# TOWARDS URBAN ENERGY TRANSITION:

how climate-responsive and energy-active urban design can facilitate the transition

Angeliki Bazaiou

X

# STRUCTURE OF THE PRESENTATION

- $\neg$  Stating the problem
- Energy & climate Matrix
- Typology

ix  $\rightarrow$  Design Patterns  $\rightarrow \neg$  Case study  $\neg$  Design method





#### Saudi Arabia (down) & North Sea's SuperRing proposal by OMA (right)



#### Beyond large scale energy production; living with(in) the local climate

| 7 | Acknowledge it | > | knowledge |
|---|----------------|---|-----------|
|---|----------------|---|-----------|

- Build with(in) it ---- energy use  $\neg$
- Harness it  $\neg$
- *energy production*

# "In this bright future you can't forget your past."

- Bob Marley



# Gas & oil the abundant and 'invisible' energy

... the magic of MSTANT hot water!

At the turn of a tap, day or night, everyday and everywhere, Gas and only gas can meet your every hot water need-instantly, economically, endlessly-without waste, without work, without waiting!

You'll bless the day

came to stay!

A skin of infrastructure; Centre Pompidou



Crane determining the length of the building



<u>Mechanical systems &</u> <u>technology</u> artificial climates & industrialization of construction



<u>Modernism</u> embraced & preached openess





New Belgrade, Former Yugoslavia



Pendrecht, Rotterdam



#### Sarcelles Locheres, near Paris



Modernism — Respect but densify

# **RESEARCH QUESTION**

On our way to the urban energy transition, what are the spatial interventions needed in dutch post-war neighbourhoods that, based on principles of climate responsiveness and energy active design, can reduce building energy use and increase sustainable energy production?



energy and climate Matrix



Typology of dutch post-war neighbourhoods





#### Sustainable Urban Design



#### Energy-active urban design..

...provides innovative design solutions for local production of renewable energy within the urban fabric.



#### Climate-responsive urban design.

...provides design solutions regarding the urban morphology, in response to the local climate. Reducing building energy use, before building design takes place.



### DENSIFICATION OF DUTCH POST-WAR NEIGHBOURHOODS



#### Why?

- ¬ built expression of fossil era
- ¬ space for densification
- existing plans for transformation
- ¬ represent 36% of dutch residential stock

#### Table 1 The Dutch building stock in numbers (source:Platform31, 2013).

|                                | Total<br>residential<br>stock | Post-war<br>residential stock<br>(1946-1974) | Total<br>apartment<br>flats | Post-war<br>apartment<br>flats | Industrialised<br>systems (all<br>dwelling types |
|--------------------------------|-------------------------------|----------------------------------------------|-----------------------------|--------------------------------|--------------------------------------------------|
| no. dwellings                  | 7300000                       | 2600000                                      | 878000                      | 381000                         | 450000                                           |
| % of the total stock in the NL |                               | 36%                                          | 12%                         | 5%                             | 6%                                               |

"(...)if we consider that cities and buildings are some of the most impactful sectors in our global economy, and over 90% of the Dutch population lives in cities, urban housing is a smart place to intervene." Metabolic, 2018

# Climate-responsive & energy-active urban design: a matrix



- ¬ Climate: Temperate maritime climate highly influenced by the North Sea
- ¬ Energy use and energy production
- ¬ Climatic conditions: wind & solar
- ¬ Focus: winter season



# 1. ENERGY USE – URBAN MORPHOLOGY

#### Table 3. The sustainable urban design framework matrix.

|                                        | Regional                                                                                                                                                        | District/ neighbourhood                                                                                                                                                                         | Block/street                                                                                                                                                                                                                                                                                                   | Project/parcel                                                                                                                                                                                           |       |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Energy use/GHG<br>(transp./land use)   | Robust transit network<br>Robust bicycle networks<br>Vehicular networks<br>High land use mix<br>(Macro scale)<br>Compact development<br>(for density/proximity) | High building/housing density<br>High network connectivity<br>Macro parking mgmt/design<br>High land use mix (micro scale)                                                                      | Multimodal street design<br>Engaging pedestrian realm<br>Robust bicycle infrastructure<br>Design for transit<br>Limiting auto impact<br>Dense and street activating<br>building typologies<br>Micro parking mgmt/design<br>Platting for density                                                                | Engaging public rearm design<br>Dense and street activating<br>building typologies<br>Engaged building/street relations<br>High internal and external<br>connectivity<br>Micro parking mgmt/design       | SCALE |
| Water                                  | Avoid flood prone areas<br>Compact development<br>(for limited impact on<br>nat. systems)                                                                       | Robust stormwater mgmt.<br>network (distributed/on-site<br>recharge)                                                                                                                            | High surface permeability<br>Extensive green stormwater<br>infrastructure (GSI)<br>Extensive urban forest canopy                                                                                                                                                                                               | High surface permeability<br>Extensive green stormwater<br>infrastructure (GSI)<br>Extensive urban forest canopy<br>Rainwater capture/re-use                                                             |       |
| Ecology/habitat                        | Avoid ecol. sensitive areas<br>Robust and connected<br>macro ecological systems and<br>networks<br>Compact development<br>(for limited impact on nat. systems)  | Avoid ecol. sensitive areas<br>Ecological corridors/pockets<br>High urban forest<br>continuity/diversity<br>Daylight/restore waterways                                                          | High surface permeability<br>Micro-habitat creation<br>High vertical complexity<br>Native vegetation<br>Mitigating habitat disruption<br>Robust ecological area buffers<br>Non-polluting lighting design                                                                                                       | High surface permeability<br>Micro-habitat creation<br>High vertical complexity<br>Native vegetation<br>Mitigating habitat disruption<br>Robust ecological area buffers<br>Non-polluting lighting design |       |
| Energy use/production<br>(non-transp.) | Compact development<br>(for limited embodied energy in<br>infrastructure)                                                                                       | Block size/street orientation<br>for microclimate mitigation<br>High building/housing density                                                                                                   | Dense/energy efficient building<br>typologies<br>Microclimate mitigation<br>Low albedo surface materials<br>Urban forest and robust vegetation<br>High street ht./width ratio<br>Efficient street lighting design<br>Platting for density and solar exposure<br>fety (see energy use/GHG in transportation and | Infill development<br>Dense/energy efficient building<br>typologies<br>Increase local energy production<br>(solar/wind)                                                                                  |       |
| Lyuny and nearn                        | Equitable distribution of<br>employment, housing,<br>human services, open<br>space, education facilities,<br>and healthy food options                           | Equitable distribution of<br>employment, housing,<br>human services, open<br>space, education facilities,<br>and healthy food options<br>Limit location of point source<br>pollution and toxins | Active/attractive open space<br>(for activity and quality of life)<br>Lighting for safety<br>Site design for ownership and surveillance<br>Affordable housing typologies<br>Complete streets for ped safety<br>Urban forest and robust veg.<br>(for pollution sequestration)                                   | Mix of unit types<br>Active/attractive open space<br>Lighting for safety<br>Site design for ownership and<br>surveillance<br>Affordable housing typologies                                               | AMET  |



#### District/neighbourhood

- Heights (irregularities)
- ¬ Orientation (of streets & open spaces)
- ¬ Urban forest



#### Urban block/street

- Form
- Vegetation
- Orientation (of buildings)
- ¬ H/W ratio





#### Building/parcel

- orientation
- vegetation
- ¬ building plan (envelope)



# 1. ENERGY USE

(a) Isolated roughness flow mmmmmmm, (b) Wake interference flow (c) Skimming flow



CLIMATE & ENERGY MATRIX



COOL ZONE







Base Case



Alternative 1

Alternative 2

TEMPERATE ZONE

# 2. ENERGY PRODUCTION













# CLIMATE & ENERGY MATRIX

# 3. ENERGY USE & PRODUCTION – CLIMATE & ENERGY MATRIX

|                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WIND PATTERNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOLAR RADIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |         |                   |
|----------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
|                                        |                   | CLIMATIC CONDITIONS FOR<br>DUTCH CLIMATE<br>(temperate maritime climate<br>influenced by the North Sea)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WINTER [MAIN FOCUS]<br>moderate winters<br>-cold & strong wind from North Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUMMER [ACCOUNTED FOR]<br>cool summers<br>-sea breeze                                                                                           | Sources                                                                                                                                                                                                                                                                                                                                                                                                                                        | WINTER [MAIN FOCUS]<br>moderate winters<br>-cloudy; less solar radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Summer [accounted for]<br>cool summers                                                                                                                                              | Sources |                   |
| N MORPHOLOGY [QUALITIES]<br>ENERGY USE | ENERGY USE        | -uisurconeignbournoou<br>urban block morph.: heights<br>urban forest<br>street & open sp. orientation<br>high housing density<br>-urban block/street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | min. height irregular., avoid tall buildings<br>urban forest (for fully exposed blocks) <sup>1</sup><br>perpendicular or sidewards to the wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | not perpendicular to<br>summer breeze                                                                                                           | <sup>2</sup> Jurelionis,<br>Bouris, 2016;<br><sup>3</sup> Eumorfopou-<br>lou, Kontole-<br>on, 2009;<br><sup>4</sup> Salat, 2014                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ENERGY (                                                                                                                                                                            | JSE     |                   |
|                                        |                   | urban block morph.: form<br>vegetation<br>orientation<br>width street ratio: Height/Width<br>density & solar exposure<br>-building (parcel)<br>orientation<br>vegetation<br>bulding plan (envelope)<br>infill development AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>(1) paral. rows of linear blocks/elong.forms</li> <li>(2) perimeter blocks</li> <li>(3) compact form evergreen rows of trees, perpend. to wind<sup>II</sup> perpendic. or sidewards (45°) to the wind</li> <li>H/W ≥0.65<sup>1</sup> infill where H/W≤0.65 (to achieve skimming flow and avoid wake interfer.)</li> <li>wind perpendicular to long surface trees &amp; plant-covered walls (cavities)<sup>II</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | summer breeze direction:<br>no vegetation<br>parallel or sidewards (45°)<br>summer breeze: no veg.<br>depth <6m; for nat.ventilat. <sup>4</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(1) free arr. of linear blocks/elong. forms</li> <li>(4) T-shaped/cross forms</li> <li>deciduous trees: solar access for winter, shadow for summer</li> <li>H/W≤2 (traditional deep canyon), by densif. keep H/W as low as possible; blocks facing E-W, united with atrium</li> <li>East-West (length), pref. unilateral plan<sup>IV</sup></li> <li>S&amp;E surfaces: no/deciduous trees</li> <li>depth&lt;6m; for solar access<sup>4</sup></li> <li>on west, north or without solar access</li> </ul>                              | tree rows parall. to W faces<br>high dens. in open spaces;<br>blocks facing E-W, united<br>with atrium<br>west side closed <sup>w</sup><br>trees W surf. & green roofs <sup>v</sup> |         |                   |
| URB                                    | ENERGY PRODUCTION | <ul> <li>Initial development AND dense &amp; energy efficient h type dense &amp; energy efficient d</li></ul> | Open spaces (no can buildings & ideality in low HAW) & protected from wind effect         HAWT (Horizontal Axis Wind Turbines)         windward (WT adjustable)         mid- & high-rise build., towers open sp.         roof (optimum type: curved)         VAWT or micro-wind turbines or IRWES <sup>13</sup> windward (only for micro-wind)         high- & mid-rise build. (possible for low)         flat roof, corners & facades         ducted wind turbines         windward (fixed position)         high-rise build.         flat roof         savonius VAWT or Binopterus VAWT         independent of orientation         bus stops, shelters, roof patios - open sp.         VAWT with wind booster system (vanes) are appropriate for low winds <sup>12</sup> Kite power systems         independent of orientation         mid- & high-rise build. |                                                                                                                                                 | <ul> <li><sup>b</sup>Wang et al.,<br/>2017;</li> <li><sup>e</sup>Bell et al.,n.d.;</li> <li><sup>7</sup>Guzzetta et<br/>al., 2007;</li> <li><sup>8</sup>Smith et al.,<br/>2012;</li> <li><sup>9</sup>Micallef et al.,<br/>2016</li> <li><sup>10</sup>Park et al.,<br/>2015</li> <li><sup>11</sup>Ledo et al.,<br/>2011;</li> <li><sup>12</sup>Korprasertsak<br/>&amp; Leephak-<br/>preeda, 2015;</li> <li><sup>13</sup>Dekker, 2012</li> </ul> | building faces & sunrooms (building's<br>facedes with insufficient solar access)<br>PV panels & parabolic<br>South to East<br>mid- & high-rise build,<br>unshaded and spaciou<br>non-residential build.)<br>solar roads & paths<br><br>infrastructure & public space<br>away from buldings (low dens. vegetation)<br>thin-film solar (textile)<br>South to East (120-degree range)<br>mid- & high-rise build.<br>large vertical blind facades<br>see-through transparent solar panels<br>South to East<br>buildings<br>balconies and windows | RGY PROL<br>surface<br>thin-film solar (textile)<br>South to West<br>build. & open spaces<br>rooftops (summer terraces)                                                             | DUCTIC  | <b>7</b> <i>N</i> |

# Typology





# 1. MODERNISM PRINCIPLES

- $\neg$  rythmic game of forms
- ¬ importance of nature
- $\neg$  openness, light and air



# 2. TECHNOLOGY

- industrialization
- ¬ prefabrication and assembly on site
- $\neg$  cranes and long linear buildings
- ¬ 'stamps'





Hengelo - Klein Driene





EARCALCHEIGHD-UTRECHT, 1956-1964

Emmen - Angelslo



# **DUTCH POST-WAR PERIOD**

- ¬ influence by garden city movement
- ¬ 'wijkgedachte': varying housing typologies
- housing association: commonalities across
   the country









Pendrecht, Rotterdam



Amsterdam Zuid, Amsterdam



# INHERENT UNSUSTAINABILITY



**LYPOLOGY** 



| scales        | Morphological qualities                       | Modern city principles                                                                                                                                                                                          | Dutch post-war principles                                                                                                                                                                                     | Connection with Matrix                  |
|---------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| neighbourhood |                                               | ¬ streets dominated the structure of the<br>city as cars became the main transporta-<br>tion                                                                                                                    | ¬ polders located on the outskirts of<br>cities as the main structures for new<br>residential areas                                                                                                           | ENERGY USE                              |
|               | roads & existing infrastr. defined planning   | <ul> <li>¬ steep housing needs after the war</li> <li>¬ prefabricated materials/building</li> <li>elements</li> <li>¬ expansion to outskirts of cities - a lot of free space to be planned and built</li> </ul> | <ul> <li>¬ stamps included different housing<br/>types</li> <li>¬ therefore, height irregularities and<br/>interchange of blocks and garden houses</li> <li>¬ aim: social mixing of neighbourhoods</li> </ul> |                                         |
| urban block   | 'stamps' repetition                           | ¬ from the art of the facade to the art of space                                                                                                                                                                | <ul> <li>¬ wijkgedacht</li> <li>¬ idea of social mixing</li> <li>¬ living in the same neighbourhood all your life</li> <li>¬ 'ritme' - 'ruimtekunst'</li> </ul>                                               | ENERGY USE<br>DENSIFICATION (POTENTIAL) |
|               | built linear blocks of different orientations | <ul> <li>¬ from the art of the facade to the art of space</li> <li>¬ simple geometries rhythmically arranged in open space</li> </ul>                                                                           | <ul> <li>¬ post-war residential areas planned on<br/>polder land and according to their<br/>structure</li> <li>¬ therefore, mostly two orientations,<br/>perpendicular to each other</li> </ul>               | ENERGY USE<br>DENSIFICATION (POTENTIAL) |
|               | 'openess'                                     | ¬ (again) reaction to unhealthy cities<br>¬ more air and sun                                                                                                                                                    |                                                                                                                                                                                                               | ENERGY USE<br>DENSIFICATION (POTENTIAL) |
|               | 'onen' green spaces                           | <ul> <li>¬ nature as initiator of urban form</li> <li>¬ reaction to unhealthy medieval cities</li> <li>¬ more air and sun</li> </ul>                                                                            |                                                                                                                                                                                                               | ENERGY USE<br>DENSIFICATION (POTENTIAL) |
| stamp         | high-rise buildings<br>- towers               | <ul> <li>¬ Le Corbusier's idea of cities on towers<br/>to give space to nature</li> <li>¬ central heating and elevators<br/>(late post-war period: late 60s, early 70s)</li> </ul>                              | ¬ gas in Slochteren<br>¬ gas pipelines through the country (60s)                                                                                                                                              | ENERGY USE<br>ENERGY PRODUCTION         |

# CONNECTING WITH THE MATRIX

|                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                      | WIND PATTERNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOLAR RADIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |           |   |
|--------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|                                            |            | CLIMATIC CONDITIONS FOR<br>DUTCH CLIMATE<br>(temperate maritime climate<br>influenced by the North Sea)                                                                                                                                                                                                                                                                                                              | WINTER [MAIN FOCUS]<br>moderate winters<br>-cold & strong wind from North Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SUMMER [ACCOUNTED FOR]<br>cool summers<br>-sea breeze                                                                                           | Sources                                                                                                                                                                                                                                                                                                                                                                                                                                        | WINTER [MAIN FOCUS]<br>moderate winters<br>-cloudy; less solar radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Summer [accounted for]<br>cool summers                                                                                                                                  | Sources   |   |
| ΙΚΒΑΝ ΜΟΚΡΗΟLOGY [QUALITIES]<br>ENERGY USE |            | urban block morph.: heights     urban forest     street & open sp. orientation     high housing density     -urban block/street                                                                                                                                                                                                                                                                                      | min. height irregular., avoid tall buildings<br>urban forest (for fully exposed blocks) <sup>1</sup><br>perpendicular or sidewards to the wind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | not perpendicular to<br>summer breeze                                                                                                           | <sup>2</sup> Jurelionis,<br>Bouris, 2016;<br><sup>3</sup> Eumorfopou-<br>lou, Kontole-<br>on, 2009;<br><sup>4</sup> Salat, 2014                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NERGY US                                                                                                                                                                | SE        |   |
|                                            | ENERGY USE | urban block morph.: form<br>vegetation<br>orientation<br>width street ratio: Height/Width<br>density & solar exposure<br>-building (parcel)<br>orientation<br>vegetation<br>bulding plan (envelope)<br>infill development AND<br>dense & energy efficient h.typ.                                                                                                                                                     | <ul> <li>(1) paral. rows of linear blocks/elong.forms</li> <li>(2) perimeter blocks</li> <li>(3) compact form</li> <li>evergreen rows of trees, perpend. to wind<sup>1</sup> perpendic. or sidewards (45°) to the wind</li> <li>H/W ≥0.65<sup>1</sup></li> <li>(nfill where H/W≤0.65 (to achieve skimming flow and avoid wake interfer.)</li> <li>wind perpendicular to long surface trees &amp; plant-covered walls (cavities)<sup>III</sup></li> <li>open spaces (no tall buildings &amp; ideallly in low H/W) &amp; protected from wind effect</li> </ul>                                                                                                                                                   | summer breeze direction:<br>no vegetation<br>parallel or sidewards (45°)<br>summer breeze: no veg.<br>depth <6m; for nat.ventilat. <sup>4</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>(1) free arr. of linear blocks/elong. forms</li> <li>(4) T-shaped/cross forms</li> <li>deciduous trees: solar access<br/>shadow for summer</li> <li>H/W≤2 (traditional deep canyo<br/>by densif. keep H/W as low as<br/>blocks facing E-W, united wit</li> <li>East-West (length), pref. unilateral plan<sup>™</sup></li> <li>S&amp;E surfaces: no/deciduous trees<br/>depth&lt;6m; for solar access<sup>4</sup><br/>on west, north or without solar access<br/>building faces &amp; surrooms (building's<br/>facades with insufficient solar access)</li> </ul> | NSIFICAT<br>POTENTIA<br>west side closed <sup>v</sup><br>trees W surf. & green roofs <sup>v</sup><br>minimum increase of roof<br>surface                                | ION<br>L) |   |
|                                            |            | 1       technology<br>orientation         location<br>morphology         2       technology<br>orientation<br>location<br>morphology         3       technology<br>orientation<br>location<br>morphology         4       technology<br>orientation<br>location<br>morphology         5       technology<br>orientation<br>location<br>morphology         5       technology<br>orientation<br>location<br>morphology | HAWT (Horizontal Axis Wind Turbines)<br>windward (WT adjustable)<br>mid- & high-rise build., towers open sp.<br>roof (optimum type: curved)<br>VAWT or micro-wind turbines or IRWES <sup>13</sup><br>windward (only for micro-wind)<br>high- & mid-rise build. (possible for low)<br>flat roof, corners & facades<br>ducted wind turbines<br>windward (fixed position)<br>high-rise build.<br>flat roof<br>savonius VAWT or Binopterus VAWT<br>independent of orientation<br>bus stops, shelters, roof patios - open sp.<br>VAWT with wind booster system (vanes) are<br>appropriate for low winds <sup>12</sup><br>Kite power systems<br>independent of orientation<br>mid- & high-rise build.<br>independent |                                                                                                                                                 | <ul> <li><sup>3</sup>Wang et al.,<br/>2017;</li> <li><sup>6</sup>Bell et al.,n.d.;</li> <li><sup>7</sup>Guzzetta et<br/>al., 2007;</li> <li><sup>8</sup>Smith et al.,<br/>2012;</li> <li><sup>9</sup>Micallef et al.,<br/>2016</li> <li><sup>10</sup>Park et al.,<br/>2015</li> <li><sup>11</sup>Ledo et al.,<br/>2011;</li> <li><sup>12</sup>Korprasertsak<br/>&amp; Leephak-<br/>preeda, 2015;</li> <li><sup>13</sup>Dekker, 2012</li> </ul> | PV panels & para<br>South to East<br>mid- & high-rise t<br>unshaded and spi<br>non-residential bu<br>solar roads & patl<br><br>infrastructure & public space<br>away from buldings (low dens. vegetation)<br>thin-film solar (textile)<br>South to East (120-degree range)<br>mid- & high-rise build.<br>large vertical blind facades<br>see-through transparent solar panels<br>South to East<br>buildings<br>balconies and windows                                                                                                                                      | CY PRODU<br>thin-film solar (textile)<br>South to West<br>build. & open spaces<br>rooftops (summer terraces)<br>a<br>build. & open spaces<br>rooftops (summer terraces) | ICTIOI    | V |

# DESIGN PAATTERN GROUPS

**TYPOLOGY** 

# Design patterns



"The design pattern describes a problem that occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice." Christopher Alexander
**DESIGN PATTERN GROUPS:** 

### ENERGY USE

### ENERGY PRODUCTION

### DENSIFICATION

### DESIGN PATTERNS STRUCTURE

### Design pattern GROUP



### *FACADES EXPOSED TO PREVAILING WINTER WIND*

### Problem statement

Sides of building exposed to wind during winter have as a result significant loss of buildings' heat especially in the case of the poorly insulated post-war buildings. No or insufficient (deciduous) protection from vegetation is a common reason for exposure to wind. Also low H/W ratio for parallel rows results in wind's acceleration regaining. Meanwhile, parallel linear blocks with large open spaces inbetween them are common in dutch post-war neighbourhoods. Therefore high density barriers should be placed in the presence of main flow (full speed). Low density barriers are more appropriate in cases of wake interference or lee eddys.

### WIND SPEED ACCELERATION DUE TO TUNNEL EFFECT

### <u>roblem statemen</u>

В.

Parallel rows of buildings when oriented in parallel to the prevailing wind direction create an acceleration of the wind which in turn intensifies the negative impact of wind on building energy consumption. Therefore barriers should be placed to decrease, if not to block it entirely, the wind speed.

D

M

<u>D</u>

PS

NR

Ū

**D** 

### LACK OF PASSIVE HEATING

### Problem statement

The optimum orientation of living spaces is facing south for solar passive heating. Indeed in some of the post war buildings the entrance is north so that living spaces can freely face the south. However it is also common for a 'stamp' to consist of different – often perpendicular to each other – orientated buildings. Therefore some buildings face E-W which is disadvantageous both for winter and summer moths. Therefore, where possible glazed spaces should be created to maximize passive heating during winter months and at the same time provide for cooling opportunities during summer. Where not possible or desireable, the possibility is given for infill development since there is already no solar exposure and densification is considered desireable.

### UNUSED AND ENERGY-LACKING ROOFTOPS OF RESIDENTIAL BUILDINGS

### Problem statement

Rooftops on residential buildings are under- or unused. In mid-rise buildings a combination of energy production and active use by residents is both desireable and possible. The height of mid-rise buildings shows lower wind speeds which means, on the hand specific technologies can only be productive, on the other hand they can be actively used by residents. Elements such as orientation, position, visual impact and combination with other uses, need to be taken into account for design decisions.

### UNUSED AND ENERGY-LACKING HIGH-RISE BUILDINGS' SURFACES

### Problem statement

In many post-war neighbourhoods there is a significant number of high rise buildings. The wind speeds at these heights are higher and unblocked by surrounding buildings, the same applies for sun on the higher

### UNDERUSED AND ENERGY-LACKING PUBLIC SPACES

### Problem statement

**ESIGN PATTERNS** 

The result of openess and zoning has been an abundance of public spaces for green or activities but are currently largely underused. These large and undefined spaces have the potential with the implementation of various innovative technologies to be revitalized while contributing in lowering energy demand of buildings or more importantly in energy production.

### SMALL OR UNPRODUCTIVE RESIDENTIAL ROOFTOPS

### roblem statement

*G*.

Rooftops on residential buildings can often be too small to produce enough energy or the circumastances might be unfavourable, such as shadow on single-family houses from blocks of flats. Public or commercial buildings located usually in the centre or orderly in relation to houses, usually have large rooftops appropriate for large installations of PV panels. Their location in relation to houses can serve well in connecting the houses to this more central installations.



|            |                                                                                                                                                                      | WIND PATTERNS                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                            | SOLAR RADIATION                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                                                                                                   |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | CLIMATIC CONDITIONS FOR<br>DUTCH CLIMATE<br>(temperate maritime climate<br>influenced by the North Sea)                                                              | WINTER [MAIN FOCUS]<br>moderate winters<br>-cold & strong wind from North Sea                                                                                                                                                                                                                                                           | SUMMER [ACCOUNTED FOR]<br>cool summers<br>-sea breeze              | Sources                                                                                                                                                    | WINTER [MAIN FOCUS]<br>moderate winters<br>-cloudy; less solar radiation                                                                                                                                                                                                                       | Summer [accounted for]<br>cool summers                                                                 | Sources                                                                                                                                                                                           |  |
| ENERGY USE | <u>-district/neighbourhood</u><br>urban block morph.: heights<br>urban forest<br>street & open sp. orientation<br>high housing density<br><u>-urban block/street</u> | min. height irregular., avoid tall buildings<br>urban forest (for fully exposed blocks)<br>perpendicular or sidewards to the wind                                                                                                                                                                                                       | not perpendicular to<br>summer breeze                              | <sup>1</sup> Oke, 1987;<br><sup>2</sup> Jurelionis,<br>Bouris, 2016;<br><sup>3</sup> Eumorfopou-<br>lou, Kontole-<br>on, 2009;<br><sup>4</sup> Salat, 2014 |                                                                                                                                                                                                                                                                                                |                                                                                                        | <ul> <li><sup>14</sup>McPherson et<br/>al., 1988;</li> <li><sup>15</sup>Olygay et al.,<br/>2015;</li> <li><sup>16</sup>Scott, Ben-Jo-<br/>seph, 2012;</li> <li><sup>4</sup>Salat, 2014</li> </ul> |  |
|            | urban block morph.: form<br>vegetation<br>orientation<br>width street ratio: Height/Width<br>density & solar exposure                                                | <ul> <li>(1) paral. rows of linear blocks/elong.forms</li> <li>(2) perimeter blocks</li> <li>(3) compact form</li> <li>evergreen rows of trees, perpend. to wind</li> <li>perpendic. or sidewards (45°) to the 1</li> <li>H/W ≥0.65<sup>11</sup></li> <li>infill where 1/≤0.65 (to achieve skimming 1 and avoid wake interfe</li> </ul> | sumn. The direction:<br>no vegeta.<br>parallel or sidew. The sidew |                                                                                                                                                            | <ul> <li>(1) free arr. of linear blocks/elong. forms</li> <li>(4) T-shaped/cross forms</li> <li>deciduous trees: solar access for winter, shadow for summer</li> <li>H/W≤2 (traditional deep canyon), by densif. keep H/W as low as possible; blocks facing E-W, united with atrium</li> </ul> | tree rows parall. to W faces<br>high dens. in open spaces;<br>blocks facing E-W, united<br>with atrium |                                                                                                                                                                                                   |  |

### FACADES EXPOSED TO REVAILING VINTER WIND

### Problem statement

Sides of building exposed to ind during wir r have as a result significant loss of buildings is the specially in the case of the poorly insulated post-war uildings. No or insufficient (deciduous) protection from vegetation is from reason for exposure to wind. Also low H/W ratio for parallel rows results in wind's acceleration regaining. Meanwer or arallel linear blocks with large open spaces inbetween them are common in dutch post-war neighbourhoods. Therefore high density barriers should be placed in the presence of main flow (full speed). Ow density barriers are more appropriate in cases of wake interference or lee eddys.



### FACADES EXPOSED TO PREVAILING WINTER WIND

Sides of building exposed to wind during winter have as a result significant loss of buildings' heat especially in the case of the poorly insulated post-war buildings. No or insufficient (deciduous) protection from vegetation is a common reason for exposure to wind. Also low H/W ratio for parallel rows results in wind's acceleration regaining. Therefore high density barriers should be placed in the presence of main flow (full speed). Low density barriers are more appropriate in cases of wake interference or lee eddys.









### Problem statement

Compact form - aka structure with minimum exterior surface and a planar analogy of 1: 1.1-1.3 elongated on E-W axis - can sustain its inner heat better and if the width or legth remains under 10m it is easily heated. Therefore, and given current insulation systems and the incorporation of green walls, a line of compact towers can provide shelter for post-war high-rise buildings.





AG, Raderschall Landschaftsarchitekten)





Urban Farm at Pasona Tokyo Headquarters is a nine story high corporate office building (KONODESIGNS)



Reference Nieuw Leyden (MVRDV)





### P18 PARALLEL ROWS DENSIFICATION

### Problem statement

The wind flow when encountering a hard-edged building (flat roof, vertical walls) is displced over the building which then functions as a shelter for succeeding buildings. However when the buildings set in parallel have large spacing in between them (low hight-to-width ratio) then the sheltering effect is lost. Densifying the in between space by adding a new row restores the sheltering effect.





P3 'GREEN' WALLS

low density barrier

Reference The greenscreen® trellis system of engineered mounting accessories is designed to hold greenscreen® trellis panels off the building surface, protecting the building's waterproof membrane from direct plant attachment and transferring the weight of the plants to the screen structure and the wall. Panels can be stacked side to side or top to bottom to cove larger areas. Fishers Place Parking Structure Facade, Rockville MD (greenscreen)



Y:Cube (Rogers Stirk Harbour + Partners, YMCA London South West)

101

Neubau MFO-Park Zürich (Burckhardt+Partner

Architects)

ReGen village vertical farming system (EFFEKT

### Case study & Design method



### CASE STUDY



### LOCATION SELECTION: SCHIEBROEK ZUID, ROTTERDAM





**CASE STUDY - LOCAL CONDITIONS** 



### URBAN BLOCK/STREET SCALE

CLIMATIC CONDITIONS FOR DUTCH CLIMATE (temperate maritime climate influenced by the North Sea)

<u>-district/neighbourhood</u> urban block morph.: heights urban forest street & open sp. orientation high housing density

### -urban block/street

urban block morph.: form

vegetation orientation width street ratio: Height/Width

### density & solar exposure

<u>-building (parcel)</u> orientation vegetation bulding plan (envelope)

infill development AND dense & energy efficient h.typ.



ENERGY USE







### Urban Block B - stamp



### URBAN BLOCK/STREET SCALE

CLIMATIC CONDITIONS FOR DUTCH CLIMATE (temperate maritime climate influenced by the North Sea)

<u>-district/neighbourhood</u> urban block morph.: heights urban forest street & open sp. orientation high housing density

-urban block/street

urban block morph.: form

vegetation orientation width street ratio: Height/Width

density & solar exposure

<u>-building (parcel)</u> orientation vegetation bulding plan (envelope)

infill development AND dense & energy efficient h.typ.



**CASE STUDY - LOCAL CONDITIONS** 

ENERGY USE









SOLAR





CASE STUDY - LAYER ANALYSIS MAPPING



### INSIGHT TO THE DESIGN METHOD

solar 'fabric' in shadow



FINAL OUTCOME: CONTRADICTING EFFECTS





### NEIGHBOURHOOD ANALYSIS ON DENSIFICATION HOTSPOTS





CASE STUDY - SUB-PATTERN IMPLEMENTATION

|       | BASIC ELEMENTS  |          |                        | POSITIONING              | DESIGN RELATED INFO   |               | EXTRA TECHNICAL INFO |                                         |                 |
|-------|-----------------|----------|------------------------|--------------------------|-----------------------|---------------|----------------------|-----------------------------------------|-----------------|
|       | energy source   | location | morphology/<br>surface | position/<br>orientation | combined with<br>uses | visual impact | productivity         | cost                                    | embodied energy |
| P4 👘  | solar & wind    | M & L    |                        | fixed                    |                       |               |                      |                                         |                 |
| P5 55 | wind            | M & L    |                        | fixed                    |                       |               | low wind speeds      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |
| P6    | wind            | M & L    |                        | fixed/free               |                       |               | also low & turbulent |                                         |                 |
| P7 🚺  | solar           | All & PS |                        | free/120º range          |                       |               |                      |                                         |                 |
| P8    | solar           | M & PS   |                        | relatively free          |                       |               |                      |                                         |                 |
| P9    | wind            | M        |                        | fixed                    |                       |               |                      |                                         |                 |
| P10   | wind ( & solar) | М        |                        | fixed                    |                       |               |                      |                                         |                 |
| P11   | solar           | NR       |                        | fixed                    |                       |               |                      |                                         |                 |
| P12   | wind            | L        |                        | fixed/free               |                       |               |                      |                                         |                 |
| P13   | wind            | L        |                        | fixed                    |                       |               |                      |                                         |                 |
| P14 🕥 | wind            | L        |                        | free                     |                       |               |                      |                                         |                 |
| P15   | solar           | L        |                        | fixed                    |                       |               |                      |                                         |                 |
| P16   | wind            | PS       |                        | free                     | $\bigcirc$            |               | low wind             |                                         |                 |
| P17   | solar           | PS       |                        | free                     |                       |               |                      |                                         |                 |
| P18   | wind            | PS       |                        | free                     |                       |               | -                    |                                         |                 |
|       |                 |          |                        |                          |                       | high          |                      |                                         |                 |



irrelevant/unknown

low

medium

### CASE STUDY – DESIGN PHASE











INSIGHT TO THE DESIGN METHOD



### CASE STUDY – URBAN BLOCK DESIGN











TOWER SQUARE

new social and leisure infrastructures new residents - new demands

### NEIGHBOURHOOD ANALYSIS ON WIND & SOLAR ENERGY GENERATION POTENTIALS





### NEIGHBOURHOOD ANALYSIS ON FACILITIES AND CENTRES





## CASE STUDY - NEIGHBOURHOOD DESIGN



# CASE STUDY - NEIGHBOURHOOD DESIGN












## **STRUCTURE PLAN** CASE STUDY



"(..) Only by having clear and vital images of the many alternatives, good and bad, of where one can go, will we have any control over the way we may actually get there in a reality tomorrow will bring all too quickly."

Samuel R. Delany, "The Necessity of Tomorrows"

Thank you for your attention!



#### ¬ CLIMATIC CONDITIONS: WIND AND SOLAR <u>Heat losses from wind</u>

#### Forced convection





"the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze"

#### Newton's Law of Cooling



### PREMISES

#### ¬ CLIMATIC CONDITIONS: WIND AND SOLAR Heat gains from solar

#### **Radiation**







#### ¬ WINTER SEASON

#### Calculated energy demand of typical dutch mid-terraced dwelling



PREMISES

#### ¬ CLIMATE

Cfb – Oceanic or temperate maritime climate influenced by the North Sea



# CASE STUDY - SUB-PATTERN IMPLEMENTATION

|           |       | BASIC ELEMENTS |                        | EARE           | CT INFO                       |
|-----------|-------|----------------|------------------------|----------------|-------------------------------|
|           |       | building size  | morphology/<br>surface | density effect | on wind restores<br>H/W ratio |
|           | wind  | S & M          | <u>A</u>               | high           |                               |
| P2 (@6    | wind  | S & M          | <u>M</u>               | low            | ×                             |
| <b>78</b> | wind  | All            | <u>A</u>               | low            | $\times$                      |
| P19       | wind  | L.             | Ц.                     | high           | ×                             |
| P20       | wind  | S & M          | - Alexandre            | high           |                               |
| P21       | wind  | S & M          | Ð                      | high           |                               |
| P22       | solar | S & M          | <u>E</u>               | high           |                               |
| P24       | solar | All            | 武武                     | -              |                               |

|                                                    |        |                                     | P17_compact forms | P18_parallel linear<br>blocks | P19_perimeter<br>blocks | P22_T-shaped/cross<br>forms |
|----------------------------------------------------|--------|-------------------------------------|-------------------|-------------------------------|-------------------------|-----------------------------|
|                                                    |        | wind protection                     |                   |                               |                         |                             |
|                                                    | WINTER | solar gains                         |                   |                               |                         |                             |
|                                                    |        | heat preservation                   |                   |                               |                         |                             |
|                                                    | SUMMER | all of the above into consideration |                   |                               |                         |                             |
| adaptation<br>to dutch post-war<br>neighbourhoods] |        |                                     |                   |                               |                         |                             |



|                    | 1 | technology<br>orientation | HAWT (Horizontal Axis Wind Turbines)<br>windward (WT adjustable) | <sup>5</sup> Wang et al.,<br>2017;   | PV panels & parabolic collectors<br>South to East | parabolic rooftop collectors<br>South to West | <sup>17</sup> Mostafavi et<br>al., 2010; |
|--------------------|---|---------------------------|------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------|
|                    |   | location                  | mid- & high-rise build., towers open sp.                         | <sup>6</sup> Bell et al.,n.d.;       | mid- & high-rise build.                           | mid- & high-rise build.                       | <sup>16</sup> Scott, Ben-Jo-             |
|                    |   | morphology                | roof (optimum type: curved)                                      | <sup>7</sup> Guzzetta et             | unshaded and spacious rooftops (prefer. on        | shaded roofgarden/patio                       | seph, 2012                               |
|                    | 2 | technology                | VAWT or micro-wind turbines or IRWES <sup>13</sup>               | 8Smith et al                         | solar roads & paths                               |                                               |                                          |
|                    |   | orientation               | windward (only for micro-wind)                                   | 2012 <sup>.</sup>                    |                                                   |                                               |                                          |
| z                  |   | location                  | high- & mid-rise build. (possible for low)                       | <sup>9</sup> Micallef et al.,        | infrastructure & public space                     |                                               |                                          |
| 2                  |   | morphology                | flat roof, corners & facades                                     | 2016                                 | away from buldings (low dens. vegetation)         |                                               |                                          |
| <b>3GY PRODUCI</b> | 3 | technology                | ducted wind turbines                                             | <sup>10</sup> Park et al.,           | thin-film solar (textile)                         | thin-film solar (textile)                     |                                          |
|                    | - | orientation               | windward (fixed position)                                        | 2015                                 | South to East (120-degree range)                  | South to West                                 |                                          |
|                    |   | location                  | high-rise build.                                                 | "Ledo et al.,                        | mid- & high-rise build.                           | build. & open spaces                          |                                          |
|                    |   | morphology                | flat roof                                                        | 2011,<br><sup>12</sup> Korprasertsak | large vertical blind facades                      | rooftops (summer terraces)                    |                                          |
| ١ <u>ا</u>         | Л | technology                | savonius VAWT or Rinonterus VAWT                                 | & Leephak-                           | see-through transparent solar papels              |                                               |                                          |
|                    | 4 | orientation               | independent of orientation                                       | preeda, 2015;                        | South to Fast                                     |                                               |                                          |
|                    |   | location                  | bus stops, shelters, roof patios - open sp.                      | <sup>13</sup> Dekker, 2012           | buildings                                         |                                               |                                          |
|                    |   | morphology                | VAWT with wind booster system (vanes) are                        |                                      | balconies and windows                             |                                               |                                          |
|                    |   |                           | appropriate for low winds <sup>12</sup>                          |                                      |                                                   |                                               |                                          |
|                    | 5 | technology                | Kite power systems                                               |                                      |                                                   |                                               |                                          |
|                    |   | orientation               | independent of orientation                                       |                                      |                                                   |                                               |                                          |
|                    |   | location                  | mid- & high-rise build.                                          |                                      |                                                   |                                               |                                          |
|                    |   | morphology                | independent                                                      |                                      |                                                   |                                               |                                          |
|                    |   |                           |                                                                  |                                      |                                                   |                                               |                                          |

#### DESIGN PATTERNS: LOCATION



**DESIGN PATTERNS** 

Mid-rise buildings (4-10 floors)

High-rise buildings ( $\geq$ 10 floors)

Non-Residential buildings

Public spaces

#### DESIGN PATTERNS: MORPHOLOGY/SURFACES OF SENSITIVITY OR POTENTIAL



#### TYPES OF VEGETATION





CASE STUDY

## CASE STUDY - LOCAL CONDITIONS





#### BOEKEL ECODORP, NETHERLANDS

"Now we are close to realizing our dreams. We learned a lot in the last 5 years. We are going to grow our food with Permaculture, heat our homes with Rocket Mass Heaters. We are going to build our houses with wood, straw bales and hemp.

We are going to build a polydome as an example for sustainable food production

We are going to build the nicest tree huts for ecotourists. And we will be a center of sustainable companies that create win-win situations for each other and the partners we work with

So that can happen when you go with the flow. You have no idea where you are going, and not how long it takes. So be sure to make the trip worthwhile . Then it does not matter where you end up or how long it takes. It only means that you can realize your dream and make your part of the world a bit better..





|           | SIZE | CURRENT<br>STAGE | RELATED TO<br>URBAN CENTRE                                           | ENERGY  |                                             |                              | Y          | FOOD WATER                                                                                                                        |                                                                                                                                         | WASTE                                                                                                             | MATERIALS                                                                                          | NATURAL<br>ASSETS | STRUCTL                                                                           | IRE/FORM                                                                                                 | BASIC PLANNING<br>CONCEPTS                                                         | PHASING                                                                                                                                                                                                                                                                          | ORGANIZATION<br>& PROFIT                                                                                                                                                                                             |
|-----------|------|------------------|----------------------------------------------------------------------|---------|---------------------------------------------|------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |      |                  |                                                                      | DNIM    | SOLAR                                       | BIOMASS                      | GEOTHERMAL | SYSTEM & STORAGE                                                                                                                  |                                                                                                                                         |                                                                                                                   |                                                                                                    |                   | Architecture                                                                      | Urban/village                                                                                            |                                                                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |
|           |      |                  | Fringe of the small<br>town of Boekel<br>1km away from its<br>centre | Max 12m | Solar panels, solar collectors on the roofs | Wood, biogas from composting |            | Food forest<br>Permaculture<br>garden<br>Ad ot d/mxi ad edeuts Ataten uMAL – pub<br>That ad edeuts Ataten uMAL – pub<br>Fish farm | Helium filter:<br>toilets<br>Hemel (s)<br>water:<br>rain water<br>infiltration<br>micro-algae<br>reactor:<br>toilets and<br>agriculture | Compost toilets<br>Vegetable<br>waste →<br>chicken & fish<br>deconstruction:<br>2 <sup>10</sup> hand<br>materials | Organic & renewable<br>Proximity of origin<br>Slightly processed<br>2 <sup>nd</sup> hand materials | D'n Eik forest    | High insulation<br>A lot of daylight<br>Passive solar<br>Solar tubes & LED lights | Small houses: less<br>materials, less energy to<br>build & to heat, cool,<br>etc.<br>Neighbourhood house | Permaculture<br>Biomimicry<br>Healing architecture<br>Pattern language<br>Polydome | P1 preparation<br>exploring potentials,<br>allocation of tasks<br>P2 grouping<br>Attract people<br>(experts, volunteers,<br>supporters) →action<br>oriented organization<br>P3 agreement with<br>municipality<br>• Temporary<br>occupation<br>• Boomhuttenhotel<br>• Food forest | Cooperative<br>Ecodorp Boekel<br>(rential company):<br>residents will be<br>renting the houses<br>Model: Holarchie<br>Profit:<br>Boomhuttenhotel<br>"Dragon dreaming"<br>Project<br>management<br>service (external) |
| synergies |      |                  |                                                                      |         | •=                                          |                              |            | • 0                                                                                                                               | •                                                                                                                                       |                                                                                                                   | 0                                                                                                  | 0                 | -                                                                                 |                                                                                                          |                                                                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |
|           |      |                  |                                                                      |         |                                             |                              |            |                                                                                                                                   |                                                                                                                                         |                                                                                                                   |                                                                                                    |                   |                                                                                   |                                                                                                          |                                                                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |