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Summary

Monopiles are by far the most chosen foundation option for most off-shore activities. The installation of
the foundation is commonly done by impact pile driving. The biggest issue of the traditional pile driving
method is the sound emission, which reaches levels that are harmful to the immediate environment. Partly
because of this, an alternative pile driving method is being developed, namely the Gentle Driving of Piles
[1], where the hydraulic hammer is replaced by a GDP-shaker, which drives the pile toe into the ground
by means of a torsional force. This is an additional incentive for developing a predictive model for the
underwater noise radiation due to a non-symmetric force field. The model proposed in this thesis is similar to
the existing symmetric semi-analytical model SILENCE [2], where the model, as shown in fig. 0.1, consists
of two submodules, namely a pile module and a module that describes the acousto-elastic medium. In both
submodules the displacement field of the subsystem is described using its modal field. The procedure for both
systems are derived and explained in further detail in chapter 3.

Figure 0.1: Model overview

To combine the submodules two different mode-matching methods, that account for the azimuthal direction,
are developed in chapter 4. One of these methods is the so-called Orthogonality method, which is, similar
to [3], based on the orthogonality relations of the acousto-elastic medium. The other is referred to as the
Point-Collocation method, which is loosely based on the reciprocity theorem. Both methods have proven to be
sufficiently stable to achieve good convergence at least for lower frequencies.

The model is tested a small sized pile case study. The results are assessed in chapter 5 through the
frequency spectra of the acousto-elastic medium as well as the metrics. The time evolution of the response is
also looked at, even though these are considered less reliable, due to the limited frequency range.
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Chapter 1

Introduction

1.1 Problem Statement, Relevance and Impact

For many applications steel monopiles are being used, both on- and offshore. The traditional way of installing
these piles is by impulse hammering, where the pile is driven into the soil with multiple blows of the hammer.
The disadvantage of this method is the loud noises it causes, which is detrimental to the environment and its
inhabitants. To counteract this drawback a fair amount of applications have been developed to absorb and
reduce the produced noise. However, these methods can become expensive and complicated to implement,
especially on an offshore platform where resources are limited.

This is where Gentle Driving of Piles (GDP) comes in as a project to look for an alternative pile driving
method where the pile is not driven solely by an impact force but also by wielding (torsional) vibrations to the
pile head [1]. By activating these two different modes of motion, non-symmetrical displacements will take
place, which brings with the coupling of the vertical and horizontal shear waves that exist in the soil medium.
In contrast to the original method, where the horizontal shear waves do not influence the response.

Apart from the non-symmetrical forcing fields, the higher order response might also be interesting to delve
deeper in the response to a vertical impact force. By comparing the pile modes to its response to a vertical
impact force, one can derive that higher order circumferential pile modes are excited, this could be the result
of an off-set of the impact force or an initial inclination of the pile. Thus these higher order modes must have
an influence on the noise field generated [4]. A mathematical solution was proposed that takes this effect into
consideration [3, 4], which is the stepping stone towards implementing higher order circumferential modes of
the monopile, where the azimuthal dependence of the system is implemented. The latter seems to be even
more present in the acoustic field caused by slightly inclined monopiles [5].

1.2 Research goal and methodology

As outlined in the previous section, there is a need for assessment of the non-symmetric response of the
acousto-elastic field, independent of the pile driving technique used.

The aim of the thesis at hand is to create such an initial vibro-acoustic model that considers the non-
symmetric response of the system in the near-field. Which is a stepping stone to mapping the noise emission
of the novel pile driving technique.

The developed model is based on the modal fields of the pile, soil and fluid. The derivations of these fields
are essentially embroidered on the work to develop SILENCE BASIC, a software to for modeling underwater
noise from offshore pile-driving, where the same modal approach is used to obtain the symmetric response [2].

In this work a linear semi-analytical formulation of the response of the acousto-elastic medium is developed,
in which non-symmetric force fields are accounted for. The motions of the acousto-elastic medium as well as
the response of the pile are described using a modal approach. The pile-water-soil interaction is then modelled
by matching the modes of the different subsystems, with a proposed mode-matching method, where the
azimuthal direction is taken into account. Two stable mode-matching methods are developed, namely the
point-collocation-method and the orthogonality-method. The latter is a continuation of the stub in Tsouvalas’
dissertation [4], which is used as a starting point, while the point-collocation-method is a more systematic
method, that has not yet been used in the acoustic field.

1
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Scope

Unlike the SILENCE software, which consists of both near- and far-field modules, the scope of this thesis
will be limited to the near-field response of the system. Essentially focusing on the first module of SILENCE,
which should be able to be coupled to the far-field propagation through implementation of the boundary
integral method [6].

Furthermore, the model is currently developed for the most simple configuration, one fluid-layer and one
soil-layer. The latter is described as a three-dimensional elastic continuum while the fluid is assumed to be
in-viscid compressible. In this configuration homogeneous fluid and soil properties are assumed. The model
is implemented in such a way that there is room left for more extensive configurations for future development.

Limitations due to existing modules

For an initial model it would suffice to assume an undamped acousto-elastic medium, however, since for the
derivation of its displacement field the root-finder-module of SILENCE is involved, where damping is readily
implemented for frequencies higher than ˘300 Hz, this would lead to a small frequency range from which the
time response can be obtained. Because of this limitation damping will be considered in the casestudies to
maximize the frequency-range, and thus the length of the time signals.

Furthermore, the same root-finder has a limit for the number of pure imaginary roots that are obtained.
This puts a constraint on the number of acousto-elastic modes that can be taken into account. For more
elaboration on the root-finder the reader is referred to section 2.3.1.

Time and frequency domain

All of the derivations in this work are done in the frequency domain. All signals will thus be transformed
from the time domain to the frequency domain using the Fourier transform pair in eqs. (1.2.1a) and (1.2.1b).
In sake of abbreviation and simplicity the marking of the transformed signals and their ω-dependence will
be omitted throughout the body of the thesis. In chapters 5 to 7, the transformed signals will be marked,
as is traditionally done, to distinguish between the frequency spectra and the time-signals, since these are
of importance in the assessment of the acoustic field and the associated noise emission. For the numerical
implementation a backward discrete Fourier Transform is used using the Nyquist sampling theorem.

g̃pr, θ, z, ωq “

ż 8

´8

gpr, θ, z, tq e´iωtdt (1.2.1a)

gpr, θ, z, tq “
ż 8

´8

g̃pr, θ, z, ωq eiωtdω (1.2.1b)

1.3 Thesis Outline

First off the three-dimensional model is described in chapter 3, where both the pile and soil-fluid media are
modelled in sections 3.1 and 3.2 respectively. For the basal theory fundamental to the models the reader is
referred to chapter 2.

The proposed methods for mode-matching are described in chapter 4
1. After this the model is used to

conduct a casestudy, for which the obtained results are elaborated in chapter 5. Finally both the method and
results are discussed in chapter 6 and conclusions, as well as recommendations for future research, are stated
in chapter 7.

1 A final overview of the modematching equations is given in appendix C.1



Chapter 2

Background Literature

The aim of this research, as described in section 1.2, essentially connects three different study fields. First
and foremost the field of underwater acoustics and noise emission, of which the relevant material is briefly
summarized in section 2.1. Followed by a section on the dynamics of the shell section 2.2 and a final section
on the dynamics of the acousto-elastic field in section 2.3.

2.1 Underwater Acoustics

A scala of methods and models have been developed with the sole purpose to predict the underwater noise
emission caused by the off-shore driving of piles. The methods predecessing to the method developed in
[3] and by extension to this thesis are briefly mentioned in section 2.1.1. To form a base for the assessment
of results, obtained with the model described in this thesis, the general quantities and metrics used in the
underwater acoustics field are stated in section 2.1.2

For an overview and a more detailed summary of existing models, as well as noise mitigation systems, the
reader is referred to [7].

2.1.1 Underwater noise prediction models

The acoustic response to various human activities in deep water has been researched thoroughly, partly
due to military interests. However, this research does not easily translate to shallow water, where the small
depth causes both the water-surface and the seabed to play a significant role in the propagation of sound.
Between these two, the emphasis lays on the seabed, since characterising its composition contains the most
uncertainty when developing a mathematical description of the sound source mechanism [7]. The influence of
the modelling of the seabed is further elaborated upon in chapter 6 of [4].

Currently, there are various ways to define and predict the underwater noise produced by off-shore pile
driving. The most simple and straight-forward approach is to assign a sound level to the acoustic source. The
acoustic field would then be determined with the domain characteristics by semi-emperical formulae. Logically,
such procedures are referred to as so-called emperical models. Several of these models are mentioned in [7],
with more light shed upon a fairly recent proposition by [8].

More extensive models often define the acoustic source by splitting it in two modules, namely the pile
module and the soil and fluid module. The latter can be modelled in various ways: from a series of distributed
springs and dashpots to a set of partial differential equations that confiscate the behaviour of the acousto-elastic
medium.

In the literature review [7], a distinction is made between semi-analytical solutions on the one side, and
numerical solutions on the other. The latter focuses on discretizing the field in the close range, while the
former are focussed on analitically solving the differential equations. The numerical models are able to provide
highly detailed results compared to the response obtained by semi-analytical models, which in turn have the
advantage of being less time consuming.

3
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2.1.2 Noise metrics

For the sake of uniformity, the underwater noise emission is assessed by standardized noise metrics as defined
in [9]. Three of these metrics are used for the assessment of the results in chapter 5, namely the Sound Pressure
Level (SPL, eq. (2.1.1)), Sound Exposure Level (SEL, eq. (2.1.2)), and the zero-to-peak pressure level (Lpeak,
eq. (2.1.3)). Note that the SPL differs from the other two metrics, as it uses the frequency spectrum p̃fpz, θ, r, ωq
of the fluid pressure, while the SEL uses the time signal pfpz, θ, r, tq and the Lpeak completely reduces the
signal to its peak.

SPL “ 20 ¨ log10

ˆ

1
2

?
2
| p̃f pr, θ, z, ωq|

10´6

˙

in dB re 1 µPa s (2.1.1)

SEL “ 10 log10

˜

1
t0

ż t95

t5

p2
f pr, θ, z, tq

10´12 dt

¸

in dB re 1 µPa2 s (2.1.2)

Lpeak “ 20 log10

¨

˝

∣∣∣ppeak pr, θ, zq
∣∣∣

10´6

˛

‚ in dB re 1 µPa (2.1.3)

with ppeak pr, θ, zq “ maxppfpr, θ, z, tqq

2.2 Shell dynamics

When considering the dynamics of a a wide variety of shell theories shell is available. The different theories
are categorized into one of the following categories [10]:

1. Classical Shell Deformation Theory
2. First-order shear deformation Theory
3. Higher-order shear deformation theory

For the axi-symmetric case a lower-order or classical theory would suffice, since in the perfect scenario,
the pile would not be loaded in a way that causes shear deformations. However when a non-symmetric
force is considered, shear stresses will most certainly occur, thus a shear deformation theory would not be an
unnecessary luxury.

In this thesis, a thin shell theory extended with shear deformation and rotary inertia for a perfect cylinder
is used to represent the pile. Rotary inertia and shear deformation are of importance at high frequencies with
short wavelength compared to the shell thickness. However, it should be mentioned that the added value
of the rotary inertia and shear deformation is expected to be negligible for the proposed configuration 1. A
theory where the rotatory inertia is neglected would suffice since the pile thickness is rather small compared
to the other dimensions of the pile. Thorough derivations of the theory are found in [11].

2.2.1 Cylindrical shell

The motion of an arbitraty deep shell are derived from its energy equilibrium, following Hamilton’s principle.
Since the model of choice includes shear deformation, the shear angles β1, β2 are additional degrees of
freedom on top of the regular translational degrees of freedom u1, u2 u3. Therefore, five equations, eqs. (2.2.1a)

1 The properties of the assessed configuration are given in table 3.2 on page 10
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(a) (b)

Figure 2.1: (a) The internal forces of an arbitrary shell. (b) The global coördinate system used to describe the pile in the
proposed model.

to (2.2.1e), are needed to solve the motion of the dynamical system. The derivation of the shell equations is
done in many previous literature and will thus be excluded from this work.

´
BN11 A2

Bα2
´
BN21 A1

Bα2
´ N12

BA1

Bα2
` N22

BA2

Bα2
´ A1 A2

k1ε13Gh
R1

` A1 A2ρh :u1 “ A1 A2q1 (2.2.1a)

´
BN12 A2

Bα1
´
BN22 A1

Bα2
´ N21

BA2

Bα1
` N11

BA1

Bα2
´ A1 A2

k1ε23Gh
R2

` A1 A2ρh :u2 “ A1 A2q2 (2.2.1b)

´k1Gh
Bε13 A2

Bα1
´ k1Gh

Bε23 A1

Bα2
` A1 A2

ˆ

N11

R1
`

N22

R2

˙

` A1 A2ρh :u3 “ A1 A2q3 (2.2.1c)

BM11 A2

Bα1
`
BM21 A1

Bα2
`M12

BA1

Bα2
´M22

BA2

Bα1
´ A1 A2Ghk1ε13 ´ A1 A2

ρh3

12
:β1 “ 0 (2.2.1d)

BM12 A2

Bα1
`
BM22 A1

Bα2
`M21

BA2

Bα1
´M11

BA1

Bα2
´ A1 A2Ghk1ε23 ´ A1 A2

ρh3

12
:β2 “ 0 (2.2.1e)

In the case of a cylindrical shell, the coordinates are defined in the box below and shown in fig. 2.1b. With
R being the radius of the cylinder.

α1 ” z, α2 ” θ

β1 ” βz, β2 ” βθ

A1 “ 1, A2 “ R

R1 “ 8, R2 “ R

Substituting these into the arbitrary shell equations, eqs. (2.2.2a) to (2.2.2e), will give the equations that are
specifically used for the work in this thesis. The internal forces and moments are depicted in fig. 2.1a.

´R
BNzz

Bz
´
BNzθ

Bθ
´ω2 R ρ h uz “ R qz (2.2.2a)

´R
BNzθ

Bz
´
BNθθ

Bθ
´Qθr ´ω2 R ρ h uθ “ R qθ (2.2.2b)

´R
BQzr

Bz
´
BQθr

Bθ
` Nθθ ´ω2 R ρ h uz “ R qr (2.2.2c)

R
BMzz

Bz
`
BMzθ

Bθ
´R Qzr `ω2 R ρ

h3

12
βz “ 0 (2.2.2d)

R
BMzθ

Bz
`
BMθθ

Bθ
´R Qzr `ω2 R ρ

h3

12
βθ “ 0 (2.2.2e)



6 chapter 2 . background literature

2.2.2 The GDP-shaker

The shaker developed for the gentle pile driving technique works, as any vibratory device, with masses that
rotate. In this case, two equal masses are used. When these rotate in opposite fashion a downward vibrating
force is produced. Other forcing configurations are produced by asymmetrical rotation of the masses. In
current noise pile driving models, however, the mechanism of the shaker is not modeled in detail, but a
replacement with a force load on the top of the pile is chosen. As a result, certain uncertainties, related to the
forces on the pile, are not included in current models. This is a gap to be assessed in future research [7].

2.3 Soil and fluid dynamics

One way to model the effect of the soil of the seabed onto the pile, is by capturing its elasticity and damping
by distributed springs and dashpots respectively [12]. This offers a straightforward solution for modeling the
resistance of the soil on the pile response. However, in practice the response of the system strongly depends
on the chosen coefficients, on top of the fact that determining these coefficients with reliable accuracy proves
to be a challenge [3].

A more intensive way to go about the description of soil behaviour is by use of the dynamics of an elastic
continuum, eq. (2.3.1). The soil layer is then either cut-off to create a rigid boundary at the bottom of the
layer, or modelled as a half-space [4]. For the application at hand it holds that a rigid boundary suffices when
enough soil is left between the pile toe and the bottom of the soil layer.

µs ∇2us ` pλs ` µsq∇∇u´ ρs ω2 us “ 0 (2.3.1)

The damping in a soil layer is expressed through the Lamè parameters, which become complex-valued.
The damping itself can be defined in various ways, which are found in [13]. The definition used in this work
is further elaborated upon in section 3.2.2.

The seawater is often modelled as an inviscid compressible fluid, the behaviour of which is captured with
the wave equation, eq. (2.3.2), in terms of the velocity potential φf [3, 12].

∇2φfpr, θ, z, ωq `
ω2

c2
f

φfpr, θ, z, ωq “ 0 (2.3.2)

Note that ∇2 denotes the Laplacian operator in cylindrical coordinates: ∇2 “ B2
r `

1
r
Br `

1
r2 B

2
θ ` B

2
z

2.3.1 Complex rootfinder

The dynamics of the acousto-elastic medium, as any other dynamical system, is described by its modal field (i.e.
eigenfunctions). Each mode corresponds to a wavenumber (i.e. eigenvalue), which is a root of the dispersion
relation (i.e. characteristic equation) of the system.

In the case of the acousto-elastic medium, the dispersion relation has both real and complex roots. For this
purpose, a complex rootfinder has been developed by Tsouvalas et al.. The algorithm itself is based on the
Principle of the Argument. For a more detailed description of the rootfinder, the reader is referred to [14],
where the method of the rootfinder is explained briefly.



Chapter 3

Model description

The model that is developed in this work essentially consists of two dynamical subsystems. The motion of
each system is described by normal modes. The choice for a modal approach is necessary in order for the
interface conditions between the pile and the acousto-elastic medium to be fullfilled using the modematching
method, to be introduced in Chapter 4.

The first subsystem is the monopile, which is modelled as a cylindrical thin shell. The motion of the
pile is derived in Section 3.1 using the equations introduced in Section 2.2. The second subsystem is the
acousto-elastic medium, of which the necessary equations were introduced in Section 2.3, the problem is
solved in Section 3.2. The displacement and stress-fields for the pile and acousto-elastic system can be found
in both systems are obtained using a modal expansion with the set of normal modes derived in the chapter at
hand.

Figure 3.1: Model overview

7
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3.1 The Pile: A circular cylindrical shell

In this section, the modal solution to for the pile equations are derived. The modal solution is hereafter verified
with literature. The orthogonality relations are applied to find the modal forces. A variation of external loads
at the top of the pile are described and the first axi-symmetric in-vacuo modes for the pile are shown.

3.1.1 Modal decomposition

The pile is modelled as a circular cylindrical shell with a higher order theory as described in section 2.2. After
substituting the internal forces into the equation of motion, eq. (3.1.1), a linear system of equations is formed,
where the unknown vector uP consists of the degrees of freedom uP,z, uP,θ, uP,r, βP,z, and βP,θ. The elements of
the coefficient matrix K and M are found in appendix A.2. Using these, the equation of motion is written in
matrix notation:

´

ω2M `K
¯

uPpz, θ, ωq “ qpz, θ, ωq (3.1.1)

The modes of the pile are sought for in the form of eq. (3.1.2), where the elements of C are the modal
amplitudes and Rnpθq is an extended version of the rotation matrix. Note that in eq. (3.1.2), the displacement
is displayed per circular mode number n. It should go without saying that the final displacement is obtained
by summation of the circular modes. That is uP pz, θ, ωq “

ř

n uP,n pz, θ, ωq.

uP,n pz, θ, ωq “ RnpθqAnekz with Rnpθq “ diag

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

cospnθq
´ sinpnθq

cospnθq
cospnθq

´ sinpnθq

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

(3.1.2)

By substituting eq. (3.1.2) into eq. (3.1.1) and re-arranging, a linear set of equations with unknown A is
assembled. The characteristic equation of the homogeneous system will be a quintic equation ((3.1.3)) in terms
of k2. This equation generally has ten roots kpωmq per eigenfrequency ωm, which are found numerically by
solving the eigenvalues of the companion matrix.

Det
´

ω2M `K
¯

“

5
ÿ

i“1

ci ¨ k2i “ 0 ÝÝÝÑ

uP,n pz, θ, ωq “ CP ¨ Rnpθq ¨ ûP,n pzq

ûP,n pzq “
10
ÿ

i“1

γi ¨ eki z with γ “
1

Az
¨ A

(3.1.3)

The unknown constants in the system reduce to one unknown constant CP for each root k. This is done by
assuming a unit displacement in vertical direction uP,z, which results into a known set of relative amplitudes
γi per root kipωmq. Note that the first element γP,z is equal to one because of the assumed unit displacement.

3.1.2 Boundary value problem

In the case of offshore pile driving, it is often the case that the bottom of the pile is driven deep into the
soil. The soil will then behave as a stiff spring at the bottom boundary of the pile [10]. In this work, a more
simplified approach is taken, where the bottom of the pile is assumed to be clamped. This is equivalent to the
springs being infinitely stiff, this leads to five homogeneous Dirichlet conditions, eq. (3.1.4b). The top of the
pile is modelled as a free end, so the shaker can impose displacement on the top. The free end is modelled by
prohibiting any initial internal forces at z “ 0, eq. (3.1.4a). Another plausible configuration is allowing for
displacements at the bottom of the pile, which is modelled the same as the free top.

Free boundary: N̂P,zz “ N̂P,zθ `
1
R

M̂P,zθ “ Q̂P,zr ` R
BM̂P,zθ

Bθ
“ M̂P,zz “ M̂P,zθ “ 0 (3.1.4a)

Clamped boundary: ûP,z “ ûP,θ “ ûP,r “ β̂P,z “ β̂P,θ “ 0 (3.1.4b)
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Substituting the solution eq. (3.1.3) in the boundary conditions in eq. (3.1.4), results in a 10ˆ 10-problem,
with the unknowns being the relative amplitudes γi. To get the non-trivial solution the determinant must be
zero, the charateristic equation is a polynomial in terms of ω2. The eigenfrequencies of the pile are the roots of
this equation. Since eigenfrequencies per definition have real and positive values for undamped systems, the
roots are numerically found by brute-force root finding over the real axis. Figure 3.2 shows the eigenvalue
analysis for the 0th and 1st circular modes for frequencies up to 500 Hz.
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Figure 3.2: Eigenvalue analysis of the pile up to 500 Hz for n “ 0 and n “ 1

To validate the numerical model developed in this work, the obtained eigenfrequencies are compared
through the dimensionless frequency parameter Ωnm, eq. (3.1.5). In table 3.1 the frequency parameter is
recorded from various literature for several modes of a C-C pile with properties A from table 3.2.

Ωnm “ ωnm ¨ R ¨

d

ρ
`

1` ν2˘

E
(3.1.5)

Mode
pn, mq

Present
Ωnm r´s

(Tsouvalas et al., 2014) [3]
Ωnm r´s

FEM (ANSYS) [3]
Ωnm r´s

(Zhou et al., 2012) [15]
Ωnm r´s

p1, 1q 0.032779 0.032791 0.032750 0.032781
p2, 1q 0.012145 0.013901 0.013891 0.013898
p3, 1q 0.012307 0.022664 0.022653 0.022666
p4, 1q 0.027229 0.042177 0.042088 0.041998
p2, 2q 0.030697 0.031472 0.031449 0.031464
p3, 2q 0.018641 0.026762 0.026743 0.026762
p3, 3q 0.03083 0.036468 0.036452 0.036465
p4, 2q 0.034984 0.043183 0.043071 0.043194

Table 3.1: Frequency parameters for a C-C pile with the properties from pile A in table 3.2

Table 3.1 shows that there is good agreement between the present model and literature, slight variation of
the eigenfrequencies is expected since different shell theories are used.

By solving the eigenvalue problem, a series of unique and non-trivial solutions is found. The normal
modes of the structure are per definition orthogonal to each other. The orthogonality condition is applied
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Pile Length
L rms

Radius
R rms

Thickness
h rms

Density
ρ rkg m´3s

Young’s Modulus
E rN m´2s

Poisson’s Ratio
ν r´s

A 20 1 0.005 7850 2.1 ¨ 1011 0.3
B 60 2.5 0.03 7850 2.1 ¨ 1011 0.28

Table 3.2: Pile properties

by substituting an arbitrary mode into the equation of motion, pre-multiplying with a different mode and
integrating over the domain. After some simple manipulations, the relation as shown in eq. (3.1.6) is obtained
[16].

ĳ

EP

`

Rlpθq ûP,kpzq
˘T M

`

Rnpθq ûP,mpzq
˘

dA “ π ρ h R ΓP
nm δnl δmk (3.1.6)

with: EP “ tpz, θq | 0 ď z ď L , 0 ď θ ď 2πu

The modes are normalized such that the factor ΓP
m is equal to one for every mode m. This is done to

ensure a more stable linear system in the modematching process. The modematching is further elaborated in
chapter 4.

As mentioned before, the complete motion of the pile is described in terms of a modal summation over both
the circular mode numbers n and the axial mode numbers m, as seen in eq. (3.1.7). The expanded expressions
for the internal forces NP,tzz;θθu, QP,tzr;θru, and MP,tzz;θθ;zθu are obtained by substituting eq. (3.1.7) into the
expressions found in appendix A.1. The expanded expressions are stated in appendix A.3.

ũPpz, θ, ωq “
8
ÿ

n“0

8
ÿ

m“1

CP,nmRnpθqûP,nmpzq (3.1.7)

In fig. 3.3 the degrees of freedom are shown for the first three modes of a pile with the properties of pile B
shown in table 3.2.

3.1.3 Displacement and stress field

Finally, the displacement field of the pile can be expressed through the superposition of the obtained modes:

ũPpz, θ, ωq “
8
ÿ

n“0

8
ÿ

m“1

CP,nm Rnpθq ûP,nmpzq eiωt (3.1.8)

with: ûP,mpzq “
“

ûP,r,mpzq ûP,θ,mpzq ûP,m,ppzq β̂P,r,mpzq β̂P,θ,mpzq
‰T

Rnpθq “ diag
´

“

cospnθq ´ sinpnθq cospnθq cospnθq ´ sinpnθq
‰T
¯

The displacements for the first three modes are plotted in section 3.1.3 for both the symmetric and non-
symmetric case. From this figure, it is also apparent that the azimuthal components of the modes are zero in
the symmetric case.
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Figure 3.3: Displacements for the first three modes of pile B in table 3.2 with a F-C configuration. Figures (a)-(e) display
the degrees of freedom for n “ 0, while (f)-(j) show n “ 1
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3.1.4 Forcing

As mentioned in chapter 2, a detailed model of the GDP-shaker is not yet used in current modelling approaches.
The driving force is thus simplified to a distributed load along the circumference of the pile top, which is
decomposed of three components fe,zpθ, ωq, fe,θpθ, ωq, and fe,rpθ, ωq in the vector notation f epz, θq. This force
is linearly decomposed in forces that are cylindrical symmetric and anti-symmetric, using a Fourier series, as
shown in eq. (3.1.9).

The frequency response functions (FRF) are obtained for the four basic forcing configurations, which are
depicted in fig. 5.1. Note that a vertical point load (fig. 3.4a), used to model impact pile driving, is described
by the 0

th order component of the external force, eq. (3.1.10a), while a moment My around the y-axis (fig. 3.4b)
is described by the 1

st order component, eq. (3.1.10b). Furthermore, a horizontal point load (fig. 3.4c) is the
1

st order component, as shown in eq. (3.1.10c). The 0
th order horizontal load is uniform pressure and is not

relevant for the application at hand. Similarly, the 1
st order defines a uniform torsional moment, which is

irrelevant, therefore, only a higher order torsional moment (fig. 3.4d) is considered, see eq. (3.1.10d).

f epz, θq “
8
ÿ

n“0

f e,npz, θq “
8
ÿ

n“0

δpzq

f e,npθq
hkkkikkkj

Rnpθq f̂ e with Rnpθq “ diag

¨

˝

»

–

cospnθq
´ sinpnθq

cospnθq

fi

fl

˛

‚ (3.1.9)

The magnitude F of an arbitrary point load is related to the distributed load as shown in fig. 5.1. The
magnitude can be solved using the incomplete elliptic integral of the 2

nd kind. For the application at hand,
however, only a few cases are of relevance, which can be simplified without using the aforementioned integral.
The cases being both an uniform vertical Fz and horizontal Fx point load, and a normal My and torsional Mz
moment.

Note that an uniform horizontal load requires the azimuthal and radial component of f̂ e to be equal, as
seen in eq. (3.1.10c). Furthermore, a non-zero angular phase ϕ is required to define the magnitude T of a
torsional moment, eq. (3.1.10d).

Uniform vertical force: n “ 0, f̂e “ f̂e,zez Ñ Fz “ 2πR f̂e,z (3.1.10a)

Moment on the y-axis: n “ 1, f̂e “ f̂e,zez Ñ My “ 2πR2 f̂e,z (3.1.10b)

Uniform horizontal force: n “ 1, f̂e “ f̂0 peθ ` erq Ñ Fx “ 2πR f̂0 (3.1.10c)

2nd order torsional moment: n “ 2, f̂e “ f̂e,θeθ Ñ T “ 2πR2 f̂e,θ sinpϕq (3.1.10d)

Where etz;θ; ru denote the unit vectors in the cylindrical coordinate-system.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Basic force configurations
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3.1.5 In-vacuo response

The in-vacuo response of the pile to an arbitrary external force f e is obtained by substituting the solution form
and the forcing into the equation of motion eq. (3.1.1) and multiplying by an arbitrary mode uP,kpz, θq and
integrating over the domain EP. An expression for the modal amplitude can then be obtained with the help of
the orthogonality condition, eq. (3.1.6):

CP,nm “
1

`

ω2
nm ´ω2

˘

π ρ h R ΓP
nm

ĳ

EP

uT
P,nm f e,n dA “

pûP,m|z“0q
T f̂ e

`

ω2
nm ´ω2

˘

ρ h R ΓP
nm

(3.1.11)

with: EP “ tpz, θq | 0 ď z ď L , 0 ď θ ď 2πu

Truncation

The infinite summation over the number of modes needs to be truncated at a certain point. The number of
modes taken into account are based on their contribution, which is directly observed from the absolute value
of the amplitude CP,nm.

The modal amplitudes are normalized to the maximum amplitude per frequency, conform eq. (3.1.12), and
are plotted in figs. 3.5a to 3.5d for the response to the 0

th and 1
st order vertical and horizontal force.

C̃P,nm “

∣∣∣∣
CP,nm

max pCP,n1 ; . . . ; CP,n200q

∣∣∣∣ (3.1.12)
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Figure 3.5: The normalized amplitudes of the response to (a) the 0
th order vertical force (uniform vertical load) (b) the 1

st

order vertical force (moment on the y-axis) (c) the 0
th order horizontal force (d) the 1

st order horizontal force (uniform
horizontal load)

For higher frequencies, the response tends to consists of modes with a higher mode-number m, as is seen
for the darker lines in the plots. Therefore, the truncation of the modal summation is based on the contribution
of the modes at the highest frequency within the scope of this work. In the present model, the number of
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modes NP taken into account for the pile is set to 80 and 100 for the symmetric and non-symmetric case
respectively.

uP,n “

8
ÿ

m“1

uP,nm «

NP
ÿ

m“1

uP,nm with

#

NP “ 80 for n “ 0
NP “ 100 for n “ 1

(3.1.13)



3.2 the fluid & soil domain : an acousto-elastic medium 15

3.2 The fluid & soil domain: An acousto-elastic medium

3.2.1 Modal Decomposition

The fluid-soil domain is modeled as an acousto-elastic medium, as mentioned in chapter 2. The motion us of
an elastic continuum is described by the equation of motion shown in eq. (3.2.1), while the fluid domain is
described by the wave-equation eq. (3.2.2) using the fluid potential φf.

µs ∇2us ` pλs ` µsq∇∇u´ ρs ω2 us “ 0 (3.2.1)

∇2φfpr, θ, z, ωq `
ω2

c2
f

φfpr, θ, z, ωq “ 0 (3.2.2)

Decomposition in potentials

The equation of motion of the soil domain breaks up into three separate differential equations according to
Lamè’s theorem [17]. To achieve this the displacement vector is parsed conform Lamb’s decomposition using
three potentials, namely φs, ψs and χs as shown in eq. (3.2.3). Each of these potentials reflects a specific set
of waves that describe the final response of the system. The type of waves are respectively the pressure (P),
vertical (SV) and horizontal (SH) shear waves.

When considering the symmetric response of the system any derivatives with respect to θ are equal to
zero, since, there is no azimuthal dependence. This results in the decoupling of the azimuthal displacement
us,θ from the radial- and vertical displacement us,r and us,z. The non-azimuthal displacements however, stay
coupled through the P- and SV-components.

u “ ∇φs

loomoon

P-component

`∇ˆ∇ˆ

»

–

0
0
ψs

fi

fl

loooooooomoooooooon

SV-component

` ∇ˆ

»

–

0
0
χs

fi

fl

looooomooooon

SH-component

(3.2.3)

Substituting the decomposed expressions into the equation of motion will result in a wave equation for
each potential. The motion of the acousto-elastic domain can, thus, be described with the four wave equations
given in eqs. (3.2.4a) to (3.2.4d)

∇2φspr, θ, z, ωq `
ω2

c2
L

φspr, θ, z, ωq “ 0 (3.2.4a)

∇2ψspr, θ, z, ωq `
ω2

c2
T

ψspr, θ, z, ωq “ 0 (3.2.4b)

∇2χspr, θ, z, ωq `
ω2

c2
T

χspr, θ, z, ωq “ 0 (3.2.4c)

∇2φfpr, θ, z, ωq `
ω2

c2
f

φfpr, θ, z, ωq “ 0 (3.2.4d)

with: c2
L “

λs ` 2µs

ρs
and c2

T “
µs

ρs

With cL and cT being the speed of compressional and shear waves respectively, while cf is the speed of
sound in the fluid.
The above wave equations are known as the Helmholtz’ equations, these can be solved in different ways. One
of which is the method of separation of variables, which is further elaborated upon in appendix B.2, resulting
in the expressions eqs. (3.2.5a) to (3.2.5d).
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φs “

Θpθq
hkkkkikkkkj

cospnθq

Rprq
hkkkkikkkkj

Hp2qn pkφs rq

Zipzq
hkkkkkkkkkkkkikkkkkkkkkkkkj

`

A1 eαs z ` B1 e´αs z˘ (3.2.5a)

ψs “ cospnθqHp2qn pkψs rq
´

A2 eβs z ` B2 e´βs z
¯

(3.2.5b)

χs “ ´ sinpnθqHp2qn pkχs rq
´

A3 eβs z ` B3 e´βs z
¯

(3.2.5c)

φf “ cospnθqHp2qn pkφf rq
`

A4 eαf z ` B4 e´αf z˘ (3.2.5d)

with: α2
s “ kφs

2
´

ˆ

ω

cL

˙2
, β2

s,ψ “ kψs
2
´

ˆ

ω

cT

˙2

α2
f “ kφf

2
´

ˆ

ω

cf

˙2
, β2

s,χ “ kχs
2
´

ˆ

ω

cT

˙2

Note that the wavenumbers ktφs; ψs; χs; φfu
have to be equal to ensure that the continuity conditions between

the different layers 1 are satisfied for all r. The subscripts for k are, therefore, omitted in the rest of this report.

It should be mentioned that in the solution-form as shown in eq. (3.2.5) a few choices have been made to
comply with the application at hand.

The initial phase angle of the general solution is set to zero, this way displacements for any arbitrary initial
phase are found by a matter of rotation.

Second the radial dependence is described by use of Bessel functions. The Bessel function of choice is the
second Hankel function. Sommer’s radiation condition is fullfilled by this choice as well.

Substituting the decided upon solution-form back into eq. (3.2.3), results in the displacement expressions for a
single circular mode us,n. The vertical σs,z,n and radial stresses σs,r,n of the modes can then be obtained with
the use of the kinematic relations as found in appendix B.1.

These circular modes are dependant on the circular mode number n, which couples the r- and θ-dependency
of the mode. The vertical functions Zipzq, however, are independent of this circular mode number. For the
displacement and vertical stress vector this results in a clear separation of variables, which can be seen best
in the matrix-form as shown in the box below. The radial stresses are constructed differently, but all three
cylindrical variables can still be separated, leaving the expressions coupled in r and θ through the circular
mode number n and coupled in r and z through the vertical wave-numbers k.

Note that the solution of the symmetric case corresponds to substituting zero for n, which causes the
expression eq. (3.2.5) of the χs-potential, which describes the SH-motion, to be decoupled and, therefore, not
contribute to the acoustic field.

uspr, θ, z, ωq “
8
ÿ

n“1

Cn us,npr, θ, z, ωq (3.2.6)

ũs,npz, θ, rq “ RnpθqHnpkrq ûspzq (3.2.7)

1 These interface- and boundary conditions are introduced in section 3.2.2
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Stress- & displacement modes

The displacement and stress field is expanded using the circular modal field of the acousto-elastic
medium.

utf;supr, θ, z, ωq “
8
ÿ

n“1

Cn utf;su,npr, θ, z, ωq (3.2.8a)

pfpr, θ, z, ωq “
8
ÿ

n“1

Cn pf,npr, θ, z, ωq (3.2.8b)

σs,zpr, θ, z, ωq “
8
ÿ

n“1

Cn σs,z,npr, θ, z, ωq (3.2.8c)

σs,rpr, θ, z, ωq “
8
ÿ

n“1

Cn σs,r,npr, θ, z, ωq (3.2.8d)

with: utf;su “

»

—

–

ũtf;su,r
ũtf;su,`
ũtf;su,z

fi

ffi

fl

, σs,z “

»

–

σ̃s,zr
σ̃s,zθ
σ̃s,zz

fi

fl and σs,r “

»

–

σ̃s,rr
σ̃s,rθ
σ̃s,rz

fi

fl

When considering the soil layer, the expressions for a single displacement mode us,n and vertical stress
mode σs,z,n are quite similarly constructed, as both can be expressed by using the same matrices,
namely Rnpθq and Hnpkrq, which are the rotational matrix and Hankel-matrix respectively [18].

ũs,npz, θ, rq “ RnpθqHnpkrq ûspzq (3.2.8e)

σ̃s,z,npz, θ, rq “ RnpθqHnpkrq σ̂s,zpzq (3.2.8f)

With the matrices being:

Rnpθq “

»

–

cospnθq 0 0
0 ´ sinpnθq 0
0 0 cospnθq

fi

fl (3.2.8g)

Hnpkrq “

»

—

—

—

–

1
k
Br Hp2qn pkrq

n
kr

Hp2qn pkrq 0
n
kr

Hp2qn pkrq
1
k
Br Hp2qn pkrq 0

0 0 ´Hp2qn pkrq

fi

ffi

ffi

ffi

fl

(3.2.8h)

The expressions of the radial soil stresses σs,rpz, θ, r, ωq and the fluid displacement uf,n are found in appendices B.4.1 and B.4.2
for the non-symmetrical pn ‰ 0q and symmetrical pn “ 0q case respectively. Expressions for the vertical functions ûts;fu,tz;θ;rupzq,
σ̂s,tz;θ;rupzq and p̂fpzq are included in the same sections.
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3.2.2 Boundary Value Problem

In this thesis, the configuration is limited to just one fluid layer and one soil layer, as mentioned in the scope
(section 1.2). However, adding more soil layers would simply expand the system with three potentials per
layer to describe its motion. The additional interface conditions are the continuity of displacements pus1 “ us2q

and equilibrium of vertical stresses pσs1,z “ σs2,zq between two adjacent soil layers.

Figure 3.6: Geometry of the soil-fluid media (F1S1 configuration)

The fluid surface acts as a pressure release boundary, giving one of the two of the necessary equations for
the wave-equation of the fluid potential.

Fluid surface at z “ z0 Ñ p̂f,npz0q “ 0 (3.2.9a)

Since, the soil- and fluid-layer are stacked vertically, both the continuity of displacement and equilibrium of
stresses in the vertical direction should be satisfied. Note that the acoustic fluid has no shear stiffness, as a
result all shear stresses in the soil will, thus, become zero at this interface.

Fluid-Soil interface at z “ z1 Ñ ûs,z,npz1q ´ ûf,z,npz1q “ 0 (3.2.9b)

Ñ σ̂s,zz,npz1q ` p̂f,npz1q “ 0 (3.2.9c)

Ñ σ̂s,zθ,npz1q “ 0 (3.2.9d)

Ñ σ̂s,zr,npz1q “ 0 (3.2.9e)

Finally the soil is cut off by a rigid boundary condition, where no displacements are allowed. The assumption
of a rigid boundary condition does have an effect on the generated waves in the far-field. However, in the scope
of the thesis, only the near-field is considered, and here this effect is minimal, especially when a sufficient
amount of soil is considered between the pile and the rigid boundary condition [3].

Rigid boundary condition at z “ z2 Ñ ûs,z,npz2q “ 0 (3.2.9f)

Ñ ûs,θ,npz2q “ 0 (3.2.9g)

Ñ ûs,r,npz2q “ 0 (3.2.9h)

The coefficient matrix is now obtained by substituting the expressions of relevant stresses and displacements,
eqs. (3.2.8e) and (3.2.8f) into the boundary conditions eqs. (3.2.9a) to (3.2.9h). This results two decoupled
eigenvalue problems corresponding to the SH and P-SV problems separately. The individual elements of the
matrices in eqs. (3.2.10b) and (3.2.10c) are found in appendix B.3

Both eigenvalue problems are solved relative to one amplitude Ai or Bi. However, it must be mentioned
that the P-SV problem contains both the amplitudes of the fluid and soil response, and that these can differ
greatly in order size. The system is thus best solved by imposing an unit displacement of the seabed to obtain
the relative amplitudes.

Solving the eigenvalue problems will result in Rayleigh modes (consisting of P- and S-waves) and Love
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modes (consisting of SH-waves). In the rest of this thesis, these will be referred to as the P-SV and SH modes
respectively.

D x “ 0 (3.2.10a)

ãÑ DPSV xPSV “ 0 with xPSV “
“

A1 B1 A2 B2 A4 B4
‰T (3.2.10b)

ãÑ DsH xsH “ 0 xsH “
“

A3 B3
‰T (3.2.10c)

Dispersion relations

When assessing an undamped soil-layer, the eigenvalue problem of the SH modes consists of two unknowns
and its dispersion relation eq. (3.2.11a) is analytically solvable considering both its size and the fact that only
pure imaginary or pure real roots are found. The analytical derivation of the roots of this problem, the SH
wavenumbers eq. (3.2.11a), are found in appendix B.3.

The P-SV problem, however, gives a rather sizeable dispersion relation (eq. (3.2.11b)) for which both
real and complex roots exist. The complex rootfinder described in section 2.3.1 is used to find these P-SV
wavenumbers.

The roots of both dispersion relations are shown in fig. 3.7 for the values in table 3.3.

detpDsHq “

1
ÿ

j“0

cj pkq
2j
“ 0

appendix B.3
ÝÝÝÝÝÝÝÝÝÝÑ kSH

q with: p, q P N (3.2.11a)

detpDPSVq “

5
ÿ

j“0

cj pkq
2j
“ 0 Rootfinder

ÝÝÝÝÝÝÝÝÝÝÑ kPSV
p (3.2.11b)

Layer Depth
rms

Density
ρ rkg m´3s

Compressional
wavespeed
cL rm s´1s

Shear
wavespeed
cT rm s´1s

Compressional
damping

αc r%s

Shear
damping

αs r%s

Soil (Undamped) 60 1700 1800 300 0 0

Soil (Damped) 60 1700 1800 300 1 1

Fluid 22 1000 1500 - - -

Table 3.3: Properties of the acousto-elastic medium per layer

Damping

A soil-layer, in which damping is considered, is characterized by having complex Lamè parameters instead of
real Lamè parameters λs and µs. This results in complex-valued wavespeeds, which causes a transformation
of the wavenumbers, which corresponds to a slight rotation of the numbers in the complex plane, as can be
seen in fig. 3.7.

The damping in a soil layer can be defined in different ways, which are found in [13]. In this thesis, the
damping will be defined terms of percentages of the Lamè parameters, conform eq. (3.2.12a).

λs,damped “ λs,undamped

´

1´
αc

100
¨ i
¯

with αc in [%] (3.2.12a)

µs,damped “ µs,undamped

´

1´
αs

100
¨ i
¯

with αs in [%] (3.2.12b)
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Figure 3.7: Wavenumbers for the damped and undamped case plotted in the complex plane for f “ 10 Hz.

Propagating & evanescent modes

Each wavenumber represents a single mode. Note that for the undamped system, the complex P-SV wavenum-
bers come in conjugate pairs pk “ kRe ˘ kImq. Such wavenumbers correspond to what are called the evanescent
modes, which decay rather fast, with increasing radial distance r, due to the relatively small real part kRe [4].
These modes do not contribute significantly to the total energy of the response.

Contrastingly, the real wavenumbers correspond to so-called propagating modes, which are characterised
by their slow decaying. Naturally, they also carry most of the energy of the response. Thus, these propagating
modes are of high importance to convey the acoustic response. Since, the number of real wavenumbers is
finite, it is possible to include the complete propagating spectrum into the modal superposition.

However, the evanescent spectrum consists of an infinite number of modes, the modal summation will,
thus, be truncated within this spectrum. The truncation criteria is introduced in chapter 4.

Orthogonality relations

The relation between two modes can be derived using the reciprocity theorem, eq. (3.2.13). Note that since
the P-SV and SH problem are decoupled, and give two unique sets of modes, the reciprocity condition holds
between the individual modes within a set, but also between an individual P-SV and SH mode [3, 17, 19].

For two P-SV modes, the reciprocity theorem leads to the orthogonality relation in eq. (3.2.14a). These are
essentially the same and can be derived from one another.

For two SH modes a more straight forward relation eq. (3.2.15) is obtained from the same starting point.
¡

s

uT
s,1 σs,z,2 ´ uT

s,2 σs,z,1 dS (3.2.13)

´
1
kp

ż z1

z0

v̂f,r,p

iω
p̂f,l dz `

1
kp

ż z2

z1

α̂I
s,lpzq ûs,r,ppzq ´ ûs,z,lpzq σ̂s,zr,ppzqdz “ ΓPSV

l δpl

with: α̂I
s,lpzq “ ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq

(3.2.14a)
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´
1
kp

ż z1

z0

v̂f,r,p

iω
p̂f,l dz `

1
kp

ż z2

z1

σ̂PSV,1
s,rr,l ûs,r,p ´ σ̂s,zr,p ûs,z,ldz “ ΓPSV

l δpl (3.2.14b)

ż L

z2

µk2
j ûs,θ,j ûs,θ,q dz “ ΓSH

j δqj (3.2.15)

These orthogonality relations are used in chapter 4 to match the soil-fluid modes with the pile modes. For
this procedure large systems of linear equations will be constructed. A way to improve the stability of such
systems is to reduce the difference in order size between the different elements. This is done by normalizing
both the P-SV modes as well as the SH modes such that ΓPSV

l and ΓSH
j are equal to one.

The above relations can also be used to check whether the set of modes at hand is indeed an orthogonal set.
This is visualised in fig. 3.8 using the properties from table 3.3

Finally, as mentioned before, the P-SV and SH modes are two distinctive solutions to the same problem,
thus, these must comply with the reciprocity theorem. Bostock derived such a relation (eq. (3.2.16)) in [19].
However, this relation was not applied within this work.

ż z2

z1

“

α̂I I
s,ipzq ûs,θ,qpzq ´ µ ûs,r,ipzq kq ûs,θ,qpzq ` µ ki ûs,z,ipzq

dûs,θ,q

dz
‰

dz

with: α̂I I
s,i “ pλs ` 2µsq ûs,r,ipzq k2

i ´ ki λs
dûs,z,i

dz

(3.2.16)
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Figure 3.8: Orthogonality conditions for f “ 10 Hz for the undamped values from table 3.3

3.2.3 Displacement and stress field

Once the eigenmodes are obtained the displacement field can be described by a modal expansion, as shown in
eq. (3.2.17). With use of the kinematic and constitutive relations the vertical stress-field can be expanded the
same way, see eq. (B.4.8).

The expanded expressions for uf, p̃
f

and σs,r are found in appendix B.4

us,npz, θ, rq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np Hnpkprq ûPSV
s,p pzq `

8
ÿ

q“1

CSH,nq ¨ Hnpkqrq ûSH
s,q pzq

˛

‚ (3.2.17)

vf,npz, θ, rq “ Rnpθq
8
ÿ

p“1

CPSV,np Rnpθqdiag

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

´
BHp2qn pρq

Bρ
|ρ“kpr

n
r

Hp2qn pkprq

Hp2qn pkprq

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

v̂PSV
f,p pzq (3.2.18)
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with: ûPSV
s,p pzq “

“

ûs,r,ppzq 0 ûs,z,ppzq
‰T

ûSH
s,q pzq “

“

0 ûs,θ,qpzq 0
‰T

The displacement- and stress-field for the first 3 modes are shown in figs. 3.9a to 3.9f. These figures show that
the imposed boundary and interface conditions are satisfied.
The plots for the vertical modes of the radial stresses σr are found in appendix B.4
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Figure 3.9: Displacement and stress field for the first three modes for f “ 10 Hz for the undamped values from table 3.3





Chapter 4

Mode-matching

To get the total response of the system, and by extension the resulting acoustic field, the pile and acousto-
elastic medium need to be coupled. This coupling occurs through the interface conditions, ensuring both
displacement continuity and stress equilibrium in radial direction along the total length and circumference
of the pile, these conditions are enforced by matching the modes of both subsystems this interface 1using a
mode-matching method to obtain the modal amplitudes for both dynamical system, and by extension the final
coupled response.

In the work of Tsouvalas and Metrikine [3] a mode-matching method based on the orthogonality relations
of the acousto-elastic medium is developed for the symmetric case. In this thesis a similar method is developed
for the non-symmetric case, where the weight functions are chosen such that the final system can be simplified
using the orthogonality relations of the acousto-elastic medium, this method can be read upon in section 4.2.
A more elaborate derivation, similar to the work of [3], of this method is given in appendix C.2.

However, the main goal of this thesis, and this chapter in particular, is to develop a method alternative
to the previous one. The so-called point-collocation method, where the matching of the modes is done with
systematically chosen weight functions. Not necessarily taking into account the orthogonality relations of the
acousto-elastic medium. This method is further elaborated in section 4.3.

4.1 Method description

Just like any mode matching method, in essence the interface conditions between the pile and the acousto-
elastic medium will be enforced in a weaker form. In the methods described in this chapter the weak form is
obtained by use of the (partial) expressions of the radial soil stresses σ̃s,r and the fluid pressure p̃f as weight
functions.

Eventually, from the weak form the modal participation factors (or: amplitudes) of the modes will be
acquired, which are then used to modally expand the stress- and displacement fields of the acousto-elastic
medium.

As briefly mentioned before, two types of interface conditions between the pile and the adjacent acousto-
elastic media are considered for this method:

1. Kinematic interface conditions: Displacement continuity
2. Dynamic interface conditions: Stress equilibrium

Displacement continuity

The mode-matching method centers around the condition of displacement continuity, which is imposed
through four equations for the non-symmetric case, and three equations for the symmetric one, since the
continuity in azimuthal direction, eq. (4.1.1c), is not relevant.

1 The interface covers the region tpr, θ, zq | r “ R, 0 ď θ ď 2π, 0 ď z ď Lu, where R and L are the radius and length of the pile respectively.

25
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uP,rpz, θq “ uf,rpz, θ, Rq for z1 ď z ď z2 (4.1.1a)

uP,rpz, θq “ us,rpz, θ, Rq for z2 ď z ď L (4.1.1b)

uP,θpz, θq “ us,θpz, θ, Rq for z2 ď z ď L (4.1.1c)

uP,zpz, θq “ us,zpz, θ, Rq for z2 ď z ď L (4.1.1d)

Note that the interface conditions do not involve the additional angles βP,tz;θu, which reduces any pile vectors
in the mode-matching process to 3 elements instead of the 5 elements initially introduced in section 3.1.
Furthermore, it is worth noting that for the mode-matching the vector notation conform section 3.2 are used,
i.e.

“

êr êθ êz
‰T .

After modally expanding the pile, fluid and soil expressions, conform eqs. (3.1.8) and (3.2.17), it shows that
the non-symmetric problem deals with three sets of unknown modal amplitudes, namely CP,n, CPSV,n and
CSH,n. For this reason two weight vectors ŵPSV

s and ŵSH
s are defined next to the weight function ŵfpz, θ, Rq

used for the displacement continuity in the fluid.

ĳ

E

ŵfpzq uP,rpz, θqdA “
ĳ

E

ŵfpzq u f ,rpz, θ, RqdA (4.1.2a)

ĳ

E

´

ŵPSV
s

¯T
uP dA “

ĳ

E

´

ŵPSV
s

¯T
us

∣∣∣
r“R

dA (4.1.2b)

ĳ

E

´

ŵSH
s

¯T
uP dA “

ĳ

E

´

ŵSH
s

¯T
us

∣∣∣
r“R

dA (4.1.2c)

with: E “ tpθ, zq| 0 ď θ ď 2π , 0 ď z ď z2u

uP “ uPpz, θq “
“

uP,r uP,θ uP,z
‰T

us “ uspz, θ, rq “
“

us,r us,θ us,z
‰T

ŵs “ ŵspzq “
“

ŵs,r ŵs,θ ŵs,z
‰T

In general weight functions are chosen to somewhat comply with the dynamics of the system at hand.
Thus opting for (part of) arbitrary normal modes of the system as weight functions. As is the case in this work.
For this reason the weight functions are henceforth displayed with the appropriate subscripts.

When NPSV number of PSV-modes are considered, there are NPSV possible weight functions ŵPSV
s,nl (l being

the PSV-mode number). Thus matching the number of equations with the number of unknown constants in
CPSV,n. The same holds for the number of SH-modes in relation to ŵSH

s,nj.

Procedure

To obtain the necessary system of equations the following manipulations are performed:

1. Substituting the weight functions ŵtf; PSV; SHu native to the method into the weakend interface conditions
eqs. (4.1.2a) to (4.1.2c).

2. Modally expanding the expressions of the displacements vectutP; f; su conform the displacement fields
derived in sections 3.1.3 and 3.2.3

3. Summing eqs. (4.1.2a) and (4.1.2b), since these both contain the unknown CPSV
4. Re-arranging the resulting expressions gives two sets of equations, shown in generic form in eqs. (4.1.3a)

and (4.1.4a).
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8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq with l “ 1, . . . , NPSV (4.1.3a)

(4.1.3b)

F̂1,nlm “

B

ûP,r,mpzq ; ŵPSV
s,r,l pzq

F

`

B

ûP,θ,mpzq ; ŵPSV
s,θ,lpzq

F

`

B

ûP,z,mpzq ; ŵPSV
s,z,l pzq

F

(4.1.3c)

`

B

ûP,r,mpzq ; ŵf,lpzq
F

F̂2,nlp “

B

uPSV
s,r,nppz, Rq ; ŵPSV

s,r,l pzq
F

`

B

uPSV
s,θ,nppz, Rq ; ŵPSV

s,θ,lpzq
F

`

B

uPSV
s,z,nppz, Rq ; ŵPSV

s,z,l pzq
F

(4.1.3d)

`

B

uf,r,nppz, Rq ; ŵf,lpzq
F

F̂3,nlq “

B

ûSH
s,r,nqpz, Rq ; ŵPSV

s,r,l pzq
F

`

B

ûSH
s,θ,nqpz, Rq ; ŵPSV

s,θ,lpzq
F

(4.1.3e)

8
ÿ

m“1

CP,nm F̂4,njm “

8
ÿ

p“1

CPSV,np F̂5,njp `

8
ÿ

q“1

CSH,nq F̂6,njq with j “ 1, . . . , NSH (4.1.4a)

(4.1.4b)

F̂4,njm “

B

ûP,r,mpzq ; ŵSH
s,r,jpzq

F

`

B

ûP,θ,mpzq ; ŵSH
s,θ,jpzq

F

`

B

ûP,z,mpzq ; ŵSH
s,z,jpzq

F

(4.1.4c)

F̂5,njp “

B

uPSV
s,r,nppz, Rq ; ŵSH

s,r,jpzq
F

`

B

uPSV
s,θ,nppz, Rq ; ŵSH

s,θ,jpzq
F

`

B

uPSV
s,z,nppz, Rq ; ŵSH

s,z,jpzq
F

(4.1.4d)

F̂6,njq “

B

ûSH
s,r,nqpz, Rq ; ŵSH

s,r,jpzq
F

`

B

ûSH
s,θ,nqpz, Rq ; ŵSH

s,θ,jpzq
F

(4.1.4e)

For the sake of clarity the inner-product notation is used to display integrals:
B

f pzq ; gpzq
F

represents the

integral of the product f pzq ¨ gpzq over the domain in which both f pzq and gpzq exist. Therefore, the interval of
the integral is omitted in this notation. The derivation with the traditional integral notation can be found in
appendix C.1.

Stress equilibrium

The equilibrium of stresses is enforced through the equation of motion of the pile. The response of the pile can
be expressed in terms of the modal field of the acousto-elastic domain by following the same procedure as
described in section 3.1.5 to get the in-vacuo response of the pile.

´

ωnm ´ω2
¯

M uP,npz, θq “ σs,r,npz, θ, Rq ´ pf,npz, θ, Rq ` f e,npz, θq (4.1.5)

In this case the right-hand side consists of the external force f e,n, the exerted soil stresses σs,r and fluid
pressure ´pf,n (eqs. (4.1.6a) and (4.1.6b) ). After expanding the expressions it is immediately apparent that
trigonometric functions Rnpθq cancel out. The equation of motion is then pre-multiplied by an arbitrary pile
mode ûP,kpzq and integrated over the z-axis. Using the orthogonality condition of the pile, eq. (3.1.6), and
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re-arranging results in the sets of equations shown in eq. (4.1.7a). Where F̂10,k are the elements of the modal
forcing vector.

σs,r,npz, θ, Rq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np H˚npkpRq σ̂PSV
s,r,ppzq `

8
ÿ

q“1

CSH,nq H˚˚n pkqRq σ̂SH
s,r,qpzq

˛

‚ (4.1.6a)

pf,npz, θ, Rq “ cospnθq

¨

˝

8
ÿ

p“1

CPSV,np Hp2qn pkpRq p̂f,npzq

˛

‚ (4.1.6b)

The matrices Rnpθq, H˚npkpRq, H˚˚n pkqRq and vectors σ̂PSV
s,r,ppzq, σ̂SH

s,r,qpzq are defined in appendix B.4

8
ÿ

m“1

CP,nm F̂7,nkm “

8
ÿ

p“1

CPSV,np F̂8,nkp `

8
ÿ

q“1

CSH,nq F̂9,nkq ` F̂10,k with k “ 1, . . . , NP (4.1.7a)

F̂7,nkm “
´

ω2
nm ´ω2

¯

ρhRΓP
nmδmk (4.1.7b)

F̂8,nkp “

B

ûP,r,kpzq ;
”

´Hp2qn pkpRqp̂ f ,ppzq
ı

loooooooooooomoooooooooooon

pf,nppz,Rq

F

(4.1.7c)

`

B

ûP,r,kpzq ;
”

´σ̂PSV,1
s,rr,p pzq ¨ Hp2qn pkpRq ` σ̂PSV,2

s,rr,p pzq ¨ h1,npkpRq
ı

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

σPSV
s,rr,nppz,Rq

F

`

B

ûP,θ,kpzq ;
”

σ̂PSV,2
s,rr,p pzq ¨ h2,npkpRq

ı

looooooooooooomooooooooooooon

σPSV
rθ,nppz,Rq

F

`

B

ûP,z,kpzq ;
„

σ̂s,zr,ppzq ¨
1
kp
Br Hp2qn pkpRq



looooooooooooooooomooooooooooooooooon

σPSV
s,rz,nppz,Rq

F

F̂9,nkq “

B

ûP,r,kpzq ;
”

´σ̂SH
s,rr,qpzq ¨ h2,npkqRq

ı

loooooooooooooomoooooooooooooon

σSH
s,rr,nqpz,Rq

F

`

B

ûP,θ,kpzq ;
”

σ̂SH
s,rr,qpzq ¨ h3,npkqRq

ı

loooooooooooomoooooooooooon

σSH
rθ,nqpz,Rq

F

(4.1.7d)

`

B

ûP,z,kpzq ;
„

σ̂s,zθ,qpzq ¨
n

kqr
Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

σSH
s,rz,nqpz,Rq

F

F̂10,k “

ż L

0
ûT

P,k f̂ e δpzqdz “ ûP,r,kp0q f̂e,r ` ûP,θ,kp0q f̂e,θ ` ûP,z,kp0q f̂e,z (4.1.7e)

In this work it was opted to include eq. (4.1.7a) in the final system of equations, resulting in a linear
system with pNPSV ` NSH ` NPq unknowns and equations. Whereas in the work of [3] the pile amplitudes
were substituted back into the weakend interface conditions, eqs. (4.1.2a) to (4.1.2c), proceeding with only the
modal amplitudes of the acousto-elastic amplitudes as unknowns.
However, when it comes to the programming of the latter, extra steps are involved as nested summations
occur, in contrast to the method chosen in this work, where the implementation is straight-forward and easily
modified.

Symmetric case For the symmetric case it suffices to substitute n “ 0 into the equations, which results in the
decoupling of the azimuthal terms, i.e. the SH-problem separates from the PSV-problem. After simplifying
and re-naming the modes, conform appendix B.4.2, the required two sets of equations become eqs. (4.1.8)
and (4.1.9a).
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8
ÿ

m“1

CP,0m F̂1,lm “

8
ÿ

p“1

CPSV,0p F̂2,lp with l “ 1, . . . , NPSV (4.1.8a)

F̂1,lm “

B

ûP,r,mpzq ; ŵf,lpzq
F

`

B

ûP,r,mpzq ; ŵPSV
s,r,l pzq

F

`

B

ûP,z,mpzq ; ŵPSV
s,z,l pzq

F

(4.1.8b)

F̂2,lp “

B

uf,r,ppz, Rq ; ŵf,lpzq
F

`

B

us,r,ppz, Rq ; ŵPSV
s,r,l pzq

F

`

B

us,z,ppz, Rq ; ŵPSV
s,z,l pzq

F

(4.1.8c)

8
ÿ

m“1

CP,0m F̂3,km “

8
ÿ

p“1

CPSV,0p F̂4,kp ` F̂5,k with k “ 1, . . . , NP (4.1.9a)

F̂3,km “
´

ω2
0m ´ω2

¯

ρhRΓP
0mδmk (4.1.9b)

F̂4,kp “

B

ûP,r,kpzq ;
”

´p̂ f ,ppzqHp2q0 pkpRq
ı

loooooooooooomoooooooooooon

pf,0ppz,Rq

F

`

B

ûP,z,kpzq ;
”

σ̂H1
s,zr,ppzqHp2q1 pkpRq

ı

loooooooooooomoooooooooooon

σs,rz,0ppz,Rq

F

(4.1.9c)

`

B

ûP,r,kpzq ;
”

σ̂H0
s,rr,ppzqHp2q0 pkpRq ` σ̂H1

s,rr,ppzqHp2q1 pkpRq
ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

σs,rr,0ppz,Rq

F

F̂5,k “ ûP,r,kp0q f̂e,r ` ûP,z,kp0q f̂e,z (4.1.9d)

Final system of equations

In sections 4.2 and 4.3 a second and third 2 set of equations similar to eqs. (4.1.7a) and (4.1.9a) are obtained.
Collecting the unknown amplitudes into a single vector results in a linear system as depicted in eqs. (4.1.10)
and (4.1.11) for the non-symmetric and symmetric case respectively.

Note that F̂1,lp is a matrix where the element pl, pq is the scalar expression F̂1,lp. Since l and p denote the
pile and PSV-mode numbers respectively this particular matrix has a size of NP ˆ NPSV, where NtP; PSV; SHu is
the number of modes that are considered. section 4.4.3 elaborates further upon the truncation of these modes
and choice for NtPSV; SHu

»

–

F̂2,nlp F̂3,nlq ´F̂1,nlm
F̂5,njp F̂6,njq ´F̂4,njm
F̂8,nkp F̂9,nkq ´F̂7,nkm

fi

fl

»

–

CPSV
CSH
CP

fi

fl “

»

–

0
0

´F̂10,k

fi

fl with

$

’

&

’

%

p, l P r1, NPSVs

q, j P r1, NSHs

m, k P r1, NPs

(4.1.10)

„

F̂2,lp ´F̂1,lm
F̂3,kp ´F̂4,km

„

CPSV
CP



“

„

0
´F5,k



(4.1.11)

Differences

Two main differences between the developed method and Tsouvalas’ method, hereinafter referred to as the
orthogonality method, are first and foremost regarding the choice of weight functions, which are used to
weaken the imposed conditions.
The orthogonality method opts for the use of arbitrary modes, eq. (4.1.12a), as weight functions. While the

2 A third equation is obtained only for the non-symmetric cases.
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method at hand uses the point-collocated radial as weight functions, which include the Hankel-function
evaluated at the interface r “ R, eq. (4.1.12b).

arbitrary mode l: σ̂s,zr,lpzq (4.1.12a)

point-collocated mode l: σs,zz,nlpz, Rq “ ´Hp2qn pkl Rq σ̂s,zz,lpzq (4.1.12b)

Note that in the point-collocated modes the θ-dependant part is not considered, since these do not influence
the weakened form, as the trigonometric functions are cancelled out before integration. Henceforth when
integration over the domain is mentioned in this chapter this only concerns the vertical domain, i.e. the z-axis.
Furthermore, in the Orthogonality-method the weight functions are chosen such that the expressions can be
simplified by use of the orthogonality relations of the acousto-elastic modes 3.

The advantage of the alternative method is that the resulting matrix is diagonally dominant, increasing its
computational efficiency. However, the derivation of the matrix elements consists of many derivation steps and
is, therefore, prone to error, both in deriving the equations and programming them. The methods presented in
sections 4.2 and 4.3 avoid this by having straight forward weight functions, making the method less liable to
error but more time robust at the same time.

4.2 The Orthogonality-method

As mentioned before, the Orthogonality-method that is derived in [3] will be further extended for higher
circular mode numbers n ą 0. The main difference between the axi-symmetric and non-axi-symmetric case is
the coupling that exists between the PSV-waves the horizontal shear SH-waves for the non-symmetric case, i.e.
the previously derived Rayleigh and Love modes.

In this section the weight functions of the Orthogonality-method are shown for both the non-symmetric
and symmetric case in section 4.2 respectively. Note that the weight-functions for the symmetric case are
retrieved from [3], and are briefly mentioned for the purpose of validating the developed method.

Non-symmetric case pn ą 0q

Similar to the Orthogonality-method for the symmetric case, the aim is to choose the weight functions such
that the resulting expressions can be simplified using the orthogonality relations of the acousto-elastic medium.
These relations are introduced in section 3.2 and are revisited here:

´
1
kp

ż z2

z1

v̂f,r,p

iω
p̂f,l dz`

1
kp

ż z3

z2

α̂I
s,lpzq ûs,r,ppzq ´ ûs,z,lpzq σ̂s,zr,ppzqdz “ ΓPSV

l δpl

with: α̂I
s,lpzq “ ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq

(3.2.14a revisited)

ż z3

z2

µk2
j ûs,θ,j ûs,θ,q dz “ ΓSH

j δqj (3.2.15 revisited)

Weight functions The weight functions that allow for simplification in the non-symm case are shown in
eq. (4.2.2). The subscripts l and j respectively denote an arbitrary PSV- and SH-mode.

An extended derivation is found in appendix C.2, where the final expressions are simplified using the
orthogonality conditions. Note, however, that these simplifications are not applied in the model at hand, for
the sake of having a straight forward model where adjustments to the weight functions are easily implemented.

3 The simplifying of the expressions is excluded in this thesis but can be found in [3]
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ŵf,lpzq “ ´p̂f,lpzq (4.2.2a)

ŵPSV
s,l “

»

—

—

–

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
0

´
1
kl

σ̂PSV
s,zr,lpzq

fi

ffi

ffi

fl

(4.2.2b)

ŵSH
s,j “

»

–

0
µ k2

j ûSH
s,θ,j

0

fi

fl (4.2.2c)

The aforementioned procedure (page 26) is applied with the chosen weight functions, eq. (4.2.2). This
results in the following two sets of equations:

8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq (4.2.3a)

F̂1,nlm “

B

ûP,r,mpzq ;
“

´p̂f,lpzq
‰

F

`

B

ûP,r,mpzq ;
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

looooooooooooooooomooooooooooooooooon

ŵPSV
s,r,l pzq

F

(4.2.3b)

`

B

ûP,z,mpzq ;
„

´
1
kl

σ̂PSV
s,zr,lpzq



loooooooomoooooooon

ŵPSV
s,z,l pzq

F

F̂2,nlp “

B

”

û f ,r,ppzq ¨ Br Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
f,r,nppz,Rq

;
“

´p̂f,lpzq
‰

F

(4.2.3c)

`

B„

ûs,r,ppzq ¨
1
kp
Br Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,r,nppz,Rq

;
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

F

`

B

”

ûs,z,ppzq ¨ ´Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
s,z,nppz,Rq
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(4.2.4d)

Symmetric case pn “ 0q

Since the SH- and PSV-modes are decoupled for the symmetric case pn “ 0q and only the response of the
system in terms of PSV-waves is of interest the system reduces to two unknown sets of modal amplitudes
CtP; PSVu. Thus, the additional set of weakend equations eq. (4.1.2c), as well as the vector-element corresponding
to the azimuthal direction is scrapped.

Weight functions

ŵf,lpzq “ ´p̂f,lpzq (4.2.5a)

ŵPSV
s,l “

»

–

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq

´
1
kl

σ̂s,zr,lpzq

fi

fl (4.2.5b)

Following the procedure described section 4.1 in on page 26 results in the following set of equations:
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ûP,z,mpzq ;
„

´
1
kl

σ̂s,zr,lpzq


loooooooomoooooooon
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4.3 The Point Collocation-method

As previously mentioned the weightfunctions for the Point Collocation-method are chosen more systematically.
For the interface conditions between the pile and soil the weight function is set to the radial stress in the
relevant direction. So, for example, for the continuity of vertical displacement the weight functions ŵPSV

s,r,nl and
ŵSH

s,r,nl are the arbitrary modes σPSV
s,zr,nlpz, Rq and σSH

s,zr,nlpz, Rq respectively.
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The weight functions for the Point Collocation-method are shown for both the non-symmetric and
symmetric case in section 4.3 respectively.

Non-symmetric case pn ą 0q

Weight functions

ŵf,nlpzq “ ´p̂f,lpzqHp2qn pkl Rq (4.3.1a)

ŵPSV
s,nl “ σPSV
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»

—

—

—

–
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σ̂PSV,2

s,rr,l pzq h2,npkl Rq

σ̂s,zr,lpzq
1
kl
Br Hp2qn pkl Rq

fi

ffi

ffi

ffi

fl

(4.3.1b)
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»
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s,rr,jpzq h2,npk jRq

σ̂SH
s,rr,jpzq h3,npk jRq

σ̂SH
s,zθ,jpzq

n
k jR

Hp2qn pk jRq

fi

ffi

ffi

fl

(4.3.1c)

Following the procedure described in section 4.1 on page page 26 results in the following two sets of
equations:



34 chapter 4 . mode-matching

8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq (4.3.2a)

F̂1,nlm “

B
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Symmetric case pn “ 0q

Similar to section 4.2 the problem reduces for the symmetric case. Naturally the same set of equations can be
obtained by substituting n “ 0 into eq. (4.3.2)

Weight functions

ŵf,lpzq “ ´p̂f,lpzqHp2q0 pkl Rq (4.3.4a)

ŵPSV
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fl (4.3.4b)
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Following the procedure described section 4.1 in on page 26 results in the following set of equations:
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û f ,r,ppzqHp2q1 pkpRq
ı

loooooooooooomoooooooooooon

pf,0ppz,Rq

;
”

´p̂f,lpzqHp2q0 pkl Rq
ı

F

(4.3.5c)

`

B

”
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ûs,z,ppzqHp2q0 pkpRq
ı

loooooooooooomoooooooooooon

us,z,0ppz,Rq

;
”

σ̂H1
s,zr,lpzqHp2q1 pkl Rq

ı

F

4.4 Numerical considerations

In this section the stability and solvability of the assembled linear system is briefly touched upon in section 4.4.1.
Furthermore, an uniform error definition is set to systematically assess the convergence of the different

methods, this definition is found in section 4.4.2. The truncation of the modal summation of the fluid-soil
medium is elaborated upon in section 4.4.3.

4.4.1 Stability of the system

The assembled linear system, of size pNP ` NPSVq for the symmetric case and pNP ` NPSV ` NSHq for the
non-symmetric case, is solved by inverting the coëfficient matrix A. Depending on the truncation, which is
further elaborated on in section 4.4.3, the size of A can become quite big and is not necessarily prominent
diagonal, resulting in an ill-conditioned matrix. Hence the stability of the system is questioned.

The stability of the matrix is monitored through the relative error of the outcome during the solving process.
This process is shown in eq. (4.4.1), where x consists of the unknowns CtP; PSV; SHu and vectors b0 and b1 are
the original and re-calculated right-hand side respectively.
A sample check shows that the obtained amplitude do satisfy the equation for with the tolerance of 10´10,
therefore, no extra measures were taken. If the threshold was exceeded one could pre-condition the matrix to
increase its stability.

x “ A´1 b0

b1 “ A x
ÝÝÝÑ ∆b “ b1 ´ b0 (4.4.1a)

Absolute error:
∣∣∣∣
b

∆bT∆b
∣∣∣∣ (4.4.1b)

Relative error:
Absolute error

bT
0 b0

ď εtol “ 10´10 (4.4.1c)
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4.4.2 Matching error

Once the amplitudes CtP; PSV; SHu the extent to which they comply with the kinematic interface conditions is
checked through the absolute mismatch between the displacement of the pile and the adjacent acousto-elastic
medium at r “ R. The mismatch in radial direction is shown in fig. 4.1a. This error is greatly influenced by
the number of (evanescent) acousto-elastic modes taken into account, therefore, the truncation of the modal
summation is based on a threshold for the mean mismatch error, further elaboration on this process is found
in section 4.4.3.

For the purpose of having a uniform threshold test the relative mismatch error is defined in eq. (4.4.2b),
where the x f pzqy depicts the averaging process along the z-axis.

Due to the oscillatory nature of the displacement the relative error reaches rather high values when the
displacement in the acousto-elastic medium becomes small, see the unbroken line in fig. 4.1b, when this is
not accounted for in the relative error this results in non-credible error-values. This is omitted by filtering
the values of ûts; fu,tz;θ; ru that are smaller than 10% of the mean displacement. After applying the filtering
procedure the peaks in the relative error becomes much smaller, see the dashed line in fig. 4.1b, however, the
peaks near the boundary are inevitable, and are attributed to Gibbs phenomenon, which is clearly seen in the
mismatch at z “ z0 and z “ z1 in fig. 4.1a.

Filtering:
∣∣∣û˚tP; s; fu,tz;θ; ru

∣∣∣ ě 0.1 ¨ mean
´
∣∣∣ûts; fu,tz;θ; ru

∣∣∣
¯

(4.4.2a)

Error per medium: δts; fu,tz;θ; ru “

C

∣∣∣û˚P,tz;θ; ru ´ û˚
ts; fu,tz;θ; ru

∣∣∣
∣∣∣û˚
ts; fu,tz;θ; ru

∣∣∣

G

(4.4.2b)

Overall error: δtotal “

ÿ

i

γi δts; fu,tz;θ; ru

ÿ

i

γi
with

$

’

&

’

%

γf,r “
ř

γs,tz;θ; ru

for n “ 1: γs,tz;θ; ru “ 1
for n “ 0: γs,tz; ru “ 1

(4.4.2c)

Finally an overall relative error is obtained by taking the weighted average of the relative errors for the
different interface conditions. Since the waveradiation in the fluid-medium is of interest, the corresponding
interface condition is weighted twice as heavy as the others, conform eq. (4.4.2c).

Geometry Pile Soil Fluid

Pile top zpile top 0 m ρP 7850 kg m´3 ρs 1600 kg m´3 ρ f 1000 kg m´3

Sea surface z0 8 m E 2.1 ¨ 1011 kg m´3 ds 60 m d f 22 m
Sea bed z1 30 m R 2.5 m cT 149.373 m s´1 c f 1500 m s´1

Pile bottom zL 60 m h 0.03 m cL 366.06 m s´1

Rigid boundary condition z2 90 m ν 0.28 Es 1.0 ¨ 108 kg m´3

L 60 m Ptλ,µu 1 %

Table 4.1: Properties of the system

4.4.3 Truncation

Unlike the truncation of the pile modes, which is based on the excited modes for the highest frequency used
in the scope of this thesis (as described in section 3.1.5), the number of evanescent PSV- and SH-modes that
satisfy the interface conditions up to a certain threshold for a higher frequency do not necessarily meet the
same threshold for a lower frequency. One may say that there exists an optimum combination of the numbers
of PSV- and SH-modes that are considered for each frequency. When the ideal number of modes is exceeded
the solution starts starts to diverge for some cases, fig. 4.2. The extra added modes seem to cause ”noise” in the
linear system 4, as a result of which the local requirement (kinematic conditions at r “ R) is not met. This effect



38 chapter 4 . mode-matching

−2 0 2 4

u{P; s; f},r,n(z,R) [m · s] ×10−8

z0

z1

z2

L

Z
-a

x
is

[m
]

Re(uP,r,n)

Im(uP,r,n)

Re(u{s; f},r,n)

Im(u{s; f},r,n)

Mismatch

(a)

0 20 40 60 80 100

Relative error [%]

δf,r = 76.90% δs,r = 3.19%

δf,r = 19.18% δs,r = 2.89%

(b)

Figure 4.1: (a) Mismatch and (b) relative error, both filtered (dashed line) and unfiltered (unbroken line), in radial direction
for a system with the properties in table 4.1 at f “ 200 Hz and for NtPSV; SHu “ p297, 275q

seems to be related to the matching method, since it seems to be more prominent in the Orthogonality-method.
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Figure 4.2: The convergence of the response to a uniform vertical force shown by plotting δtotal against NPSV for several
frequencies.

The ideal number of modes to obtain the response to a uniform horizontal and vertical force are depicted
in figs. 4.3 and 4.4 respectively.

4 A possible explanation for the ”noise” in the linear system, is that the additional modes enlarge the linear systems and since large systems
are prone to being ill-conditioned this may result in less accurate solutions.
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Figure 4.3: (b)-(c) The ideal number of modes NtPSV; SHu for the response to a uniform horizontal force and (a) the
corresponding error

Finding the optimum

In the case of an undamped system the modes corresponding to real wavenumbers kPSV are always taken into
account, after which evanescent modes are added with increments of dNPSV

The mode-matching procedure is iterated for different combinations of NtPSV; SHu. This is done starting
from a higher number of modes and decreasing the number of modes with increments of dNtPSV; SHu, while
taking into account the fact that the (complex) evanescent modes come in pairs 5. The minimum number
of modes is pre-set to a hundred, this ensures that any modes corresponding to real wavenumbers (in the
undamped state) are taken into account. For the non-symmetric case this translates to a nested loop where the
algorithm checks for and stores the combination of NtPSV; SHu that results in the smallest error δIC.

Convergence

Naturally, it is interesting to see how quickly the algorithm converges. To demonstrate this, the error analysis,
as described above, is run once to get the response to a vertical force and a moment on the y-axis, allowing
for a maximum of 10 and 20 iterations respectively. The error analysis is set-up to start from the maximum
available PSV-modes and 400 SH-modes and decreasing with increments of dNSH “ 50 and dNPSV “ 10. The

5 Tip for optimization of the model: Currently the user can set the increment-size dNtPSV; SHu and an upper and lower limit for NtPSV; SHu

which is looped through to look for the ideal combination of NtPSV; SHu. The behaviour of the error in relation to NtPSV; SHu can be studied
per frequency, so that when a trend is visible this can be implemented in the algorithm.
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Figure 4.4: (b) The ideal number of modes NPSV for the response to a uniform vertical force and (a) the corresponding error

threshold for both analysis was set to δtotal ď 10%. From fig. 4.5 it can be concluded that the higher frequencies
have trouble meeting the threshold with this set-up. For the higher order responses refining the step-size
dNSH would result in better convergence, as the solution seems to converge drastically for high numbers of
SH-modes. One should be critical of running the algorithm for more iterations, since it essentially takes less
and less modes into account, which doesn’t bode well for a better convergence.

Last but not least, it is noticeable that the symmetric case has more difficulty converging for higher
frequencies, in contrast to the 1st order response, where this difference in convergence between high and low
frequencies is not directly visible.
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Figure 4.5: The local error per frequency for the response to a uniform horizontal force.

Error per continuity condition

Figure 4.6 illustrates the contribution to the error per continuity condition. As is evident the error in the radial
direction of the fluid medium is relatively large, and this is independent of the larger weight factor γf,r.

Figure 4.7 shows the mismatch in the radial direction at the pile interface (r “ R). It is evident that the
fluid displacement is loosely following the pile displacement, despite the highly oscillatory behaviour. The
modal expansion to express the fluid displacement needs more modes to converge to such a function. The
difficulty in convergence can thus be attributed to the lack of available evanescent modes.

Note that both figs. 4.6 and 4.7 show results obtained with the Point-Collocation method. The results from
the Orthogonality method are omitted, since the convergence is fairly similar the
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Figure 4.6: The local error per continuity condition for the response to (a) a vertical force, (b) horizontal force, (c) moment
on the y-axis and (d) 2

nd-order torsional moment
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Chapter 5

A case study

In the previous chapter, chapter 4, the method for obtaining the displacement fields, that fulfill the local
kinematic conditions at the interface r “ R, eq. (4.1.1), is described per frequency. The response of the model
in the frequency domain can thus be obtained by repeating the described routine for various frequencies. The
response in time is then obtained by use of the inverse Fourier transform. Note, however, that the analysis
still takes place per circular modenumber n, which describes simple forcing configurations, such as the ones
depicted in fig. 5.1. More complex forcing configurations can be obtained by superposition of the simple ones.

In this chapter a realistic casestudy will be conducted. The desired output and required input are mentioned
thoroughly in the chapter, before discussing the obtained results.

Input: forcing configurations, spectrum and amplitudes

As mentioned earlier in section 2.1, in practice it is common for higher order modes of the shell to be activated
when performing symmetric impact pile-driving. A likely reason for this are imperfections in the symmetry.
Such as a small eccentricity e of the point of application of the force or the action line having a small angle ϕ
with the normal, i.e. the force isn’t perfectly vertical, as shown in fig. 5.1a.

Note that decomposing the aforementioned imperfect vertical configuration would lead to a combination
of three basic loading configurations, namely a vertical (Fz, fig. 5.1b) and horizontal (Fx, fig. 5.1d) load due to
the small angle, and a moment (My, fig. 5.1c) due to the eccentricity of the vertical load.

Furthermore, it is interesting to assess the response of the system to higher order torsional moments (Mz).

The geometry and material parameters are similar to the ones used in previous chapters, all values are
summarized again in table 5.1. Furthermore, for the sake of a clear synopsis, the different cases are shown in
table 5.2 together with a few pre-set properties of the system.

(a) (b) (c) (d)

Figure 5.1: (a) An imperfect impact load F, with an eccentricity e and angle to the vertical ϕ is a combination of (b) a
vertical load, (c) a moment on the y-axis and (d) a horizontal load.

In the following sections the response to the three basic forcing configurations is evaluated. The normalized
amplitude spectrum and corresponding timesignal of the force is given in fig. 5.2. Note that the forcing
amplitude has been proportioned as if a vertical load of 1 MN has been placed with an eccentricity e of 3 cm
and tilted by an angle ϕ of 3˝ to the normal of the pile.

Note that fig. 5.2 shows distributed forces, with a normalized amplitude f̂tz,θ,ru of the timesignal. The
amplitudes of the components of a unit force F that is tilted from the normal by 3˝ and eccentric by 3 cm are
shown in table 5.3.

43
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Geometry Pile Soil Fluid

Pile top 0 m ρP 7850 kg m´3 ρs 1600 kg m´3 ρ f 1000 kg m´3

Sea surface z0 8 m E 2.1 ¨ 1011 kg m´3 ds 60 m d f 22 m
Sea bed z1 30 m R 2.5 m cT 149.373 m s´1 c f 1500 m s´1

Pile bottom L 60 m h 0.03 m cL 366.06 m s´1

Rigid boundary condition z2 90 m ν 0.28 Es 1.0 ¨ 108 kg m´3

L 60 m αtλ,µu 1 %

Table 5.1: Properties of the system

Basic force configuration
Circular

modenumber
n

Force
vector
f̂ e rNs

Force
amplitude

f̂0 rNs

Number of
pile modes

NP

Uniform vertical load (Fz) 0 f̂0
“

1 0 0
‰T 1 ¨ 106 80

Uniform horizontal load (Fx) 1 f̂0
“

0 1 1
‰T 1 ¨ 106 100

1
st order normal moment (My) 1 f̂0

“

1 0 0
‰T 1 ¨ 106 100

2
nd order torsional moment (Mz) 2 f̂0

“

0 1 0
‰T 1 ¨ 106 100

Table 5.2: Pre-set properties of the basic forcing configurations, displayed in fig. 5.1
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Figure 5.2: The frequency spectrum and corresponding time signal of the components of a unit impact force of 1 MN.

Output: domain, spectra and metrics

As far as the output goes one is most interested in the response in the frequency domain, since the obtainable
response in the time domain is minimal when the reach of the frequency is limited to a maximum of 500 Hz
with steps of 1 Hz.

As mentioned in section 2.1 various noise metrics are used conform the codes issued by American National
Standards Institute, in this thesis the various responses will be assessed through the sound exposure level
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Force f̂z,max MN/m f̂θ,max MN/m f̂r,max MN/m

Vertical unit force - - 0.06366
Vertical component - - 0.06357

Horizontal component 0.00333 0.00333 -
Moment component (incl. ϕ) - - 0.01528
Moment component (excl. ϕ) - - 0.01526

Table 5.3: The amplitudes of the force spectrum of a unit force and the forces per component of an imperfect impact load.
Note f̂tz,θ,ru,max “ maxp f̂tz,θ,ruptqq

(SEL, eq. (5.0.2)) and the zero-to-peak pressure level (Lpeak, eq. (5.0.3)). Furthermore, the fluid pressure is
assessed through the sound pressure level (SPL, eq. (5.0.1))

SPL “ 20 ¨ log10

ˆ

1
2

?
2
| p̃fpr, θ, z, ωq|

10´6

˙

in dB re 1 µPa s (5.0.1)

SEL “ 10 log10

˜

1
t0

ż t95

t5

p2
f pr, θ, z, tq

10´12 dt

¸

in dB re 1 µPa2 s (5.0.2)

Lpeak “ 20 log10

¨

˝

∣∣∣ppeakpr, θ, zq
∣∣∣

10´6

˛

‚ in dB re 1 µPa (5.0.3)

with ppeakpr, θ, zq “ maxppfpr, θ, z, tqq
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5.1 Basic forcing configurations

5.1.1 A vertical force

First a perfectly symmetric driving force Fx is assumed at the top of the pile, with a magnitude of 0.9986 MN,
conform the gradient of fig. 5.2.

Local mismatch

Before assessing the post-processed data the local error at r “ R is shown per frequency, to illustrate any
discrepancies in the modal amplitudes.
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Point collocation-method: mean(δtotal) = 18.42%
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Figure 5.3: Local mismatch error δTotal in the response to a vertical force per frequency

Amplitude spectra
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Figure 5.4: The amplitude spectra of the fluid pressure at a depth of 13.5 m at various distances from the pile.

• In fig. 5.4 two separate bands of peaks can be distinguished, namely the peaks between 20 and 50 Hz
and the set of peaks between 80 and 300 Hz.

• In the frequency spectra of both the radial (fig. 5.5b) and vertical (fig. 5.5d) soil displacements a peak
occurs around 30 Hz.

• In the frequency spectrum of the vertical fluid displacement (fig. 5.5c) a single significant peak occurs
at « 10 Hz, contrary to the spectrum of the radial fluid displacement (fig. 5.5a), where two separate
peaks can be distinguish at 10 and 30 Hz respectively. The latter corresponds with the peaks found in
the spectra of the soil displacements.

Time signals

• Figure 5.6 shows that the fluid pressure behaves conform the attenuation law, i.e. the amplitude of the
peak reduces for larger horizontal distances r. Furthermore, the delay in the arrival time is clearly visible
for larger horizontal distances.
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Figure 5.5: The amplitude spectra of the (a, c) fluid and (b, d) soil displacements at a depth of 13.5 m and 32 m respectively.
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Figure 5.6: The time signal of the fluid pressure at various distances from the pile measured at a depth of 3 m below the
sea-surface.
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Figure 5.7: The unfiltered time signal of the (a) azimuthal and (b) vertical velocity in the soil at various depths, measured
at a distance of 50 m from the pile

• In figs. 5.7a and 5.7b the time signals of the radial and vertical velocities in the soil appear to be governed
by just a few frequencies, which follows from the almost perfect periodic graph.

• Figures 5.8a and 5.8b show the filtered timesignals. The filtered graphs are obtained by replacing the
highest peaks in figs. 5.5b and 5.5d by the value of the second highest peak. The same operation is used
for filtered time signals shown further along.
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Figure 5.8: The filtered time signal of the (a) azimuthal and (b) vertical velocity in the soil at various depths, measured at a
distance of 50 m from the pile. (Note: the highest peak has been replaced by the next highest peak of the signal)
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Figure 5.9: (a) The SEL and Lpeak values along the horizontal axis and (b) SPL spectrum at various horizontal distances
from the pile.

Noise metrics

Contour plots

• Figure D.5 shows a pressure wave in the fluid that propagates quicker than the shockwave in the soil.
This is clearly visible in the plot for t “ 60 ms. Where the fluid pressure is back to an almost complete
equilibrium, while the displacementnorm still appears to be at 20 % of the maximum value.



5.1 basic forcing configurations 49

0.0 0.2 0.4 0.6 0.8 1.0

r-axis [m]

0.0

0.2

0.4

0.6

0.8

1.0
z-

a
x
is

[m
]

z0

z1

5 10

L

z2
t = 6.0 ms t = 12.0 ms t = 18.0 ms t = 24.0 ms t = 30.0 ms t = 60.0 ms t = 80.0 ms

−2000

−1000

0

1000

2000

p
f

[P
a
]

0

10

20

30

40

50

|u
s
|[

1
0
−

6
m

]

Figure 5.10: Fluid pressure and displacement norm of the soil resulting from an uniform vertical load at
t “ 6, 12, 18, 24, 30, 60 and 80 ms respectively (Note: the colour bars do not convey the maximum values in the contour

plots)

5.1.2 A horizontal force

Similar to the horizontal force Fx, the moment My occurring due to the eccentricity of the vertical force has a
rather small amplitude of 0.03 MN m, thus significantly less energy is put into the system from this specific
component of the imperfect force, this should be taken into consideration when considering the total response
of the system.

Local mismatch

Before assessing the post-processed data the local error at r “ R is shown per frequency, to illustrate any
discrepancies in the modal amplitudes. Note that

Amplitude spectra

• The graph in fig. 5.13 shows that the fluid pressure is activated mostly at the frequencies between 150
and 300 Hz. Furthermore, the maximum amplitude of the pressure is approximately 475 Hz, which

• Figures 5.14a, 5.14c and 5.14e show that the unfiltered amplitude spectra of the fluid displacement all
contain a single emphasized peak at 30 Hz, which is likely to be caused by a discrepancy in the obtained
amplitudes CPSV. After filtering the highest peak of the amplitude spectra, the graphs in figs. 5.15a, 5.15c
and 5.15e show a more common development of the frequency spectrum in the fluid-medium.

• The same peaks appear in the unfiltered amplitude spectra of the soil displacements, figs. 5.14b, 5.14d
and 5.14f, however, the height of the first peak doesn’t minimize the complete spectrum like it does for
the fluid spectra.

• The unfiltered graphs in figs. 5.15a and 5.15e show that, similar to the fluid pressure in fig. 5.13, the
frequencies 150 to 300 Hz do influence the fluid displacements in the radial and vertical direction, while
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Figure 5.11: A top view of the fluid pressure (fig. D.5) at a depth of z “ 20 m due to an uniform vertical load at t “ 12 ms.
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Figure 5.12: Local mismatch error δTotal in the response to a horizontal force per frequency.
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Figure 5.13: The amplitude spectra of the fluid pressure at a depth of 13.5 m.
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Figure 5.14: The unfiltered amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and
32 m respectively.
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Figure 5.15: The filtered amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and 32 m
respectively. (Note: the highest peak has been replaced by the next highest peak of the signal)

for the azimuthal displacement fig. 5.15c the amplitudes at these frequencies are negligible compared to
those at the lower frequencies.
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Time signals
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Figure 5.16: The time signal of the fluid pressure at various distances from the pile measured at a depth of 3 m below the
seasurface.

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−1.0

−0.5

0.0

0.5

v
s,
θ

[m
/
s]

×10−10

At seabed

10.0 m below seabed

30.0 m below seabed

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−1.0

−0.5

0.0

0.5

1.0

v
s,

z
[m

/
s]

×10−10

At seabed

10.0 m below seabed

30.0 m below seabed

(b)

Figure 5.17: The time signal of the (a) azimuthal and (b) vertical velocity in the soil at various depths, measured at a
distance of 50 m from the pile. (Note: the highest peak has been replaced by the next highest peak of the signal)

• The graphs in fig. 5.13 show a slight peak at the time of impact, which is delayed in time the further
we are from the pile. Unlike the first two graphs, a small damping can be noticed in the third graph at
r “ 50 m.
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• Despite the oscillatory behaviour of the graphs in figs. 5.17a and 5.17b a gradient similar to the figs. 5.8a
and 5.8b is vaguely visible, especially the peak around t “ 2 ms.

• fig. 5.17b

Noise metrics
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Figure 5.18: (a) The SEL and Lpeak values along the horizontal axis and (b) SPL spectrum at various horizontal distances
from the pile.
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Figure 5.19: Fluid pressure and displacement norm of the soil resulting from an uniform horizontal load at
t “ 6, 12, 18, 24, 30, 60 and 80 ms respectively (Note: the colour bars do convey 33 % of the maximum value in the contour

plots)
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Figure 5.20: A top view of the =displacement norm in the soil (fig. D.7) at a depth of z “ 35 m due to an uniform vertical
load at t “ 3, 12, 18 and 24 ms.

5.1.3 A moment on the y-axis

Similar to the horizontal force Fx, the moment My occurring due to the eccentricity of the vertical force has a
rather small amplitude of 0.03 MN m, thus less energy is put into the system from this specific component of
the imperfect force, this should be taken into consideration when considering the response of the system.

Local mismatch

Before assessing the post-processed data the local error at r “ R is shown per frequency, to illustrate any
discrepancies in the modal amplitudes.

Amplitude spectra

Time signals

• On first sight the time signals shown in fig. 5.25 show no damping as time goes on. But for larger
horizontal distances (r “ 50 m) there clearly appears to be some sort of damping in time. Furthermore,
the time of arrival is difficult to determine via these figures. However, one can see that for greater
distance the damping can be seen.

• The frequency spectra of the displacements in the fluid and soil (fig. 5.23) caused by a moment on the
y-axis are governed by just one or two frequencies, therefore, the time signals of the accompanying
velocities are almost perfect sines. The filtering process (fig. 5.24) could not change this, without filtering
too many peaks from the spectra. For this reason, the velocities are not shown in this part.
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Figure 5.22: The (a) unfiltered and (b) filtered amplitude spectra of the fluid pressure at a depth of 13.5 m. (Note: the
highest peak has been replaced by the next highest peak of the signal)
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f,

r

∣ ∣ [
m
·s]

×10−5

r = 11.5 m

r = 20.5 m

r = 47.5 m

(a)

0 100 200 300 400 500

Frequency [Hz]

0.0

0.5

1.0

1.5

|ũ
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Figure 5.23: The unfiltered amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and
32 m respectively.
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Figure 5.24: The unfiltered amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and
32 m respectively. (Note: the highest peak has been replaced by the next highest peak of the signal)
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Figure 5.25: The time signal of the fluid pressure at various distances from the pile measured at a depth of 3 m below the
seasurface.

10 20 30 40

Horizontal distance [m]

130

140

150

160

S
E

L
/

L
p
,p
k

SEL [dB re 1 µPa2 s]

Lp,pk [dB re 1 µPa]

(a)

0 100 200 300 400 500

Frequency [Hz]

0

50

100

S
P

L
[d

B
re

1
µ

P
a

s]

r = 2.5 m

r = 10.0 m

r = 50.0 m

(b)
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from the pile.
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Figure 5.27: Fluid pressure and displacement norm of the soil resulting from a moment on the y-axis at
t “ 6, 12, 18, 24, 30, 60 and 80 ms respectively (Note: the colour bars do convey 50 % of the maximum value in the contour

plots)

5.2 Imperfect vertical force

The response of eccentric and tilted forces (and combinations thereof) consists of the same forcing components,
with slight differences in the amplitudes, the results turn out to be very similar because of this. Thus the
section is shortened and will only contain the results of an eccentric force and an eccentric force that is also
slightly tilted. This way all possible components are shown in the graphs.

Amplitude spectra

• fig. 5.28a shows that the spectrum of the fluid pressure due to the vertical force is dominating. Only in
the region between 100 and 150 Hz does the total response deviate a little bit from the response of Fz

• fig. 5.28b shows the same behaviour additional to a slight decrease and increase at f “ 250 Hz and
between 400´ 500 Hz respectively.

Time signals

• fig. 5.31 shows that the course of the fluid pressure for an imperfect vertical force in time is almost equal
to that of a perfect force, fig. 5.4. Despite the deviations previously seen for a horizontal force, fig. 5.13.
The vertical force dominates, this is as expected when looking at the amplitudes of the forcing spectra in
table 5.3.

Noise metrics
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Figure 5.28: The amplitude spectra of the fluid pressure due to an eccentric (a) vertical and (b) tilted force at a depth of
13.5 m.
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Figure 5.29: The amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and 32 m
respectively for an eccentric force. (ϕ “ 0˝, e “ 3 cm)



5.2 imperfect vertical force 59

0 100 200 300 400 500

Frequency [Hz]

0.0

0.5

1.0

∣ ∣ ũ
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Figure 5.30: The amplitude spectra of the (a,c,e) fluid and (b,d,f) soil displacements at a depth of 13.5 m and 32 m
respectively for an eccentric force. (ϕ “ 3˝, e “ 3 cm)
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Figure 5.32: (a) The SEL and Lpeak values along the horizontal axis and (b) SPL spectrum at various horizontal distances
from the pile.



Chapter 6

Discussion

In this chapter two separate discussions will be held. In section 6.1 the methods described in chapter 4 will be
discussed, while section 6.2 focusses on the casestudy executed in chapter 5.

6.1 The method

In this section, discussion points are cited based on the findings in chapter 4, where two modematching
methods are derived, namely the Point-Collocation method (section 4.3) and the Orthogonality method
(section 4.2). The implementation of the methods in the developed model and any numerical considerations
are shed light on in section 4.4.

The pile module In this work the pile is described by a circular cylindrical shell using a higher order shell
theory. The shell is considered to have 5 degrees of freedom, including the two angles βP,t`,ru. However, for the
application at hand a lower order theory might suffice, where at least the minimum 3 degrees of freedom are
considered. The pile module could easily be switched or adapted to further research the influence of the shell
theory on the results of the model.

Furthermore, the truncation of the modal summation of the pile (section 3.1.5) is currently based on an
impact load with an infinite amplitude (i.e. Dirac delta function), of which the frequency spectrum is a
constant. Note that the excited modes might differ for a more realistic spectrum, a hard-coded number of pile
modes NP is not recommended for obtaining the response to any arbitrary force.

Last but not least, the forcing on the pile has been simplified in this work. When it comes to the GDP-
technique, there is still an opportunity for more in-depth modelling of the driving force, closer to the reality of
the GDP-device.

Point-Collocation method The Point-Collocation method is developed with an eye on the reciprocity theorem.
The weight-functions are thus chosen to be physical quantities, in this case: the radial stresses and fluid
pressures.

Orthogonality method This method is developed keeping the orthogonality relations of the P-SV and
SH modes in mind. The weight-functions are chosen such that the final equations can be reduced using
the orthogonality relations. This method is deemed computationally efficient since it results in diagonally
dominant systems of equations.

Rayleigh-Love orthogonality During the earlier stages of deriving the Orthogonality method (appendix C.2),
it was opted to use the orthogonality relation between Love and Rayleigh waves, as derived from Betti’s
identity by Bostock [19]. However, this work did not result in a functional orthogonality condition between
the P-SV and SH modes. Since it is certain that an orthogonality relation does exists between these two
mode-types, it would be valuable to put more effort into obtaining it, in order to improve the Orthogonality
method

61
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Coupling of the modal amplitudes One of the three matching equations (eq. (C.1.3a) in appendix C.1) is
the forced equation of motion of the pile. Solving the equation of motion would result in a coupling between
the modal amplitudes of the pile and those of the P-SV and SH waves, so that a final system of equations
with only the SH- and P-SV amplitudes is obtained. This method is applied in the extended derivation in
appendix C.2 but resulted in too many nested expressions. For the sake of a straightforward script this method
is thus disregarded.

The current method includes the pile amplitudes into the set of unknowns: CP, CPSV and CSH. one could
argue that this unnecessarily increases the size of the system and, therefore, endangering its stability.

Less algebraic reduction Another choice that might affect the numerical error is not simplifying the imple-
mented matching equations (eqs. (C.1.6), (C.1.9) and (C.1.10a)), and opting for numerical evaluation of the
integrals. Because of this choice the code could be written such that the weight-functions are easily accessible,
so that an alternative modematching methods can be included without changing much to the algorithm. This
is deemed more valuable than the negligible numerical error that numerical evaluation may cause.

Stability Various of the points quoted have to do with the numerical error and/or stability of the system.
Since this is not necessarily self-evident for the Point-Collocation method, the obtained amplitudes are checked
as described in section 4.4.1.

Optimum number of modes For many frequencies an optimum exists for the number of modes taken into
account, finding this optimum for the non-symmetrical case has been done in a trial-and-error fashion, from
which we learned that the local error was less sensitive to the changes in NSH, as opposed to NPSV. Because of
this the increments dNSH were kept quite large (« 50), while dNPSV has been set to 10. Despite this bigger
grid the error analysis has to repeat the matching procedure « 180 times per frequency.

The reduced insensitivity to changes in NSH could also be linked to the fact that the SH-waves only appear
in the radial and azimuthal displacements of the soil, which contribute only 1{2 ¨ 2{3 « 33 % to the local error
(see eq. (4.4.2c) in section 4.4.2) in contrast to NPSV which is used in all the expressions of the acousto-elastic
displacement field.

Less evanescent modes Figures 6.3c and 6.4b show that the ideal number of P-SV modes gets higher for
higher frequencies, which is expected. However, note that despite the increasing total number of modes NPSV
the number of available evanescent modes decreases for higher frequencies. This is due to the limit set in the
complex rootfinder in SILINCE, from which the P-SV wavenumbers are obtained (section 2.3.1). Keeping this
in mind the fact that the model has trouble converging for higher frequencies is comprehensible, fig. 6.4a.
Figure 6.2 reassures that the fluid displacement does try to follow the highly oscillatory response of the pile.

Differences between the matching methods As mentioned before the Point-Collocation method does not
necessarily result in diagonally dominant algebraic systems, making stability not self-evident. In contrast to
the Orthogonality method which ensures a diagonally dominant system to solve, despite this difference the
convergence of the two methods seems to be fairly equal overall, see appendix D.1.

For the response to a vertical unit-load (n “ 0) the Point-Collocation method appears to converge more than
the Orthogonality method, fig. D.1. However, fig. 6.1 shows that the Orthogonality method tends to diverge
more after the ideal number of modes is exceeded, unlike the Point-Collocation method, which converges
in a stable manner. On the other hand, for the response to a horizontal unit-force (n “ 1) the Orthogonality
method converges better, especially for frequencies higher than 150 Hz, see fig. D.2

The local error for the response to a horizontal unit-load (n “ 1, fig. 6.3a) combined with the number of
modes NtPSV;SHu (figs. 6.3b and 6.3c) show that the optimum number of SH-modes lies consistently higher
for the Orthogonality method. There is no obvious explanation for this. However, it is striking that the
Orthogonality method only includes the SH-modes once in each matching equations (eqs. (C.1.6) and (C.1.7a)),
in contrast to the Point-Collocation method, where the SH-modes are included twice in each equation
(eqs. (C.1.9) and (C.1.10a)).

Based on the mean local error the Point-Collocation method converges better than the Orthogonality
method for the symmetric case (fig. 6.4a), while the the opposite is true for the non-symmetric case (fig. 6.3a),
where the mean total error of the orthogonality-method is significantly better. It could be that the diagonally
dominant matrices of the Orthogonality method are an advantage that excels with larger systems.
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6.2 The case study

In this section, discussion points are cited based on the results of the case study conducted in chapter 5.

One case only It was decided to work with only one geometry case, in order to focus on the effect of the
different forcing configurations. Especially focusing on the non-symmetric forcing fields since this is supposed
to be the novice part of this model.

Furthermore, we chose to focus on the components of an imperfect vertical force compared to a perfect
vertical force.

The analysis has been carried out for a higher order torsional force as well, these results are not included
in this report due to lack of comparison material.

Fluid pressure The frequency spectra of the fluid pressures p̃f for the non-symmetric (n “ 1, figs. 6.5b
and 6.5c) configurations show dominant peaks that are missing in the response to the symmetric force (n “ 0,
fig. 6.5a) 1. These peaks are accredited to the fact that the eigen-frequencies of the pile are much smaller and
denser for higher order circular modes n, as seen in the eigenvalue analysis in fig. 6.6. For example three of
the distinct peaks in fig. 6.5b correspond to the eigen-frequencies of the first three modes of the pile. Note that
the peaks might be shifted a little due to the stiffness of the soil surrounding the pile.

After superposition of the spectra of the various components it shows that the vertical force Fz is governing,
which is expected for realistic imperfections of this small a scale (i.e. an eccentricity of 0.03 ¨ R and an angle to
the normal of 3˝).

Despite the small amplitude of Fx and Mz, the third pile mode seems to influence the spectrum of the total
response still, fig. 6.5d.
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Figure 6.5: The amplitude spectra of the fluid pressure at a depth of 13.5 m at various distances from the pile due to (a) a
vertical (b) a horizontal force and (c) a moment on the y-axis (d) imperfect vertical force.

Time signals Obtaining reasonable time signals requires more than 500 frequencies, this is also clearly visible
in the graphs of the soil velocities (figs. 5.7a and 5.7b), which are governed by a single dominant peak in the
frequency spectra. An attempt was made to somewhat correct this by filtering out outliers from the frequency
spectrum, resulting in slightly finer results (figs. 5.8a, 5.8b, 5.17a and 5.17b).

Furthermore, the time signals of the fluid pressure clearly show a time of arrival as well as the decrease of
the pressure with increasing distance (figs. 5.6 and 5.16).

1 Note that the amplitudes in fig. 6.5 are the response to already proportioned forcing components of the total forcing. As a result, the
amplitudes of the aforementioned graphs cannot be compared fairly.
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Figure 6.6: Eigenvalue analysis of the pile up to 500 Hz for n “ 0 and n “ 1

Soil medium Figures 6.7a and 6.7b show regular smooth frequency spectra that are within the expected
outcome. In contrast to the response to a horizontal force (figs. 6.7c and 6.7d) which shows that the spectrum
is governed by a few dominant peaks. The three most prominent peaks again occur at eigen-frequencies of the
pile.
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|ũ
s,

r
|[

m
·s]

×10−6

r = 11.5 m

r = 20.5 m

r = 47.5 m

(c) ũs,r
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(d) ũs,z

Figure 6.7: The amplitude spectra of the soil displacements at a depth of 32 m due to (a,b) a vertical and (c,d) a horizontal
force
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Arrival shear waves Figure 6.8 shows the time evolution of the fluid pressure and the displacement norm of
the soil. Despite the scatter in the contour plot, the arrival of the shearwave in the soil can be recognized at

18 ms. Assuming a shear wave speed in the pile of p
1
3

c

2.1 ¨ 1011

7850
«q1683 m s´1 , the shear wave will indeed

have traveled p1683 ¨ 18 ¨ 10´3 «q30 m after 18 ms, and thus arrive at the soil layer.
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Figure 6.8: Fluid pressure and displacement norm of the soil resulting from an uniform horizontal load at
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plots)





Chapter 7

Conclusions & Recommendations

The concluding chapter of this thesis contains conclusions that are drawn based upon the findings in the
report. Section 7.1 summarizes all method related conclusions, while section 7.2 focuses on the case study.
Finally, in section 7.3 some recommendations for future research is stated.

7.1 The method

Convergence When comparing the convergence of the two different modematching methods, as presented
in chapter 4, there is no clear frontrunner. The Point-Collocation method seems to converge better than the
orthogonality-method for the symmetric case pn “ 0q, while the orthogonality-method performs better in the
higher order cases pn “ 1q. This is accredited to the diagonally dominant matrices that are characteristic to the
Orthogonality method.

Straightforward The implementation of the Point-Collocation method is favored due to its straightforward
nature, which makes its programming also clear-cut and less prone to programming errors. This resulted in a
generic script that is highly customizable, where alternative weight-functions are easily included to conduct
future studies on matching methods.

Time The execution of the developed model is quite time consuming. The culprit is the error analysis
that takes up to 24 hours per case per forcing configuration, depending on the convergence. On the upside
the error analysis stores the modal amplitudes for every case, which makes them easily accessible for any
post-processing procedures. The latter is significantly faster, for example it takes a little less than 30 minutes
to get the acousto-elastic displacement field and the fluid pressures, in both the frequency and time domain,
for a 600ˆ 100 pz, rq-grid for 500 frequencies.

Finding the optimum number of modes The procedure to find the ideal number of P-SV and SH modes
is quite robust and time consuming. Due to a lack of time and computing power an extensive study on the
behaviour of the error with smaller increments dNtPSV;SHu has not been carried out. Researching this more
thoroughly and possibly optimizing this procedure would be an interesting objective for future work.

7.2 The case study

Model validation Due to lack of time and computation power extensive model validation could not take
place within this work. This model could be validated by running several symmetric case studies with the
existing SILENCE program. Furthermore, existing data from small-scale experiments could be used to validate
the response to non-symmetric forcing configurations. Only after such studies can the model be tweaked and
possibly perfected to give results that suffice.
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Higher order torsional moments Despite the error-analysis being carried out for the higher order torsional
moments (fig. D.4), post-processing the results and assessing the response was disregarded, since the model
could not be validated. The obtained results would not be reliable.

Convergence & azimuthal direction The model seems to have extensive convergence issues with the case
of the horizontal force, even after limiting the frequencies higher than 400 Hz, fig. D.2. When the radial
component of the force is removed (i.e. higher order torsional moment fig. D.4), the model converges much
better. Because of this we can exclude the possibility that the convergence difficulty is due to the azimuthal
direction of the model. However, to date, there is no plausible explanation for this issue.

Eigenfrequencies of the pile The eigenfrequencies of the pile for higher order circular modes (n ą 1) are
smaller than for the symmetric case. The possibility of resonance must, therefore, be taken into account more
than was the case for the symmetric case. In the case study the eigenfrequencies show up as peaks in the
frequency spectra of the fluid and soil displacements.

7.3 Recommendations

A few pointers are made for research that follows up the work in this thesis. These are both things that could
have been done differently in this thesis, as well as follow-up topics to look at.

Coupling of the modal amplitudes The model can be optimized by implementing the coupling of the modal
vectors, as mentioned in the fifth discussion-point on page 62.

The pile module Since the pile was not the main objective in this work, the current model leaves room for
improvement in this area. One of instance of this is the truncation of the modal summation, which is currently
hard-coded in the script based on the presumption elaborated in the discussion-point on page 62.

Functional Rayleigh-Love orthogonality During the earlier stages of deriving the Orthogonality method
(appendix C.2), it was opted to use the orthogonality relation between Love and Rayleigh waves, as derived
from Betti’s identity by Bostock [19]. However, this work did not result in a functional orthogonality condition
between the P-SV and SH modes. Since it is certain that an orthogonality relation does exists between these
two mode-types, it would be valuable to put more effort into obtaining it. With this condition the Orthogonality
method could be further improved.

Finding optimum number of modes If after improvements the methods still seem to be highly sensitive to
the number of modes taken into account, one could further study the influence of the number of P-SV and
SH modes on the local error, in order to find a more efficient algorithm that finds the optimum number of
modes for a minimal local matching-error.

Higher order torsional moments A case study, where the driving force is modelled with higher order
torsional moment could be carried out. Since this is essentially a simplification of the GDP-shaker. The results
from the case study can be compared to and/or validated by data obtained from GDP measuring campaigns,
which should be available in the near future.

Driving force The pile driving device is currently modelled by means of various distributed loads. This may
suffice when it concerns an hydraulic hammer, but when looking at the vibratory GDP-device, a extensive
model of the device, including its geometry and the vibrating technique, could give interesting insight.
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Appendix A

The Pile

A.1 Constitutive & kinematic relations

Kinematic relation

The relation between the strains and displacement for an arbitrary (deep) shell are given by the following
equations. For the sake of abbrevity we will use these relations as a starting point for our derivation of the
shell motion. A more thorough derivation of the shell eqations can be found in existing literature [11].

ε11 “
1

f1pα3q

ˆ

BU1

Bα1
`

U2

A2

BA1

Bα2
`U3

A1

R1

˙

(A.1.1a)

ε22 “
1

f1pα3q

ˆ

BU2

Bα2
`

U1

A1

BA2

Bα1
`U3

A2

R2

˙

(A.1.1b)

ε33 “
BU3

Bα3
(A.1.1c)

ε12 “ ε21 “
f1pα3q

f2pα3q

B

Bα2

ˆ

U1

f1pα3q

˙

`
f2pα3q

f1pα3q

B

Bα1
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U2

f2pα3q

˙

(A.1.1d)

ε13 “ ε31 “ f1pα3q
B

Bα3

ˆ

U1

f1pα3q

˙

`
1

f1pα3q

BU3

Bα1
(A.1.1e)

ε23 “ ε32 “ f2pα3q
B

Bα3

ˆ

U1

f2pα3q

˙

`
1

f2pα3q

BU3

Bα2
(A.1.1f)

With: fipα3q “ Ai

ˆ

1`
α3

Ri

˙

for i “ 1, 2

In the case of a cylindrical shell the coordinates are as shown in the box below. With R being the radius of
the cylinder.

α1 ” z, α2 ” θ

β1 ” βz, β2 ” βθ

A1 “ 1, A2 “ R

R1 “ 8, R2 “ R

Substituting these coordinates and radii into the strain-displacement relations yields eq. (A.1.2). For thin

shells it holds that
α3

Ri
is negligible.
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εzz “
Buz

Bz
` r ¨

Bβz

Bz
(A.1.2a)

εθθ “
1
R

ˆ

Buθ

Bθ
` ur

˙

` r ¨
1
R
Bβθ

Bθ
(A.1.2b)

εrr “ 0 ` r ¨ 0 (A.1.2c)

εzθ “
Buθ

Bz
`

1
R
Buz

Bθ
` r ¨

ˆ

Bβθ

Bz
`

1
R
Bβz

Bθ

˙

(A.1.2d)

εzr “
Bur

Bz
` βz ` r ¨ 0 (A.1.2e)

εθr “
1
R

ˆ

Bur

Bθ
´ uθ

˙

` βθ
loooooooooooomoooooooooooon

displacement strain ε0
ij

` r ¨ 0
loooooooooomoooooooooon

bending strains kij

(A.1.2f)

As mentioned before for the application at hand thin shells are used to model the pile. The deformation of the
pile is assumed to be non-dependent on the radial coordinate r, conform Love’s simplifications.

Consistutive relation

The consistutive relation is then obtained with Hooke’s law for a three dimensional element [11]:

σzz “
Buz

Bz
` r ¨

Bβz

Bz
(A.1.4a)

σθθ “
1
R

ˆ

Buθ
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˙

` r ¨
1
R
Bβθ

Bθ
(A.1.4b)

σrr “ 0 ` r ¨ 0 (A.1.4c)
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1
R
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Bβθ
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1
R
Bβz
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˙

(A.1.4d)

σzr “
Bur

Bz
` βz ` r ¨ 0 (A.1.4e)

σθr “
1
R

ˆ

Bur

Bθ
´ uθ

˙

` βθ
loooooooooooomoooooooooooon

displacement strain ε0
ij

` r ¨ 0
loooooooooomoooooooooon

bending strains kij

(A.1.4f)

Internal forces

The relation between the strains and the internal forces are obtained by subsistuting the consistutive and
kinematic relations in the equilibrium equations of the deep shell, these can be found in various literature and
will not be shown here for abbrivaty. Doing this results in expressions A.1.5

Nzz “ K
´

ε0
zz ` µε0

θθ

¯

(A.1.5a)

Nθθ “ K
´

ε0
θθ ` µε0

zz

¯

(A.1.5b)

Nθz “ Nzθ “ G h ε0
zθ (A.1.5c)

Qzr “ Qrz “ k1G h ε0
zr (A.1.5d)

Qrθ “ Qθr “ k1G h ε0
θr (A.1.5e)

Mzz “ D pkzz ` µkθθq (A.1.5f)

Mθθ “ D pkθθ ` µkzzq (A.1.5g)

Mθz “ Mzθ “ D
1´ µ

2
kzθ (A.1.5h)



A.2 coefficient matrix & characteristic relation V

With: K “
Eh

1´ µ2 , G “
K
2h
p1´ µq and D “

E h3

12
`

1´ µ2
˘

Where K and D are the membrane and bending stiffness respectively. While the shear modulus is
represented by G.
The factor k1 is used to specfy the distribution of the shear stress along the shell thickness. A parabolic

distribution is assumed, which complies with k1 “
2
3

A.2 Coefficient matrix & Characteristic relation

Coefficient matrix

The the coefficient matrix K and M of the pile equations have been introduced in eq. (3.1.1) in section 3.1.1.
The stiffness matrix K is symmetric conform the assumption of a linear elastic material. While the mass matrix
M is a lumped one.
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»
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A.3 Displacement & stress field

Pile displacements

uP,npz, θ, rq “
8
ÿ

m“1

CP,nmRnpθqûP,mpzq (A.3.1)

with: ûP,mpzq “
“
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ûP,r,mpzq “
10
ÿ

i“1

γz,i ekiz with ki “ kipωmq and γi “ γipωmq (A.3.2a)
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ûP,θ,mpzq “
10
ÿ

i“1

γβθ,i ekiz (A.3.2e)

Internal forces & bending moments
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fl (A.3.3)

MP,npz, θ, rq “
8
ÿ

m“1

CP,nm ¨ diag
ˆ„

cospnθq
´ sinpnθq

˙„

M̂P,zz,mpzq
M̂P,zθ,mpzq



(A.3.4)

N̂P,zz,npzq “
10
ÿ

i“1

K
R
pνnûP,θ,mpzq ` kiRûP,zq e´kiz (A.3.5a)

N̂P,zθ,mpzq “
10
ÿ

i“1

Kpν´ 1q
2R

p´kiRûP,θ,mpzq ` nûP,z,mpzqq e´kiz (A.3.5b)

Q̂P,zr,mpzq “
10
ÿ

i“1

D
2R2

´

2R2k2
i β̂P,z ` nkiRpν` 1qβ̂P,θ,mpzq ` n2pν´ 1qβ̂P,z,mpzq

¯

e´kiz (A.3.5c)

M̂P,zz,mpzq “
10
ÿ

i“1

C
R
`

nνβ̂P,θ,mpzq ` kiRβ̂P,z,mpzq
˘

e´kiz (A.3.5d)

M̂P,zθ,mpzq “
10
ÿ

i“1

Dpν´ 1q
2R

`

´kiRβ̂P,θ,mpzq ` nβ̂P,z,mpzq
˘

e´kiz (A.3.5e)



Appendix B

Fluid & soil domain

B.1 Constitutive & kinematic relations

The kinematic relation inside a elastic medium in cartesian coordinates can be presented in a compact manner
as: εij “

1
2 pBjui`Biujq, with i and j being the cartesian coordinates x, y and z. Since the application at hand will

be determined conform the cylindrical coordinate system the displacement-strain in the different directions
are shown in eq. (B.1.1). These relations are assumed to be common knowlegde and can be found in many
fundamental literature. [13, 17, 20]

εs,rr “
Bus,r

Br
(B.1.1a)

εs,θθ “
1
r

ˆ

us,r ´
Bus,θ

Bθ

˙

(B.1.1b)

εs,zz “
Bus,z

Bz
(B.1.1c)

εs,rθ “ εs,θr “
1
2

ˆ

1
r

ˆ

Bus,r

Bθ
´ us,θ

˙

`
Bus,θ

Br

˙

(B.1.1d)

εs,rz “ εs,zr “
1
2

ˆ

Bus,r

Bz
`
Bus,z

Br

˙

(B.1.1e)

εs,θz “ εs,zθ “
1
2

ˆ

Bus,θ

Bz
`

1
r
Bus,z

Bθ

˙

(B.1.1f)

The constitutive relation inside a elastic medium in can be presented in a compact manner too as shown in
eq. (B.1.2), where εvol is the volumetric strain.

σij “ λ εvol δij ` µpεij ` ε jiq (B.1.2)

εvol “ ∇ ¨ u “ Bur

Br
`

ur

r
`

1
r
Buθ

Bθ
`
Buz

Bz
(B.1.3)

VII
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Substituting the kinematic equations B.1.1 into the stress definition gives the relation between the displacements
and stresses in different direction, as shown in Equations (B.1.4a) to (B.1.4f).

σ̃s,rr “ p2µ` λq
Bus,r

Br
` λ

ˆ

us,r

r
`

1
r
Bus,θ

Bθ
`
Bus,z

Bz

˙

(B.1.4a)

σ̃s,θθ “ p2µ` λq
Bus,r

Br
` λ

ˆ

us,r

r
`

1
r
Bus,θ

Bθ
`
Bus,z

Bz

˙

(B.1.4b)

σ̃s,zz “ p2µ` λq
Bus,z

Bz
` λ

ˆ

Bus,r

Br
`

us,r

r
`

1
r
Bus,θ

Bθ

˙

(B.1.4c)

σ̃s,rθ “ σ̃s,θr “ µ

ˆ

1
r
Bus,r

Bθ
´

1
r

us,θ `
Bus,θ

Br

˙

(B.1.4d)

σ̃s,rz “ σ̃s,zr “ µ

ˆ

Bus,r

Bz
`
Bus,z

Br

˙

(B.1.4e)

σ̃s,θz “ σ̃s,zθ “ µ

ˆ

Bus,θ

Bz
`

1
r
Bus,z

Bθ

˙

(B.1.4f)



B.2 solution to the helmholtz equation IX

B.2 Solution to the Helmholtz equation

The wave equations as presented in section 3.2 is simply the cylindrical Helmholtz equation. The solution-forms
are obtained by separating the variables. The derivation is shown in this appendix.

∇2 φpr, θ, z, ωq `
ω2

c2 φpr, θ, z, ωq “ 0 (B.2.1)

Note that φ is the amplitude of the fourier transform and ∇2 is the Laplace operator in cylindrical coordinates,

i.e.: ∇2 “ B2
r `

1
r
Br `

1
r2 B

2
θ ` B

2
z

First the solution is assumed to be in the form φpr, θ, z, ωq “ RprqΘpθqZpzq. Substituting the solution form
into the PDE, eq. (B.2.1), gives:.

R2 Θ Z`
1
r

R1 Θ Z`
1
r2 R Θ2 Z` R Θ Z2 `

ω2

c2 R Θ Z “ 0

R2prq
Rprq

`
1
r

R1prq
Rprq

`
1
r2

Θ2pθq
Θpθq

looooooooooooooooomooooooooooooooooon

f pθ,rq“´k2

`
Z2pzq
Zpzq

`
ω2

c2
loooooomoooooon

f1pzq“ k2

“ 0 (B.2.2)

The above can only hold if both functions are constant, in this case the arbitrary seperation constant k2 is used.
The partial differential equation is now split into one ODE and one PDE. The latter is again separable, thus a
second and third ODE are obtained using the same analogy.

r2 R2prq
Rprq

` r
R1prq
Rprq

` r2 k2

looooooooooooooomooooooooooooooon

f3prq“ n2

`
Θ2pθq
Θpθq
loomoon

f2pθq“´n2

“ 0 (B.2.3)

The vertical function Zpzq is assumed to be non-oscillatory, as the waves are supposed to dissipate with
increasing depth.

Z2pzq
Zpzq

`
ω2

c2 “ k2

Z2pzq ´ α2Zpzq “ 0

with: α2 “ k2 ´
ω2

c2

ÝÝÝÑ Zpzq “ C1 eαz ` C2 e´αz (B.2.4)

The azimuthal function Θpθq however is supposed to be oscillatory to satisfy the continuity condition at
θ “ 0 and θ “ 2π

Θ2pθq
Θpθq

“ ´n2

Θ2pθq ` n2Θpθq “ 0
ÝÝÝÑ Θpθq “ C3 cospnθq ` C4 sinpnθq or Θpθq “ C3 cospnθ ` ϕq (B.2.5)
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Finally the ODE of the radial function Rprq is examined. When writing this equation one can immediately
see this is the form of a Bessel differential equation

r2 R2prq
Rprq

` r
R1prq
Rprq

` r2 k2 “ n2

1
k2 R2prq `

1
k2r

R1prq `
ˆ

1´
n2

k2r2

˙

Rprq “ 0
§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

§

đ

kr “ ρ

1
k

dR
dr

“
dR
dρ

1
k2

d2R
dr2 “

d2R
dρ2

d2R
dρ2 `

1
ρ

dR
dρ
`

ˆ

1´
n2

ρ2

˙

Rpρq “ 0
§

đ

Rpkrq “ C5 Hp1qn pkrq ` C6 Hp2qn pkrq

(B.2.6)

Since we are only interested in waves that propagate away from the origin only the second Hankelfunction
fits in the definition of Rprq, therefore C5 ” 0.

Combining the above results in the general solution (eq. (B.2.7)) as used in the thesis.

φ “ Hp2qn pkrq ¨ cospnθ ` ϕq ¨
`

C1 eαz ` C2 e´αz˘ (B.2.7)

B.3 Coefficient matrix & Dispersion relation

Coefficient matrix

The SH- and PSV-coefficient matrices are introduced in section 3.2.2 (eqs. (3.2.11a) and (3.2.11b) respectively).

PS-V coefficient matrix

DPSV “

»

—

–

DPSV
11 ¨ ¨ ¨ DPSV

16
...

. . .
...

DPSV
61 ¨ ¨ ¨ DPSV

66

fi

ffi

fl

(B.3.1)

DPSV
11 “ 0

DPSV
12 “ 0

DPSV
13 “ 0

DPSV
14 “ 0

DPSV
15 “ ´iω ρ f e

´αφ f z0

DPSV
16 “ ´ie

αφ f z0 ω ρ f

DPSV
21 “ ´2 µ kαφs e´αφs z1

DPSV
22 “ 2 µ kαφs eαφs z1

DPSV
23 “ µ k

´

k2 ` βψ
2
¯

e´βψ z1

DPSV
24 “ µ k

´

k2 ` βψ
2
¯

eβψ z1

DPSV
25 “ 0

DPSV
26 “ 0

DPSV
31 “ ´

´

p´2 µ´ λq αφs
2 ` k2λ

¯

e´αφs z1

DPSV
32 “ ´

´

p´2 µ´ λq αφs
2 ` k2λ

¯

eαφs z1

DPSV
33 “ ´2 k2µ βψ e´βψ z1

DPSV
34 “ 2 eβψ z1 k2µ βψ

DPSV
35 “ ´ie

´αφ f z1 ω ρ f

DPSV
36 “ ´ie

αφ f z1 ω ρ f
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DPSV
41 “ ´αφs e´αφs z1

DPSV
42 “ αφs eαφs z1

DPSV
43 “ e´βψ z1 k2

DPSV
44 “ eβψ z1 k2

DPSV
45 “

´ie
´αφ f z1 αφ f

ω

DPSV
46 “

ie
αφ f z1 αφ f

ω

DPSV
51 “ e´αφs z2 k

DPSV
52 “ eαφs z2 k

DPSV
53 “ ´e´βψ z2 βψ k

DPSV
54 “ eβψ z2 kβψ

DPSV
55 “ 0

DPSV
56 “ 0

DPSV
61 “ ´e´αφs z2 αφs

DPSV
62 “ eαφs z2 αφs

DPSV
63 “ e´βψ z2 k2

DPSV
64 “ eβψ z2 k2

DPSV
65 “ 0

DPSV
66 “ 0

SH coefficient matrix

DSH “

„

DSH
11 DSH

12
DSH

21 DSH
22



(B.3.2)

DSH
11 “ e´βχ z1

DSH
12 “ ´eβχ z1

DSH
21 “ ´e´βχ z2 k

DSH
22 “ ´eβχ z2 k

(B.3.3)

Roots of the SH dispersion relation

DSH xSH “ 0 Ñ

„

e´βχ z1 ´e´βχ z1

e´βχ z2 eβχ z2

 „

A3
B3



“

„

0
0



(B.3.4)

The roots of the determinant of the coefficientmatrix can be found with use of Eulers identity eiπ “ ´1 and
the definition of βs,χ as definied on page page 16

detpDSHq “ eβχ pL´z2q ` e´βχ pL´z2q “ e2 βχ pL´z2q ` 1 “ 0 (B.3.5)

2 βχ pL´ z2q “ p2q´ 1q i π

βχ “

d

k2 ´

ˆ

ω

cT

˙2
“
p2q´ 1q i π

2 pL´ z2q

kq “

d

ˆ

ω

cT

˙2
´

π2 p2q´ 1q2

4 pL´ z2q
2 with: q “ 1, 2, 3, ... (B.3.6)

B.4 Displacement & stress field

B.4.1 For the non-symmetric case pn ą 0q

The displacement and stress fields are constructed with the trigonometric functions, eq. (B.4.1), and Hankel
function, eq. (B.4.2), of the second kind, which describe the azimuthal and radial dependence respectively. The
vertical dependence of the fields is described with the exponential functions Zipzq, shown in eq. (B.4.3)
For the radial stresses two variations on the Hankel-matrix, eqs. (B.4.12) and (B.4.13), are introduced to be able
to write the radial stresses in vector form.

Rotational matrix: Rnpθq “

»

–

cospnθq 0 0
0 ´ sinpnθq 0
0 0 cospnθq

fi

fl (B.4.1)

Hankel-matrix: Hnpρq “

»

—

—

—

–

BρHp2qn pρq
n
ρ

Hp2qn pρq 0
n
ρ

Hp2qn pρq Bρ Hp2qn pρq 0

0 0 ´Hp2qn pρq

fi

ffi

ffi

ffi

fl

with ρ “ kr (B.4.2)
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Z1pzq “ A1 eαs z ` B1 e´αs z

Z2pzq “ A2 eβs z ` B2 e´βs z

Z3pzq “ A3 eβs z ` B3 e´βs z

Z4pzq “ A4 eα f z
` B4 e´α f z (B.4.3)

with: α2
s “ k2 ´

ˆ

ω

cL

˙2
, β2

s “ k2 ´

ˆ

ω

cT

˙2
and α2

f “ k2 ´

˜

ω

c f

¸2

Fluid velocities & pressure

vf,r,npz, θ, rq “ cospnθq ¨
8
ÿ

p“1

CPSV,np ¨ ´Bρ Hp2qn pρpq ¨ v̂f,r,ppzq with: v̂f,r,ppzq “ ´kp Z4pzq (B.4.4a)

vf,θ,npz, θ, rq “ ´ sinpnθq ¨
8
ÿ

p“1

CPSV,np ¨
n
r

Hp2qn pkprq ¨ v̂f,θ,ppzq v̂f,θ,ppzq “ Z4pzq (B.4.4b)

vf,z,npz, θ, rq “ cospnθq ¨
8
ÿ

p“1

CPSV,np ¨ Hp2qn pkprq ¨ v̂f,z,ppzq v̂f,z,ppzq “
dZ4pzq

dz
(B.4.4c)

p f ,npz, θ, rq “ cospnθq ¨
8
ÿ

p“1

CPSV,np ¨ Hp2qn pkprq ¨ p̂ f ,ppzq p̂ f ,ppzq “ ´i ω ρ f Z4pzq (B.4.4d)

Soil displacements

us,npz, θ, rq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np Hnpkprq ûPSV
s,p pzq `

8
ÿ

q“1

CSH,nq Hnpkqrq ûSH
s,q pzq

˛

‚ (B.4.5)

with: ûPSV
s,p pzq “

“

ûs,r,ppzq 0 ûs,z,ppzq
‰T

ûSH
s,q pzq “

“

0 ûs,θ,qpzq 0
‰T

us,r,npz, θ, rq “
8
ÿ

p“1

CPSV,np
1
kp
Br Hp2qn pkprq ûs,r,p `

8
ÿ

q“1

CSH,nq
n

kqr
Hp2qn pkqrq ûs,θ,q (B.4.6a)

us,θ,npz, θ, rq “
8
ÿ

p“1

CPSV,np
n

kpr
Hp2qn pkprq ûs,r,p `

8
ÿ

q“1

CSH,nq
1
kq
Br Hp2qn pρqq ûs,θ,q (B.4.6b)

us,z,npz, θ, rq “
8
ÿ

p“1

CPSV,np ¨ ´Hp2qn pkprq ûs,z,p (B.4.6c)

ûs,r,ppzq “ kp

ˆ

Z1pzq `
dZ2pzq

dz

˙

(B.4.7a)

ûs,θ,qpzq “ ´kq Z3pzq (B.4.7b)

ûs,z,ppzq “ ´k2
p Z2pzq ´

dZ1pzq
dz

(B.4.7c)
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Soil stresses (Vertical)

σs,z,npz, θ, rq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np Hnpkprq σ̂PSV
s,z,ppzq `

8
ÿ

q“1

CSH,nq Hnpkqrq σ̂SH
s,z,qpzq

˛

‚ (B.4.8)

with: σ̂PSV
s,z,ppzq “

“

σ̂s,zr,ppzq 0 σ̂s,zz,ppzq
‰T

σ̂SH
s,z,qpzq “

“

0 σ̂s,zθ,qpzq 0
‰T

σs,zr,npz, θ, rq “
8
ÿ

p“1

CPSV,np
1
kp
Br Hp2qn pkprq σ̂s,zr,ppzq `

8
ÿ

q“1

CSH,nq
n

kqr
Hp2qn pkqrq σ̂s,zθ,qpzq (B.4.9a)

σs,zθ,npz, θ, rq “
8
ÿ

p“1

CPSV,np
n

kpr
Hp2qn pkprq σ̂s,zr,ppzq `

8
ÿ

q“1

CSH,nq
1
kq
Br Hp2qn pρqq σ̂s,zθ,qpzq (B.4.9b)

σs,zz,npz, θ, rq “
8
ÿ

p“1

CPSV,np ¨ ´Hp2qn pkprq σ̂s,zz,ppzq (B.4.9c)

σ̂s,zr,ppzq “ µ

ˆ

dûs,r,ppzq
dz

´ kp ûs,z,ppzq
˙

(B.4.10a)

σ̂s,zθ,qpzq “ µ
dûs,θ,qpzq

dz
(B.4.10b)

σ̂s,zz,ppzq “ λ kp ûs,r,ppzq ` p2µ` λq
dûs,z,ppzq

dz
(B.4.10c)

Soil stresses (Radial & other)

σs,r,npz, θ, rq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np H˚npkprq σ̂PSV
s,r,ppzq `

8
ÿ

q“1

CSH,nq H˚˚n pkqrq σ̂SH
s,r,qpzq

˛

‚ (B.4.11)

with: σ̂PSV
s,r,ppzq “

”

σ̂PSV,1
s,rr,p pzq σ̂PSV,2

s,rr,p pzq σ̂s,zr,ppzq
ıT

σ̂SH
s,r,qpzq “

”

σ̂SH
s,rr,qpzq σ̂s,zθ,qpzq

ıT

H˚npρq “

»

—

–

´Hp2qn pρq h1,npρq 0
0 h2,npρq 0
0 0 Bρ Hp2qn pρq

fi

ffi

fl

with ρ “ kr (B.4.12)

H˚˚n pρq “

»

—

–

´h2,npρq 0
h3,npρq 0

0
n
ρ

Hp2qn pρq

fi

ffi

fl

(B.4.13)
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σs,rr,npz, θ, rq “ cospnθq

¨

˝

8
ÿ

p“1

CPSV,np

”

´σ̂PSV,1
s,rr,p pzq ¨ Hp2qn pkprq ` σ̂PSV,2

s,rr,p pzq ¨ h1,npkprq
ı

(B.4.14a)

`

8
ÿ

q“1

CSH,nq

”

´σ̂SH
s,rr,qpzq ¨ h2,npkqrq

ı

˛

‚

σs,rθ,npz, θ, rq “ ´ sinpnθq

¨

˝

8
ÿ

p“1

CPSV,np

”

σ̂PSV,2
s,rr,p pzq ¨ h2,npkprq

ı

(B.4.14b)

`

8
ÿ

q“1

CSH,nq

”

σ̂SH
s,rr,qpzq ¨ h3,npkqrq

ı

˛

‚

σs,θθ,npz, θ, rq “ cospnθq

¨

˝

8
ÿ

p“1

CPSV,np

«

´σ̂PSV,1
s,rr,p pzq ¨ Hp2qn pkprq ` σ̂PSV,2

s,rr,p pzq ¨
1
k2

p
B2

r Hp2qn pkprq

ff

(B.4.14c)

`

8
ÿ

q“1

CSH,nq

”

σ̂SH
s,rr,qpzq ¨ h2,npkqrq

ı

˛

‚

With:

h1,npρq “
n2

ρ2 Hp2qn pρq ´
1
ρ
Bρ Hp2qn pρq σ̂PSV,1

s,rr,p pzq “ λ
dûs,z,ppzq

dz
` kp p2µ` λq ûs,r,ppzq (B.4.15a)

h2,npρq “ Bρ

ˆ

n
ρ

Hp2qn pρq

˙

σ̂PSV,2
s,rr,p pzq “ 2 µ kp ûs,r,ppzq (B.4.15b)

h3,npρq “ ´B
2
ρ Hp2qn pρq ´

1
2

Hp2qn pρq σ̂SH
s,rr,qpzq “ ´2 µ kq ûs,θ,qpzq (B.4.15c)

with: ρ “ kr



B.4 displacement & stress field XV

B.4.2 For the axi-symmetric case pn “ 0q

In this subsection an overview is given of the modal expansions of the stresses and displacements. The
expressions in this appendix are directly retrieved from [3]. Note that these expressions are equal to the
expressions of the non-symmetrical case in appendix B.4.1 when n “ 0 is substituted into the latter.

Fluid velocities & pressure

v f ,r “

8
ÿ

p“1

CPSV,0p Hp2q1 pkprq v̂f,r,ppzq with: v̂f,r,ppzq “ ´kpZ4pzq (B.4.16a)

v f ,z “

8
ÿ

p“1

CPSV,0p Hp2q0 pkprq v̂f,z,ppzq v̂f,z,ppzq “
dZ4pzq

dz
(B.4.16b)

p f “

8
ÿ

p“1

CPSV,0p Hp2q0 pkprq p̂ f ,ppzq p̂ f ,ppzq “ ´ωρfZ4pzq (B.4.16c)

Soil displacements & stresses

us,r “

8
ÿ

p“1

CPSV,0p Hp2q1 pkprq ûs,r,ppzq with: ûs,r,ppzq “ ´
ˆ

kZ1pzq `
dZ2pzq

dz

˙

(B.4.17a)

us,z “

8
ÿ

p“1

CPSV,0p Hp2q0 pkprq ûs,z,ppzq ûs,z,ppzq “
dZ1pzq

dz
` Z2pzq (B.4.17b)

σs,zr “

8
ÿ

p“1

CPSV,0p Hp2q1 pkprq σ̂s,zr,ppzq with: σ̂s,zr,ppzq “ µ

ˆ

dus,r,ppzq
dz

´ kpûs,z,p

˙

(B.4.18a)

σs,zz “

8
ÿ

p“1

CPSV,0p Hp2q0 pkprq σ̂s,zz,ppzq σ̂s,zz,ppzq “ kp λ ûs,r,p ` ρ c2
L

dûs,z,ppzq
dz

(B.4.18b)

σs,rr “

8
ÿ

p“1

CPSV,0p

´

Hp2q0 pkprq σ̂H0
s,rr,ppzq σ̂H0

s,rr,ppzq “ kp ρs c2
L ûs,r,ppzq ` λ

dûs,z,ppzq
dz

(B.4.18c)

`
1
r

Hp2q1 pkprq σ̂H1
s,rr,ppzq

˙

σ̂H1
s,rr,ppzq “ ´2 µ ûs,r,ppzq (B.4.18d)
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Vertical modes

Displacement modes
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Figure B.1: First three displacement modes for n ą 0 and f “ 10 Hz

Figure B.2: First three displacement modes for n “ 0 and f “ 10 Hz
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Vertical stress modes
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Figure B.3: First three vertical stress modes for n ą 0 and f “ 10 Hz, in subfigure (c) p f is plotted above σzz

Figure B.4: First three vertical stress modes for n “ 0 and f “ 10 Hz, in subfigure (c) p f is plotted above σzz
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Radial stress modes

images/modeldescription/soilfluid/soil˙mode˙sigma˙rr˙PSV˙1.pdf
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Figure B.5: First three radial stress modes for n ą 0 and f “ 10 Hz

Figure B.6: First three radial stress modes for n “ 0 and f “ 10 Hz



Appendix C

Modematching

C.1 Overview matching equations

This appendix contains the mode-matching equations introduced in chapter 4. Note that in the body of the
thesis the inner-product notation is used, while in this appendix the traditional integral notation is used. The
integral limits are related to the geometry as illustrated in the modeloverview fig. C.1.

Figure C.1: Model overview

XIX



XX appendix c . modematching

C.1.1 Generic equations

Non-symmetric case

The following equations are alternative notations to eqs. (4.1.3a), (4.1.4a) and (4.1.7a) respectively.

8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq (C.1.1a)

F̂1,nlm “

ż z1

z0

ûP,r,mpzq ¨ ŵPSV
s,r,l pzq ` ûP,θ,mpzq ¨ ŵPSV

s,θ,lpzqdz` hatuP,z,mpzq ¨ ŵPSV
s,z,l pzqdz (C.1.1b)

`

ż L

z1

ûP,r,mpzq ¨ ŵf,lpzqdz

F̂2,nlp “

ż z2

z1

uPSV
s,r,nppz, Rq ¨ ŵPSV

s,r,l pzqdz` uPSV
s,θ,nppz, Rq ¨ ŵPSV

s,θ,lpzqdz` uPSV
s,z,nppz, Rq ¨ ŵPSV

s,z,l pzqdz (C.1.1c)

`

ż z1

z0

uf,r,nppz, Rq ¨ ŵf,lpzqdz

F̂3,nlq “

ż z2

z1

ûSH
s,r,nqpz, Rq ¨ ŵPSV

s,r,l pzq ` ûSH
s,θ,nqpz, Rq ¨ ŵPSV

s,θ,lpzqdz (C.1.1d)

8
ÿ

m“1

CP,nm F̂4,njm “

8
ÿ

p“1

CPSV,np F̂5,njp `

8
ÿ

q“1

CSH,nq F̂6,njq (C.1.2a)

F̂4,njm “

ż L

z1

ûP,r,mpzq ¨ ŵSH
s,r,jpzq ` ûP,θ,mpzq ¨ ŵSH

s,θ,jpzq ` ûP,z,mpzq ¨ ŵSH
s,z,jpzqdz (C.1.2b)

F̂5,njp “

ż z2

z1

uPSV
s,r,nppz, Rq ¨ ŵSH

s,r,jpzq ` uPSV
s,θ,nppz, Rq ¨ ŵSH

s,θ,jpzq ` uPSV
s,z,nppz, Rq ¨ ŵSH

s,z,jpzqdz (C.1.2c)

F̂6,njq “

ż z2

z1

ûSH
s,r,nqpz, Rq ¨ ŵSH

s,r,jpzq ` ûSH
s,θ,nqpz, Rq ¨ ŵSH

s,θ,jpzqdz (C.1.2d)
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8
ÿ

m“1

CP,nm F̂7,nkm “

8
ÿ

p“1

CPSV,np F̂8,nkp `

8
ÿ

q“1

CSH,nq F̂9,nkq ` F̂10,k with k “ 1, . . . , NP (C.1.3a)

F̂7,nkm “
´

ω2
nm ´ω2

¯

ρhRΓP,nmδmk (C.1.3b)

F̂8,nkp “

ż z1

z0

ûP,r,kpzq ¨
”

´Hp2qn pkpRqp̂ f ,ppzq
ı

loooooooooooomoooooooooooon

pf,nppz,Rq

dz (C.1.3c)

`

ż L

z1

˜

ûP,r,kpzq ¨
”

´σ̂PSV,1
s,rr,p pzq ¨ Hp2qn pkpRq ` σ̂PSV,2

s,rr,p pzq ¨ h1,npkpRq
ı

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

σPSV
s,rr,nppz,Rq

` ûP,θ,kpzq ¨
”

σ̂PSV,2
s,rr,p pzq ¨ h2,npkpRq

ı

looooooooooooomooooooooooooon

σPSV
rθ,nppz,Rq

`ûP,z,kpzq ¨
„

σ̂s,zr,ppzq ¨
1
kp
Br Hp2qn pkpRq



looooooooooooooooomooooooooooooooooon

σPSV
s,rz,nppz,Rq

¸

dz

F̂9,nkq “

ż z2

z1

˜

ûP,r,kpzq ¨
”

´σ̂SH
s,rr,qpzq ¨ h2,npkqRq

ı

loooooooooooooomoooooooooooooon

σSH
s,rr,nqpz,Rq

`ûP,θ,kpzq ¨
”

σ̂SH
s,rr,qpzq ¨ h3,npkqRq

ı

loooooooooooomoooooooooooon

σSH
rθ,nqpz,Rq

(C.1.3d)

` ûP,z,kpzq ¨
„

σ̂s,zθ,qpzq ¨
n

kqr
Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

σSH
s,rz,nqpz,Rq

¸

dz

F̂10,k “

ż L

0
ûT

P,k f̂ e δpzqdz “ ûP,r,kp0q f̂e,r ` ûP,θ,kp0q f̂e,θ ` ûP,z,kp0q f̂e,z (C.1.3e)

Symmetric case

The following equations are alternative notations to eqs. (4.1.8) and (4.1.9a) respectively.

8
ÿ

m“1

CP,0m F̂1,lm “

8
ÿ

p“1

CPSV,0p F̂2,lp (C.1.4a)

F̂1,lm “

ż z1

z0

ûP,r,mpzq ¨ ŵf,lpzqdz`
ż L

z1

ûP,r,mpzq ¨ ŵPSV
s,r,l pzq ` ûP,z,mpzq ¨ ŵPSV

s,z,l pzqdz (C.1.4b)

F̂2,lp “

ż z2

z1

uf,r,ppz, Rq ¨ ŵf,lpzq ` us,r,ppz, Rq ¨ ŵPSV
s,r,l pzq ` us,z,ppz, Rq ¨ ŵPSV

s,z,l pzqdz (C.1.4c)
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8
ÿ

m“1

CP,0m F̂3,km “

8
ÿ

p“1

CPSV,0p F̂4,kp ` F̂5,k with k “ 1, . . . , NP (C.1.5a)

F̂3,km “
´

ω2
0m ´ω2

¯

ρhRΓP,0mδmk (C.1.5b)

F̂4,kp “

ż z1

z0

ûP,r,kpzq ¨
”

´p̂ f ,ppzqHp2q0 pkpRq
ı

loooooooooooomoooooooooooon

pf,0ppz,Rq

dz (C.1.5c)

`

ż L

z1

ûP,z,kpzq ¨
”

σ̂H1
s,zr,ppzqHp2q1 pkpRq

ı

loooooooooooomoooooooooooon

σs,rz,0ppz,Rq

ûP,r,kpzq ¨
”

σ̂H0
s,rr,ppzqHp2q0 pkpRq ` σ̂H1

s,rr,ppzqHp2q1 pkpRq
ı

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

σs,rr,0ppz,Rq

dz

F̂5,k “ ûP,r,kp0q f̂e,r ` ûP,z,kp0q f̂e,z (C.1.5d)

C.1.2 Orthogonality method

Non-symmetric case

The following equations are alternative notations to eqs. (4.2.3) and (4.2.4a) respectively.

8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq (C.1.6a)

F̂1,nlm “

ż z1

z0

ûP,r,mpzq ¨
“

´p̂f,lpzq
‰

dz (C.1.6b)

`

ż L

z1

˜

ûP,r,mpzq ¨
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

looooooooooooooooomooooooooooooooooon

ŵPSV
s,r,l pzq

`ûP,z,mpzq ¨
„

´
1
kl

σ̂PSV
s,zr,lpzq



loooooooomoooooooon

ŵPSV
s,z,l pzq

¸

dz

F̂2,nlp “

ż z1

z0

˜

”

û f ,r,ppzq ¨ Br Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
f,r,nppz,Rq

¨
“

´p̂f,lpzq
‰

¸

dz (C.1.6c)

`

ż z2

z1

˜

„

ûs,r,ppzq ¨
1
kp
Br Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,r,nppz,Rq

¨
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

`

”

ûs,z,ppzq ¨ ´Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
s,z,nppz,Rq

¨

„

´
1
kl

σ̂PSV
s,zr,lpzq



¸

dz

F̂3,nlq “

ż z2

z1

˜

„

ûs,θ,qpzq ¨
n

kqr
Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,r,nqpz,Rq

“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

¸

dz (C.1.6d)
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8
ÿ

m“1

CP,nm F̂4,njm “

8
ÿ

p“1

CPSV,np F̂5,njp `

8
ÿ

q“1

CSH,nq F̂6,njq (C.1.7a)

F̂4,njm “

ż L

z1

˜

ûP,θ,mpzq ¨
”

µ k2
j ûSH

s,θ,j

ı

looooomooooon

ŵSH
s,θ,jpzq

¸

dz (C.1.7b)

F̂5,njp “

ż z2

z1

˜

„

ûs,r,ppzq ¨
n

kpr
Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,θ,nppz,Rq

¨

”

µ k2
j ûSH

s,θ,j

ı

¸

dz (C.1.7c)

F̂6,njq “

ż z2

z1

˜

„

ûs,θ,qpzq ¨
1
kq
Br Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,θ,nqpz,Rq

¨

”

µ k2
j ûSH

s,θ,j

ı

¸

dz (C.1.7d)

Symmetric case

The following equation is alternative notations to eq. (4.2.6a).

8
ÿ

m“1

CP,0m F̂1,nlm “

8
ÿ

p“1

CPSV,0p F̂2,nlp (C.1.8a)

F̂1,nlm “

ż z1

z0

˜

ûP,r,mpzq ¨
“

´p̂f,lpzq
‰

loooomoooon

ŵf,lpzq

¸

dz (C.1.8b)

`

ż L

z1

˜

ûP,r,mpzq ¨
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

looooooooooooooooomooooooooooooooooon

ŵPSV
s,r,l pzq

`ûP,z,mpzq ¨
„

´
1
kl

σ̂s,zr,lpzq


loooooooomoooooooon

ŵPSV
s,z,l pzq

¸

dz

F̂2,nlp “

ż z1

z0

˜

”

Hp2q1 pkprq ûf,r,ppzq
ı

looooooooooomooooooooooon

uf,r,nppz,Rq

¨
“

´p̂f,lpzq
‰

¸

dz (C.1.8c)

`

ż z2

z1

˜

”

Hp2q1 pkprq ûs,r,ppzq
ı

looooooooooomooooooooooon

us,r,nppz,Rq

¨
“

ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq
‰

`

”

Hp2q0 pkprq ûs,z,ppzq
ı

looooooooooomooooooooooon

uz,r,nppz,Rq

¨

„

´
1
kl

σ̂s,zr,lpzq


¸

dz

C.1.3 Point-Collocation method

Non-symmetric case

The following equations are alternative notations to eqs. (4.3.3a) and (4.3.2) respectively.
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8
ÿ

m“1

CP,nm F̂1,nlm “

8
ÿ

p“1

CPSV,np F̂2,nlp `

8
ÿ

q“1

CSH,nq F̂3,nlq (C.1.9a)

F̂1,nlm “

ż z1

z0

˜

ûP,r,mpzq ¨
”

´p̂f,lpzq ¨ Hp2qn pkl Rq
ı

loooooooooooomoooooooooooon

ŵPSV
f,l pzq

¸

dz (C.1.9b)

`

ż L

z1

˜

ûP,r,mpzq ¨
”

´σ̂PSV,1
s,rr,p pzq ¨ Hp2qn pkpRq ` σ̂PSV,2

s,rr,p pzq ¨ h1,npkpRq
ı

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

ŵPSV
s,r,l pzq

` ûP,θ,mpzq ¨
”

σ̂PSV,2
s,rr,l pzq ¨ h2,npkl Rq

ı

loooooooooooomoooooooooooon

ŵPSV
s,θ,lpzq

`ûP,z,mpzq ¨
„

σ̂s,zr,lpzq ¨
1
kl
Br Hp2qn pkl Rq



loooooooooooooooomoooooooooooooooon

ŵPSV
s,z,l pzq

¸

dz

F̂2,nlp “

ż z1

z0

˜

”

û f ,r,ppzq ¨ Br Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uf,r,nppz,Rq

¨

”

´p̂f,lpzqHp2qn pkl Rq
ı

¸

dz (C.1.9c)

`

ż z2

z1

˜

„

ûs,r,ppzq ¨
1
kp
Br Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,r,nppz,Rq

¨

”

´σ̂PSV,1
s,rr,l pzqHp2qn pkl Rq ` σ̂PSV,2

s,rr,l pzq h1,npkl Rq
ı

`

„

ûs,θ,ppzq ¨
n

kpr
Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,θ,nppz,Rq

¨

”

σ̂PSV,2
s,rr,l pzq h2,npkl Rq

ı

`

”

ûs,z,ppzq ¨ ´Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
s,z,nppz,Rq

¨

„

σ̂s,zr,lpzq
1
kl
Br Hp2qn pkl Rq



¸

dz

F̂3,nlq “

ż z2

z1

˜

„

ûs,θ,qpzq ¨
n

kqR
Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,r,nqpz,Rq

¨

”

´σ̂PSV,1
s,rr,l pzqHp2qn pkl Rq ` σ̂PSV,2

s,rr,l pzq h1,npkl Rq
ı

(C.1.9d)

`

„

ûs,θ,qpzq ¨
1
kq
Br Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,θ,nqpz,Rq

¨

”

σ̂PSV,2
s,rr,l pzq h2,npkl Rq

ı

¸

dz
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8
ÿ

m“1

CP,nm F̂4,njm “

8
ÿ

p“1

CPSV,np F̂5,njp `

8
ÿ

q“1

CSH,nq F̂6,njq (C.1.10a)

F̂4,njm “

ż L

z1

˜

ûP,r,mpzq ¨
”

´σ̂SH
s,rr,jpzq h2,npk jRq

ı

loooooooooooomoooooooooooon

ŵSH
s,r,jpzq

(C.1.10b)

` ûP,θ,mpzq ¨
”

σ̂SH
s,rr,jpzq h3,npk jRq

ı

looooooooooomooooooooooon

ŵSH
s,θ,jpzq

`ûP,z,mpzq ¨

«

σ̂SH
s,zθ,jpzq

n
k jR

Hp2qn pk jRq

ff

looooooooooooooomooooooooooooooon

ŵSH
s,z,jpzq

¸

dz

F̂5,njp “

ż z2

z1

„

ûs,r,ppzq ¨
1
kp
Br Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,r,nppz,Rq

¨

”

´σ̂SH
s,rr,jpzq h2,npk jRq

ı

(C.1.10c)

`

„

ûs,θ,ppzq ¨
n

kpr
Hp2qn pkpRq



loooooooooooooooomoooooooooooooooon

uPSV
s,θ,nppz,Rq

¨

”

σ̂SH
s,rr,jpzq h3,npk jRq

ı

`

”

ûs,z,ppzq ¨ ´Hp2qn pkpRq
ı

loooooooooooooomoooooooooooooon

uPSV
s,z,nppz,Rq

¨

«

σ̂SH
s,zθ,jpzq

n
k jR

Hp2qn pk jRq

ff¸

dz

F̂6,njq “

ż z2

z1

˜

„

ûs,θ,qpzq ¨
n

kqR
Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,r,nqpz,Rq

¨

”

´σ̂SH
s,rr,jpzq h2,npk jRq

ı

(C.1.10d)

`

„

ûs,θ,qpzq ¨
1
kq
Br Hp2qn pkqRq



loooooooooooooooomoooooooooooooooon

uSH
s,θ,nqpz,Rq

¨

”

σ̂SH
s,rr,jpzq h3,npk jRq

ı

¸

dz
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Symmetric case

The following equation is an alternative notation to eq. (4.3.5a)

8
ÿ

m“1

CP,0m F̂1,lm “

8
ÿ

p“1

CPSV,0p F̂2,lp (C.1.11a)

F̂1,lm “

ż z1

z0

˜

ûP,r,0mpzq ¨
”

´p̂f,lpzqHp2q0 pkl Rq
ı

loooooooooooomoooooooooooon

ŵf,lpzq

¸

dz (C.1.11b)

`

ż L

z1

˜

ûP,z,0mpzq ¨
”

σ̂H1
s,zr,lpzqHp2q1 pkl Rq

ı

loooooooooooomoooooooooooon

ŵPSV
s,z,l pzq

` ûP,r,0mpzq ¨
„

σ̂H0
s,rr,lpzqHp2q0 pkl Rq ` σ̂H1

s,rr,lpzq
1
R

Hp2q1 pkl Rq


looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

ŵPSV
s,r,l pzq

¸

dz

F̂2,lp “

ż z2

z1

”

û f ,r,ppzqHp2q1 pkpRq
ı

loooooooooooomoooooooooooon

pf,0ppz,Rq

¨

”

´p̂f,lpzqHp2q0 pkl Rq
ı

(C.1.11c)

`

”

ûs,r,ppzqHp2q1 pkpRq
ı

loooooooooooomoooooooooooon

us,r,0ppz,Rq

¨

„

σ̂H0
s,rr,lpzqHp2q0 pkl Rq ` σ̂H1

s,rr,lpzq
1
R

Hp2q1 pkl Rq


`

”

ûs,z,ppzqHp2q0 pkpRq
ı

loooooooooooomoooooooooooon

us,z,0ppz,Rq

¨

”

σ̂H1
s,zr,lpzqHp2q1 pkl Rq

ı

¸

dz

C.2 The extended orthogonality method for the non-symmetric case pn ą
0q

In this chapter the derivation of a previous version of the Orthogonality method is shown. This derivation is
extended in the sense that the expressions are simplified. Note that this is not done in the final work.

The process as described in appendix C of Tsouvalas’ thesis [4] is loosely followed. The derivation starts on
XXVIII, after the recap of relevant equations.

Recap

The needed displacements of the shell, fluid medium and soil medium in the frequency domain are shown in
equations eq. (C.2.1), eq. (C.2.4) and eq. (C.2.2) respectively.
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ũPpz, θ, ωq “
8
ÿ

n“0

8
ÿ

m“1

CP,nm Rnpθq ûP,nmpzq eiωt (C.2.1)

ũspr, θ, z, ωq “
8
ÿ

n“0

¨

˝

8
ÿ

p“1

CPSV,np RnpθqHnpkprq ûs,PSV,np (C.2.2)

`

8
ÿ

q“1

CSH,nq RnpθqHnpkqrq ûs,SH,nq

˛

‚eiωt (C.2.3)

ũf,rpr, θ, z, ωq “
8
ÿ

n“0

8
ÿ

p“1

CPSV,np
v̂f,r,ppzq

iω
cospnθq eiωt (C.2.4)

The stress-vectors σs,tr,θ,zu are shown in eqs. (C.2.5) to (C.2.7).

σ̃s,r,npr, θ, zq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np σ̃PSV
s,r,nppr, zq `

8
ÿ

q“1

CSH,nq σ̃SH
s,r,nqpr, zq

˛

‚ (C.2.5)

σ̃s,θ,npr, θ, zq “ Rn p´θ ´ π{2q

¨

˝

8
ÿ

p“1

CPSV,np σ̃PSV
s,θ,nppr, zq `

8
ÿ

q“1

CSH,nq σ̃SH
s,θ,nqpr, zq

˛

‚ (C.2.6)

σ̃s,r,npr, θ, zq “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np Hnpkprq σ̂PSV
s,z,nppzq `

8
ÿ

q“1

CSH,nq Hnpkprq σ̂SH
s,z,nqpzq

˛

‚ (C.2.7)
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Orthogonality

To achieve a more simplified expression of the relation between the unknown amplitudes the following
orthogonality definitions will be used. Equations eq. (C.2.8) and eq. (C.2.9) are the orthogonality conditions
for PSV-modes and SH-modes respectively in [4], while eq. (C.2.10) is the orthogonality condition for both
Rayleigh and Love modes, as found in [19].

´
1
kp

ż z2

z1

v̂f,r,p

iω
p̂ f ,l dz `

1
kp

ż L

z2

α̂I
s,lpzq ûs,r,ppzq ´ ûs,z,lpzq σ̂s,zr,ppzqdz “ ΓPSV

l δpl

with: α̂I
s,lpzq “ ζs kl ûs,r,lpzq ` ηs σ̂s,zz,lpzq

(C.2.8)

ż L

z2

µk2
j ûs,θ,j ûs,θ,q dz “ ΓSH

j δqj (C.2.9)

ż L

0

„

α̂I I
s,ipzq ûs,θ,qpzq ´ µ ûs,r,ipzq kq ûθ,qpzq ` µ ki ûs,z,ipzq

dûθ,q

dz



dz “ ΓRL
i δqi

with: α̂I I
s,i “ pλ` 2µq ûs,r,ipzq k2

i ´ ki λ
dûs,z,i

dz

(C.2.10)

The orthogonality of the shell modes is shown in eq. (C.2.11). Where M is the diagonal mass/inertia matrix.

ż L

0

ż 2π

0

`

Rlpθq ûP,lkpzq
˘T M

`

Rnpθq ûP,nmpzq
˘

dθdz “ Nnmδnlδmk

with: M “ ρP R h ¨ diag
ˆ

1, 1, 1,
h2

12
,

h2

12

˙

(C.2.11)

Interface Conditions at r “ R

The interface conditions between the shell and the acousto-elastic medium can be divided in two subsections,
namely equations that comeforth out of the displacement continuity (subsection C.2) and the ones as a result
of the stress equilibrium (subsection C.2).

Displacement Continuity

ũP,r “ ũf,r z1 ă z ă z2 (C.2.12)

ũP “ ũs z2 ă z ă L (C.2.13)

First the interface conditions in equation will be expanded using equations eqs. (C.2.1) and (C.2.2)

8
ÿ

m“1

CP,nm ûP,r,nm cospnθq “
8
ÿ

p“1

CPSV,np
v̂f,r,p

iω
cospnθq (C.2.14)

8
ÿ

m“1

CP,nm Rnpθq ûP,nm “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np Hnpkprq ûs,PSV,p `

8
ÿ

q“1

CSH,nq Hnpkqrq ûs,SH,q

˛

‚ (C.2.15)

With Rnpθq and Hnpkprq being the rotational matrix and Hankel matrix respectively.

Rnpθq “

»

–

cospnθq 0 0
0 ´ sinpnθq 0
0 0 cospnθq

fi

fl and Hnpkprq “

»

—

—

–

Br Hp2qn pkprq
n
r

Hp2qn pkprq 0
n
r

Hp2qn pkprq Br Hp2qn pkprq 0

0 0 Hp2qn pkprq

fi

ffi

ffi

fl

(C.2.16)
Writing out eq. (C.2.15) gives:
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8
ÿ

m“1

CP,nm ûP,r,nm “

8
ÿ

p“1

CPSV,np Br Hp2qn pkprq ûs,r,p `

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq ûs,θ,q (C.2.17)

8
ÿ

m“1

CP,nm ûP,θ,nm “

8
ÿ

p“1

CPSV,np
n
r

Hp2qn pkprq ûs,r,p `

8
ÿ

q“1

CSH,nq Br Hp2qn pkqrq ûs,θ,q (C.2.18)

8
ÿ

m“1

CP,nm ûP,z,nm “

8
ÿ

p“1

CPSV,np Hp2qn pkprq ûs,z,p (C.2.19)

Manipulations

Using PSV orthogonality To obtain a simplified expression in which eq. (C.2.8) is applied the following
manipulations are performed:

1. Multiply eq. (C.2.14) by ´p̂ f ,l and integrating over the fluid domain (i.e. rz1, z2s)

8
ÿ

m“1

CP,nm

ˆ

´

ż z2

z1

ûP,r,nm p̂ f ,l dz
˙

“

8
ÿ

p“1

CPSV,np

ˆ

´

ż z2

z1

v̂f,r,p

iω
p̂ f ,l dz

˙

(C.2.20)

2. Multiplying eq. (C.2.17) by α̂I
s,l and integrating over the soil domain (i.e. rz2, Ls)

8
ÿ

m“1

CP,nm

˜

ż L

z2

ûP,r,nm α̂I
l dz

¸

“

8
ÿ

p“1

CPSV,np Br Hp2qn pkprq

˜

ż L

z2

ûs,r,p α̂I
l dz

¸

`

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq

˜

ż L

z2

ûs,θ,q α̂I
l dz

¸ (C.2.21)

3. Multiplying eq. (C.2.19) by
σ̂s,zr,l

kl
and integrate over the domain.

8
ÿ

m“1

CP,nm

˜

ż L

z2

ûP,z,nm
σ̂s,zr,l

kl
dz

¸

“

8
ÿ

p“1

CPSV,np Hp2qn pkprq

˜

ż L

z2

ûs,z,p
σ̂s,zr,l

kl
dz

¸

(C.2.22)

4. Adding up equations eq. (C.2.20), eq. (C.2.21) and eq. (C.2.22).
5. Adding expression eq. (C.2.23) to the right-hand side of the resulting equation and subtracting the same

expression again will give us eq. (C.2.24)

8
ÿ

p“1

CPSV,np Br Hp2qn pkprq

˜

ż L

z2

ûs,z,l
σ̂s,zr,p

kl
dz

¸

(C.2.23)
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8
ÿ

m“1

CP,nm F̂1 “

8
ÿ

p“1

CPSV,np

”

Br Hp2qn pkprq F̂21 ` Hp2qn pkprq F̂22

ı

`

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq F̂3 (C.2.24)

F̂1,nml “ ´

ż z2

z1

ûP,r,nm p̂ f ,l dz`
ż L

z2

ûP,r,nm α̂I
l ` ûP,z,nm

σ̂s,zr,l

kl
dz (C.2.25)

F̂21,npl “ ´

ż z2

z1

ûs,r,p p̂ f ,l dz`
ż L

z2

ûs,r,p α̂I
l ´ ûs,z,l

σ̂s,zr,p

kl
dz`

ż L

z2

ûs,z,l
σ̂s,zr,p

kl
dz (C.2.26)

“ kp ΓPSV
l δpl `

ż L

z2

ûs,z,l
σ̂s,zr,p

kl
dz

F̂22,npl “

ż L

z2

ûs,z,p
σ̂s,zr,l

kl
dz (C.2.27)

F̂3,nql “

ż L

z2

ûs,θ,q α̂I
l dz (C.2.28)

6. After rearranging the equation we obtain:

8
ÿ

m“1

CP,nm F̂1,nml “ CPSV,nl Br Hp2qn pklrq kl ΓPSV
l

`

8
ÿ

p“1

CPSV,np

”

Br Hp2qn pkprq F̂22,nlp ` Hp2qn pkrq F̂22,npl

ı

`

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq F̂3,nql

(C.2.29)

Using SH orthogonality An expression for CSH is obtained by multiplying eq. (C.2.18) by µ k2
j ûs,θ,j and

integrating over the domain.

8
ÿ

m“1

CP,nm F̂4 “

8
ÿ

p“1

CPSV,np
n
r

Hp2qn pkprq F̂5 `

8
ÿ

q“1

CSH,nq Br Hp2qn pkqrq F̂6 (C.2.30)

F̂4,nmj “

ż L

z2

ûP,θ,nm µ k2
j ûs,θ,j dz (C.2.31)

F̂5,npj “

ż L

z2

ûs,r,p µ k2
j ûs,θ,j dz (C.2.32)

F̂6,nqj “

ż L

z2

ûs,θ,q µ k2
j ûs,θ,j dz “ ΓSH

j δqj (C.2.33)

8
ÿ

m“1

CP,nm F̂4,nmq “

8
ÿ

p“1

CPSV,np
n
r

Hp2qn pkprq F̂5,npq ` CSH,nq Br Hp2qn pkqrq ΓSH
q (C.2.34)

CSH,nq “

8
ÿ

m“1

CP,nm F̂4,nmq ´

8
ÿ

p“1

CPSV,np
n
r

Hp2qn pkprq F̂5,npq

Br Hp2qn pkqrq ΓSH
q

(C.2.35)

Combining eq. (C.2.35) is substituted into eq. (C.2.29) and all CP,nm are transferred to the left-hand side
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8
ÿ

m“1

CP,nm F̂1,nml “ CPSV,nl Br Hp2qn pklrq kl ΓPSV
l (C.2.36)

`

8
ÿ

p“1

CPSV,np

”

Br Hp2qn pkprq F̂22,nlp ` Hp2qn pkrq F̂22,npl

ı

`

8
ÿ

q“1

¨

˚

˚

˚

˚

˚

˝

8
ÿ

m“1

CP,nm F̂4,nmq ´

8
ÿ

p“1

CPSV,np
n
r

Hp2qn pkprq F̂5,npq

Br Hp2qn pkqrq ΓSH
q

˛

‹

‹

‹

‹

‹

‚

n
r

Hp2qn pkqrq F̂3,nql

8
ÿ

m“1

CP,nm Ĝ1,nmlq “ CPSV,nl Br Hp2qn pklrq kl ΓPSV
l (C.2.37)

`

8
ÿ

p“1

CPSV,np

”

Br Hp2qn pkprq F̂22,nlp ` Hp2qn pkrq F̂22,npl ´
n
r

Hp2qn pkprq Ĝ2,npql

ı

Ĝ1,nmlq “ F̂1,nml ´

8
ÿ

p“1

F̂4,nmq F̂3,nql

¨

˝

n
r

Hp2qn pkqrq

ΓSH
q Br Hp2qn pkqrq

˛

‚ (C.2.38)

Ĝ2,npql “

8
ÿ

p“1

F̂5,npq F̂3,nql

¨

˝

n
r

Hp2qn pkqrq

ΓSH
q Br Hp2qn pkqrq

˛

‚ (C.2.39)

Using mixed orthogonality To use the mixed orthogonality eq. (C.2.17) is multiplied by α̂I I
s,ni and inte-

grated over the domain rz2 , Ls. Then expression eq. (C.2.40) is added to the right-hand side of the resulting
equation and subtracted again.

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq
ż L

z2

„

´µ ûs,r,nipzq kq ûθ,nqpzq ` µ ki ûs,z,nipzq
dûθ,nq

dz



dz (C.2.40)

8
ÿ

m“1

CP,nm F̂7,nmi “

8
ÿ

p“1

CPSV,np Br Hp2qn pkprq F̂8,npi `

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkqrq F̂˚9,nqi (C.2.41)

F̂7,nmi “

ż L

z2

ûP,r,nm α̂I I
s,ni dz (C.2.42)

F̂8,npi “

ż L

z2

ûs,r,p α̂I I
s,ni dz (C.2.43)

F̂˚9,nqi “

ż L

z2

„

ûs,θ,q α̂I I
s,ni ´ µ ûs,r,ni kq ûθ,nq ` µ ki ûs,z,ni

dûθ,nq

dz



dz (C.2.44)

´

ż L

z2

„

´µ ûs,r,ni kq ûθ,nq ` µ ki ûs,z,ni
dûθ,nq

dz



dz

“ ΓRL
i δqi ´ F̂9,nqi
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After rearranging we obtain eq. (C.2.69):

8
ÿ

m“1

CP,nm F̂7,nmi “ CSH,ni
n
r

Hp2qn pkirq ΓRL
i (C.2.45)

`

8
ÿ

p“1

CPSV,np Br Hp2qn pkqrq F̂8,npi

`

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkprq F̂9,nqi

Stress equilibrium / Forced EOM

σ̃P,rr “ σ̃f,rr z1 ă z ă z2 (C.2.46)

σ̃P,r “ σ̃s,r z2 ă z ă L (C.2.47)

This equilibrium equation in the forced equation of motion.

L uP “

#

σf,r ` f e, z1 ă z ă z2

σs,r ` f e, z2 ă z ă zL
(C.2.48)

with:

σf,r “
“

0 0 ´p̃ f 0 0
‰T (C.2.49)

σs,r “
“

σ̃s,rz σ̃s,rθ σ̃s,rr 0 0
‰T (C.2.50)

f e “
“

fz fθ fr 0 0
‰T (C.2.51)

Expanding all expressions
First the forced equation of motion (eq. (C.2.48)) is expanded by substituting eqs. (C.2.1) and (C.2.5).

L ũP “

8
ÿ

m“1

CP,nm

´

´ω2M `Knm

¯

`

RnpθqûP,nmpzq
˘

(C.2.52)

σ̃s,r,n “ Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np σ̃PSV
s,r,nppr, zq `

8
ÿ

q“1

CSH,nq σ̃SH
s,r,nqpr, zq

˛

‚ (C.2.53)

p̃ f ,n “

8
ÿ

p“1

CPSV,np Hp2qn pkprq p̂ f ,nppzq cospnθq (C.2.54)

f̃ n “ ran cospnθq ` bn sinpnθqs δpzq (C.2.55)

an “

#

1
π

ş2π
0

”

f̃ pθq cospnθq
ı

dθ for n ‰ 0
1

2π

ş2π
0 f̃ pθqdθ for n “ 0

(C.2.56)

bn “
1
π

ż 2π

0

”

f̃ pθq sinpnθq
ı

dθ (C.2.57)

Using shell orthogonality
The equation of motion is then pre-multiplied by an arbitrary mode

`

Rnpθq ûP,nkpzq
˘T and integrated over the

domain.

xRnpθq ûP,nkpzq , L uPy “ xRnpθq ûP,nkpzq , σ̃s,r,ny (C.2.58)

` xRnpθq ûP,nkpzq , σ̃f,r,ny

` xRnpθq ûP,nkpzq , f̃ ny
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The expanded expressions will become:

xRnpθq ûP,nkpzq , L uPy “

8
ÿ

m“1

CP,nm

ż L

0

ż 2π

0

`

Rnpθq ûP,nkpzq
˘T

´

´ω2M `Knm

¯

`

Rnpθq ûP,nmpzq
˘

dθdz

“

8
ÿ

m“1

CP,nm

ż L

0

ż 2π

0

`

Rnpθq ûP,nkpzq
˘T

´

ω2
nm ´ω2

¯

M
`

Rnpθq ûP,nmpzq
˘

dθdz

“ CP,nk

´

ω2
nk ´ω2

¯

Nnk (C.2.59)

xRnpθq ûP,nkpzq , σ̃f,ry “ ´π p1` δn0q

8
ÿ

p“1

CPSV,np Hp2qn pkpRq
ż z2

z1

ûP,r,nk p̂ f ,np dz (C.2.60)

xRnpθq ûP,nkpzq , f̃ ny “ π
”

pûcos
P,nkp0qq

T an p1` δn0q ` pûsin
P,nkp0qq

T bn p1´ δn0q
ı

(C.2.61)

xRnpθq ûP,nkpzq , σ̃s,ry “

ż L

z2

ż 2π

0

`

Rnpθq ûP,nkpzq
˘T Rnpθq

¨

˝

8
ÿ

p“1

CPSV,np σ̃PSV
s,r,nppr, zq `

8
ÿ

q“1

CSH,nq σ̃SH
s,r,nqpr, zq

˛

‚dθdz

“

ż L

z2

8
ÿ

p“1

CPSV,np

”

c11,nkppz, rqxcospnθq, cospnθqy ` c12,nkppz, rqxsinpnθq, sinpnθqy
ı

`

8
ÿ

q“1

CSH,nq

”

c21,nkppz, rqxcospnθq, cospnθqy ` c22,nkppz, rqxsinpnθq, sinpnθqy
ı

dz

“

8
ÿ

p“1

CPSV,np π

ż L

z2

c1,nkppz, rqdz`
8
ÿ

q“1

CSH,nq π

ż L

z2

c2,nkqpz, rqdz (C.2.62)

with:

c1,nkppz, rq “ p1` δn0q
´

ûcos
P,nk

¯T
σ̃PSV,cos

s,r,np ` p1´ δn0q
´

ûsin
P,nk

¯T
σ̃PSV,sin

s,r,np

c2,nkqpz, rq “ p1` δn0q
´

ûcos
P,nk

¯T
σ̃SH,cos

s,r,nq ` p1´ δn0q
´

ûsin
P,nk

¯T
σ̃SH,sin

s,r,nq

ûcos
P pzq “

“

ûP,z 0 ûP,r β̂P,z 0
‰T

ûsin
P pzq “

“

0 ûP,θ 0 0 β̂P,θ
‰T

Substituting the expressions back into the equation of motion results in:

CP,nk

´

ω2
nk ´ω2

¯

Nnk “

8
ÿ

p“1

CPSV,np π

ż L

z2

c1,nkppz, rqdz`
8
ÿ

q“1

CSH,nq π

ż L

z2

c2,nkqpz, rqdz (C.2.63)

´

8
ÿ

p“1

CPSV,np Hp2qn pkpRqπ

ż z2

z1

ûP,r,nk p̂ f ,np dz

` π
”

pûcos
P,nkp0qq

T an p1` δn0q ` pûsin
P,nkp0qq

T bn p1´ δn0q
ı
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CP,nk “
π

`

ω2
nk ´ω2

˘

Nnk

»

–ĜF
3,nk `

8
ÿ

p“1

CPSV,np Ĝ4,nlp `

8
ÿ

q“1

CSH,nq Ĝ5,nlq

fi

fl (C.2.64)

ĜF
3,nk “ pû

cos
P,nkp0qq

T an p1` δn0q ` pûsin
P,nkp0qq

T bn p1´ δn0q (C.2.65)

Ĝ4,nlp “

ż L

z2

c1,nkppz, rqdz´ Hp2qn pkpRq
ż z2

z1

ûP,r,nk p̂ f ,np dz (C.2.66)

Ĝ5,nlq “

ż L

z2

c2,nkqpz, rqdz (C.2.67)
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Final system of equations

8
ÿ

m“1

CP,nm Ĝ1,nmlq “ CPSV,nl Br Hp2qn pklrq kl ΓPSV
l (C.2.68)

`

8
ÿ

p“1

CPSV,np

”

Br Hp2qn pkprq F̂22,nlp ` Hp2qn pkrq F̂22,npl ´
n
r

Hp2qn pkprq Ĝ2,npql

ı

8
ÿ

m“1

CP,nm F̂7,nmi “ CSH,ni
n
r

Hp2qn pkirq ΓRL
i (C.2.69)

`

8
ÿ

p“1

CPSV,np Br Hp2qn pkqrq F̂8,npi

`

8
ÿ

q“1

CSH,nq
n
r

Hp2qn pkprq F̂9,nqi

CP,nk “
π

`

ω2
nk ´ω2

˘

Nnk

»

–ĜF
3,nk `

8
ÿ

p“1

CPSV,np Ĝ4,nlp `

8
ÿ

q“1

CSH,nq Ĝ5,nlq

fi

fl (C.2.70)

Now that we have expressed the amplitudes of the pile modes CP in amplitudes of PSV- and SH-modes,
we can substitute that back into the two relations, eq. (C.2.68) and eq. (C.2.69), obtained from displacement
continuity. Rearranging will give us the following two sets of equations.

CPSV,nl Ap1qnl `

8
ÿ

p“1

CPSV,np Ap2qnlp `

8
ÿ

q“1

CSH,nq Ap3qnlq “ Fp1qnlq (C.2.71)

CSH,ni Ap4qni `

8
ÿ

p“1

CPSV,np Ap5qnlq `

8
ÿ

q“1

CSH,nq Ap6qnlqi “ Fp2qnm (C.2.72)

Ap1qnl “ Br Hp2qn pklrq kl ΓPSV
l (C.2.73)

Ap2qnlpq “
”

Br Hp2qn pkprq F̂22,nlp ` Hp2qn pkrq F̂22,npl ´
n
r

Hp2qn pkprq Ĝ2,npql

ı

(C.2.74)

´

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

Ĝ4,nlp Ĝ1,nmlq

ı

(C.2.75)

Ap3qnlq “ ´

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

Ĝ5,nlq Ĝ1,nmlq

ı

(C.2.76)

Ap4qni “
n
r

Hp2qn pkirq ΓRL
i (C.2.77)

Ap5qnlpqi “ Br Hp2qn pkqrq F̂8,npi ´

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

Ĝ4,nlp F̂7,nmi

ı

(C.2.78)

Ap6qnlpqi “
n
r

Hp2qn pkprq F̂9,nqi ´

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

Ĝ5,nlq F̂7,nmi

ı

(C.2.79)

Fp1qnlq “

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

ĜF
3,nm Ĝ1,nmlq

ı

(C.2.80)

Fp2qni “

8
ÿ

m“1

π
`

ω2
nm ´ω2

˘

Nnm

”

ĜF
3,nm F̂7,nmi

ı

(C.2.81)

(C.2.82)
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Ap1q CPSV,n ` Ap2qCPSV,n ` Ap3qCSH,n “ Fp1q (C.2.83)

Ap4qCSH,n ` Ap5qCPSV,n ` Ap6qCSH,n “ Fp2q (C.2.84)

«

Ap1q ` Ap2q Ap3q

Ap5q Ap4q ` Ap6q

ff

„

CPSV,n
CSH,n



“

«

Fp1q

Fp2q

ff

(C.2.85)

Response to a unit load

Projecting the force in polar coordinates

The force f̃ epθ, z, tq is transferred to the frequency domain with a fourier transform

f̃ epθ, z, ωq “F t f epθ, z, tqu (C.2.86)

f epθ, z, tq
Fourier´trans f orm
ÝÝÝÝÝÝÝÝÝÝÝÝÑ f̃ epθ, z, ωq (C.2.87)

f̃ epθ, z, ωq “ Rnpθq f̂ e δpzq (C.2.88)

Vertical unit force: f̂ e “
“

1 0 0 0 0
‰T

Ñ ĜF,ver
3,0m “ 2π ûP,z,0mp0q (C.2.89)

Horizontal unit force: f̂ e “
“

0 1 1 0 0
‰T

Ñ ĜF,hor
3,nm “ π

`

ûP,θ,nmp0q ` ûP,r,nmp0q
˘

(C.2.90)

ĜF
3,nk “ xRnpθqûP,nmpzq , f̃ ey

“

ż L

0

ż 2π

0

”

`

Rnpθq ûP,nmpzq
˘T Rnpθq f̂ e δpzq

ı

dθdz

“ π
`

ûP,r,nmp0q f̂rr ` ûP,θ,nmp0q f̂rθ ` ûP,z,nmp0q f̂zz
˘

“ π
”

pûcos
P,nkp0qq

T an p1` δn0q ` pûsin
P,nkp0qq

T bn p1´ δn0q
ı

“ π
“`

ûP,z,nkp0q az,n ` ûP,r,nkp0q ar,n
˘

p1` δn0q ` ûP,θ,nkp0q aθ,np1´ δn0q
‰

“ π
“`

ûP,z,nkp0q fz ` ûP,r,nkp0q fr
˘

p1` δn0q ` ûP,θ,nkp0q fθp1´ δn0q
‰

(C.2.91)



Appendix D

Casestudy

D.1 Error analysis

In this appendix the local error of the displacement fields of the case in table D.1 shown in Chapter 5,
where the point-collocation method is used for different forcing configurations. Still the error analysis of the
Orthogonality method is included in this appendix too.

Geometry Pile Soil Fluid

Pile top zpile top 0 m ρP 7850 kg m´3 ρs 1600 kg m´3 ρ f 1000 kg m´3

Sea surface z0 8 m E 2.1 ¨ 1011 kg m´3 ds 60 m d f 22 m
Sea bed z1 30 m R 2.5 m cT 149.373 m s´1 c f 1500 m s´1

Pile bottom zL 60 m h 0.03 m cL 366.06 m s´1

Rigid boundary condition z2 90 m ν 0.28 Es 1.0 ¨ 108 kg m´3

L 60 m Ptλ,µu 1 %

Table D.1: Properties of the system
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Point collocation-method: mean(δtotal) = 18.42%

Orthogonality-method: mean(δtotal) = 20.59%

Figure D.1: Local mismatch error δTotal in the response to a vertical force per frequency
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Point collocation-method: mean(δtotal) = 91.18%

Orthogonality-method: mean(δtotal) = 80.42%
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Point collocation-method: mean(δtotal) = 36.67%

Orthogonality-method: mean(δtotal) = 29.59%

Figure D.2: Local mismatch error δTotal in the response to a horizontal force per frequency. (b) Shows a close up to the
errors for frequencies below 400 Hz
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Point collocation-method: mean(δtotal) = 12.46%

Orthogonality-method: mean(δtotal) = 12.70%

Figure D.3: Local mismatch error δTotal in the response to a moment on the y-axis per frequency
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Point collocation-method: mean(δtotal) = 17.73%

Orthogonality-method: mean(δtotal) = 17.26%

Figure D.4: Local mismatch error δTotal in the response to a higher order torsional moment per frequency.

D.2 Time evolution

In this appendix various contourplots in the pr, θq- and pz, rq-plane are included to illustrate the time evolution
of the acoustic field.
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Note that the quantities (eqs. (D.2.1) to (D.2.3)) have been evaluated at different times t, with different time
steps dt.

Fluid pressure ÝÑ pfpr, θ “ θ0, z, t “ t0q or pfpr, θ “ θ, z “ z0, t “ t0q (D.2.1)

Displacement norm ÝÑ

∣∣∣utP;s;fupr, θ “ θ0, z, tq
∣∣∣ or

∣∣∣utP;s;fupr, θ, z “ z0, tq
∣∣∣ (D.2.2)

Velocity norm ÝÑ

∣∣∣vtP;s;fupr, θ “ θ0, tq
∣∣∣ or pfpr, θ “ θ, z “ z0, t “ t0q (D.2.3)
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D.2.1 A vertical force
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Figure D.5: Fluid pressure and displacement norm of the soil resulting from an uniform vertical load.
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Figure D.6: A top view of the fluid pressure (fig. D.5) at a depth of z “ 29.9 m due to an uniform vertical load.
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D.2.2 A horizontal force
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Figure D.7: Fluid pressure and displacement norm of the soil resulting from an uniform horizontal load (Note: the colour
bars do convey 50 % of the maximum value in the contour plots)
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Figure D.8: A top view of the fluid pressure (fig. D.7) at a depth of z “ 29.9 m due to an uniform horizontal load.
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D.2.3 A moment on the y-axis
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Figure D.9: Fluid pressure and velocity norm of the soil resulting from a moment on the y-axis load.
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Figure D.10: A top view of the fluid pressure (fig. D.9) at a depth of z “ 29.9 m due to a moment on the y-axis.
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D.2.4 Imperfect vertical force
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Figure D.11: Fluid pressure and velocity norm of the soil resulting from an imperfect vertical force.
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Figure D.12: A top view of the fluid pressure (fig. D.11) at a depth of z “ 20 m due to an imperfect vertical force
(ϕ “ 3˝, e “ 3 cm).
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