
TU Delft

Faculty of Applied Sciences, BSc Program Applied
Mathematics & Applied Physics

Bachelor Thesis

Noise and Synchronization in
Kuramoto-type Networks

By:
Jostijn Dessing

Supervisors:
Dr. J.L.A. Dubbeldam,

Dr. A.J.L. Adam

August 2023

Abstract

The Kuramoto model (KM) is a well known mathematical model of coupled oscillators that is frequently
used to study synchronization phenomena. In this bachelor thesis we investigate the effects of noise
on synchronization in Kuramoto-type networks.

In the first part we follow the methods of Maggi and Paoluzzi [1], but include detailed in between
steps, to obtain an analytical expression for the critical coupling strength, kc, of the KM in the
thermodynamic limit under the influence of time-correlated noise (i.e non-white noise). The coupling
strength, k, is a parameter in the KM that essentially determines to what extent oscillators influence
each other. When k > kc we start to see synchronization. Our numerical simulations agree with the
results found in [1], in that the analytical expression for kc holds up for low values of correlation time,
but quickly breaks down as correlation time increases.

In the second part of this thesis we consider a Kuramoto-type adaptive dynamical network that
is also investigated in Fialkowski et al. [2]. The dynamical phenomena that are observed in [2] are
also present in our simulations. We explain these dynamical phenomena with the help of a variety
of plots. Subsequently, the Kuramoto-type adaptive dynamical network is expanded to include white
noise terms in the coupling dynamics. We find, through the use of simulation, that under the same
conditions as in [2], synchronization is observed for significantly lower values of coupling strength. This
result is explained qualitatively. Simulations also show, that for specific values of noise strength, the
hysteric behaviour observed in [2] is not present.

Other conclusions, like the degree to which the noise can reduce the coupling strength required for
full synchronization, or beyond what value of noise strength full synchronization can no longer occur,
are unable to be drawn. Additional simulation work and a further analytical work is recommended for
an ensuing study.

ii

Contents

1 Introduction 1

2 Kuramoto Model 2

3 Noise in the Original Kuramoto Model 5
3.1 White Noise . 5
3.2 Coloured Noise . 5

3.2.1 Numerical Simulation Coloured Noise . 8

4 Adaptive Dynamical Networks 10

5 Synchronization in a Kuramoto-type Adaptive Dynamical Network 11
5.1 Synchronization and Frequency Clustering . 11
5.2 Multistability . 14

6 Synchronization in a Kuramoto-type Adaptive Dynamical Network with Noise 15
6.1 Qualitative Explanation . 17
6.2 Hysteresis . 18

7 Discussion 19
7.1 Non-Adaptive Kuramoto Model . 19
7.2 Adaptive Kuramoto Model . 19

A Proofs 21
A.1 Order Parameter Proofs . 21

A.1.1 Phases Evenly Spaced Around Unit Circle . 21
A.1.2 Phases Uniformly Distributed on Unit Circle . 21
A.1.3 Contribution Drifting Phases to Order Parameter is Zero 22

B The Fokker-Planck Equation 23
B.1 Fokker-Planck Equation for One Variable: Stationary Solution 23

C Numerical Methods 25
C.1 Stochastic Differential Equations . 25

C.1.1 Euler-Maruyama Method . 25
C.2 Runge-Kutta-Fehlberg Method . 26

D Code 28
D.1 Mathematica Script . 28
D.2 Python Code . 29

D.2.1 Coloured Noise Code . 29
D.2.2 Adaptive Dynamical Network Code . 31

References 35

iii

1 Introduction

Synchronization is a very general concept that plays an important role in everyday life. Often times
synchronization is something we strive for; whether it be to improve efficiency, like in assembly lines
or scheduling for multi-core processors, or to make an experience more appealing, like in music or in
dance.

Some less well known but equally important examples of synchronization can be found in the
natural sciences. Synchronization is known to play a major role in neural networks [3] and links have
been found between abnormal synchronous behaviour and schizophrenia [4]. Another example is found
in chemical oscillators, which are known to exhibit phase locking when their natural frequencies are
close to each other [5].

While chemical oscillators and neural networks are inherently different, both have been modelled by
the Kuramoto model (KM). The KM is a mathematical model that can describe networks of coupled
oscillators [6]. More specifically, it is an example of a static dynamical network; the word ‘static’ refers
to the network topology and the word ‘dynamic’ refers to the node dynamics (e.g. the phase of an
oscillator).

In the past decades the KM has been studied extensively and expanded upon to include, among
other things, the effects of noise [1, 7, 8] and temporally changing networks [2]. In this thesis we focus
on these adaptations and see how they impact synchronization phenomena.

We examine these two adaptations because of how significant they are in the capability of a model
to accurately represent a real system; noise is ubiquitous in almost any physical system, and most real-
world networks change over time. Moreover, the Kuramoto-type adaptive dynamical network we will
explore also displays interesting dynamical phenomena, other than synchronization, that will briefly
be looked into.

This thesis is split up into two main parts. The first part, consisting of Sections 2 and 3, considers
the KM on a static fully connected network in the thermodynamic limit. The second part, consisting
of Sections 4, 5 and 6, considers the KM on a comparatively small adaptive dynamical network. The
effects of noise will be investigated in both parts.

In Section 2 the KM will be explained in more detail and part of Kuramoto’s original analysis will
be presented. In Section 3 we introduce and derive the main results from [1], which considers the effects
of non-white noise on the KM. In Section 4 a very brief overview of adaptive dynamical networks is
given. Subsequently, in Section 5, some of the main results from [2], which looks at a Kuramoto-type
adaptive dynamical network, are shown and explained through the use of numerical simulation. In
Section 6 we expand upon the system investigated in [2] by seeing how dynamical phenomena change
under the influence of noise. Finally, the results are discussed in Section 7.

The required background knowledge on topics that are not taught as part of the double bachelor
program applied maths and physics at the TU Delft is included in the appendices.

1

2 Kuramoto Model

The original KM consists of N globally coupled oscillators that are governed by the following set of
equations [6, 9]

ϕ̇i = ωi +
k

N

N∑
j=1

sin(ϕj − ϕi). (1)

Here ϕi is the phase of the i
th oscillator, k is the coupling parameter, and ωi is the natural frequency

of the ith oscillator. Note that in this set of equations only the ϕi are time-dependent. The natural
frequencies are independent identically distributed random variables, often distributed according to the
Gaussian or Lorentzian distributions. For k > kc, where kc is the critical coupling strength, one starts
to observe synchronization despite differing natural frequencies. That is, a (significant) fraction of the
oscillators will be phase-locked and will be close to the mean phase. The degree of synchronization is
determined by the complex order parameter, [9]

reiϕ0 =
1

N

N∑
j=1

eiϕj , (2)

where r = r(t) is a measure of the degree of synchronization and ϕ0 is the mean phase. One can
readily see that r = 1 when all oscillators are in phase. If there is no macroscopic synchronization
at all, i.e. the phases are spread perfectly evenly around the unit circle, then r = 0. If the phases
are random variables, which is the case since the ωi are random, and they are uniformly distributed
around the unit circle (again implying no macroscopic synchronization) then ⟨r⟩ is of size O(1/

√
N).

Proofs for both these claims are shown in the appendix.
Since the phases are random variables, by the law of large numbers we have that

1

N

N∑
j=1

eiϕj → ⟨eiϕ⟩,

as N → ∞. Thus, in the thermodynamic limit the complex order parameter becomes

reiϕ0 =

∫ 2π

0

n(ϕ, t)eiϕdϕ, (3)

where n(ϕ, t) is the probability distribution1 of phases at time t. From Eq. 3 it is clear that for
uniformly distributed phases in the thermodynamic limit r = 0. This also agrees with our earlier result
that ⟨r⟩ is of size O(1/

√
N) in the absence of macroscopic synchronization.

In working with the Kuramoto model it is often easier to consider the natural frequencies to be
set. In that case one no longer uses the general probability distribution of the phases, n(ϕ, t), but the
conditional probability distribution of the phases given the natural frequencies, n(ϕ, t | ω). In this case
the order parameter may be written in terms of conditional expectations:

reiϕ0 =
〈
⟨eiϕ | ω⟩

〉
=

∫ ∞

−∞

∫ 2π

0

n(ϕ, t | ω)eiϕg(ω)dϕdω (4)

Here the notation ⟨A | B⟩ is used for the conditional expectation of A given B and g(ω) is the
distribution of natural frequencies. The second set of angled brackets is there because ω is also random
variable.

To make the analysis easier Kuramoto rewrote Eq. 1 using the order parameter. If we multiply
Eq. 2 by e−iϕi and consider its imaginary part we notice that it’s identical to the last term in Eq. 1,
except for the coupling parameter k. Thus

ϕ̇i = ωi + kr sin(ϕ0 − ϕi). (5)

1In this thesis the probability distribution is what is referred to as the probability density in mathematical literature.

2

At this point it becomes clear that each oscillator is attracted to the mean phase of the system.
This phenomenon is known as mean-field coupling.

The basis of Kuramoto’s analysis was to find the steady solutions for which r would be constant.
This analysis only considered the thermodynamic limit, i.e. N → ∞. Kuramoto’s original article
can be found here [6] and further details can be found his book [9]. In our derivation for the critical
coupling strength, kc, we use Kuramoto’s original analysis along with some of the techniques found in
[5].

Upon finding a probability distribution assuming constant r, one can use a self-consistency argu-
ment and plug the probability distribution back into Eq. 4 to get a critical value for k, beyond which
synchronization will start to occur. To obtain the probability distribution we split the oscillators into
two groups; the phase-locked oscillators and the drifting oscillators. When |ωi| ≤ kr then at some
time ωi = kr sin(ϕi − ϕ0) meaning ϕ̇i = 0 and so oscillator i will become locked. If on the other hand
|ωi| > kr then this cannot occur and oscillator i will drift.

Suppose |ωi| ≤ kr. Then the synchronization condition is ϕi − ϕ0 − sin−1(ωi/kr) = 0. Moreover,
stable equilibrium is only reached when ϕi − ϕ0 ∈ (−π/2, π/2).2 Thus for the locked oscillators we
have

n(ϕ | ω) = δ
(
ϕ− ϕ0 − sin−1(ω/kr)

)
H
(
cos(ϕ− ϕ0)

)
, |ω| ≤ kr, (6)

where H denotes the Heaviside step function.
Obtaining the distribution function for the locked oscillators requires a bit more work. The key step

involves obtaining a partial differential equation (PDE) containing the probability distribution from
Eq. 5. Here this is done using a continuity equation, but later on we make use of the Fokker-Planck
equation.3 Denote the dynamic phase velocity of an oscillator at phase ϕ by v = ω − kr sin(ϕ − ϕ0).
For a slice dϕ one has

change # oscillators in (ϕ, ϕ+ dϕ) = in− out,

∂

∂t

(
n(ϕ | ω)dϕ

)
= (nv)|ϕ − (nv)|ϕ+dϕ,

∂n

∂t
+

∂

∂ϕ
(nv) = 0.

Thus for stationary solutions (with |ω| > kr) we can see that nv = C, i.e.

n(ϕ | ω) = C

|ω − kr sin(ϕ− ϕ0)|
, |ω| > kr, (7)

where C is to be determined by the normalization condition, and the absolute value signs appear
because one cannot have negative probability.

By using the self-consistency argument and plugging Eqs. 6 and 7 into Eq. 4 we get

r =

∫
|ω|≤kr

∫ π/2+ϕ0

−π/2+ϕ0

ei(ϕ−ϕ0)δ
(
ϕ− ϕ0 − sin−1(ω/kr)

)
g(ω)dϕdω +∫

|ω|>kr

∫ 2π

0

ei(ϕ−ϕ0)
Cg(ω)

|ω − kr sin(ϕ− ϕ0)|
dϕdω. (8)

The second term is zero (see appendix). By considering the real part and making the substitution
ϕ→ ϕ− ϕ0 one obtains

2Suppose ϕi is locked, i.e. ϕ̇i = 0. If ϕi − ϕ0 ∈
(−π

2
, π
2

)
then ϕ̇ϵ

i = ωi − kr sin(ϕi − ϕ0 + ϵ) < 0 meaning ϕi is stably

locked. If on the other hand ϕi − ϕ0 ∈
(
π
2
, 3π

2

)
then ϕ̇ϵ

i = ωi − kr sin(ϕi − ϕ0 + ϵ) > 0 meaning ϕi is not stably locked.
3The Fokker-Planck equation is a PDE describing how the probability distribution of a stochastic variable changes

with time. See appendix for more details.

3

r =

∫
|ω|≤kr

∫ π/2

−π/2
cos(ϕ)δ

(
ϕ− sin−1(ω/kr)

)
g(ω)dϕdω

=

∫
|ω|≤kr

cos
(
sin−1(ω/kr)

)
g(ω)dω

=

∫ π/2

−π/2
cos(ϕ)g

(
kr sin(ϕ)

)
kr cos(ϕ)dϕ

= kr

∫ π/2

−π/2
cos2(ϕ)g

(
kr sin(ϕ)

)
dϕ. (9)

In the third step the substitution ω = kr sin(ϕ) is made. Clearly r = 0 is a solutions of Eq. 9.
Suppose that r > 0. Then we may write Eq. 9 as

1 = k

∫ π/2

−π/2
cos2(ϕ)g

(
kr sin(ϕ)

)
dϕ.

Now a critical value for k is obtained by letting r go to 0 from above (i.e. taking the limit r → 0+).
This then gives

kc =
2

πg(0)
. (10)

A typical plot of the order parameter against coupling strength in the thermodynamic limit (N =
104) is shown in Fig. 1. Here the KM is simulated using the forward Euler method with ∆t = 0.001.
For each value of k the system is simulated for 5 · 104 time steps and the corresponding value for r is
calculated using Eq. 2 and by averaging over the last 2.5 · 104 time steps. The coupling strength, k,
is increased from 0.5 to 4.5 in 41 steps.

Figure 1: Plot of r against k for regular KM given by Eq. 1. The Lorentz distribution with λ = 0.5 was chosen for the
natural frequencies, and N = 104. The dashed line indicates the theoretical value for critical coupling strength, kc, as
predicted by Eq. 10.

4

3 Noise in the Original Kuramoto Model

3.1 White Noise

The presence of noise is nearly unavoidable in any physical system. It may not always play an important
role, but there are many situations in which it does. Hence it is of significant interest to see how noise
impacts the Kuramoto model.

In his 1988 paper [7], Sakaguchi looked at the classic KM under the influence of external fields. He
looked at models of the form

ϕ̇i = ωi +
k

N

N∑
j=1

sin(ϕj − ϕi) + fi,

where fi = fi(t) is an external force. In the latter half of his paper he took fi =
√
Dξi with ξi a

set of uncorrelated white noises:

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2δijδ(t
′ − t). (11)

In this case the critical coupling strength can be written as

kc = 2

[∫ ∞

−∞

D

D2 + ω2
g(ω)dω

]−1

, (12)

= 2

[∫ ∞

−∞

1

ω2 + 1
g(Dω)dω

]−1

,

which clearly reduces to Eq. 10 in the case D = 0. We omit the derivation because the derivation
in the subsequent section, which we include in full detail, is quite similar.

3.2 Coloured Noise

Though Eq. 12 is a nice result, it may only ever approximate real systems, for any physical noise
source will have nonzero correlation time. Therefore we consider

ϕ̇i = ωi +
k

N

N∑
j=1

sin(ϕj − ϕi) + ηi, (13)

with the ηi defined by the stochastic differential equation (SDE)

η̇i =
−ηi
τ

+

√
D

τ
ξi, (14)

where the ξi are white noise sources defined in the same way as before (Eq. 11). Now the noise
term, ηi, has correlation function [10, 11]

⟨ηi(t)ηj(t′)⟩ =
D

τ
e−|t′−t|/τ .

So the correlation timescale is τ . In this section we will get an analytical expression for the critical
value of k in the limit N → ∞. We closely follow the derivation in [1] (which itself closely follows [7])
but include detailed in-between steps. The derivation consists of 3 main steps:

1. Find the Fokker-Planck equation (FPE) for the probability distribution of ϕ, n(ϕ | ω).

2. Solve the FPE.

3. Substitute the found probability distribution in Eq. 4 to get a critical value for k.

5

At this point you may ask: what is the Fokker-Planck equation? For that we refer you to Appendix
B.

To begin we rewrite Eq. 13 in the same way as before using the order parameter

ψ̇i = Fi(ψi) + ηi, (15)

where ψi ≡ ϕi − ϕ0 is the ‘distance’ of phase i to the mean phase, and Fi(ψ) ≡ ωi − kr sin(ψ) is
the mean-field force. Since all oscillators and noise terms are described by identical equations (except
for differing natural frequencies) we could at this point write down the 2-dimensional FPE for the
probability distribution n(ψ, η, t | ω). But solving this higher dimensional FPE is quite difficult so we
take a few more steps in order to reduce the problem to solving a one-variable FPE. This is also where
the current derivation differs most from the one done by Sakaguchi, for he could write down the FPE
immediately without any further steps.

Differentiating Eq. 15 with respect to time and using Eq. 14 along with ηi = ψ̇i − Fi(ψi) gives

ψ̈i +
[1
τ
− F ′

i (ψi)
]
ψ̇i −

1

τ
Fi(ψi) =

√
D

τ
ξi.

All terms except for the first contain a factor 1
τ . Thus it makes sense to assume that for small

values of τ the first term will contribute little. So in the small-τ regime we get

ψ̇i =
[
1− τF ′

i (ψi)
]−1

Fi(ψi) +
[
1− τF ′

i (ψi)
]−1√

Dξi. (16)

From Eq. 16 we can obtain the FPE for one variable, giving us a PDE for n(ψ, t | ω). Note that
the index i will be dropped because all oscillators satisfy identical equations except for their unique
frequencies. The frequency information is preserved because the probability distribution given ω will
be found.

Now the FPE will be written down using the notation from Appendix B. Let

D(1)(ψ) =
[
1− τF ′(ψ)

]−1

F (ψ) +
√
D
[
1− τF ′(ψi)

]−1 d

dψ

{√
D
[
1− τF ′(ψi)

]−1
}
,

=
Dkrτ sin(ψ) +

[
ω − kr sin(ψ)

][
1 + krτ cos(ψ)

]2[
1 + krτ cos(ψ)

]3 ,

and

D(2)(ψ) =

{√
D
[
1− τF ′(ψi)

]−1
}2

,

=
D[

1 + krτ cos(ψ)
]2 .

Then the FPE for the system described by Eq. 16 reads

∂

∂t
n(ψ, t | ω) =

[
− ∂

∂ψ
D(1)(ψ) +

∂2

∂ψ2
D(2)(ψ)

]
n(ψ, t | ω).

This equation is still not easy to solve but since we will look for solutions with constant r (like in
Section 2), we should assume that n(ψ, t | ω) is constant in time. This means the method shown in
Appendix B.1 can be used.

Define

A(ψ, ω) ≡
kr

[
krτ cos(2ψ) + 4τω sin(ψ) + 4 cos(ψ)

]
+ 4ψω

4D
,

B(ψ) ≡ 1 + krτ cos(ψ).

Then

6

D(1)(ψ)

D(2)(ψ)
=
Dkrτ sin(ψ) +

[
ω − kr sin(ψ)

][
1 + krτ cos(ψ)

]2
D
[
1 + krτ cos(ψ)

] ,

=
krτ sin(ψ)

1 + krτ cos(ψ)
+
kr

[
− 2krτ sin(2ψ) + 4τω cos(ψ)− 4 sin(ψ)

]
+ 4ω

4D
,

=
−B′(ψ)

B(ψ)
+

∂

∂ψ
A(ψ, ω).

Now we can define

Φ(ψ, ω) ≡ lnD(2)(ψ)−
∫ ψ

0

D(1)(ψ′)

D(2)(ψ′)
dx′,

= ln(D)− 2 ln |B(ψ)|+
∫ ψ

0

∂

∂ψ′

[
ln |B(ψ′)|

]
dψ′ −

∫ ψ

0

∂

∂ψ′

[
A(ψ′, ω)

]
dψ′,

= ln(D)− ln |B(ψ)| −A(ψ, ω).

Note that the two constant terms that result from the two integrals are not written down. This
can be done because those constants get absorbed into N ′ and S′ in the next step. The stationary
probability distribution, ns(ψ | ω), becomes

ns(ψ | ω) = N ′e−Φ(ψ,ω) − S′e−Φ(ψ,ω)

∫ ψ

0

[
B(ψ′)

]2
D

eΦ(ψ′,ω)dψ′,

= N |B(ψ)|eA(ψ,ω) − S|B(ψ)|eA(ψ,ω)

∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′. (17)

In order to find N in terms of S a periodic boundary condition is imposed; n(0 | ω) = n(2π | ω).
This leads to

N |B(0)|eA(0,ω) = N |B(2π)|eA(2π,ω) − S|B(2π)|eA(2π,ω)

∫ 2π

0

|B(ψ′)|e−A(ψ′,ω)dψ′,

[
eA(0,ω) − eA(2π,ω)

]
N = −eA(2π,ω)S

∫ 2π

0

|B(ψ′)|e−A(ψ′,ω)dψ′,

[
eA(2π,ω)−A(2π,ω) − eA(2π,ω)−A(0,ω)

]
N = S

∫ 2π

0

|B(ψ′)|e−A(ψ′,ω)dψ′,

N =
S

1− e−2πω/D

∫ 2π

0

|B(ψ′)|e−A(ψ′,ω)dψ′.

Finally, substituting this back into Eq. 17 results in

ns(ψ | ω) = S|A(ψ)|eB(ψ,ω)

[
e2πω/D

e2πω/D − 1

∫ 2π

0

|B(ψ′)|e−A(ψ′,ω)dψ′ −
∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′
]
,

= S|A(ψ)|eB(ψ,ω)

{
e2πω/D

e2πω/D − 1

[∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′ +

∫ 2π

ψ

|B(ψ′)|e−A(ψ′,ω)dψ′
]

−
[

e2πω/D

e2πω/D − 1

∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′ − 1

e2πω/D − 1

∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′
]}

,

= S|A(ψ)|eB(ψ,ω)

[
−e2πω/D

1− e2πω/D

∫ 2π

ψ

|B(ψ′)|e−A(ψ′,ω)dψ′ − 1

1− e2πω/D

∫ ψ

0

|B(ψ′)|e−A(ψ′,ω)dψ′
]
,

= S
|A(ψ)|eB(ψ,ω)

1− e2πω/D

[∫ 0

ψ

|B(ψ′)|e−A(ψ′,ω)dψ′ + e2πω/D
∫ ψ

2π

|B(ψ′)|e−A(ψ′,ω)dψ′
]
,

7

where S is determined by the normalization condition. Now, like in Eq. 8, we substitute this
expression for ns(ψ | ω) in Eq. 4 (and use ψ = ϕ− ϕ0) to get

r =

∫ ∞

∞

∫ 2π

0

ns(ψ, t | ω)eiψg(ω)dψdω. (18)

It is probably impossible to get an explicit expression for r using Eq. 18. Therefore we take a series
expansion of the RHS of Eq. 18 in r. Although this is technically not difficult, it is quite cumbersome
due to the number of terms involved. Hence a Mathematica script is used (see Appendix D.1). This
results in

r − kr

∫ ∞

−∞
g(ω)Q(ω)dω + k3r3

∫ ∞

−∞
g(ω)P (ω)dω = 0, (19)

where O(r4) terms are ignored and

Q(ω) =
1

2

(
D

D2 + ω2
+ τ

)
,

P (ω) =
2D3 − 4Dω2 + τ(6D5 + 6D3ω2) + τ(4D4 + 5D2ω2 + ω4)

8(D2 + ω2)2(4D2 + ω2)
.

From Eq. 19 it can be seen that two additional real roots appear (other than r = 0) when

−4

[
1− k

∫ ∞

−∞
g(ω)Q(ω)dω

][
k3

∫ ∞

−∞
g(ω)P (ω)dω

]
> 0.

Thus a critical value for k is obtained by

kc =
1∫∞

−∞ g(ω)Q(ω)dω

= 2

[
τ +

∫ ∞

−∞

D

D2 + ω2
g(ω)dω

]−1

, (20)

which clearly reduces to Eq. 12 in the case τ = 0. This yields the expected result that an increase
in correlation time yields a decrease in critical coupling strength.

3.2.1 Numerical Simulation Coloured Noise

To simulate this system, Langevin Eqs. 13 and 14 can be integrated numerically. At each time step Eq.
13 is simulated using the forward Euler method and Eq. 14 is simulated using the Euler-Maruyama
method (see Appendix C.1). Moreover, the identity

N∑
j=1

sin(ϕj − ϕi) =

N∑
j=1

[
sin(ϕj) cos(ϕi)− cos(ϕj) sin(ϕi)

]
= cos(ϕi)

N∑
j=1

sin(ϕj)− sin(ϕi)

N∑
j=1

cos(ϕj),

can be used to significantly speed up computations because it means one only has to calculate these
large sums twice per time step rather than N times per time step.

For all of the following simulations the parameters are: ∆t = 0.001, N = 50004, 50000 time steps
per k-value, initial conditions for ϕi: drawn from U(0, 2π) distribution, initial conditions for ηi: drawn
from N(0,

√
2∆t) distribution. The frequency distribution is the Lorentz distribution with λ = 0.5.

In Fig. 2 one can see the result of simulating Eq. 13 and 14 with D = 1 for different values of k
and τ . It is clear that kc decreases as τ increases, as Eq. 20 predicts. This does not however confirm
its validity.

4This should ensure that the system resembles a system in the thermodynamic limit.

8

Figure 2: Plot of k against r for different values of correlation time τ . Simulation conditions: N = 5000, ∆t = 0.001,
50 000 time steps, random initial conditions. The coupling strength, k, was increased from 1 to 4.5 in 30 steps.

To see where Eq. 20 is valid, plots of simulated kc along with theoretical kc are made in Fig. 3.
From Fig. 3a it is clear that for a small correlation timescale (τ = 0.1) the theory is accurate for a
wide range of values of noise strength D. However, as can be seen in Fig. 3b, Eq. 13 quickly breaks
down for higher values of τ . This is in agreement with the results found in [1]. At τ0 = 0.5, D = 1
(shown as the dotted line in Fig. 3b) the difference between the numerical en theoretical values is
already 0.31.

(a) kc(D, 0.1) (b) kc(1, τ)

Figure 3: Plots of theoretical value of kc along with simulated value of kc. This is done for kc as a function of D (with
τ = 0.1) and for kc as a function of τ (with D = 1).

To get a total region of validity one would need to make a 2d plot of kc,simulated − kc,theoretical as a
function of D and τ . However since a single ‘upsweep’ of k values can take up to 30min, a simple 10
by 10 grid would take a long time already. Of course simulations could be sped up by starting them at
roughly the correct values for critical coupling. Exploring how critical τ5 varies with noise strength,
D, could be done in a few days if deemed interesting.

For more numerical simulations of Eqs. 13 and 14 we refer the reader to [8].

5Here ‘critical τ ’ means that if τ < τcritical then kc,simulated − kc,theoretical is small enough.

9

4 Adaptive Dynamical Networks

At this point it is worthwhile to go over some network terminology. So far we have looked at (continuous
time) dynamical networks; networks where the state of node i is dynamic. Most often dynamical
networks with N nodes are written as

ẋi = fi(xi, t) +

N∑
j=1

κijgij(xi, xj , t), (21)

where fi is now a generic function of xi and t, and is no longer defined as in Section 3.1, and
gij is a generic function of xi, xj and t. In our case we looked at a fully connected network with
fi(xi, t) = ωi (+ ηi) , gij(xi, xj , t) = sin(xj − xi), and κij = k/N . Of course more general dynamic
networks that are not of the form Eq. 21 are also possible.

While systems of type (21) can be useful, the structure of most real-life networks changes with
time. Generic examples of networks with changing topology include: social networks and transport
networks (e.g. changing roads). For more specific examples we refer the reader to [12], which contains
many relevant and recent examples (e.g. applications in neuroscience and machine learning).

Dynamic networks with temporally evolving connectivity are referred to as adaptive dynamical
networks. Such networks are frequently written in the form

ẋi = fi(xi, t) +

N∑
j=1

κijgij(xi, xj , t),

κ̇ = h(x, t),

(22)

with h a generic function of x and t. It is clear from Eq. 22 that the network dynamics affect the
network topology. Often times one only considers pairwise interaction, where the link strength only
depends on the adjacent nodes. In this case

κ̇ij = hij(xi, xj , t),

with hij a generic function of xi, xj and t. Though the capacity to model interesting phenomena
has most certainly increased, so has the complexity; the N−dimensional dynamic network has been
replaced by the N +N2−dimensional adaptive dynamical network!

For many systems the plasticity (change in topology) occurs at a much slower rate than the network
dynamics. Then we write

κ̇ij = ϵhij(xi, xj , t)

for the network topology, where ϵ≪ 1 is some small parameter.
Some interesting phenomena that may occur in these systems are synchronization, clustering, and

multistability, all of which will be discussed in more detail in the following sections. Other dynamical
phenomena that these networks may exhibit include noise-resistance [13, 14] and recurrent synchro-
nization [15].

10

5 Synchronization in a Kuramoto-type Adaptive Dynamical
Network

In the present section we will look at an adaptive dynamical network that is described by

ϕ̇i = ωi −
σ

N

N∑
j=1

κij sin(ϕi − ϕj),

κ̇ij = −ϵ
[
κij + sin(ϕi − ϕj + β)

]
,

(23)

where we note that the coupling strength is now denoted by σ rather than k in order to avoid
confusing notation with the coupling weights κij . The ωi’s are drawn from the U(−ω̂, ω̂) distribution,
ϵ is a small parameter to separate the timescales as explained in Section 4, and β can be used to change
the adaptation rules. The focus will be on symmetric adaptation rules, which means that β ≈ −π

2 .
The same system and its properties were also investigated in [2].

In this section and the next synchronization will be quantified using the synchronization index S,

S =
1

N

N∑
i=1

N∑
j=1

sij ,

where

sij =

{
1, ⟨ϕ̇i⟩ = ⟨ϕ̇j⟩,
0, otherwise.

Note that the angled brackets here indicate averaging and not expectation value. The averaging is
done over a sufficiently long time frame (ideally infinite) and the averaging starts after a sufficiently
large transient time (in order for the network to reach its stable state).

In this section and the subsequent section we are interested in small networks (e.g. N = 15,
N = 50). Not only does this make the simulations much less time intensive, but finite-size effects will
play an interesting role as well.

5.1 Synchronization and Frequency Clustering

As the coupling strength, σ, is increased, the system described by Eq. 23 transitions from fully
asynchronous (S ≈ 0) to fully synchronous (S = 1). This transition may be observed by simulating
system (23) for a long time while slowly increasing the coupling strength (we refer to such a simulation
as an upsweep). The results of two of these simulations are shown in Fig. 4.

(a) Multistep transition (b) Singlestep transition

Figure 4: Simulation of N = 50 oscillators with β = −0.53π and ω̂ = 0.25 (like in [2]). Both (a) and (b) are initiated
with random initial conditions, and density plots of the natural frequency realizations are shown as insets. Each σ value
is simulated for 10 000 time units, and S is calculated using the last 5000 time units. After every such simulation we
increase σ by 5/150 ≈ 0.03, and use the final system values of the previous σ as initial conditions for the subsequent σ.
The difference between the transitions is driven by the natural frequency distributions.

11

The first equation of system (23) is simulated using the dynamic time step Runge-Kutta-Fehlberg
method (see Appendix C.2 for more details) and the second equation is simulated using the Euler
forward method. This is justified because the coupling weights change at a much slower rate due to
the ϵ. Also the results of simulations did not change significantly when the coupling weights were
simulated using the Runge-Kutta-Fehlberg method. In the case of Figs. 4, 5 and 6 the system is
simulated for a total of 1.51 · 106 time units, with N = 50, ϵ = 0.01 and ω̂ = 0.25. After every
10 000 time units σ is increased by approximately 0.03 and the synchronization index is calculated by
averaging over the previous 5000 time units. This enables one to obtain a value for S for each value
of σ. Moreover, the sorted coupling weights matrix κ is shown at specific points in time (i.e. values
for σ) in Figs. 5b and 6b.

It is clear that the two simulations in Fig. 4 exhibit quite different properties. These are the finite
size effects that we alluded to earlier. Fig. 4a is a typical example of a so called multistep transition.
In this case the synchronization index, S, grows in many smaller steps as σ increases. Sometimes
large steps are possible, but there is never a single large step to full synchronization. Fig. 4b, on the
other hand, is a a typical example of a singlestep transition. Here S grows gradually until S ≈ 0.5
where it stays for a relatively large range of σ values. Then when σ is high enough a jump to full
synchronization is made.

To explain these differences it is helpful to look at the natural frequency distribution of the network
(insets of Fig. 4) and the frequency clusters that are formed (Figs. 5 and 6). These explanations can
be backed up by the simulations from [2]. For multistep transitions there is a high density spot in
the center of the natural frequency distribution. This leads to one big frequency cluster with a phase
velocity around the central frequency, that grows as σ increases (look at Fig. 5b). Since there is one
dominant cluster that ‘swallows’ small clusters, the synchronisation index S grows in many small steps.

(a) Multistep transition (b) Colour plots for sorted |κ| matrix for different values of σ.

Figure 5: Clustering for multistep transition. Clusters can be seen in (b). Each highlighted point in (a) corresponds to
a plot in (b). Going from left to right and top to bottom in (b) means increasing σ. Note that the plot in (a) is identical
to the one in Fig. 4a.

In the singlestep case, the natural frequency distribution has high density spots at the ends. This
means there will be two dominant frequency clusters; one with phase velocity around −ω̂, and one
with phase velocity around ω̂. Both clusters will grow in smaller steps. So up until the point where
there are just two clusters left (see second to last plot in Fig. 6b), the singlestep transition looks like
the multistep transition. When there are just two clusters left, a relatively high coupling strength, σ,
is needed to synchronize the two clusters due to the relatively big difference in phase velocity of the
two clusters. Therefore the two clusters will remain asynchronous over a large σ-range.

In Figs. 5b and 6b the (absolute value of the) coupling weight matrices, κ, are plotted, yet we
refer to frequency clusters. To show that the blue squares in these plots are indeed phase locked, it
is sufficient to show that ⟨ϕi⟩ ̸= ⟨ϕj⟩ =⇒ κij ≈ 0. According to [16], the coupling between different
clusters is O(ϵ). 6 Since ϵ≪ 1 we have the required result.

6In [16] they actually consider a slightly different network, where each oscillator has the same natural frequency.
However, it is not too hard to imagine that in the case of a narrow frequency distribution the clustered solutions will
look very similar. The article on which this section is based also references [16] when stating that κij = O(ϵ).

12

(a) Singlestep transition (b) Colour plots for sorted |κ| matrix for different values of σ.

Figure 6: Clustering for singlestep transition. Clusters can be seen in (b). Each highlighted point in (a) corresponds
to a plot in (b). Going from left to right and top to bottom in (b) means increasing σ. Note that the plot in (a) is
identical to the one in Fig. 4b.

It is also possible to justify that within frequency clusters κij ≈ 1. Since the phases in a cluster
are locked, for phase i of cluster µ, we can write

ϕi,µ = sµ(t) + ai, (24)

where sµ(t) is the collective phase of cluster µ, and ai is the offset of phase i. By plugging Eq. 24
in the second equation of system (23) one obtains

κ̇ij = −ϵ
[
κij + sin(ai − aj + β)

]
,

which has general solution (use method of integrating factor)

κij = − sin(ai − aj + β) + Cije
−ϵt,

where Cij is a constant due to integration. For ϵ = 0.01, after 5000 time units the second term
becomes negligible. So for large t we get

κij ≈ − sin(ai − aj + β). (25)

Now an assumption needs to be made: we assume that the phase differences within a cluster are
small. This is not a wild assumption to make since a cluster is like a little KM, which, for sufficiently
high coupling strength, σ, implies a high value for order parameter r. This in turn implies small phase
differences. Using the assumption and the fact that β ≈ −π

2 means κij ≈ 1 within clusters.
This analytical result can easily be backed up numerically by calculating the synchronization index,

S, by letting sij = 1 if |⟨κij⟩| > 0.8, and sij = 0 otherwise, and comparing it to the S calculated in
the usual way. In Fig. 7 it can be seen that the absolute value of the difference is usually below 0.005.

Figure 7: Difference in synchronization index using kappa calculation method and phi calculation method for 10
different upsweeps. Some smoothing is applied to eliminate peaks that exist for a single σ value.

13

Figure 8: Example of the synchronization index calculated using the κ method lagging behind a single σ value.

The difference in synchronization index for the two calculation methods is shown for 10 different
simulations in Fig. 7. For each simulation the initial conditions and natural frequency distributions
are randomized. All other system properties (N , ϵ, and ω̂) remain constant and are the same as before.

A median filter of size 3 is applied to eliminate peaks that exist for a single σ value. This is justified
because when a relatively big jump in S is made, occasionally the new coupling weights that are added
to the bigger cluster lag behind to such an extent that their average just doesn’t exceed the threshold
value of 0.8, but will for the next value of σ. An example of such a situation is shown Fig. 8.

Finally, it is worth mentioning why we can use the absolute value of κij in these calculation for S
(and why plotting the absolute value of κ in Figs. 5b and 6b is justified). This is because system (23)
is invariant under the transformation ϕi → ϕi + π, κij → −κij . The proof is not difficult and can be
found in [2]. It is also clear that Eq. 25 still works; under this transformation ai − aj ≈ π meaning
that the RHS becomes −κij .

5.2 Multistability

Another important dynamical feature that system (23) displays is multistability. That is, given iden-
tical network properties (but necessarily different initial conditions) the system can reach different
stable states. This phenomenon can easily be shown by simulating identical versions of system (23)
for different initial conditions and plotting the synchronization index against time.

In the following simulations the Runge-Kutta-Fehlberg and Euler forward methods are used again.
The system properties are: N = 50, ϵ = 0.01 and ω̂ = 0.25 (all like before). In the following simulations
the ω-distributions are all identical and such that the system is a multistep system. Three values of
coupling strength are looked at: σ = 1.3 in Fig. 9a, σ = 2.0 in Fig. 9b and σ = 2.7 in Fig. 9c. For
each value of σ, 20 random initial conditions are simulated.

The plots below were made by taking the moving average of the instantaneous synchronization
index. The moving average window is, in all cases, approximately7 10 000 time units.

Fig. 9 strongly suggests multistability.

(a) σ = 1.3 (b) σ = 2.0 (c) σ = 2.7

Figure 9: Different initial conditions but identical system properties lead to different stable values of S due to multi-
stability. This is a multistep system.

7We say ‘approximately’ because in the moving average calculations the assumption of a constant time step is made.
A varying time step means some errors may appear in the moving averages. Due to the small fluctuations in step size
it is assumed that these errors are negligible. The number 10 000 is obtained because usually the step size is close to 1.

14

6 Synchronization in a Kuramoto-type Adaptive Dynamical
Network with Noise

In this section we look at a modified version of system (23), where the coupling weights are affected
by a white noise source. The new system can be written as

ϕ̇i = ωi −
σ

N

N∑
j=1

κij sin(ϕi − ϕj),

κ̇ij = −ϵ
[
κij + sin(ϕi − ϕj + β)

]
+

√
µξij ,

(26)

where all system parameters have the same meaning as before and the ξij are a set of uncorrelated
white noises:

⟨ξi(t)⟩ = 0, ⟨ξij(t)ξlk(t′)⟩ = δilδjkδ(t
′ − t),

and µ is the noise strength. Simulations show that system (26) can achieve full synchronization
for significantly lower values of σ when performing a similar upsweep as before. It appears to be the
case that increasing the noise strength leads to faster full synchronization. Of course there is a limit
to this relationship; if the noise strength exceeds a certain critical value the network cannot reach full
synchronization anymore.

In the following simulations we will exclusively be looking at singlestep transitions. The phases are
simulated using the Runge-Kutta-Fehlberg method, but a maximum step size of 0.05 is implemented.
This is because for the coupling weights we use the Euler-Maruyama scheme, which in this particular
case has order 1 (see Appendix C.1). According to [17], for nearly constant drift and diffusion coeffi-
cients the Euler-Maruyama scheme usually gives good results. Since ϵ is small and µ is constant it is
assumed that the numerical results of the Euler-Maruyama method are reliable. Note that in this case
we should take more care using the Euler method compared to the simulations in the previous section
because it is no longer possible to rely on the slow dynamics of the coupling due to the noise.

Figure 10: System size: N = 30, number of different initial conditions per value of noise strength: 4, number of steps
from σ = 0 to σ = 6: 61, number of time units between each increase in σ: 5000. Dotted lines indicate average σ-value
for which full synchronization is reached. The indices of σ and µ in this plot correspond, i.e. for µ1 full synchronization
occurs at coupling strength σ1. We have µ1 < µ2 < ... < µ5 and σ5 < σ4 < ... < σ1, so increasing noise strength leads
to decreasing coupling strength for which full synchronization occurs.

15

(a) N = 15

(b) N = 50

Figure 11: Similar upsweep simulations as in Fig. 10 for different system sizes. Number of different initial conditions
per value of noise strength: 4, number of steps from σ = 0 to σ = 6: 31, number of time units between each increase in
σ: 5000. Dotted lines indicate average σ-value for which full synchronization is reached. The indices of σ and µ in this
plot correspond, i.e. for µ1 full synchronization occurs at coupling strength σ1. In both cases we have µ1 < µ2 < ... < µ5

and σ5 < σ4 < ... < σ1, so increasing noise strength leads to decreasing coupling strength for which full synchronization
occurs.

In Figs. 10 and 11, system (26) is simulated for different µ values while the other system properties
(ω-distribution, N , ϵ, and β) are held constant. For each value of noise strength, µ, a number of
different upsweeps are performed, all with random initial conditions. In Figs. 10 and 11 the ω-
distribution is such that the system exhibits a singlestep transition, ϵ = 0.01, and β = −0.53π. Other
system properties vary per plot, see captions for more details.

These plots strongly suggest that for an upsweep as described in Section 5.1, white noise in the
coupling may induce full synchronization in singlestep transitions sooner than without the presence of
noise. Furthermore, these plots seem to suggest that the fully synchronised state is more stable than
the other states.

16

6.1 Qualitative Explanation

The problem of escape from stable states due to noise is pervasive in physics and other fields of science.
Indeed, it seems to be what we’re dealing with at present.

As explained in Section 5.2, it appears as though system (26) without noise exhibits a certain
degree of multistability. In Figs. 12 and 13 we show that the additive noise term can cause jumps
between stable states.8 In these figures, system (26) is simulated in the same way as at the start of
Section 6, except the coupling strength, σ, is kept constant.

Given the results from Figs. 12 and 13, it seems reasonable to assume that this is what is causing
the jumps to full synchronization for lower values of σ In Figs. 10 and 11.

However, this does not explain why we don’t see jumps from S = 1 back down to S ≈ 0.5 in the
upsweep plots. It does not seem plausible that it’s because of the fact that σ is increasing, since this
happens at a very slow rate meaning there would be enough time for a downwards jump to occur
before the coupling strength is too high.9 A more reasonable explanation would be that the fully
synchronized state is more stable than the other states meaning a larger perturbation in the coupling
weights is required to change the synchronization index (i.e. to desynchronize it).

In order to make any of these statements more definitive, either a more comprehensive numerical
study should be done or an analytical study should be performed. However, as will be explained
in the subsequent section, approaching this problem analytically is rather difficult (at least for me).
Performing more simulations is certainly possible, but would require more time given that the runtime
to produce Fig. 10 on my PC is in excess of 2 hours (and a lot more data is required).

(a)
√
µ = 0.14 (b)

√
µ = 0.15 (c)

√
µ = 0.16

Figure 12: Jumping between stable states due to noise for varying values of noise strength. System size: N = 15,
coupling strength: σ = 3.

(a)
√
µ = 0.27 (b)

√
µ = 0.28 (c)

√
µ = 0.29

Figure 13: Jumping between stable states due to noise for varying values of noise strength. System size: N = 50,
coupling strength: σ = 3.

8Although we haven’t proven that system (26) is actually multistable, we will assume that it is.
9In Figs. 12 and 13 we do see frequent downward jumps but the noise values are much higher. These plots are only

used to illustrate the fact that the noise in the coupling can induce jumps between stable states.

17

6.2 Hysteresis

In [2] it was shown that system (26) without noise exhibits hysteric behaviour in that a downsweep
of the system (starting at high σ and decreasing its value) leads to a significantly lower value of σ for
which the system can be fully synchronized. Here we show that for certain values of noise strength
this hysteric behaviour can largely be eliminated.

The simulation in Fig. 14 was done identically to the one in Fig. 11a except that σ was decreased
from 6 to 0. We also simulated fewer noise values and fewer initial conditions per noise value but this
does not affect the dynamics of the system.

From Figs. 11a and 14 one can see that the upsweep behaviour is very similar to the downsweep
behaviour if the noise strength satisfies

√
µ = 0.080 and N = 15 (and all other system properties are

as specified at the start of Section 6). This means that for these conditions no hysteresis is observed
when slowly changing the coupling strength.

Finally, this downsweep behaviour seems to support the explanation that a larger perturbation in
the coupling weights is required to desynchronize the system from full synchronization compared to
synchronizing the system from the two cluster state.

Figure 14: Downsweep instead of upsweep. System size: N = 15, number of different initial conditions per value of
noise strength: 3, number of steps from σ = 6 to σ = 0: 31, number of time units between each decrease in σ: 5000.
The dotted line indicates average σ-value (only for the highest noise value to prevent cluttering) for which the system
no longer is fully synchronized.

18

7 Discussion

Before I go into the main points of this thesis I would like to point out a few smaller, miscellaneous
discussion points.

The simulations in Section 5 could potentially have been sped up by using a different Runge-Kutta
method. For example, the Dormand-Prince method seems to be superior to the Runge-Kutta-Fehlberg
method [18].

On the other hand, for the simulations in Section 6 the Runge-Kutta-Fehlberg method may have
been overkill. Due to the presence of noise we introduced a maximum time step of 0.05. However,
the optimum adaptive time step, calculated according to the methods in Appendix C.2, was always
significantly greater than 0.05. This means a lower order integration method for the phases in system
(26) may have been sufficient, which could have sped up computations.

The insets in Fig. 4 don’t provide the clearest example of a typical multistep frequency distribution
and singlestep distribution. Ideally, one would simulate system (23) many times and take the averaged
frequency distributions for all multistep transitions and all singlestep transitions. This is what is done
in [2], and a clear bump is observed in the center of the distribution for multistep transitions and
bumps are seen at the ends of the frequency distribution of the singlestep transitions.

Finally, it is worth mentioning that for all 6 curves in Fig. 2 a different random realization of the
natural frequency distribution was taken for each increase in k. Though this means we are technically
changing system properties during the simulation, since we are assuming these simulations are valid
representations of the thermodynamic limit (N → ∞), it shouldn’t matter. A few simulations were
performed for which the realization of the frequency distribution remained constant as k increased and
there was no noticeable difference in the kc value. It will be noted that curves looked smoother.

7.1 Non-Adaptive Kuramoto Model

In Section 3 an equation (Eq. 20) for the coupling strength, kc, was derived according to the methods
in [1]. This derivation essentially also showed us how Sakaguchi obtained his result for kc in the infinite
KM under the influence of white noise. On top of that, it provided a nice use case of the Fokker-Planck
equation, which is an important tool in the field of statistical physics.

Eq. 20 proved to be accurate for low values of correlation time, τ , however it quickly broke down
as τ increased. This was not particularly surprising given that the assumption of small τ was made in
the derivation. One could argue that the use case of Eq. 20 is limited since τ has to be small, but not
so small that it cannot reasonably be approximated by the white noise equation (Eq. 12).

Obtaining a more accurate equation for kc would require solving the two variable FPE (for ψ and
η), which is a difficult task.

7.2 Adaptive Kuramoto Model

In Section 5 we looked at a Kuramoto-type adaptive dynamical network (Eq. 23) that was studied in
[2]. Through the use of numerical simulation it was shown that 3 interesting dynamical phenomena
occur in system (23). These phenomena were in order of appearance: synchronization, frequency
clustering and multistability.

Synchronization was shown to happen in steps with slowly increasing coupling strength, σ. A
distinction was made between two inherently different paths to full synchronization; the singlestep
transition and the multistep transition, as in [2]. The difference in these two transitions was explained
by the formation of clusters. We showed that clusters in the coupling matrix, κ, corresponded to
phase locked clusters (i.e. frequency clusters). This was done analytically (with a few assumptions)
and backed up numerically.

In Section 6 additive white noise was introduced in the coupling weights. Interestingly, it was shown
that for a similar upsweep protocol as was used in [2] and in Section 5, this caused full synchronization
to occur for lower values of coupling strength, σ. Furthermore, it was shown that the hysteric behaviour
shown in [2] was not present for specific values of noise strength.

While the quicker path to synchronization due to noise was explained qualitatively, further conclu-
sions were unable to be drawn. This was because of to the low number of simulations and the lack of
an analytical study.

19

In order to gain more insight into system (26) an analytical study was attempted, but proved to
be difficult, even in the extremely simplified case of just 2 oscillators. If we assume that there are 2
oscillators and that the coupling weights are symmetric (i.e. κ = κ12 = κ21), we may write system
(26) as

ψ̇ = ∆ω − σκ sin(ψ),

κ̇ = −ϵ
[
κ+ sin(ψ + β)

]
+

√
µξ,

(27)

where ψ ≡ ϕ1 − ϕ2 and ∆ω ≡ ω1 − ω2. This is a set of coupled Langevin equations so we can
easily write down the FPE for this system. The resultant FPE appeared difficult to solve so a different
approach was needed. We present two methods that were looked into.

In [19] an adaptive dynamical network similar to the one described by Eq. 27 is considered. In
that case the coupling weights also change at a slower timescale and an additive white noise term is
also present. The key difference is that the noise term there is in the equation for the dynamic fast-
changing variable. This allows them to write a one variable FPE for the probability distribution given
fixed values for the coupling and then make the assumption that this probability density converges to
a stationary distribution on a faster timescale than the changes in the coupling weights. This key step
is something we cannot do here.

In [20] a method is presented to find the stationary probability distribution of a FPE through the
use of an ansatz that is valid in the low-noise limit. Though we are interested in low values of noise
strength, this method still appears to require numerical integration. Perhaps a deeper look into this
approach is required.

All in all, to get some sort of analytical solution to this problem I would need more time and maybe
a little bit more background knowledge.

20

Appendix

A Proofs

A.1 Order Parameter Proofs

A.1.1 Phases Evenly Spaced Around Unit Circle

If N points are evenly spread around the unit circle then ϕj = 2πj/N + θ, where 0 ≤ θ < 2π/N is
some arbitrary phase offset. Thus the order parameter becomes

reiϕ0 =
1

N

N∑
j=1

ei(2πj/N+θ) =
eiθ

N

N−1∑
j=0

(
e2πi/N

)j
=
eiθ

N

1− (e2πi/N)N

1− e2πi/N
=
eiθ

N

1− e2πi

1− e2πi/N
= 0.

Therefore r = 0.

A.1.2 Phases Uniformly Distributed on Unit Circle

In this case the ϕi are random variables meaning we should find ⟨r⟩. However, as it turns out, this
is quite a difficult problem. If we ignore the factor 1/N then we have to find the expectation of the
magnitude of the sum of N complex number on the unit circle. This is essentially the same as finding
the expected distance of a random walk in R2, where at each step one goes a distance of 1 unit in a
random direction. For general N explicit expressions for this expectation do not exist. The interested
reader may refer to [21] for explicit expressions up to N = 3.

In order to get an upper bound we use Jensen’s inequality10:

⟨r⟩2 ≤ ⟨r2⟩

=

∫ 2π

0

...

∫ 2π

0

∣∣∣∣ 1N
N∑
j=1

eiϕj

∣∣∣∣2 1

(2π)N
dϕ1...dϕN

=
1

(2π)N
1

N2

∫ 2π

0

...

∫ 2π

0

N∑
j=1

eiϕj

N∑
j=1

e−iϕjdϕ1...dϕN

=
1

(2π)N
1

N2

∫ 2π

0

...

∫ 2π

0

(
N +

N∑
j=1

N∑
k=1
k ̸=j

ei(ϕj−ϕk)

)
dϕ1...dϕN

=
1

(2π)N
1

N

∫ 2π

0

...

∫ 2π

0

dϕ1...dϕN

=
1

N
.

The double summation in the 4th line disappears because
∫ 2π

0
exdx = 0. By taking the square root

of both sides one obtains

⟨r⟩ ≤ 1√
N
,

i.e. ⟨r⟩ is of size O(1/
√
N). Of course we have not shown how good this upper bound actually is,

though numerical simulations suggest it is not too bad (see Fig. 15).

10Jensen’s inequality states that for any convex function f : I → I (where I is an open interval) and random variable
X whose set of possible outcomes is contained within I we have f(⟨X⟩) ≤ ⟨f(X)⟩. For a proof of the non-general case
that f is twice differentiable see [22, p.81].

21

Figure 15: Density plot of 105 different instances of the order parameter r. Each instance of r is calculated using Eq. 2
with N = 105 and each phase is chosen from the U[0,2π) distribution. The mean µ (which is practically the same as the

expectation value due to the law of large numbers) is only slightly smaller than 1/
√
N . Moreover, the order parameter

seems to be χ2−distributed for uniformly distributed phases and large N .

A.1.3 Contribution Drifting Phases to Order Parameter is Zero

Since

n(ϕ | ω) = C

|ω − kr sin(ϕ− ϕ0)|
we have n(ϕ | ω) = n(ϕ + π | −ω). Furthermore, the frequency distribution is considered to be

symmetric, i.e. g(ω) = g(−ω). Now

∫
|ω|>kr

∫ 2π

0

ei(ϕ−ϕ0)n(ϕ | ω)g(ω)dϕdω =

∫
|ω|>kr

∫ 2π

0

ei(ϕ−ϕ0)n(ϕ+ π | −ω)g(−ω)dϕdω

=

∫
|ω|>kr

∫ 2π

0

ei(ϕ−ϕ0)n(ϕ+ π | ω)g(ω)dϕdω

=

∫
|ω|>kr

∫ 3π

π

e−iπei(ϕ−ϕ0)n(ϕ | ω)g(ω)dϕdω

= −
∫
|ω|>kr

∫ 2π

0

ei(ϕ−ϕ0)n(ϕ | ω)g(ω)dϕdω.

22

B The Fokker-Planck Equation

In this section a quick overview of the Fokker-Planck equation (FPE) is given. One method of solution,
for a very particular case, is also provided. Derivations and much (much) more detail can be found in
[23, 24].

Consider a system that can be described by x = (x1, ..., xN). Suppose that these N variables satisfy
the following set of stochastic equations of motion

ẋi = ai(x, t) +

N∑
j=1

bij(x, t)ξj , (28)

where ξj are a set of uncorrelated white noise processes with

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = 2δijδ(t
′ − t).

Eqs. 28 are known as Langevin equations: equations of motion that contain random forces. We
refer to ai(x, t) as the drift term and the bij(x, t)ξj as diffusive terms. Due to the diffusive terms,
x1, ..., xN are random variables. Thus it makes sense to talk about x in terms of its probability
distribution function p(x, t). A PDE that describes the time-evolution of the probability distribution
is given by

∂

∂t
p(x, t) =

[
−

N∑
i=1

∂

∂xi
D

(1)
i (x, t) +

N∑
i=1

N∑
j=1

∂2

∂xi∂xj
D

(2)
ij (x, t)

]
p(x, t) (29)

where

D
(1)
i (x, t) = ai(x, t) +

N∑
j=1

N∑
k=1

bkj(x, t)
∂

∂xk
bij(x, t),

D
(2)
ij (x, t) =

N∑
k=1

bik(x, t)bjk(x, t),

are the drift and diffusion coefficients respectively. Eq. 29 is known as the Fokker-Planck equation
(FPE) and it provides an equivalent description of the system given by Eqs. 28.

For a one-dimensional system the FPE reduces to

∂

∂t
p(x, t) =

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
p(x, t) (30)

where

D(1)(x, t) = a(x, t) + b(x, t)
∂

∂x
b(x, t), D(2)(x, t) = b2(x, t).

Note that in some texts the FPE is given with a factor 1
2 in front of the second summation term.

This is also possible and it means one will get a different expression for D(1)(x). Here we decide to
follow the convention of (probably) the most extensive book on the topic: The Fokker-Planck Equation
by H. Risken ([24]).

B.1 Fokker-Planck Equation for One Variable: Stationary Solution

In this section we show how to obtain a solution for one-variable FPE with time-independent drift and
diffusion coefficients. The FPE for one variable (Eq. 30) may be rewritten as

∂

∂t
p(x, t) = − ∂

∂x
S(x, t), (31)

where

23

S(x, t) =

[
D(1)(x)− ∂

∂x
D(2)(x)

]
p(x, t)

is known as the probability current. Now we introduce

Φ(x) = lnD(2)(x)−
∫ x

0

D(1)(x′)

D(2)(x′)
dx′.

Then the probability current can be written as

S(x, t) = −D(2)(x)e−Φ(x) ∂

∂x

[
eΦ(x)p(x, t)

]
. (32)

If we’re looking for a stationary solution (i.e. p(x, t) = ps(x)) then it is clear from Eq. 31 that the
probability current should be constant: S(x, t) = S. Thus Eq. 32 becomes

∂

∂x

[
eΦ(x)ps(x)

]
= −S eΦ(x)

D(2)(x)
.

Integrating and rearranging gives

ps(x) = Ne−Φ(x) − Se−Φ(x)

∫ x

0

eΦ(x′)

D(2)(x′)
dx′.

The two constants, N and S, are to be determined by the normalization condition and the boundary
conditions.

24

C Numerical Methods

C.1 Stochastic Differential Equations

A stochastic differential equation (SDE) is an equation of the form

ẋ = a(x, t) + b(x, t)ξt, (33)

where ξt are uncorrelated Gaussian random variables, i.e.

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t′)⟩ = qδijδ(t
′ − t).

and a(x, t) and b(x, t) are again referred to as the drift and diffusion coefficients resepctively. The
formal way to interpret Eq. 33 is as follows

x(t) =

∫ t

t0

a(x, t′)dt′ +

∫ t

t0

b(x, t′)dW (t′), (34)

where W (t) is a Wiener process and the latter integral is an Ito stochastic integral.11 For more
details on these concept we refer the reader to [17]. One important property of the standard Wiener
process that will be given is that W (t)−W (s) is normally distributed with zero mean.

C.1.1 Euler-Maruyama Method

Suppose that we want to simulate Eq. 33 up until a time T . Let {tn : n = 1, ..., N and t0 = t1 <
... < tn < ... < tN = T} be discretization of [t0, T]. Now let yn be the approximation of x(tn). Then a
natural extension of the regular Euler forward scheme is given by

yn+1 = yn + a(yn, tn)(tn+1 − tn) + b(yn, t)(W (tn+1)−W (tn)),

which is known as the Euler-Maruyama method. The only difference with the regular Euler method
is that one has to determine

∆Wn ≡W (tn+1)−W (tn)

at every time step. Since the ∆Wn are normally distributed with zero mean, one can just take a
sample from the N(0,

√
var(∆Wn)) distribution in order to simulate ∆Wn at each time step. For the

standard Wiener process var(W (t)−W (s)) = t− s, but since our white noise is delta correlated with
a factor q, we have var(∆Wn) = q(tn+1 − tn). This can be shown as follows

⟨∆W 2
n⟩ =

〈(∫ tn+1

tn

dW (t)

)2
〉

=

〈(∫ tn+1

tn

ξ(t)dt

)2
〉

=

〈∫ tn+1

tn

∫ tn+1

tn

ξ(t)ξ(s)dtds

〉
=

∫ tn+1

tn

∫ tn+1

tn

〈
ξ(t)ξ(s)

〉
dtds

=

∫ tn+1

tn

∫ tn+1

tn

qδ(t− s)dtds

=

∫ tn+1

tn

q1[tn,tn+1]ds = q(tn+1 − tn).

According to [17], when the noise is additive12 and a and b are sufficiently smooth, the Euler-
Maruyama scheme has order 1.

11The reason that one cannot use a ‘normal’ integral is that Eq. 34 suggests that ξt =
dW (t)

dt
, which poses a problem

because a Wiener process is nowhere differentiable.
12Additive noise means that the diffusion coefficient is not a function of x, i.e. b(x, t) = b(t). If the noise is not additive

then the Euler-Maruyama scheme has order 0.5.

25

C.2 Runge-Kutta-Fehlberg Method

In this section we present some of the key results (for our purposes) from [25]. The goal is to find a
numerical approximation for x(t), where

ẋ = a(x, t).

The main idea of the method is to use a 5th order Runge-Kutta method to estimate the local
truncation error of a 4th order Runge-Kutta method at step n and to use this estimate to determine
the optimum time step for step n+ 1. So the 4th order method is used for the integration and the 5th

order method is used to keep the error small.
We begin by showing that the 5th order method can be used as a reasonable estimate for the local

truncation error at each step. Let yn and ŷn be the 4th and 5th order approximations of x(tn) with
x(tn−1) as starting point respectively, and h be the time step used at time tn (i.e. h ≡ tn+1 − tn).
Then

yn+1 = wn + hg(tn, x(tn), h), (35)

is obtained from the Taylor expansion of x about the point tn,

x(tn+1) = x(tn) + hg(tn, x(tn), h) +O(h5).

And, similarly,

ŷn+1 = ŷn + hĝ(tn, x(tn), h), (36)

is obtained from the higher order Taylor expansion (also about tn)

x(tn+1) = x(tn) + hĝ(tn, x(tn), h) +O(h6).

Let τ and τ̂ denote the local truncation errors for the 4th and 5th order methods respectively. By
the definition of local truncation error we have

τn+1(h) =
1

h

[
x(tn+1)− yn+1

]
,

and

τ̂n+1(h) =
1

h

[
x(tn+1)− ŷn+1

]
,

since the approximates yn+1 and ŷn+1 are made with x(tn) as starting point.13 Using this fact and
looking at the two equations above it is clear that τn+1(h) is O(h4) and τ̂n+1(h) is O(h5).

Rewriting the expression for τn+1(h) a little bit leads to

τn+1 =
1

h

[
x(tn+1)− ŷn+1 + ŷn+1 − yn+1

]
,

= τ̂n+1 +
1

h

[
ŷn+1 − yn+1

]
,

≈ 1

h

[
ŷn+1 − yn+1

]
,

where the last step is due to the fact that τn+1(h) is O(h4) and τ̂n+1(h) is O(h5).
Now we show how this result may be used to compute the optimum time step that ensures the

local truncation error is (approximately) bounded by ϵmax. Since τn+1(h) is O(h4), there exists a K
such that τn+1(h) ≈ Kh4. Now define hopt ≡ ch. Then

τn+1(hopt) = c4Kh4 ≈ c4τn+1(h) ≈
c4

h

[
ŷn+1 − yn+1

]
.

Since we require τn+1(hopt) ≤ ϵmax

13Which is required by definition of truncation error.

26

c4

h

[
ŷn+1 − yn+1

]
≤ ϵmax.

Because we want the optimum time step (i.e. least computation time meaning largest possible time
step), this inequality becomes an equality and

hopt =

(
hϵmax

ŷn+1 − yn+1

) 1
4

h. (37)

Implementation Let zn denote the approximation of x(tn). Then a simple adaptive step size
method can be implemented as follows:

1. Set initial conditions (including an initial value for hopt).

2. While time, tn, is less than end time complete the following steps:

(a) Compute yn+1 according to Eq. 35 using hopt and zn as the previous step.

(b) Compute ŷn+1 according to Eq. 36 using hopt and zn as the previous step.

(c) If 1
hopt

[
ŷn+1 − yn+1

]
≤ ϵmax:

i. Set zn+1 → yn+1.

ii. Set tn → tn + hopt.

(d) Recompute hopt using Eq. 37.

Looking at this implementation one may think isn’t inefficient to compute a 4th and 5th order
Runge-Kutta (RK) approximation at each time step (especially because RK methods generally require
quite a few evaluations of the function a(x, t)). This would be right for an arbitrary combination of 4th

and 5th order RK methods. However, in a 1969 NASA technical report [26], Erwin Fehlberg showed
that RK methods exist for which the 4th order calculations may be used in the 5th order calculations.
This means only a few extra calculations are necessary at each step.

To see how to calculate yn+1 and ŷn+1 using the Fehlberg method have a look at the rk45 step

function in Appendix D.2.2 (or refer to [25, 26]).
Finally, for all simulations in this report that used the Runge-Kutta-Fehlberg method, we had:

ϵmax = 10−5.

27

D Code

D.1 Mathematica Script

In[1]:=

ClearAll[r,x,y]

In[2]:=

A[r_,x_,y_]:=
k*r*(k*r*τττ*Cos[2*x]+4*τττ*y*Sin[x]+4*Cos[x])+4*x*y

4D

In[3]:=

B[r_,x_]:=1+k*r*τττ*Cos[x]

In[4]:=

a[r_,x_,y_]:=Series[Exp[-1*A[r,x,y]]*B[r,x],{r,0,3}]

In[5]:=

b[N_,r_,x_,y_]:=N*
Exp[A[r,x,y]]*B[r,x]

1-Exp[2* Pi*y

D
]

*(Integrate[a[r,z,y],{z,x,0}]+Exp[2*Pi*y
D

]*

Integrate[a[r,z,y],{z,2*Pi,x}])

In[6]:=

c[N_,r_,y_]=Integrate[Series[b[N,r, x, y], {r,0,3}],{x,0,2*Pi}]

Out[6]=

D N π (2 D2+k2 r2+2 y2)

y (D2+y2)

In[7]:=

normalization=Solve[c[N,r,y]==1,N]

Out[7]=

{{N→ y (D2+y2)

D π (2 D2+k2 r2+2 y2)
}}

In[8]:=

d[r_,x_,y_]=b[N,r,x,y]*Cos[x]/.normalization[[1]];

In[9]:=

e[r_,y_]=Integrate[Series[d[r,x,y],{r,0,3}],{x,0,2*Pi}];

In[10]:=

SeriesCoefficient[e[r,y],{r,0,1}]

Out[10]=

k (D+D2 τ+y2 τ)

2 (D2+y2)

In[11]:=

SeriesCoefficient[e[r,y],{r,0,3}]

Out[11]=

-
k3 (2 D3-4 D y2+4 D4 τ+5 D2 y2 τ+y4 τ+6D5 τ 2+6 D3 y2 τ 2)

8 (D2+y2)
2
(4 D2+y2)

28

D.2 Python Code

In the following sections we give the main bodies of code that were used to perform the simulations
from sections 2, 3, 5, and 6. However, many adaptations and versions of these codes were utilized.
Examples of adaptations include (but are not limited to):

• Adding a for-loop to perform a certain simulation for different parameters,

• Changing functions to output different quantities,

• Changing functions to speed up computations under certain conditions (e.g. changing an Euler-
Maruyama step to a regular Euler-forward step when no noise is simulated).

Moreover, there are quite a lot of sections of code attributed to plotting. All those bits of code
haven’t been included either because they’re not that interesting.

D.2.1 Coloured Noise Code

This code can produce the data to produce a single curve from Fig. 2. By changing parameters the
data for all the curves in this figure can be produced.

Making a few small modifications allows one to create the data for Fig. 3. This data still has to
be interpreted though - most importantly a function needs to be created to determine the numerical
value of kc. I did this by creating a function that checks for what k value the change in r is beyond a
certain critical value (i.e. a function that checks when the slope of r(k) is high enough). A good value
for the critical slope seemed to be around 0.5.

1 import numpy as np

2

3

4 np.random.seed(0)

5

6

7 #Saving stuff

8 FILENAME = "filename_here"

9 TAG = 0

10

11

12 #Simulation settings

13 K_MIN = 1

14 K_MAX = 5

15 N_KS = 21

16 N_TIME_STEPS = 50000

17

18

19 class Model():

20 #Define model parameters

21 D = 1

22 LAMBDA = 0.5

23 TAU = 3.5

24 N = 5000

25

26

27 def g(N):

28 #Natural frequency distribution function

29 return Model.LAMBDA*np.random.standard_cauchy(N)

30

31

32 def dW(dt, N):

33 #Return value of integrated white-noise - i.e. Wiener process increment

34 return np.random.normal(loc=0.0, scale=(2*dt)**(0.5), size=N)

35

36

29

37 def run_simulation(k, D, tau, N_steps, omega, dt=1e-3):

38 #Integrate Langevin equations (13) and (14) from main text

39 #Return value of order parameter at each point in time

40 N = len(omega)

41 percentage_indicator = N_steps / 5

42 phi = 2*np.pi*np.random.rand(N)

43 eta = dW(dt, N)

44 r_arr = np.zeros(N_steps)

45 r_arr[0] = np.abs((1/N)*np.sum(np.exp(1j*phi)))

46

47 for i in range(N_steps-1):

48 cos_sum = np.cos(phi).sum()

49 sin_sum = np.sin(phi).sum()

50 phi = phi + (omega + (k/N)*(sin_sum*np.cos(phi) - cos_sum*np.sin(phi))

51 + eta)*dt

52 eta = eta - (eta/tau)*dt + ((D**(0.5))/tau)*dW(dt, N)

53

54 if abs(i % percentage_indicator) < 1e-10:

55 print("{:.2f}% done".format((i/N_steps)*100))

56

57 r_arr[i+1] = np.abs((1/N)*np.sum(np.exp(1j*phi)))

58

59 return r_arr

60

61

62 def sweep_ks(k_min, k_max, N_ks, D, tau, N_time_steps, omega):

63 #Perform integration of Langevin equations (13) and (14) for range of k’s

64 #Return averaged order parameter for each k value

65 ks = np.linspace(k_min, k_max, N_ks)

66 rs = np.zeros(len(ks))

67

68 for i, k in enumerate(ks):

69 print("k: {}".format(k))

70 r_arr = run_simulation(k, D, tau, N_time_steps, omega)

71 rs[i] = np.mean(r_arr[int(len(r_arr)/2):])

72 print("\n{}\n\n".format(rs[i]))

73

74 return rs, ks

75

76

77 rs, ks = sweep_ks(K_MIN, K_MAX, N_KS, Model.D, Model.TAU, N_TIME_STEPS, g(Model.N))

78

79

80 np.save(FILENAME + "_rs_" + str(TAG), rs)

81 np.save(FILENAME + "_ks_" + str(TAG), ks)

30

D.2.2 Adaptive Dynamical Network Code

Most of this code is reasonably self-explanatory. But we shall make a few comments on some elements.
Firstly, in the rk45 step and the run simulation functions we note that the dt variable contains

two elements. This is because rk45 step updates the time step but we still want the coupling weights
to be updated by the ‘old’ time step that was used to update the phases. Of course other solutions
are possible as well.

If one wants to simulate system (23) it is recommended to remove the dW term in the
euler maruyama step function to avoid the unnecessary generation of N2 random numbers at each
time step.

In lines 142-145 the weighted average of the coupling weights and phase velocities is updated. It
has to be a weighted average due to the variable time step.

1 import numpy as np

2 from functools import partial

3 import timeit

4

5

6 SEED = 0

7 np.random.seed(SEED)

8

9

10 class SaveParam():

11 """Saving parameters"""

12

13 FILE_LOC = "file/location/here"

14 TAG = 0

15

16

17 class PlotParam():

18 """Plot parameters"""

19

20 N_NOISE_VALS = 5

21 N_ICS_PER_NOISE_VAL = 4

22 N_STEPS_SIGMA_SWEEP = 31

23 NOISE_MIN = 0

24 NOISE_MAX = 0.08

25 SIGMA_MIN = 0

26 SIGMA_MAX = 6

27

28

29 class SimParam():

30 """Simulation parameters"""

31

32 SIMULATION_TIME = 5000

33 MAX_LOCAL_TRUNC = 1e-5

34 DT_MAX = 0.05 #can be higher when simulating system (23)

35

36

37 class Model():

38 """Model parameters"""

39

40 N = 50

41 OMEGAS = np.random.uniform(-0.25, 0.25, N)

42 EPSILON = 0.01

43 BETA = -0.53*np.pi

44

45

46 def differences_matrix(x):

47 """This returns a matrix where element ij == x_i - x_j"""

48

31

49 return np.outer(x, np.ones(len(x))) - np.outer(np.ones(len(x)), x)

50

51

52 def g(phi_diffs, kappas, sigma):

53 """d/dt(phi) = g(phi, kappa)"""

54

55 kappa_phi_sum = (kappas*np.sin(phi_diffs)).sum(-1)

56

57 return Model.OMEGAS - (sigma/Model.N)*kappa_phi_sum

58

59

60 def h(kappas, phi_diffs):

61 """d/dt(kappa) = h(phi, kappa)"""

62

63 return -1*Model.EPSILON*(kappas + np.sin(phi_diffs + Model.BETA))

64

65

66 def dW(dt, size):

67 """Return value of integrated white-noise - i.e. Wiener process increment"""

68

69 return np.random.normal(loc=0, scale=(dt**(0.5)), size=size)

70

71

72 def update_time_step(dt, local_trunc_estimate):

73 """Update time step so that the local truncation error stays small enough."""

74

75 dt = (((SimParam.MAX_LOCAL_TRUNC)/(2*local_trunc_estimate))**(1/4))*dt

76

77 if dt > SimParam.DT_MAX:

78 dt = SimParam.DT_MAX

79

80 return dt

81

82

83 def rk45_step(x_prev, dt, f, arg):

84 """Compute a single time step using the Fehlberg method. Return the updated

85 value of x, the velocity at this time-step, and updated dt. Note that

86 dt[0] is the time step used, and dt[1] is the updated time step - to be

87 used during the next step."""

88

89 while True:

90 k_1 = dt[0]*f(arg)

91 k_2 = dt[0]*f(arg + (1/4)*k_1)

92 k_3 = dt[0]*f(arg + (3/32)*k_1 + (9/32*k_2))

93 k_4 = dt[0]*f(arg + (1932/2197)*k_1 - (7200/2197)*k_2 + (7296/2197)*k_3)

94 k_5 = dt[0]*f(arg + (439/216)*k_1 - (8)*k_2 + (3680/513)*k_3 - (845/4104)*k_4)

95 k_6 = dt[0]*f(arg - (8/27)*k_1 + (2)*k_2 - (3544/2565)*k_3 + (1859/4104)*k_4 -

(11/40)*k_5)

96 dx = (25/216)*k_1 + (1408/2565)*k_3 + (2197/4104)*k_4 - (1/5)*k_5

97 dz = (16/135)*k_1 + (6656/12825)*k_3 + (28561/56430)*k_4 - (9/50)*k_5 + (2/55)*k_6

98

99 local_trunc_estimate = abs(np.max(dx - dz))/dt[0]

100

101 dt[1] = update_time_step(dt[0], local_trunc_estimate)

102

103 if local_trunc_estimate < SimParam.MAX_LOCAL_TRUNC:

104 x = x_prev + dx

105 break

106

107 dt[0] = dt[1]

108

109 return x, dx/dt[0], dt

32

110

111

112 def euler_maruyama_step(y_prev, dt, a, b):

113 """Compute a single time-step using the Euler-Maruyama method"""

114

115 return y_prev + a*dt + b*dW(dt, y_prev.shape)

116

117

118 def run_simulation(sigma, gamma, phi_0, kappa_0, time_limit=SimParam.SIMULATION_TIME):

119 """Simulate system (25) (or system (23) if gamma = 0) using the RK

120 Fehlberg method for the phis and the Euler-Maruyama method for the kappas.

121 Return the weighted average of the kappa matrix and the phase velocity.

122 Average is taken after 50% of the time_limit. Also return final values for

123 kappa matrix and phis."""

124

125 averaging_time = time_limit / 2

126 kappas_mean = np.zeros((Model.N, Model.N))

127 d_phis_mean = np.zeros(Model.N)

128 kappas = kappa_0

129 phis = phi_0

130 dt = [0.01, 0.01]

131 time = 0

132 count = 0

133

134 while time < time_limit:

135 phi_diffs = differences_matrix(phis)

136 f = partial(g, kappas=kappas, sigma=sigma)

137 phis, d_phi, dt = rk45_step(phis, dt, f, phi_diffs)

138 f = partial(h, phi_diffs=phi_diffs)

139 kappas = euler_maruyama_step(kappas, dt[0], f(kappas), gamma)

140

141 if time >= averaging_time:

142 kappas_mean = kappas_mean + (dt[0] / (time - averaging_time +

143 dt[0]))*(kappas - kappas_mean)

144 d_phis_mean = d_phis_mean + (dt[0] / (time - averaging_time +

145 dt[0]))*(d_phi - d_phis_mean)

146

147 if count % 5000 == 0:

148 print(" count: {} | dt: {} | time: {}".format(count, dt, time))

149

150 time += dt[0]

151 count += 1

152 dt[0] = dt[1]

153

154 return kappas_mean, d_phis_mean, phis, kappas

155

156

157 def sweep_sigmas(sigmas, gamma, phi_0, kappa_0, IC_number):

158 """Perform simulation of system (25) for different values of signma.

159 Use final values of previous simulation as initial conditions for

160 subsequent simulation. For each value return the sync index calculated

161 using the phi method and the sync index calculated using the kappa method."""

162

163 sync_index_kappa = np.zeros(len(sigmas))

164 sync_index_phi = np.zeros(len(sigmas))

165 phi_initial = phi_0

166 kappa_initial = kappa_0

167

168 for i, sigma in enumerate(sigmas):

169 print(" SIMULATION NUMBER: {} | SIGMA: {} | NOISE VALUE: {} | IC NUMBER: {}"

170 .format(i, sigma, gamma, IC_number))

171 kappas, phase_velocities, phi_initial, kappa_initial = \

33

172 run_simulation(sigma, gamma, phi_initial, kappa_initial)

173 sync_index_kappa[i] = ((abs(kappas) > 0.8).sum())/(Model.N**2)

174 sync_index_phi[i] = ((abs(differences_matrix(phase_velocities)) <

1e-3).sum())/(Model.N**2)

175 print(" SYNC INDEX KAPPA: {} | SYNC INDEX PHI: {}\n"

176 .format(sync_index_kappa[i], sync_index_phi[i]))

177

178 return sync_index_kappa, sync_index_phi

179

180

181 def sweep_sigmas_N_ICs(N_initial_conditions, sigmas, gamma):

182 """Perform a sigma sweep N times. Return N instances of sync index against

183 sigma (for both ways of calculating sync index)."""

184

185 sync_indexes_kappa = np.zeros((N_initial_conditions, len(sigmas)))

186 sync_indexes_phi = np.zeros((N_initial_conditions, len(sigmas)))

187

188 for i in range(N_initial_conditions):

189 print("INITIAL CONDITIONS: {}".format(i))

190 kappa_0 = np.random.uniform(-1, 1, (Model.N, Model.N))

191 #kappa_0 = 0.5*(kappa_0 + kappa_0.T)

192 phi_0 = np.random.uniform(0, 2*np.pi, Model.N)

193 sync_indexes_kappa[i], sync_indexes_phi[i] = sweep_sigmas(sigmas, gamma, phi_0,

kappa_0, i)

194

195 return sync_indexes_kappa, sync_indexes_phi

196

197

198 def main():

199 """Perform sigma sweep N_ICS_PER_NOISE_VAL times for the specified number

200 of noise values. Save the files when done."""

201

202 sigmas = np.linspace(PlotParam.SIGMA_MIN, PlotParam.SIGMA_MAX,

PlotParam.N_STEPS_SIGMA_SWEEP)

203 sync_indexeses_kappa = np.zeros((PlotParam.N_NOISE_VALS,

204 PlotParam.N_ICS_PER_NOISE_VAL,

PlotParam.N_STEPS_SIGMA_SWEEP))

205 sync_indexeses_phi = np.zeros((PlotParam.N_NOISE_VALS,

206 PlotParam.N_ICS_PER_NOISE_VAL, PlotParam.N_STEPS_SIGMA_SWEEP))

207

208 noise_vals = np.linspace(PlotParam.NOISE_MIN, PlotParam.NOISE_MAX, PlotParam.N_NOISE_VALS)

209

210 for i, noise_val in enumerate(noise_vals):

211 print("NOISE VALUE: {}\n". format(noise_val))

212 sync_indexeses_kappa[i], sync_indexeses_phi[i] = \

213 sweep_sigmas_N_ICs(PlotParam.N_ICS_PER_NOISE_VAL, sigmas, noise_val)

214

215 np.save(SaveParam.FILE_LOC + "_sync_index_kappa_" + str(SaveParam.TAG) + "_seed_"

216 + str(SEED), sync_indexeses_kappa)

217 np.save(SaveParam.FILE_LOC + "_sync_index_phi_" + str(SaveParam.TAG) + "_seed_"

218 + str(SEED), sync_indexeses_phi)

219 np.save(SaveParam.FILE_LOC + "_noise_values_" + str(SaveParam.TAG) + "_seed_"

220 + str(SEED), noise_vals)

221 np.save(SaveParam.FILE_LOC + "_sigmas_" + str(SaveParam.TAG) + "_seed_"

222 + str(SEED), sigmas)

223

224

225 start_time = timeit.default_timer()

226 main()

227 stop_time = timeit.default_timer()

228 print("Runtime: {:.2f}s".format(stop_time - start_time))

34

References

[1] C. Maggi and M. Paoluzzi. The effect of time-correlated noise on the kuramoto model studied via
the unified colored noise approximation, 2019.

[2] Jan Fialkowski, Serhiy Yanchuk, Igor M. Sokolov, Eckehard Schöll, Georg A. Gottwald, and Rico
Berner. Heterogeneous nucleation in finite-size adaptive dynamical networks. Physical Review
Letters, 130(6), feb 2023.

[3] Haixia Wang, Qingyun Wang, and Qishao Lu. Bursting oscillations, bifurcation and synchroniza-
tion in neuronal systems. Chaos, Solitons Fractals, 44(8):667–675, 2011.

[4] Peter J. Uhlhaas and Wolf Singer. Abnormal neural oscillations and synchrony in schizophrenia.
Nature Reviews Neuroscience, 11(2):100–113, 2010.

[5] J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, and R. Spigler. The kuramoto model:
A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 77:137–185, Apr 2005.

[6] Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Huzihiro
Araki, editor, International Symposium on Mathematical Problems in Theoretical Physics, pages
420–422, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[7] H. Sakaguchi. Cooperative Phenomena in Coupled Oscillator Systems under External Fields.
Progress of Theoretical Physics, 79(1):39–46, 01 1988.

[8] Bidhan Chandra Bag, K. G. Petrosyan, and Chin-Kun Hu. Influence of noise on the synchroniza-
tion of the stochastic kuramoto model. Phys. Rev. E, 76:056210, Nov 2007.

[9] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer, 1984.

[10] Bidhan Chandra Bag and Chin-Kun Hu. Escape through an unstable limit cycle: Resonant
activation. Phys. Rev. E, 73:061107, Jun 2006.

[11] Peter Hanggi and Peter Jung. Colored Noise in Dynamical Systems. Advances in Chemical
Physics, 89:239–326, January 1995.

[12] Rico Berner, Thilo Gross, Christian Kuehn, Jürgen Kurths, and Serhiy Yanchuk. Adaptive dy-
namical networks, 2023.

[13] Leonhard Lücken, Oleksandr V. Popovych, Peter A. Tass, and Serhiy Yanchuk. Noise-enhanced
coupling between two oscillators with long-term plasticity. Phys. Rev. E, 93:032210, Mar 2016.

[14] Oleksandr Popovych, Serhiy Yanchuk, and Peter Tass. Self-organized noise resistance of oscillatory
neural networks with spike timing-dependent plasticity. Scientific reports, 3:2926, 10 2013.

[15] Max Thiele, Rico Berner, Peter A. Tass, Eckehard Schöll, and Serhiy Yanchuk. Asymmetric
adaptivity induces recurrent synchronization in complex networks, 2022.

[16] Rico Berner, Eckehard Schöll, and Serhiy Yanchuk. Multiclusters in networks of adaptively coupled
phase oscillators. SIAM Journal on Applied Dynamical Systems, 18(4):2227–2266, jan 2019.

[17] Peter E. Kloeden, Eckhard Platen, and Henri Schurz. Numerical solution of SDE through computer
experiments. Springer, 2003.

[18] Ernst Hairer. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, 2011.

[19] Leonhard Lücken, Oleksandr V. Popovych, Peter A. Tass, and Serhiy Yanchuk. Noise-enhanced
coupling between two oscillators with long-term plasticity. Phys. Rev. E, 93:032210, Mar 2016.

[20] R. Graham and T. Tél. Weak-noise limit of fokker-planck models and nondifferentiable potentials
for dissipative dynamical systems. Phys. Rev. A, 31:1109–1122, Feb 1985.

[21] J.M. Borwein, D. Nuyens, A. Straub, and J. Wan. Random walks in the plane. Discrete Mathe-
matics and Theoretical Computer Science, pages 191–202, 2010.

35

[22] R.V. Hogg, J.W. McKean, and A.T. Craig. Introduction to Mathematical Statistics. Pearson,
2019.

[23] C. W. Gardiner. Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sci-
ences. Springer, 2002.

[24] H. Risken. The Fokker-Planck Equation: Methods of Solution and Applications. Springer, 1992.

[25] Richard L. Burden, J. Douglas Faires, and Annette M. Burden. Numerical Analysis, chapter Error
Control and the Runge-Kutta-Fehlberg Method, page 294–302. Cengage Learning, 2016.

[26] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their appli-
cation to some heat transfer problems. National Aeronautics and Space Administration, 1969.

36

	Introduction
	Kuramoto Model
	Noise in the Original Kuramoto Model
	White Noise
	Coloured Noise
	Numerical Simulation Coloured Noise

	Adaptive Dynamical Networks
	Synchronization in a Kuramoto-type Adaptive Dynamical Network
	Synchronization and Frequency Clustering
	Multistability

	Synchronization in a Kuramoto-type Adaptive Dynamical Network with Noise
	Qualitative Explanation
	Hysteresis

	Discussion
	Non-Adaptive Kuramoto Model
	Adaptive Kuramoto Model

	Proofs
	Order Parameter Proofs
	Phases Evenly Spaced Around Unit Circle
	Phases Uniformly Distributed on Unit Circle
	Contribution Drifting Phases to Order Parameter is Zero

	The Fokker-Planck Equation
	Fokker-Planck Equation for One Variable: Stationary Solution

	Numerical Methods
	Stochastic Differential Equations
	Euler-Maruyama Method

	Runge-Kutta-Fehlberg Method

	Code
	Mathematica Script
	Python Code
	Coloured Noise Code
	Adaptive Dynamical Network Code

	References

