
DELFT UNIVERSITY OF TECHNOLOGY

Master Thesis

USER/QUERY-WISE METRIC BOUNDING IN

LEARNING TO RANK

by

T.D. WESTERBORG

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the
Multimedia Computing Group

Student number: 4386817
Supervisor: dr. J. Urbano

An electronic version of this thesis is available at
http://repository.tudelft.nl/

May 11, 2022

https://www.tudelft.nl/
http://repository.tudelft.nl/

CONTENTS

1 Introduction 1
1.1 Research goals . 3
1.2 Main findings . 3
1.3 Thesis outline . 3

2 Background 4
2.1 Learning To Rank Framework . 4
2.2 Models . 5
2.3 Evaluation . 6
2.4 Listwise loss functions . 8

3 Metric Bounding 11
3.1 Min-Max Normalization . 11

3.1.1 Bounds of nDCG . 12
3.1.2 Bounds of nRBP . 12
3.1.3 Bounds of AP . 13
3.1.4 Impact of bounding on loss scores 13

3.2 Expectation-Based Metric Bounding . 14
3.2.1 Expectation of nDCG . 14
3.2.2 Expectation of nRBP . 16
3.2.3 Expectation of AP . 17
3.2.4 Impact of bounding on loss scores 18

3.3 Expectation-Max Bounding . 19
3.3.1 Impact of bounding on loss scores 19

3.4 Distribution-Based Metric Bounding . 20
3.4.1 Impact of bounding on loss values 23

4 Experimental Setup 24
4.1 Models . 24

4.1.1 Hyperparameters . 24
4.2 Datasets. 25
4.3 Protocol . 25

5 Results 27
5.1 Effect of metric bounding on overall performance 27
5.2 Effect of metric bounding on individual user/query performance 29
5.3 Where does metric bounding have the largest effect? 30
5.4 Who benefits from metric bounding? . 34
5.5 Summary . 36

ii

CONTENTS iii

6 Conclusion 37
6.1 Recommendations . 38
6.2 Future Work. 38

References 39

1
INTRODUCTION

Learning to Rank (LTR) is at the core of many retrieval problems such as document re-
trieval and recommendation and aims at learning how to properly rank a set of items
based on some criterion like relevance to a query or user. As often times users tend to
only browse the top of the predicted ranking, a good ranking is one where relevant items
are placed near the top and irrelevant items near the bottom. A wide variety of machine
learning (ML) techniques have been applied to create ranking models capable of ranking
items according to their relevance. The main difference between traditional ML and LTR
is that while traditional ML solves a prediction problem on an instance consisting of a
single item, LTR defines instances as a set of items. Subsequently, LTR methods care less
about individual predicted relevance, but aim at optimizing the relative ordering of the
items.

In order to train such models, a training set consisting of users or queries, sets of
items and ground truth relevance judgments is often used. A loss function (or objective
function) is utilized to measure the accordance between the predicted and ground-truth
ranking. Logically, the choice of loss function plays a big role in the optimization pro-
cess, as it defines what is considered to be correct and what is not. While a wide variety
of loss functions exist, a straightforward choice of loss would be one that closely resem-
bles the measure used to evaluate the ranking function. We will call this sub-category
of LTR techniques the direct optimization method and will mainly focus on this sub-
category throughout the rest of this thesis. Information retrieval (IR) metrics such as
nDCG , nRBP and AP , which evaluate systems on a per-query basis, are often used to
evaluate the performance of ranking functions. Therefore, direct optimization methods
deploy loss functions which closely resemble these metrics.

During training, an optimization algorithm such as gradient descent or Adam is then
used to adjust the models parameters in order to minimize the loss on the training set.
The optimization is an iterative process which utilizes the loss function and its deriva-
tives with respect to the models parameters to determine how to update the model. To
increase the computational efficiency of the training process, models are often trained
on batches of data and the optimization process thus aims at minimizing the average

1

1

2 1. INTRODUCTION

Table 1.1: nDCG scores for two instances I A and IB . Green cells indicate relevant items, while red cells indicate
non-relevant items. Items are ranked from left to right.

Instance Ranked Items nDCG Score
I A 0.63
IB 0.78

loss on a set of instances. As a result, each instance is assumed to be equally informative,
while in reality, this might not be the case.

As will become apparent in chapter 2, the bounds of the aforementioned metrics
and their listwise losses are either not upper- or lower-bounded. Instead, their bounds
heavily depend on 1. the number of relevant and non-relevant items in a given instance
and 2. the ratio of relevant to non-relevant items. This means that the worst possible
ordering of items yields a score greater than zero.

Figure 1.1 visualizes the lower bound of nDCG and AP as a function of the frac-
tion of relevant items in an instance with instance size N ∈ {25,50,100,200}. While the
lower bound of nDCG is more dependent on the instance size, the fraction of relevant
items has a big impact on the lower bound of both metrics. In a typical training dataset,
the number of (relevant and non-relevant) items is not constant and as a consequence,
the bounds of the listwise losses are not constant across users or queries. In addition,
instances with a high relevant-to-non-relevant item ratio have a greater lower bound
than instances with a lower relevant-to-non-relevant item ratio. One could therefore
argue that it is easier to produce high scores for instances with a higher relevant-to-non-
relevant item ratio and that the metric score does not solely reflect the performance of
the model, but also depends on the instance properties. To illustrate this, Table 1.1 lists
two ranked instances I A and IB . Instance I A ranks its only relevant item at the second
rank and achieves an nDCG score of 0.63. But while instance IB ranks all its relevant
items at the bottom, its nDCG score is still higher than that of instance I A . As the opti-
mization process aims at minimizing the average loss on the training set, the lack of and
inconsistency in upper- and lower-bounds might pose a problem.

Figure 1.1: Lower bounds of nDCG and AP as a function of the fraction of relevant items in an instance of size
N ∈ {25,50,100,200}.

1.1. RESEARCH GOALS

1

3

Considering the above, we argue that different instances have different ranking dif-
ficulty. We call this ranking difficulty ’instance-difficulty’ and note that popular listwise
loss functions do not account for this difficulty, which might negatively impact the per-
formance of ranking functions.

1.1. RESEARCH GOALS
This thesis sets out to define bounding methods to create difficulty-aware losses. In ad-
dition, we analyze the impact of user/query wise metric bounding on the average perfor-
mance of learning to rank models. Finally, we investigate the effect of user/query-wise
metric bounding on individual user/query performance. To summarize, this thesis aims
to answer the following questions:

• How can instance-difficulty be quantified and incorporated in listwise loss func-
tions?

• Does user/query-wise metric bounding affect the average performance of learning
to rank models?

• What effect does user/query-wise metric bounding have on individual user/query
performance?

1.2. MAIN FINDINGS
In this thesis, we define multiple notions of instance-difficulty and utilize these notions
to define four bounding methods. The proposed bounding methods are applied to three
popular listwise losses and empirical results on two real-world datasets are obtained.
Experimental results indicate that optimizing bounded variants of popular listwise loss
functions may increase the average performance of the ranking models, albeit often
marginally. In addition, we find that user/query-wise metric bounding offers benefits
when considering nDCG@k for evaluation, further increasing the recommendation util-
ity and making metric bounding interesting for applications where users are presented
with a small selection of recommended items. To further analyze the impact of the pro-
posed bounding methods, we analyzed the change in performance on instance level.
We found that in addition to increasing the overall performance, optimizing a bounded
variant of nRBP may increase the recommendation performance for instances with a
higher number of relevant items.

Overall, our results show promising results for user/query-wise metric bounding in
LTR, especially when applied to nRBP .

1.3. THESIS OUTLINE
The remainder of this thesis is organized as follows. In chapter 2, we describe a general
framework for LTR, give a brief overview of popular models and loss functions, and de-
scribe popular evaluation metrics. In chapter 3, this work is further motivated and four
bounding methods are introduced. chapter 4 describes the experimental setup of our
experiment, the results of which are presented in chapter 5. Finally, in chapter 6 this
thesis is concluded.

2
BACKGROUND

In this chapter, the required knowledge to understand the problem and its proposed
solution is described. First, we describe a general framework for LTR and continue by
introducing IR- and Recommendation-specific models within this framework. Second,
the evaluation methodology often used to evaluate ranking models is introduced. Next,
three widely used IR metrics are described. We conclude this chapter by introducing
three listwise loss functions used throughout the rest of this thesis.

2.1. LEARNING TO RANK FRAMEWORK
Learning to Rank is the application of supervised machine learning techniques for train-
ing models which aim to solve the ranking problem introduced in chapter 1. In super-
vised machine learning, models are fit on training data comprised of example inputs
and target vectors, also called instances. While LTR represents a family of models, we
can distinguish between three main types, namely pointwise, pairwise and listwise ap-
proaches [1].

The pointwise approach aims to predict the relevance of a single item and meth-
ods for classification and regression can be applied. Instances are defined as a single
Query-Item pair and hence these approaches also define loss functions based on indi-
vidual items. Popular examples of pointwise approaches include Subset Ranking [2],
McRank [3] and Prank [4].

In pairwise approaches, instances are defined as a pair of items and the problem is
formalized as that of pairwise classification or regression. More specifically, pairwise
models take two items as input and aim to predict which one should be ranked higher
than the other in the final order. By making a prediction for all item pairs, a total order
can be created. In contrast to the pointwise approach, pairwise approaches define loss
functions as a function of two items. Examples of this approach include RankBoost [5],
RankNet [6], LambdaRank [7] and LambdaMART [8].

Finally, listwise approaches take item lists as instances and are capable of utilizing
listwise loss functions [9]. A great advantage of this approach is that the group struc-
ture of ranking is maintained and can be incorporated into the loss function. Instances

4

2.2. MODELS

2

5

Table 2.1: Notation Rules

Meaning Notation
Number of Queries or Users (Topics) T
Query or User (Topic) ti or t
Number of items in an instance t N or Nt

Number of relevant items in an instance t P or Pt

A ranked instance for topic t of size N of which P items are relevant X t
(N ,P) or X(N ,P)

Ground-truth relevance of the i th ranked item in instance x for topic t xi or x t
i

Ground-truth relevance of item i for Topic t yi or y t
i

Predicted relevance of item i for Topic t ŷi or ŷ t
i

Loss function L(·)
Metric function M(·)
Sigmoid function with gain a σa(·)
Ranking Position (See Equation 2.1) Rt i (·)
Smooth Ranking Position (See Equation 2.9) R̃t i (·)

are defined as list of items for a given topic v x = {v x
1 , . . . , v x

Nx
} and its corresponding rele-

vance y x = {y x
1 , . . . , y x

Nx
}. A ranking function f will output a score f (v x

j) for each item v x
j ,

resulting in a list with predicted relevance scores ŷ x = (f (v x
1), . . . , f (v x

Nx
). The training

objective then becomes minimizing

T∑
i=1

L
(

y i , ŷ i
)

,

where L is a listwise loss function.

2.2. MODELS
Using this framework, LTR can be introduced from two perspectives, namely Recom-
mendation and IR. The goal of a ranking function in a typical recommendation setting
is to provide relevant items for a given user. Users and items are often represented by
a non-informative identifier. For a system with T users and N items, interactions be-
tween users and items can be represented by a T ×N matrix Y , where each element yt i

describes an interaction between user t and item i . These interactions can represent,
among other things, clicks or ratings, but are assumed to be binary relevance through-
out the rest of this thesis.

Matrix factorization is one of the most effective methods for learning a ranking func-
tion from this data and can be combined with direct optimization of IR metrics [10, 11,
12]. In this approach, users and items are represented by latent features which aim to
capture the characteristics of users and items. For a given user t and item i and their
associated latent vectors pt and qi , the predicted relevance is given by the dot product
pu ·qi . Using the latent vectors of users and items, the recommendation model can pre-
dict a T ×N matrix F T×N with element ft i representing the relevance of item i to user
t . The ranking position Rt i follows from a pairwise comparison between the predicted

2

6 2. BACKGROUND

relevance score for item i and all other items, as can be seen in Equation 2.1.

Rt i = 1+
N∑

j=1\i
I(ft j > ft i), (2.1)

where I(·) denotes the indicator function.
More complex models which aim to capture nonlinear and more complicated repre-

sentations between users and items exist [13], but are outside of the scope of this thesis.
When considering IR, data is often represented in a different manner and hence

other machine learning methods can be applied [9]. Instead of having identifiers for
queries and documents, a feature vector is created from every query-document pair.
These features can be categorized into three main classes: features based on the query,
features based on the document and features based on both the query and document.
The predicted ranking position Rt i of item i for query t again follows from a pairwise
comparison between the predicted relevance score for item i and all other items using
Equation 2.1.

Cao et al. [9] propose ListNet, a listwise approach which employs a neural network as
model and gradient decent as algorithm. The method is heavily inspired by RankNet [6],
but while RankNet deploys a pairwise loss function, ListNet uses a listwise loss to opti-
mize the model parameters. Other well-known listwise LTR algorithms include AdaRank[14],
ListMLE [15], ListRank-MF [16] and SoftRank [17].

2.3. EVALUATION
The performance of ranking models is often evaluated on a query-bases, using the method
described below.

• Collect a (large) set of topics S = {t1, t2, . . . , tT }

• For every ti ∈ S:

– Collect a set of associated items for ti

– Collect the relevance of each item for ti by human assessment

– For each item, use the ranking model to predict the relevance for ti

– Use an evaluation measure to evaluate the performance of the ranking func-
tion for ti

• Report the average measure on all topics in S

A wide variety of evaluation measures have been proposed. We will consider three
widely-used measures and describe them below. Normalized discounted cumulative
gain (nDCG) [18] is a measure of ranking quality which discounts the gain of a docu-
ment based on its position in the ranked list. The idea is that documents with a lower
rank are less valuable for the user, and hence a smaller share of its gain is added to the
cumulated gain. For a topic t and a ranked set of items X , nDCG is calculated as follows.

2.3. EVALUATION

2

7

nDCG(t) = DCG(t)

I DCG(t)
, where

DCG(t) =
N∑

i=1

2x t
i −1

log2(i +1)

(2.2)

and I DCG represents the ideal DCG . Also, as often times only a small fraction of the
results are displayed to the user, nDCG may be cut off at a certain rank. nDCG@k, where
k is the cut-off position is calculated using Equation 2.3.

nDCG@k(t) = DCG@k(t)

I DCG@k(t)
, where

DCG@k(t) =
k∑

i=1

2x t
i −1

log2(i +1)

(2.3)

and I DCG@k represents the ideal DCG@k through position k.

Table 2.2: Computation of DCG

Rank (i) Item x t
i log2(i +1) Gain

1 A 1 1.00 1.00
2 B 1 1.58 0.63
3 C 1 2.00 0.50
4 D 0 2.32 0.00
5 E 0 2.58 0.00
6 F 0 2.81 0.00
7 G 0 3.00 0.00
8 H 0 3.17 0.00
9 I 0 3.32 0.00

Sum = 2.13

(a) Ideal DCG

Rank (i) Item x t
i log2(i +1) Gain

1 I 0 1.00 0.00
2 H 0 1.58 0.00
3 G 0 2.00 0.00
4 F 0 2.32 0.00
5 E 0 2.58 0.00
6 D 0 2.81 0.00
7 C 1 3.00 0.33
8 B 1 3.17 0.32
9 A 1 3.32 0.30

Sum = 0.95

(b) Worst DCG

Table 2.2 shows toy examples of the calculation of DCG for N = 9 documents of
which P = 3 are relevant. The order of the result list is given by the order in which the
documents are listed in the two tables.

Second, we consider Rank-Biased Precision (RBP) [19], a metric for scoring rankings
which includes a simple user model by utilizing a persistence parameter p ∈ [0,1). To
model user behavior, it is assumed that users traverse the ranked list from top to bottom.
In addition, it is assumed that users move on to the next document with probability p,
and stop with probability 1−p. A gain per document can then be calculated by multiply-
ing the probability a user will look at the document by the relevance of that document.
RBP is defined as follows.

RBP (t ; p) = (1−p) ·
N∑

i=1
x t

i ·p i−1, (2.4)

2

8 2. BACKGROUND

Table 2.3: Computation of RBP (t), p = 0.7

Doc Rt i y t
i pRt i−1 Gain

A 1 1 1.00 1.00
B 2 1 0.70 0.70
C 3 1 0.49 0.49
D 4 0 0.34 0.00
E 5 0 0.24 0.00
F 6 0 0.17 0.00
G 7 0 0.12 0.00
H 8 0 0.08 0.00
I 9 0 0.06 0.00

Sum 2.19
×(1−p) 0.66

(a) Ideal RBP

Doc Rt i y t
i pRt i−1 Gain

I 1 0 1.00 0.00
H 2 0 0.70 0.00
G 3 0 0.49 0.00
F 4 0 0.34 0.00
E 5 0 0.24 0.00
D 6 0 0.17 0.00
C 7 1 0.12 0.12
B 8 1 0.08 0.08
A 9 1 0.06 0.06

Sum 0.26
×(1−p) 0.08

(b) Worst RBP

where p is the persistence of the user. Table 2.3 shows examples of the computation of
RBP .

To align the bounds of RBP with the other metrics used in this theis, we consider
the normalized Rank-Biased Precision, or nRBP , which normalizes the bare RBP by the
maximum obtainable RBP [20]. Formally, nRBP is defined as follows:

nRBP (t ; p) = Z (t , p) ·RBP, (2.5)

where Z (t , p) = 1/(1−pP t
), the normalization factor. Note that p denotes the persistence

parameter and P t the number of relevant items for topic t .
Finally, Average Precision (AP) [21] is the average of the Pr eci si on@k values at each

relevant item in the ranking. Given a topic t and its ranking permutation x t , AP (t) is
given by Equation 2.6.

AP (t) =
∑Nt

i=1 Pr eci si on@i ×x t
i

Pt
, (2.6)

where Pr eci si on@k is the precision at cut-off k and x t
i is the relevance of the docu-

ment at rank i . Two toy examples of the calculation of AP are given in Table 2.4.

2.4. LISTWISE LOSS FUNCTIONS
Qin et al. [22] describe three properties a good listwise loss function should have. Loss
functions should be insensitive to the number of document pairs, to avoid a high incon-
sistency between document-level losses and query-level losses. In addition, a good loss
function should penalize ranking errors at the top more than ranking errors at the bot-
tom. And finally, query level losses should be upper bounded, to avoid queries with large
losses to dominate the training process. More general, there should exist a constant C
such that for any topic t

L(y t , ŷ t) ≤C

2.4. LISTWISE LOSS FUNCTIONS

2

9

Table 2.4: Computation of AP

Doc Rel Precision
A 1 1/1
B 1 2/2
C 1 3/3
D 0 -
E 0 -
F 0 -
G 0 -
H 0 -
I 0 -

Sum 3.00
/R 1.00

(a) Ideal AP

Doc Rel Precision
I 0 -
H 0 -
G 0 -
F 0 -
E 0 -
D 0 -
C 1 1/7
B 1 2/8
A 1 3/9

Sum 0.73
/R 0.24

(b) Worst AP

IR metrics such as nDCG and AP meet these requirements, but cannot be deployed
as loss due to the non-differentiable nature of the sorting operation which is used in
these metrics. Following Li et al. [20] and using the notation as given in Table 2.1, nDCG
and AP can be written as a function of the predicted relevance using Equation 2.7 and
Equation 2.8.

nDCG(t) =
∑Nt

i=1(2y t
i −1)/log2(Rt i +1)∑Pt

i=1 1/log2(i +1)
(2.7)

AP (t) = 1

Pt

Nt∑
i=1

y t
i

Rt i

Nt∑
i=1

y t
j I(Rt j ≤ Rt i) (2.8)

To address the problem of non-differentiability, a smooth function such as a sigmoid
or ReLU can be used to approximate the indicator function [20, 11, 23]. Using a sigmoid
function, the approximated ranking position R̃t i can be calculated using Equation 2.9.

R̃t i = 1+
Nt∑

j=1\i
σ(ft j − ft i), (2.9)

where σ(x) = 1/(1+e−x).
Using R̃t i , the smooth variants of AP and nDCG for topic t can be formulated as

follows: ânDCG(t) =
∑Nt

i=1(2y t
i −1)/log2(R̃t i +1)∑Pt

i=1 1/log2(i +1)
(2.10)

ÃP (t) = 1

Pt

Nt∑
i=1

y t
i

R̃t i
(1+

Nu∑
j=1\i

y t
jσ(ft j − ft i)) (2.11)

As the target of the optimization process is to maximize nDCG and AP , we consider
the additive inverse of Equation 2.10 and Equation 2.11 as loss. In addition, we will con-
sider the RBP-based loss function proposed by Li et al. [20], which is given by

2

10 2. BACKGROUND

ânRBP (t) =
Nt∑

i=1
y t

i (R̃t i −1)−
Pt∑

j=1
(j −1) (2.12)

3
METRIC BOUNDING

During training, a loss function and its derivatives are utilized to adjust the model pa-
rameters. An iterative optimization algorithm such as Gradient Descent or Adam uti-
lizes a loss function and batches of instances to update the model in order to decrease
the average loss on a given batch. The direction and size of change are determined by
the loss function and its derivatives with respect to the model parameters. Losses such
as nDCG , AP and nRBP do not account for instance-difficulty. Instead, each instance is
assumed to be equally informative, while in reality, this might not be the case. This could
negatively impact the performance of the model. It might therefore be beneficial to take
this instance-difficulty into consideration during training, by incorporating it in the loss
function. In this chapter, we describe three notions of instance-difficulty and provide
four bounding methods to create difficulty-aware losses. In addition, the required up-
per bounds, lower bounds and expectations of instances for the losses introduced in the
previous chapter are given. Bounds, expectations, loss scores and metric scores are cal-
culated on instances. For simplicity, and following the notation rules as introduced in
Table 2.1, we let X(N ,P) denote an instance with N documents, of which P are relevant
and xi denote the relevance of the i th ranked item in an instance. In addition, we let
M(·) be a metric and M̃(·) be its smooth approximate. Finally, we note that in case of
nDCG and AP , we need to use their additive inverse as loss function, but ignore that in
this chapter for simplicity.

3.1. MIN-MAX NORMALIZATION
The first aspect which motivates the use of user/query-wise metrics bounding, is the in-
consistency of bounds of the listwise loss functions introduced the previous section. As
previously shown, nDCG and AP and their listwise losses do not have a constant lower
bound of zero across instances. Instead, their lower bounds depend on the number of
relevant and non-relevant items in a given instance.

In a typical IR and RecSys setting, it is safe to assume the number of relevant items is
dwarfed by the number of non-relevant items. In addition, the number of rated (and thus

11

3

12 3. METRIC BOUNDING

relevant) items is often not constant across topics. To address this issue of unbalanced
data, the majority class is often under-sampled in the training (and testing) data. This
results in instances to have a fixed ratio of relevant to non-relevant items but does not
address the inconsistency in the number of relevant items across topics. Due to this
inconsistency in the number of relevant items, the lower bounds are not constant across
instances. As a consequence, it is easier to produce high scores for instances with a high
number of relevant items. We can therefore say that the metric/loss score does not solely
reflect the performance of the model, but also depends on the number of relevant items
in an instance.

A simple, yet effective method to create constant upper and lower bounds across top-
ics is to apply Min-Max Normalization. Min-Max Normalization addresses the issue of
inconsistent bounds by bringing all values into the range [0,1]. Given an instance x and a
metric function M(·), the bounded and smooth metric M̃M M (·) is given by Equation 3.1.

M̃M M (x) = M̃(x)−Mmi n(x)

Mmax (x)−Mmi n(x)
, (3.1)

where Mmi n(x) and Mmax (x) denote the minimal and maximal loss achievable on in-
stance x, respectively. We continue by providing formulas for the upper and lower bounds
of nDCG , nRBP and AP and show their dependence on the number of relevant and non
relevant items in an instance.

3.1.1. BOUNDS OF nDCG
The largest obtainable nDCG score is obtained when ranking all relevant items at the
top, producing an nDCG of 1. In contrast, the smallest obtainable nDCG score is ob-
tained when ranking all relevant items at the bottom. For an instance with N items of
which P are relevant, this means ranking the relevant items at ranks N −P +1, N −P +
2, . . . , N −P +P , producing discounted gains of 1

log2(N−P+2) , 1
log2(N−P+3) , . . . , 1

log2(N−P+P+1) .

It follows that the minimal obtainable nDCG is given by Equation 3.2.

nDCGmi n(X(N ,P)) =
N∑

i=N−P+1

1

log2(i +1)
(3.2)

3.1.2. BOUNDS OF nRBP
While nRBP has a lower bound of 0, its upper bound is not constant across topics [20].
The largest nRBP loss is obtained when ranking all relevant items at the bottom. For an
instance X(N ,P), this means ranking the relevant items at ranks N−P+1, N−P+2, . . . , N−
P +P . This results in the following nRBP loss.

nRBPmax (X(N ,P)) =
N∑

i=N−P+1
(i −1)−

P∑
j=1

(j −1)

We can rewrite the summations to obtain Equation 3.3.

nRBPmax (X(N ,P)) = 1

2
P (2N −P −1)− 1

2
P (P −1) (3.3)

3.1. MIN-MAX NORMALIZATION

3

13

3.1.3. BOUNDS OF AP
Recall that AP is the average of the Pr eci si on@k values at each relevant document in
the ranking. The optimal AP is obtained when ranking all P relevant documents at the
top, producing an AP score of 1. To obtain the smallest AP score, relevant documents
are ranked at ranks N −P +1, N −P +2, . . . , N −P +P , producing Pr eci si on@k values of

1
N−P+1 , 2

N−P+2 , . . . , P
N−P+P . The AP score is then obtained by summing these values and

dividing by P . It naturally follows that the smallest obtainable AP score for an instance
X(N ,P) is given by Equation 3.4.

APmi n(X(N ,P)) = 1

P

P∑
i=1

i

N −P + i
(3.4)

3.1.4. IMPACT OF BOUNDING ON LOSS SCORES
Recall that, as mentioned in chapter 2, the goal of optimization is to maximize nDCG
and AP . To align the analysis of the impact of metric bounding on nDCG and AP with
that of nRBP , we consider their additive inverse as loss. Figure 3.1 shows the bounded
loss scores as a function of the unbounded loss scores for three instances with N SR = 2
(top) and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

As expected, min-max bounding guarantees consistent bounds across instances.
The resulting loss function is thus insensitive to the number of (relevant) items in an
instance. We analyze the consequences of this in chapter 5.

We further observe minimal changes for the bounded AP loss, hence we expect min-max
bounding to result in minimal changes in datasets with a constant N SR.

Figure 3.1: Analyzing the impact of min-max bounding on the loss score for three instances with N SR = 2
(top) and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

3

14 3. METRIC BOUNDING

3.2. EXPECTATION-BASED METRIC BOUNDING
A second method to create difficulty-aware losses, is to consider the expected score of a
random guess. This method is heavily inspired by Gienapp et al. [24], who propose the
expected nDCG score of a hypothetical random ranker as a method to identify difficult
and non-difficult instances. The expected nDCG score of a random ranker or RnDCG is
calculated as follows:

RnDCG(t) =
∑Nt

r=1
µ

log2(r+1)

I DCG(t)
, (3.5)

where µ denotes the average gain over the set of documents.
We adopt this method and use the expectation of a metric as a method to quantify

instance-difficulty. Take as example two instances A and B , A then has a higher instance-
difficulty if

E[M(A))] < E[M(B))],

where E[M(I)] denotes the expectation of metric M given instance I .
The expectation of a metric for an instance is given by the average of the scores

produced by all possible permutations of that instance and can be utilized to quantify
instance-difficulty [24]. We propose expectation based bounding (EB), which aims
at utilizing this expectation in order to account for instance-difficulty. For a metric M(·),
the bounded metric M̃EB (·) is given by Equation 3.6.

M̃EB (x) = M̃(x)

E[M(x)]
(3.6)

We continue by providing formulas for E[nDCG], E[nRBP] and E[AP] and again
show its dependence on the number of relevant and non relevant items in an instance.

3.2.1. EXPECTATION OF nDCG
The expectation of nDCG for an instance X(N ,P), or E[nDCG(X(N ,P))], is given by the av-
erage of the nDCG scores produced by all possible orderings of that instance. As the
ideal DCG (I DCG) score is independent of the ranking, we can write the expectation as
follows:

E[nDCG(X(N ,P))] = E[DCG(X(N ,P))]

I DCG(X(N ,P))
(3.7)

We further note that DCG is the sum of multiple terms gi and that the value of term
gi depends on the relevance of the item at rank i . Given the relevance xi of the item at
rank i , the value of gi is given by Equation 3.2.1.

gi = 2xi −1

log2(i +1)

Table 3.1 shows examples of the computation of the expectation of two instances
X(2,1) and X(3,1). Note that in an instance with N items of which P are relevant, we have
N ! permutations of which N !

P !∗(N−P)! are distinct. To ease calculations, we consider all N !

3.2. EXPECTATION-BASED METRIC BOUNDING

3

15

permutations and thus include duplicates. Below, we describe these examples in more
detail and finally provide a general function for computing E[nDCG(X(N ,P))].

Table 3.1: Calculation of E[DCG(X(N ,P))]

x1 x2 DCG
g1 + g2

1 0 21−1
log2(2) + 20−1

log2(3)

0 1 20−1
log2(2) + 21−1

log2(3)

(a) E[DCG(X(2,1))]

x1 x2 x3 DCG
g1 + g2 + g3

1 1 0 21−1
log2(2) + 21−1

log2(3) + 20−1
log2(4)

1 0 1 21−1
log2(2) + 20−1

log2(3) + 21−1
log2(4)

1 1 0 21−1
log2(2) + 21−1

log2(3) + 20−1
log2(4)

1 0 1 21−1
log2(2) + 20−1

log2(3) + 21−1
log2(4)

0 1 1 20−1
log2(2) + 21−1

log2(3) + 21−1
log2(4)

0 1 1 20−1
log2(2) + 21−1

log2(3) + 21−1
log2(4)

(b) E[DCG(X(3,2))]

To calculate E[DCG(X(2,1))], we need to sum all DCG scores and divide by the num-
ber of possible orderings, which equals N !, 2 in this case.

E[DCG(X(2,1))] =
21−1

log2(2) + 20−1
log2(3) + 20−1

log2(2) + 21−1
log2(3)

2
=

21−1
log2(2) + 21−1

log2(3)

2

For E[DCG(X(3,1))], we again need to sum all DCG scores and divide by the number of
possible orderings. Note that the DCG score is always the sum of multiple terms gi , di-
vided by the log2(·). We can thus first add up all terms which are divided by the same
log2(·), and finally divide by that log.

E(DCG(X(3,1))) =
4·(21−1)
log2(2) + 4·(21−1)

log2(3) + 4·(21−1)
log2(4)

(3)!

= 4/6 · (21 −1)

log2(2)
+ 4/6 · (21 −1)

log2(3)
+ 4/6 · (21 −1)

log2(4)

Note that each term gi is non-zero exactly P
N ·N ! times. More general, we can write the

expectation of DCG for a instance X(N ,P) as follows:

E[DCG(X(N ,P))] =
P
N ·N !·(21−1)

log2(2) +
P
N ·N !·(21−1)

log2(3) +·· ·+
P
N ·N !·(21−1)
log2(N+1)

N !

=
P
N · (21 −1)

log2(2)
+

P
N · (21 −1)

log2(3)
+·· ·+

P
N · (21 −1)

log2(N +1)
=

N∑
r=1

P
N · (21 −1)

log2(r +1)

3

16 3. METRIC BOUNDING

It follows that the expectation of nDCG(·) is given by:

E[nDCG(X(N ,P))] =
∑N

r=1

P
N

log2(r+1)

I DCG(X(N ,P))
(3.8)

3.2.2. EXPECTATION OF nRBP
To compute E[nRBP (X(N ,P))], we take a similar approach and ignore the second term of
nRBP (Equation 2.12), which ensures a lower bound of 0 for all instances and is inde-
pendent of the ranking.

E[nRBP (X(N ,P))] = E[L1
nRBP (X(N ,P))]−

M∑
j=1

(j −1), where

L1
nRBP (X(N ,P)) =

N∑
i=1

y t
i (R̃t i −1) =

N∑
i=1

xi · (i −1)

We continue to compute the expectation of L1
nRPB (·) and note that it is equal to the

sum of multiple terms gi = xi · (i − 1). Table 3.2 shows examples of the computation
of L1

nRPB (·).

Table 3.2: Calculation of E[L1
nRBP (X(N ,P))]

L1
nRBP

x1 x2 g1 + g2

1 0 1 · (1−1)+0 · (2−1) = 0
0 1 0 · (1−1)+1 · (2−1) = 1

(a) E[nRBP (X(2,1))]

L1
nRBP

x1 x2 x3 g1 + g2 + g3

1 1 0 1 · (1−1)+1 · (2−1)+0 · (3−1) = 1
1 0 1 1 · (1−1)+0 · (2−1)+1 · (3−1) = 2
1 1 0 1 · (1−1)+1 · (2−1)+0 · (3−1) = 1
1 0 1 1 · (1−1)+0 · (2−1)+1 · (3−1) = 2
0 1 1 0 · (1−1)+1 · (2−1)+1 · (3−1) = 3
0 1 1 0 · (1−1)+1 · (2−1)+1 · (3−1) = 3

(b) E(L1
nRBP (X(3,2))

Each term gi is non-zero exactly P
N ·N ! times, producing a score of (i−1). To compute

the expectation of gi , we sum these values and divide by the total number of permuta-
tions to obtain

E[gi] =
P
N ·N !

N !
· (i −1) = P

N
· (i −1).

It follows that the expectation of L1
nRBP can be computed as follows.

E[L1
nRBP (X(N ,P))] =

N∑
i=1

E[gi] = P

N
·

N∑
i=1

(i −1).

Now, when again introducing the normalizing term of Equation 2.12, the expectation

3.2. EXPECTATION-BASED METRIC BOUNDING

3

17

becomes:

E[nRBP (X(N ,P))] = P

N
·

N∑
i=1

(i −1)−
P∑

j=1
(j −1)

= P

N
· 1

2
(N −1)N − 1

2
(P −1)P = 1

2
·P · (N −P)

(3.9)

3.2.3. EXPECTATION OF AP
The expectation of Average Precision for an instance X(N ,P) is equal to the average of
the AP scores produced by all possible orderings of that instance. Table 3.3 shows two
examples.

Table 3.3: Calculation of E[AP (X(N ,P))]

x1 x2 AP
1 0 1/1
0 1 1/2

sum: 3/2
E: 3/4

(a) E[AP (X(2,1))]

x1 x2 x2 AP
1 1 0 (1/1 + 2/2)/2
1 1 0 (1/1 + 2/2)/2
1 0 1 (1/1 + 2/3)/2
1 0 1 (1/1 + 2/3)/2
0 1 1 (1/2 + 2/3)/2
0 1 1 (1/2 + 2/3)/2

sum 29/6
E 29/36

(b) E[AP (X(3,2))]

Following Y. Bestgen [25], ignoring the two divisors P and the total number of (dif-
ferent) permutations, E[AP (·)] is the sum of precision scores at each rank. The idea is to
calculate, for each rank n, the probability of having the i th relevant document at rank n.
This would produce a score of i /n. This probability is equal to the probability of having
i successes in n draws from a population of size N with P successes. In addition, we
require the last draw to be a success. The probability of having i successes in n draws
from a population of size N with P successes is given by the following formula.

Pr (X = i) =

(
P
i

)(
N −P
n − i

)
(

N
n

)

The probability of the last draw to be a success when having n draws and i successes
is i

n . Combining this probability with Pr (X = i) and the produced scores, results in the
following expectation for AP.

E[AP (XN ,P)] =
∑P

i=1

∑N−P+i
n=i

i
n · i

n ·Pr (X = i)

P
(3.10)

3

18 3. METRIC BOUNDING

3.2.4. IMPACT OF BOUNDING ON LOSS SCORES

To align the analysis of the impact of metric bounding on nDCG and AP with that of
nRBP , we consider their additive inverse as loss. Figure 3.2 visualizes the expectation of
the loss scores of nDCG , AP and nRBP as a function of the number of relevant items
in an instance for instances with a constant ratio of non-relevant to relevant items (neg-
ative sampling ratio). We can make several interesting observations. First, for all losses
we observe a positive correlation between the N SR and the expected loss score. This
observation indicates that having a higher fraction of non-relevant items in an instance
makes the ranking task harder.

Second, the expectation of nDCG loss is a decreasing function from P ≥ 5 relevant
items. This means that for a constant N SR, instances with a higher number of relevant
items are expected to perform better. In contrast, the expectation of AP and nRBP is,
for a constant N SR, a increasing function with respect to the number of relevant items
in an instance. This means that for a given N SR, larger instances are more difficult.

To analyze the effect of the bounding methods on the produced loss scores, Figure 3.3
shows the bounded loss value, as a function of the unbounded loss value for three in-
stances with N SR = 2 (top) and three instances with N SR ∈ {1,2,3} (bottom), by loss
function (columns). We can make the following observations. First, while bare nDCG
and AP have consistent upper bounds across topics, the bounds of the bounded losses
are depended on the instance properties. In contrast, we observe that the bounded
nRBP losses have consistent upper and lower bounds across instances. As a result,
we expect that that expectation based bounding and expectation-max bounding
will achieve similar performance as
min-max bounding . We investigate whether this is indeed the case in chapter 5.

When considering instances with different N SR, we observe that instances with a
higher N SR are able to achieve higher losses, making the training process more sensitive
to these difficult instances.

Figure 3.2: Expectation of nDCG , AP and nRBP for different negative sampling ratios, as function of the
number of relevant items in an instance.

3.3. EXPECTATION-MAX BOUNDING

3

19

Figure 3.3: Analyzing the impact of expectation based bounding on the loss score for three instances with
N SR = 2 (top) and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

3.3. EXPECTATION-MAX BOUNDING
We propose a third method bounding method which combines Min-Max Normalization
with the expectation of a metric. Expectation-max bounding applies Min-Max nor-
malization, but takes the expectation as the minimal value. More formally, expectation-max
bounding is given by Equation 3.11.

M̃E M (x) = M̃(x)−E[M(x)]

Mmax (x)−E[M(x)]
(3.11)

We use the formulas for the expectation of nDCG , AP and nRBP as given in the pre-
vious section and continue with an analysis on the impact on the produced loss scores.

3.3.1. IMPACT OF BOUNDING ON LOSS SCORES
To align the analysis of the impact of metric bounding on nDCG and AP with that of
nRBP , we consider their additive inverse as loss. Figure 3.4 shows the bounded loss
value, as a function of the unbounded loss value for three instances with N SR = 2 (top)
and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

First, for instances with a constant N SR, we observe that expectation-max bounding
has a similar impact as expectation based bounding on the produced loss scores
and thus expect to achieve similar performance.

Second, when considering instances with different N SR, we observe that instances
have a consistent lower bound of -1. However, when considering nDCG and AP we
observe the upper bound depends on the instance properties. We analyze the impact of
this observation in chapter 5.

3

20 3. METRIC BOUNDING

Figure 3.4: Analyzing the impact of expectation-max bounding on the loss score for three instances with
N SR = 2 (top) and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

3.4. DISTRIBUTION-BASED METRIC BOUNDING
While expectation based bounding and expectation-max bounding aim to cre-
ate difficulty-aware losses by utilizing the performance of a random ranker, the resulting
loss function is not guaranteed to have a constant lower and upper bound across in-
stances. A second method of utilizing the performance of a random ranker is to use the
distribution of scores produced by this random ranker. For a given instance and metric,
a distribution of scores can be calculated: each of the possible orderings of the instance
results in a particular value. The distribution is then defined by the probability of those
orderings. A discrete cumulative distribution naturally follows. distribution based
bounding aims at incorporating the instance difficulty by utilizing this distribution and
simultaneously ensures a constant lower and upper bound of zero and one, respectively.

For a metric M(·) and instance x, the bounded metric MDB (x) is given by Equa-
tion 3.12.

M̃DB (x) = F(x;M)(M̃(x)), (3.12)

where F(x;M)(·) denotes the cumulative distribution for the given metric and instance,
which maps a metric score to the fraction of instances which produce the same score or
lower. This fraction is equivalent to the probability we outperform a random system.

While the distribution of measures like recall and Pr eci si on@k have nice closed
forms, for more complex measures like nDCG and nRBP the only resource is simula-
tion [26]. We therefore propose a method to calculate F(x;M)(·) for any metric, which
makes no assumptions about the underlying distribution of the metric, but relies on

3.4. DISTRIBUTION-BASED METRIC BOUNDING

3

21

precalculated probability density functions.
Given the discrete probability density function for a given metric M and instance X ,

which is given by the metric scores Dx and the probability of those scores D y , F(X ;M)(·)
can be calculated as shown in algorithm 1. The Heaviside function H(·) is defined as
follows.

H(x) =
{

0 if x < 0
1 if x ≥ 0

As a result of using the Heavyside function H in algorithm 1, the resulting CDF is
not smooth. However, to allow MDB (x) to be used as loss, the function should be dif-
ferentiable and thus smooth. Hence, F (·) should be a smooth function. To smoothen
F(x;M)(S), we approximate the Heaviside function and deploy a sigmoid functionσa with
gain a. The resulting function F̃(x;M ;a)(S) is given by algorithm 2. Figure 3.5 shows the
approximated distributions for nDCG , AP and nRBP for two example instances using
different gains. When using the sigmoid function σa with default gain a = 1, the result-
ing function is smooth, but does not approximate the distribution well. In addition, the
gain which results in a smooth distribution which closely resembles the underlying dis-
tribution, is not constant. We therefore propose a value for the gain which depends on
both the metric and distribution size. The gain a is calculated using Equation 3.13.

a(D) = 1
max(Dx)−mi n(Dx)

len(Dx)

, (3.13)

where max(Dx) and mi n(Dx) denote the maximal and minimal metric score in the dis-
tribution and len(Dx) denote the number of scores in the distribution. Figure 3.6 shows
the approximated distributions for nDCG , AP and nRBP for two example instances.

Algorithm 1: Discrete F(X ;M)(S)

Input score S
Initialize distribution:
D = (Dx , D y)

diff = S - Dx

ans = H(diff) ·D y

return sum(ans)

Algorithm 2: Smooth F̃(X ;M ;a)(S)

Input score S
Initialize distribution:
D = (Dx , D y)

diff = S - Dx

ans = σa(diff) ·D y

return sum(ans)

3

22 3. METRIC BOUNDING

(a) nDCG (b) AP (c) nRBP

(d) nDCG (e) AP (f) nRBP

Figure 3.5: Cumulative distribution and approximated distributions (See algorithm 2) of nDCG , AP , and nRBP
for two instances X(8,4) (top) and X(15,5) (bottom) for gain a ∈ {1,4,16,64}.

(a) nDCG (b) AP (c) nRBP

(d) nDCG (e) AP (f) nRBP

Figure 3.6: Approximated distributions of nDCG , AP , and nRBP for three instances with N SR = 2 (top) and
three instances with different N SR ∈ {1,2,3} (bottom). Using algorithm 2 and Equation 3.13.

3.4. DISTRIBUTION-BASED METRIC BOUNDING

3

23

Figure 3.7: Analyzing the impact of distribution based bounding on the loss score for three instances
with N SR = 2 (top) and three instances with N SR ∈ {1,2,3} (bottom), by loss function (columns).

3.4.1. IMPACT OF BOUNDING ON LOSS VALUES
To analyze the effect of the bounding methods on the produced loss scores, Figure 3.7
shows the bounded loss value, as a function of the unbounded loss values for three in-
stances with N SR = 2 (top) and three instances with N SR ∈ {1,2,3} (bottom), by loss
function (columns). To align the analysis of the impact of metric bounding on nDCG
and AP with that of nRBP , in this subsection we consider the additive inverse of nDCG
and AP as loss function. As a result, the goal of optimization is to minimize the nDCG
loss, AP loss and nRBP loss.

Similar to min-max bounding , distribution based bounding ensures constant
upper and lower bounds across instances, but is in contrast to the previous bounding
methods not a linear mapping. As a result of the consistent bounds across topics, the
resulting loss should be insensitive to the number of (relevant) items in an instance. We
analyze the impact of distribution based bounding in chapter 5.

4
EXPERIMENTAL SETUP

The goal of this thesis is to assess the impact of query/user-wise metric bounding on
the relative performance of learning to rank models. First, we explain the selection of
models and datasets. Then, we describe the experimental protocol for our experiment.

4.1. MODELS
As mentioned in chapter 1, LTR can be introduced from two perspectives, namely Rec-
ommendation and IR. We therefore choose to analyze the relative performance of rank-
ing models in both a recommendation and IR setting. Considering recommendation, we
follow the practice from other ranking-based recommendation that target direct metric
optimization and choose Matrix Factorization as the model [20, 10]. For IR, we follow
the approach of Liu et al. [15] and deploy a Neural Network as recommendation model.
While more advanced methods for LTR exits, our goal is to assess the relative perfor-
mance of the models when trained using the bounding methods introduced in chap-
ter 3. A more comprehensive study on the performance of more advanced models is left
for future work.

4.1.1. HYPERPARAMETERS
We explored the impact of the dimensionality of the latent vectors of Matrix Factoriza-
tion within the range {16, 32, 64}. In accordance with [20], we found that while a higher
dimensionality often results in better ranking accuracy, the embedding size has no im-
pact on the relative performance of the models. We therefore select 32 as the number of
latent factors and initialize them randomly in the range [−0.01,0.01]. Finally, the batch
size, which defines the number of instances that will be propagated through the network
before updating it, is set to 32.

While complex Neural Networks with a high number of hidden layers are capable of
achieving high metric scores, the goal of this experiment is to analyze the impact of using
different bounding methods and realizing the optimal performance is outside the scope
of this thesis. We therefore simply initialize a Neural Network with one fully connected

24

4.2. DATASETS

4

25

hidden layer. For selecting the number of neurons in the hidden layer, we performed a
search in the range {6, 12, 23, 46, 69, 92}. The results showed minimal change in overall
performance, we therefore simply selected 46 as the number of neurons in the hidden
layer. PyTorch [27] will be used to implement and train the models.

4.2. DATASETS
To assess the performance of the proposed bounding methods, two widely-used datasets
are selected. For training the Neural Network, we will use the LETOR 4.0 [28] package.
LETOR 4.0 is a package of benchmark datasets for research in learning to rank and in-
cludes the MQ2008 dataset. The dataset contains about 800 queries with labeled doc-
uments. Each data point represents a query-document pair and consists of a 3-level
relevance judgment and a 46-dimensional feature vector.

The MovieLens [29] dataset includes 100,000 5-star ratings to 9,000 movies by 600
users and will be used to train the Matrix Factorization model.

Both datasets contain multi-level ratings which need to be binarized before they can
be used as training and testing data. In the MQ2008 dataset, items with the highest rele-
vance rating are considered as relevant. For the MovieLens dataset, we consider items
with ratings of 4 and higher as relevant. The remaining items, including non-rated items,
are taken as non relevant. In addition, we filter out users with less than 25 relevant items
in the MovieLens dataset, because the lack of data might lead to unreliable performance
measurements [20]. As using the same strategy on the MQ2008 dataset would requires us
to remove over half the data, we do not filter out any queries.

4.3. PROTOCOL
To avoid problems like over-fitting and selection bias, cross validation is applied. The
5-fold partitions included in the MQ2008 dataset will be used for training and testing. For
the MovieLens dataset, we take a similar approach and randomly split the data in to 5
splits, stratified by user. As we have a minimum of 25 relevant items per user, each user
will have at least 5 relevant items in the test set, and 20 in the training set. To speed up the
training process, not all irrelevant items will be included in the training and testing set.
Instead, irrelevant items will be sampled with a fixed ratio with respect to the relevant
items for a user. We denote this ratio as the negative sample ratio (NSR) and create three
datasets with a NSR in the range {1, 2, 3}.

Preliminary research on the impact of the optimizer has been done and while Stochas-
tic Gradient Decent often results in better performance, Adam [30] will be used to opti-
mize the models, as it is computationally efficient, has no impact on the relative perfor-
mance and requires little tuning for the learning rate [31].

As mentioned in section 3.4, the distribution based bounding method relies on pre-
calculated distributions. Both the MQ2008 and MovieLens dataset contain instances
with more than 100 items. As a result, computing the metric score for each of the 100!
possible orderings becomes infeasible. Therefore, the distributions will be approximated
by means of sampling. For each instance, an approximated distribution is created by
calculating the metric score for 300.000 random permutations. For the Expectation-
Based bounding method, which relies on the expectation of metrics, we take a similar

4

26 4. EXPERIMENTAL SETUP

approach. To increase efficiency, we avoid computing the expectation during training
and calculate the expectation during preprocessing.

5
RESULTS

In this chapter, we compare the effectiveness of the four bounding methods introduced
in chapter 3 when applied to three widely-used listwise loss functions. More specifically,
we use the performance of the models trained using the unbounded nDCG , AP and
nRBP as a baseline and analyze the difference in performance when using one of the
proposed bounding methods.

In section 5.1, we analyze the difference in overall performance between models
trained with bounded and unbounded losses. Then, the impact of the proposed bound-
ing methods on the nDCG@k score for different values of k is investigated. In section 5.2,
we analyze and compare the distributions of scores produced by models optimized for
bounded and unbounded losses. Finally, in section 5.3 and section 5.4 we investigate the
effect of metric bounding on the recommendation performance on instance level.

5.1. EFFECT OF METRIC BOUNDING ON OVERALL PERFORMANCE
Table 5.1 shows the performance of the proposed bounding methods for each loss and
dataset. We evaluated the models by using the same metric as used for optimization.
For models optimized for nRBP , we choose to report the nRBP .95 score, as it is best
correlated with other metrics [20, 32, 33]. We also note that the reported relative results
are representative for both nRBP 0.8 and nRBP .9.

While optimizing the bounded losses often results in similar performance across all
losses on all datasets, several observations can be made. First, in the MovieLens dataset,
a clear negative correlation exists between the negative sampling ratio and the perfor-
mance of the models. This does not necessarily mean the models trained with a higher
N SR are worse [20]. As the test and training sets follow the same distribution, models
trained with a higher N SR are evaluated with test sets containing more non-relevant
items, which makes the ranking task harder.

Second, the performance on the MQ2008 dataset is significantly lower when com-
pared to the MovieLens dataset. This indicates a difference in ranking difficulty between
the two datasets, which might be a direct consequence of the difference in average ratio
of relevant to non relevant items between the two datasets.

27

5

28 5. RESULTS

Finally, we note that applying Distribution Based Bounding to nDCG leads to a
significant decrease in performance in the MovieLens dataset. We discuss this in more
detail in section 5.5.

Table 5.1: Average performance for each loss and bounding method . Final row denotes the evaluation met-
ric. Italic scores indicate an increase in performance with respect to no bounding while the best score per loss
is highlighted in bold.

MovieLens Score
NSR

loss bounding method 1 2 3
nDCG No 0.9659 0.9466 0.9294
nDCG Min-Max 0.9657 0.9465 0.9293
nDCG Expectation Based 0.9654 0.9463 0.9289
nDCG Distribution Based 0.8791 0.8534 0.8346
nDCG Expectation-Max 0.9662 0.9475 0.9309

n
D

C
G

AP No 0.8960 0.8448 0.8051
AP Min-Max 0.8958 0.8448 0.8050
AP Expectation Based 0.8960 0.8450 0.8044
AP Distribution Based 0.9010 0.8438 0.7965
AP Expectation-Max 0.8958 0.8453 0.8046

A
P

nRBP No 0.9349 0.9046 0.8749
nRBP Min-Max 0.9473 0.9158 0.8848
nRBP Expectation Based 0.9471 0.9154 0.8854
nRBP Distribution Based 0.9424 0.9104 0.8777
nRBP Expectation-Max 0.9471 0.9157 0.8846

R
B

P
.95

(a) MovieLens datasets with N SR ∈ {1,2,3}.

MQ2008

loss bounding method Score
nDCG No 0.7940
nDCG Min-Max 0.7932
nDCG Expectation Based 0.7940
nDCG Distribution Based 0.7945
nDCG Expectation-Max 0.7963

n
D

C
G

AP No 0.6687
AP Min-Max 0.6705
AP Expectation Based 0.6640
AP Distribution Based 0.6726
AP Expectation-Max 0.6679

A
P

nRBP No 0.7140
nRBP Min-Max 0.7173
nRBP Expectation Based 0.7181
nRBP Distribution Based 0.7139
nRBP Expectation-Max 0.7181

R
B

P
.95

(b) MQ2008 dataset.

We will in addition consider nDCG@k as a method to quantify the performance of
the models. Figure 5.1 shows the nDCG@k scores as a function of k for each bounding
method, by loss (rows) and dataset (columns).

We first note that while there exist a negative correlation between k and the nDCG@k
score in the MovieLens datasets, a clear positive correlation between k and the nDCG@k
can be observed for the MQ2008 dataset. An analysis on why we observe a different corre-
lation in the two datasets is left for future work and discussed in more detail in chapter 6.

Looking at the performance of the bounding methods, we can again make several
observations. First, we observe minimal changes in performance when optimizing the
bounded variants of nDCG . This observation supports the previous findings that opti-
mizing bounded variants of nDCG does not result in an increase in performance.

Second, while optimizing the bounded variants of AP did not lead to a clear increase
in overall performance, we do observe an increase in nDCG@k score when deploying
distribution based bounding. Interestingly, while applying distribution based
bounding resulted in a decrease in average performance in the MovieLens dataset with
a negative sampling ratio of 3, a slight but consistent increase in performance can be
observed when considering nDCG@k for k ≤ 10. In the MQ2008 dataset, we observe that
optimizing a bounded variant of AP often leads to an increase in nDCG@k.

Finally, we observe that models optimized for bounded nRBP losses outperform the
unbounded nRBP in terms of nDCG@k in all datasets, except the MovieLens dataset
with a negative sampling ratio of 3, where an increase can be observed for k ≥ 3. This ob-
servation, combined with the finding that optimizing bounded variants of nRBP leads
to similar overall performance, suggests that applying user/query-wise metric bounding
to nRBP loss can increase recommendation utility.

5.2. EFFECT OF METRIC BOUNDING ON INDIVIDUAL USER/QUERY PERFORMANCE

5

29

In the next sections, we analyze and compare the performance on instance-level, to
further analyze the impact of applying user/query-wise metric bounding in LTR.

Figure 5.1: nDCG@k scores as a function of k for each bounding method, by loss base (rows) and dataset
(columns).

5.2. EFFECT OF METRIC BOUNDING ON INDIVIDUAL USER/QUERY

PERFORMANCE
The analysis in the previous sections showed that optimizing bounded losses may in-
creases the overall performance, but only marginally. In addition, we observed that some
bounding methods consistently increase the recommendation performance in terms of
nDCG@k.

A big drawback of evaluating a system using the average nDCG , AP or nRBP is that
the performance of a system is assessed using a single value and the recommendation
utility for individual users or specific groups of users cannot be analyzed. Especially
when comparing systems, a more in-depth analysis of the performance for different
users or groups of users might be of relevance.

In this section, we analyze the performance of the bounding methods by comparing
the distribution of scores produces by models optimized for bounded and unbounded
losses. This gives greater insights into the performance of the model on instance-level.

Figure 5.2, Figure 5.3 and Figure 5.4 show the comparison between the distribution of
scores produced by the models optimized for bounded and unbounded losses for each
loss, by bounding method (rows) and dataset (columns). The x-axis represents the
instance score, the y-axis shows the fraction of instances that achieve a scor e ≤ x.

As the plot might be hard to interpret, score intervals in which the fraction of in-

5

30 5. RESULTS

stances that achieve those scores is lower for the model trained on the bounded loss, are
highlighted in gray. In the optimal case, gray areas appear on the left side of the plot,
indicating low scores are less likely.

We can make several interesting observations. First, we observe that applying
expectation-max bounding to nDCG results in an slight increase in the fraction of in-
stances that achieve the highest scores. This apparent increase in performance is, how-
ever, at the cost of an increase in the fraction of instances that achieve the lowest scores.
We further observe minimal changes in the distribution of scores when optimizing a
bounded variant of nDCG . This supports the findings in previous section that optimiz-
ing a bounded variant of nDCG does not lead to an increase in performance.

Second, applying distribution based bounding to AP results in a decrease in
the fraction of instances that achieve the lowest scores, not at the cost of instances that
achieve high scores. The impact of distribution based bounding does seem to de-
crease with an increase in NSR. This observation supports the findings in the previous
sections that distribution based bounding works best in datasets with a low NSR.
We further observe that optimizing other bounded variants of AP do not improve the
distribution of scores.

Finally, the results in the previous sections showed that optimizing a bounded vari-
ant of nRBP could increase the recommendation utility. This observation is supported
by Figure 5.4, where we observe a consistent decrease of the fraction of instances that
achieve low scores in the MovieLens dataset. Also, in line with previous findings, we
observe a decrease in the effectiveness of distribution based bounding for higher
negative sampling ratios.

In the next sections, we continue to analyze the performance of the models opti-
mized for bounded and unbounded losses and aim to identify which instances benefit
most from metric bounding.

5.3. WHERE DOES METRIC BOUNDING HAVE THE LARGEST EF-
FECT?

In this section, we aim to identify which instances benefit from metric bounding by ana-
lyzing and comparing the performance on instance level. As the models are trained and
tested on the same dataset, we can compare scores on instance level by plotting the per-
formance of the model trained with a bounded loss as a function of the performance of
the model trained with an unbounded loss. Figure 5.5, Figure 5.6 and Figure 5.7 show
the instance scores as a function of the performance of the model optimized for the un-
bounded loss for each loss, by bounding method (rows) and dataset (columns).

For all losses, we observe a clear and strong correlation between the instance scores
achieved by the models optimized for a bounded loss and the scores achieved by the
models optimized for a unbounded loss. This indicates that high scoring instances re-
main to achieve high scores and any change in performance in not correlated with the
scores achieved by model trained on unbounded losses. However, in the MovieLens
dataset with a N SR of 1, we observe that metric bounding may increase the performance
for the lowest scoring instances.

In addition, in the MovieLens dataset we observe that the variance in score increases

5.3. WHERE DOES METRIC BOUNDING HAVE THE LARGEST EFFECT?

5

31

Figure 5.2: Comparing the distributions of scores produced by models optimized on bounded and unbounded
nDCG , by bounding method (rows) and dataset (columns).

Figure 5.3: Comparing the distributions of scores produced by models optimized on bounded and unbounded
AP , by bounding method (rows) and dataset (columns).

5

32 5. RESULTS

Figure 5.4: Comparing the distributions of scores produced by models optimized on bounded and unbounded
nRBP , by bounding method (rows) and dataset (columns).

with the N SR. This observation holds true for all losses and indicates that the proposed
bounding methods have greater impact when used on datasets with a higher N SR. Inter-
estingly, this observation challenges the finding in the previous section that the impact
of distribution based bounding decreases with a higher NSR.

5.3. WHERE DOES METRIC BOUNDING HAVE THE LARGEST EFFECT?

5

33

Figure 5.5: Instance scores when optimizing bounded variants of nDCG , as a function of the instance score
when optimizing for unbounded nDCG .

Figure 5.6: Instance scores when optimizing bounded variants of AP , as a function of the instance score when
optimizing for unbounded AP .

5

34 5. RESULTS

Figure 5.7: Instance scores when optimizing bounded variants of nRBP , as a function of the instance score
when optimizing for unbounded nRBP .

5.4. WHO BENEFITS FROM METRIC BOUNDING?
The analysis in the previous sections indicated that optimizing a bounded loss can in-
crease the recommendation utility. The proposed bounding methods utilize some no-
tion of instance-difficulty to create difficulty-aware losses. As a result, difficult instances
are weighted more heavily during training, which could increase the recommendation
utility for these difficult instances, possibly at the cost of the utility for easier instances.
As shown in chapter 3, the bounding methods heavily depend on the number of relevant
and non relevant items in an instance. We therefore investigate whether we observe a
correlation between the performance difference as a function of the number of relevant
items in an instance. Figure 5.8, Figure 5.9 and Figure 5.10 show the performance differ-
ence between optimizing the bounded and unbounded loss as a function of the num-
ber of relevant items in an instance. In addition, we provided a kernel density estimate,
which is a non-parametric fit to the data.

For models trained on bounded variants of nDCG and AP , we do not observe a clear
correlation between the performance change and number of relevant items in an in-
stance. This means that instances with a high number of relevant items do not benefit
from the proposed bounding methods.

In contrast, in the MovieLens dataset with a higher NSR, we observe that while op-
timizing a bounded variant of nRBP improves the performance for all instances, in-
stances with a higher number of relevant items may benefit more. This increase in per-
formance for instances with a higher number of relevant items is not at the cost of in-
stances with a lower number of relevant items.

5.4. WHO BENEFITS FROM METRIC BOUNDING?

5

35

Figure 5.8: Score difference between optimizing the bounded nDCG and unbounded nDCG (higher is better),
as a function of the number of relevant items in an instance, by dataset (columns) and bounding method
(rows).

Figure 5.9: Score difference between optimizing the bounded AP and unbounded AP (higher is better), as a
function of the number of relevant items in an instance, by dataset (columns) and bounding method (rows).

5

36 5. RESULTS

Figure 5.10: Score difference between optimizing the bounded nRBP and unbounded nRBP (higher is better),
as a function of the number of relevant items in an instance, by dataset (columns) and bounding method
(rows).

5.5. SUMMARY
To summarize, the empirical evidence in this chapter showed that optimizing a bounded
loss is often no less effective than optimizing unbounded losses. In addition, we ob-
served a marginal but consistent increase in average performance when optimizing a
bounded variant of nRBP . Interestingly, additional analysis on the impact of metric
bounding on the performance of ranking models in terms of nDCG@k showed an in-
crease in performance for both AP and nRBP . These observations are further sup-
ported by a comparison of the distributions of scores produced by models optimized
for bounded and unbounded losses.

Furthermore, the obtained results show a strong correlation between the instance
scores achieved by the models optimized for a bounded and unbounded losses. Inter-
estingly, we observed that optimizing a bounded variant of nRBP resulted in an increase
in performance for the lowest scoring instances. In addition, we observed that metric
bounding may benefit instances with a higher number of relevant items more.

Finally, the results in this chapter showed that applying distribution based bounding
to nDCG leads to a significant decrease in performance in the MovieLens dataset. In
contrast, distribution based bounding showed promising results in other datasets,
or when applied to other losses. Additional analysis on the performance in different
MovieLens datasets showed similar ranking performance. In addition, an analysis on
the approximated distributions did not result in new insights on this decrease in perfor-
mance. Further analysis is outside the scope of this thesis and is left for future work.

6
CONCLUSION

Learning to Rank is the application of Machine Learning in order to create and opti-
mize ranking functions. Most learning to rank methods follow a listwise approach and
optimize a listwise loss function which closely resembles the same metric used in the
evaluation. The optimization of such ranking functions is an iterative process which uti-
lizes a loss function and its derivatives with respect to the models parameters to decrease
the average loss on the current batch. Popular listwise loss functions such as nDCG , AP
and nRBP do not have consistent bounds across topics and do not account for instance-
difficulty. As a result, the loss score does not solely reflect the performance of the model,
but also depend on the instance properties. During training, each instance is assumed
to be equally informative, while in reality, this informativeness might depend on the dif-
ficulty of the instance.

In this thesis, we proposed four bounding methods which utilize some notion of
instance-difficulty to produce difficulty-aware losses and showed the impact on the pro-
duced loss scores. We applied the four proposed bounding methods to three popular
listwise loss functions, namely nDCG , AP and nRBP and analyzed the impact on the
recommendation effectiveness of two ranking models. Experimental results based on
two datasets showed that, in most cases, optimizing a bounded loss function results in a
consistent but marginal increase in overall performance. More interestingly, we showed
that optimizing a bounded variant of nRBP and AP may increase the nDCG@k, increas-
ing the recommendation utility.

To further investigate the impact of user/query-wise metric bounding on the per-
formance of the ranking models, we analyzed the performance on instance level. We
showed that user/query-wise metric bounding can increase the recommendation per-
formance for instances with a higher number of relevant items, without a negative im-
pact on the performance for instances with a lower number of relevant items.

37

6

38 6. CONCLUSION

6.1. RECOMMENDATIONS
The empirical results suggest that, in most cases, optimizing a bounded loss leads to a
consistent but marginal improvement in average performance of the ranking functions.
Furthermore, we observed that optimizing a bounded loss can lead to a consistent in-
crease in the nDCG@k score for k ≤ 10, which makes the optimization of a bounded loss
interesting for applications where only a small list of recommendations is provided to
a user. In addition, the results suggest that optimizing a bounded variant of nRBP can
benefit instances with a higher number of relevant items, without a negative effect on
the average performance of other instances. This observation of the proposed bounding
methods further motivates the use of user/query-wise metric bounding.

Finally, while optimizing a bounded variant of nRBP generally outperforms optimiz-
ing bare nRBP , the best bounding method for nDCG and AP seems more dependent on
the dataset.

6.2. FUTURE WORK
The research in this thesis can be extended on the following aspects. First, we can extend
the experiment and analyze the impact of user/query-wise metric bounding in different
datasets. In addition, we can extend the experiment with more complex ranking mod-
els. This allows us to analyze whether the observations made in this thesis hold true in
different datasets and for more complex ranking functions.

Secondly, distribution based bounding currently relies on distributions gener-
ated from sampled data. These distributions are generated by calculating the metric
score of a fixed amount of random permutations of an instance. As a consequence, each
order is taken as equally likely, while in reality most ranking functions easily outper-
form a random ranking. We would like to analyze the impact of distribution based
bounding when utilizing a distribution which favors ranking relevant items higher. This
makes for a more realistic distribution of scores and in addition increases the resolution
of the distribution at higher scores.

Third, the results showed a negative correlation between k and the nDCG@k score
in the MovieLens dataset. In contrast, in the MQ2008 dataset we observed a positive
correlation. It would be interesting to analyze what is the reason behind this observation.
We suspect this to be either a consequence of the used ranking function or dataset, but
leave the analysis for future work.

Furthermore, in this thesis, we focused on the direct optimization of IR metrics and
thus evaluated the ranking functions using the same metric as used in the optimiza-
tion process. However, other research challenges the assumption that optimizing the
same metric used in the evaluation leads to the best performance [20]. It would there-
fore be interesting to analyze to which extent the observations made in this thesis hold
true when evaluating and optimizing a ranking function using different metrics.

Finally, the current training and test sets follow the same distribution of relevant to
non-relevant items. It would be interesting to analyze to which extent the ranking mod-
els can benefit from being trained on training sets with a higher negative sampling ratio
when optimizing a bounded loss. To analyze this, we would increase the NSR in the
training set, without increasing the NSR in the test set.

REFERENCES

[1] Hang Li. A short introduction to learning to rank. IEICE Transactions on Informa-
tion and Systems, E94-D(10):1854–1862, 2011.

[2] David Cossock and Tong Zhang. Subset ranking using regression. volume 4005,
pages 605–619, 06 2006.

[3] Ping Li, Qiang Wu, and Christopher Burges. Mcrank: Learning to rank using multi-
ple classification and gradient boosting. In J. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems, volume 20. Curran As-
sociates, Inc., 2008.

[4] Koby Crammer and Yoram Singer. Pranking with ranking. In Proceedings of the 14th
International Conference on Neural Information Processing Systems: Natural and
Synthetic, NIPS’01, page 641–647, Cambridge, MA, USA, 2001. MIT Press.

[5] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. J. Mach. Learn. Res., 4(null):933–969, dec
2003.

[6] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. Proceedings of the
22nd international conference on Machine learning - ICML 05, 2005.

[7] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth
cost functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems, volume 19. MIT Press, 2007.

[8] Christopher Burges. From ranknet to lambdarank to lambdamart: An overview.
Learning, 11, 01 2010.

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:
From pairwise approach to listwise approach. Proceedings of the 24th international
conference on Machine learning - ICML 07, 2007.

[10] Guang-He Lee and Shou-De Lin. Lambdamf: Learning nonsmooth ranking func-
tions in matrix factorization using lambda. In 2015 IEEE International Conference
on Data Mining, pages 823–828, 2015.

[11] Junjie Liang, Jinlong Hu, Shoubin Dong, and Vasant G. Honavar. Top-n-rank: A scal-
able list-wise ranking method for recommender systems. CoRR, abs/1812.04109,
2018.

39

6

40 REFERENCES

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[13] Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factorization.
CoRR, abs/1511.06443, 2015.

[14] Jun Xu and Hang Li. Adarank. Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval - SIGIR 07,
2007.

[15] Tie-Yan Liu. The listwise approach. Learning to Rank for Information Retrieval,
page 71–88, 2011.

[16] Yue Shi, Martha Larson, and Alan Hanjalic. List-wise learning to rank with matrix
factorization for collaborative filtering. In Proceedings of the Fourth ACM Confer-
ence on Recommender Systems, RecSys ’10, page 269–272, New York, NY, USA, 2010.
Association for Computing Machinery.

[17] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank. Pro-
ceedings of the international conference on Web search and web data mining -
WSDM 08, 2008.

[18] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

[19] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval
effectiveness. ACM Trans. Inf. Syst., 27(1), dec 2008.

[20] Roger Zhe Li, Julián Urbano, and Alan Hanjalic. New insights into metric optimiza-
tion for ranking-based recommendation. Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2021.

[21] Mu Zhu. Recall, precision and average precision. Department of Statistics and Ac-
tuarial Science, 2, 2004.

[22] Tao Qin, Xu-Dong Zhang, Ming-Feng Tsai, De-Sheng Wang, Tie-Yan Liu, and Hang
Li. Query-level loss functions for information retrieval. Information Processing &
Management, 44(2):838–855, 2008.

[23] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic,
and Nuria Oliver. Tfmap. Proceedings of the 35th international ACM SIGIR confer-
ence on Research and development in information retrieval - SIGIR 12, 2012.

[24] Lukas Gienapp, Benno Stein, Matthias Hagen, and Martin Potthast. Estimat-
ing topic difficulty using normalized discounted cumulated gain. Proceedings of
the 29th ACM International Conference on Information & Knowledge Management,
2020.

[25] Yves Bestgen. Exact expected average precision of the random baseline for system
evaluation. The Prague Bulletin of Mathematical Linguistics, 103(1):131–138, 2015.

REFERENCES 41

[26] Benjamin A. Carterette. Low-cost and robust evaluation of information retrieval
systems. ACM SIGIR Forum, 42(2):104–104, 2008.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[28] Tao Qin and Tie-Yan Liu. Introducing letor 4.0 datasets, 2013.

[29] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

[30] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In-
ternational Conference on Learning Representations, 12 2014.

[31] Derya Soydaner. A comparison of optimization algorithms for deep learning. Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 34(13):2052013,
2020.

[32] Tetsuya Sakai and Noriko Kando. On information retrieval metrics designed
for evaluation with incomplete relevance assessments. Information Retrieval,
11(5):447–470, 2008.

[33] Alistair Moffat, Falk Scholer, and Paul Thomas. Models and metrics. Proceedings
of the Seventeenth Australasian Document Computing Symposium on - ADCS ’12,
2012.

	Introduction
	Research goals
	Main findings
	Thesis outline

	Background
	Learning To Rank Framework
	Models
	Evaluation
	Listwise loss functions

	Metric Bounding
	Min-Max Normalization
	Bounds of nDCG
	Bounds of nRBP
	Bounds of AP
	Impact of bounding on loss scores

	Expectation-Based Metric Bounding
	Expectation of nDCG
	Expectation of nRBP
	Expectation of AP
	Impact of bounding on loss scores

	Expectation-Max Bounding
	Impact of bounding on loss scores

	Distribution-Based Metric Bounding
	Impact of bounding on loss values

	Experimental Setup
	Models
	Hyperparameters

	Datasets
	Protocol

	Results
	Effect of metric bounding on overall performance
	Effect of metric bounding on individual user/query performance
	Where does metric bounding have the largest effect?
	Who benefits from metric bounding?
	Summary

	Conclusion
	Recommendations
	Future Work

	titleReferences

