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This study is a collaborative effort within the NATO Science & Technology Organization, bringing together
multiple institutions to advance reduced-order modeling. Aerodynamic reduced-order models were developed using
two pseudorandom binary sequence (PRBS) training maneuvers, where the angle of attack and pitch rate varied in
a periodic, deterministic manner with white-noise-like properties. The first maneuver maintained a constant Mach
number of 0.85, while the second varied Mach from 0.1 to 0.9. The test case involved a generic triple-delta wing,
simulated using the DoD HPCMP CREATE™-AV/Kestrel/Kestrel tools. Prescribed-body motion was used to vary
input parameters under given freestream conditions. The resulting models predicted static and stability derivatives
across different angles of attack and Mach numbers. They were also used to predict aerodynamic responses to
arbitrary motions, including sinusoidal, chirp, Schroeder, and step inputs, showing good agreement with full-order
data. Additionally, models predicting surface pressure accurately captured upper surface pressures across different
spanwise and chordwise locations for both static and dynamic conditions.

Nomenclature
A.f = reference area, m?
CFD = computational fluid dynamics
Cp = coefficient of drag
Cy = coefficient of lift
C,, = moment coefficient
Cp = pressure coefficient
c = mean aerodynamic chord, m
f = frequency, Hz
M = Mach number
P = pressure, Pa
0 = pitch rate, rad/s
q = dynamic pressure, Pa
q = normalized pitch rate, QC/2V ., 1/rad
Re = Reynolds number, pV /c
SID = system identification
t = time, s
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= freestream velocity, m/s
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sideslip angle, deg
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1. Introduction

HERE is a growing interest in using computational aerodynam-

ics in aircraft conceptual design. At their highest practical
accuracy, the unsteady Reynolds-averaged Navier—Stokes (URANS)
equations can effectively predict the underlying flow physics and
capture the unsteady, nonlinear aerodynamics of air vehicles across
various flight conditions and flow speeds. The main limitation to
using URANS or “physics-based” simulations in a multidisciplinary
design approach is the computational expense. For example, per-
forming stability and control (S&C) analysis over an aircraft’s flight
envelope requires aerodynamic data for tens of thousands of differ-
ent states to encompass all angles of attack, sideslip angles, aircraft
speeds, control surface deflections, and the time rates of Euler angle
changes. This is unfeasible with a brute-force approach. If it were
possible to create reduced-order models (ROMs) that maintain
accuracy with only hundreds or even tens of simulations, this would
allow for the early-stage simulation of a real aircraft, including
all multidisciplinary interactions across the entire flight envelope,
and deliver data with the accuracy necessary for development and
certification [1].

ROMs offer a concise representation of unsteady flow dynamics
using a limited number of spatial/temporal modes, typically fewer
than 100, in contrast to the extensive number of grid points present
in full-order models, which can range from 5 to 50 million or more
[2]. This allows ROMs to swiftly predict responses to various inputs
compared to the time-consuming computations required by full
CFD solutions. Various ROM techniques are available, including
indicial response methods [3], proper orthogonal decomposition
(POD) [4-6], Volterra theory [7], neural networks (NNs) [8], and
machine learning (ML) approaches [9,10]. System identification
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falls within the realm of reduced-order modeling, yet it is distinct in
its dedicated focus on constructing precise models derived from
observed data. Some methods include regression methods [11], state
space representations, transfer functions, the autoregressive with
exogenous input (ARX) model [12,13], surrogate-based recurrence
framework (SBRF) [14,15], radial basis functions (RBF) [16], and
NN methods [17,18].

In this article, two input signals with either a constant or varying
Mach number are investigated in connection with the generation of
different ROM approaches to evaluate their prediction capabilities in
two different scenarios. First, the prediction of aircraft performance
and S&C characteristics for generic, prescribed maneuvers at tran-
sonic conditions. Second, the prediction of surface pressure distri-
butions to evaluate ROM prediction capabilities in terms of aircraft
load prediction using the same set of maneuvers. Such generic
CFD-based maneuver simulations for training and reference data
generation as well as ROMs are employed for the Future Fighter
Demonstrator (FFD) use case of the NATO Science & Technology
Organization research task group AVT-351 [19]. The reduced-order
modeling or SID task includes the definition and computation of a
training or input signal [20], the selection of a mathematical model
(such as the order of regression parameters), and the choice of
modeling techniques that yield the best fit to the observed data
(e.g., number of neurons and hidden layers) [21]. Input signals
include two pseudorandom binary sequence (PRBS) motions. Dur-
ing these maneuvers, the angle of attack and pitch rate change in a
periodic and deterministic manner characterized by white-noise-like
properties. Typical PRBS signals include sudden input variations
between two distinct values, such as minimum and maximum angles
of attack. However, the signals used in this article were modified to
have the step changes depend on time. In the first motion, the
aircraft undergoes a signal at a constant Mach number of 0.85.
Upper surface pressure data were recorded for six spanwise sec-
tions. In the second motion, the Mach number varies in an optimized
manner from 0.1 to 0.9. All simulations were run using the DoD
HPCMP CREATE™-AV/Kestrel simulation tools. A prescribed-
body motion was used to vary input parameters under given free-
stream conditions (Mach number and angle of attack). Using these
input signals, different ROM techniques were investigated to
approximate the full-order aerodynamic model.

The rest of the article is structured as follows: First, the reduced-
order modeling methods are described. Then, details on the test
case, computational grids, and the flow solver are provided. Follow-
ing that, results for the prediction of forces and moments from various
signals, including predictions of new signals, are presented. Sub-
sequently, ROMs are introduced for predicting surface pressure data.
Finally, conclusions are drawn of this joint effort within the NATO
Science & Technology Organization research task group 351.

II. Reduced-Order Aerodynamic Models

In this article, the United States Air Force Academy (USAFA)
used models based on regression and a feed-forward neural network
approach, whereas The German Aerospace Center (DLR) employed
a surrogate-based recurrence framework, both to predict integrated
forces and moment coefficients. Delft University and the Royal
Netherlands Aerospace Center (NLR) utilized long short-term
memory (LSTM) neural network models in combination with
enriched proper orthogonal decomposition (ePOD) to predict the
sectional surface pressure data as a function of angle of attack and
pitch rate. All input signals were simulated by USAFA using the
CREATE™L-AV Kestrel software developed by the DoD High Per-
formance Computing Modernization Program (HPCMP) [22].
Table 1 provides a summary of all tested models, the signals used,
and the corresponding output data.

Before introducing the reduced-order models, it is useful to define
the following terms:

1) Static: Describes aerodynamics under steady conditions, where
forces and flow remain constant over time without variation.

Table 1 Reduced-order models employed by the different
organizations on either constant or varying Mach number test scenarios

Training signals

PRBSI at PRBS2 at
Organization Method Qol M =085 M=1]0.1,09]
USAFA SID C.,Cp, C, X X
FENN C,,Cp, C, X X
DLR SBRF C,,Cp.C, X
USAFA FFNN C, X
NLR, TU Delft ePOD + LSTM C X

P

2) Quasi-Steady: Refers to scenarios where aerodynamic forces
and moments evolve gradually, allowing the system to be approxi-
mated as a sequence of instantaneous steady states.

3) Dynamic (Unsteady): Characterized by rapidly changing flow
conditions, where unsteady phenomena such as vortex shedding,
flow separation, and wake interactions significantly influence the
aerodynamics.

A. System Identification

SID is dedicated to creating mathematical models that can accu-
rately describe system behavior. According to Galrinho [23], the
SID process comprises four steps: 1) system excitation for data
collection, 2) selection of model structures, 3) training the models
and selecting the best one from the candidates, and 4) model
validation. SID models are classified into three types: gray-box
models, which are built on partial system knowledge; white-box
models, which are based on statistical analysis of observations; and
black-box models, which are created solely from data. This article
describes a gray-box identification approach based on linear, static
regression to model the FFD aerodynamics at different flight con-
ditions. The model is called gray box because it was assumed that
there was a regression model or relationship between the aerody-
namic coefficients and input parameters. This model is assumed to
be quasi-steady since the output depends only on the present inputs,
without considering past inputs. A least-squares error will then be
used to estimate the model unknowns.

In more detail, a functional relationship (e.g., a polynomial) is
assumed between forces and moments and the input parameters. A
forced motion (i.e., a training maneuver) is then used to estimate the
model unknowns. The model accuracy depends on the type of
forced motion and input parameter excitation. Forced motion can
be used to vary Mach number, angle of attack, acceleration terms,
and angular rates in a single computation. A forced motion can be
thought of as a computational flight test without kinematic restric-
tions (e.g., G-force) of the aircraft or pilot.

In this study, a third-order polynomial model in angle of attack
was chosen for the aerodynamic coefficients at constant Mach
number:

C;=Cj + pa + Bod® + 10 + g + Psa.q + Pea*.q + pra°
(D

Note that for the motions of this study, ¢ = @. For the motion
with varying Mach number, the new model is assumed as

Cj = Cjo+ pra+ prd® + f30° + faq + fsa.q + Peo’.q + pr0
+ BsM + oM .a + B1oM.q + friM?* + froM*.a + p13M*.q
2

where C; =[C.,Cp,C,] correspond to lift, drag, and pitch
moment coefficient; « is angle of attack; ¢ is normalized pitch
defined as Q.c/(2V,), where Q is pitch rate in rad/s, c¢ is the mean
aerodynamic chord, and V ,, denotes freestream velocity; and M is

Mach number as well. The unknowns Zf are found by a least-squares
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method using the input and output data of the training maneuver. In
more detail, Egs. (1) and (2) could be written as

Y=BX+e (3)

where Y is the output vector, containing all C; data at each time step

of training signal simulation; § is a vector of model parameters and
X is a matrix of input vectors at each time step of training signal
simulation; and e is the error vector between actual output and
assumed model. The best set of f parameters that minimize the
error is found as

p=(xX"x)" X"y )

B. Artificial Neural Network

A feed-forward neural network (FFNN) was evaluated at USAFA
to model the surface pressure data and aerodynamic coefficients of
lift, drag, and pitch moments based on input signals. FFNN is one of
the simplest and most used types of artificial neural networks.
FFNNs are simple and easy to implement. An artificial neural
network (ANN) was developed to mimic the human brain. ANN
contains interconnected neurons arranged in different layers of 1) an
input layer, 2) one or more hidden layers, and 3) an output layer. The
information moves forward from input to hidden layers and to the
output layer. Each neuron or node calculates a weighted sum of its
inputs and processes the result through an activation function. The
input parameters are fed into the input layer, which is the network’s
first layer. While multiple inputs can be used, correlated inputs may
negatively impact the model’s performance. In this study, the sim-
ulation data were reformatted into simultaneous, uncorrelated input
data for neural network training.

Hidden layers are situated between the input and output layers.
These layers contain neurons that perform a linear transformation on
the input followed by a nonlinear activation function. There can be
one or more hidden layers, each with a varying number of neurons.
Common activation functions include rectified linear unit (ReLU),
sigmoid, and tanh. The final layer, the output layer, generates the
network’s output. The architecture of the FFNN used in this study is
illustrated in Fig. 1 for a constant-Mach PRBS signal.

The network has three inputs (a in radian, g normalized pitch rate
in 1/rad, and a.q). For the PRBS signal with varying Mach number,
additional input for Mach was added.

In more detail, FFNN consists of a single hidden layer with 10
neurons. The Levenberg—Marquardt algorithm was employed for
training. Inputs are transmitted from the input layer to the neurons in
the hidden layer. The signals are weighted by coefficients @, com-
bined with a bias term b;, and then passed through a nonlinear
activation function. The transformed signals are then forwarded to
the output layer.

In this study, three different FFNNs were trained corresponding to
three different outputs for lift, drag, and pitch moment coefficients.
For surface pressure data, a single FFNN was trained for each
spanwise position with output consisting of pressure coefficient
data at different chordwise positions.

C. Surrogate-Based Recurrent Framework

An autoregressive modeling approach to account for unsteady
aerodynamic effects in predicting time series of the aerodynamic
force and moment coefficients is employed. In order to implement a
nonlinear mapping function that approximates computationally
expensive simulations into the SBRF modeling approach, a GPR
model was used (see Rasmussen and Williams [24]). A software
package developed by DLR, the Surrogate Modeling for AeRo-Data
Toolbox in Python (SMARTYy) [25], is used to integrate and apply
the SBRF modeling approach. SMARTY provides various building
blocks, such as regression and dimensionality reduction techniques,
in a single software package. A detailed description of the develop-
ment and application of the SBRF modeling approach can be found

Input Input Input
X, Y Y’
] ' Hidden \
w w w b

N

4 ! Output \

w b

®
/

Output
1 D
Fig. 1 FFNN used for training PRBS signal at constant Mach.

in [26]. In the following, the model architecture and its application
specifics for this work are briefly described.

Considering nonlinear and unsteady aerodynamics as a discrete-
time dynamic system [14]

Xar = flx,u)
5)
yi = h(x,)

with x, u, y, and h(x) denoting the state variables, external inputs,
output quantity, and a mapping function of the system states to the
output, an equivalent input/output relationship was derived. This
means that the output quantity of interest at any time instance 7,
depends on both the instantaneous input at time #; and the input
time history. Let the time f,,, at one-step-ahead be defined as
try1 = tp + At, with the subscript k& denoting the current discrete
time step and At the constant time step size. According to [13],
the input/output relationship accounting for time-delay history is

written as
V() = O(Victs- oo Views Ups U1 - - Ug—y) + €(X)  (6)
with a nonlinear mapping function @ as a function of the output
history and external inputs at current and past time instances. As a
nonlinear mapping function, a GPR model is fitted to the training
data to relate integrated coefficients for lift, drag, and pitching
moment (Cy (1), Cp(?), and C,, (1)) to the model inputs. Note that
a quasi-steady GPR model is fitted to initialize delayed states of the
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input vector for time-series prediction. Thus, the quasi-steady GPR
is inherently built and allows a comparison of a quasi-steady GPR
model (QS-GPR) with the unsteady SBRF modeling approach. The
SBRF model provides recursive one step ahead predictions to obtain
time-series data. For static predictions, a Cauchy convergence-
controlled time-series prediction at a fixed input state is employed.
Stability derivative estimates are calculated based on a least-squares
approach from predicted time series of sinusoidal reference motions.
Note that stability derivatives refer to the set of derivatives required
for stability prediction. This includes the static term at zero angle of
attack, the derivative with respect to angle of attack, and the
dynamic derivatives with respect to pitch rate and the time rate of
change of angle of attack.

D. The ePOD-LSTM

When pressure distributions are highly detailed, the training of
neural networks (NN) for their representation becomes computa-
tionally inefficient, even when including auto-encoder/decoders (see
Fresca and Manzoni [27]). Therefore, an alternative is often used in
which a reduced basis is first established using a truncated POD or a
similar order-reduction technique, followed by the modeling of the
resulting unsteady mode amplitudes using a neural network (NN).
For the latter, recurrent neural networks (RNN) are often used. This
approach is well described by Mohan and Gaitonde [28], as well as
by Catalani [29] and Bourier [30], who consider the representation
of subsonic pressure distributions using truncated POD basis com-
bined with long short-term memory (LSTM) RNN. An additional
benefit to this approach is that prediction errors can be distinguished
into projection errors, i.e., a limitation from the selected truncated
POD basis, and network errors resulting from, e.g., inadequate
training input or network design. Moreover, the POD basis provides
a boundary condition on the predicted pressure distribution.

The representation of transonic flows, however, is more challeng-
ing due to the presence of discontinuities. The accurate representa-
tion of discontinuities using a truncated POD, e.g., requires
including a large number of relatively low-energy modes. Conse-
quently, POD-LSTM reduced-order models (ROMs) must learn to
describe a large number of mode amplitudes across all training
datasets. This requirement escalates the training complexity of the
NN, not least, because as observed by [30], an accurate prediction of
temporal behavior over a range of frequencies becomes more chal-
lenging as the number of POD modes increases.

To address this problem, an alternative approach employing an
enriched proper orthogonal decomposition (ePOD) is introduced
here. In the ePOD, discontinuous enrichment modes are added to the
reduced-order basis to represent the discontinuous parts of the pres-
sure distribution. This allows the remainder of the data to be repre-
sented using a standard truncated POD. This dramatically lowers the
number of modes needed to accurately represent pressure distribu-
tions in transonic flows. As in [29,30], the time-variant parameters of
the resulting basis are modeled using an LSTM. The two main phases
of this ePOD-LSTM approach are described below.

1. Model Construction and Training

a. Enriched Proper Orthogonal Decomposition. The representation of
a pressure distribution using a combination of POD and enrichment
modes is written as

Cp= ; ap (D (x)" + ;mx, pt) +C, ©)

where r is the number of truncated spatial modes, ¢, (x) are the
spatial modes with corresponding time coefficients a, (), i is the
number of shock discontinuities, and ¢, (x, p(¢)) are the enrichment
modes with time-dependent enrichment parameters p(z). Cp is the
time-averaged pressure distribution, which is defined separately to
allow the model to focus on the prediction of pressure fluctua-
tions Cp.

The first step in defining the enrichment functions is to obtain a
map of the discontinuities. Here, physics-based sensors are
employed. Specifically, the gradient of the pressure fluctuations is
monitored and flagged if it exceeds a specified limit (default:
(0C}/0ox) >=1). It is important to note that the raw data is first
passed through a low-pass filter to smooth out high-frequency
noise in the data set to prevent it from affecting the efficiency of
the shock sensor. The Whittaker smoother [31] was employed with a
first-order smoothing penalty of 2 = 10?. The smoothing was par-
ticularly relevant in cases where significant small-scale pressure
fluctuations occur, which can impact sensor performance. Once
all the locations flagged by the sensor are obtained, the shock
centers are defined as the points of maximum pressure gradient,
as discussed in [32].

The next step is to define the enrichment domains, i.e., the local
regions in space and time within the data set where the enrichment
function will be used. This is done with a user-defined constant that
defines how many CFD mesh points before and after the shock
location will be included in the enrichment domain. The enrichment
functions are then fit to the pressure fluctuation data within the
enrichment domains, as illustrated in Fig. 2.

First, a target function is defined that smoothly interpolates the
Cj} values at the start and end of the domain (here a linear function is
used). The enrichment function of the form described in Eq. (8) is
then fitted to the test function, which represents the difference
between the C} data and the target function. The parameters p(¢)
of this enrichment mode are the amplitudes and locations of two
interior control points: {a;(t), a,(t), x1(2), x> ()}

ax
iy for x < x;
X1
ay —a))X  d;X, — arXx

bl play) = | L2TODT L 0T AN oy,
Xo — X X2 — X
—darX as

, for x > x,
]—Xz 1—X2

®)

Here, the fit is determined using a nonlinear least-squares algorithm.
For the case considered below, a fixed number of two enrichment
domains is used to represent the two shocks present in the data.
Once the reduced basis is obtained, values of a,(f) and p(¢) are
determined using the C}(7) data. These must be matched to suitable
input vector values. For the case under consideration, the input
signal in the angle of attack-pitch rate sample space suggests that
the derivatives of these parameters might significantly influence the
instantaneous pressure distribution. Thus, an input vector is defined
to include the angle of attack (AoA), the first and second time

Enrichment Domain, t=0.036 [s], count=1

—o— Cp*
—0.3 1 ,
—*— ¢,
Target
—0.2 Test

Cp*-¢e

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2 Enrichment function fitting within the enrichment domain
for the main shock of section 1 under the Schroeder maneuver at
t =0.036 s.
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derivatives of AoA, the pitch rate ¢, and the first time derivative of
g. This input vector and the a;(¢) and p(r) values form the data set
used for the LSTM training.

b. LSTM Neural Network. Recurrent neural networks (RNNs) [33]
improve on feed-forward neural networks by incorporating the
output of adjacent time steps, introducing a temporal dimension to
the model [34]. The network’s edges that connect neighboring time
steps are named recurrent edges. RNNs operate on sequences of data
(e.g., time-series, time coefficients), and their weights are deter-
mined through backpropagation through time [35]. Long short-term
Memory (LSTM) network was introduced by Hochreiter and
Schmidhuber [36] could address the issues of vanishing or explod-
ing derivatives and short transmission of information in standard
RNNs. The LSTM architecture replaces the hidden layer of a
standard RNN with a memory “cell.” Each memory cell contains
anode with a self-connected recurrent edge of fixed weight, creating
paths through time where gradients can flow without vanishing or
exploding [34,37]. A significant improvement is to make the weight
on this self-loop depend on the context instead of being fixed, as
proposed by Gers et al. [38]. Previous studies conducted at NLR by
Catalani [29] and Bourier [30] have demonstrated that LSTM neural
networks outperform other ANN or regression models in terms of
accuracy for the direct prediction of POD time coefficients. Fur-
thermore, Bourier [30] conducted a sensitivity analysis to determine
the optimal hyperparameters for the baseline model. The outcomes
of this analysis, combined with the findings from Catalani’s study
[29], were used to define the optimal hyperparameters for LSTM
training in predicting the pressure distribution over different sec-
tions of the FFD model. For more details on how and why these
values were derived, please refer to the respective thesis reports. The
main hyperparameter values for the LSTM surrogate model are
presented in Table 2.

The main difference between the previous neural network param-
eters and the current ones lies in the loss function. The custom loss
function is a modification of the function proposed by Catalani in
[29], integrated with the enrichment function. Specifically, the loss
function used in training the LSTM neural network is the mean-
squared error (MSE) between the projected and predicted pressure
distributions. The predicted time coefficients {a,}/_, are multiplied

Table2 LSTM neural networks

hyperparameters

Hyperparameters Values
Number of LSTM layers 2
Number of LSTM units 64
Number of dense layers 1
Number of dense units 128
Number of time steps 10
Batch size 32
Drop-out rate 0.2
Model optimization method ADAM
Model loss function Custom

Model construction and training

by the POD modes, and the predicted parameters p are introduced to
the enrichment function described in Eq. (8). Consequently, the
predicted pressure distribution is constructed according to Eq. (7).
It is then compared to the ePOD expansion of the true targets
{a;}r_, and p, as shown in Eq. (9):

r

Y a0 + e (x, p()) = Y a1 (x)T
k=1

k=1

JRE:

:N_Z

X =1

L

2

- (/)e ()C, ﬁ(t)) (9)

After defining the architecture of the LSTM and constructing the
neural network, the final step of this stage is training the network.
Considering the dataset structure and the limited overlap between
the available maneuvers, the following training strategy is imple-
mented: The Schroeder maneuver, selected for training (for details,
see Sec. III), is partitioned into three datasets: training, validation,
and testing. Specifically, the first 700 points are used for training,
the next 250 points for validation, and the final 50 points for testing.

2. Testing Stage

In this stage of the ePOD-LSTM model, the trained LSTM neural
network is employed to predict the enrichment parameters of the
reduced basis for new, unseen datasets. Specifically, the model
forecasts the normalized time coefficients for the ePOD modes
identified during the construction of the reduced basis, as well as
the parameters for the enrichment function. Using the reduced-order
basis defined in the construction stage [refer to Eq. (7)], the pressure
distribution can be reconstructed with the denormalized coefficients
and parameters. A visual representation of the ePOD-LSTM model
workflow is represented in Fig. 3.

III. Training Signal Design

As mentioned earlier, the first step toward system identification is
system excitation for data collection. A MATLAB code was devel-
oped at USAFA to create different signals. These signals need mean,
frequency, duration, and amplitudes of inputs such as angle of
attack. Pitch angles could be varied independent of angle of attack.
In addition, the Mach number could be constant or changing during
signal time. Minimum and maximum Mach number values are
input, and the Mach could change in the form of linear, quadratic,
parabolic, or optimal sinusoidal (Schroeder). Plots of input signals,
input space coverage, and power spectral density are provided. For
signals, the reduced frequency k = w.c/(2 V), where w = 2z f, f is
frequency, c is reference length, and V is freestream velocity. The
MATLAB code then writes input motion data for use in Kestrel
software.

Motion types include chirp (a signal with linearly increasing
frequency in time), Schroeder (optimal frequency sinusoidal), sinus-
oidal, random, PRBS, and step signals. Some of these signals could
have either a constant or a varying mean.

High-Fidelity samples from
Kestrel flow solver

coefficients a(t), and
enrichment function
parameters p(t)

Apply ePOD: modes @(x), time

Input data set for Construction and

Y

training the LSTM training of LSTM

Testing stage

LSTM Neural
Test data set Network prediction of
a(t) and p(t)

Reconstruct the Pressure distribution
based on predicted time coefficients
a(t), parameters p(t)

Y

Fig. 3 The architecture of the ePOD-LSTM reduced-order model.
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Fig. 4 PRBS signal characteristics [39].

In this article, two PRBS signals are used. PRBS is a periodic
signal in which the angle of attack and pitch rate change in a
periodic and deterministic manner characterized by white-noise-like
properties. Typical PRBS signals include sudden input variations
between two distinct values, such as minimum and maximum angles
of attack. However, the signals used in this article were modified to
have the step changes depend on time.

A PRBS signal example is shown in Fig. 4. The maximum
possible period for a maximum length sequence N is

N=2"—1 (10)

where m is equal to the number of shift register stages (or shifts). In
Fig. 4 of Ref. [39], 4 is the shifting time or the duration of the
shortest impulse, and a is the PRBS amplitude. Note that 4 and m
should be carefully selected; one criterion here is to have a reduced
frequency of less than 0.01 for a quasi-steady state assumption. The
power spectral density of the PRBS signal shows that all frequencies
up to w.xA/2 = /4 are excited; w,,,, is related to the shorter time
constant 7', by

3

an

a) =

max Tmm
Therefore, A = /6T ;. In this study, a PRBS signal was designed
for 4 s with a mean angle of attack of 10° at a constant freestream
Mach number of 0.85. The amplitude a increases linearly from O to
10° for the first half of the motion and then linearly falls to O for the
second half of the signal. The number of shifts was set to 4. The
number of shifts [denoted as m in Eq. (10)] corresponds to the
number of stages (flip-flops) in the linear feedback shift register that
generates the PRBS signal. The designed PRBS signal, named
PRBS1 in this article, and its input parameters are shown in Figs. 5a,
5S¢, and Se. The PRBSI signal was designed for the FFD test case at
Mach 0.85. Figure 5a shows the angle-of-attack variations with
time. Note that the vehicle is set at a wind vector with a 10° angle
of attack. Pitch angle is zero, and it varies as a(t) — 10, where a(t)
values are given in Fig. 5a. In this way, the pitch rate and the time
rate of changes in angle of attack are the same. Figure 5c shows
angle of attack in degrees versus pitch rate in deg/s. Note that the
signal’s maximum frequency and hence the pitch rate were limited
to have a maximum reduced frequency of 0.01 for quasi-steady
aerodynamic behavior. Figure 5c shows that the PRBS signal has
excellent coverage of a — ¢ input space. Figure Se shows the a — &
space coverage of the PRBS1 signal, where & data are given in */s?
units. Figure 5e shows a large range of changes in &, though most
points are located at the center of the plot.

Following this, a new PRBS signal of similar design was gen-
erated. Unlike the previous signal, the Mach number in this one is
not constant at Mach 0.85 but changes between 0.1 and 0.9. For
Mach variations, a Schroeder signal was designed. This signal was
generated from optimization of amplitude and frequency spectra of
multisines. The frequency range was selected to have a reduced
frequency range of 0.002-0.01.

According to Morelli [40], a Schroeder signal has excellent
frequency content and a low peak factor, a measure of the ratio of
maximum input amplitude to input energy. In comparison to a chirp
signal, Schroeder provides better input for the frequency domain
identification. The new PRBS signal is named PRBS2 in this article
and is shown in Figs. 5b, 5d, and 5f. Another difference with PRBS1
is that the PRBS?2 signal duration was extended to 6 s, as shown in

Fig. 5b. Because of a longer duration, the pitch rate values are
smaller compared with the PRBS1. This is shown in Fig. 5d. The
Mach number follows a Schroeder signal, which has a series of
multisines to cover the Mach range of 0.1-0.9. Mach number
variations are shown in Fig. 5f.

In more detail, Fig. 6 shows the PSD analysis of the signal and its
periodogram. As anticipated, the PRBS signal excites all frequen-
cies equally. In addition, Fig. 6 shows reduced frequency values for
the signal. The maximum reduced frequency value does not exceed
0.01 to ensure the quasi-steady aerodynamic assumption.

IV. Test Case Description

In this study, we consider an aircraft with multiple swept leading
edges, which typically exhibit rapid vortical flow topology evolu-
tion and intense flow unsteadiness throughout their flight regime.
Sweep angles of the triple-delta wing are 75, 45, and 75 deg. Some
associated phenomena are vortex interactions, vortex—shock inter-
actions, and vortex breakdown that influence stability and control-
lability [41,42]. The test case is the FFD model, which is a generic
triple delta wing configuration. Its planform is based on the baseline
DLR-F22 wind tunnel model [43] as part of DLR studies on the
technology assessment and a design approach of a Future Fighter
Demonstrator [44]. A revision of the wing design of the DLR-F22
model by ONERA within AVT-351 [19] led to the ONER-
A_DLR_M421 wind tunnel model, which serves as an FFD use
case in this study [45]. In comparison with the baseline DLR-F22
model, a moderate thickness, positive camber, and twist distribution
were added. This model design was utilized to investigate flight
dynamic characteristics in multiple static and dynamic wind tunnel
experiments at ONERA. These experimental results from [45] are
used for comparison of ROM predictions at subsonic conditions.
CFD and ROM studies at transonic speed were conducted by
Widhalm et al. [46]. Static force and moment coefficients as well
as static and dynamic stability derivatives from this CFD study are
used for comparison of the results in Sec. V.

Table 3 shows the flow conditions for the two PRBS signals.
Flow simulations of the PRBS1 signal are performed at transonic
conditions, M = (.85, and an ambient pressure of 49881 Pa and a
temperature of 266.5 K, resulting in a Reynolds number of about 3
million. Note that the presence of shock waves at Mach 0.85 has
been confirmed through steady pressure distribution data presented
in ATAA Paper 2023-4199 [46]. A CFD visualization of the FFD at
Mach 0.85 and a 16° angle of attack is shown in Fig. 7. This figure
depicts surface pressure distribution along with isosurfaces of the
scaled Q-criterion (Q* = 50), highlighting two distinct shock
locations.

Figure 8a displays the hybrid computational grid on the half
model, consisting of about 40 million nodes and about 150,000
elements. The boundary layer is resolved with quadrilaterals, while
tetrahedra extend from the boundary-layer edge to the far field. To
better capture vortices, a refined region was specified above the
model, as shown in the figure. The first off-body grid nodes all
satisfy y* < 1.0 in sublayer scale. The far-field distance is set to 100
times the chord length.

In addition, tap points were defined for six spanwise locations
over the upper surface of the FFD. These tap points are shown in
Fig. 8b. Note that three locations were chosen to be near the wing
kink locations. The y positions of these tap points are [0.05, 0.09,
0.136, 0.18, 0.22, 0.28] m. These points move with the mesh.
Output data include tap coordinates and pressure coefficient data
at every 200 time steps. Note that not all points are exactly located
on the surface. The Kestrel option of “Closest Solution Value” was
used. However, Kestrel reports a “Found” parameter with values of
0 or 1; 0 means no solution found (e.g., the point is perhaps outside
the mesh domain and located inside the plane). Considering the
points with a Found value of 1, there are 237, 293, 189, 161, 123,
and 89 points for slices 1-6, where slice 6 is the one near the
wingtip.
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Fig. 5 PRBS1 and PRBS2 signals.

V. Results and Discussion

All simulations were run using the Kestrel flow solver. Second-
order spatial and temporal accuracy was used. The grids are half
geometries with far-field, symmetry, and no-slip wall boundary
conditions for the airplane. All solutions begin at a 10° angle of
attack, corresponding to the mean aerodynamic angle of PRBS
signals. For PRBS1, the freestream Mach number was set to 0.85
with a total temperature of 305 K and a total pressure of 305 Pa. For

the PRBS2 signal, the freestream Mach number was set to 0.4. The
Mach number was then varied using a prescribed-body motion in
Kestrel. In this approach, if the grid moves opposite to the incoming
velocity, the relative velocity between the freestream and vehicle
will increase, and hence the Mach number. If the grid moves in the
direction of the freestream velocity, the Mach number will decrease.
The relative velocity is set so the Mach number matches the profile
shown in Fig. 5f.
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Fig. 6 Power spectral density of the PRBS signal at constant Mach 0.85.

Table 3  Flow conditions for the FFD wind tunnel model

Case a, deg M, p,Pa T,K

Rem Lref’ m Aref’ m2 Xp, M

PRBS1 [0-20°] 0.85
PRBS2 [0.1-0.9]

49,881 266.5

~3x10° 0.272592 0.0807265 0.212833/0/0

Py

Fig. 7 CFD analysis of FFD at Mach 0.85 and 16° angle of attack.

All motions were run with a time step of 0.0002 s and eight
Newton subiterations. The motions begin after 2000 startup itera-
tions and continue for an additional 20,000 iterations for a signal

duration of 4 s. Advective temporal damping was set to 0.01. The
Spalart—Allmaras turbulence model with rotational/curvature cor-
rection (SARC) was used. The cost of running these signals is
approximately 120,000 CPU hours using 2880 processors. Simu-
lations were run on the U.S. DoD HPCMP Carpenter machine,
which is an HPE Cray EX4000 system located at the ERDC DSRC
in Mississippi. It has 1440 standard compute nodes, 4 large-memory
nodes, and 8 GPU nodes (a total of 278,272 compute cores). It has
518 TB of memory and is rated at 15.75 peak PFLOPS.

A. SID Modeling at Constant Mach 0.85

First results show the SID (regression), FFNN, and SBRF pre-
dictions using the PRBS1 signal (the signal at constant Mach 0.85).
This signal was executed in Kestrel. Note that SID, FFNN, and
SBRF modeling predictions depend on the chosen time step, or
more specifically, on the nondimensional time step, t* = .V /c,
where ¢ is the time step in seconds. Ideally, #* is kept about 0.01;
however, this makes simulations very expensive to run. A time step
of 0.0002 s was chosen for the FFD simulations at Mach 0.85.

The predicted coefficients are then rearranged according to
Eq. (1), and then Eq. (4) was used to estimate the model param-
eters, i.e., #;, j = [0-7]. The parameter estimation took about one
or less than 1 s. In addition, three different FF neural networks
were trained corresponding to C;, Cp, C,, data of the PRBSI.
Networks have one hidden layer containing 10 neurons. The
Levenberg—Marquardt algorithm was used. Network training time
was less than 1 minute. For the SBRF model, a reduced training set
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Fig. 8 a) Near field of the computational grid of the generic triple delta fighter aircraft. b) Tap points at six difference spanwise slices.

was used to reduce computational cost and overfitting of the GPR
model due to spatially highly correlated sample locations. The
sample points were randomly split into a smaller training set
consisting of about 10% of the initial size of the PRBS signal.
Time-delay quantities were still computed based on the full time-
series data, accounting for the original time step size. Here, no
time-delayed input was considered for the two exogenous input
variables a and ¢, but time-delayed output information is used
instead to augment the input matrix with output quantities obtained
at f;, — At with At = 0.002 s. This corresponds to a time step at
ty_10, With k denoting the current time step. For model prediction,
then C;,, _, , for j = L, D, or m, is recursively fed back as model
input from a single time step at k — 10 with k. In addition, the
quasi-steady GPR (QS-GPR) model, which is inherently built
when using the SBRF modeling approach, is compared to the
other models. The computational cost to generate the SBRF model

(including the QS-GPR model) on the reduced sample set was less
than a minute on a desktop computer.

Regression, FEFNN, and SBRF models were then used to recon-
struct the PRBS1 signal output based on given input changes. These
model predictions of the PRBS1 signal are shown against Kestrel
(actual) data in Fig. 9. Overall, a very good agreement was found by
all three models at all simulation times. In more detail, the MSE
values of the models are given in Table 4. MSE values are small,
with the best predictions provided by quasi-steady and unsteady
GPR models. These models usually provide highly accurate training
data reconstruction, since only a small value as a regularization term
is added to the models. Nevertheless, the choice of only using a
subset of sample points as training set did not lead to an increase of
model training errors. Besides these two, the FFNN model provides
the best predictions for Cp. In the following, the QS-GPR model is
used for comparison of model predictions at static and quasi-steady

CFD, Training Data
FFNN
------------- SBRF

04
03}
& 02t
0.1 \j"“ﬂM
0 05 i 15

-

-0.04 i

-0.08 5 05 1 15

Tinte [s]

25 3 3.5 4

Fig. 9 Prediction of PRBSI1 signal using FFNN and SBRF models.
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Table 4 PRSBI1 prediction mean-squared error
using regression, FFNN, QS-GPR, and SBRF

Model Cy Cp C,

Regression 0.01658 0.00419 0.005722
FFNN 0.01458 0.003608 0.004487
QS-GPR 0.00025 0.00001 0.00003
SBRF 0.00029 0.00001 0.00003

conditions (such as static and quasi-steady damping stability deriva-
tive estimates), and the SBRF model for generic, prescribed maneu-
ver predictions similar to the PRBS1 signal.

Next, the performance of the regression and FFNN models will be
examined at different angles of attack. These angles were picked to
cover the full range of the signal, from the lowest to the highest
values. (i.e., 0-20°) with an increment of 0.5°. The way regression
models are used for these predictions is by setting up the pitch rate
to zero in models, i.e., Cjgaic = reg;(@, ¢ = 0). Likewise, in FFNN,
the input columns corresponding to the pitch rate and its products
(e.g., a.q) are set to zero values. Static predictions of the FFD model
at Mach 0.85 for the regression, FFNN, and QS-GPR models are
given in Fig. 10. In addition, static data from Widhlam et al. [46] are
used for cross-plot purposes. Figure 10 shows that both regression
and FFNN predict very similar lift and drag coefficient values, and
the predictions match well with those shown by Widhalm et al. for
the FFD and Mach 0.85. Likewise, regression and FFNN predic-
tions are similar for the pitch moment coefficients, with small
discrepancies at some angles of attack. The predictions show the
same trend as Widhalm et al. presented in Ref. [46]. However,
model predictions overestimate the pitch moment data at small
angles of attack and did not predict the dip seen around a 20° angle
of attack in previous studies. In summary, the models do their best at
the average angle of attack of the training signal, but their accuracy
fades near the max and min values, i.e., [0-5°] and [15-20°] ranges.

QS-GPR predictions shown in Fig. 10 are able to capture the
general trend but show minor (C; and Cp) and large oscillations
(C,,) around the mean. The SBRF model (not shown) performed
similarly to the QS-GPR model. Root mean-squared error (RMSE)
evaluated using the static reference data from Widhlam et al. [46]
for the QS-GPR model gives values of 0.04140, 0.01112, and
0.01073 for C;, Cp, and C,,, respectively. When evaluating the
SBRF model, RMSE values of 0.03091, 0.00898, and 0.01201 are
obtained for C;, Cp, and C,,, respectively. These oscillations indi-
cate an overfitting issue during model fit on the one hand and that
probably the type of training signal is not very suitable in combi-
nation with GPR-based models. With regard to the latter, a reason
might be the large step changes between two distinct angles of
attack that are characteristic of the PRBS signal. Though a large
range of the angular rate ¢ is generally covered by the signal, the
dataset is highly clustered with respect to the pitch rate ¢ and almost
no data is available at static conditions.

—O—— CL, Widhalm et al.

14F — = A - - CD, Widhalm et al. 91
| ——— FFNN 1
12 == Regression _
F———-- QS-GPR 1o
1k
[ A
08} 7 qos
oer
O [ 1
oor 0.4
04f 1
I ~0.2
02 1
og- i
Angle of attack, o]
a) CL and CD

For instance, very large values are obtained during the (smoothed)
step changes from one angle of attack to another, but only constant
values of 5°/s and —5°/s, respectively, are obtained for the portions
between the step changes. This seems to cause problems primarily for
the GPR-based models.

The same method used for the static case was applied to predict
the curve slope with the regression and FFNN models; first, static
data of Cjgyic are estimated for a angles. Then Cigico are found for
a + 0.5° angles. The slope is then the difference of these values
divided by a 0.5° increment. Static stability estimates from the
QS-GPR were calculated based on a least-squares approach using
a time-series prediction of a sinusoidal motion at a frequency of
f = 1 Hz and an amplitude of 5°. Hence, the response to a sinusoidal
motion is predicted, and the stability derivative estimation is rather a
postprocessing step. Note that at mean angles of attack equal to 0 and
20°, the sinusoidal time-series prediction includes an extrapolation.

The lift, drag, and pitch moment curve slopes predicted by
regression, FFNN, and QS-GPR models are shown in Fig. 11 and
again compared with those reported by Widhalm et al. [46]. Overall,
the trends are similar, but FFNN shows more nonlinearity in the
plots than the regression and QS-GPR models. For drag, all models
show the same slope and similar data to Ref. 46. For lift coefficients,
the slopes predicted in the range of [5—15]° have a better match with
previous data. Note that the input space is mostly covered around
the mean angle of attack of 10. For the pitch moment, the FFNN
provides a better match with earlier data than the regression model.
The regression model exhibits a linear slope with the angle of attack
and slightly overestimates in comparison to both the FFNN and
previous data. The QS-GPR model also overestimates for angles
from 5 to 10° and predicts a rather constant slope.

Note that discrepancies exist between ROM predictions and CFD,
especially beyond a 20° angle of attack, as seen in Figs. 10 and 11.
However, it is important to emphasize that these ROMs were
developed using only a 4 s input signal, yet they still capture key
trends in static data, slopes, dynamic derivatives, forced oscillation
responses, and arbitrary motion responses with sufficient accuracy.
A longer training signal could certainly improve accuracy, but it
would come at the cost of increased computational effort during
model development. The tradeoff between computational efficiency
and predictive accuracy is a critical consideration in ROM devel-
opment.

Additionally, the interpretation of discrepancies in aerodynamic
predictions is often application-dependent. In the context of S&C,
small differences in aerodynamic loads may or may not significantly
affect handling qualities. A specialist in S&C could better assess
whether the observed variations meaningfully impact control and
stability predictions.

Next predictions correspond to dynamic derivatives of CL, + CLa,
CD, + CDa, and Cm, + Cma. Note that PRBS signals used in this
study have combined effects of changes in pitch rate and angle of
attack because g = . For isolated terms, pitch angles should be
varied independent of the angle of attack. For convenience, the

0.08
—>—— Widhalm et al.
| FFNN
006 ——comm Regression
————— QS-GPR
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Lro02f
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0.02 -
I W WA S N W WA N |
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Angle of attack, o]
b) Cm

Fig. 10 Prediction of static data using regression, FFNN, and quasi-steady GPR models based on PRBS1 signal.
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Fig. 13 Prediction of pitch oscillation using regression, FFNN, and quasi-steady GPR models based on PRBS1 signal. Black lines show model
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Fig. 11 Prediction of slope data using regression, FFNN, and quasi-steady GPR models based on PRBS1 signal.
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Fig. 12 Prediction of dynamic derivative data using regression, FFNN, and quasi-steady GPR models based on PRBS1 signal.
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Prediction of a step signal using FFNN and SBRF models based on PRBS1 signal.
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@ terms are dropped, and these dynamic derivatives are named CL,,
CD,, and Cm,.

For prediction of these dynamic terms, models were fed with
input of angle of attack and pitch rate of zero Cj, o = Cj(@, g = 0)
andatg = 1 rad™!,i.e,, Cjs = Cj(a,q = 1). Dynamic derivatives
are the differences of these estimated terms. Note that ¢ is the
nondimensional pitch rate defined as ¢ = Q.c/(2V,), where Q is
pitch rate in rad/s. Regressions and FFNN model predictions of
these dynamic derivatives are shown in Fig. 12 and compared
with estimations using the sinusoidal time-series predictions from
the QS-GPR model and those given in Ref. [46]. Overall, good
agreement was found with earlier studies of the FFD at Mach 0.85.
Dynamic derivatives appear to be relatively unaffected by changes
in the angle of attack up to 20°. Note that the estimation of these
dynamic derivatives could still be a challenging task from CFD and
time-consuming using traditional pitch oscillation motions.

In addition to static and stability derivative predictions, the cre-
ated model could be used for prediction of new time-accurate
signals with the input space within the training signal used for
model creation. One example is pitch oscillations. Different motions
with combinations of the mean, amplitude, and frequency could be
defined and then predicted by models. Figure 13 shows regression,
FFNN, and QS-GPR model predictions of a pitch oscillation with a
10° mean angle, 5° amplitude, and frequency of 1Hz. Lift, drag, and
pitch moment predictions are plotted against Kestrel data. The lift
and drag show small, thin loops but a nonlinear type. The thin loops
suggest that dynamic effects are relatively small, i.e., small C;, and
Cpq terms. The nonlinear behavior at the high angles of attack is due
to vortex/shock and boundary-layer/shock interactions.

Kestrel data and model predictions match very well for lift and
drag. For pitch moments, the hysteresis loop is more visible and is
characterized by large nonlinearities at « = 10° and an eight-shaped

Training Data
Regression Model

a) CL-Eq. 1

04

2 3 4
Time [s]

Training Data
Regression Model

03

i

Training Data
Regression Model

b) CL-Eq. 2

04—

Training Data
Regression Model

3
Time [s]

Training Data
Regression Model

‘l

LY -

0

e) Cm-Eq. 1

2 3
Time [s]

.4. ‘.5.‘.‘6

03

Training Data
Regression Model

P RSN I BN | S B (|| S IR |

6 0

| Y S

f) Cm-Eq. 2

2

K 4 5 6
Time [s]

Fig. 18 Regression prediction of the PRBS2 signal using Eqgs. (1) and (2).
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curve around the maximum angle of attack. FFNN, regression, and
QS-GPR models show discrepancies in predicting those nonlinear-
ities. Predictions do not match with Kestrel data at all angles but are
able to reproduce the general trend of the time history for C,, that
was computed with Kestrel. The regression and FFNN models are
generally smoother compared with the QS-GPR model, which is
characterized by oscillations for some angles of attack. A reason for
this discrepancy might be running this reference case at a different
setup (time step, subiterations) than the training data, in addition to
the previously mentioned difficulties of the QS-GPR and SBRF
models in terms of poor coverage of pitch rate variations by the
training data.

It should be noted that C,, is inherently more challenging to
predict than lift and drag due to its sensitivity to unsteady flow
structures and dynamic flow separation. While discrepancies are
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present, it could be argued that the results can still be considered as
“comparing well” in the context of practical aerodynamic modeling.
First, the model captures the key characteristics of the oscillatory
motion, and both methods predict similar maximum and minimum
C,, values at the mean oscillation angle. These values are critical for
estimating dynamic derivatives, which are fundamental for stability
and control analysis. Given that both methods lead to similar
dynamic derivative values, the differences in the detailed shape of
the C,, loops have limited impact on the overall predictive capability
of the model in this context. Additionally, it is important to empha-
size the computational efficiency of the presented approach. The
pitch oscillations simulated in Fig. 13 are computationally expen-
sive to evaluate using CFD, as numerous combinations of ampli-
tude, mean, and frequency could be defined. In contrast, the models
used in this study were trained on only a 4 s input signal yet are
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Fig. 19 Regression prediction of static and slope data at Mach 0.1 and Mach 0.85 using the PRBS2 signal.
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capable of generalizing across a broad range of oscillatory motions.
This provides significant cost savings while maintaining reasonable
accuracy in capturing unsteady aerodynamic behavior.

In addition, FFNN was used to predict different signals such as
chirp motions with constant or varying mean, Schroeder, and a step
signal. For the latter two, predictions of the SBRF model were also
available. Model predictions are compared with Kestrel data in
Figs. 14-17. Figure 14 shows a chirp signal with a mean of 10,
an amplitude of 10, and a 4 s duration. The initial frequency is 2 Hz
and linearly increases with time. FFNN predictions match very well
with Kestrel data. Lift, drag, and pitch moment coefficients show
MSE values of 0.026, 0.0077, and 0.0087, respectively.

Figure 15 shows another chirp motion with a varying mean angle
of attack. The mean angle follows a sinusoidal curve with 1 Hz
frequency. The chirp has an initial 4 Hz frequency, again linearly
increasing with time. FFENN predictions again match very well with
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Kestrel data of this signal. MSE values are 0.022, 0.0056, and
0.0075 for lift, drag, and pitch moment coefficients, respectively.
The largest discrepancy is seen at pitch moment at large angles and
large frequencies.

A Schroeder signal was designed in which the mean angle of
attack again follows a sinusoidal motion with 1 Hz frequency. This
motion was executed in Kestrel with the same setup as PRBSI.
Figure 16 compares FFNN and SBRF predictions of the Schroeder
signal with time-accurate data. MSE values calculated from the
FFNN model predictions are 0.024, 0.0058, and 0.0079 for lift,
drag, and pitch moment coefficients, respectively. For the SBRF
model, MSE values of 0.00082, 0.00003, and 0.00009 were
obtained for lift, drag, and pitch moment coefficients, respectively.
A good match between CFD reference and both models is observed
for Cp and C;, whereas the magnitude of C,, during the first two-
thirds is not well predicted. This is improved when better coverage
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Fig. 20 Regression prediction of dynamic derivatives at Mach 0.1 and Mach 0.85 and a pitch sinusoidal at Mach 0.1 with f1Hz using the PRBS2 signal.
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between training data and predicted motion exists, as can be seen for
the last third of the time series at angles of attack below 15°.
Finally, Fig. 17 shows a step motion in which the signal begins at
a 10 deg angle of attack. The aircraft is held at this angle for about
0.2 s and then suddenly undergoes a negative unit step, and the angle
of attack drops 1 deg. The aircraft is then at a zero angle of attack at
2 s. Then, it will undergo the same motion but with a positive unit
step until it reaches 10° after 4 s. All shown forces and moments
have a jump in coefficients at the steps. The FFNN model predicts
the static and jumps in the coefficients with reasonable accuracy
with 0.0089, 0.0013, and 0.0019 MSE values for lift, drag, and
pitching moment coefficients. The main discrepancies correspond to
the step locations. The SBRF model shows a similar performance in
terms of error metrics as for the Schroeder signal (MSE values for
lift, drag, and pitching moment coefficient are 0.00013, 0.000002,
and 0.00009, respectively). However, the best accuracy using the
SBRF model is obtained for Cp, whereas for C; and C,,, at some
steps, a high-frequency oscillation around a constant mean with
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larger deviations of the predicted mean around the minimum angle
of attack is visible. Note that these oscillations are not present when
evaluating the QS-GPR model, which achieves an overall similar
prediction accuracy of the step motion (MSE values for lift, drag,
and pitching moment coefficient are 0.00009, 0.000004, and
0.00002, respectively).

B. SID Modeling with Mach Variation

This section focuses on extending aerodynamic models to
account for Mach number effects. To achieve this, the PRBS2 signal
was designed to cover angles of attack ranging from 0 to 20 deg over
6 s. In this new motion, the Mach number varies between 0.1 and 0.9
following a Schroeder motion, with the initial Mach number set at
0.4. Two regression models were developed: 1) one model similar to
the one used for PRBS1 using Eq. (1), with inputs of @ and ¢; the
second model is based on Eq. (2), which includes Mach number as
an additional input. The predictions of these two models are com-
pared with actual Kestrel data from running PRBS2 in Kestrel, as
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Fig. 21 Regression prediction of a chirp motion with varying Mach number using the PRBS2 signal.
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shown in Fig. 18. Using Eq. (1), models show RMSEs of 0.039,
0.013, and 0.024 for C;, Cp, and C,,, respectively, with large
discrepancies in pitch moment and coefficients at large angles of
attack. However, the second model with Mach number as an addi-
tional input has MSE values of 0.02 for lift, 0.0067 for drag, and
0.017 for pitch moment coefficient. Additionally, an FFNN model
was created to predict lift, drag, and force moments, using seven
inputs (@, g, M, a.q, a.M, g.M, a.q.M).

Regression models were then used to predict static and stability
derivatives of the FFD at different Mach numbers and angles of
attack. Figure 19 shows static and slope data at Mach 0.1 and 0.85.
Previous Kestrel data at Mach 0.85 were obtained from Widhalm
et al. [46]. For Mach 0.1, the ONERA wind tunnel data are plotted.
Figure 19 shows that static and slope data match well with wind
tunnel data at Mach 0.1 for the ranges of shown angles (this range
corresponds to the signal input range). Lift and its slope curve
underestimate Ref. 46 data at Mach 0.85. The same applies to drag

30
Mach 0.85

25k

y i

Zon AN
< f

of

qob vy é I N |
Time [s]
a) Sinusoidal AoA, M0.85

30
Mach 0.1

e
Time [s]
¢) Random AoA, M0.1

30

Mach 0.1

—_—
P —

—
Time [s]
e) Schroeder AoA, M0.1

and pitch moment coefficient at Mach 0.85. More interestingly,
model predictions at Mach 0.9 (not shown in this article) match
better with previous Kestrel data at Mach 0.85. A few suggestions to
improve model prediction accuracy are to refine the signal with a
longer duration and to include more training data at transonic speeds
than in the subsonic regime.

From the PRBS2 signal, dynamic derivatives of C;,, Cp,, and
C,,g were estimated at Mach numbers of 0.1 and 0.85. These
predictions are compared against data from Ref. [46] and wind
tunnel data [45] in Fig. 20. In addition, the models created from
the PRBS2 signal were used to predict a sinusoidal pitch motion at
Mach 0.1, with a mean angle of 10°, an amplitude of 5°, and the
motion frequency of 1 Hz. The model predictions are also compared
with wind tunnel data (this corresponds to test run 149 in wind
tunnel documents) in Fig. 20. The predictions show that dynamic
derivatives are insensitive to the angle of attack variations up to 20°
for both shown Mach numbers. However, dynamic derivatives
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Fig. 22 Evaluating the regression model for prediction of different signals using the PRBS2 signal.
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Fig. 23 Pressure tap positions.
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depend on the Mach number, e.g., C,,, becomes more negative with
increasing Mach number. Figure 20 shows that model predictions
fall in the range of previous and measured data. The model pre-
dictions at Mach 0.85 show the largest discrepancies. The sinusoidal
predictions at Mach 0.1 match very well with wind tunnel data,
though ROM performance should be compared with Kestrel rather
than with measured data.

Likewise, models created for the PRBS1 signal, the new models
could be used to predict the responses to new motions, even including
Mach number variations. As an example, a chirp motion with linearly
increasing frequency with time was defined. This motion runs for 4 s.
It has a mean angle of 10°, an amplitude of 5°, and an initial
frequency of 2 Hz. The Mach number is not fixed and varies between
0.5 and 0.9 following a Schroeder motion. This motion is shown in
Fig. 21. The a — Q space coverage is also shown in the figure as well.
Model predictions of this motion are compared with time-accurate
simulation data in Fig. 21 as well. Overall, the predictions match well
with Kestrel data, especially for lift and drag coefficients. Discrepan-
cies in amplitude and phase are due to slight differences in dynamic
derivative predictions. Additionally, three motions were defined at
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Fig. 24 Modeling pressure data at sections 1 and 3 using FFNN. Signal is PRBS1 at Mach 0.85.
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Mach 0.1: sinusoidal, random, and Schroeder. These motions are
shown in Fig. 22 and have a duration of 4 s, except for the sinusoidal,
which has 3.7 s. Sinusoidal is a combination of five signals of
constant frequency; as time progresses, the signal frequency and
amplitude increase in time. Random was generated with different
amplitude and frequency combinations. Finally, a Schroeder motion
was defined in which the mean angle of attack follows a sinusoidal
motion with a frequency of 0.5 Hz. The motion data were fed into
models, and the predictions are compared against time-accurate data
in Fig. 22. Again, the overall trends were predicted well with small
discrepancies at the peak values.

C. Modeling Surface Pressure Data
1. FFNN

The PRBS1 signal was run again in Kestrel, but this time with
pressure tap points of Fig. 8b. This includes about 1092 data
points. Note that each slice has a different number of points; those
near the wing tip have fewer points than those near the root. The
tap points only correspond to the upper surface sections. Tap data

25F CFD, Slice1
[ — — — — CFD, Slice3
2F Model, Slice1
r Model, Slice3
15F
N a=0.0°
a 4L
Q'
05f
ok
05
S RN RN R B A B
0 02 04 06 08 1
xlc
) AoA=0
25f CFD, Slice1
E — — — — CFD, Slice3
2F Model, Slice1
F Model, Slice3
15F
a 4 f
Q'
05
of
05 a=4.0
N T R R B R
xic’
c) AoA=4
25f CFD, Slicet
[ — — — — CFD, Slice3
2| Model, Slice1
r Model, Slice3
15F
a F
Q 't
05|
ok
05F ¢ =80°
;\ll\||\\|l\|\\|\\||1\
0 02 04 06 08
xlc
e) AoA=8

are defined using coordinates of x,y, z. At every 20 time steps,
pressure coefficient data at these locations are recorded. Note that
the angle of attack and pitch rate vary according to the PRBS1
signal shown in Fig. 4. Data were then rearranged to have input
data of [a, ¢, a.q] and corresponding C), data for each slice. Then
FFNNs were used to train the models based on these data for each
section. The model predictions of two slices are shown here: slices
1 and 3. These slices are shown in Fig. 23. In these figures, the
PRBS1 signal, the pressure section, and the initial time C,, data are
shown. FFNN models took about 1 hour to be trained due to the
amount of data. These models were then saved to be used for
prediction of pressure data of new signals. Model training data for
slice 1 and slice 3 are shown in Fig. 24 at different time instants. In
this figure, the input signal and section data from Kestrel and
model predictions are shown. Depending on the angle of attack,
pitch rate, and slice locations, shock waves formed over the upper
surface at different chordwise locations. Figure 24 shows that
models were trained to capture the shock waves and pressure
coefficient values with the best accuracy. Note that slice 3 has less
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Fig. 25 Modeling pressure data at sections 1 and 3 of FFD at static angles and Mach 0.85. The model was created from the PRBS1 signal.
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Fig. 26 Mean-squared error for the maneuvers under consideration.

negative pressure data at the upper surface than slice 1 for high
angles of attack. The shock positions are visible with a sudden
change in Cp values especially for angles of 10° and higher. The
shock becomes stronger and moves aftward with increasing angle
of attack.

The NN models were then used to predict the pressure data of a
step motion shown in Fig. 17a. Note that tap data were predicted at
the center of each segment; it was assumed that these data corre-
spond to static data, as the pitch rate is zero during each step
segment. Model predictions at different angles of attack at slice
sections of 1 and 3 are shown in Fig. 25. C,, predictions match very
well with data calculated from time-accurate simulations.

Pressure Distribution, t=0.428 [s]
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Fig. 27 Comparison between enriched and standard POD, for
t = 0.428 [s].
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a. Projection and Training Error. As previously discussed, the ini-
tial stage involves constructing a reduced-order basis using the
proposed enriched proper orthogonal decomposition (ePOD) tech-
nique. To demonstrate the advantage of this approach over the
standard method in modeling transonic flow regimes, the MSE is
assessed. Specifically, the projection error of the ePOD technique is
computed and compared to the corresponding error of the standard
POD method using an equal number of POD modes, as well as to
the total of POD modes and enrichment parameters. For instance, in
the case of ePOD utilizing 10 modes and 8 enrichment function
parameters (4 parameters per shock), it is compared to the standard
mode using 10 modes and to the standard method using 18 POD
modes. As observed in Fig. 26, the MSE for the ePOD method is
consistently lower than that of the standard POD with an equivalent
number of parameters across all time steps in the PRBS1 dataset.
Specifically, the average MSE for the projection error of the ePOD
method is 2.25 - 107, whereas for the standard POD with the same
number of parameters, it is 2.42 - 1074, and for the same number of
modes, it increases to 5.74 - 1074,

Furthermore, in the case of the Schroeder maneuver, the MSE of
the ePOD method generally outperforms that of the standard POD.
On average, the MSE is 2.78 - 10~ for ePOD, 3.38 - 10~ for POD
with the same number of parameters, and significantly higher at
8.62 - 10~ for standard POD with the same number of modes. This
pattern holds true except for three specific instances in time. Further
investigation into these time steps reveals that the fitting error was
significant in these cases, caused by high oscillations following the
shock discontinuity, which resulted in underfitting of the previously
described fitting methodology, as observed in Fig. 27. Moreover, the
MSE is obtained by averaging the error for the pressure distribution
at each time instance. Consequently, small pressure fluctuations
within the dataset contribute to this error. The proposed method is
specifically designed to handle shock discontinuities, whereas the
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—%— Network Error
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—=— Total Error

!
0 5 10 15 20 25 30
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b) Performance

Fig. 28 a) Training and validation loss. b) Mean-squared error, between predicted, projected and true pressure distribution.
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Fig. 29 Pressure coefficient reconstruction of section 1 with POD and ePOD methods, for PRBS1 signal.
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Fig. 30 Pressure coefficient reconstruction of section 1 with POD and ePOD methods, for Schroeder maneuver.
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standard POD method with more modes may better address these
small pressure fluctuations in regions of the dataset where no
pressure discontinuity occurs.

The following results concern the training stage of the neural
network. Figure 28a presents the weighted training and validation loss
for the Schroeder maneuver. In Fig. 28a, 95% of the weighted version
is the contribution of loss function 9 and 5% from the mean-squared
distance between the predicted and true time coefficients and param-
eters. The validation loss reaches a plateau of approximately 4 - 1073
after the first 400 epochs, while the training loss continues to
decrease, eventually reaching a minimum of about 4 - 1074,

The pressure distribution for selected time instances for the PRBS1
signal and Schroeder maneuver are illustrated in Figs. 29 and 30,
respectively. It becomes apparent that the proposed method performs
remarkably well in the discontinuity region, outperforming the stan-
dard methods and facilitating the application of the model for the
prediction of the pressure distribution in the transonic flow regime.
Furthermore, the normalized time coefficients and the parameters of
the enrichment function are depicted in Fig. 31. The normalized first
and last time coefficients, along with the parameters of the second

Prediction of LSTM model for validation data
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0.6
T 04
0.2 1
0.0

0 50 100 150 200 250
Time Step
a) First time coefficient

Prediction of LSTM model for validation data

0.8 1

0.6

0.4 1

— Real validation data as,

0.2
—— Predicted validation data as,

Amplitude of First Control Point

0 50 100 150 200 250
Time Step
¢) Amplitude of first control point of second shock

Prediction of LSTM model for validation data

0.45 ——
g —— Real validation data b,

0.40 —— DPredicted validation data bg,

0.10 4

Amplitude of Second Control Point

T T
100 150 200 250

Time Step

o4
153

e) Amplitude of second control point of second shock

shock (the strongest and most significant one) predicted by the neural
network, are compared with the actual validation data. A particularly
interesting observation relates to the frequency and periodicity of
these data. By comparing the first and last time coefficients, it can be
derived that as the number of POD modes increases, the frequency of
the corresponding time coefficients also increases. Consequently, it
becomes more challenging for the neural network to predict these
highly oscillating coefficients. Thus, by utilizing the ePOD reduced-
order basis, the total number of predicted parameters decreases, and
the convergence of the neural network improves.

b. Testing Error. In this section, the results from the testing stage
of the ePOD-LSTM reduced-order model are presented. The pre-
dicted pressure distribution of the LSTM neural network is
compared with both the actual enriched reduced-order basis and
the full-order pressure distributions. To evaluate the performance of
the model, three different types of errors were evaluated for the test
data set.

The first error evaluated was the projection error, defined as the
MSE between the enriched reduced-order basis and the full-order

Prediction of LSTM model for validation data

" l milimey
Iy (u” I

—— Real validation data aq1
—— Predicted validation data a

0.40 4

0 50 100 150 200 250
Time Step
b) Last time coefficient

Prediction of LSTM model for validation data

1.0 ]
— Real validation data z1,,

054 — Predicted validation data 1,

0.6

0.4

Location of First Control Point

0.0 1

0 50 100 150 200 250
Time Step
d) Location of first control point of second shock

Prediction of LSTM model for validation data

E 101

ch —— Real validation data X2,

2 0s4 — Predicted validation data x,

2

]

=

5]

© 061

e

=}

5]

[

D 0.4

N

i

5]

= 1

g o2

.8

=

<

<

3 00t ! : : : !
0 50 100 150 200 250

Time Step

f) Location of second control point of second shock

Fig. 31 Normalized validation data.
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model. The second was the neural network time coefficient error,
defined as the instantaneous MSE between the actual and predicted
enriched reduced-order basis. Finally, the total error of the ROM
represents the distance between the full-order pressure distribution
and the predicted enriched reduced-order basis generated by the
neural network.

Figure 28 displays the three errors for the last 30 time steps of the
test data set. The projection error, which measures the discrepancy
between the full-order pressure distributions and the actual enriched
reduced-order basis, represents the best possible accuracy the neural
network can achieve. Essentially, an optimally designed and per-
fectly trained neural network would exhibit a similar level of error as
seen in the projection. Moreover, the neural network time coefficients
error and the total error show comparable trends. A maximum error
of 6 - 107 occurs at time step 12, while the average error for both
comparisons remains below 3 - 1073, Furthermore, Fig. 32 illustrates
the predicted, projected, and full-order pressure distributions for
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Sec. I at selected time steps. These plots demonstrate that, despite
using a limited training dataset, the ePOD-LSTM model accurately
predicts the true pressure distribution, even in challenging disconti-
nuity locations.

V1. Conclusions

This study explores the use of CFD-based system identification
techniques to develop ROMs for predicting aerodynamic loads and
surface pressures on a generic fighter configuration at transonic
speeds. Two pseudorandom binary sequence (PRBS) training
maneuvers were employed, one at a constant Mach number and
another with an optimized Mach variation, to generate training data.
Various ROM approaches, including regression, feed-forward neu-
ral networks, and autoregressive modeling, were used to predict
integrated forces and moments, while an ePOD combined with an
LSTM network was applied for surface pressure prediction. The
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Fig. 32 Predicted pressure distribution of section 1 with the ePOD-LSTM ROM.
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ePOD method effectively captured pressure discontinuities due
to shocks, leading to improved accuracy over standard POD
approaches. The models demonstrated good agreement with Kestrel
CFD data for both static and dynamic aerodynamic responses,
validating their predictive capabilities. Future work will focus on
optimizing input signal design, refining neural network training
algorithms, and extending ROM techniques to model full flowfield
dynamics under varying Mach number conditions.
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