k22 d0(8 : 50) > s0(8 : 54) > s1(8 : 58) > s2(9 : 03) > s3(9 : 07) > s4(9 : 11) >
s5(9 : 15) > d1(9 : 19)

k23 d0(8 : 55) > s0(8 : 58) > s1(9 : 03) > s2(9 : 06) > s3(9 : 10) > s4(9 : 14) >
s5(9 : 18) > d1(9 : 21)

k24 d0(8 : 55) > s0(8 : 59) > s1(9 : 03) > s2(9 : 07) > s3(9 : 11) > s4(9 : 15) >
s5(9 : 19) > d1(9 : 23)

k25 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) >
s0(9 : 27) > d0(9 : 30)

k26 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) >
d3(9 : 26)

k27 d3(9 : 00) > s9(9 : 05) > s11(9 : 09) > s8(9 : 13) > s14(9 : 16) > s1(9 : 19) >
s0(9 : 22) > d0(9 : 25)

MAU for freight demand:
k28 d0(8 : 55) > s0(8 : 58) > s13(9 : 02) > s0(9 : 05) > s1(9 : 09) > s2(9 : 11) >

s3(9 : 15) > s4(9 : 18) > s5(9 : 21) > d1(9 : 24)
k29 d1(8 : 58) > s5(9 : 03) > s4(9 : 04) > s12(9 : 06) > s11(9 : 08) > s9(9 : 11) >

s8(9 : 15) > s7(9 : 18) > s6(9 : 21) > d2(9 : 25)
k30 d2(9 : 00) > s6(9 : 04) > s7(9 : 07) > s8(9 : 10) > s12(9 : 15) > s3(9 : 19) >

s4(9 : 22) > s5(9 : 25) > d1(9 : 28)
k31 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) >

s0(9 : 27) > d0(9 : 30)
k32 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) >

d3(9 : 26)
k33 d3(9 : 00) > s9(9 : 05) > s11(9 : 09) > s8(9 : 13) > s14(9 : 16) > s1(9 : 19) >

s0(9 : 22) > d0(9 : 25)
k34 d3(9 : 02) > s10(9 : 06) > s9(9 : 10) > s8(9 : 13) > s7(9 : 17) > s6(9 : 20) >

d2(9 : 24)
k35 d3(9 : 02) > s10(9 : 06) > s9(9 : 10) > s8(9 : 13) > s7(9 : 17) > s2(9 : 20) >

s1(9 : 23) > s0(9 : 27) > d0(9 : 30)
k36 d2(9 : 03) > s6(9 : 06) > s7(9 : 09) > s8(9 : 12) > s9(9 : 15) > s10(9 : 20) >

d3(9 : 23)

Continued on next page
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Table B.1: MAU path distribution for passenger and freight demand

Vehicle ID Path

k37 d0(9 : 05) > s0(9 : 08) > s1(9 : 11) > s13(9 : 14) > s14(9 : 18) > s7(9 : 21) >
s6(9 : 24) > d2(9 : 27)
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Optimization of passenger and freight
co-transportation in modular transit systems

Chenwei Peng, Dongyang Xia, Yahan Lu, Yousef Maknoon, Sh. Sharif Azadeh
Department of Transport & Planning, Delft University of Technology, Netherlands

The daily fluctuations in urban passenger demand lead to space wastage in public transportation vehi-

cles, increasing unnecessary operational costs. Meanwhile, with the expansion of e-commerce, urban freight

demand continues to grow, making the use of idle public transportation space for freight transport an ideal

approach. This study proposes an optimization framework for integrated passenger-freight co-transportation

using Modular Autonomous Vehicles (MAVs), formulating a Mixed-Integer Quadratically Constrained Pro-

gramming (MIQCP) Path-based model based on a Space-Time Network to address the Modular Autonomous

Unit (MAU) Routing Problem. The model integrates Fixed-Route Transit (FRT) and Demand-Responsive

Transit (DRT), allowing MAUs to dynamically couple/decouple across different routes to meet the spatio-

temporal demands of passengers and freight, with the objective of minimizing total operational costs. To

tackle the computational complexity of large-scale instances, a customized Adaptive Large Neighborhood

Search (ALNS) algorithm is designed, incorporating two initial solution generation methods (GUROBI and

Greedy heuristic) and iteratively optimizing solutions through destroy and repair operations. A real-world

case study based on the Shanghai bus network validates the effectiveness of the proposed approach. The

results demonstrate that the MAU co-transportation system can effectively utilize vehicle compartment

space to simultaneously transport passengers and freight, significantly reducing empty load rates, leading to

a substantial reduction in operating costs. Without using the co-transportation mode, the number of MAUs

used would increase significantly, accompanied by a 4.1% cost increase. Compared to the traditional com-

bination of public transit and delivery vans, costs are reduced by 502.1%. This co-transportation modular

transit system, with its unique flexibility, can provide efficient and low-cost transportation services for both

passengers and freight within cities.

Key words : Modular Autonomous Vehicle, Co-transportation modular transit system, MAU Routing

Problem, Adaptive Large Neighborhood Search

1. Introduction

In recent years, urban freight demand has continued to grow alongside the expansion of e-commerce.

Meanwhile, the daily fluctuations in urban passenger demand make it challenging to balance public

transport operating costs and passenger waiting times (Shi and Li 2021). During off-peak hours

when passenger demand is low, maintaining the same bus arrival frequency as during peak peri-

ods leads to low space utilization and increased operating costs. However, reducing bus frequen-

cies would result in longer waiting times for passengers, thereby decreasing service satisfaction.

1
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Machado, Pimentel, and de Sousa (2023) proposed retrofitting some buses so that part of their

interior space is used for passenger transport while the remaining space is allocated for freight

transportation. However, under uncertain demand conditions, this modification still struggles to

serve as an optimal solution. Modular Autonomous Vehicle (MAV) can reduce capacity redun-

dancy since the capacity of a single Modular Autonomous Unit (MAU) is smaller than that of a

traditional bus. It also has the function of transporting both passengers and freight in one carriage,

and can better respond to changes in demand.

NExT Company has currently designed a mature MAV system (NExTModular Vehicles 2024), as

shown in Figure 1, which can achieve coupling/decoupling while in motion and can open front and

rear carriage doors when coupled. This function ensures that passengers can freely move between

multiple coupled MAUs, making transfers between different routes more convenient. Additionally,

NExT Company has proposed a feature that allows freight to be transferred to different MAUs

through automated machinery, enabling more flexible freight pick-up and delivery across differ-

ent routes by moving freight between modules when MAUs are coupled. One of the important

advantage of NExT Company’s MAV over traditional public transportation is that the autonomous

driving feature reduces labor costs, with only energy costs during operation, and provides greater

flexibility. It can precisely fulfill passenger demands when they arise, controlling passenger wait-

ing time at stations. Meanwhile, when there is spare capacity in the carriage, it can meet freight

demands within designated time windows.

Figure 1 NExT Company’s MAV

As a product of recent advancements in autonomous driving technology, research on MAUs is

still in its early stages, with most studies focusing solely on passenger demand and operating on

a single bus line. For integrated passenger-freight transport systems, current research primarily
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focuses on transportation along fixed lines (Lin and Zhang 2024) or treats MAUs as taxis capable

of transporting freight (Hatzenbühler et al. 2024), starting from a depot to execute a series of pre-

booked tasks before returning to the origin. This study developed a system model for passenger

and freight co-transportation to address the research gap by completing the routing allocation

for each MAU on the network. And a customized Adaptive Large Neighborhood Search (ALNS)

algorithm was utilized to obtain the optimal feasible solution more quickly and accurately.

By analyzing passenger behavior, daily passenger demand at stations along fixed bus lines can be

accurately estimated for specific time periods (Zhou et al. 2016), and since that the bus timetable is

known, the vast majority of passengers are assumed to arrive at stations according to the timetable,

reducing their waiting time. Additionally, pick-up and delivery demands for freight can be predicted

in advance using GPS positioning technology (Holgúın-Veras, Amaral, and Rivera-Gonzalez 2024).

The MAU in this study is designed to function both as a bus, transporting passengers and freight

along fixed bus lines, and as a delivery vehicle, transporting freight between pick-up and delivery

stops outside the lines. Additionally, each MAU is capable of operating across multiple lines.

This study models the MAV Routing Problem as a Mixed-Integer Quadratically Constrained

Programming (MIQCP) model based on a Space-Time Network, integrating autonomous units and

paths. The Space-Time Network includes depots and stops at all discrete timestamps, connected

by Travel arcs, Delivery arcs, Transfer arcs, and Waiting arcs to form paths. The model aims

to find the minimum cost required for MAUs to fulfill all transportation demands. The results

display the transportation paths for each MAU and the allocation of each transportation demand.

A customized Adaptive Large Neighborhood Search (ALNS) algorithm is employed to compute

the results, with its quality compared against exact solutions obtained from the GUROBI solver

in small-scale tests. Two initial solution methods are used: one selects a small number of demand-

containing paths for GUROBI computation, and the other applies a Greedy heuristic method to

quickly assign all demands to MAUs. The ALNS iteratively destroys and reconstructs parts of the

current solution to find better solutions. The destruction and repair processes are divided into two

levels: Path-level, involving large-scale deletion and reconstruction of entire paths, and Arc-level,

involving deconstruction and reconstruction of selected paths. The algorithm is customized with

multiple operators tailored to the MAV Routing Problem, including destroy operators (Path-level:

Random Destroy, Worst Cost Destroy, Demand-based Destroy; Arc-level: Arc Removal Destroy,

Arc Search Destroy) and repair operators (Path-level: Random Repair, Greedy Repair, Utility

Maximization Repair; Arc-level: Arc Insertion Repair, Chain Repair, Hybrid Repair), with operator

weights dynamically adjusted using Roulette Wheel Selection. The ALNS uses Simulated Annealing

(SA) as the acceptance criterion, accepting not only improved solutions but also worse solutions

with a certain probability to escape local optima. By dynamically adjusting the destruction rate
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and operator scoring mechanism, this ALNS achieves a balance between local optimization depth

and global search breadth.

From an academic perspective, this study contributes to the transportation field in two main

ways. First, it expands the body of knowledge in this area by developing an optimization model

for passenger and freight co-transportation modular transit systems on a Space-Time Network.

Second, it explores the scalability of the model in large-scale systems by proposing an efficient

Adaptive Large Neighborhood Search (ALNS) algorithm tailored to the problem’s inherent com-

plexity. Additionally, it provides new methodological contributions for the integrated utilization of

internal space in public transportation systems.

From a societal perspective, the results of this study demonstrate that using MAUs for co-

transportation can significantly reduce the operational costs of transporting passengers and freight

within cities, potentially becoming a fundamental service for future passenger and freight transport.

This system can maximize the utilization of carriage space while reducing the average waiting

time for passengers at stations. Furthermore, the effective reduction in the number of vehicles

used leads to a significant decrease in electricity consumption, promoting more sustainable urban

communities.

The structure of the remainder of this thesis is as follows. Section 2 discusses the research ques-

tions of this study and outlines the approach to addressing them. Section 3 reviews related literature

and summarizes the contributions of this study. Section 4 provides the problem description. In

Section 5, a Mixed-Integer Quadratically Constrained Programming (MIQCP) model for the MAV

Routing Problem is established. Then, in Section 6, a customized ALNS algorithm is designed,

and its operational process is detailed. Section 7 presents the computational results, comparing

the accuracy and computational time of different methods, and includes a case study based on

real-world bus lines and pick-up and delivery stops in Shanghai. Section 8 offers conclusions and

directions for future research.
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2. Research questions

To establish a passenger and freight co-transportation system using MAUs within cities, the fol-

lowing core questions need to be answered:

Is passenger and freight co-transportation in modular transit systems worthy of large-scale appli-

cation within cities?

The main research question is answered by the following sub-questions. Table 1 shows these

sub-questions and provides solutions:

Table 1 Sub-questions for research and corresponding solutions

Sub-questions Methods

1) What aspects does the network of this study consider? Space-Time Network
2) What kind of mathematical model is best suited to solve
this MAU Routing Problem?

Path-based Mixed Integer Linear
Programming

3) What methods are used to solve the optimization model? GUROBI and Heuristic Method
(Adaptive Large Neighborhood
Search)

4) How do solution methods perform at different scales? Numerical experiments based on
simulated data

5) Compared with separate modular transit system and tra-
ditional transportation system, how big is the advantage of
MAV?

Numerical experiments based on
real data

This research examines the necessity and feasibility of establishing a passenger and freight co-

transportation modular transit system within cities to improve transportation efficiency and cost.

Due to the complexity of the problem, large-scale solvers often struggle to find high-quality solutions

within an acceptable time frame. Heuristic algorithms offer the potential for greater computational

efficiency. In general, these research questions aim to demonstrate the significant potential of this

system in terms of flexibility, space utilization, and sustainability, making it a worthy candidate

for development as a new type of transportation system.



Chenwei Peng: Optimization of Integrated passenger-freight transport for an modular autonomous vehicle systems
6

3. Literature review

At present, the research on the Passenger-Freight intermodal transport problem of Modular

Autonomous Vehicles (MAV) is in its infancy, and there are still many gaps to be explored. There-

fore, this section mainly reviews the construction of Space-Time networks in the Passenger-Freight

intermodal transport problem of other transportation modes and the current research status of

MAVs.

3.1. Passenger-Freight intermodal transport based on the Space-Time network

Passenger-Freight intermodal transport has been used for decades for long-haul transport, such as

air transport (Mason 1967) and rail transport (Yang, Xie, and Wang 2024). The modeling approach

of constructing a Space-Time network to optimize the shared capacity of the two services can

integrate different modes of transportation, support the dynamic changes in passenger and cargo

demand, and flexibly adjust transportation routes and schedules (Li, Negenborn, and De Schutter

2013). In order to solve the problem of integrating passenger and freight services on the same

railway network and maximize the transportation efficiency and cost-effectiveness of the network,

Li et al. (2023) imposed constraints on train, station capacity and freight delays, then calculated

the minimum service and routing costs. Only in recent years has short-haul transport, especially

intermodal transport within cities, begun to gain popularity (Zhu et al. 2023).

Passenger-Freight intermodal transport by bus is one of the most realistic forms in the cities and

is most similar to the Modular Autonomous Vehicles (MAVs) studied in this thesis. Zeng and Qu

(2022) built the network taking into account customer pick-up time windows, loading/unloading

service duration, and the power supply needs of electric buses. To minimize operating costs, a Mixed

Integer Linear Programming model is developed to meet the bus schedule for passenger travel

needs, cargo delivery needs and charging requests. Machado, Pimentel, and de Sousa (2023) further

considered the uncertainty of cargo demand and establishes a model through demand scenarios

in different time and space. The buses in the current study all need to be modified, with fixed

passenger and cargo capacity, and there will still be problems with redundant passenger or cargo

compartments in reality. The dynamic demand of passengers for direct access cannot be met by

buses, and other modes of transportation are required for the last mile (Machado, Pimentel, and

de Sousa 2023). The small capacity of each unit and the coupling/decoupling characteristics of

MAVs can effectively make up for the shortcomings of buses in urban intermodal transport (Shi

and Li 2021).

3.2. Optimization methods related to MAU

In recent years, with the development of autonomous driving technology, the emergence of modular

vehicles has opened up new directions for the exploration of public transportation networks. When
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establishing the optimal timetable for each bus route based on the minimum cost network flow

model, Hassold and Ceder (2014) proposed to use multiple small vehicles to replace the original

planned models. The results showed that this method can significantly reduce operating costs

and improve service quality. Modular autonomous vehicles (MAVs) can change the formation by

changing the number of composed MAUs according to the time-varying passenger demand at

different stations (Shi and Li 2021), so more research is currently focused on establishing a cost-

controlled public transportation network that serves passengers with travel needs.

Liu, Qu, and Ma (2021) proposed that each MAU can freely visit customers outside the check-

point, and deal with the first-mile and last-mile passenger pick-up problem by determining the

best route and scheduling strategy. A Mixed Integer Linear Programming that not only focuses

on vehicle operating costs, passenger waiting and in-vehicle costs, but also adds penalties for not

responding to passenger needs is designed. To solve this problem, they used a customized dynamic

programming with valid cuts in the first stage to effectively arrange the dynamic time and route

of vehicles, and proposed an effective and fast heuristic method in the second stage to solve the

dynamic allocation and path problem, and obtained a plan for real-time allocation and scheduling

of vehicles in a region. Tang et al. (2024) considered that the areas between stations should be

distinguished, and the service areas and routes of the day are selected according to the passengers’

online reservations one day in advance, which will cause some passengers to walk to another nearby

station that will be served. The MAU will separate from the MAV fleet at the starting point of

the selected section and reconnect with the fleet at the end of these sections. They developed an

Optimization model to determine the deviated sections and the number of MAUs to be separated,

as well as the corresponding schedule, to minimize the waiting time of passengers and the total

cost of operator operation. The results are obtained using the DICOPT solver and show that the

number of door-to-door passengers would affect the total cost. The more such passengers there are,

the higher the waiting time and walking time cost will be, while the in-vehicle time and vehicle

operation cost will be reduced.

Xia et al. (2023) focused on the uncertainty of passengers’ time-dependent demand, and seeked

the lowest-cost and best robust MAV time-varying and station-varying capacity allocation plan

and the corresponding schedule. Due to the random nature of passenger arrival rate, the number of

MAVs will change over time in a trip, and different MAVs will have different numbers of MAUs at

the same station. A model of the Timetable and Dynamic Capacity Allocation (TT-DCA) problem

is proposed and extended by the Data-Driven Distributionally Robust Optimization (DRO) method

to consider the uncertainty of passengers’ arrival time. The Integer L-shaped (IL) method can better

solve this problem. The results show that the allocation strategy of time-varying and station-varying

capacity can lead in both maximum and average vehicle congestion levels, indicating that the waste
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of space in the vehicle can be effectively reduced. According to Xia, Ma, and Sharif Azadeh (2024a),

the passenger demand for direct access was added to the fixed route, and the MU at any station

can be separated from the MAV to complete the DRT service, and after completing the service,

it can continue to couple with the MAV that coincides with the time. The Mixed Integer Linear

Programming model is established to generate a globally optimal co-mobility schedule and service

route (minimizing the weighted sum of passenger and operating costs). By using a customized

Adaptive Large Neighborhood Search (ALNS) algorithm combined with the GUROBI solver, it

is found that the OT-FC-DRT strategy makes the number of operating vehicles and operating

costs higher than the OT-FC strategy, but reduces the waiting time cost and average in-vehicle

time of passengers. If the cost weight is adjusted to favor the operator, the DRT service may be

sacrificed. Furthermore, the dynamic constraint of passengers transferring between different routes

was added by Xia, Ma, and Sharif Azadeh (2024b), so that the model can realize the function

of finding a scheduling scheme and schedule that utilizes fewer MUs while establishing multi-line

circulation. Based on the Integer L-shaped (IL) method, the Rolling Horizon Framework (RH)

has been proposed to address efficiency issues found in numerical experiments based on Beijing’s

bus network data. It works by dynamically and incrementally solving the problem to adapt to the

real-time changes and uncertainties in demand. For the three modes of Fixed-capacity, Partially

flexible-capacity and Completely flexible-capacity, the costs for passengers do not differ much

in different cases, but the Completely flexible-capacity mode has huge advantages in terms of

operating costs and the number of vehicles used. However, if more attention is paid to the interests

of passengers, the operating costs will increase, but the proportion of transfers within the vehicle

can be increased, making it more convenient for passengers to transfer.

The use of MAVs for passenger and freight transport is a relatively new concept. Due to the

low demand of passengers during off-peak periods, there is more redundancy in vehicles, while

the rise of e-shopping has increased the demand for sending and receiving goods. MAVs that can

quickly connect and detach are a promising solution for a co-modal system that integrates public

transportation services and last-mile logistics (Lin, Nie, and Kawamura 2022). Hatzenbühler et al.

(2023) proposed two independent dedicated MAUs for passengers and freight. They modeled the

Modular Multi-purpose Pickup and Delivery Problem (MMP-PDP) by considering the travel time

cost, travel distance cost, fleet size cost, and the cost of unserved requests. The transportation mode

only involves demand response type. Under the condition of meeting the time window constraints,

the corresponding group of MAVs are arranged to depart from the depot and complete a series of

tasks of picking up and dropping off passengers and goods in the shortest path before returning to

the depot. Experiments show that while the operating cost is reduced by 48%, the travel time is

also much shorter than that of ordinary fleets. Lin and Zhang (2024) proposed a different concept,
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where the same MAU serves both passengers and cargo. The number and task allocation of MAUs

can be adjusted at any station to minimize the waiting time cost of passengers and the operating

cost of operators. A fixed route in both directions is established, but since the two directions share

the module inventory at the same station, the planning of both directions will affect each other.

In order to simplify the established Mixed Integer Programming problem, the time coordinate is

shifted to focus on the time when each MAV departs from the first station. A two-stage heuristic

algorithm is used to solve this problem. The first stage determines the number and the timetable

of vehicles that need to be scheduled, and the second stage develops a high-quality lower bound

to optimize vehicle grouping and freight allocation. They finally found that an increase in freight

demand and an increase in the maximum allowed platoon length can further reduce the total cost.

The following Table 2 shows the current research status of Modular autonomous vehicles (MAVs)

and the research direction of this thesis. At present, most of the research on MAVs with only

passengers is exploring the service mode that combines Fixed-route transit (FRT) and Demand-

responsive transit (DRT). Such an intermodal mode can better reduce the empty vehicle rate and

improve passenger satisfaction. However, there are fewer studies on passenger-freight intermodal

transport, and most of them are one of the two service forms of FRT (Lin and Zhang 2024) and

DRT (Hatzenbühler et al. 2024). The combination of these two service forms has been found to be

more effective in previous studies on only passengers, so it is necessary to explore the impact of the

combination of these two service forms on the cost control of MAVs’ passenger-freight i2ntermodal

transport.
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Pas: Passenger, Fre: Freight, FRT: Fixed-route transit, DRT: Demand-responsive transit, DP:

Dynamic programming, IL: Integer L-shaped, ALNS: Adaptive large neighborhood search algo-

rithm, RH: Rolling horizon framework

Publications Demand Transport
Mode

Flexibility of
Vehicle Forma-
tion

Objective Solution

Liu, Qu, and
Ma (2021)

Pas FRT +
DRT

Docked/undocked
at each stop

Operating cost,
Waiting time cost,
Travel time, Penalty
cost for unserved
demand

DP +
Heuristic

Xia et al.
(2023)

Pas FRT Docked/undocked
at each stop

Operating cost,
Waiting time cost

IL

Tang et al.
(2024)

Pas FRT +
DRT

Docked/undocked
at selected stops

Vehicle ownership,
Operating cost,
Maintenance cost,
Waiting time cost,
Travel time

Solver
(DICOPT)

Xia, Ma, and
Sharif Azadeh
(2024a)

Pas FRT +
DRT

Docked/undocked
at each stop

Operating cost,
Waiting time cost,
Travel time

ALNS
+ Solver
(GUROBI)

Xia, Ma, and
Sharif Azadeh
(2024b)

Pas FRT +
DRT (net-
work)

Docked/undocked
at each stop

Operating cost,
Waiting time cost

IL + RH

Hatzenbühler
et al. (2023)

Pas + Fre DRT Docked/undocked
at terminals only

Operating cost,
Vehicle ownership,
Travel time, Penalty
cost for unserved
demand

ALNSA
+ Solver
(CPLEX)

Lin and Zhang
(2024)

Pas + Fre FRT Docked/undocked
at each stop

Operating cost
(vehicles and sta-
tions), Waiting
time cost, freight
handling cost

Two stage
Heuristic

this thesis Pas + Fre FRT +
DRT (net-
work)

Docked/undocked
at each stop

Operating cost ALNS
+ Solver
(GUROBI)

Table 2 Comparison of Various MAVs Studies
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4. Problem description

This study considers the transportation services of multiple bus lines in a region within one day

(24 hours). The fixed lines have starting and ending points, set as depots, denoted by d ∈D. The

remaining stops are denoted by s∈ S. There are transfer stops between different lines, intersections

of two lines. These stations are represented by different numbers s on different lines but are spatially

the same. Independent of the lines, the freight pickup and delivery stops are also denoted by

s ∈ S, but these stops can change daily for providing door-to-door service. Modular Autonomous

Vehicles (MAVs) pick up and drop off passengers only on fixed routes, while for freight, they can

automatically move within the region to respond to demand at pickup and delivery stops.

In the bus system, the distribution of passengers typically exhibits dynamic characteristics at

different times and different stations. During peak hours, the number of passengers is usually

significantly higher than during off-peak hours, which results in more redundancy of MAUs during

off-peak periods. Therefore, utilizing the remaining vehicle capacity to transport goods during

off-peak periods, while meeting passenger transportation demands, is a more effective method

to improve utilization. Adopting a flexible grouping mode that combines passenger and freight

transport can significantly reduce the operational cost losses caused by the idleness of MAUs while

ensuring service levels. Each MAU can couple/decouple at various stations and can be used for

both passenger and freight transport. Since the automatic robot can assist the freight to move

between different connected MAUs, as shown in Figure 2, and passengers can also freely shuttle

between MAUs, as shown in Figure 3, this study assumes that both passengers and freight can

reach the correct MAU before transferring, so there will be no penalty for transfers included in the

cost. To maximize the utilization of vehicle space, passengers and freights can coexist in the same

MAU when operating on fixed routes. However, if an MAU needs to go to a pick-up and delivery

stop, it cannot have passengers on board. This transport mode is shown in Figure 4. Considering

that MAUs can have different entrance and exit stations and time windows, each MAU is denoted

by k ∈K, and has a capacity limit Q.

This thesis focuses on the MAV Routing Problem in a multi-depot system with intersecting MAV

bus lines, employing flexible grouping and rerouting modes to meet both passenger and freight

transportation demands. The objective of the mathematical model is to minimize the operational

costs of all used MAUs. It is assumed that the schedules of MAVs, the number of MAUs, node

locations, and the quantities of passenger/freight transportation demands are known. The bus

timetable is known (FRT), but when a MAU is free, it can start at any time to perform the task

of transporting freight and assist in completing some passenger demands (DRT). Additionally, the

paths between each station are associated with pre-determined operational costs (proportional to

travel time), and it is assumed that the power consumption is the same whether there are passengers
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Figure 2 Freight movement between MAUs

Figure 3 Passenger movement between MAUs

Figure 4 MAV transport mode

or freight in the MAU. The main reason why the cost of MAU is linked to travel time is that

this study mainly considers the operating costs that operators need to pay and travel time affects
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energy consumption and battery efficiency. The longer the electric bus runs, the higher the energy

consumption, resulting in higher operating costs. And for the same driving distance, in order to

compare the difference in cost between peak hours and off-peak hours, it is more accurate to use

time as the objective. The purpose is to determine the space-time trajectories of all operating

MAUs. To describe the Space-Time movements of vehicles, passengers, and freight in the bus

system, the Space-Time network representation method is introduced in the modeling process.

4.1. Space-Time network

The Space-Time network can clearly capture the working status and movement trajectory of each

MAU at different timestamps. In the network, MAUs with coinciding Space-Time states automat-

ically form a column of MAVs. To construct the Space-Time network, the time range is discretized

into a set of timestamps according to a time granularity, denoted as T = {t0, t1, ..., tT}. The times-

tamp is divided into 1-minute intervals, so there are 1440 timestamps in one day. Depots and

Stops are expanded into a series of Space-Time vertices at discrete timestamps. A Space-Time

vertex can be represented in a unified form as (d, t) or (s, t), indicating the location of an MAU

at timestamp t. The set NR represents all Space-Time vertices. The movement of MAUs can be

represented by directed arcs between Space-Time vertices. The set of Space-Time arcs is denoted

by AR, where each Space-Time arc is represented as (d, t, s, t′) or (s, t, s′, t′) or (s, t, d, t′), describ-

ing the movement process of an MAU from the starting point to the destination. t represents the

timestamp at station i, and t′ = t+ ta, where ta is the travel time from station i to station j. ta is a

three-dimensional matrix, as traffic conditions vary at different timestamps, and travel times differ

for the two directions between stops. Additionally, travel times between the same two stations can

vary at different timestamps. The travel time is expressed as follows:

The travel time between stations, for example, from timestamp t0, the travel time from stop sn

to depot dn is denoted as t0an . And there will be T (the number of all timestamps) matrices of this

type.

A detailed description of nodes, arcs and paths is provided. Nodes are divided into stations and

depots. Arcs are divided into travel arcs, delivery arcs, transfer arcs, and waiting arcs. Paths are

formed by connecting these arcs in the order of stations and timestamps.
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(1) Nodes

Depot Node: The set of these nodes is denoted as Nd, indexed by nd : (d, t). These nodes rep-

resent the starting and ending stations of all routes. For example, (d1, t0) and (d2, t0) represent the

starting and ending points of Line 1 at the first timestamp. Each route has a pair of corresponding

depots as starting and ending points at each timestamp.

Stop Node: The set of these nodes is denoted as Ns, indexed by ns : (s, t). These nodes represent

all stops except the starting and ending stations of fixed routes. For example, (s1, t0) is the stop

node for the first stop of Line 1 at the first timestamp. Each stop on each route at each timestamp

has a unique identifier. Delivery and pick-up nodes outside the fixed routes start after the numerical

identifiers of the stops on all routes. Some stops on fixed routes are transfer stops, meaning that

although the station numbers are different on different routes, their physical locations are the same.

(2) Arcs

Traveling Arc: The set of these arcs is denoted as At, describing the movement of MAUs

between stations on a fixed route, indexed by (i, t, j, t′). i and j are stops only on the fixed route

or depots.

At ∈ {(i, t, j, t′) |i= (dn, sn, sn+1, . . . , dn+1, sn+m) , j =
(
sn, sn+1, . . . , dn+1, sn+m, . . . , dn

)
, t′ = t+ ta}

Delivery Arc: The set of these arcs is denoted as Ad, describing the movement of MUs between

delivery nodes outside the fixed routes or connecting to stops or depots on the fixed routes, indexed

by (i, t, j, t′). The attributes are similar to those of travel arcs, but the connected stations are

different.

Ad ∈ {(i, t, j, t′) |i= (dn, sn, sn+1, . . . , dn+1, sn+m) , j =
(
sn, sn+1, . . . , dn+1, sn+m, . . . , dn

)
, t′ = t+ ta}

Transfer Arc: The set of these arcs is denoted as Ar, describing the movement of MAUs between

stops on different routes that share the same physical location, indexed by (i, t, j, t′). i and j are

predefined stops, and MAUs can move freely between transfer nodes. t′ = t+∆, where ∆ is the

predetermined transfer time required for MAUs.

Ar ∈ {(i, t, j, t′) |i= (sn, sn+m) , j = (sn+m, sn) , t
′ = t+∆}

Waiting Arc: The set of these arcs is denoted as Aw, describing the state where MAUs remain

stationary, indexed by (i, t, i, t′). i represents predefined stations where MAUs can wait, including
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depots, transfer stops, and all delivery stops outside the fixed routes. t′ = t+Ω, where Ω is the

predetermined waiting time.

Aw ∈ {(i, t, i, t′) |i= (dn, sn) , t
′ = t+Ω}

(3) Paths

Each path is composed of a certain number of different types of arcs, and each path has two

directions: forward and backward. The starting point of a path should begin at a depot and end at

a depot. Additionally, the second set of stations and timestamps of the previous arc must match the

first set of stations and timestamps of the subsequent arc. Only when both conditions are satisfied

can a feasible path be formed. And since passengers can only be transported on fixed routes, all

paths are further divided into passenger paths and freight paths. Passenger paths include all depots

and stops on a fixed bus line, while freight paths additionally include all delivery and pick-up stops.

4.2. Demand

This study assumes that daily passenger and freight demand are known in advance. Expressing

demand as the quantity on each arc is due to the difficulty in predicting precise transportation needs

for specific passengers or freight, while arc-based demand, derived from statistical data, is more

reliable and easier to obtain. Additionally, although the demand model does not capture specific

passenger or freight boarding and alighting behaviors but represents them in groups (number of

passengers or freight arriving at a station within a certain period of time), this approach is more

suitable for scenarios with substantial transportation demand within a region.

For passenger demand, since the bus lines’ schedules are known, demand is concentrated before

the bus is expected to arrive. Therefore, from timestamp t to timestamp t′, if there are n passengers

with transportation demand from stop s to stop s′, it will be represented as ei = {(s, t, s′, t′) : n}.

For freight demand, due to its lower time sensitivity, it only needs to be transported within a

certain time window. If there are n pieces of freight that need to be sent out from stop s between

timestamp (t, t′) and arrive at stop s′ between timestamp (t′′, t′′′), it will be represented as fi =

{(s, (t, t′), s′, (t′′, t′′′)) : n}. Due to the greater time flexibility of freight, this will enable more efficient

scheduling strategies for MAU across different time periods in a day.

4.3. Problem illustrations

To clearly illustrate the trajectories of MAUs in this study for transporting passengers and freight

within a Space-Time network, as shown in Figure 5, a group of MAUs conducted a trip that

simultaneously accommodated Fixed-route transit (FRT) and Demand-responsive transit (DRT),
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demonstrating the flexibility of MAUs in a multi-route passenger-freight integrated transport sys-

tem. Additionally, Figure 6 supplements the location and load status of each MAU at every times-

tamp. For the location status, for example, d0 indicates that the MAU is stationed at depot d0 at

this timestamp, while s1, s2 indicates that the MAU is traveling between stops s1 and s2 at this

timestamp.

Figure 5 MAU’s transport trajectory on the Space-Time Network

Figure 6 MAU’s Position and Loading/Unloading status at each timestamp
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Three assembled MAUs, numbered k1, k2, and k3, form a MAV, and depart simultaneously from

the depot d0 on Line 1, starting at node (d0, t0). At the starting point, k1 carries both passengers

and freight, while k2 and k3 transport only passengers. After traveling for one unit of timestamp

via the travel arc (d0, t0, s0, t1), they arrive at the next stop. At this point, k2 and k3 have sufficient

capacity to handle the demand from s1 to s2, allowing k1 to fulfill a demand-responsive transit

within the time window. The passengers in k1’s carriage transfer to k2 or k3, enabling k1 to detach

and perform a delivery task. At timestamp t2, k1 arrives at the delivery and pick-up stop s6 and

unloads all freight in its carriage, while k2 and k3 arrive at s1. Since k3 has sufficient capacity to

meet the demand on (s1, t2, s2, t5), the idle k2 can transfer to Line 2 via the transfer arc (s1, t2, s4, t3)

to continue service, transporting passengers from the geographical locations s1 and s4 to s3 via

(s4, t3, s3, t5). The passenger and freight demand on (s2, t5, d1, t7) exceeds k3’s capacity. After waiting

for one timestamp via the waiting arc (s6, t2, s6, t3), the idle k1 travels to s2 and reassembles with

k3 into a single MAU at t5. Ultimately, k1 and k3 arrive at the terminal d1 on Line 1 at t7, while

k2 arrives at the terminal on Line 2 at t7.

In this example, although all three MAUs depart from node (d0, t0) on Line 1, they take three

different paths to complete the transportation tasks. Through dynamic formation, line switching,

and spatiotemporal coordination, the MAUs significantly enhance the operational efficiency and

adaptability of passenger and freight co-transportation in modular transit systems.
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5. Mathematical formulations

This thesis proposes a mathematical model for the MAU Routing Problem of Multi-functional

Autonomous Units (MAUs) in a passenger-freight Space-Time Network, aiming to minimize total

transportation costs while satisfying passenger and freight demand constraints. The problem is

based on a network structure comprising depots, stops, and timestamps, considering MAU path

selection, passenger and freight transport capacity constraints, and restrictions on MAU forma-

tions on the same arc. The model determines the path allocation for utilized MAUs, the fulfillment

of passenger and freight demands, and the balance of MAUs entering and leaving depots. The

following mathematical model is formulated as a Mixed-Integer Quadratically Constrained Pro-

gramming (MIQCP) problem, integrating the objective function and constraints to ensure efficient

optimization of transportation plans in complex networks.

The problem involves Multi-Depot, Space-Time Network, MAUs, and passenger-freight inter-

modal transportation. Since the Path-based Model pre-generates feasible paths p, it offers greater

flexibility and conciseness compared to other models, making it the preferred choice for address-

ing this problem. Firstly, because the network incorporates both time and space dimensions, the

path-based model eliminates the need for additional constraints to ensure continuity in space and

time, thereby simplifying optimization decisions. At the same time, path-based decision-making

aligns better with the formation flexibility of MAVs. By selecting paths, MAUs avoid real-time

computation of all possible arc combinations, reducing complexity. Furthermore, since passenger

transport operates only on fixed routes while freight is picked up and delivered at all nodes, capac-

ity allocation becomes more intuitive. This approach allows for a clear definition of whether a path

is carrying passengers or freight.

In the following sections, all sets, parameters and decision variables are introduced in detail and

the complete mathematical model is presented.

5.1. Notations

All sets establish the foundation for entities and their relationships within the MAU transportation

system, creating a structured representation for indexing vehicles K, paths P , demands E&F , and

physical infrastructure. Parameter settings quantify the system’s operational characteristics and

constraints, including demand volumes γe&λf , vehicle capacity Q, and more. By adjusting these

parameters, different scenarios can be simulated to observe the impact of changes in demand or

capacity on decision-making. The core decision variable yke,a, which the model seeks to optimize,

determines the allocation of vehicles on paths and directly influences costs. The auxiliary variables

yke,a and zkf,a play a critical role in tracking the passenger/freight loading status of vehicles and the

fulfillment of demand quantities on each arc. Table 3 shows the notations and explanations of the

sets, parameters, and decision variables used in the model
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Table 3 Notation and Description for the Model

Notation Description

Sets

D Set of depots, D= {1,2, ..., |D|}, indexed by d
S Set of stops, S = {1,2, ..., |S|}, indexed by s
I Set of stations, I = {1,2, ..., |I|}, indexed by i, j
T Set of timestamps, T = {1,2, ..., |T |}, indexed by t, t
N Set of nodes, N = {(1,1), (2,2), ..., |I,T |}, indexed by

n
A Set of arcs, A= {(1,1,2,2), (2,2,2,3), ..., |I,T,J,T ′|},

indexed by a
P Set of paths of MU k, P =

{(at1, ..., |At|, |Ad|, |Ar|, |Aw|), ...}, indexed by p
K Set of MAUs, K = {1,2, ..., |K|}, indexed by k
E Set of sectional passenger demand, E = {1,2, ..., |E|},

indexed by e
F Set of freight group demand, F = {1,2, ..., |F |},

indexed by f

Parameters

cp Costs of path p
Q Maximum capacity of each MAU k
G Maximum number of MAU formations on the same

travel arc or delivery arc
ρ Passenger and freight capacity occupancy ratio
γe Total volume of sectional passenger demand e
λf Total volume of freight group demand f
B−

d,p Number of MAUs leaving depot d in path p
B+

d,p Number of MAUs entering depot d in path p
θpa Binary, if arc a is in the path p, the value is 1, other-

wise 0

Decision Variables

xk
p Binary, if MAU k passes through the path p, the value

is 1, otherwise 0
yke,a Integer, number of sectional passenger demand e car-

ried by MAU k on arc a
zkf,a Integer, number of freight group demand f carried by

MAU k on arc a

5.2. Objective and Constraints

min
∑
k∈K

∑
p∈P

cpx
k
p (1a)

s.t.
∑
p∈P

xk
p ≤ 1 ∀k ∈K (1b)

yke,a ≤ γe
∑
p∈P

θpax
k
p ∀k ∈K,e∈E,a∈A (1c)
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zkf,a ≤ λf

∑
p∈P

θpax
k
p ∀k ∈K,f ∈ F,a∈A (1d)∑

a∈A

∑
k∈K

yke,a = γe ∀e∈E (1e)∑
a∈A

∑
k∈K

zkf,a = λf ∀f ∈ F (1f)

∑
p∈P

∑
e∈E

θpay
k
e,ax

k
p +

1

ρ

∑
p∈P

∑
f∈F

θpaz
k
f,ax

k
p ≤Q ∀k ∈K,a∈A (1g)∑

k∈K

∑
p∈P

θpax
k
p ≤G ∀a∈A (1h)

xk
p ∈ {0,1} ∀k ∈K,p∈ P (1i)

yke,a ∈ [0, γe] ∀k ∈K,e∈E,a∈A (1j)

zkf,a ∈ [0, λf ] ∀k ∈K,f ∈ F,a∈A (1k)

Objective Function: The objective (1a) is to minimize the cost of all paths that MAU k passes

through. Since the cost is directly linked to the length of travel time, this means that the solution

which this study is looking for is to assign each vehicle the lowest total path travel time.

Path Assignment Constraint: Constraint (1b) ensures that each MU k select at most one

path p.

Demand Capacity Constraints: Constraint (1c) ensures that for each MU k, the volume of

sectional passenger demand e transported does not exceed the total amount of that demand γe,

and that transport is allowed only when the path p selected by the MAU k supports the sectional

passenger demand. Constraint (1d) ensures that for each MU k, the volume of freight group demand

f transported does not exceed the total amount of that demand λf , and that transport is allowed

only when the path p selected by the MAU k supports the freight group demand.

Demand Satisfaction Constraints: Constraint (1e) ensures that all sectional passenger

demands γd are met. Constraint (1f) ensures that all freight group demands λf are met.

Vehicle Capacity Constraint: Constraint (1g) ensures each MAU k on the path p, its total

load (passengers and freight) shall not exceed the capacity Q. At the same time, ρ is added to

flexibly adjust the different capacity occupancy rules between passengers and freight.

Vehicle Grouping Constraint: Constraint (1h) ensures that the number of MAU formation on

each arc does not exceed G. During peak hours, the MAU can be controlled to prioritize passenger

demand rather than freight demand.

The optimization model comprehensively considers multiple key constraints to ensure the accu-

racy of path allocation, providing a feasible verification framework for the subsequent design of the

ALNS algorithm. Path allocation, demand capacity, demand satisfaction, flow conservation, and

vehicle capacity and grouping constraints collectively form the feasible region boundaries of the

solution.
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6. Solution methods

When selecting a computational method suitable for this MAU Routing Problem, it is considered

that the model needs to simultaneously optimize the routing of each MAU, platoon formation,

the integration of passenger and freight, and fleet size. This introduces a large number of binary

decision variables (xk
p) for assigning and integer variables (yke,a and zkf,a) for demand allocation,

along with nonlinear quadratic constraints such as capacity limits, which increase the complexity

of the solution process. For small-scale instances, exact solvers like GUROBI can find optimal

solutions within an acceptable time frame. However, for medium or large-scale instances, exact

methods relying on branch-and-bound algorithms face exponential growth in solution time as the

number of variables increases for NP-hard problems, potentially leading to memory shortages. In

practical operations, since transportation planning requires near-real-time rapid decision-making,

the computational speed of exact solvers is insufficient, whereas heuristic methods can provide

near-optimal solutions with minimal gaps in a shorter time.

Compared to other heuristics, the Adaptive Large Neighborhood Search (ALNS) algorithm can

balance diversification and intensification, avoiding the risk of getting trapped in local optima while

also maintaining convergence speed. The adaptive mechanism of ALNS allows for dynamic weight

adjustments based on operator performance and enables the destruction and repair of large solution

structures, enhancing search efficiency and solution diversity. Furthermore, the ALNS algorithm

can be adjusted to account for modular formation characteristics, making it particularly suitable

for scenarios where passenger and freight are integrated within the same MAU.

Based on these observations, this section focuses on designing a hybrid Adaptive Large Neigh-

borhood Search (ALNS) algorithm at the arc and path levels to find high-quality solutions within

acceptable computational time. Two initial solution generation methods are compared. First, a

small number of feasible paths are generated based on demand, and then GUROBI or heuristic

methods are used to obtain initial solutions. Building on this, ALNS is employed to explore feasible

solutions that meet demand with lower costs. The overall process of the algorithm is shown in the

Figure 7:

For this MAV Routing Problem, the solution of the ALNS algorithm must pass the following

four feasibility checks:

1. All passenger and freight demands are satisfied without exceeding the capacity of each MAU;

2. The carriage of each MAU can be in states with only passengers, only freight, or both pas-

sengers and freight simultaneously;

3. After completing the transportation demand task on an arc, the MAU’s capacity must be

released, meaning that a single MAU should be able to fulfill multiple demands along a single

path;

4. The number of MAU groups on each arc cannot exceed the limit.
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Figure 7 Overall flowchart of algorithm

6.1. Adaptive Large Neighborhood Search algorithm

Shaw (1997) first proposed a Local Search algorithm that employs greedy local search and utilizes

a larger neighborhood to avoid local minima. Ropke and Pisinger (2006) extended this approach,

improving it into the Adaptive Large Neighborhood Search (ALNS) algorithm. Traditional local

search techniques typically explore only a limited subset of solutions, making only small modifica-

tions to the current solution and easily getting trapped in local optima. ALNS, however, can remove
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a significant portion of the solution and reconstruct it in a single iteration, while also allowing the

use of multiple destruction and repair methods within the same search process, providing greater

flexibility in finding optimal solutions.

ALNS consists of three main components: an initial solution, destruction/repair operations, and

an acceptance criterion. The ALNS algorithm starts with an initial solution, which serves as the

starting point for the iterative search process. In each iteration, the algorithm performs a series of

operations aimed at improving the current solution. These operations include destruction (removing

a portion of the current solution using a specified removal operator) and repair (reinserting the

removed portion using an insertion operator). The solution obtained after each iteration is called

the incumbent solution and is evaluated through the acceptance criterion to determine whether

it is accepted. Throughout the iterative process, the algorithm continuously updates the current

solution based on the results of the destruction and repair operations, enabling ALNS to explore

different regions of the solution space to find better solutions.

The score updating procedure tracks the performance of each heuristic algorithm, guiding the

search process toward the most promising regions of the solution space. In each iteration, removal

and insertion heuristic algorithms are applied to the current solution, and the scores of these

operators are continuously updated. If a heuristic algorithm finds a new global best solution or

discovers an unvisited solution that is accepted by the acceptance criterion, its score increases.

However, if it performs poorly, failing to improve the solution or explore new regions, its score

may decrease or remain unchanged. A higher score indicates that the heuristic algorithm is more

successful in finding good solutions. This dynamic scoring mechanism ensures that the algorithm

prioritizes recently high-performing heuristics, thereby improving search efficiency and the quality

of solutions.

The new solution generated by modifying the current solution through the application of removal

and insertion heuristic algorithms is referred to as the proposed solution. Whether to accept or

reject this solution is determined probabilistically, inspired by the Simulated Annealing (SA) algo-

rithm, based on the difference in the objective function values between the current solution Sol and

the proposed solution Sol′, as well as the current temperature parameter T . Figure 8 illustrates

the framework of the ALNS algorithm in this study.

6.2. Acceptance criterion

The ALNS algorithm uses Simulated Annealing (SA) as the acceptance rule. The main idea of SA

in ALNS is not only to accept improved solutions, but also to provide opportunities for accepting

worse solutions. The SA process starts with a high initial temperature, allowing the acceptance of

worse solutions to explore the solution space. As the process continues, the temperature gradually
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Figure 8 Framework of the ALNS algorithm

decreases, tending towards accepting improved solutions. According to Metropolis guidelines, if the

objective function value of the new solution f(Sol)′ is better than the current solution f(Sol), the

new solution is accepted. Otherwise, a random number rand between 0 and 1 is generated, and the

new solution is accepted with probability P = e−
f(Sol′)−f(Sol)

T > rand. This probabilistic mechanism

allows the algorithm to jump out of local optima in the early stage and gradually converge to

high-quality solutions in the later stage. After each iteration, the temperature T is updated using

the expression T ·ψ, where ψ is the cooling rate. In this study, the initial temperature T0 is set to

100, and the cooling rate ψ is 0.995. The principles used by SA in the ALNS algorithm are shown

in Figure 8.

6.3. Generation of initial solution

In order to shorten the time for generating the initial solution, both methods use a small number

of feasible paths for decision making, which are called demand paths. All feasible paths are called

valid paths, denoted as Pvalid. Demand paths are a subset of valid paths, extracted from valid paths

based on arcs with transportation demands, denoted as Pdemand. This can effectively reduce the

number of decision variables that need to be considered in the initialization method.

(1) GUROBI solver method

Although the GUROBI solver performs poorly with large-scale data, it can quickly and accurately

obtain optimal decisions for small-scale data, providing a better starting point for ALNS compared

to random generation or simple heuristics. This allows ALNS to converge to a satisfactory solution
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Figure 9 Simulated Annealing in ALNS algorithm

with fewer iterations, significantly reducing overall runtime. Additionally, solutions derived from

the mathematical model always pass feasibility checks, avoiding the difficulty of finding feasible

initial solutions under complex constraints in a short time. This hybrid strategy of exact solver

and heuristic algorithms fully leverages their complementary strengths: GUROBI’s mathematical

optimization capability quickly identifies a high-quality starting point, while ALNS’s neighborhood

search ability further explores and improves the solution space.

(2) Greedy heuristic method

This method maximizes the coverage capability of MAUs through iterative allocation to satisfy

unassigned demand on paths. Priority is given to selecting paths with high coverage-to-cost ratios

based on demand, where the cost can be balanced using this formula to obtain paths that satisfy

the remaining transportation demand requirements:

sp =
1

√
cp

(∑
e∈E

ue

∑
a∈P

αa
e +

1

ρ

∑
f∈F

uf

∑
a∈P

βa
f

)
(2)

where ue = γe −
∑

a∈A

∑
k∈K y

k
e,a represents the unassigned passenger demand, αa

e is a binary

variable indicating whether this arc can transport this passenger demand, and
∑

e∈E ue

∑
a∈P α

a
e

represents the total unassigned passenger demand that the path can cover. Similarly, uf = λf −∑
a∈A

∑
k∈K z

k
f,a represents the unassigned freight demand, βa

f is a binary variable indicating

whether this arc can transport this freight demand, and 1
ρ

∑
f∈F uf

∑
a∈P β

a
f represents the total

unassigned freight demand that path p can cover.
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A three-stage process is adopted: First, vehicles are allocated to paths to satisfy passenger

demand. Under the constraint of adhering to capacity limits, MAUs with available capacity can

satisfy freight demand, as first satisfy:

yke,a ≤min(ue,Q−
∑
e∈E

yke,a) ∀k ∈K,a∈A (3)

then satisfy:

zkf,a ≤min

(
uf ,Q−

∑
e∈E

yke,a −
1

ρ

∑
f∈F

zkf,a

)
∀k ∈K,a∈A (4)

THen, all MAUs assigned to the same arc are checked for grouping situations. All demands must

be satisfied under mandatory constraints, as ue = 0 and uf = 0. However, exceeding the maximum

fleet size for a single arc may occur. This happens because this constraint are not subject to high-

priority requirements. In subsequent ALNS algorithms, this can be effectively addressed through

disruption and insertion processes. This iterative startup method can find an initial solution in a

very short time and can greatly accelerate the solution speed.

6.4. Destroy heuristics

This study categorizes destroy operators into two levels: path and arc. Path-level destruction

removes entire paths, which can release large solution spaces and significantly reconstruct MAU

path allocation, while Arc-level destruction preserves useful portions of paths and more precisely

removes arcs that have no demand but occupy costs. Each type of operator has its own advantages

and disadvantages, working together to maintain the depth of local optimization while providing

the breadth of global search. This section explains the rationale and principles behind using these

ALNS removal heuristic methods.

1. Dynamic destroy rate

The destruction rate is a parameter that controls the proportion of vehicle paths removed from

the solution in each iteration, denoted by ξ and constrained within [min ξ,max ξ]. This ensures that

each destruction operation has a certain degree of disturbance, avoiding the algorithm being too

conservative while preventing excessive destruction that would lead to complete randomization of

the solution. When no better solution is found after a certain number of iterations, the destruction

rate is increased using ξ′ =min(max ξ, ξ+0.05) to encourage the algorithm to explore new solution

spaces. When a better solution is found, the counter is reset to 0, and the destruction rate is

decreased using ξ′ = max(min ξ, ξ − 0.02) to make the algorithm more inclined to perform fine

optimization within the neighborhood of the current solution. The dynamic change process is shown

in Figure 10. The target number of vehicle allocation paths to be removed for each operator is:

Soltarget =max(1, ⌊Solactive × ξ⌋) (5)
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where Solactive is the set of vehicles that have already been allocated paths in the current solution.

However, the actual number of removals is constrained to avoid completely destroying the solution

by:

Solremove =min(Soltarget, ⌊Solactive − 1⌋) (6)

Figure 10 Dynamic destroy rate process

2. Path-level destroy operator

(1) Random Destroy

The core principle of Random Destroy is to disrupt the structure of the current solution by

randomly selecting and removing a certain number of vehicle routes. Although it is the most

basic destruction strategy, it is highly important. The primary reason for using this operator

is its ability to provide essential diversity to the algorithm. When trapped in a local optimal

solution, it can unbiasedly explore various corners of the solution space, effectively preventing

premature convergence. Additionally, randomness helps the algorithm escape its current search

trajectory, offering fresh reconstruction opportunities for the subsequent repair phase. This random

perturbation mechanism is key to maintaining the algorithm’s long-term search vitality and often

unexpectedly discovers new regions containing high-quality solutions. The specific steps are shown

in Figure 11.

(2) Worst Cost Destroy

The design principle of Worst Cost Destroy is based on a key optimization intuition: the highest-

cost routes often represent the least efficient resource allocations in the current solution, making

their removal most likely to yield significant cost improvements. This operator is distinctly goal-

oriented, targeting routes with suboptimal costs and providing the algorithm with a clear direction
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Figure 11 Random Destroy Process

for improvement. Since a few high-cost routes typically contribute disproportionately to the total

cost, removing them can create the greatest potential for improvement in the subsequent repair

phase. Moreover, the presence of high-cost routes often suggests that the current route selections

may be suboptimal, indicating the potential for alternative solutions with more efficient resource

utilization. The specific steps are shown in Figure 12.

Figure 12 Worst Cost Destroy Process

(3) Demand-based Destroy

The design principle of Demand-based Destroy is rooted in the concept of optimizing transporta-

tion efficiency, which involves reconfiguring vehicle routes with low demand service efficiency, as

identified by the key index ‘efficiency = number of transportation demand / path cost’. During

off-peak periods, there may be vehicle routes with relatively low passenger and cargo loads or

low service demand density. Even if these routes have modest costs, low-efficiency vehicles often

indicate resource waste, suggesting suboptimal route planning that results in insufficient vehicle

loads. By removing these inefficient vehicles, the algorithm creates opportunities to reorganize and

optimize demand allocation, forcing the repair phase to seek solutions that better utilize vehicle

capacity and serve higher-value demands more effectively. The specific steps are shown in Figure

13.

3. Arc-level destroy operator

(1) Arc Removal Destroy
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Figure 13 Demand-based Destroy Process

The core of Arc Removal Destroy is to remove a certain number of non-demand arcs from an

allocated path, and then select the segment containing the most demand from the disconnected

segments as the new path. First, the paths with the most non-demand arcs are selected. For a

path, the target number of non-demand arcs to be removed is controlled within the range Atarget =

random(1, ξ×Aactive), where Aactive refers to the total number of arcs contained in this path,

and the actual number of removals satisfies Aremove =min(Atarget,Anon−demand), where Anon−demand

refers to the number of all non-demand arcs on this path. After completing the removal steps,

there will be multiple segments containing demand remaining, and only the segment containing

the most demand is retained to avoid the situation where arcs with demand have only one unique

connectable non-demand arc, providing more exploration space in the repair phase. The specific

steps are shown in Figure 14.

(2) Arc Search Destroy

Arc Search Destroy is a destruction operator based on transportation efficiency analysis of each

arc. First, similar to Demand-based Destroy, the least efficient paths are found, but the entire path

to which the MAU is assigned will not be removed. Then the transportation efficiency of each arc on

the path to be destroyed is calculated according to the formula Efficiency(ai) =
1

c(ai)
[γ(ai)+

1
ρ
λ(ai)],

where γ(ai) is the number of passengers transported by arc ai, λ(ai) is the freight quantity, and c(ai)

is the cost required to pass through this arc. After sorting each arc segment, the ξ least efficient

ones will be removed. Since non-demand arcs have a numerator of 0 in the efficiency calculation,

most of them will be preferentially removed. If more than half of the arcs serve no demand, random

selection will be performed. Through destroying empty arcs or low-value arcs with excessively high

costs, this provides a better foundation for subsequent repair operators. The specific steps are

shown in Figure 15.

6.5. Insertion heuristics

To repair the removed vehicle paths or arc segments, ALNS requires insertion heuristic methods

to regain new complete solutions. This study employs three path-level repair operators: Random



Chenwei Peng: Optimization of Integrated passenger-freight transport for an modular autonomous vehicle systems
30

Figure 14 Arc Removal Destroy Process

Figure 15 Arc Search Destroy Process

Repair, Greedy Repair, and Utility Maximization Repair, along with three arc-level repair opera-

tors: Arc Insertion Repair, Chain Repair, and Hybrid Repair. The destroy operators at path and

arc levels are matched with corresponding repair operators at the same level to ensure repair qual-

ity. This section explains the reasons and principles behind using these ALNS insertion heuristic

methods.
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1. Candidate paths

To improve algorithm efficiency, after certain demands are removed by the destroy operator,

the algorithm does not blindly search through all possible paths. Instead, it prioritizes paths that

are highly related to the removed demands, known as candidate paths. During the repair process,

candidate paths serve two main roles. First, the search space is significantly reduced, excluding

many meaningless paths and thereby substantially accelerating the algorithm’s runtime. Second,

this study establishes a path relevance scoring mechanism, where paths capable of serving multiple

removed demands receive higher scores, enhancing the quality of the repair.

2. Path-level repair operator

(1) Random Repair

The working principle of Random Repair in this study involves selecting the feasible candidate

paths which can cover the deleted demands and performing random selection under the premise

of feasibility. The primary reason for using this operator is its ability to effectively counteract the

search stagnation that may occur in the ALNS algorithm during prolonged iterations. When the

solution structures remain similar over an extended period, random repair can break this regularity,

maintaining the algorithm’s creativity. The specific steps are shown in Figure 16.

Figure 16 Random Repair Process

(2) Greedy Repair

Greedy Repair evaluates the value of each candidate path using the efficiency index ‘number of

transportation demand / path cost’, prioritizing the allocation of vehicles to paths that can serve

the most demands at the lowest cost. The algorithm calculates the demand-to-cost ratio for each

candidate path to obtain its service value score, selecting the path with the highest input-output

efficiency for priority allocation. While the greedy strategy may not guarantee a global optimum,

it offers high computational efficiency, enabling the rapid repair of an incomplete solution post-

destruction into a complete feasible solution. The specific steps are shown in Figure 17.

(3) Utility Maximization Repair
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Figure 17 Greedy Repair Process

Utility Maximization Repair selects paths with higher opportunity costs, where high opportu-

nity cost means that the path achieves a good balance between predicted passenger capacity and

cost. For each candidate path in the solution pool that can repair the removed demand, the utility

value is first calculated through Utility(pi) =
1

c(pi)
[(γ(pi) +

1
ρ
λ(pi))× (1 + Bcapacity)], where γ(pi) is

the maximum number of passengers that can be transported on the path, λ(pi) is the maximum

amount of freight that can be transported, c(pi) is the cost of this path, and Bcapacity is the capacity

utilization rate reward used to expand the advantage of paths with higher average capacity uti-

lization rates. Then the regret value is calculated as Regret(pi) = (Utilitymax −Utility(pi))− 0.1×

max(0, cmax − c(pi)), where Utilitymax is the highest utility value among all paths, and cmax is the

highest cost among all paths. The regret value is a quantification of decision risk, with lower regret

values representing better input-output ratios for this path investment. Finally, a comprehensive

score is used to find the optimal trade-off between each path’s utility and risk control, with the

scoring formula being Utility score(pi) = (0.7× Utility(pi)

Utilitymax
) + (−0.3× Regret(pi)

Regretmax
). Paths with higher

scores will be preferentially selected and allocated demand in a progressive manner, seeking to

allocate the highest-scoring path among the remaining paths that can satisfy unallocated demand.

The specific steps are shown in Figure 18.

3. Arc-level repair operator

(1) Arc Insertion Repair

Arc Insertion Repair can find the optimal insertion scheme for removed demand, enabling paths

to maintain feasibility while minimizing insertion costs. Each removed arc with demand is assigned

a fixed time window, and value ranking is performed through passenger quantity γ(ai) and freight

quantity λ(ai). Arcs with more passenger demand and higher value will be preferentially selected,

followed by attempting all possible insertion positions in the currently destroyed paths through

enumeration. After successfully inserting one position, the remaining demand will continue to
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Figure 18 Utility Maximization Repair

attempt insertion into this path. When no suitable arc can be inserted, the lowest-cost non-demand

arc is found to repair the path to complete feasibility, calculating the cost required to use this

path. After evaluating the insertion cost of each position, the most efficient scheme is selected,

as the path with the highest score in this formula: Efficiency(pi) =
1

c(pi)
[γ(pi) +

1
ρ
λ(pi)]. Since this

operator exhaustively searches all possible insertion combinations, it can ensure finding locally

optimal solutions. The specific steps are shown in Figure 19.

(2) Chain Repair

Chain Repair outputs optimized and reorganized complete paths by inputting all broken

arc segments and unsatisfied demand. Its objective is min
∑

pi∈P (
∑

fragments(pi)
cfragments(pi) +∑

connections(pi)
cconnections(pi)), where connections(pi) includes arcs with demand as well as non-

demand arcs used for connections. This operator selects the path set with the minimum total cost

from all feasible combinations, with the capability of combining multiple paths, optimizing from

an overall reconstruction perspective. The specific steps are shown in Figure 20.

(3) Hybrid Repair

When an originally short path has a certain number of arcs removed, the length of remaining arc

segments may not meet the preservation conditions, leading to the entire path being removed, while

some paths are not completely destroyed, resulting in mixed destruction. When mixed destruction

occurs, the algorithm can intelligently identify and assign the Hybrid Repair operator for restora-

tion. For paths with existing segments, Arc Insertion Repair is used, and if there is demand that
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Figure 19 Arc Insertion Repair Process

Figure 20 Chain Repair Process

cannot be allocated, path-level Greedy Repair is employed for allocation. This operator can first

handle high-certainty demand, then process remaining demand with minimal waste. The specific

steps are shown in Figure 21.

6.6. Operator Selection Mechanism

The Destroy and Insertion operators adopt a roulette wheel selection strategy, which maintains the

weight of each operator to dynamically adjust the selection probability. Specifically, the selection

probability of operator i is calculated by the formula Pi =
wi∑n

j=1 wj
, where wi is the current weight

of operator i, and
∑n

j=1wj is the sum of all operator weights of the same type. All operators
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Figure 21 Hybrid Repair Process

have an initial weight of 1.0, ensuring that each operator has an equal chance of being selected

at the beginning of the algorithm. When an operator combination produces an improvement, the

corresponding operator weights are updated according to wt+1
i =wt

i×(1+α); when no improvement

is produced, the weights are updated according to wt+1
i = wt

i × (1− 0.5α), where α is the weight

update factor. This selection mechanism enables superior operator combinations to obtain higher

selection probabilities, thereby improving overall search efficiency.
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7. Numerical experiments

To verify the performance of the proposed approaches, this section first tests some small-scale

data to examine the gap and effectiveness between the algorithms, and then conducts numerical

experiments on a real case study. The proposed algorithm is coded in Python on a Windows 11

personal computer with 13th Gen Intel(R) Core(TM) i7-13700H and 32G RAM. GUROBI 12.1.1

is used to solve the MAV Routing Problem model.

7.1. Impact of Space-Time Network scale on different solution methods

The scale of the model is primarily determined by the number of stations and timestamps. An

increase in the number of timestamps and stations both leads to an increase in the number of nodes

in the Space-Time Network, which in turn causes a rise in the number of paths and, consequently,

more demand. This section divides the experiments into two parts: fixed timestamps and fixed

station numbers, to compare the solution quality and computational speed of different methods.

Additionally, the number of fixed stations will be further divided into two aspects: changes in the

number of lines and changes in the number of pickup and delivery stops.

The calculation of costs involves 1 timestamp representing 1 minute. MAU’s per-minute travel

cost depending on its energy consumption, travel speed, and local electricity price. The average

energy consumption of MAU is 22 kWh/100km (Solar Impulse Foundation 2025), and it is assumed

to operate at an average speed of 30km/h in urban settings (including driving and stopping).

The average price for public charging in the Netherlands is €0.43/kWh (EV Connect 2025). The

per-minute electricity cost for MAU can be calculated using the following formula:

Cost (€/min) =
Energy consumption (kWh/100km)×Speed (km/h)

100
×Electricity cost (€/kWh)

(7)

The result is a cost of €0.0473/min. Regarding other parameters, based on the NEXT Company

database (NExT Modular Vehicles 2024), A MAU carriage has a capacity Q of 15 passengers,

and this study assumes that 2 pieces of freight occupy the capacity of 1 passenger, as ρ is 2.

Therefore, the same carriage can accommodate 30 pieces of freight. Additionally, to prevent MAV

formation on the road due to the MAU’s composition, the number of coupled units G is limited

to 3. Furthermore, due to the limited number of timestamps, the travel time is set to be relatively

compact, ranging between 1 and 3 minutes.

To investigate the impact of increasing the number of lines on the performance of different

algorithms, the timestamp is fixed at 20. As shown in Table 4, the first column represents the

parameters adjusted in the experiment, denoted as T −L−PD, where T is the number of times-

tamps, L is the number of fixed bus lines, and this experiment uses 2, 3, and 4 lines, with each line

fixed at 8 stations, including 2 depots and 6 intermediate stops. Among them, stops s2 and s7 are
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geographically identical and connected by a transfer arc. The delivery and pick-up stops outside

the lines are fixed at 4, denoted as PD. Figure 22 illustrates this space network using 2 lines as

an example. The second column in Table 4 represents the number of paths to be traversed in the

current experiment, the fourth column represents the optimal solution obtained by the algorithm,

which indicates the total travel time of all MAUs in this network. The fifth column represents the

total operational cost calculated based on the travel time. The sixth and seventh columns represent

the time taken to obtain the initial solution and the time spent by the algorithm, respectively. The

eighth column represents the total computation time to complete the experiment.

Table 4 Comparison of algorithms for different number of lines

Instance
Number
of
paths
tra-
versed

Solution method
Objective Computational time (sec)

(T-L-PD) Travel
time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

20 - 2 - 4 40280 GUROBI – – – – >21600.0
GUROBI+ALNS 154 7.28 204.5 23.9 228.4
Greedy heuristic+ALNS 162 7.66 0.3 28.3 28.6

20 - 3 - 4 67327 GUROBI – – – – –
GUROBI+ALNS 198 9.37 471.3 33.2 504.5
Greedy heuristic+ALNS 214 10.12 0.4 52.6 53.0

20 - 4 - 4 84301 GUROBI – – – – –
GUROBI+ALNS 290 13.72 1181.7 184.4 1366.1
Greedy heuristic+ALNS 328 15.51 0.9 201.5 202.4

Figure 22 Spatial network for experiments with fixed timestamp numbers (20-2-4)

Due to the large number of stations and the dispersed nature of demand, the GUROBI solver

struggles to find any solution within 6 hours for a network with 2 lines, 15 passenger demands,
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and 5 freight demands. In terms of initial solution computation time, the Greedy heuristic method

is significantly faster than the GUROBI method, which solves a small-scale path problem with

demand. However, the initial solution quality of the GUROBI method is better, leading to shorter

subsequent computation times for ALNS. The computation time of the GUROBI method increases

exponentially with the number and dispersion of demands, resulting in a growing gap in total com-

putation time compared to the Greedy heuristic + ALNS algorithm as the network size expands.

In addition, in the 20-2-4 experiment, the gap between the optimal solutions obtained by the two

methods was 5.2%, while in the 20-4-4 experiment, the gap reached 10.3%. The solution qual-

ity obtained by the GUROBI+ALNS algorithm is consistently better than that of the Greedy

heuristic+ALNS algorithm.

Next, the experiment fixes the number of lines at 2, still using 20 timestamps, with the number of

pick-up and delivery stops set to 2, 4, and 6 cases, while the passenger demand remains unchanged,

and the freight demand increases proportionally with the number of pick-up and delivery stops.

For example, the connection scenario with 4 pick-up and delivery stops uses the same spatial

network as the 20-2-4 configuration, as shown in Figure 22. As shown in Table 5, since the stops

outside these fixed lines can serve to connect different lines, compared to the stops on the fixed

lines, each additional pick-up and delivery stop causes the number of paths to be traversed to grow

exponentially.

Table 5 Comparison of algorithms for different number of pick-up and delivery stops

Instance
Number
of
paths
tra-
versed

Solution method
Objective Computational time (sec)

(T-L-PD) Travel
time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

20 - 2 - 2 6876 GUROBI 134(78.4)6.34 – – 1714.6
GUROBI+ALNS 136 6.43 19.2 8.5 31.7
Greedy heuristic+ALNS 140 6.62 0.2 9.1 9.3

20 - 2 - 4 40280 GUROBI – – – – >21600.0
GUROBI+ALNS 154 7.28 204.5 23.9 228.4
Greedy heuristic+ALNS 162 7.66 0.3 28.3 28.6

20 - 2 - 6 92478 GUROBI – – – – –
GUROBI+ALNS 208 9.84 2099.1 87.1 2186.2
Greedy heuristic+ALNS 237 11.2 2.3 113.1 115.4

In the smallest-scale experiment, the GUROBI solver obtained the optimal solution, with the

GUROBI+ALNS method achieving an optimal solution with a gap of 1.5%, and the Greedy heuris-

tic+ALNS method at 4.5%. Combined with the previous experiment that varied the number of

lines, it can be observed that GUROBI is highly sensitive to the spatial network’s expansion in
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terms of computational speed. When using GUROBI to generate initial solutions, it is evident

that adding two more pick-up and delivery stops increases the computation time by approximately

tenfold. In contrast, the heuristic methods are less affected. To further validate the gap with the

exact solutions obtained by the GUROBI solver, the number of stations was reduced to decrease

the dispersion of demand across the spatial network.

To further verify the gap between the exact solution obtained by the GUROBI solver, the

number of timestamps was reduced to decrease the spatial dispersion of demand. A fixed number

of stations is used, and the algorithm’s quality was tested by progressively increasing the number

of timestamps. As shown in Figure 23, the experiment utilized two fixed lines. Additionally, there

were two delivery and pick-up stops, namely s12 and s13, where s12 can connect to s3 and s6, and

s13 can connect to s2, s7, and s8. As shown in Table 6, this experiment used 12 groups of tests,

with timestamps ranging from 10 to 120, increasing by intervals of 10.

Figure 23 Spatial network for fixed station number experiments

Taking the experiment with 10-2-2 as an example, Table 7 shows the paths assigned to each

MAU in the Space-Time network and the demand on each corresponding arc. From the results, it

can be observed that some demands are split, or the remaining capacity of the carriages is utilized

for freight transportation. Regarding the composition of MAVs, for instance, k1 and k2 form an

MAV in some segments of the path, while k3 and k4, for example, travel together throughout the

entire journey. Additionally, for example, k9 does not perform any transportation tasks and is an

MAU traveling empty to balance depot flow.

In small-scale tests, the GUROBI solver is able to provide exact solutions. In the Objective

column, the exact integer solution obtained by the GUROBI solver is accompanied by the relaxed

solution in parentheses. In two sets of experiments, the gaps between these two solutions were 17.9%

and 32.4%, respectively, fully demonstrating the complexity of the model. Through comparison, the

solution quality of both the GUROBI+ALNS algorithm and the Greedy heuristic method+ALNS
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Table 6 Comparison of algorithms for different number of timestamps

Instance
Number
of
paths
tra-
versed

Solution method
Objective Computational time (sec)

(T-L-PD) Travel
time
(min)

Cost
(euro)

Initial
solu-
tion

ALNS
algo-
rithm

Total

10 - 2 - 2 153 GUROBI 69(56.7) 3.26 – – 2.2
GUROBI+ALNS 69 3.26 1.1 2.8 3.9
Greedy heuristic+ALNS 71 3.45 0.2 3.1 3.2

20 - 2 - 2 26905 GUROBI 102(69.0)4.82 – – 1440
GUROBI+ALNS 103 4.92 23.6 20.5 44.1
Greedy heuristic+ALNS 107 5.20 0.3 27.3 27.6

30 - 2 - 2 250244 GUROBI – – – – >21600.0
GUROBI+ALNS 155 7.33 48.7 216.6 265.3
Greedy heuristic+ALNS 155 7.33 0.4 233.6 234.0

40 - 2 - 2 429590 GUROBI – – – – –
GUROBI+ALNS 159 7.52 82.2 297.5 379.5
Greedy heuristic+ALNS 163 7.71 0.6 420.1 420.7

50 - 2 - 2 654375 GUROBI – – – – –
GUROBI+ALNS 180 8.51 538.6 394.6 933.2
Greedy heuristic+ALNS 187 8.85 1.1 602.8 603.9

60 - 2 - 2 840069 GUROBI – – – – –
GUROBI+ALNS 212 10.03 630.2 662.6 1292.8
Greedy heuristic+ALNS 215 10.17 1.3 788.1 789.4

70 - 2 - 2 1049975 GUROBI – – – – –
GUROBI+ALNS 244 11.54 1085.0 691.5 1776.5
Greedy heuristic+ALNS 258 12.20 1.7 1403.9 1405.6

80 - 2 - 2 1247367 GUROBI – – – – –
GUROBI+ALNS 292 13.81 1864.5 704.8 2569.3
Greedy heuristic+ALNS 303 14.33 2.3 2040.6 2042.9

90 - 2 - 2 1463988 GUROBI – – – – –
GUROBI+ALNS 376 17.78 2068.9 1187.6 3256.5
Greedy heuristic+ALNS 391 18.49 3.1 2543.8 2546.9

100 - 2 - 2 1677193 GUROBI – – – – –
GUROBI+ALNS 402 19.01 3249.7 1781.5 5031.2
Greedy heuristic+ALNS 435 20.58 4.0 3367.8 3371.8

110 - 2 - 2 1859714 GUROBI – – – – –
GUROBI+ALNS 424 20.06 4953.2 2414.9 7368.1
Greedy heuristic+ALNS 458 21.66 4.8 3750.7 3755.5

120 - 2 - 2 2073843 GUROBI – – – – –
GUROBI+ALNS 445 21.05 10772.5 2987.1 13759.6
Greedy heuristic+ALNS 460 21.79 7.6 6876.9 6884.5

algorithm fell within an acceptable range, as shown in Figure 24. In the 10-2-2 experiment, the

gap between the GUROBI+ALNS algorithm’s solution and GUROBI’s solution was 0.0%, while

the gap for the Greedy heuristic method+ALNS algorithm was 2.9%. In the 20-2-2 experiment,

the gap for the GUROBI+ALNS algorithm was 0.9%, while the gap for the Greedy heuristic

method+ALNS algorithm was 4.7%. Although the GUROBI+ALNS algorithm requires more time
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Table 7 Experimental results example (10-2-2)

MAU id and Demand Arc: start station (start timestamp) → end station (end timestamp)

k0 d0(0) →
s0(2)

s0(2) →
s1(4)

s1(4) →
s2(6)

s2(6) →
d1(8)

Passenger demand e0 : 10 - - e3 : 15 - - -
Freight demand f0 : 10 f1 : 30 - - - - -
k1 d0(0) →

s0(2)
s0(2) →
s1(4)

s1(4) →
s2(6)

s2(6) →
d1(8)

Passenger demand e0 : 10 e1 : 15 e2 : 15 e3 : 15 - - -
Freight demand - - - - - - -
k2 d2(1) →

s3(2)
s3(2) →
s4(4)

s4(4) →
s5(6)

s5(6) →
d3(8)

Passenger demand e7 : 10 e8 : 5 e10 : 5 e11 : 5 - - -
Freight demand - f2 : 20 f5 : 10 f6 : 10 - - -
k3 d0(2) →

s0(3)
s0(3) →
s6(4)

s6(4) →
s0(5)

s0(5) →
s1(6)

s1(6) →
s4(7)

s4(7) →
s3(8)

s3(8) →
d2(9)

Passenger demand e12 : 15 - - e9 : 10 e14 : 10 - -
Freight demand - f7 : 10 f8 : 10 f9 : 10 - - f10 : 20
k4 d0(2) →

s0(3)
s0(3) →
s6(4)

s6(4) →
s0(5)

s0(5) →
s1(6)

s1(6) →
s4(7)

s4(7) →
s3(8)

s3(8) →
d2(9)

Passenger demand e12 : 10 e13 : 10 - e9 : 15 e14 : 5 e15 : 5 e16 : 5
Freight demand - - - - - - f10 : 10
k5 d2(3) →

s3(4)
s3(4) →
s4(5)

s4(5) →
s5(6)

s5(6) →
d3(8)

Passenger demand - - - e8 : 15 - - -
Freight demand - - f4 : 25 - - - -
k6 d1(3) →

s2(5)
s2(5) →
s1(6)

s1(6) →
s0(8)

s0(8) →
d0(9)

Passenger demand e4 : 5 - e5 : 5 - - - -
Freight demand - f13 : 10 - - - - -
k7 d3(3) →

s5(5)
s5(5) →
s4(6)

s4(6) →
s1(7)

s1(7) →
s0(8)

s0(8) →
d0(9)

Passenger demand - - - - - - -
Freight demand - f12 : 15 f11 : 30 f14 : 10 f3 : 5 - -
k8 d3(3) →

s5(5)
s5(5) →
s4(6)

s4(6) →
s1(7)

s1(7) →
s0(8)

s0(8) →
d0(9)

Passenger demand e19 : 5 e17 : 5 - e18 : 10 e20 : 5 - -
Freight demand - f12 : 20 f11 : 10 - - - -
k9 d1(3) →

s2(5)
s2(5) →
s1(6)

s1(6) →
s0(8)

s0(8) →
d0(9)

Passenger demand e4 : 15 - - e6 : 10 - - -
Freight demand - - - f3 : 10 - - -

to solve, its solution quality is superior, closely approaching the exact solution. However, starting

from the 30-2-2 experiment, due to the excessive number of paths and demands to be searched,

the GUROBI solver failed to produce any results within 6 hours. In contrast, the Greedy heuristic

method+ALNS algorithm was able to find a result in 234 seconds. While this method significantly

improves computational speed, it sacrifices some solution quality.
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Figure 24 Comparison of the quality of the optimal solution of the algorithms

As the number of timestamps and demands increases, as shown in Figure 25, the computational

time gap between the GUROBI+ALNS algorithm and the Greedy heuristic method+ALNS algo-

rithm becomes increasingly significant. In the 70-2-2 experiment, the total time difference between

the two methods was 370.9 seconds, while in the 100-2-2 experiment, the time difference expanded

to 1659.4 seconds. In the largest-scale experiment, 120-2-2, the time difference between the two

methods reached 6875.1 seconds, with the computational time of the GUROBI+ALNS algorithm

nearly double that of the Greedy heuristic method+ALNS algorithm. It can be predicted that when

the number of stations is fixed, an increase in the number of timestamps will lead to a progressively

larger computational time gap between the two methods.

By combining the results of experiments with a fixed number of timestamps and stations, the

following observations can be made:

1. Compared with the exact optimal solutions obtained by the GUROBI solver in small-scale

experiments, the solutions from the GUROBI+ALNS algorithm are very close to the exact

solutions, while the solutions from the Greedy heuristic method+ALNS algorithm exhibit a

slightly larger gap but remain within an acceptable range.

2. When the number of timestamps is fixed, increasing the number of stops in fixed lines, pick-

up and delivery stops, and demands leads to a progressively more noticeable superiority in

the solution quality of the GUROBI+ALNS algorithm compared to the Greedy heuristic

method+ALNS algorithm. However, when generating initial solutions, the computational time

of the GUROBI method increases exponentially with the number of stations, especially when

the number of pick-up and delivery stops increases. In contrast, the computational speed

advantage of the Greedy heuristic method+ALNS algorithm will become increasingly evident.

3. When the number of stations is fixed, increasing the number of timestamps and demands

does not lead to a significant gap in solution quality between the GUROBI+ALNS algorithm

and the Greedy heuristic method+ALNS algorithm. The overall computational time for both
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Figure 25 Comparison of algorithms computational time

methods increases steadily, but the Greedy heuristic method+ALNS algorithm remains faster,

with the gap widening as the number of timestamps increases.

4. In the Space-Time Network of the MAU Routing Problem, both methods’ computational speed

of generating initial solutions is influenced by the number of paths to traverse and the number

of demands. When expanding through the spatial dimension, the computational time growth

rate for both the Greedy heuristic initialization method and the GUROBI initialization method

is significantly faster than when expanding through the temporal dimension. This is because,

under the influence of the time window of freight demands, a greater number of stations,

especially pick-up and delivery stops, leads to a faster increase in path diversity compared

to a greater number of timestamps, resulting in a more significant increase in demand paths.

The GUROBI initialization method requires more time, which limits the scale of experiments

using this method to some extent. However, since the Greedy heuristic initialization method
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quickly covers demands based on path scores, the increase in computational time is much less

noticeable.

5. The computational time of the ALNS algorithm is insensitive to either dimension (spatial or

temporal) and is mostly affected by the quality of the initial solution. Higher-quality initial

solutions accelerate the algorithm’s convergence process and avoid repeated repair processes

due to failed feasibility checks, resulting in shorter computational times. Consequently, the

ALNS algorithm using the GUROBI initialization method typically converges faster than

when using the Greedy heuristic initialization method. In summary, the ALNS algorithm

tailored for the MAU Routing Problem can converge within a limited number of iterations in

all instances.

7.2. Sensitivity analysis of passenger and freight capacity occupancy ratio

The passenger and freight capacity occupancy ratio ρ represents the size of the freight, where a

larger ρ indicates that the freight occupies less space within the carriage. This section uses a 60-2-2

network to perform a sensitivity analysis on ρ. The cost variations are examined for ρ values of 2,

3, 4, 5, and 6, under the condition that passenger demand and freight demand remain constant and

Q is set to 15. As shown in Table 8, the required number of MAUs and the cost results obtained

from two initialization methods are recorded.

Table 8 Result of sensitivity analysis of passenger and freight capacity occupancy ratio

ρ Solution method Number of
MAU used

Travel time
(min)

Cost (euro)

2 GUROBI+ALNS 19 212 10.03
Greedy heuristic+ALNS 19 215 10.17

3 GUROBI+ALNS 18 203 9.60
Greedy heuristic+ALNS 19 207 9.79

4 GUROBI+ALNS 15 178 8.42
Greedy heuristic+ALNS 15 182 8.61

5 GUROBI+ALNS 14 174 8.23
Greedy heuristic+ALNS 15 181 8.56

6 GUROBI+ALNS 14 174 8.23
Greedy heuristic+ALNS 15 180 8.51

Figure 26 illustrates the trend of cost changes under different passenger and freight capacity

occupancy ratios. As ρ increases, more freight can be accommodated within the MAU space. Freight

that previously required multiple MAUs for transport can now be handled by fewer MAUs, leading

to a gradual reduction in the number of MAUs used and, consequently, a decrease in the additional

travel costs associated with MAU usage. When ρ= 4, a significant reduction is observed, with the

number of MAUs used decreasing by 4 compared to when ρ= 2, resulting in a cost reduction of
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16.1%. This is primarily because, in this experiment, freight demand frequently consists of around

45 to 50 units, while demands exceeding 50 units are rare. Consequently, when ρ= 5 or ρ= 6, the

optimization results show no further cost reduction. The changes in MAU quantity and operational

costs caused by ρ primarily depend on the freight demand between pairs of stations and secondarily

on the passenger demand within the time window. If the passenger demand on the arcs between

two stations within the freight transport time window is consistently high, additional MAUs are

still required to transport freight even when ρ is large, making it challenging to achieve significant

reductions in optimized operational costs.

Figure 26 Operating costs at different passenger and freight capacity occupancy ratios

7.3. Sensitivity analysis of operators

Among all customized operators, the path-level Utility Maximization Repair operator and the arc-

level Chain Repair operator are logically complex, involving multiple layers of functions. The Utility

Maximization Repair method requires multiple traversals to evaluate candidate paths, iteratively

calculating path utility, capacity utilization, and regret values. Conversely, the Chain Repair opera-

tor attempts to combine all remaining path segments into complete paths, involving repetitive path

connection checks and demand allocation optimization. These two operators play unique roles in

exploring complex solution spaces and optimizing path combinations, but their intricate processes

can increase the computational time of the entire ALNS algorithm. To assess the contribution of
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these two insertion operators to the overall solution quality and to balance with computational

speed, the following experiments were designed.

The experiments were conducted using a spatial layout same as the fixed number of stations,

and three groups of experiments with timestamp counts of 50, 60, and 70 were set up for mutual

comparison, focusing on the computational time and solution quality changes of the ALNS algo-

rithm. The nine operators other than the Utility Maximization Repair operator and the Chain

Repair operator were collectively referred to as basic operators. Table 9 and Table 10 respectively

present the computational time and optimal solutions for the GUROBI + ALNS method and the

Greedy heuristic + ALNS method under different operator combination conditions.

Table 9 Sensitivity analysis of operators for GUROBI + ALNS method

Operator selection
50-2-2 60-2-2 70-2-2

Computational
time (sec)

Objective
(Travel
time)

Computational
time (sec)

Objective
(Travel
time)

Computational
time (sec)

Objective
(Travel
time)

ALNS with basic
operators

217.8 225 434.4 265 481.2 305

ALNS with basic
operators + Utility
Maximization Repair
operator

271.9 198 495.6 248 501.9 287

ALNS with basic
operators + Chain
Repair operator

293.2 182 531.3 220 539.6 249

ALNS with full oper-
ators

394.6 180 662.6 212 691.5 244

In terms of computational time, removing these two operators allows the algorithm to complete in

nearly half the original time. In the same cases, the Chain Repair operator, which is more complex

for global optimization compared to the Utility Maximization Repair operator, often requires more

computational time, but the solution quality is very close to that obtained using all operators.

In the 60-2-2 experiment with the Greedy heuristic + ALNS method, the solution quality even

surpassed that of using all operators, with the largest gap across all experiments being 3.6%. In

contrast, although the Utility Maximization Repair operator requires less computational time, its

solution quality is poorer, with an average gap of around 9.5% compared to the solution using full

operators. Additionally, in several experiments, it exhibited lower weight usage, but still provided

some improvement over solution using only basic operators.

The experimental results indicate that omitting the Chain Repair operator significantly reduces

solution quality. Although using the complete set of operators generally yields better near-optimal
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Table 10 Sensitivity analysis of operators for Greedy heuristic + ALNS method

Operator selection
50-2-2 60-2-2 70-2-2

Computational
time (sec)

Objective
(Travel
time)

Computational
time (sec)

Objective
(Travel
time)

Computational
time (sec)

Objective
(Travel
time)

ALNS with basic
operators

332.5 243 434.4 279 772.1 335

ALNS with basic
operators + Utility
Maximization Repair
operator

415.4 222 543.6 237 965.3 285

ALNS with basic
operators + Chain
Repair operator

448.8 188 616.3 213 1142.0 261

ALNS with full oper-
ators

602.8 187 788.1 215 1403.9 258

solutions in nearly all cases, removing these two operators can be considered when decisions need

to be made in a shorter time. In large-scale problems, retaining the Chain Repair operator is more

beneficial for maintaining solution quality. As the problem scale increases, the combination of basic

operators and the Chain Repair operator saves more time per iteration, making it worthwhile to

trade a small portion of solution quality for a 20% reduction in computational time.

7.4. Case study

This section validates the advantages of MAVs compared to traditional buses and delivery vans

in the real road network and actual demand scenario of Changning District, Shanghai, China.

The spatial network of this study is illustrated in Figure 27. Two regional bus lines were selected,

where Line 72 consists of 8 stations (d0, s0, s1, s2, s3, s4, s5, d1), and Line 54 consists of 7 stations

(d2, s6, s7, s8, s9, s10, d3). Additionally, there are 4 pick-up and delivery stops outside the fixed lines

(s11, s12, s13, s14). s2 and s7 are the intersection points of the two lines, connected via a transfer

arc. Among the pick-up and delivery stops outside the fixed lines, s11 and s12 are interconnected,

with s11 connected to s9 and s12 connected to s3. Similarly, s13 and s14 are interconnected, with

s13 connected to s0 and s1, and s14 connected to s8.

The study selects the morning period from 8:00 to 9:30 as the temporal network, comprising 90

timestamps. The peak period is from 8:00 to 9:00, while the off-peak period is from 9:00 to 9:30.

For the same distance, the travel time during the peak period ranges from 4 to 7 minutes, whereas

during the off-peak period, it reduces to 2 to 5 minutes. For the fixed lines, the bus timetable

operates at a frequency of every 15 minutes during the peak period (8:00, 8:15, 8:30, 8:45) and

every 20 minutes during the off-peak period (9:00). Idle MAVs can depart at any time to assist

in fulfilling the remaining passenger demand and freight demand. Passenger demand data were
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Figure 27 Spatial network of the case study MAV route in Shanghai region

obtained from statistics provided by the Shanghai Municipal Transportation Commission. Freight

demand data were estimated based on the regional parcel throughput provided by Cainiao with

the time window for freight demand spanning all 90 timestamps.

This case study continues to use the parameter information from Section 1, where Q = 15,

ρ = 2, and G = 3. As shown in Table 11, due to the wide range of the demand distribution, the

GUROBI solver was unable to find any solution within 12 hours. The GUROBI initialization

method, even with a reduced number of paths, still failed to produce any results within 8 hours.

Therefore, subsequent analyses are based on the solutions obtained from the Greedy heuristic +

ALNS algorithm.

Table 11 Case Result

Solution method Objective
travel time
(min)

Initial solution
time (sec)

Algorithm
time (sec)

Total compu-
tational time
(sec)

GUROBI – – – >43200
GUROBI+ALNS – >28800 – –
Greedy heuristic+ALNS 1054 28.1 8058.2 8086.3
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A total of 30 MAUs are deployed in this operation. The detailed path assignments for each

MAU are presented in Appendix A. As illustrated in Figure 28, freight transportation is seldom

selected during peak hours due to the overwhelming passenger demand. During off-peak periods,

each MAU has more remaining capacity, which can be better utilized by freight. During off-peak

periods, traditional bus system, in order to balance passenger waiting times, find it difficult to

significantly reduce the frequency of departures, resulting in a large amount of redundant capacity

in the vehicles. To better demonstrate the flexible utilization of space by MAU, Figure 29, taking

k25 as an example, illustrates the entire process of fulfilling both partial passenger demand and

freight demand.

Figure 28 Distribution of demand over time

If a co-transportation transit system is not used and a strategy of transporting passengers and

freight separately is adopted instead, 38 MAUs are required, with the specific path assigned to

each MAU detailed in Appendix B. Since the passenger demand on an arc during off-peak periods

typically does not exceed 10 people, a significant amount of idle capacity arises. This capacity is not

fully utilized by freight, leading to an increase in the number of vehicles used and a corresponding

rise in operational costs.
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Figure 29 Example of MAU flexible transport

The electricity cost for one MAU in China is €0.036 per minute. For comparison, it is assumed

that traditional buses and delivery vans are also electrically powered, with the same electricity cost

of €0.089 per minute. According to the bus timetable (Bendibao 2025), a total of 5 departures are

required from each of the 4 depots, with 4 departures during peak periods, each taking an average

of 35 minutes to complete a transport task, and 1 departure during off-peak periods, each taking an

average of 28 minutes to complete a transport task. The total time required to complete all tasks is

672 minutes. For freight demand, delivery vans are used to meet all freight requirements, departing

from 4 depots to serve a total of 15 stations with freight demand. The solution is obtained using

the Traveling Salesman Problem (TSP) model, with the objective of minimizing the travel time

through all demand points, where the travel time is based on the average transit time of each arc.

min
14∑
i=0

14∑
j=0,j ̸=i

tijxij (8a)

s.t.
14∑

j=0,j ̸=i

xij = 1 ∀i∈ {0,1, . . . ,14} (8b)

14∑
i=0,i̸=j

xij = 1 ∀j ∈ {0,1, . . . ,14} (8c)

ui −uj +15xij ≤ 14 ∀i, j ∈ {1,2, . . . ,14}, i ̸= j (8d)

xij ∈ {0,1} ∀i, j ∈ {0,1, . . . ,14}, i ̸= j (8e)

ui ∈ [1,14] ∀i∈ {1,2, . . . ,14} (8f)
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According to the solution obtained from the GUROBI solver, one delivery van departs from each

of the four depots, with a total minimum time of 142 minutes to complete all freight demand. Since

both traditional buses and delivery vans require drivers, the cost must include the salaries of all

drivers (Shanghai Municipal Human Resources and Social Security Bureau 2025), with an average

hourly wage of €6.5 per driver. As bus drivers can continue to perform return transport tasks after

reaching the depot, a total of 12 bus drivers and 4 delivery van drivers are required.

Table 12 Cost Comparison between MAU and traditional bus & delivery van

Transport Method Objective
travel time
(min)

Electricity
cost (euro)

Labor cost
(euro)

Total Oper-
ating cost
(euro)

MAU co-transportation 1054 37.94 – 37.94
MAU separate transportation 1097 39.49 – 39.49
Traditional bus + delivery van 814 72.45 120.37 228.45

As shown in Table 12, the MAU co-transportation system offers significant operational cost

advantages. Within this one-and-a-half-hour period case, it saves €1.52 compared to the sepa-

rate transportation system and €190.48 compared to a traditional bus and delivery van system.

Compared to a modular transit system without passenger and freight co-transportation, the cost

difference in this case is only 4.1%. However, as freight demand and scale of instances increase, this

could lead to considerable cost inefficiencies. In contrast, the cost difference with the traditional

transportation system reaches 502.1%. Using MAUs not only reduces labor costs but also leverages

the smaller capacity of each MAU compartment. During peak periods, MAUs transport passengers,

and during off-peak periods, when passenger demand on an arc is low, they can utilize idle capacity

to transport freight, significantly reducing capacity waste. Although the total travel time of the

traditional transportation system is shorter, the larger vehicle size results in higher unit electricity

consumption, leading to electricity costs nearly double those of the MAU system.
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8. Conclusion

This study proposes a passenger and freight co-transportation system utilizing Modular

Autonomous Units (MAUs) to fulfill all transportation demands on a network with minimal elec-

tricity consumption operational costs. MAUs can couple/decouple on any route segment, providing

passenger and freight transportation services on multiple fixed bus lines (FRT), as well as freight

transportation services between pick-up and delivery stops generated by daily express demands

that are not on fixed lines (DRT). Through transfer arcs and delivery arcs, each MAU can move

between different lines. A network is established using Space and Time dimensions, where each

passenger demand has precise station and time information, and each freight demand is assigned a

set of time windows. Based on this, a path-based model for the MAU Routing Problem is developed

to satisfy every demand task in the network. A customized Adaptive Large Neighborhood Search

(ALNS) algorithm, dividing the destruction and repair processes into path-level and arc-level, is

employed to tackle the computational challenges of this complex network problem.

Due to the expansion of the overall network in both spatial and temporal dimensions, the demand

quantity also increases accordingly. This study provides two methods for generating initial solu-

tions—GUROBI and Greedy heuristic—which, when combined with the ALNS algorithm, can

significantly reduce the computation time required to obtain the optimal solution. In small-scale

experiments, compared to the exact optimal solution obtained by the GUROBI solver, the solution

quality of both methods is proven to be within an acceptable range. The GUROBI-based algorithm

deviates by no more than 1.5%, while the Greedy heuristic algorithm, despite greatly improving

computation speed, deviates by no more than 5%. Computational results based on the Shanghai

regional network demonstrate the advantages of the ALNS algorithm. Compared to traditional

buses and delivery vans, MAUs can efficiently utilize vehicle space to transport both passengers

and freight simultaneously, significantly reducing the additional operational costs caused by idle

capacity within compartments. Without using a co-transportation system, even when employing

MAUs for transportation, an additional 4.1% operational cost is incurred. In contrast, compared

to traditional transportation systems, operational costs are reduced by 502.1%. Therefore, the use

of this co-transportation modular transit system provides operators with an opportunity to reduce

operational costs while meeting all transportation demands.

Overall, these findings confirm that the use of a passenger and freight co-transportation mod-

ular transit system enables operators to significantly reduce operational costs and represents a

worthwhile urban internal transportation system to replace traditional public transit and delivery

systems. To achieve more efficient MAU allocation on the Space-Time Network, operators should

encourage close cross-functional collaboration between MAU scheduling and demand forecasting

teams, supported by the robust heuristic methods for large-scale instances proposed in this study,
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ensuring that FRT and DRT services mutually reinforce each other. The insights and methods pro-

posed in this research are also broadly applicable to similar vehicle allocation scenarios combining

fixed-route and demand-responsive services, providing a more flexible and sustainable methodolog-

ical platform for the emerging urban transportation field.

In future research, an interesting direction is to introduce randomly occurring passenger and

freight demands, enabling MAUs to further function similarly to taxis. Another promising avenue is

to develop more efficient algorithms to handle larger-scale instances with more stations, timestamps,

and demands, such as through constraint dualization, using column generation and row generation

algorithms.
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Appendix A: Detailed MAU path distribution of case study for co-transportation
system

In the case study from 8:00 to 9:30 in the morning in Changning District, Shanghai, China, by using passenger

and freight co-transportation system, a total of 30 MAUs are used. Table 14 shows the routes assigned to

all MAUs:

Table 13: MAU path distribution of case study

Vehicle ID Path

k0 d0(8 : 00) > s0(8 : 04) > s1(8 : 08) > s2(8 : 15) > s7(8 : 19) > s8(8 : 25) > s9(8 :
29)> s10(8 : 33)>d3(8 : 38)

k1 d1(8 : 00) > s5(8 : 05) > s4(8 : 12) > s3(8 : 19) > s2(8 : 25) > s7(8 : 30) > s8(8 :
35)> s14(8 : 39)> s13(8 : 45)> s0(8 : 52)> s1(8 : 56)> s2(9 : 00)> s3(9 : 03)>
s12(9 : 06)> s11(9 : 08)> s9(9 : 11)> s8(9 : 15)> s7(9 : 18)> s6(9 : 21)> d2(9 :
25)

k2 d2(8 : 00) > s6(8 : 07) > s7(8 : 11) > s8(8 : 15) > s9(8 : 20) > s10(8 : 27) > d3(8 :
31)

k3 d3(8 : 00) > s10(8 : 04) > s9(8 : 11) > s8(8 : 16) > s7(8 : 23) > s2(8 : 30) > s1(8 :
36)> s0(8 : 43)>d0(8 : 48)

k4 d0(8 : 15) > s0(8 : 19) > s1(8 : 26) > s2(8 : 32) > s7(8 : 36) > s8(8 : 40) > s9(8 :
47)> s10(8 : 51)>d3(8 : 56)

k5 d1(8 : 15) > s5(8 : 20) > s4(8 : 26) > s3(8 : 33) > s2(8 : 38) > s7(8 : 44) > s8(8 :
48)> s9(8 : 55)> s10(8 : 59)>d3(9 : 04)

k6 d1(8 : 15) > s5(8 : 22) > s4(8 : 28) > s3(8 : 35) > s2(8 : 41) > s1(8 : 46) > s0(8 :
49)>d0(8 : 53)

k7 d2(8 : 15) > s6(8 : 20) > s7(8 : 25) > s2(8 : 30) > s3(8 : 35) > s4(8 : 39) > s5(8 :
45)>d1(8 : 50)

k8 d3(8 : 15) > s10(8 : 21) > s9(8 : 27) > s8(8 : 31) > s7(8 : 37) > s6(8 : 44) > d2(8 :
49)

k9 d0(8 : 30) > s0(8 : 35) > s1(8 : 41) > s2(8 : 48) > s3(8 : 54) > s4(8 : 59) > s5(9 :
03)>d1(9 : 08)

k10 d1(8 : 30) > s5(8 : 35) > s4(8 : 41) > s3(8 : 47) > s2(8 : 54) > s1(8 : 56) > s0(9 :
01)>d0(9 : 04)

k11 d2(8 : 30) > s6(8 : 37) > s7(8 : 43) > s8(8 : 48) > s9(8 : 53) > s10(8 : 59) > d3(9 :
03)

k12 d3(8 : 30) > s10(8 : 34) > s9(8 : 38) > s8(8 : 45) > s7(8 : 52) > s2(8 : 57) > s1(9 :
02)> s0(9 : 05)>d0(9 : 08)

k13 d3(8 : 32) > s10(8 : 37) > s9(8 : 43) > s8(8 : 49) > s7(8 : 55) > s6(9 : 00) > d2(9 :
04)

k14 d0(8 : 35)> s0(8 : 40)> s1(8 : 47)> s2(8 : 53)> s7(8 : 58)> s6(9 : 02)>d2(9 : 07)
k15 d3(8 : 38) > s10(8 : 42) > s9(8 : 48) > s8(8 : 54) > s7(9 : 01) > s2(9 : 05) > s1(9 :

08)> s0(9 : 11)>d0(9 : 15)
k16 d3(8 : 42) > s10(8 : 47) > s9(8 : 52) > s8(8 : 59) > s7(9 : 03) > s2(9 : 06) > s3(9 :

10)> s4(9 : 13)> s5(9 : 17)>d1(9 : 21)
k17 d0(8 : 45) > s0(8 : 49) > s1(8 : 53) > s2(8 : 58) > s3(9 : 03) > s4(9 : 07) > s5(9 :

11)>d1(9 : 15)
k18 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) > s0(9 :

11)>d0(9 : 14)
k19 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) > s0(9 :

11)>d0(9 : 14)
k20 d3(8 : 45) > s10(8 : 52) > s9(8 : 56) > s8(9 : 03) > s7(9 : 08) > s6(9 : 10) > d2(9 :

13)

Continued on next page
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Table 13: MAU path distribution of case study

Vehicle ID Path

k21 d0(8 : 48)> s0(8 : 53)> s1(8 : 59)> s2(9 : 05)> s7(9 : 09)> s6(9 : 13)>d2(9 : 16)
k22 d3(8 : 48) > s10(8 : 53) > s9(8 : 59) > s8(9 : 04) > s7(9 : 08) > s2(9 : 12) > s1(9 :

15)> s0(9 : 19)>d0(9 : 23)
k23 d2(8 : 50) > s6(8 : 54) > s7(8 : 58) > s8(9 : 03) > s9(9 : 07) > s10(9 : 11) > d3(9 :

15)
k24 d0(8 : 50) > s0(8 : 54) > s1(8 : 58) > s2(9 : 03) > s3(9 : 07) > s4(9 : 11) > s5(9 :

15)>d1(9 : 19)
k25 d0(8 : 55) > s0(8 : 58) > s13(9 : 02) > s0(9 : 05) > s1(9 : 09) > s2(9 : 11) > s3(9 :

15)> s4(9 : 18)> s5(9 : 21)>d1(9 : 24)
k26 d0(8 : 55) > s0(8 : 59) > s1(9 : 03) > s2(9 : 07) > s3(9 : 11) > s4(9 : 15) > s5(9 :

19)>d1(9 : 23)
k27 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) > s0(9 :

27)>d0(9 : 30)
k28 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) > d3(9 :

26)
k29 d3(9 : 00)> s9(9 : 05)> s11(9 : 09)> s8(9 : 13)> s14(9 : 16)> s1(9 : 19)> s0(9 :

22)>d0(9 : 25)

Appendix B: Detailed MAU path distribution of case study for separate
transportation system

In the case study from 8:00 to 9:30 in the morning in Changning District, Shanghai, China, by using passenger

and freight separate system, a total of 30 MAUs are used. Table 14 shows the routes assigned to all MAUs:

Table 14: MAU path distribution for passenger and freight demand

Vehicle ID Path

MAU for passenger demand:
k0 d0(8 : 00) > s0(8 : 04) > s1(8 : 08) > s2(8 : 15) > s7(8 : 19) > s8(8 : 25) > s9(8 :

29)> s10(8 : 33)>d3(8 : 38)
k1 d1(8 : 00) > s5(8 : 05) > s4(8 : 12) > s3(8 : 19) > s2(8 : 25) > s7(8 : 31) > s6(8 :

36)>d2(8 : 41)
k2 d2(8 : 00) > s6(8 : 07) > s7(8 : 11) > s8(8 : 15) > s9(8 : 20) > s10(8 : 27) > d3(8 :

31)
k3 d3(8 : 00) > s10(8 : 04) > s9(8 : 11) > s8(8 : 16) > s7(8 : 23) > s2(8 : 30) > s1(8 :

36)> s0(8 : 43)>d0(8 : 48)
k4 d0(8 : 15) > s0(8 : 19) > s1(8 : 26) > s2(8 : 32) > s7(8 : 36) > s8(8 : 40) > s9(8 :

47)> s10(8 : 51)>d3(8 : 56)
k5 d1(8 : 15) > s5(8 : 20) > s4(8 : 26) > s3(8 : 33) > s2(8 : 38) > s7(8 : 44) > s8(8 :

48)> s9(8 : 55)> s10(8 : 59)>d3(9 : 04)
k6 d1(8 : 15) > s5(8 : 22) > s4(8 : 28) > s3(8 : 35) > s2(8 : 41) > s1(8 : 46) > s0(8 :

49)>d0(8 : 53)
k7 d2(8 : 15) > s6(8 : 20) > s7(8 : 25) > s2(8 : 30) > s3(8 : 35) > s4(8 : 39) > s5(8 :

45)>d1(8 : 50)
k8 d3(8 : 15) > s10(8 : 21) > s9(8 : 27) > s8(8 : 31) > s7(8 : 37) > s6(8 : 44) > d2(8 :

49)
k9 d0(8 : 30) > s0(8 : 35) > s1(8 : 41) > s2(8 : 48) > s3(8 : 54) > s4(8 : 59) > s5(9 :

03)>d1(9 : 08)

Continued on next page
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Table 14: MAU path distribution for passenger and freight demand

Vehicle ID Path

k10 d1(8 : 30) > s5(8 : 35) > s4(8 : 41) > s3(8 : 47) > s2(8 : 54) > s1(8 : 56) > s0(9 :
01)>d0(9 : 04)

k11 d2(8 : 30) > s6(8 : 37) > s7(8 : 43) > s8(8 : 48) > s9(8 : 53) > s10(8 : 59) > d3(9 :
03)

k12 d3(8 : 30) > s10(8 : 34) > s9(8 : 38) > s8(8 : 45) > s7(8 : 52) > s2(8 : 57) > s1(9 :
02)> s0(9 : 05)>d0(9 : 08)

k13 d3(8 : 38) > s10(8 : 42) > s9(8 : 48) > s8(8 : 54) > s7(9 : 01) > s2(9 : 05) > s1(9 :
08)> s0(9 : 11)>d0(9 : 15)

k14 d3(8 : 42) > s10(8 : 47) > s9(8 : 52) > s8(8 : 59) > s7(9 : 03) > s2(9 : 06) > s3(9 :
10)> s4(9 : 13)> s5(9 : 17)>d1(9 : 21)

k15 d0(8 : 45) > s0(8 : 49) > s1(8 : 53) > s2(8 : 58) > s3(9 : 03) > s4(9 : 07) > s5(9 :
11)>d1(9 : 15)

k16 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) > s0(9 :
11)>d0(9 : 14)

k17 d1(8 : 45) > s5(8 : 50) > s4(8 : 54) > s3(8 : 59) > s2(9 : 04) > s1(9 : 09) > s0(9 :
11)>d0(9 : 14)

k18 d3(8 : 45) > s10(8 : 52) > s9(8 : 56) > s8(9 : 03) > s7(9 : 08) > s6(9 : 10) > d2(9 :
13)

k19 d0(8 : 48)> s0(8 : 53)> s1(8 : 59)> s2(9 : 05)> s7(9 : 09)> s6(9 : 13)>d2(9 : 16)
k20 d3(8 : 48) > s10(8 : 53) > s9(8 : 59) > s8(9 : 04) > s7(9 : 08) > s2(9 : 12) > s1(9 :

15)> s0(9 : 19)>d0(9 : 23)
k21 d2(8 : 50) > s6(8 : 54) > s7(8 : 58) > s8(9 : 03) > s9(9 : 07) > s10(9 : 11) > d3(9 :

15)
k22 d0(8 : 50) > s0(8 : 54) > s1(8 : 58) > s2(9 : 03) > s3(9 : 07) > s4(9 : 11) > s5(9 :

15)>d1(9 : 19)
k23 d0(8 : 55) > s0(8 : 58) > s1(9 : 03) > s2(9 : 06) > s3(9 : 10) > s4(9 : 14) > s5(9 :

18)>d1(9 : 21)
k24 d0(8 : 55) > s0(8 : 59) > s1(9 : 03) > s2(9 : 07) > s3(9 : 11) > s4(9 : 15) > s5(9 :

19)>d1(9 : 23)
k25 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) > s0(9 :

27)>d0(9 : 30)
k26 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) > d3(9 :

26)
k27 d3(9 : 00)> s9(9 : 05)> s11(9 : 09)> s8(9 : 13)> s14(9 : 16)> s1(9 : 19)> s0(9 :

22)>d0(9 : 25)
MAU for freight demand:
k28 d0(8 : 55) > s0(8 : 58) > s13(9 : 02) > s0(9 : 05) > s1(9 : 09) > s2(9 : 11) > s3(9 :

15)> s4(9 : 18)> s5(9 : 21)>d1(9 : 24)
k29 d1(8 : 58)> s5(9 : 03)> s4(9 : 04)> s12(9 : 06)> s11(9 : 08)> s9(9 : 11)> s8(9 :

15)> s7(9 : 18)> s6(9 : 21)>d2(9 : 25)
k30 d2(9 : 00) > s6(9 : 04) > s7(9 : 07) > s8(9 : 10) > s12(9 : 15) > s3(9 : 19) > s4(9 :

22)> s5(9 : 25)>d1(9 : 28)
k31 d1(9 : 00) > s5(9 : 06) > s4(9 : 10) > s3(9 : 15) > s2(9 : 19) > s1(9 : 23) > s0(9 :

27)>d0(9 : 30)
k32 d2(9 : 00) > s6(9 : 07) > s7(9 : 11) > s8(9 : 15) > s9(9 : 18) > s10(9 : 23) > d3(9 :

26)
k33 d3(9 : 00)> s9(9 : 05)> s11(9 : 09)> s8(9 : 13)> s14(9 : 16)> s1(9 : 19)> s0(9 :

22)>d0(9 : 25)
k34 d3(9 : 02) > s10(9 : 06) > s9(9 : 10) > s8(9 : 13) > s7(9 : 17) > s6(9 : 20) > d2(9 :

24)

Continued on next page
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Table 14: MAU path distribution for passenger and freight demand

Vehicle ID Path

k35 d3(9 : 02) > s10(9 : 06) > s9(9 : 10) > s8(9 : 13) > s7(9 : 17) > s2(9 : 20) > s1(9 :
23)> s0(9 : 27)>d0(9 : 30)

k36 d2(9 : 03) > s6(9 : 06) > s7(9 : 09) > s8(9 : 12) > s9(9 : 15) > s10(9 : 20) > d3(9 :
23)

k37 d0(9 : 05)> s0(9 : 08)> s1(9 : 11)> s13(9 : 14)> s14(9 : 18)> s7(9 : 21)> s6(9 :
24)>d2(9 : 27)



Chenwei Peng: Optimization of Integrated passenger-freight transport for an modular autonomous vehicle systems
58

References

Bendibao, 2025 Shanghai bus query. URL https://m.sh.bendibao.com/bus/, accessed: 2025-07-26.

EV Connect, 2025 Ev charging costs at public stations. URL https://www.evconnect.com/blog/

ev-charging-costs-at-public-stations, accessed: 2025-07-22.

Hassold S, Ceder AA, 2014 Public transport vehicle scheduling featuring multiple vehicle types. Transportation

Research Part B: Methodological 67:129–143.
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