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Abstract

Multithreaded programming is becoming increasingly important because of recent
increase in the use of multiprocessor computing. Multithreaded or concurrent pro-
gramming is inherently more complex than single threaded code, requiring the use of
synchronization and causing possible problems like deadlock or dormancy. Dynamic
analysis tools can aid in understanding the execution of concurrent programs and help
with improving and debugging of these programs. Current tools express the com-
plexity of concurrent programs with varying degrees of success. We have evaluated
and analyzed the visualizations of these tools in relation to the inherent concurrency
problems they were meant to solve and come up with an alternative approach to trac-
ing, analyzing and visualizing program executions. By focusing on the use of shared
fields we show memory based interaction between threads by use of sequence dia-
grams, structured in a novel way. This new approach is implemented in a Java based,
Eclipse plugin, dynamic analysis tool called Field Of Thread (FOT). FOT provides a
new low-level perspective to concurrency oriented dynamic analyses for visualizing
shared memory based thread interaction.
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Chapter 1

Introduction

Before the year, 2006 computer-processing units were growing at such a rate that the per-
formance doubled on average every 18 months [3]. Programmers would benefit from this
trend, as their program’s performance would grow as well. However, this growth rate is
no more, the maximum speed for a single processor has reached its maximum at about
3.8GHz because of the physical limitations of transistor size. The last few years have in-
stead seen a steady trend to increase the number of processing units within computers,
graphic-accelerators and mobile devices to accelerate processing. This new approach to bet-
ter performance has many benefits and limitations. Multiple processors are usually used by
multiple programs distributed evenly among the processors in a divide and conquer manner.
But this does not necessarily speed up a single running program. Lately many programs
have been written in a way that they can run multiple processing threads across multi-
ple cores independently, thus speeding up calculation. This type of work division through
threads has been in common use for a very long time, but its use in calculation speed accel-
eration is becoming more vital in software optimization.

As the use of threads within a program increases, so does its complexity. A good anal-
ogy would be a company: a one-man business can spend all its time on running the business,
but it is limited to what that one man can do. Businesses with many employees require a
lot of managing, communication, meetings, common knowledge and protocols to function
properly. These activities slow the work down, increase complexity and cause errors to oc-
cur. Finding problems and solving them within multithreaded code is just as problematic
because of miscommunication, bad timing or unforeseen situations. When the number of
employees reaches a certain point the advantage of adding more workers vanishes as the
cost of management overhead starts to outweigh their productivity. But if every employee
is given a task that can be performed completely independently then the number of employ-
ees that can work depends only on how many big jobs you can chop up into independent
tasks. Sadly no task is ever completely independent. You have to pass on the results of fin-
ished work for instance. The discipline of concurrent parallel programming is the discipline
of spreading the workload as efficiently as possible while guaranteeing correctness of the
results and dealing with the inherent problems.
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1. INTRODUCTION

There are tools and methodologies to combat the occurrence of these problems and mis-
communications. But when these mechanisms are used too often, or incorrectly, it becomes
more difficult to spot, diagnose and solve these concurrency problems. Since multithreaded
programs are often created by refactoring single threaded programs, these problems often
occur. Solving these problems often requires restructuring the program code in counter-
intuitive ways. Even causing some problems, that can be solved only if the software is
redesigned from the bottom up.

1.1 Objectives

To detect, display, diagnose and solve concurrency based problems there are many tools
and models. And there are standard low level paradigms and algorithms. To narrow the
rift between the models and the algorithms, we will dissect the current tools and models to
analyze their effects and formulate an alternative solution.

The model we will mainly be focusing on is the Unified Modeling Language [20] se-
quence diagram. This diagram usually shows how object oriented classes cooperate, but is
sometimes used to show thread communication and behavior. This application is useful but
limited in and by itself.

This thesis presents a new model based on the UML sequence diagram shifting the fo-
cus from a high-level co-operational model to a lower level, field oriented model.

We elaborate on a tool developed during this research named Field Of Threads (FOT) im-
plementing the field centric model, designed to visualize behavior of running concurrent
test programs. Its operation consists of:

• Tracing the execution of a test program.

• Analyzing the inter-thread communication.

• Visualizing the execution in a field-centric way for detecting and diagnosing prob-
lems.

1.2 Boundaries and scope

This research will mainly be limited to Java based applications, because of the object-
oriented properties of the language and great support for tooling. A lot of previous work
has been done using this platform ensuring that older techniques are compatible and the
solutions are comparable.
Since the goal is to trace, analyze and visualize concurrent behavior, we will not be focusing
much on non-concurrent visualizations, techniques programs and tools.
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Research Questions

Dynamic analysis is preferred to static analysis because we do not mean to analyze the de-
sign facets of static code, but the dynamic inner-workings of executing programs and their
non-deterministic nature during operation.

1.3 Research Questions

The goal of this project is:
“Improving the way running threads, thread functionality and interaction are represented
and visualized so that they can be understood more easily.”

In order to reach the goal for this project, we aim to answer the following questions:

RQ1 How are threads visualized and analyzed now?

RQ2 What are the major problems impeding thread comprehension?

RQ3 What kinds of operations are the current representations of threads useful for?

RQ4 What elements provide the best way to view, analyze and comprehend thread execu-
tion?

RQ5 How can the representation of threads be improved further?

1.4 Thesis Structure

The research questions will be answered in the following sections of the thesis: Chapter 2,
Related Work, describes related work in terms of approaches to detect, analyze and visualize
concurrent behavior answering the first research question [RQ1]. The third chapter Analysis
breaks down the operation of current models and tools, and identifies the major problems
they are designed to solve. Combined with the inherent and unsolved problems we will be
answering the second and third research question [RQ2], [RQ3]. By answering [RQ2] and
[RQ3] we will have an approach for answering question four [RQ4] by the end of the third
chapter. This formula will be used to create our alternative solution outlined in chapter 4
Field Of Threads. The fifth chapter Case Study demonstrates and evaluates the alternative
solution and its merits in more detail, answering the fifth and final research question [RQ5].
This is followed by chapter 6 Conclusions and Future Work where we pose some future
problems and solutions, draw conclusions and reflect on this work. This is followed by a
bibliography and the appendices, also containing a glossary detailing the more specialized
terms.
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Chapter 2

Related Work

New solutions in the area of static analysis, dynamic analysis and the visualization of pro-
gram behavior are constantly being researched. Due to differences in focus, the innova-
tions resulting from this research contribute in varying degrees to a better comprehension of
thread executions. This chapter outlines some of the different approaches to monitoring and
visualizing behavior of executions in reference to multithreaded programs. We will mainly
be mentioning tools that work on the Java platform and preferably those that are already
focused on object orientation and concurrency. The tools described in the related works
will be evaluated on the way they acquire their information, if it is through tracing or other
means. How they make the information comprehensible through visualization by diagrams
and possible plus-alpha features that might help in combating concurrency problems. Fi-
nally, we will do a short evaluation of the applicability of the related work tools’ approaches
to solving our problems.

2.1 Unified Modeling Language

The UML Unified Modeling Language1 is a standardization of object-oriented design meth-
ods and notations, formulated in the 1990s by the Object Management Group [20, 9]. UML
is a graphic modeling language used to express program designs and it specifies a possible
process to create such a design. UML defines interaction diagrams that model how groups
of objects collaborate in some behavior.

In a sequence diagram, as can be seen in appendix [B.1], objects are shown as a box at
the top of a vertical line called a lifeline. It represents the objects life during the described
interaction. Arrows between lifelines are called messages. These messages are shown in
chronological order; earlier messages are placed higher than later messages. Messages can
be called and received by the same lifeline. If an object is active, an activation box can be
shown overlapping the lifeline. Because the sequence diagram as described by UML is a
design specification it can also indicate conditions for deciding whether to send messages or
iterative markers for repeating messages. There is some variation in how sequence diagrams

1UML: http://www.omg.org/spec/UML/
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2. RELATED WORK

Figure 2.1: UML2.4 Sequence Diagram with added timing information.

are used in practice. A very simple sequence diagram as just described can be augmented
by icons and notations indicating reply messages, synchronous or asynchronous messages,
intentional diagram omissions, ends of lifelines, etc.

We investigate UML sequence diagrams because UML is an accepted standard in the in-
dustry and academia. Interaction scenarios in UML are best depicted by sequence and
collaboration diagrams. Sequence diagrams are superior at depicting states compared to
other communication diagrams in terms of expressivity. The downside to sequence dia-
grams is that they only display one scenario at a time, obfuscating the surrounding context.
This is not a problem if only one specific scenario is needed or the surrounding context has
been made clear in other ways. The UML sequence diagram designates active objects and
execution specifications, which depict the life of an object and its method activations, by
callers. A sequence diagram models each object as an active environment. It depicts an
abstract view of the dynamics of synchronization and the ordering of interactions.

The current UML2.4 specifications2 offer little support for thread-level synchronization.
In the current specifications, additions have been made to the sequence diagram model [20].
The addition of timing information has been specified, as can be seen in figure 2.1. The
state and interaction overview diagrams that are used describe any added complications, but
concurrency is still not sufficiently modeled to solve our problems [29]. Since our ultimate
objective is to visualize the execution state of a running application. When viewing the
UML specification in this light some of the more advanced features, for example conditions
and iterations, are hard to derive correctly from execution tracing. On the other hand, more

2UML2.0 specification: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
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JThreadSpy

references to the current execution may be required to link the abstract UML model to
the execution environment and the code definition, so that the model can be put into the
proper context. For instance, threading and monitor information in the sequence diagram
would not only show what is happening, as the model does, but would also indicate why the
environment does it this way. This is what we will need to improve understandability of the
model.

2.2 JThreadSpy

JThreadSpy is an Eclipse plug-in developed by Malnati et al. [16, 17] created to teach
object-oriented programming and illustrates the difficulties of concurrency to students. It is
a dynamic analysis tool that creates a sequence-diagram visualization from program execu-
tion traces for each thread. Its focus is on understandability of concurrency. JThreadSpy
features added visualization items to a standard UML sequence diagram and a variable de-
tail scaling display.

2.2.1 Tracing

JThreadSpy uses an agent with a JVM-TI [22] [3.2.2] interface and an ASM framework
binary interpreter [13] to dynamically instrument Java class files during class loading inside
the Java Virtual Machine and generate trace logs. Instrumentation is done by the Java agent,
which implements the JVM tooling interface to add extra lines of code to some places in the
program code. The lines inserted are for example: a log output writer at every start and end
of a method. This writer registers and logs the entry and exit of each thread into and out of
each method. The ASM framework code is necessary to understand and modify code that
is already in binary form, so the proper lines can be inserted in the proper places. Only the
classes of the application being compiled are instrumented. JThreadSpy cannot show any
information about for example libraries outside the scope of the subject application.

2.2.2 Visualization

The traces created by the agent are interpreted by a visualizer to generate the UML sequence
diagrams. The UML-based sequence-diagram shows all objects not at the top of the diagram
but at their execution moment, which means an object instance is shown lower than the main
executing class. The main class is also shown in a balloon while other classes are shown
as a rectangle. JThreadSpy adds detailed thread information. Every thread is shown in
a different color as a message and activation sequence running over the objects‘ lifelines.
Figure 2.2 is the JThreadSpy output of an example case, depicting money transfers between
bank accounts. A more elaborate case about threads competing for a lock is included as
appendix B.2. In JThreadSpy new concurrency specific operation icons have been added to
the activation bars indicating; thread starts, thread stops, requesting locks, acquiring locks
and releasing locks on shared objects.

7



2. RELATED WORK

Figure 2.2: JThreadSpy sequence diagram example.

The progression of time is shown on the left side of the diagram and timing icons are
shown in the diagram when disproportional amounts of time have passed during an activa-
tion of a class. Methods called from libraries or other un-instrumented code is shown in a
dotted rectangle. The JThreadSpy visualization can be configured by stack depth, range of
thread colors and thread filtering.

2.2.3 Evaluation

The additions to the sequence diagram in JThreadSpy show a high level of concurrency
specific detail while preserving user freedom and understandability of synchronization con-
structs. The instrumenting Agent as used by JThreadSpy offers no insurance that instrumen-
tation is flawless. Differences in coding, compiler and interpreter can cause differences in
thread interleaving, or failure to trace at all. In addition, because the instrumenting agent is
changing the executing code, it becomes harder to evaluate code in relation to the diagram.

2.3 JACOT

JACOT Stands for Java Platform Object Tool [14]. It is a prototype tool that takes a con-
current Java program as input and visualizes its execution using two views based on the
Unified Modeling Language paradigm. It uses the Java Standard Kits Java Platform Debug-
ger JPDA [23] interface to dynamically trace the program executions and generate events.

8



JACOT

It runs stand-alone on the same platform as the program that is being studied. The basic
operation is done by starting JACOT and the test program. When running the user has the
ability to play, pause, slow down and stop the test program.

2.3.1 Tracing

JACOTs tracer uses the JDI [3.2.4] which is based on the JPDA architecture, which is part of
the Java Development Kit (JDK). On top of the JDI event based interface, JACOT has built
an event gatherer, processer, view formatter and display. The JDI interface is connected to
the debug-gee VM and generates events as a program runs inside this VM. These events are
caught and entered into an event queue. The events are wrapped into a message and sent
to the processing layer. There are many types of events generated by JDI, the event types
JACOT listens to are: method entry, method exit, VM start, VM Death, Caught Exception,
Thrown Exception and Class Prepare. The method of identification and tracking of objects
and methods in JACOT is by a combination of the object ID and object name. This is
important because references within the VM are based on Java native object references that
use storage locations. These can change if the object is moved, and become useless when
the running program inside the VM stops and exits.

2.3.2 Visualization

The two visualization methods of JACOT are a sequence diagram view and a thread state
diagram view. The sequence diagram endeavors to be as close to the UML specification

Figure 2.3: JACOT Sequence Diagram.

as possible. The classes are automatically listed on top. From there their lifelines extend
showing the creation, activation and termination of the classes. Activation is shown in a
vertical bar widening the vertical life bar. The method invocations are categorized into
synchronous, asynchronous and self-calls. What is not standard UML is the way the dis-
tinction between threads is represented. The different threads are shown in different colors.

9
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Figure 2.4: JACOT State Diagram.

This makes recognizing thread activity easier and shows when multiple threads are using
the same object. Thread activation is shown with a wavy symbol and thread termination
is shown by a circled x. The UML state diagram view shows the different thread states. It
distinguishes between seven states: created, waiting, runnable, running, waiting (on a mon-
itor), sleeping and terminated. The created and terminated states are not actively visible in
the state diagram though. The state diagram shows the other six different thread states with
a colored and numbered representation of each thread shown inside the state area of the
state it resides in. The other two states: created and terminated, are represented by icons
within the diagram, but are not populated with threads.

2.3.3 Evaluation

The use of colors to identify threads has its limitations: Because of a limited number of
colors, only a limited number of threads can be displayed. Using more colors will result
in loss of distinction between colors or reuse of colors. Alternative methods like double
coloring can be used but this approach may cause confusion as well. The stated uses of
the visualizations of this prototype tool are: The visualization of starvation is possible by
observing threads in the state diagram that spend unreasonable long times in non-running
states or observing an absence of this thread in the state diagram. Dormancy is observable in
the sequence diagram by monitoring invocation of synchronization primitives together with
thread activity. Deadlocks can be found more easily because of the sequence diagram, by
following the problematic threads, their interleaving and the lock sequence of the objects.

2.4 JIVE

Gestwicki et al. present techniques and architecture concepts for the comprehension of
concurrent object oriented software are presented and illustrated in JIVE3 [10]. JIVE,
Java Interactive Visualization Environment, is a prototype system for visualizing program
states and execution as environments of execution. Their starting point is based on the
fact that object-oriented programs are not just data structures, but serve as environments

3JIVE: http://www.cse.buffalo.edu/jive/
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JIVE

within which procedure activations take place. Object-oriented programs engender the use
of smaller methods and more complicated actions among objects. Runtime comprehension
therefore needs both structure and interaction views. According to their methodology, a
successful interactive visualization (especially for Java) should display seven fundamental
properties:

Depict Objects as Environments. Method calls, internal objects, procedures must be
visualized both as a microenvironment and a whole to show all the needed relationships.

Provide Multiple Views of Execution States. The current execution state should be ob-
servable at various levels of granularity. Abstract and simplified relationships should be
shown in case of complex relational structures.

Capture History of Execution and Method Interaction. The history should be observ-
able by using collaboration or time-sequence diagrams that can be set to any point in time
for flexibility.

Support Forward and Backward Execution. Backward execution is important for de-
bugging. The granularity of stepping at different levels should be decidable by the user.
This should also be applicable for multithreaded programs.

Support Queries on the Runtime State. The change of values is important to understand
program execution. Therefore, any changes should always be queryable at any time from
any step of the execution.

Produce Clear and Legible Drawings. The visualization should arrange diagrams for
understandability of sequence and structure. Lists, arrays, tables should be provided and
shown; patterns and structures should be highlighted.

Use Existing Java Virtual Machine. An existing VM must be used, so no custom in-
terpreter is required. This insures compatibility with new Java technology. Any and all
libraries should be supported.

2.4.1 Tracing

JIVE has a JPDA [3.2.1] based tracer which stores all changes in a LiveJog [10] subsys-
tem. The log is coupled with a database in which execution history is stored. Every event
in the subject VM is stored in an object making up a delta execution state allowing JIVE
to step backwards affecting only the visualization not the subject program, which is sus-
pended during inspection of previous states. Multithreaded applications are supported in
this model, but because JIVE is restricted to uni-processing systems, this results in only one
operation being processed at one time. These operations can be paused without discrepan-
cies occurring. This stepping system may also allow different executions to be compared to
one-and-other.
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2.4.2 Visualization

Jive uses many visualizations at once to show execution in detail.

Compact and Detailed views. The detail view shows the objects and the fields and values
they contain. Including references and the objects where to is referenced, resembling the
user interface of DDD [31]. The compact view shows a more concise representation of the
object hierarchy, discriminating between instance and static space objects. This provides
more of an overview of the object structure. When completely minimized, only the call
path is shown, so the interaction of the methods calling objects is visualized in the diagram
without any details.

Figure 2.5: JIVE Contour Diagram.

Sequence Diagrams. The sequence diagrams of JIVE adhere to the UML-specification,
so the objects (dynamic and optionally static) are shown with their lifelines extending down.
The main (initializing) method is shown on the left the other object lines extend to the right.
The method lines have the method names and method argument shown above them. There
can be interaction through this diagram to the rest of the visual interface. For example, the
diagram is linked to the code by highlighting. The activation bar extends over the lifeline
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and can be of different colors. With these colors, different threads are shown within the
sequence diagram. In relation to different code sections, stack information is shown for
different threads.

Figure 2.6: JIVE Sequence Diagram.

2.4.3 Evaluation

Gestwicki et. al. have constructed some fundamental properties that are important for future
visualization of object-oriented program execution. The JIVE environment delivers a wide
view on all aspects of an execution, except for the inclusion of multi colored threads, the
use of sequence diagrams can be considered rudimentary and UML compliant.

2.5 JRET

JRET is a Java Reverse-Engineering Tool4 made by Voets [28]. Its objective is the evalu-
ation of different abstractions for sequence diagrams to ensure simplicity and comprehen-

4JRET: http://jret.sourceforge.net/
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sibility of generated sequence diagrams by dynamic analysis. JRET uses JUnit [4] tests to
represent different input scenarios.

2.5.1 Tracing

JRET uses a JVMTI Agent to instrument classes and generate traces. The byte-code in-
terpreter used in the agent is from AspectJ [11]. The tracer instruments code into loaded
classes to distinguish between beginnings and endings of method calls, static method calls,
and constructor calls. The instrumentation is done on two levels of granularity, class level
and object level. Class level shows a higher abstraction because one class would represent
all instances of that class. Object level would represent every instance of every object, ex-
posing more detailed information about interactions, polymorphism and late binding. The
user can choose between the different levels. The user can also choose to include or exclude
system classes.

2.5.2 Visualization

JRET implements several abstractions to make the sequence diagram more understandable:

• The possibility to choose between object and class level instrumentation.

• Filtering of the system classes in the packages java.util and java.lang.

• Abbreviate method names, return values, and arguments.

• Remove getters.

• Remove setters.

• Remove constructors.

• Remove asserts.

• Remove internal messages.

• Stack depth upper and lower boundaries definition.

• Message selection and examination, obfuscating other messages.

• Pattern recognition and replacement with representation.

JRET uses two different sequence diagram generators for visualization. The user can choose
between generating the sequence diagram to a PNG image file or show it in an editor.
Alex Moffats Sequence5 [19] is a tool that uses a specification text file to generate a PNG
representation of the sequence diagram depicted in figure 2.7.

5Moffat’s sequence: http://www.zanthan.com/itymbi/archives/cat sequence.html
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Figure 2.7: Example of the SEQUENCE visualization generator tool.

SDEdit6 [26] is also a tool that converts directly from plain text input files. SDEdit can
not only generate an image file, but also show its output in the visualizer itself. An example
is shown in figure 2.8.

Figure 2.8: Example of the SEDIT visualization generator tool

It has more functionality than the Sequence tool. It shows patterns of multiple messages,
labels and has support for threads.

6SDEdit: http://sdedit.sourceforge.net/
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2.5.3 Evaluation

JRET‘s use of abstractions is an interesting addition to sequence diagrams. Its removal of
constructs like messages, getters and setters might give a skewed image in case of concur-
rent applications, because this can cause the loss of some interactions. Abbreviations of
names may suit specific sequence diagrams but can cause confusion when referencing the
code because of collisions. The instrumentation level distinction is an important granularity
division.

2.6 TPTP

The Eclipse Test and Performance Tools Platform7 Project is an open platform to allow
software developers to build performance tools and integrate these with the platform and
other tools [7]. The eclipse TPTP plugin allows an eclipse integrated profiler to add one of
the TPTP profiler agents to any Java application’s execution and display information and
statistics about this applications runtime. The four standard data collectors are; execution
time analysis; memory analysis; thread analysis and probe insertion.

2.6.1 Tracing

The TPTP profiling contains two frameworks, the Martini Framework and the Data Col-
lection Framework. The Martini Framework is used to get the data from the VM and send
it to the Data Collection Framework. The Martini framework contains the profile kernel
component, which holds the event manager, profiling interface, external control agent, etc.
The second part holds the profilers: The Call Graph Profiler, Heap Profiler, Thread Profiler
and ProbekitAgent. The third part is the External Interface Module JPIAgent.

Figure 2.9: TPTP agent architecture.

7TPTP plugin: http://www.eclipse.org/tptp/test/
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The Martini Framework is TPTPs Agent. It creates an interface to JVMTI/JVMPI [22]
and shares collected data from the VM to the DataCollection Framework. It uses different
types of profilers to extracts different kinds of data. It uses both dynamic and static binary
code instrumentation for profilers:

• The Call Graph profiler registers all method calls between classes.

• The Heap Profiler can traverse the heap to view every variable stored in heap memory.

• The Thread Profiler registers all timing data of threads and the events they create.

• The ProbekitAgent is used to insert probes, configurable sections of code into meth-
ods to target and monitor specific sections of code.

2.6.2 Visualization

Due to the many profiler options and tools, TPTP has many visualizations. Due to the
extensible nature of the framework, many more visualizations are possible. We only review
those interfaces here that provide new insights into concurrent execution and threading.
Examples of the described visualizations are available in appendix B.3.
The TPTP Execution Time Analysis profiler data collector can show timing information
about an execution in various interesting ways.

Call Tree shows the time spent per method, for every thread with the calling object in a
cascaded tree. It also shows the number of calls and various timing statistics. This view
shows an overview of a lot of timing information per thread in a simplified way.

UML2 Class Interactions shows a sequence diagram letting us see the interactions be-
tween classes conforming to the UML2 [20] specification. In addition, it adds timing infor-
mation to the left bar of the diagram, indicating the time spent during and between calls.

UML2 Thread Interactions shows the same visualization as the UML2 Class Interac-
tions but instead of interactions between classes, it displays events occurring inside the
threads. This diagram also features timing information to the left of the diagram. It does
not show much of inter-thread communication but we can see the concurrency between the
threads well.
The TPTP Thread Analysis profiler data collector collects thread information during exe-
cution and can visualize this in the following interesting ways.

Threads Visualizer shows the threads and their life-lines. It draws a line from left to
right, which is colored according to its state. The length of the axis contains the events
that occur during the lifetime of the threads; they become visible in an alternate view when
selected. At the top of the diagram, a time indication ruler is displayed to let us see at what
time the state or events have occurred. When a selection is made a timeline is shown which
intersects the time ruler so it‘s clear what moment is referred to, when status or events are
displayed. The threads are divided into thread groups which can be hidden if collapsed.
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Thread Statistics shows a table of thread data, we see per thread; current states, timing
information, times blocked and times deadlocked. The amount of information shown is
small but it gives a good indication of the health of each thread. Especially the deadlock
information is valuable for when deadlocks are being debugged. Some monitor statistics
can also be viewed but this functionality is limited to some timing statistics.

2.6.3 Evaluation

From all referenced works TPTP has the most intricate and high-end tracer. The use of
JVMTI/JVMPI [22] is built to be dynamic and very speed oriented. Though the framework
is designed to be very extensible, it lacks the support to be very developer friendly. The
TPTP tools development has stalled and is therefore no longer supported by newer versions
of eclipse.
This also means that the profilers, which use JVMTI, are version specific and their useful-
ness will therefore decline if no more regular development is done. The Call tree allows a
good timing overview with adaptable granularity but since its main goal is to show timing
information; its value is limited for solving our problems. The UML2 Class Interaction
gives an attractive diagram showing inherently a reasonable interaction view, but lacking in
support for concurrency. The lack of thread visualization is partly covered by the UML2
Thread Interaction view, but seeing as very little method communication and variable shar-
ing is shown it still lacks expressivity when it comes to concurrency. The Threads Visualizer
is a functional overview of the threads timing and lifespan, but provides too little granular-
ity for use in the understanding and debugging of multithreaded problems. The value of
the Thread Statistics view could be greatly increased if this information could be shown for
different moments in or during the execution.

2.7 Others

2.7.1 JaVis

JaVis [18] is a UML-based [20] visualization and debugging environment designed for de-
bugging concurrent Java programs. It uses the JDI for tracing and the UML CASE tool
for visualization. All visualization is done after termination of execution. Its focus is on
deadlock detection and debugging. It is non-invasive to the tested programs because the JDI
interface is used. Because of the UML CASE tool, no extra visualization features have been
added to the standard UML representation. The only interesting addition is a sort of crime
trail plot of the sequence diagram, which shows only the sequence of events leading to the
deadlock.

2.7.2 JAVAVIS

JAVAVIS [21] is a visualization tool to illustrate the running of small, uncomplicated Java
programs. It uses the JDI interface and a specially made Java graphical user interface.
JAVAVIS displays two representations of the test program. The first representation is a
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sequence diagram which shows a simplified UML diagram, which always starts with the
main method and branches other classes to the right. All methods, activations are shown
between classes in color. Different threads are shown in different colors. Showing overlap-
ping thread colors is done by drawing them side-by-side, widening the lifeline as it were.
JAVAVIS also shows an object diagram window showing the real-time content of the ob-
jects in the test-program. The tree-like visualization shows the branching of references from
container-objects to the contained instances for all method arguments, local variables and
objects.

2.8 Recap

With this related work chapter, we now have some examples of tools and methods to per-
form dynamic analysis and analyze executions. We specifically take notice of the ways of
using the sequence diagram other than those specified in UML. An example is the use of
thread coloring as seen in JThreadSpy, JACOT and JIVE.
The limitations of sequence diagrams are just as, if not more important. The use of alternate
visualizations in the described tools indicates that the sequence diagram that we focused on
is not omnipotent. These alternate visualizations also form an indication of what the users
of these tools want to see and what is lacking from the sequence diagram. Examples are: the
state diagram in JACOT, the many visualizations of TPTP and the Compact and Detailed
views of JIVE.
In the next chapter, we will further analyze the functionality of the tools and relate them to
the problems they are meant to solve. An in-depth evaluation of the tools and the FOT tool
created in the course of this research is included in section 5.2.
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Chapter 3

Analysis

In this chapter, a breakdown of the different approaches shown in the related work section
is presented and an evaluation of features and limitations in relation to our problems will
be given. It will also show a more in-depth description of the common tracing and repre-
sentation options that were only briefly mentioned. These approaches will be considered
for a new and improved thread representation tool. In this chapter, we will answer research
question RQ4 also by answering RQ2 and RQ3.

3.1 Problems

First, we make a summary of the major problems impeding thread comprehension found
in the related work, answering the research question (RQ2). These problems will be used
to evaluate whether the tracing and representation options in the next sections handle these
problems effectively. These problems will be also be used as a reference, so any subsequent
alternative solution can strive to solve these as well.
We subdivide the problems into two genres: Expressivity and Concurrency.

3.1.1 Expressivity

Object oriented code can be difficult to understand, but when concurrency support is neces-
sary, it can be even harder. The use or misuse of synchronization patterns cannot be solved
without having a good idea of how the implemented code functions. Dynamic analysis
can help display what is happening during a program execution [5]. But there are some
problems that need to be addressed in the visualization to ensure understandability of the
implementation, execution and the relation between these:

Non-determinism

The non-deterministic nature of threads scheduling causes differences between executions
makes it probable that subsequent executions of the same program will produce different
execution flows. Complicating the impression of the developer of what is really happening
during runtime.
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Detail and Complexity

A lot of structured information and details are necessary to understand something as com-
plex as an execution. Therefore, any created visualizations must contain enough detail to
capture and relay enough detailed information. It must filter, structure and display the ex-
ecution’s complex situation in to an as non-complicated picture as possible [25, 2]. The
more details gained from an execution the more granularity can be provided to the user.
This allows the user to gain more insight into the execution without having to return to the
implemented code.

Context and Environments

The application of procedural programming approaches to object oriented programs causes
problems. Objects in object oriented programming must be seen as separate environments
which execute their own and others code. Though a thread is in fact a sequentially executing
process, the interaction of other threads can cause problems. To get this right you need to
put visualizations in a proper context. So it becomes clear, what is running where with
which implementation and limitations.

Information Overload

When using any kind of visualization of a program code, structure or execution the amount
of information must be managed because otherwise the important information is not distin-
guishable from the other information. This can be done by structuring information, hiding
information or providing it on demand [25]. A balance must be found to insure there is not
too much information nor to little, this could cause a loss of context.

3.1.2 Concurrency

These are some of the main inherent concurrency problems that we define.

Race conditions

Race conditions are non-determinism problems that cause the output or effect of a calcula-
tion to be purely dependent on timing or interleaving. This can cause unpredictable behavior
if the program was written with a specific execution order in mind.

Deadlocks

When two or more processes are waiting for each other to finish their work, this is called a
deadlock situation. This situation can freeze or stop a program.

Starvation and Dormancy

When a process gets no resources or execution time, compared to other processes this is
called starvation. When a process is inactive for too long for any reason it is called dor-
mancy.
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Synchronization

The use of synchronization constructs and patterns are an integral part of concurrent pro-
gramming. Synchronization paradigms are usually explained and shown in a very abstract
way, which allow for their application in a wide range of situations. These situations are
described in patterns so they can be directly applied to common problems. This causes
standard pattern based solutions, to not always be applicable to novel situations. Use of
synchronization to solve misconstrued problems can cause abuse or overuse of synchro-
nization constructs, resulting in a slower and less predictable execution.

3.2 Tracing options

Here we discuss the different methods for gathering execution information from the Java
Virtual Machine [30] environment and the executions that run within.

3.2.1 Java Platform Debugger Architecture

The Java Platform Debugger Architecture1 (JPDA) is a debugging architecture that allows
tool developers to easily create cross platform debugger applications [23]. JPDA consists
of three layers:

• JVM-TI Java VM Tool Interface

• JDWP Java Debug Wire Protocol

• JDI Java Debug Interface

Figure 3.1: Java Platform Debugger Architecture.

3.2.2 JVM-TI

JVM-TI2 is a native API which allows native libraries to capture and control a VM [22, 24].
Binary programs implementing these libraries are often called Agents and they are often

1JPDA: http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html
2JVMTI: http://java.sun.com/developer/technicalArticles/J2SE/jvm ti
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used for profiling and tracing of programs. In earlier Java Development Kit (JDK) ver-
sions, the Agents would use the Java Native Interface (JNI) with the JVM Debug Interface
(JVMDI) for debugging and or the JVM Profiling Interface for profiling. While these tech-
niques are still mentioned in related work, both JVMDI and JVMPI are removed from
current and future JDKs.

Instrumenting Using the JVMTI an agent can instrument the binary files, to change them
before they enter the VM. The code that is introduced can take control of the VM during
runtime and for example write trace information about the ongoing execution [30]. The
advantages of using such an agent are usually speed related. Since all that is run in the VM
is native code and the only overhead introduced is the outputting of logging information,
the slow-down is relatively minor in relation to other tracing or profiling methods. This
way of tracing requires some code to read and write binary class files, because if the files
cannot be read they cannot be altered. A usually third-party created binary evaluator library
is used to convert the classes to a legible format and converts it back after the changes are
implemented. Agents are usually are not written in Java because they need to be compiled
to binary. This way of changing code is not foolproof and the way the subject program
reacts to the injected code can vary, causing debugging to become more problematic.

Figure 3.2: JVMTI operation using static instrumentation.

With static instrumentation, code is added prior to execution. Usually a jar file is se-
lected that needs to be instrumented and the code is injected before the test program’s ex-
ecution. After the new jar file is created the new code is run when this new jar is run. The
only way to undo this kind of instrumentation is to recompile or reuse the original jar file.
With dynamic instrumentation, classes are instrumented in-memory without modifying data
on disk. This allows for quick changes to the code without having to recompile or re-
instrument files. Its influence on the normal operation of the program is less invasive. To
cleanup, any changes made to the original program the instrumented code can simply be
unloaded.

Library Events Other ways of getting trace information using agents without injecting
code is by the use of JVM-TI and JNI libraries to request and capture events from the
VM. These events can vary from method entry and exit to thread CPU timer information.
With these events, other information can be accessed like field values at that time. This
information can also be outputted as trace logs. The advantage is that the subject code is
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not altered in any way. The disadvantage is that it causes a slowdown for each type of event
you subscribe too.

Figure 3.3: JVMTI operation using library events.

3.2.3 Java Debug Wire Protocol

JDWP is an XML based communication protocol that allows communication between the
debugger and debug gee. Though communication can be established from any xml-based
sender, this protocol is geared towards use in combination with the Java Debug Interface.
There is little specification for use without JDI.

3.2.4 Java Debug Interface

The JDI is a high-level Java language interface for using the JDWP to communicate with
the JVM-TI enabled VM. It is built so that tool developers can easily write debugger ap-
plications. The JDI API features many but not all of the JVM-TI functions and supplies
direct reference objects to the VM. This means that variables and their changes can be im-
mediately observed in any Java tracing or debugging application but this also means that
references are transient in nature like in lower-level programming languages like C and
C++. All references to an inactive VM therefore revert to null. For any post-mortem traces
or analysis, an alternative storage is necessary. JDI slows down execution considerably due
to communication overhead and VM operations. The communication from the JDI-enabled
application and the VM is done over TCP socket communication or through shared memory.

3.3 Representation options

In this section, we will answer the research question of; what kinds of operations are the
current representations of threads useful for (RQ3). We will focus on sequence diagrams,
we will then discuss alternative diagrams that add structure lacking from sequence diagrams.
We will then make a list of ways to recreate these diagrams and evaluate them for possible
use in this thesis’ alternative solution.
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3.3.1 Sequence diagrams

We start with solutions the basic UML sequence diagram brings and enumerate the most
prominent additions and advancements in sequence diagrams for the visualization of con-
currency. We analyze why they are employed and what problems they are meant to solve.

UML Sequence Diagram

When an execution trace is drawn in a sequence diagram, interaction between objects is
shown. This allows the developer to get an impression of the non-determinism of his pro-
gram, by comparing the differences in message interleaving between execution traces. This
helps the developer to cut through some of the complexity of object oriented concurrent
code and ease the debugging process. Because we use dynamic analysis, only the current
execution path and its interleaving are shown. This counteracts information overflow that
would occur if all possible interactions extrapolated from static analysis would be shown.

Colored threads

The coloring of thread paths have been applied in JThreadSpy, JACOT and JIVE. This
coloring shows the execution of the thread laid over the activations of the lifelines and the
messages between the objects. Showing threads this way, can better show non-determinism
and the resulting concurrency problems like; race conditions, starvation and dormancy. For
example, when a thread is not seen enough it may indicate starvation if a thread is not seen
at all it may be dormant.

Timing info

The addition of timing information to the sequence diagram as has been shown in JThread-
Spy, UML2.4 and TPTP makes noticing starvation and dormancy more noticeable. When a
process takes a lot of time to finish a task, thereby depriving other processes the resources
to complete their tasks, this can be more-easily seen.

Variable granularity

Many approaches to vary granularity have been seen in JThreadSpy, JRET and TPTP. The
main reason for these approaches is to avoid information overload, unnecessary complexity
and to increase the amount of useful information at the same time. JThreadSpy, TPTP
and JIVE all use zooming functionality to allow for the display of larger more intricate
sequence diagrams. JRET focuses on the use of abstractions to refine and compress the
amount of information based on patterns. JACOT, UML and JIVE also recognize the need
for difference in granularity but try to solve this by showing multiple representations of the
same executions in different diagrams.
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Alternative visualization

Alternative visualizations as seen in JACOT, Jive, UML and TPTP, show some need for
a different perspective or macro view. Using sequence diagrams in conjunction with an
overview, allows for the use of more concise sequence diagrams preventing information
overload by delegating the comprehension of the main structure to an overview diagram.
This helps to make diagrams simpler because a lot of data that is not necessary for the
current analysis can be hidden. Only what is in focus will be shown, what is out of focus is
defined elsewhere.

Added indicators and icons

The use of extra indicators and icons is useful in sequence diagrams. The use in JThreadSpy
is very expressive in its display of concurrent behavior. Showing the contestation of locks
is intuitive and novel, though it requires some extra legend to understand the icons. Its
expressivity towards synchronization allows for debugging more concurrency problems,
like deadlocks and starvation.

3.3.2 Diagram Libraries

There are multiple options for displaying sequence diagrams in a dynamic analysis tool.

Image generator

As shown in JRET there are sequence diagram generators that can produce a single sequence
diagram image that can be displayed. Examples of these are SEQUENCE and SDEDIT.
The advantages of these tools are the ease of integration with the tool and the simplification
of the graphical user interface. The disadvantages are; the fact that the granularity of the
diagram becomes more fixed, the lack of user interaction options causes the amount of
elaborative information that can be requested to be lower.

Internal GUI

Producing a custom graphical user interface for the tool was done in JACOT, JThreadSpy
and JAVAVIS. This GUI approach gives the most control over what is displayed. The de-
velopment of the sequence diagram drawing takes more work but can be as expressive as
desired. Any interaction with the diagram can be programmed but JACOT and JThreadSpy
did not implement further interaction. Timing information, custom icons, etc. can be added
at will. This way of generating sequence diagrams makes it harder for reuse.

Display library

The use of a visual library to generate the sequence diagram can be seen in TPTP. It has a
separate package generating and displaying sequence diagrams in eclipse. It allows other
developers to use the diagram generators in their tools. The expressivity of this library
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allows for little addition in the way of new sequence diagram operation icons or thread
coloring.

UML suite

Existing UML development and display suites can be adapted to generate sequence and
other UML based diagrams as mentioned with JaVis. It works the same way as the image
generator. A specification is generated by the tool that can be viewed in an UML suite. No
more information can therefore be requested from the diagram through interaction than the
information contained within the specification. The use of the tool would require the UML
suite to be present for viewing the output.
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Chapter 4

Field of Threads (FOT)

In this chapter we describe the Field of Threads (FOT) tool. It is based on the lessons
learned from the previous chapter Analysis. We start with the design choices and objectives
for this tool and then we discuss the tracer and finally the visualizations. The FOT tool is a
plugin for the eclipse development platform written in native Java. It can trace any Java ap-
plication local or remote through the VM debug interface. FOT can generate an interactive
field oriented sequence diagram and a tree-table based, field overview interaction analysis.

When debugging an object oriented application in Java, the debugger usually suffices to
resolve the problem. However, when facing a concurrency-based problem, the problem be-
comes harder to grasp using regular stepping debugging. The non-determinism makes it so
that one pass-through is not enough anymore to grasp the events leading up to a faulty situa-
tion. Most visualizations focus on objects that interact with each other. Others show threads
and what fields they contain. Although these visualizations present the necessary informa-
tion in a structured and comprehensible way, it remains up to the developer to remember
causes and effects, recompose the situation and find a solution. This solution is often the
application of a pattern. Mutual exclusion, semaphores, synchronization and other concur-
rency patterns reason from one or more variables being read and modified by threads. They
are not based on objects with threads running through them, represented by thread-added
sequence diagrams, and they are not based on threads, containing objects, containing fields,
represented by a thread inspector.

What if we can represent the situation the other way around? Lift out the variable or field
from which the value is not what it‘s supposed to be and map the interactions that shaped
the value to its current value in sequence. This would create a diagram closer to the in-mind
representation of the problem. The transformation of the visualization would show, not the
thread containing fields, but the field with the threads that shape them. We have now cen-
tralized the field that should be the starting point. From this idea comes the name of this
tool: Field of Threads.
The old relation between fields and threads can be seen for example in the TPTP Thread
Visualizer [7] or Call Tree [B.3.1]. A generic tree representation of this relation is shown
in table 4.1. We change the relation to field centered one shown in table 4.2.
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-Thread
+> -Object 1

+> Field 1
+Thread 2
+Thread 3

Table 4.1: TPTP Call Tree Relation.

-Field 1
+> -Thread 1

-Thread 2
+Field 2
+Field 3

Table 4.2: FOT Object Tree Relation.

4.1 Overview

The objectives and choices that were made for the development of the FOT-tool are de-
scribed here:

OBJ1: Dynamically trace any concurrent Java programs.

OBJ2: Visualize the execution trace in a way understandable for any developer.

OBJ3: Add a new visualization that would show the field centered idea.

FOT is a Java only tool: It is written in Java and can trace any Java program running
inside a VM with a debug interface. FOT uses JDI as a tracer which conforms to the
following requirements:

• There is no change to the code of the traced application.

• JDI supports remote debugging.

• Any JDI-based tracer is supported from JDK 1.5 onwards.

Some limitations of the use of JDI are:

• JDI cannot read information about non test-classes, like method names from system
libraries, due to Java security restrictions.

• The traced application will experience a significant slowdown during execution.
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FOT is built as an eclipse plugin [6]. Eclipse was used to facilitate the visualization of
the generated diagrams and to make it easier to use FOT alongside a regular debugger.

FOT generates its visualizations post-mortem, meaning the visualizations are generated
after the test application has run and stopped. FOT will not use back stepping function-
ality to step through the execution in reverse order. This functionality would limit the use
on concurrent programs because stepping back would be problematic to non-deterministic
multithreaded applications [15]. Figure 4.1 provides a flow diagram of the workings of
FOT.
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Figure 4.1: FOT Flow Diagram.

The tool can connect to any running VM with the debug interface enabled listening
to a TCP/IP port. When a program is operating or waiting, depending on the execution
arguments specified to the VM, FOT can connect via the debug port. It does not matter
whether the test program or any other Java application is running inside the target VM.
Once connected the tracer receives trace data until the VM stops. This tracing data is stored
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in memory into an execution trace. This trace is then analyzed by an analyzer filtering and
structuring the data into an interaction table. This table is then used to show the Tree Table
View. When a field is selected in the Tree Table View, a sequence diagram is generated and
shown in the Sequence Diagram View. The mentioned Views are tabs in the eclipse platform
that can be activated and disabled at will.

4.2 Visualization

FOT features two visualizations as mentioned before. The Table Tree view and the Sequence
diagram view. The Field centered concept as described earlier is applied to the two views.
The Table Tree view is meant to give an overview of fields of interest and the sequence
diagram view is meant to show the interactions for analyses. A global overview of the
visualizations and controls is also included in appendix B.4.1.

4.2.1 Table Tree view

The Table Tree shows a table with on the columns the threads that run in the traced VM.

Figure 4.2: FOT Table Tree view.

On the rows are the fields nested in a tree parent folder with the name of the class in
which the field was defined. The class folders can be collapsed like the folder Unnamed is
in the example figure 4.3. The example shows the execution trace of the example program
Counter also shown in appendix B. Its function is to use multiple threads, in this case three,
to count from one to ten. The highlighted field in figure 4.2 is the incremented integer field
named value. The threads, shown as columns, are the main thread and three threads in
thread pool 1. The table cells in the thread columns show a string of values in the format of
“r:# w:# c:#”indicating the number of reads, writes and collisions, the thread has done on
the field. The collisions indicate the situation that during a read or write another thread is
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waiting for other threads to finish.

These collisions can be detected because FOT checks if a thread is in an objects wait
list. Every time a value is read or changed, an object (containing the field that has a value) is
temporarily owned by a thread. Only the thread temporarily owning the object can change
or read the value of a field.
If for example a thread T A tries to access a field F while a thread T B is working with field
F, thread T A ends up in field F 1’s wait list. Here thread T A and perhaps other threads
await their turn to use and temporarily own field F.
This construction is built into Java to prevent any field from being read by one thread while
being written to by another thread, or to prevent two threads from writing to the same field
at the same time.
Buy this only works when a field is protected by a monitor through use of a mutex or syn-
chronization paradigm or construction. This construction works on an object level, meaning
that a thread is waiting in a wait set of an object, not in a wait set of a field. This causes FOT
to show a waiting thread (or collision as it is called in FOT) when a thread is waiting for the
object containing the field. This distinction of fields and objects can cause false positives,
but it was the only way to observe this behavior provided by the VM.
The reason why waiting threads are called collisions or ”c” in FOT is because the ”w” from
waiting was already taken by writing. There are different ways for a thread to be waiting,
for example, timed waits, but this behavior is not seen as a collision because that thread will
not be registered in the wait set of the object in question.

When observing the highlighted field value (in the top left of figure 4.2) it becomes ap-
parent that all three threads interact with the value, but no collisions occur. When a collision
does occur, the whole field row of the table is highlighted in gray.
The four parent folders show the three super classes Counter.java, Test.java and the native
class Throwable.java that only operates on the main class. The fourth Unnamed folder con-
tains all the library and native binary classes from which the tracer could not obtain the
un-compiled code reference, location or filename. The list of binary fields that are neces-
sary for background processes and VM operation are often large in number and placed in
the Unnamed folder. An example of these fields is shown in appendix B.4.4. The Unnamed
folder is shown highlighted in gray, indicating it contains a field with collisions in its exe-
cution.
When right clicking on a field a context menu is shown containing three options. This is
shown in figure 4.3.
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Figure 4.3: Table Tree View Context Menu.

The top option opens the info option, figure 4.4, showing more background info on the
field‘s location, type, name and numerical hash. The other options Analyze and Config,
start and configure a trace operation and correspond to the same icons in the top right of the
table tree view of figure 4.2. The function will be described in more detail in the operations
section.

Figure 4.4: Table Tree View Value Info.

If a class super-element with a folder icon is selected, only its name is shown. Any field
can be double-clicked to show a sequence diagram representation of the thread interaction
with the selected field in an open sequence diagram view.

4.2.2 Sequence Diagram View

The Sequence Diagram view shows a generated sequence diagram of the field that was
double-clicked last in the Table Tree View. Figure 4.5 shows the generated sequence dia-
gram related to the value field shown highlighted in the table tree view of Figure 4.2.
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Figure 4.5: FOT Sequence Diagram view.

This sequence diagram is also based on the field-centered approach of FOT. At the top in
blue, the selected field name is shown. Below that is the field in question, in this case value.
The field is always shown on the left side of the sequence diagram and what would be the

lifeline’s object name shows the field name and a red ”F” ( ) on the top left side. The other
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lifelines are the threads that were also shown in the Table Tree View indicated by an icon
with five arrows ( ). The messages in this sequence diagram only run between the field
and one of the threads. A message from the field to a thread indicates a read operation and
a message from a thread to a field indicates a write operation. Each message has a written
description above it. This description describes in-order; the class in which the method
causing the message is defined, the line-number on which it is defined and the name of the
method followed by ”()”. Arguments and return values of the method are not shown. When
a message is selected, a more verbose version of this description is shown as in figure 4.6.

Figure 4.6: Sequence Diagram View Message Description.

When a mouse-over operation is performed on a message, a tooltip balloon is shown
with the method description and the timestamp of when that message has occurred. To the
right of the field lifeline, for each message the type and value of the field is shown. An
example of this type and value representation is: “int: 3“ as visible on the left side, near the
field lifeline in figure 4.7. However, this value is displayed only if that value comes from a
recognized simple field object.

Timing information is shown in a vertical bar to the left of the diagram, also in figure 4.7.
This bar shows the delay between two messages. If the relative delay is large, it shows a
redder color on the bar than when the delay is small. When this bar is selected, the timing
color is shown overlapped with the lifeline and the number of nanosecond delay and relative
range is displayed.
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Figure 4.7: Sequence Diagram Relative timings.

The diagram can be scrolled and zoomed by use of the scrollbars and the loop icons
at the top-right of the Thread Sequence Diagram view. There is also an overview zoom
function visible when + icon at the bottom-right corner of the view is selected. At the top
right there are also some other options to reset the zoom, show the node stop or end and to
redefine the timing scale for the timing bar. The sequence diagram generated is the same
as that from TPTP [7]. This plugin view has been reverse-engineered by the Linux Tool
Project1 to a plugin called TMF [1]. This plugin allows generation of the sequence diagrams
seen in FOT though a loader interface. An example of the generation code is shown in listing
B.4.2. The TMF plugin also adds preferences to the standard eclipse window preferences
shown in Figure 4.8 customizing of colors and sizes of the sequence diagram.

1LTP: http://eclipse.org/linuxtools/
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Figure 4.8: Sequence Diagram Preferences Dialog.

4.2.3 Operation

To operate the FOT plugin, it must be installed on the eclipse platform [7]. Then a test
program must be run with the debug interface enabled. This can be done by adding a
line to the VM-arguments of the Java applications run configuration: -Xdebug -Xrunjdwp :
transport = t socket, address = 8000, server = y, suspend = y. Here the suspend flag is set
to ”yes” which means that the application starts running only when FOT is connected to the
VM. The debug-gee application can reside in the same environment as FOT or any other
environment, as long as a socket connection can be made, on port 8000 in this case. Port
8000 is the default port for FOT. This can be modified in the configuration dialog accessible
by the round gray icon on the top-left side of the Table Tree view user bar, visible in figure
4.9. It is also visible in the context-menu of the field‘s column. The configuration dialog
also allows changing the connection address and setting filters to prevent some native classes
from appearing in the trace. Standard it filters out the sun.* and java.* native libraries. In
the counter example, this effectively hides the Java garbage collection thread.
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Figure 4.9: FOT Configuration Dialog.

The last green round icon with the play-triangle ( ) in it starts the FOT tool visible in
the Table View from figure 4.2. This connects FOT on the specified port through the JDWP
[23] described in: 3.2.3 to the target VM. The plugin will display a progress dialog while the
test application is running. After the test application is stopped, the Table Tree is populated.

4.3 Structure

FOT uses the Java Debug Interface to generate trace events. When FOTs tracer connects to
a VM it requests a list on any fields specified in the program. Then it requests all those fields
to generate an event when they are either accessed or changed. Such a request is called a
watch-point. The VM is also ordered to request the same of any field registered thereafter.
The only events stored by the VM tracer are the
com.sun.jdi.event.AccessWatchpointEvent and the
com.sun.jdi.event.ModificationWatchpointEvent. These events contain references to a lot
of information within the VM at that time. The events are handled immediately so the
variables do not change. It is very important to handle and store events and the relevant
information from these events quickly because the runtime inside the VM-environment is
constantly changing. Any information referenced in a VM can be dereferenced or changed
quickly. All events and the extracted data are stored in an execution trace data structure.
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Figure 4.10: FOT Class Diagram.

The class diagram of FOT in figure 4.10, shows the classes in the order of the flow
diagram from left to right. On the top are the main FOT activation classes. The Activator
class starts the plugin and the Tracer class handles the main flow of a trace. Starting with
the VMonitor and the VMAcquirer, the VMAcquirer connects the tracer to the VM JDI in-
terface on a specified port and hands this connection over to the VMonitor. The VMonitor
runs a separate thread that registers the services, receives and passes on the events. The
events are handled and stored in the Program class together with all other trace information
for this single program trace.
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Figure 4.11: FOT Trace Data Structure.

The data structure created is shown in figure 4.11. It shows how Program creates a
MonitorEvent from a traced event. This MonitorEvent is stored in the threads object. This
object contains a hash map of the fields within the program. These fields are all associated
with lists of threads. These threads represent the threads that interact with the fields during
the runtime of the test program. Within the threads in the threadLists a list of the interacting
MonitorEvents is kept. Therefore, FOT now knows what read and write events a thread has
made with each field.

In the FOT class diagram an Analyzer class is used to take the threads-object from the Pro-
gram-class containing the structured event traces and generates parent and RowContainer
classes. These classes make up a tree-structure visible in the TreeTableView abstracted in
figure 4.12.
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Figure 4.12: FOT View Data Structure.

Every RowContainer represents a field. A ParentClass represents the class in which that
field was defined. To form a table the RowContainer class contains a list of tableEntry ob-
jects that relate to the table elements shown in the TreeTableView. The right most columns
of classes are the two different views seen in the FOT user interface. The TreeTableView dis-
plays the data structure generated by the analyzer. This class also initiates the entire flow of
execution by calling the Tracer class, because it contains the user interface controls. When
a row is double-clicked, the associated RowContainer is sent to the DiagramLoader, which
reads the event interleaving and generates a sequence diagram in the sequence diagram
view.
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Chapter 5

Evaluation

In this chapter, we will evaluate the effectiveness of the FOT tool in different ways. The
goal is to show how FOT handles some of the problems found in chapter 3. In the next
section, we will expose the FOT tool to some test scenarios. Then a visual and functional
comparison is made to the tools mentioned in the related work chapter 2.

Table 5.1 shows the case scenario names and which problems are handled where.

Case 1 Case 2 Comparison

3.1.1 Expressivity — — —
Non-determinism X X
Detail and Complexity X
Context and Environments X
Information Overload X
3.1.2 Concurrency — — —
Race Conditions X X
Deadlocks X X
Starvation and Dormancy X X
Synchronization X X

Table 5.1: Case Problem Matchup.

5.1 Case Study

We will now show how FOT displays different example scenarios.
The system setup for running all the examples for FOT are the following:
FOT version 1.0 runs on Eclipse IDE, Java Developers edition.
Version: Indigo Service Release 2. Build id: 20120216-1857.
In a plugin resource execution environment with 10Gb ram maximum available for the FOT
runtime environment. The JDK used for execution and compilation is jdk1.6.0 25.

45



5. EVALUATION

The workstation uses two Intel Xenon CPU E5345 @ 2.33GHz, 2327 Mhz, 4 Core(s), 4
Logical Processor(s) with 16Gb of memory. Running on x64 Microsoft Windows 7 profes-
sional.

5.1.1 Case 1 Race Condition

Scenario

This case is about the visualization of non-determinism and race conditions.
For this demonstration, we consider a simple classic counter problem.

Test program

The test program uses three threads to in sequence read a value, increase the value by one
and write the value back. This is of course not done in an atomic way, causing the eventual
count to become not 5*3=15 but some other value. The program itself is listed in appendix
C.1. The output of the program is visible in listing 5.1.

Listing 5.1: Case 1 test program Race Conditions output.

It shows 15 lines generated by the threads with a count indicating the current number
”count = #” and a thread number to see which thread produced it ”Added by: #”. As you
can see the count reaches 4 in the last line, where it should have been 15.

Applying FOT

Of course, this effect is caused by the interleaving of the commands: read, increase and
write. Because of the non-deterministic interleaving if the different threads the order can
be changed in to read, read, increase, increase, write, write, or any order of these, resulting
in unpredictable end totals. In figure 5.1 we see the sequence diagram output of the count
field containing the counted total.
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Figure 5.1: FOT sequence diagram of Case 1 Race Conditions.
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We can see exactly what read and write interleaving the test program has executed to
arrive at the final number. FOT offers an understandable overview of non-deterministic
operations and a different perspective on inspecting executions for some atomicity problems
and race conditions.

5.1.2 Case 2 Dining Philosophers

The second case is about the visualization of the problems: deadlock, starvation and dor-
mancy.

Scenario

For this demonstration, we consider the famous Dining Philosophers problem. Scenario: A
table holds five ohashi (chopsticks) and has food in the center.

Figure 5.2: Dining philosophers scenario.

Five philosophers are seated around the table. Each philosopher eats for a while, leaves
the table to think and comes back to eat, and so on. There are five philosophers and just
as many hashi, but each philosopher needs two hashi to be able to eat, one from his left
and right. The main problem is that without some coordination or protocol the philosophers
could starve.

• All philosophers could hold a chopstick to their left creating a deadlock situation in
which all philosophers will starve.

• When one (or more) of the philosophers gets an unfairly small amount of opportuni-
ties to eat, causing starvation due to dormancy.

Test Program

Here our aim is not to solve the dining philosopher problem by modifying it so the problems
will not occur, but to show how the symptoms can be seen in the execution of an implemen-
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tation of this problem by use of the FOT tool. The complete implementation can be found
in appendix C.2. A section of the code is shown in listing 5.2. The dining philosophers test
program we will use has three classes: a Table class which is the main class that creates all
objects and sets the scenario. An Ohashi class representing each of the five chopsticks on
the table.

Listing 5.2: Case 2 test program sections Class Ohashi and Philosopher

And a Philosopher class representing the philosophers and containing the threads per-
forming the task of a philosopher in different phases. These phases are; thinking (phase
0); hungry (phase 1); got right hashi (phase 2); eating (phase 3); got left hashi (phase 4).
The phases are used in the output of the program. An example of the output is given in the
listing 5.3.
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Listing 5.3: Case 2 test program Dining Philosophers output.

Each thread starts announcing ”Reservation for ID: #” including their id number. The
output gives on one line a simple status number for every philosopher, every time a philoso-
pher changes states. At line 18, lines were emitted. The last four lines show where the
program enters a deadlock state. All the philosophers always end up in the got right hashi
state. Therefore, the last numbered row will show all twos. This is the deadlock state that
we wish to visualize. To spot this deadlock state more easily, a ”blocked” announcement
was added instead of the rows of all twos.

Applying FOT

The tree table diagram figure 5.3, from the trace output from FOT shows all the fields from
the Dining Philosophers example.
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Figure 5.3: Case 2 FOT Tree Table.

The reason why the threads 3 and 4 indicated above are not shown in order, even though
they were created in order, is due to the non-deterministic nature of the execution and there-
fore also the tracer. Since each philosopher contains a thread, the threads Thread-0 through
Thread-4 can be thought of as the five philosophers synonymously.

Deadlock. The test program always enters the deadlock state where all philosophers re-
port state 2. You may expect the field left to be highlighted as a collision field due to all the
philosophers having their right hashi and waiting on their left. However, the waiting thread
is inactive it will read nor write to this value. Therefore, we will not see any collision here.
Normally the lack of activity in the sequence diagrams should indicate the problem, and any
collision can be seen during interaction with other fields.
To show the deadlock more easily a line was added to the main thread to read and write
from every thread: for(Ohashi h :ohashi)if(h.isTaken() == true)h.tst=0; . This causes the
waiting threads to be shown in the sequence diagram in figure 5.4, in the form of activation
bars on each thread’s lifeline in sequence.

51



5. EVALUATION

Figure 5.4: Case 2 deadlock scenario FOT sequence diagram ”taken” field.

This figure 5.4 shows the taken field reading from every thread in sequence and reveal-
ing the waiting threads. This effect can also be observed if you were to display all writes to
the ”tst” field in the FOT sequence diagram view.

Dormancy. Deadlock is spotted in a sequence diagram by lack of interaction, indicating
dormancy of the execution. Lack of interaction in this case means, a lack of arrows from or
to the dormant or deadlocked thread, indicating that the thread does not read from or write
to the observed field. Dormancy or starvation of a single thread is also easy to spot, by lack
of interaction with that specific thread. Though were to see this depends upon the program
of course. Figure 5.5 shows the state field from Table.java.

Figure 5.5: Case 2 dormancy scenario FOT sequence diagram ”state” field.

Field state is updated every time a philosopher goes through and reports a status change.
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Observing this field gives an overview of the status changes of every philosopher and their
waiting. We can see generally two kinds of messages: setPhil() and report. setPhil updates
the status and report prints these changes onto the console. setphil is shown as a read (a
message from the field to the thread) because it might return an exception. Thread 3, the
thread for philosopher 3, waits for a long time for its turn to change states (eat). So if this
situation persists it indicates starvation in all senses of the word and might warrant further
investigation if this is not normal behavior. Of course, in our example if we would have
scrolled further down we would have seen this thread getting its turn.

5.2 Functional Comparison

We evaluate the tools we mentioned in Releated Work, section 2. We take the problems
mentioned in the Analysis, section 3 and evaluate them next to the FOT tool for their solu-
tion or lack thereof. First in table 5.2 we show an overview of the tools and their evaluations.
The evaluation for each tool is represented by an O, A or X.
The O indicates that the tool supports a solution for the posed problem.
The A indicates that though there is a solution it is supported by introducing a diagram or
visualization other than the sequence diagram.
The X indicates that the tool does not solve or support the posed problem according to the
set of criteria.

FOT UML JThreadSpy JACOT JIVE JRET TPTP Others

3.1.1 Expressivity — — — — — — — —
Non-Determinism O X O O A O O O
Detail and Complexity O X O A A X A X
Context and Environments A A X X A X A X
Information Overload O X X X A O O X
3.1.2 Concurrency — — — — — — — —
Race Conditions O X O O O X O O
Deadlocks O X O A A X X O
Starvation and Dormancy O X O O O X O X
Synchronization O X O A X X X X

Table 5.2: Functional Comparison table.

The reason why we differentiate between the O and the A is: The solution with an O
indicates that the criteria were solved by enhancing the sequence diagram. The A indicates
that it was solved in a different visualization. As we have posed earlier, a sequence diagram
is a low-level high detail tool. Without alternative diagrams, it only provides a limited but
clear part of a larger puzzle. This is why ”Context and Environments” are only solved by
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alternative visualization solutions (A). The alternative visualizations mentioned are impor-
tant for they may lead to superior solutions to problems a sequence diagram is not yet built
to solve and show concurrency information not yet integrated in FOT.
Below we discuss the solutions, how FOT solves these problems and the criteria for evalu-
ation. We compare this to UML, which serves as our baseline.

Non-Determinism

Non-deterministic effects of a multithreaded program can only be predicted up to a certain
point in a static way. The only way to simulate the actual effects of a program is to trace
and execute the program and see what it does, in other words, through use of dynamic anal-
ysis [5]. But seeing one execution of the target program does not show non-determinism.
The only way to see this is to compare multiple executions and spot relevant differences.
This can often be achieved by re-running the execution. Proper use of a sequence dia-
gram can already show a lot about the method execution interleaving and by extension
non-determinism. Non-determinism can be noticed by comparing the sequence diagrams
generated by different executions. The differences in execution order and or method interac-
tion while executing the same scenario show the non-deterministic nature of the executions.
To show enough differences between the executions to solve non-determinism problems a
diagram needs to show a certain level of detail.
Criteria:

• The tool must perform dynamic analysis.
• The tool must allow the execution to be re-run.
• The tool must show enough detail so that differences between executions can be spot-

ted.

FOT has detail comparable on the field level. It also shows how the execution comes
to each of the values. Since the UML specification was just meant for static design, it has
no support for non-determinism. JThreadSpy, JRET, Others, JACOT, TPTP and the others
show enough detail to be comparable between the different executions, even though they
were not all built for this type of comparison. Though JIVE works like the aforementioned
tools, its focus on state stepping and variation in views, makes the sequence diagram simpler
by comparison. This makes it more difficult to compare executions at the sequence diagram
level, but makes it easier to compare at the object and variable level.

Detail

The tool must provide enough detail about the execution environment to understand what
has occurred during execution. The UML1.0 specification is only designed as a high-level
design specification and as such does not support any information that pertains to the execu-
tion. More added low-level concurrency specific or trace-oriented information could picture
the scenario in better detail. The provided information cannot be too transient because this
would prevent one execution from being compared to another.
By transient information, we mean for example that the tracing information is not retained
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for longer than the state that produces this information persists in the VM, like JACOT’s
state diagram. Criteria:

• More detail needs to be shown then the standard UML 1.0 sequence diagram.
• Insight into lower level details of the programs execution useful for understanding or

debugging of the program.
• Providing more than transient information during the execution tracing that cannot be

compared to other executions.

FOT and JThreadSpy add thread-status and concurrency related information to the se-
quence diagram. JACOT, JIVE and TPTP add various alternative views to show extra de-
tailed information. Particularly JThreadSpy ads a lot of concurrency details to one sequence
diagram in the form of concurrency oriented indication icons. TPTP shows a lot of different
detail information through multiple visualizations.

Context

The sequence diagram is a powerful but high detail tool, and because of that high detail,
the information needs to be put into context by another view to be interpreted correctly.
Referenceable naming must be used to be able to link the high level, low detail, abstract
diagram to the low level, high detail execution and the other representations.
Criteria:

• Does the other view provide the references, naming and scoping needed to put the
visualized elements in a proper context?

• Can the information provided by sequence diagrams and other views be linked to the
implemented code?

The UML specification defines many diagrams that can be used to define context on
different levels. Nevertheless, in the context of execution and automatic generation they are
rarely useful for understanding concurrency. JThreadSpy focusses specifically on smaller
scenarios and analyzing them with higher detail, choosing not to use any alternative visu-
alization. FOT strives to work on much the same level of detail, but uses in the interest of
the limiting of information the Table View. JACOT does use an alternative view but chooses
to go more in detail with it instead of less, probably with the same intention as JThread-
Spy. JIVE and TPTP give many different views that can provide integrated on-demand
information on different levels ensuring good context awareness.

Information Overload

Much data can be generated by tracing a program execution. Displaying all this information
will not improve understanding of what is happening, unless only the necessary informa-
tion is presented. Information must be managed so not to overwhelm the user, it must be
structured or provided when requested [25].
Criteria:

• Is information provided as needed?
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• Can excess information be hidden?
• Can the visualization be shown on different levels of granularity?
• Is the information structured in a human readable way?

JRET was specifically designed to limit information and to display sequence diagrams
as concise as possible, but more concise is not always better. JRETs compatibility with
concurrent analyses is limited by the automations that make the condensing of information
possible. FOT hides the information in a structure to ensure that the information can be
requested when needed. JIVE and TPTP prevent information overload by spreading it over
different views and linking them together.

Race Conditions

By use of a sequence diagram, race conditions can be observed, when using multiple ex-
ecutions. Like with non-determinism, when you compare generated sequence diagrams
between different executions, you can spot the difference in interleavings. If these interleav-
ings cause the output of the execution to change, you have a race condition. The diagram
should enable deducing the problem causing the race condition. The sequence diagram must
differentiate between the different threads of execution to discern which threads partake in
the race condition.
Criteria:

• Must see the difference between the threads of operation and what they are doing.
• The order of their operations must be visible.

All tools except for UML and JRET can show sequence diagrams that can differentiate
between threads enough to show the effects of race conditions on the operation interleav-
ings. To successfully diagnose a race condition, checking the in-and-output of the field
in question may also be necessary. This function is included in FOT in the form of la-
bels showing the value of simple types along the field’s lifeline. This functionality is not a
requirement in our evaluation because there are other ways to monitor in-and-outputs.

Deadlocks

Dormancy can be seen by use of a sequence diagram that includes thread information, but
relating this to a deadlock requires more information.
Criteria:

• Can deadlocks be properly traced?
• Can deadlocks be visualized?
• Can the cause behind the deadlocks be discovered and diagnosed?

JThreadSpy features the most extensive augmentation to the sequence diagram for show-
ing synchronization and locking mechanisms. It shows the most verbose way to display a
deadlock situation in a sequence diagram. FOT can show the threads that are waiting for
the same objects thus showing the deadlock. The JaVis [21] tool in the others category is
specifically designed to detect deadlocks and display the so-called path of crime leading
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up to the deadlock in a sequence diagram. JACOT does much the same as FOT, indicating
the status of the threads through the life of the sequence diagram. Jive records every action
pertaining to the execution for forward and backward stepping analyses. Though Jive’s vi-
sualizations were not built to specifically show deadlocks, diagnosing the problem when a
deadlock occurs, is possible in a debugging kind of way.

Starvation and Dormancy

Starvation and dormancy can be visualized by a sequence diagram with thread information.
It is important that the balance between threads can be seen and for sections of the sequence
diagram, where the balance is disturbed a reference, back to the situation in the execution
can be made.
Criteria:

• Must see the difference between the threads of operation and what they are doing.
• Must see if the threads are operational.
• Must see frequency of operations of each thread.
• Can the cause behind the lack of operation be discovered and diagnosed?

FOT, JThreadSpy, JACOT and JIVE all support starvation and dormancy detection in
much the same way through thread support. TPTP has an extra sequence diagram with
a thread-centric perspective, and a thread visualizer to help with detecting starvation and
dormancy. The addition of timing information in FOT, TPTP and JThreadSpy helps with
finding and gauging starvation.

Synchronization

For solving deadlocks, dormancy and other problems added functionality pertaining to con-
currency can be useful.
Criteria:

• Must add concurrency or synchronization related information to the diagram.

JThreadSpy adds the most extensive monitor contestation information to its sequence
diagram. FOT adds only information about threads in waiting for object monitors. JACOT
adds more general thread status information to a separate state diagram.

5.3 Limitations

5.3.1 Related Works Selection

The included related works form the basis for the thesis and the resulting FOT tool. If
different works were selected for the analysis, the thesis could perhaps have had a different
result. It was not possible to include all available works in the related work, excluding all
possibility for bias or oversight, so a selection was made based on criteria ranking all the
works and selecting the top eight. The related work mentioned in this paper was selected
on basis of the following criteria:

57



5. EVALUATION

• The work had to involve or mention dynamic analysis as a method for acquiring
information.

• The work had to be oriented on or as closely related to concurrency as possible.
• The work had to be referenced by other work as much as possible, indicating the

importance of its content.
• Older works may have been included due to their importance, serving as a good basis

and comparison. Examples are UML and the works included in the ”Others” section.
• Newer works were selected on the basis of their innovations not only in the field of

concurrency but also in the general use of sequence diagrams.
• Some works may have been excluded on the basis difference in focus or resemblance

to an already included solution.
• Some works were excluded because the posed method or solution seemed impossible

to mimic, integrate of reconstruct. In other words, they were overly complicated for
our aim to create a simple solution.

5.3.2 Problems Selection

The bias that could have been present with the selection of the related works could influence
the problems found in the analysis in the same way. Most of the problems distilled from the
related works were problems they posed, or aimed to solve. However, the problems posed
in the analysis section were not all problems that were mentioned. Our goal was not to
solve all the problems mentioned in the related work, just the ones that lay within our focus
and objectives. To show our methods for problem selection we mention JIVE. One of the
reasons for including JIVE in the related work is because it has well defined ”properties” to
which successful interactive visualization has to adhere, that can be related to the problems
they try to solve:

• Depict Objects as Environments. This was incorporated as the problem Context an
Environments.

• Provide Multiple Views of Execution States. This was incorporated in the Detail
and Complexity and alternative visualization research.

• Capture History of Execution and Method Interaction. This was already cleared
by the basic requirement of the use of sequence diagrams.

• The support for forward and backward execution. This was one of the require-
ments that could solve many problems but was incompatible with our concurrency
focus. As previously mentioned in [4.1] when using multicore systems backward
execution can cause too many problems.

• Support Queries on the Runtime State. This property we perceived as an attempt to
minimize information storage by requesting details on-demand. Though this is partly
addressed in the information overload section, this also reaches outside our focus by
trying to let the user decide what information is relevant for understanding. We are
trying to find a way to provide this information off-hand as digestible as possible.

• Produce Clear and Legible Drawings. This is handled by the information overload
problem. In JIVE the focus is put on the drawings/diagrams for JIVE as many of
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those. But since we focus on existing sequence diagrams as a pre-defined concept we
only consider use of added information.

• Use Existing Java Virtual Machine. Tough this is a good requirement that was used
in the production of FOT, it does not negate the advantages of other methods featured
in other tools.

In this manner, through the evaluation of all features and/or problems of the related works
we had come to the problems shown in the Analysis [3] section. As this example shows, we
cannot eliminate the bias for this selection completely, because of the subjective interpreta-
tion of the focus. Therefore, we emphasize here that this are not the only, correct or most
important problems involving concurrency visualization, but they were instrumental in the
conception of FOT.

5.3.3 Evaluation

As the related work selection and the problem refining is open to bias the evaluation criteria
can be seen as biased, unfair or inaccurate. To minimize bias when evaluating the different
tools we took the following steps:

• We used the problems from the problems section [3.1] as a basis, even though this
leaves open the risk of confounding the bias problem.

• We incorporated as much of the requirements pertaining to these problems from the
related works as possible.

• We tried to make the criteria as crisp as possible so even if the reason for a criterion
is in question its use in the evaluation is clear.

• Even if its use in evaluation might be unclear we tried to evaluate all tools in exactly
the same manner.

It needs to be said that because it is an evaluation it remains partially subjective.
Though we used all attainable information on these works in the research and evaluation,
due to ageing of the technologies or lack of program code, we could not actually run and
compare all tools described in the related works. Ideally, we would have preferred to run all
tools under the same conditions on the same test code and compare the results.

5.3.4 Threat to external validity

In section 5 FOT was applied to two cases that show the usefulness of the FOT tool in those
situations. It can be argued that the usefulness in these situations is not always as high
outside these situations. The functionality of FOT can be argued to be limited to the cases.
Though not many cases have been provided in section 5. We have chosen cases that are
as representable as possible for the problems that have been described in section 3.1. The
cases represent almost the definition of the problems they describe. Though they are left
simple to keep them understandable, they are as comparable to a real problem as we can
make them within the performance confines of FOT.
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5.4 Discussion/Reflection

Extensibility Originally the FOT visualization was intended to show in addition to the
method causing the trace event a trace of the methods call stack. This feature is still par-
tially implemented in FOT but has not been disabled because the TPTP sequence diagram
generator [1] and visualization is not equipped to provide references to the messages plotted
that could point to the method call stack. Leaving this function enabled could cause extra
delay while tracing, because it extends the tracer to record every method entry and exit as
we have seen done in JThreadSpy [17]. Instead, FOT currently makes due with naming the
message with the defining filename, the line number and message name. If the sequence
diagram visualization is extended or changed in the future a reference to a generated method
call stack may still be a worthy addition for added understandability.

Generalizations and Distinctions FOT makes some very specific generalizations and
distinctions in its analysis phase. One simple generalization is that fields are generalized to
the same class, as can be seen in the table tree view. So FOT makes its distinction on class
level. Ok, now for a more problematic generalization of values to fields. In the sequence
diagram is shown what value a Field has. The problem is that the Field is a definition of one
or more instances (values) in the execution, so multiple values can in some cases be shown
as one field.

We also make distinctions between the threads that interact with each field. Now we
do not know for sure if one event instigated by a thread and another event instigated by the
same thread shown sequentially in a sequence diagram are in fact about the same value. We
can only be sure that they share a definition and therefore functionality with each other. If
there are two fields that share a name but have a different definition, both are displayed.
This means that in the sequence diagram view there can be variance in the value display
that does not coincide with the change events when there are more than one instance of a
field being traced. It also makes, distinguishing multiple instances in different threads in
general, still problematic.

This distinction can still be created by adding another layer to the table tree. If list up
all instances of a field and list those as children of a field in the tree table, the instance-
difference can be shown. This could be very verbose and confusing for first time users if
implemented but, can be a nice addition for future versions.

The waiting threads, shown as activations in the sequence diagram, only distinguish on
class basis. So even if the shown field is not the reason for the lock causing the wait. If the
thread waits for something in the entire class, an activation bar is shown. This is caused by
the way JDI addresses the waiting thread pool. On the upside, this makes it easier to analyze
blocking situations from different angles or field perspectives. On the downside, it makes
it harder to pinpoint the culprit causing the block within a class. Because this feature was
intended as one of many possible concurrency indicators addable to the sequence diagram
view it suffices as a demonstration.
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Event driven tracing The FOT tool only shows status information at the times events
occur. In some situations it can be preferable to show status information, because otherwise
you‘ll lack pieces of the general view. Reference events, big problems or other things might
be lacking because no read or write events are taking place at that time. This is something
to keep in mind while using the tool. This property can be viewed as much as a feature
(against information overload) and a flaw (information loss), and is the result of the analysis
approach and the JDI feature set.

61





Chapter 6

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and draw some conclusions. Finally, some ideas for future work will
be discussed.

6.1 Contributions

The key contributions of this thesis are an evaluation of current dynamic analysis based tools
with concurrent execution visualization. We have made an analysis of the useful functions
of these tools and used these to develop a new field centric concept for visualizing multi-
threaded behavior. With this concept, we introduce an alternative sequence diagram design
incorporating the field centric concept. This new concept is meant to add a new low-level
perspective to concurrency oriented dynamic analyses for visualizing shared memory based
thread interaction. Many of the best concepts and functions of previous tools, combined
with the field centric design have been made into a new tool called Field Of Threads. We
also include a functional comparison of all tools including Field Of Threads, of their capa-
bility to trace, analyze and visualize the execution of multithreaded concurrent programs.
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6.2 Conclusions

In this thesis we try to improve the way running threads, thread’s functionality and inter-
action are represented and visualized so that they can be understood more easily. We have
done this by answering the following questions and creating a tool demonstrating the results
named Field Of Threads (FOT).

RQ1 How are threads visualized and analyzed now?

Answer 1 Threads can be visualized through tracing the execution of test programs. These
dynamic analysis tools analyze the execution and generate collaboration, sequence
and other kinds of diagrams based on the UML specification. The more advanced
tools incorporated new functions on top of the UML specifications extending them to
better show concurrency information.

RQ2 What are the major problems impeding thread comprehension?

Answer 2 The found problems ranged from:

– The expressivity of the visualization.

∗ Non-Determinism causes differences between executions confusing the
programmer.

∗ Detail and Complexity need to be balanced, to provide enough detail
about the execution, to understand timing communication and interleaving
without making the visualization too complex to understand.

∗ Context and Environments need to be made clear to the user so any in-
formation produced by diagrams and visualizations can be linked to imple-
mentation and design.

∗ Information Overload occurs when the large amount of information gen-
erated by tracing an execution is not properly filtered or structured.

– Concurrency’s inherent problems.

∗ Race conditions may cause the outcome of executions to depend entirely
on execution order.

∗ Deadlocks can occur if multiple threads are waiting for each other to finish.
∗ Starvation and Dormancy can occur when concurrency causes threads’

execution to become unevenly balanced or fall dormant for too long.
∗ Synchronization needs to be used properly in concurrent programs. If

used improperly this can create complex problems that are hard to analyze.

RQ3 What kinds of operations are the current representations of threads useful for?

Answer 3 The most useful elements that make up a successful concurrent execution visualiza-
tion are:
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– The UML Sequence Diagram is a good extensible basis for showing interac-
tion between objects. It also gives the most comprehensive timeline for inter-
leavings and execution order.

– Colored threads offer a way to distinguish different entities of execution and
scopes. These create a better reference to the execution environment.

– Timing info creates a discrete timeline to allow analysis of time related prob-
lems like dormancy and starvation. It better relates the execution events to the
output of the execution.

– Variable granularity allows the user to both get a grasp of the larger context
as well as the specific details while retaining a good relation to the execution
environment and the implementation.

– Alternative visualization provides a different dimension, usually a better overview,
to the provided information, creating references and links between the sequence
diagram, execution environment and implementation.

– Added indicators and icons add extra useful expressions of synchronizations
and other concurrency concepts, making debugging and analysis more intuitive.

RQ4 What elements provide the best way to view, analyze and comprehend thread execu-
tion?

Answer 4 The best way to view, analyze and comprehend thread execution consists of:

– A tracer that can observe and record the execution of a test program.

– An analyzer that can refine thread behavior from raw execution data.

– A concurrency augmented sequence diagram visualization.

– An added generalized visualization to place the sequence within the whole
structure.

RQ5 How can the representation of threads be improved further?

Answer 5 Thread representations can be improved by shifting away the focus from the thread,
even the objects within the threads and focusing on how the different threads manip-
ulate their common fields as defined in the code. Simplifying the gathered data and
bringing the representation closer to the definition in the code.

The Java tool FOT incorporates the field-centered approach resulting from the 5th an-
swer. Its objective is to trace the execution of a test program, analyze its inter-thread com-
munication and visualize the execution in a field-centric way for detection and diagnosing
problems. FOT uses the Java Debug Interface to trace small Java programs’ execution,
analyses and displays this in an Eclipse Platform visualization plugin.
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6.3 Future work

6.3.1 Concurrency is more complicated.

FOT is attempting to simplify the visualization of concurrent executions. However, the vi-
sualizations of FOT were devised with more potential in mind. The sequence diagram‘s
features provided by the TPTP visualization library are almost saturated by the field cen-
tered visualization in FOT. The alternative sequence diagram was envisioned to become
more extensible then this. For instance, the waiting thread feature that is shown now as
activation bars is only one of many possible concurrency indicators possible for this view.
If we look back at JThreadSpy, we see that there is more information that can be collected
and displayed to show concurrency and the monitors used to solve concurrency problems.
Adding more of these is something for future work. The reason these functions were not
added earlier is that this would probably mean that the tracer would need to register many
more types of events besides reading and writing fields. Causing further slowdown and
making it harder to combine the two message types. The problem would be that a registered
event would occur before, after (or coincide with) a field event. In which case, it would
become hard to manage where a status change would belong. The causality of events would
become harder to visualize.

6.3.2 Table Tree Features

Initially the Table Tree visualization was not meant to only change color and indicate col-
lision fields but also to detect and indicate more concurrency-based problems. So they can
quickly be analyzed with the sequence diagram view. An example is detection of dirty
reads and writes, deadlocks [12], lack of atomicity [8] etc. Nevertheless, the addition of
more intelligent analyses is something for future work.

6.3.3 Sequence Diagram Comparison

To diagnose non-determinism problems like for instance race conditions it is better to take
two executions and evaluate the differences. This way allows you to see the effective vari-
ation caused by non-determinism instead of just the static (expected) difference. FOT still
lacks the functionality to retain and compare sequence diagrams. FOT only supports one
sequence diagram at a time. Supporting multiple sequence diagrams and automatically
comparing commonalities and differences between generated sequence diagrams from dif-
ferent executions can be solved in future work.

6.3.4 FOT time and memory (in) efficiency

FOT causes slowdown, which is inherent to the field-centric approach of FOT. Where nor-
mally information about fields and threads is requested from a running VM, FOT collects
and stores all the data in advance. For every field instance and for every field access or mu-
tation, a lot more memory space and processing time are being used to observe that field.
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This causes the slowdown and the use of memory space. Some of the problems and possible
solutions are discussed here for possible future work.

Memory space

Large (complicated) programs cannot be traced by FOT. The memory use of FOT is related
to the number of events that have occurred in the execution. No matter how many fields
or threads are active in the execution the number of read and writes decides the most of
the memory use. However, this is relatively unrelated to why FOT does not support large
programs. When the JDI tracer starts, it sets watch points to all loaded and to-load fields.
This operation is very slow and causes the tracer to disconnect from the VM if it takes too
long. Even if this phase completes safely, JDI has the knack of losing track of the main
class in the process, when the suspend option is used in the execution arguments of the test
program. It is possible to trace a test program without use of the suspend option, but it
causes FOT to start tracing halfway through the execution. Because the test program has
already created and used many fields and is changing them constantly while executing, the
initialization phase of FOT usually takes even longer to set the watch points and often fails
anyway. These problems are a result of JDI operation and might be circumvented or fixed
in the future.

Disk storage

Even small programs can need a lot of memory to run if a lot of activity is generated. But
disk based storage is not yet necessary because this type of use would cause any sequence
diagram in FOT to contain so much data that it will cause an information overload. Some-
thing we were trying to avoid to begin with (section 3.1.1). Though it may be possible
to split of the monitor event data from the field and thread data (which are necessary in
memory for speed and lookup purposes) and write only the monitor event data to disk, thus
saving memory in future versions of FOT.

Slowdown

Batching Because FOT is monitoring and storing during the execution of a test program
the execution slows down. This was expected when the choice for JDI as a tracer was made.
Some techniques could be employed to minimize the slowdown. Batching of trace events
could cause grouping of delays and speed up tracing. FOT is not yet prepared for this type
of optimization. Because right now the timings are being measured as soon as possible,
after events occur. If at the same time other values are collected, it will cause delays and
skewing of timing information. Batching before this process would mean that these timings
would be influenced adversely and the value references could become obsolete. Batching
afterwards would result in minimal speedup.

Multithreading Further multithreading of the tracer could possibly speed up the tracer
but this creates problems because multiple threads would be using one trace-data storage,
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it would become difficult to determine timing, the order and thus causality between events
[27]. But further experimentation could yield faster tracing.

JVMTI Using the knowledge from FOTs JDI tracer it might be possible to create a faster
JVMTI-based tracer in future work. Because they both are based on the JNI interface
swapping out the JDI tracer for a JVM-TI tracer should be possible and faster. For more
(dis)advantages, see section [3.2].

Focusing A possibility for a faster tracer is focusing the tracer in advance on one class.
It is possible in JDI to only place watch points on one class within the test program, thus
filtering away the other classes. Whether this approach speeds up tracing depends on the
way JDI is implemented. An added advantage of this approach is the amount of unneces-
sary information in the FOT visualization is greatly diminished. A disadvantage is that the
problematic class must be entered in advance of the trace, which is not a big problem when
multiple traces are made. A sneaky problem is the fact that only tracing one class can have
an adverse effect on the fairness of the test programs. Slowing down the threads that use the
specified class only, may cause balance problems like starvation and other interleavings that
would not occur otherwise. This can cause problems to be depicted where there is none.
The timings would also become skewed.
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Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

Agent: A library added to an application for registering its execution.

Argument: An object passed to a method when the method is called.

Atomicity: Whether or not a set of operations are executed in sequence without being
subject to non-determinism. An atomic operation will appear to be executed instan-
taneously.

Collision: A collision or clash is a situation that occurs when two distinct references have
the same hash value or abbreviated name.

Concurrency: A property of systems and programs in which several computations are
executed simultaneously while interacting with each other.

Delta (states): Delta indicates difference between one and the other. In the case of states
this indicates the amount of difference between one state and the other.

Eclipse: A project aiming to provide a universal tool set for development.

Exception: An anomalous or exceptional situation requiring special processing by a han-
dler.

Field: A definition of an object, class or variable within a class definition.

Getter / Setter: Accessor and mutator methods for referencing protected variables encap-
sulated in classes.

Granularity: The extent to which a system is subdivided, the level of detail shown.

GUI: Graphical User Interface.

Hash: A semi unique numerical representation of an object or value.

HashMap: Data structure containing key-value pairs.
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Instrumenting: Inserting tooling code into a program to change or add to the programs
functionality.

Interleaving: The order in which operations are executed.

Lifeline: A part of an UML sequence diagram indicating the life of a single class.

Message: A part of an UML sequence diagram shown as an arrow between lifelines indi-
cating the use of a message in a class from another class.

Method call: The execution of a method of another object or environment.

Method call stack: A call stack is a data structure storing information about active pro-
gram subroutines.

Monitor: In concurrent programming, a monitor is an object or module intended to be
used safely by more than one thread. The defining characteristic of a monitor is that
its methods are executed with mutual exclusion.

Mutex: Mutex is short for mutual exclusion. Meaning that, at each point in time, at most
one thread may be executing this operation.

Profiler: A programming tool that can track and quantify the performance of a computer
program.

Stepping: A debugging operation which continues execution for one operation. Stepping
forward means execution the next operation, stepping backward means returning to
the previous one.

Tracer: A program that is specialized in logging or recording information about a programs
execution.

VM: Virtual Machine, A virtual environment that can execute byte code programs. JVM
stands for the Java Virtual Machine but called VM here.

Watch-point: The registration of the monitoring of a field or object.

XML: Extensible Markup Language is a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and machine-readable.
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B. RELATED WORKS VISUALIZATIONS

Related Works Visualizations

B.1 UML1.0 Sequence Diagram
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JThreadSpy Sequence Diagram of Threads competing for a lock.

B.2 JThreadSpy Sequence Diagram of Threads competing for
a lock.
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B.3 TPTP Visualizations

B.3.1 TPTP Call Tree

B.3.2 TPTP Class Interactions
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B.3.3 TPTP Thread Interactions

B.3.4 TPTP Thread Visualizer
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B.4 FOT Appendices

B.4.1 Overview of FOT Visualizations and Controls
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B.4.2 TMF Sequence Diagram Generation Tool code Example

The following code can be used to generate a sequence diagram in the TMF tool:
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This code would generate the following diagram:
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B.4.3 FOT Counter Concurrent Test Program

B.4.4 FOT Table View Unnamed example
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Case Study

C.1 Test Program Case 1 Race Conditions
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C.2 Test Program Case 2 Dining Philosophers
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Test Program Case 2 Dining Philosophers
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