


MAIC: Multimodal Active
Inference Controller

by

Cristian Meo

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended on Tuesday August 31th, 2021 at 11:30 AM

MSc. Mechanical Engineering
BMD – Biorobotics track

August 17, 2021

Student number:       5160901

Thesis committee:    Martijn Wisse,           TU Delft, Main supervisor and Chairman

Pablo Lanillos, Radboud University, External advisor

Riccardo Ferrari, TUDelft, External examiner

Jens Kober, TUDelft, External examiner

Giovanni Franzese, TUDelft, Expert

Faculty of Mechanical, Maritime and Materials engineering (3mE)
Delft University of Technology





Preface

This Master thesis consists of a paper that has been done in collaboration with other PhD
students at the Department of Cognitive robotics, Delft University of Technology. The project
has been supervised by Prof Martijn Wisse and by Dr Lanillos Pablo, Donders Institute for
Brain, Cognition and Behavior, Radboud University, the Netherlands. Here I illustrate the
authors' contributions to this paper.

Authors contributions:

● Cristian Meo: Main author, I defined the research questions, developed the
theoretical model, designed the performed experiments, processed the experimental
results, wrote the article and managed the research team.

● Giovanni Franzese: He provided consultancies about Gaussian Processes and
related topics. He tuned the impedance controller and performed the designed
experiments.

● Corrado Pezzato: He tuned the standard and unbiased active inference controllers
and performed the designed experiments.

● Max Spahn: He tuned the model predictive controller and performed the designed
experiments.

Every experiment was performed under my supervision.

Cristian Meo
Delft, August 2021





2

MAIC: Multimodal Active Inference Controller
Cristian Meoa, Giovanni Franzesea, Corrado Pezzatoa, Max Spahna and Pablo Lanillosb

Abstract—Active inference, a theoretical construct inspired by
brain processing, is a promising approach to control artificial
agents. Here we present a novel multimodal active inference
torque controller for industrial arms that improves the adaptive
characteristics of previous active inference approaches but also
enables multimodal integration with any other sensor modal-
ity (e.g., raw images). We evaluated our model on a 7DoF
Franka Emika Panda robot arm and systematically compared
its behaviour with previous active inference baselines and classic
controllers, analyzing both qualitatively and quantitatively adap-
tation capabilities and control accuracy. Results showed improved
control accuracy in goal-directed reaching due to the increased
representation power, high noise rejection due to multimodal
filtering, and adaptability in changes on the environmental
conditions and robot parameters without the need to relearn
the generative models nor parameter retuning.

I. INTRODUCTION

Real world complex systems, such as airplanes, cars and
intelligent agents may need to process unstructured high-
dimensional data coming from different sensors depending on
the domain or task (e.g., LIDAR in cars, sonar in submarines
and different sensors to measure the internal state of the
robotic system). In this context, one of the biggest challenges
is mapping this rich stream of multimodal information into
a lower-dimensional space that integrates and compresses
all modalities into a latent representation; the agent could
then use this embedded latent representation that encodes
the state of the robot and the world aiding the controller.
Moreover, another critical challenge is the uncertainty, these
environments may always present unmodeled behaviours, such
as air turbulence in airplanes and unmodeled dynamics of
water streams. In the last years, some proof-of-concept studies
in robotics have shown that Active Inference (AIF) may be
a powerful framework to address key challenges [16], such
as adaptation [20, 24], robustness [1, 2] and multimodal
state representation learning [15, 18]. Active Inference is
prominent in neuroscientific literature as a biologically plau-
sible mathematical construct of the brain based on the Free
Energy Principle (FEP) [6]. According to this theory, the brain
learns a generative model of the world/body that is used to
perform state estimation (perception) as well as to execute
control (actions), optimizing one single objective: Bayesian
model evidence. This approach, which grounds on hierarchical
variational inference and dynamical systems estimation [11],
has strong connections with Bayesian filtering [25] and control
as inference [19], as it both estimates the system state and
computes the control commands as a result of the inference
process.

a: Faculty of Mechanical Engineering, Department of Cognitive Robotics,
Delft University of Technology, Delft, The Netherlands

b: Donders Institute for Brain, Cognition and behaviour, Department of
Artificial Intelligence, Radboud University, Nijmegen, The Netherlands.

A. Related Works

Recently, a state estimation algorithm and an AIF-based
reaching controller for humanoid robots were proposed in
[14] and [20] respectively, showing robust sensory fusion
(visual, proprioceptive and tactile) and adaptability to unex-
pected sensory changes. However, they could only handle low-
dimensional inputs and did not implement low-level torque
control. Latterly, adaptive active inference torque controllers
[2, 23] showed better performances than a state-of-the-art
model reference adaptive controller. However, they cannot
handle high-dimensional inputs. Furthermore, an AIF planning
algorithm was presented in [10], showing that the introduc-
tion of visual working memory and the variational inference
mechanism significantly improve the performance in planning
adequate goal-directed actions. Lastly, in a previous work
we presented a Multimodal Variational Autoencoder Active
Inference (MAIC-VAE) [18] torque controller, which inte-
grates visual and joint sensory spaces. However, a clear and
systematic comparison on adaptation between AIF and classic
controllers is still missing. Furthermore, [18] does not present
a generalized multimodal active inference control scheme,
focusing mostly on the Multimodal VAE implementation.

B. Contribution

We propose a multimodal active inference torque con-
troller (MAIC) which extends current active inference control
approaches in the literature by allowing function learning
[13] and multimodal state representation learning [17] while
maintaining the adaptation capabilities of an active inference
controller. To this end, we developed two versions of the
proposed algorithm depending on the size of the sensory input:
low-dimensional using Gaussian Processes (MAIC-GP), i.e.,
combining the joint space with the end-effector position and
high-dimensional using a Variational Autoencoder (MAIC-
VAE), i.e., combining the joint space with raw images as
visual input. Finally, we experimentally evaluated the proposed
algorithm on a 7DOF Franka Emika Panda arm under different
conditions. We systematically compared the MAIC with state-
of-the-art torque active inference controllers, such as the AIC
[23] and the uAIC [2], and standard controllers, such as model
predictive control (MPC, Appendix A) and joint impedance
control (IC, Appendix B). We present both qualitative and
quantitative analysis in different experiments, focusing on
adaptation capability and control accuracy.

II. AIF GENERAL FORMULATION AND NOTATION

Here we introduce the standard equations and concepts from
the AIF literature [6], and the notation used in this paper,
framed for estimation and control of robotic systems [20]. The
aim of the robot is to infer its state (unobserved variable) by
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means of noisy sensory inputs (observed). For that purpose, it
can refine its state using the measurements or perform actions
to fit the observed world to its internal model. This is dually
computed by optimizing the variational free energy, a bound
on the Bayesian model evidence [3].

System variables. State, observations, actions and their n-
order time derivatives (generalized coordinates).

x = [x1,x2, ...,xl] , sensors observations (l modalities)
r = [r1, r2, ..., rl] , sensory noise (l modalities)
x̃ = [x,x′,x′′, ...,xn] , generalized sensors
z̃ = [z, z′, z′′, ..., zn] , multimodal system state
µ̃ = [µ,µ′,µ′′, ...,µn] , proprioceptive state
r̃ = [r, r′, r′′, ..., rn] , generalized sensory noise

w̃ = [w,w′,w′′, ...,wn] , state fluctuations
a = {a1, a2, . . . , ap} , actions (p actuators)

m = {m1,m2, . . . ,ml} , modalities

Where x′= dx
dt . Depending on the formulation the action

a can be force, torque, acceleration or velocity. In this
work action refers to torque. We further define the time-
derivative of the state vector Dz̃ as:

Dz̃ =
d

dt
([z, z′, . . . , zn]) = [z′, z′′, . . . , zn+1]

Generative models. Two generative models govern the robot:
the mapping function between the robot’s state and the
sensory input g(z̃) (e.g., forward kinematics) and the
dynamics of the internal state f(z̃) [3].

x̃ = g(z̃) + r̃ (1)
Dz̃ = f(z̃) + w̃ (2)

where r ∼ N (0,Σx̃) and w ∼ N (0,Σz̃) are the
sensory and process noise respectively. Σx̃ and Σz̃ are the
covariance matrices that represent the controller’s confi-
dence about each sensory input and about its dynamics
respectively.

Variational Free Energy (VFE). The VFE is the optimiza-
tion objective for both estimation and control. We use
the definition of the F based on [7], where the action
is implicit within the observation model x(a). Using the
KL-divergence the VFE is:

F = KL [q(z̃)||p(z̃|x̃)]− log p(x̃) (3)

where q(z̃), p(z̃|x̃) and p(x̃) are the variational density,
posterior and prior distribution. As a result, q(z̃) approx-
imates p(z̃|x̃) when F is minimized.
State estimation using gradient optimization:

˙̃z = Dz̃− kz∇zF(x̃, z̃) (4)

Control using gradient optimization:

ȧ = −ka
∑
x̃

dx̃

da
· ∇x̃F(x̃, z̃) (5)

where kz and ka are the gradient descent step sizes. The
VFE has a closed form under the Laplace and Mean-field
approximations [3, 20] and it is defined as:

F(z̃, x̃) '− ln p(z̃, x̃) = p(x̃|z̃)p(z̃)

' (x̃− g(z̃))T Σ−1
x̃ (x̃− g(z̃))

+ (Dz̃− f(z̃))T Σ−1
z̃ (Dz̃− f(z̃))

+
1

2
ln |Σx̃|+

1

2
ln |Σz̃| (6)

The first term of Eq. (6) is the sensor prediction error and
the second term is the dynamics prediction error.

III. ARCHITECTURE AND DESIGN: MULTIMODAL ACTIVE
INFERENCE CONTROLLER

As long as we can learn the generative mapping of a certain
sensory space, we can add any modality to Eq. (4), combining
free energy optimization [7] with generative model learning
and performing sensory integration. The online estimation and
control problem is solved by optimizing the VFE through
gradient optimization, computing Eq. (4) and (5). In this
work we present two different versions of the same algorithm,
in the first case we use the end-effector position xee (low
dimensional sensory input), learning the generative mapping
with Gaussian Processes (MAIC-GP), while in the second case
we scale to the full raw image xv (high dimensional sensory
input), learning the mapping through a multimodal variational
autoencoder (MAIC-VAE). We first introduce the required pre-
liminaries. Consequently, we illustrate the multimodal active
inference update equations and the full algorithm.

A. Multimodal Active Inference

As discussed in [3], Eq. (6) can be extended for different
modalities. As a result, state estimation and control equations
can be derived for the multimodal case as well. We define the
sensory generative function g(z̃) with multiple modalities as
g(z̃) = [gm1(z̃), ..., gml

(z̃)]. Moreover, as in [24] we define
the system internal dynamics f(z̃) as:

f(z̃,ρ=xd) =
∂g(z̃)

∂z̃
(xd − g(z̃)) (7)

where ρ = xd steers the system towards the desired target.
Therefore, substituting Eq. (6) into Eq. (4) and (5) and rewrit-
ing it for the multimodal case, we can obtain the multimodal
state estimation update law:

˙̃z = Dz̃ +
∑
m

(
km

∂gm
∂z̃

Σ−1m (xm − gm(z̃))

)
+ kz

∂f(z̃,ρ)

∂z̃
Σ−1z̃ (xd − f(z̃,ρ)) (8)

and the control equation:

ȧ = −
∑
m

kam∂axmΣ−1m (xm − gm(z̃)) (9)

where km and kam
are state estimation and control gradient

descent step sizes related to modality m, and ∂axm = ∂xm

∂a .
Appendix F illustrates the derivation of Eq. (8) and Eq. (9).
Algorithm 1 illustrates the general multimodal active inference
controller scheme.



4

Algorithm 1 MAIC

Require: xd = {xdm1
,xdm2

, ...,xdml
}

while ¬goal reached do
x = [xm1

,xm2
, ...,xml

]← Sensors(m)

State Estimation
˙̃z← multimodal state update law Eq. (8)

Control
ȧ = −

∑
m kam∂axmΣ−1m (xm − gm(z̃))

Euler integration
z̃ += δt ˙̃z
a += δtȧ

end while

IV. ALGORITHM IMPLEMENTATIONS

A. MAIC-GP

Here we describe the multimodal active inference for low-
dimensional inputs (e.g., end-effector position). We define the
sensory generative functions as:

gq(µ) = µ (10)
gee(µ) = GPee(µ) (11)

where gq(µ), as in [23], is the proprioceptive generative
sensory function (i.e., joint states), and gee(µ) is the end-
effector generative sensory function. As in [14], gee(µ) is
computed using a Gaussian Process Regressor (GPR) between
proprioceptive sensory input and end-effector positions. This
approach is particularly useful because we can compute a
closed form for the derivative of the gaussian process with
respect to the beliefs µ, which is required for the multimodal
state update law, Eq. (8).

1) Learning: We train the model through guided self-
supervised learning. This generated a dataset of 9261 pairs
end-effector positions and joint values (Xee,Xq). We use a
squared exponential kernel k of the form:

k(xqi
,xqj

) = σ2
f e

(− 1
2 (xqi

−xqj
)T Θ(xqi

−xqj
)) + σ2

ndij (12)

where xqi
,xqj

∈ Xq, dij is the Kronocker delta function and
Θ is the hyperparameters diagonal matrix. We can compute
the end-effector location given any joint state configuration as:

gee(µ) = k(µ,Xq)K−1Xee (13)

Finally, we can compute the derivative of gee(µ) with respect
to µ as:

∂gee(µ)

∂µ
= −Θ−1(µ−Xq)T [k(µ,Xq)T ·α] (14)

where K is the covariance matrix, α = K−1Xee and ·
represents element-wise multiplication. Appendix E illustrates
the end-effector predictions accuracy using GPR.

2) State estimation and Control: Substituting Eq. (10) and
(11) into Eq. (8) and (9), we can now write the state estimation
update laws:

µ̇ = µ′ + kµΣ−1q εxq + keeΣ
−1
ee gee(µ)′εxee − kµΣ−1µ εµ

(15)

µ̇′ = µ′′ + kµΣ−1q̇ εq̇ − kµΣ−1µ εµ − kµΣ−1µ′ εµ′ (16)

µ̇′′ = −kµΣ−1µ′ εµ′ (17)

where Σ−1i , with i ∈ {xq,xq̇,xee,µ,µ
′}, are the inverse

variance (precision) matrices related to state observations and
internal state beliefs, and εi are the Sensory Prediction Errors
with i ∈ {xq,xq̇,xee,µ,µ

′}, which represents the error
between expected sensory input and observed one and are
defined as: εxq = xq − µ, εxq̇

= xq̇ − µ′, εxee = xee −
gee(µ), εµ = µ′ + µ − xqd

, εµ′ = µ′ + µ′′. Finally, we can
rewrite the control equation as:

ȧ = −ka(Σ−1q εxq + Σ−1q̇ εxq̇
+ gee(µ)′Σ−1ee εxee) (18)

Note that, as in [23], in Eq. (18) the partial derivatives with
respect to the action are set to identity matrices, encoding
just the sign of the relation between actions and the change
in the observations. Although we can compute the action in-
verse models ∂aµ, ∂aµ

′, ∂axee through online learning using
regressors [13], we let the adaptive controller absorb the non-
linearities. Thus, as described by [23] we just consider the
sign of the derivatives.

B. MAIC-VAE

Here we describe the multimodal active inference controller
for high-dimensional sensory inputs. We use the autoencoder
architecture to compress the information into a common latent
space z that represents the system internal state. We define the
sensory generative functions as:

gq(z) = decoderq(z) (19)
gv(z) = decoderv(z) (20)

where decoderq(z) and decoderv(z) describe the mapping
between z and the sensory spaces. The interested reader can
find a detailed description of MAIC-VAE in [18].

1) Generative models learning: The multimodal variational
autoencoder was trained through guided self-supervised learn-
ing. The dataset generated (50000 samples) consisted in pairs
of images with size (128x128) and joint angles (Xv,Xq). In
order to accelerate the training, we included a precision mask
Πxv = Σ−1xv

, computed by the variance of all images and
highlighting the pixels with more information. The augmented
reconstruction loss employed was:

L = MSE((1+Πxv)gv(z), xv) + MSE(gq(z),xq) (21)

where xq ∈ Xq and xv ∈ Xv.
2) State Estimation and Control: As in MAIC-GP, substi-

tuting the defined generative mappings, Eq. (19) and (20), into
Eq. (8) and (9), we can rewrite the state estimation update
law:

ż =kv
∂gv
∂z

Σ−1xv
(xv − gv(z)) + kq

∂gq
∂z

Σ−1q (xq − gq(z))

− kz
∂f

∂z
Σ−1f (xd − f(z,ρ)) (22)

As we do not have access to the high-order generalized
coordinates of the latent space z′, z′′, we track both the
multimodal shared latent space z and the higher orders of
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the proprioceptive (joints) state µ′,µ′′. Thus, we update the
proprioceptive state velocity and acceleration using Eq. (16)
and Eq. (17), while the joint angles are predicted by the
MVAE: µ = gq(z). Finally, as before the action (torque) is
computed by optimizing the VFE using Eq. (5). Here, since we
cannot easily compute the partial derivative of gv with respect
to the action, we only consider the proprioceptive errors.
Thus, the torque commands are updated with the following
differential equation:

ȧ = −ka(Σ−1q εxq + Σ−1q̇ εxq̇
) (23)

where even in this case we just consider the sign of the partial
derivatives ∂aµ, ∂aµ

′.
V. RESULTS

A. Experiments and evaluation measures

We systematically evaluated our MAIC approach in a 7DOF
Franka Emika Panda robot arm. We performed three different
experimental analyses and compared the MAIC approach
against two state-of-the-art torque active inference controllers
(AIC[23] and uAIC[2]) and two classic controllers: model
predictive control (MPC, Appendix A) and impedance control
(IC, Appendix B).

1) Qualitative analysis in sequential reaching (Sec. V-C).
We evaluated MAIC approaches qualitative behaviours,
focusing on how multimodal filtering affects control
accuracy on the presented controllers.

2) Adaptation study (Sec. V-D). We evaluated the re-
sponse of the system to unmodeled dynamics and en-
vironment variations by altering dynamically the mass
matrix (Inertial Experiment), by adding an elastic con-
straint (Constrain Experiment), by adding random human
disturbances (Human disturbances experiment) and by
adding random noise to the published joints values (Noisy
Experiment).

3) Ablation analysis in sequential reaching (Sec. V-C). We
evaluated the algorithm accuracy and behaviour removing
the extra modality from the algorithm.

In order to evaluate the experiments, we used the following
evaluation metrics:
• Joints perception error. It is the error between the inferred

(belief) and the observed joint angle. The more accurate
the predictions are, the lower will be the perception error.

• Joints goal error. It is the error between the current joint
angles and the desired ones (goal).

• Image reconstruction error. It is the error between the
predicted visual input and the observed image. It is com-
puted as the Frobenius norm of the difference between
current and goal images. It describes the accuracy of the
visual generative model.

• End-effector reconstruction error. It is the Euclidean
distance between the predicted end-effector positions and
the ones computed through the forward kinematics of the
observed joints.

To summarize, joints perception and image reconstruction
errors measure how well the state is estimated, while joints
goal errors give a measure of how well the control task is
executed.

B. Experimental setup and parameters

Experiments were performed on the 7DOF Franka Panda
robot arm using ROS [12] as the interface, Pytorch [21] for the
MVAE and Sklearn [22] for the Gaussian Processes. An Intel
Realsense D455 camera was used to acquire visual grey scaled
images with size 128x128 pixels. The camera was centred in
front of the robot arm with a distance of 0.8 m.

The tuning parameters for the MAIC controllers are:
• Σxv : Variance representing the confidence about visual

sensory data was set as the variances of the training
dataset (Appendix D).

• δt = 0.001: Euler integration step;
• Σq=3,Σq̇=3,Σµ=5,Σµ′ =5,Σf=4,Σee=6: Variances

representing the confidence of internal belief about the
states;

• kµ=18.67, kq=1.5, kv=0.2, kee=1.4, ka=9: The learning
rates for state update and control actions respectively
were manually tuned in the ideal settings experiment.

All experiments were executed on a computer with CPU:
Intel core i7 8th Gen, GPU: Nvidia GeForce GTX 1050 Ti.

C. Qualitative analysis in a sequential reaching task

In order to analyse MAIC qualitative behaviour, we de-
signed a sequential reaching task with four desired goals
defined by the final joint angles {qd1 ,qd2 ,qd3 ,qd4} expressed
in radiants:
• qd1 = [0.45, −0.38, 0.32, −2.45, 0.14, 2.06, 1.26 ]
• qd2 = [0.70, −0.15, 0.10, −2.65, 0.31, 2.55, 1.23 ]
• qd3 = [−0.03,−0.73,−0.25,−2.69,−0.18, 1.83, 0.79]
• qd4 = [0.31, −0.47, 0.38, −2.16, 0.14, 1.71, 1.28 ]

the desired end-effector positions {eed1 , eed2 , eed3 , eed4} and
the desired visual input {Id1 , Id2 , Id3 , Id4} which show the
related poses. In order to select unbiased desired goals, all the

(a) Id1 (b) Id2 (c) Id3 (d) Id4

Fig. 1: Goal poses images.

desired joint poses were randomly sampled from the dataset. In
all experiments the robot starts in home position (qhome= qd4

rad).
1) MAIC-VAE qualitative behaviour: Figures 2a, 2b and 2c

illustrate MAIC-VAE qualitative internal behaviour. It can be
seen that both modalities are successfully estimated. However,
Fig. 2a shows that joints reconstructions present overshoot,
leading to a similar behaviour on the control task, as shown
on Fig. 3. Moreover, the robot updates its internal belief
by approximating the conditional density, maximizing the
likelihood of the observed sensations and then generates an
action that results in a new sensory state, which is consistent
with the current internal representation. However, the visual
decoder require much more computational time than the main
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Fig. 2: Qualitative analysis of the error measures in the
sequential reaching of four goals. All errors present peaks
when a new goal is set. (a-d) Each line represents the error
between the i-th joint belief and the ground truth. (b) Image
reconstruction error. (c) Sequence of the predicted images by
the generative model along the trajectory. (e) End-effector
Reconstruction error.
control loop, leading to the irregular behaviour showed on
Fig. 2a. Although Fig. 2b shows that image reconstructions
present different errors for different poses, Fig. 2c shows that
the image reconstructions through the experiment are well
reconstructed.

2) MAIC-GP qualitative behaviour: Figures 2d and 2e
illustrate MAIC-GP qualitative internal behaviour. As in the
previous case, both modalities are successfully estimated.
Figure 2d shows that MAIC-GP joint estimations do not
overshoot.

3) Vanilla Comparison: Figure 2 illustrates the qualitative
behaviour of the compared controllers. From one goal to the
next one the errors drop down. Although the joint belief errors
(Fig. 2a) show synchronous convergence without significant
steady-state errors, due to slow algorithmic frequency the
MVAE-AIC behaviour is not smooth.
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MAIC-GP

MAIC-VAE
IC

Fig. 3: Vanilla comparison. Lines represent the average of
absolute joints goal errors. Peaks are present when the new
goal is set.
Moreover, some goals can be better reconstructed than others,
resulting in different steady-state errors. The reason is that
different z solutions lead to similar images. Furthermore, due
to dynamical model errors, MPC and IC present significant
steady-state errors. Finally, MAIC-VAE and uAIC overshoot,
while all the other present overdamped behaviours.

D. Adaptation Study

To investigate our approach adaptability to unmodeled dy-
namics and environment variations we systematically tested
the controllers in four experiments. The first three experiments
aim to evaluate the adaptability to unmodeled dynamics and
the robustness against variations on inertial parameters. First,
we attached a bottle half full of water to the 5th joint (Fig. 5a).
As a result, due to water movements, the robot inertia changes
dynamically. Second, we constrained the robot with an elastic
band (Fig. 5b), connecting the first robot link to the last one
and, therefore, introducing a substantial change in the robot
dynamics. Third, we perturbed the robot along the experiment
pushing it along random directions and, therefore, testing if
they are able to recover from human random disturbances. Fi-
nally, we reevaluated the controllers in the presence of sensory
noise, focusing on the robot behaviour. Again, we compared
our algorithm implementations (MAIC-GP and MAIC-VAE)
with AIC, uAIC, MPC and an IC. All controllers parameters
were the same as in the previous experiments: no retuning was
done. Table I reports the root-mean-square errors (RMSE)

(a) Inertial
Experiment

(b) Constraint
Experiment

Fig. 4: Experimental setup. (a) Inertial experiment: a bottle
half full of water is attached to the 5th joint. (b) Constraint
Experiment setup: an elastic band links the first to the 5th
joint.
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Controllers
Vanilla Experiment Inertial Experiment Constraint Experiment Human disturbances Exp Noisy Experiment
RMSE std RMSE std RMSE std RMSE std RMSE std

Fu
ll

E
xp

er
im

en
t AIC 4.04E-03 4.85E-03 7.23E-03 3.05E-02 5.41E-03 1.42E-02 4.07E-03 1.21E-02 4.91E-03 3.33E-02

uAIC 3.28E-03 1.32E-02 3.38E-03 1.16E-02 4.10E-03 8.88E-03 3.32E-03 9.56E-03 3.03E-03 2.20E-02
MAIC-VAE 3.18E-03 1.78E-02 3.40E-03 1.45E-02 3.65E-03 2.26E-02 3.62E-03 1.44E-02 2.38E-03 1.81E-02
MAIC-GP 3.09E-03 1.71E-02 3.33E-03 1.89E-02 3.20E-03 1.50E-02 3.13E-03 2.20E-02 3.40E-03 1.91E-02
MPC 2.41E-02 6.81E-03 4.43E-02 1.77E-02 3.31E-02 7.84E-03 2.20E-01 5.00E-02 4.95E-02 1.32E-02
IC 9.45E-03 2.07E-02 1.95E-02 1.87E-02 1.54E-02 1.23E-02 9.76E-03 2.04E-02 4.84E-03 2.13E-02

Tr
an

si
en

t
(0

-1
0s

) AIC 8.09E-03 3.97E-02 9.67E-03 4.18E-02 9.94E-03 1.97E-02 8.14E-03 1.68E-02 9.76E-03 4.22E-02
uAIC 6.54E-03 1.85E-02 6.75E-03 1.62E-02 8.03E-03 1.24E-02 6.62E-03 1.33E-02 8.98E-03 2.50E-02
MAIC-VAE 6.36E-03 2.48E-02 6.76E-03 2.02E-02 7.26E-03 3.15E-02 6.48E-03 2.01E-02 6.63E-03 2.71E-02
MAIC-GP 6.18E-03 2.38E-02 6.63E-03 2.63E-02 6.40E-03 2.09E-02 6.26E-03 3.03E-02 6.78E-03 2.66E-02
MPC 3.12E-02 9.45E-03 7.04E-02 2.47E-02 5.17E-02 1.09E-02 2.23E-01 4.96E-02 3.36E-02 1.82E-02
IC 1.63E-02 2.89E-02 3.48E-02 2.62E-02 2.72E-02 1.72E-02 1.69E-02 2.86E-02 1.86E-02 2.98E-02

st
ea

dy
-s

ta
te

(1
0-

20
s) AIC 1.77E-06 1.84E-06 4.88E-05 6.30E-07 8.70E-04 1.50E-03 1.77E-06 8.79E-05 8.33E-05 7.37E-04

uAIC 1.19E-05 1.14E-05 1.26E-05 1.86E-05 1.69E-04 2.79E-04 3.201E-05 3.32E-05 5.89E-04 7.38E-03
MAIC-VAE 3.29E-05 2.97E-05 3.50E-05 4.25E-05 3.55E-05 4.16E-05 3.31E-05 3.71E-05 4.04E-05 3.35E-04
MAIC-GP 1.66E-05 2.02E-05 1.77E-05 2.47E-05 1.54E-05 8.67E-05 1.69E-05 3.21E-03 7.15E-05 4.90E-04
MPC 1.70E-02 1.54E-03 1.81E-02 1.75E-03 1.44E-02 1.26E-03 1.18E-01 5.04E-02 1.81E-02 3.19E-03
IC 2.61E-03 2.55E-03 4.32E-03 3.57E-04 3.64E-03 2.45E-03 2.62E-03 2.70E-03 2.91E-03 5.07E-03

TABLE I: Quantitative joints goal errors comparison. RMSE [rad] and std [rad] of the joints errors are presented, lowest errors
are showed in black bold and second lowest in blue bold. Errors are computed for the full experiment, transient phase and
steady-state.
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(a) Inertial Experiment
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(b) Constraint Experiment
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(c) Human Disturbances Experiment

Fig. 5: Lines represent the average of absolute joints goal errors. Peaks coincide with the instants when a new goal is set. 5c)
Red rectangles show the time intervals on which the disturbances are applied.

and the related standard deviations (std) which represent all
the results collected during the experiments, the most accurate
results are highlighted in black bold and the second most
accurate in blue bold. In order to evaluate quantitatively both
steady-state errors, transient behaviour and average errors we
present both RMSE and std for each phase. On average MAIC-
GP is the most robust against dynamic parameters change
and the most adaptive to unmodeled dynamics, while MAIC-
VAE is the best one on noise rejection. Only at the steady-
state (after 10 seconds of execution) AIC has the lowest
error on both Vanilla and Human disturbances experiments
and uAIC at inertial experiment due to its integration term.
Furthermore, at the steady-state MAIC-GP adapts better in
the constraint experiment and MAIC-VAE is the best one on
noise rejection. Finally, although both MPC and IC reported

the worst performances in all experiments, they presented
significant offsets already in the vanilla comparison. Therefore,
we will focus just on their qualitative behaviours. We now
present the details of each experiment:

1) Inertial experiment: A bottle half full of water has been
attached to the 5th robot joint. The water moves along the
experiment, changing the inertial characteristic of the object
attached to the robot. Figure 5a illustrates the controllers’
qualitative behaviours during the inertial experiment. It can
be seen that, due to the unmodeled dynamics, IC and MPC
show different offsets than the ones in the vanilla comparison.
Moreover, MPC shows an unstable behaviour in one of the
desired poses. Furthermore, since all the active inference
controllers do not use any robot model, they are not affected
by the change of dynamics. Table I shows that on average
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the most accurate controllers are MAIC-GP (3.33E-03), uAIC
(3.38E-03) and MAIC-VAE (3.40E-03).

2) Elastic constraint experiment: The experiment aims to
drastically change the underlying dynamics of the system.
Specifically, a rubber band was attached to the robot. To
prevent the robot from entering to safety mode, we chose to
link the first joint to the last one. As a result, we bounded the
elastic tension to a sustainable value. Figure 5b shows that
both classic and unimodal AIF controllers are significantly
affected by the elastic tension, presenting remarkable offsets.
By contrast, as recorded on Tab. I, MAIC-GP and MAIC-VAE
present the highest control accuracy.

3) Human disturbances experiment: This experiment aims
to evaluate compliance and controllers recovery ability after
random disturbances. To do this, a human operator pushed the
robot in random directions along the experiment. Red shaded
areas on Fig. 5c indicate the periods on which the robot is
disturbed. Apart from the MPC, which is not able to recover
and perform the task, all the other ones fully recover from
the disturbances, showing a safe behaviour in case of human
disturbances.

4) Noise experiment: We reevaluated the controller be-
haviour in the presence of proprioceptive noise, focusing on
the noise rejection capabilities of the six controllers. Proprio-
ceptive noise was implemented as additive noise sampled from
a Normal distribution rq ∼ N (0,Σrq = 0.1). Figure 6 shows
that MAIC controllers were the most adaptive, presenting the
smoothest behaviours. The reason is that multimodal filtering
acts as a filter for the injected noise, reducing its effect and
allowing a smooth control behaviour. All the other controllers
oscillate significantly more along the experiment.
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Fig. 6: Noisy experiment. Lines represent the average of
absolute joints goal errors. Peaks coincide with the instants
when a new goal is set.

E. Ablation Study

In order to evaluate the effect of the extra modalities, we
performed an ablation study removing the extra modality from
the algorithm scheme. Figure 7 shows that by removing the vi-
sual modality the behaviour becomes much smoother. Indeed,
the control loop frequency increase from 120Hz to 1000Hz.
However, the control accuracy does not change significantly.
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Fig. 7: Ablation study. Lines represent the average of absolute
joints goal errors. Peaks are present when the new goal is set.

VI. DISCUSSION

A. Limitations

Although the quantitative table comparison shows that on
average MAIC implementations are more adaptive and ac-
curate, they still have limitations. First of all, multimodal
filtering requires more computational time, leading to irregular
behaviours. Indeed, the ablation study clearly shows that when
removing the extra modality, the control behaviour becomes
significantly smoother. Using a faster GPU may solve this
issue. Moreover, the multimodal state estimation depends on
the accuracy of the learned generative mapping. Indeed, here
we always use a black background to facilitate the image
reconstruction. Furthermore, another limitation is that for goal-
directed behaviours we need to provide the desired values for
all the modalities, which may not be always available.

B. Future work

MAIC can also work in an imaginary regime by mentally
simulating the expected behaviour (Appendix C), opening
many opportunities for future research such as model predic-
tive active inference controllers, where the controller predict
N steps head. Moreover, the multimodal filtering scheme in
principle could be integrated into other kinds of controllers,
such as an IC. Although this work uses end-effector positions
and images the proposed control scheme can be generalized
to any other sensor modality and extended to M modalities.
Future works will focus on integrating different modalities,
studying the effect on adaptation and control accuracy.

VII. CONCLUSION

We presented MAIC, a multimodal extension of the standard
AIF controller presented in [23]. Our approach makes use of
the alleged adaptability and robustness of AIF, taking advan-
tage of previous works and overcoming some related limita-
tions. We solved state estimation by combining representation
learning and multimodal filtering with free energy optimiza-
tion, improving the representational power and adaptability. As
a result, we derived a schema for online multimodal torque
control, which does not require any dynamic or kinematic
model of the robot at runtime, is less sensitive to unmod-
eled dynamics, and can also handle high-dimensional inputs.
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Moreover, we performed a systematic comparison on different
experiments of AIF and selected classic controllers, providing
both qualitative and quantitative analysis. Results showed that
our proposed algorithm is more adaptive than state-of-the-art
torque AIF baselines and classical controllers (MPC and IC).
Moreover, it was more accurate in the presence of sensory
noise, showing the strongest noise rejection capability. Our
MAIC was highly adaptive and robust to different contexts,
such as changes in the robot dynamics (i.e., elastic constraint)
and changes in the robot properties (i.e. inertial properties).

REFERENCES

[1] Mohamed Baioumy, Paul Duckworth, Bruno Lacerda,
and Nick Hawes. Active inference for integrated
state-estimation, control, and learning. arXiv preprint
arXiv:2005.05894, 2020.

[2] Mohamed Baioumy, Corrado Pezzato, Riccardo Ferrari,
Carlos Hernandez Corbato, and Nick Hawes. Fault-
tolerant control of robot manipulators with sensory faults
using unbiased active inference. In European Control
Conference, ECC, 2021.

[3] Christopher L Buckley, Chang Sub Kim, Simon McGre-
gor, and Anil K Seth. The free energy principle for
action and perception: A mathematical review. Journal
of Mathematical Psychology, 81:55–79, 2017.

[4] Alexander Domahidi and Juan Jerez. Forces professional.
Embotech AG, url=https://embotech.com/FORCES-Pro,
2014–2019.

[5] Roy Featherstone. Rigid body dynamics algorithms.
Springer, 2014.

[6] Karl Friston. The free-energy principle: a unified brain
theory? Nature reviews neuroscience, 11(2):127–138,
2010.

[7] Karl J Friston, Jean Daunizeau, James Kilner, and Ste-
fan J Kiebel. Action and behavior: a free-energy formu-
lation. Biological cybernetics, 102(3):227–260, 2010.

[8] Neville Hogan. Impedance control: An approach to
manipulation: Part i—theory. 1985.

[9] Lill Maria Gjerde Johannessen, Mathias Hauan Arbo,
and Jan Tommy Gravdahl. Robot dynamics with urdf
& casadi. In 2019 7th (ICCMA). IEEE, 2019.

[10] Minju Jung, Takazumi Matsumoto, and Jun Tani. Goal-
directed behavior under variational predictive coding:
Dynamic organization of visual attention and working
memory. IROS, 2019.

[11] Frinston K.J, Trujillo-Barreto N., and Daunizeau. Dem:
a variational treatment of dynamic systems. NeuroImage,
41, pp. 849-885, 2008.

[12] Anis Koubaa. Robot Operating System (ROS): The
Complete Reference (Volume 2). Springer Publishing
Company, Incorporated, 1st edition, 2017.

[13] Pablo Lanillos and Gordon Cheng. Active inference with
function learning for robot body perception. In Proc. Int.
Workshop Continual Unsupervised Sensorimotor Learn.,
pages 1–5, 2018.

[14] Pablo Lanillos and Gordon Cheng. Adaptive robot body
learning and estimation through predictive coding. In

2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4083–4090. IEEE,
2018.

[15] Pablo Lanillos, Jordi Pages, and Gordon Cheng. Robot
self/other distinction: active inference meets neural net-
works learning in a mirror. In Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI),
pages 2410 – 2416, 2020.

[16] Pablo Lanillos and Marcel van Gerven. Neuroscience-
inspired perception-action in robotics: applying active in-
ference for state estimation, control and self-perception.
arXiv preprint arXiv:2105.04261, 2021.

[17] Timothée Lesort, Natalia Dı́az-Rodrı́guez, Jean-Franois
Goudou, and David Filliat. State representation learn-
ing for control: An overview. Neural Networks,
108:379–392, Dec 2018.

[18] Cristian Meo and Pablo Lanillos. Multimodal vae active
inference controller, 2021.

[19] Beren Millidge, Alexander Tschantz, Anil K Seth, and
Christopher L Buckley. On the relationship between
active inference and control as inference. In International
Workshop on Active Inference, pages 3–11. Springer,
2020.

[20] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. An
empirical study of active inference on a humanoid robot.
IEEE Transactions on Cognitive and Developmental Sys-
tems, 2021.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, and Raison. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[23] Corrado Pezzato, Riccardo Ferrari, and Carlos Hernández
Corbato. A novel adaptive controller for robot manip-
ulators based on active inference. IEEE Robotics and
Automation Letters, 5(2):2973–2980, 2020.

[24] Cansu Sancaktar, Marcel AJ van Gerven, and Pablo
Lanillos. End-to-end pixel-based deep active inference
for body perception and action. In 2020 Joint IEEE 10th
International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), pages 1–8.
IEEE, 2020.
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APPENDIX

A. Model Predictive Controller

The results are compared to a standard model predictive
torque control (MPC) formulation.

1) Optimization problem: Neglecting external forces, the
dynamics of the system are defined by the equation of motion
as

τ = M(q)q̈ + C(q, q̇)q + g(q),

which is composed of the mass matrix M , the Coriolis matrix
C and the gravitational forces g [5]. Various approaches to
compute the forward dynamics have been proposed [9]. The
forward dynamics can be discretized to obtain the transition
function

zk+1 = f(zk,ak),

where z is the concatenated vector of joint positions, velocities
and accelerations.

The control problem can be formulated as an optimization
problem as follows

J? = min
z0:N,a0:N

N∑
k=0

J(zk,ak), (24)

s.t. zk+1 = f(zk,ak), (25)
ak ∈ U , zk ∈ Z, (26)
z0 = z(0), (27)

where J is the objective function, U and Z are the admissible
sets of actions and states respectively and z0 is the initial
condition. The objective function was formulated as follows

J(zk,ak) = (qk − qgoal)
TWgoal(qk − qgoal) + aTkWaak,

(28)
where Wgoal and Wτ are the weighting matrices for the goal
configuration and the actions respectively.

2) Realization: In this work, we used the recursive Newton
Euler algorithm to solve the forward dynamics and a second
order explicit Runge-Kutta integrator. The parameter setting
is summarized in Table II. In accordance to the time step the
control frequency is 10Hz.

parameter value
N 20
∆t 0.1s

Wgoal 400I7
Wa diag([1.75, 2, 2.5, 5, 20, 18.75, 62.5])

TABLE II: Parameter setting for MPC

The optimization problem is solved using the nonlinear
solver proposed in [26] and the corresponding implementation
[4]. The forward dynamics are computed using [9].

B. Impedance Controller

The presented impedance controller [8] is based on the
following dynamic equation:

τ = K(qgoal − q) +D(−q̇) + C(q, q̇)q + g(q),

where K is the set joint stiffness D is the corresponding critical
damping, C is the Coriolis matrix, and g is the gravitational

term. Considering that the dynamics of the robot are described
by

M(q)q̈ + C(q, q̇) + g(g) = τ + τ ext (29)

with the impedance controller the dynamics results in

M(q)q̈ = K(qgoal − q) +D(−q̇) + τ ext (30)

this translates in a second order critically damped dynamics
of the robot in the the transition towards the desired goal.

C. Mental simulation

Unlike most of the AIF controllers present in literature, a
great advantage of combining our approach with a multimodal
VAE is the possibility to perform imagined simulations. In
other words, given xd, the entire experiment can be simulated.
Since sensory data are not available, the state update law
becomes:

ż = −kz
∂f

∂z
Σ−1f (xd − f(z,ρ)) (31)

As a result, performing the integration step of the new internal
state and decoding it, the updated {xv,xq} can be computed
and the new errors can be back-propagated again, creating a
loop that allows the system to do imaginary simulations.
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Fig. 8: Mental simulation of sequential reaching of four goals.
The goal is updated on time steps where peaks are present. (a)
Joints errors of an imagined simulation. Each line represents
the error of the i-th joint. (b) Image reconstruction errors of
an imagined simulation.
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Fig. 8a and 8b show respectively imagined joints error
and images reconstruction error through the entire simulation.
These results show that the errors converge faster to zero
than in the normal regime (Fig. 2a) as it does not need to
accommodate the real dynamics of the robot.

D. Images Variance matrix

Fig. 9: Precision matrix

The visual precision matrix, Πxv = Σ−1xv
, which is used

both as precision mask in Eq. (21) and Eq. (22), was defined
computing the variance of all the images collected in the
dataset. Figure 9 shows a plot of the visual precision matrix
where it can be seen that the brighter pixels points are the ones
less certain, while the one which do not change are darker. As
a result, when we introduce it in the loss function the most
informative pixels are highlighted, while when we use it in
the internal state update, the pixels which do not change at all
are defined with less uncertainty and the other way around.

E. Gaussian Process Accuracy

Figure 10 illustrates a 3D scatter plot that shows a heatmap
of the end-effector reconstruction errors. Moreover, the axes
define the cartesian workspace we considered in our exper-
iments, where the robot base is placed at xbase = {0, 0, 0}
and is frontally directed toward the x-direction. It can be seen
that on average the reconstruction error is roughly 0.010m.
However, we can clearly see that reconstructions accuracy
increases along the positive y-direction. This error may be
due to the inverse kinematics we used to create the algorithm.

F. MAIC equations derivation

Extending Eq. (6) to the multimodal case we can rewrite it
as:

F(z̃, x̃) '
∑
m

(
(x̃m − gm(z̃))T Σ−1

x̃m
(x̃m − gm(z̃)) +

1

2
ln |Σx̃m |

)
+ (Dz̃− f(z̃))T Σ−1

z̃ (Dz̃− f(z̃)) +
1

2
ln |Σz̃| (32)

Fig. 10: End-effector reconstruction error.

As a result, substituting Eq. (32) into Eq. (4) and Eq. (5)
we obtain respectively, the state estimation equation for the
multimodal case:

˙̃z =Dz̃ +
∑
m

(
km

∂gm
∂z̃

Σ−1m (xm − gm(z̃))

)
− (33)

kz
∂f(z̃,ρ)

∂z̃
Σ−1z̃ (xd − f(z̃,ρ))

and the multimodal control equation:

ȧ = −
∑
m

kam

∂xm
∂a

Σ−1m (xm − gm(z̃)) (34)
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