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1
INTRODUCTION

We can’t solve problems by using the same
kind of thinking we used when we created them.

Albert Einstein

Decisions are not just a part of our lives; they are the essence of it. They are pivotal
in our lives, influencing personal and professional spheres. Each day presents us with
many choices that can affect our overall welfare and achievements. From small choices
like our meals to major decisions such as choosing a career or making significant in-
vestments, these decisions not only affect us but also have broader implications for our
families, communities, and society as a whole. The significance of decision-making in
our everyday lives has prompted extensive efforts to understand the fundamental issues
and components that influence decision-making across different fields, including psy-
chology, management, economics, sociology, business, and more. These studies share
a common goal of enhancing decision making processes and optimizing outcomes in
diverse scenarios. This is crucial as making sub-optimal decisions can be costly, result-
ing in missed opportunities, financial losses, wasted resources, and negative impacts on
individuals, organizations, and society [295]. The urgency to improve decision-making
is also highlighted by abundant information, human cognitive biases, time constraints,
and contextual factors that can lead to sub-optimal outcomes.

Technological advancements and the continuous development of AI systems present
a growing potential to use these tools to improve decision-making processes and out-
comes. These systems can analyze vast amounts of data, identify patterns and trends,
provide real-time insights, and offer recommendations based on the analysis, all of which
can empower humans in making more informed choices [258, 457]. While AI systems
have shown tremendous potential in decision-making, the ultimate goal is not com-
plete automation due to accountability and ethical and legal considerations [247, 255,
329]. Instead, the human-centered perspective is to foster a collaborative relationship
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between humans and AI systems, where AI systems can complement human capabili-
ties and assist decision-makers in collecting and analyzing relevant data, generating dif-
ferent options, performing scenario analyses, and assessing the possible results of vari-
ous decisions [8, 224, 225, 370]. Many research studies have explored incorporating AI
systems into decision-making processes in different fields, promoting effective collabo-
ration [13, 101, 109, 447]. For instance, explainable AI systems have been developed to
provide transparency in the decision-making process, allowing humans to trust and val-
idate the recommendations provided by AI systems [269, 419]. Different interfaces have
also been designed to facilitate interaction between humans and AI systems, ensuring
that decision-makers can easily understand the outputs of AI systems and incorporate
them into their decision-making [49, 296].

When humans and AI work together on making informed decisions, various factors,
such as individual characteristics [121, 313], the decision-making context [57, 408], the
capabilities of AI systems [315, 321], and their interactions [22], play a crucial role in
shaping the outcomes of these collaborative efforts. The success of these efforts hinges
on understanding these factors and integrating them into the design and deployment of
AI systems. Continuously adapting these AI systems to diverse situations can lead to on-
going changes in individuals’ behavior as decision contexts become more complex and
dynamic. These evolving AI systems have an impact on how decision-makers perceive,
approach, and strategize while also influencing fundamental factors that determine de-
cision outcomes [138, 209]. Therefore, there is a continuous need to refine the design
and implementation of AI systems in decision-making environments while evaluating
their effects on human behavior and decision outcomes.

Despite the high capabilities of AI systems in many areas, they are seldom perfect. In-
corporating them into decision-making processes frequently results in reduced overall
team performance when compared to either AI systems or humans working indepen-
dently [162, 205]. This discrepancy highlights the need to understand current limita-
tions and challenges in integrating AI systems into decision-making contexts and iden-
tify strategies to mitigate them. Current research predominantly centers on individuals
and AI systems, overlooking the broader context in which decision-making occurs [247].
Thus, it is important to fully understand the impact of AI systems in different contexts in
order to transfer findings across various domains and provide tailored solutions for spe-
cific decision-making scenarios. This thesis seeks to fill these gaps by investigating the
dynamics of human-AI decision-making in different contextual settings, as well as gain-
ing empirical insights into how human behavior might be influenced under different
circumstances throughout Chapters 2 to 5. Chapters 6 and 7 present two approaches for
gathering relevant information from online sources and databases to enhance decision-
making.

1.1. GENERAL OVERVIEW OF HUMAN-AI DECISION-MAKING
Decision-making is an integral part of human life that occurs in various contexts, from
personal choices to professional settings. It involves selecting the best course of ac-
tion from multiple alternatives based on available information and desired outcomes.
Individuals have unique skills, traits, cognitive capacities, and experiences that shape
their decision-making behavior and distinguish them from other individuals, Figure 1.1,
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A . For example, some decision-makers may be more risk-averse, prioritizing certainty
over potential gains, while others may exhibit a greater appetite for risk-taking. Human
cognitive limitations also play a significant role in decision-making, as individuals often
simplify complex problems, rely on heuristics [154, 372], and exhibit biases, particularly
when they encounter extensive information, insufficient data to support their decisions,
or have limited time for analysis [219]. While heuristics may not be based on logic, they
align with ecological principles. They are neither inherently good nor bad, rational nor
irrational [152]. Instead, they are relative to the context in which they are applied. For
instance, confirmation bias could lead individuals to seek information supporting their
pre-existing beliefs and ignore contradictory evidence, resulting in sub-optimal deci-
sions [312]. On the other hand, heuristics can be beneficial when used in appropriate
contexts, such as making quick decisions in familiar and low-stakes situations. Conse-
quently, heuristics have the potential to either assist or impede decision-making, de-
pending on the specific situation and desired outcome.

Figure 1.1: General Overview of Human-AI Decision-Making

A wide range of AI systems have been developed to assist people with various
decision-making problems [156, 283, 320]. Several elements are essential for creating
high-quality AI systems, including data accessibility, suitable model structures and al-

gorithms, and efficient training methods, Figure 1.1, C . These AI systems can pro-
vide valuable insights by rapidly analyzing large volumes of data, recognizing patterns,
and generating recommendations. The design and functionality of AI systems have also
been determined by the context in which they are deployed. There are no AI systems
that are fit for purpose in all situations, and thus, the choice of AI systems should be tai-

lored to the specific requirements and characteristics of the contexts, Figure 1.1, BC .
These contextual factors include the nature of the task, task attributes, the dynamic en-
vironment, time constraints, the domain of application, and the broader societal norms

and regulations, Figure 1.1, B . For instance, in deterministic contexts, AI systems can
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be effective in automating certain tasks and making precise predictions based on avail-
able data. In these well-defined and predictable environments, AI systems can leverage
their superior computational power and pattern recognition abilities to arrive at opti-
mal decisions, while human involvement may be minimized. However, in stochastic
and dynamic contexts characterized by high uncertainty, ambiguity, and rapidly chang-
ing conditions, AI systems may struggle to capture the full complexity of the situation
and promptly adapt to changing circumstances.

Given the complementary strengths and limitations of humans and imperfect AI
systems, integrating them into decision-making processes can leverage the unique ca-

pabilities of each to enhance overall performance, Figure 1.1, AC . In this collabora-
tive decision-making paradigm, different attributes of AI systems, such as explainabil-
ity, transparency, and the quality of outputs, can foster or hinder human-AI interaction,
ultimately shaping the decision outcomes. While the explainability and transparency
of AI decision-making processes are key factors for building trust and enabling human
validation [12, 239, 315], the failures and errors of AI systems can also negatively im-
pact the confidence and decision-making abilities of humans [221, 260]. Furthermore,
the quality of AI-generated recommendations, including their accuracy, relevance, and
alignment with human values and goals, can significantly influence the extent to which
human decision-makers rely on and incorporate them. AI systems should also accom-
modate the diverse requirements and preferences of individuals with different charac-
teristics in order to promote successful collaboration. For instance, many interventions,
such as tutorials [78, 277], feedback mechanisms [277, 344], interactive interfaces [105,
291], and cognitive forcing functions [56], have been proposed to assist humans with
different mental abilities, decision-making styles, and literacy in incorporating AI rec-
ommendations into their decision-making processes.

Individuals decision-making behavior and outcomes can also be influenced by the

contextual factors surrounding the decision-making process, Figure 1.1, AB . Contex-
tual factors such as domain knowledge, expertise, task-related features, and time con-
straints can determine the strategy individuals employ in making decisions. For ex-
ample, experts might depend on their intuition to make choices when information is
unconsciously processed [29, 107, 295, 379]. In contrast, non-experts may rely more
on deliberate and analytical thinking processes, evaluating available information thor-
oughly before making a decision [379]. Prior studies indicate that while non-experts
seek more information, experts rely more on their existing expertise, long-term mem-
ory, and knowledge [86, 231, 299]. It has also been recognized that individuals ad-
here to particular patterns when interacting with AI systems, which is referred to as
the ASPECT model [209]: 1) attribute-based choices involve assigning values to dif-
ferent attributes [42, 196, 328]; 2) consequence-based decisions entail weighing po-
tential outcomes before making a decision in uncertain circumstances [144, 220, 413];
3) experience-based choices rely on past experiences and memories [41, 153, 436]; 4)
socially-based decisions are based on others’ opinions or exceptions [15, 85, 136]; 5)
policy-based choices follow pre-determined rules or guidelines [284, 338, 343]; 6) trial
and error-choices involve learning from mistakes over time [330, 339, 468]. These pat-
terns are often used in combination, depending on the specific context and decision-
making task at hand [217, 303]. Adapting AI systems to align with these patterns can sig-
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nificantly help decision-makers enhance their decision-making process and ultimately
attain better outcomes [77, 390].

Establishing a good decision-making environment requires understanding the needs
and preferences of individuals, as well as the contextual factors influencing the decision-

making process and the attributes of the AI systems, Figure 1.1, ABC . Therefore, we
should recognize and consider how the interaction between the decision-maker and
the AI system, along with context-specific behavioral dynamics, can impact this process
and, ultimately, decision-making outcomes. Despite extensive research in various as-
pects of the decision-making environment, there are still gaps in identifying contextual
factors and their potential impacts on decision-making outcomes. Therefore, this thesis
seeks to explore the role of contextual factors, particularly task-related elements, in the
decision-making process and their influence on decision outcomes. These insights can
contribute to the development of more effective AI systems and guide future research in
human-AI decision-making field.

1.2. SCOPE OF THE THESIS

This thesis aims to uncover task-related contextual factors, Figure 1.1 B , and their in-
fluence on decision-making outcomes within the scope of human-AI decision-making.
Tasks are generally defined as specific activities or problems that require decision-
making processes to be carried out within a given context. Task-related elements include
various task attributes such as the complexity of the decision task, the uncertain nature
of the task, the availability and quality of information, the stake involved, and the time
pressure or urgency associated with the task. By examining the interplay between task

attributes B , decision outcomes ABC , individual and group behavior A , and their

interactions with AI systems AC , this research contributes to a better understanding of
how human-AI decision-making can be studied. This knowledge can guide the design of
AI systems tailored to meet decision-makers specific requirements, thereby improving
the decision-making process and its results. It is important to note the broader contex-
tual factors, attributes of AI systems, or characteristics of decision-makers themselves
are out of the scope of this thesis and will not be directly addressed.

This thesis focuses on non-expert decision-makers across different domains. These
individuals often encounter challenges in making well-informed decisions due to their
limited knowledge in a specific field. Biases, restricted access to information, and inad-
equate decision-support tools can further hinder their decision-making process. Even
with abundant information, individuals may struggle to use it effectively, resulting in
an exhausting decision-making process. This is known as the paradox of choice [365],
which can detrimentally impact the quality of their decisions. For instance, investors
with limited financial knowledge may struggle to make informed decisions in the stock
market. They may rely on online forums for information, which can be biased and un-
reliable. Their emotions and recommendations from others can also sway them with-
out considering their own goals and preferences. Inadequate analytical abilities and a
lack of access to advanced decision-support tools can further contribute to sub-optimal
decision-making outcomes. Moreover, while individuals can attain expertise in one area,
they remain non-experts in others, emphasizing the necessity for decision-support sys-
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tems that accommodate individuals with different proficiency levels.
The variety of decision-making contexts and how they have been operationalized in

prior empirical research have led to a fragmented understanding of the effectiveness of
AI systems across different domains. Therefore, the thesis first proposes a theoretical
framework for systematically evaluating and comparing decision tasks, considering the
complexity levels of the decision-making contexts. Using this framework, the thesis then
reviews and analyzes existing literature to identify their strengths, limitations, and po-
tential areas for improvement. It further develops these insights by conducting multiple
empirical studies. These studies seek to evaluate how different task-related contextual
factors influence individual behavior and performance outcomes. In researching the
individuals’ behaviors, we aim to comprehend the reasoning behind their choices and
decisions by gathering data on their interactions with decision-support systems. This
includes information access, time allocation for tasks, and decision-making patterns.
Analyzing these factors along with findings further underscores the urgent need for tai-
lored decision-support tools to improve decision-making outcomes for non-expert indi-
viduals in different domains. The thesis also proposes a modular framework for design-
ing rigorous empirical research within real-world decision-making scenarios, promoting
the generalizability and reproducibility of outcomes.

We then proceed to proposing methods for improving information access and indi-
vidual’s behaviors when interacting with information sources. Accessing relevant infor-
mation is a crucial preparatory step before decision-making, especially for non-experts
who often deal with a surplus of information, restricted access to relevant data, or time
constraints. The presence of these factors may result in cognitive biases that can neg-
atively impact the outcomes of decisions. Therefore, understanding how individuals
seek, process, and utilize information is essential for creating practical tools to manage
these biases and ultimately improve decision-making outcomes. To this end, this the-
sis proposes approaches to facilitate information access, such as providing relevant and
customized recommendations and designing interfaces that facilitate efficient informa-
tion retrieval. By conducting experiments and collecting data on individuals’ behaviors,
these proposed approaches are empirically evaluated and compared to traditional meth-
ods. The findings shed light on how the design and utilization of tailored tools can be
further optimized to facilitate information access across various contexts.

1.3. RESEARCH QUESTIONS
There is a growing interest in using AI systems in various decision-making scenar-
ios [128, 241, 283] to combine their complementary abilities with human decision-
makers [381, 420]. Harnessing the full potential of AI systems requires consideration of
various factors, including human-centric elements [121, 314] such as prior experience
and cognitive biases, as well as attributes of AI systems [315, 321] like transparency and
explainability. Furthermore, the context of decision-making also plays a crucial role in
the effectiveness of AI systems [57, 408]. Previous research has predominantly centered
on the initial two aspects, with comparatively fewer studies into the influence of task
context on decision-making. This can greatly impact the transferability of study results
across different scenarios. Moreover, it’s unclear how decision-makers behavior and per-
formance can be affected when using AI systems in various situations, such as complex
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tasks, incomplete information, or time-sensitive scenarios. In Part I of this study, we
aim to fill this gap by evaluating how task context influences decision-making outcomes
and behaviors in human-AI decision-making realm. Therefore, we seek to address the
following research question in Part I of our research, specifically in chapters 2, 3, and 4:

RQ1 How does task context impact user decision-making behaviour and out-
comes when interacting with AI systems?

Many decisions in real-life situations are made collaboratively by groups, such as de-
termining a defendant’s guilt or innocence in court cases and making major business
strategies. Group decision-making is a complex process that involves multiple individ-
uals with varying perspectives, biases, and decision-making styles. While our findings
in Part I highlight the significant impact of task context on individual decision-making,
it is unclear how the presence of AI systems affects group decision-making processes
in different contexts where group dynamics can vary [80, 465]. Prior research has in-
dicated that the value of group decision-making is especially evident in complex and
uncertain tasks where diverse perspectives and expertise can reveal concealed informa-
tion and counteract biases present in individual decisions [5, 203]. Nonetheless, group
dynamics can improve or impede the quality of decision outcomes [32, 302] depend-
ing on their communication patterns, leadership structure, and conflict management
strategies [233, 383], necessitating thorough exploration and understanding of their ef-
fects. Therefore, this section seeks to investigate the interplay between AI systems, group
dynamics, and decision-making outcomes in various contextual settings. We delve into
the following research question in part II of our study, comprising chapter 5:

RQ2 How do task context and group dynamics influence user decision-making
behaviour and outcomes when interacting with AI systems?

Informed decision-making relies on gaining relevant and accurate information [95,
236, 237, 299]. Accessing such information is the essential preparatory step, particularly
in complex scenarios involving AI systems. Information may exist in unstructured form,
be reachable through search engines, or be structured and accessible from databases.
However, navigating vast amounts of information to find relevant and reliable sources is
often challenging. Moreover, individuals may struggle with interpreting and integrating
diverse information sources to make well-informed decisions. Thus, the development
of user-centric intelligent interfaces can potentially improve the outcomes of decision-
making processes by improving information access [170, 282, 286, 384]. These interfaces
can also utilize a range of technologies, such as machine learning, natural language pro-
cessing, and data visualization, to assist users in locating pertinent information. Exam-
ples of such interfaces include search engines, recommender systems, natural language
interfaces, and decision-support tools.Among these approaches, web search is still con-
sidered one of the primary sources of information. In addition, databases serve as the
traditional repository of structured data that experts can rely on to support decision-
making. Part III of the thesis explores how web search can be tailored to improve eas-
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ier access to relevant information and examines ways to make databases accessible to
a wider range of users without technical expertise. Thus, in this part of our research,
chapters 6 and 7, we formulate the following research question:

RQ3 How can we improve information access for users through novel interactions
with web search and databases?

1.4. RESEARCH METHODOLOGY
This thesis employs various research methodologies, such as empirical research [150,
349] and surveys [304], to address the three research questions (RQ1 - RQ3). The re-
search questions and hypotheses are grounded in established theories and existing lit-
erature on decision-making. In Chapters 4 through 7, we collect both qualitative [342]
and quantitative [367] data to analyze how people make decisions and assess the ef-
fects of different strategies to improve information access. Through randomized assign-
ments [91] of conditions to participants, this methodology maintains internal validity
by addressing potential confounding variables that could affect decision-making out-
comes.

Our qualitative research approaches encompass a range of questionnaires to fully
comprehend individuals’ perceptions and attitudes toward decision-support tools, their
experiences with interactive interfaces, their decision-making strategies, and the success
of the proposed interventions. In contrast, quantitative research approaches involve ex-
perimental designs and statistical analysis to gather numerical and behavioral log data
to examine patterns and connections among different factors. These techniques enable
measuring individuals’ learning outcomes in accessing information and investigating
how task-related contextual elements influence the performance of human-AI teams
and individual reliance on AI systems.

This thesis applies technical HCI research methods [198] to improve decision out-
comes and information access, as investigated in the first and third research questions
(RQ1, RQ3). In Chapters 2 to 4, we particularly focus on designing and evaluating frame-
works to enable comparative exploration and analysis of decision-making processes in
the human-AI decision-making realm. In Chapters 6 and 7, we facilitate information ac-
cess by developing interventions that allow the general public to quickly access relevant
and reliable information. A series of tests, such as usability testing and human and ma-
chine performance tests, are conducted to evaluate the effectiveness of these proposed
interventions and frameworks.

This research also leverages online communities as a research platform [394] to
empirically evaluate decision-making processes or individual behavior when using
decision-support tools or seeking for information in real-world contexts, addressing the
three research questions (RQ1 - RQ3). In Chapter 5, this thesis aims to enhance the eco-
logical validity of the findings by conducting field studies in natural settings [288, 371].
This involves building on the application-based evaluation [115] of decision-support
tools, focusing on authentic end-users and tasks as representatives of the decision-
making context. This research method allows for the empirical examination of how in-
dividuals make decisions, seek information, and interact with decision-support tools in
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their daily lives, ultimately leading to practical recommendations for designing and im-
plementing such tools in real-world decision-making scenarios.

In Chapters 4 to 7, we recruit participants [122] from online communities by publish-
ing our studies on the Prolific crowd-sourcing platform, allowing us to access a diverse
pool of potential candidates. Prior to their participation, we carefully screen individ-
uals based on established criteria such as their previous study participation and suc-
cess rates. Throughout the process, we closely monitor participant engagement using
attention-check questions and log data to uphold data integrity. Additionally, we cal-
culate the minimum sample size necessary to ensure our findings’ validity and reliabil-
ity. Furthermore, we offer compensation to ensure high engagement levels and accurate
data collection through incentives for participants’ time. Before full implementation,
pilot studies are conducted with a small sample of crowd-workers and experts to refine
research protocols and tools while validating our data collection methods. Note that all
empirical studies are approved by the TU Delft ethics committee to ensure participant
safety and data privacy [52].

This thesis includes observational and experimental log studies [120] to explore nat-
uralistic individual behavior in addressing all research questions (RQ1 - RQ3). Obser-
vational studies allow for understanding the pattern of behavior with existing tools and
systems, while experimental log studies provide an opportunity to compare behaviors in
different experimental conditions. This methodology enables a deep understanding of
decision-making processes by capturing real-time behaviors and analyzing patterns and
relationships among variables. The log data from Chapters 4 to 7 contains information
about the type and timing of events occurring during user interactions with interfaces,
offering valuable insights into how decision-making processes develop in real-world sit-
uations.

In spirit of open science principles and reproducibility, we make our data, frame-
works, and analysis code public so that other researchers can validate and expand upon
our findings. By employing rigorous research methodologies and diverse data collec-
tion methods, we aim to improve our understanding of decision-making processes and
support the development of practical decision-support tools in various contexts.

1.5. ORIGINAL CONTRIBUTIONS
This thesis mainly contributes to the methodological and theoretical understanding of
decision-making processes in various task contexts. To increase the external validity and
generalizability of the findings, human-AI decision-making studies should include task-
relate contextual factors, such as complexity and uncertainty, as these factors can sig-
nificantly influence decision-making outcomes. While it is not feasible to account for
every possible task-related contextual factor, this research aims to highlight the signif-
icance of considering and incorporating these factors when studying decision-making
processes. Considering task-related contextual factors can lead to more realistic and
applicable findings and contribute to the development of AI systems that better reflect
and account for real-world complexities. Additionally, this thesis aims to enhance re-
producibility and transparency in decision-making research by making the data, frame-
works, and analysis code publicly available. Proposing an empirical framework to better
investigate the impact of different parameters on decision-making outcomes, this re-
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search seeks to encourage transparent and rigorous research practices and improve the
reliability of findings in the field of human-AI decision-making. The remainder of this
section further explores each part of the thesis and its connection to the main contribu-
tion. It involves examining the task context, the impact of group dynamics, and the role
of technology in aiding information access.

PART I: UNDERSTANDING THE ROLE OF TASK CONTEXT

In Chapter 2, we first assessed the existing literature on task-related contextual factors in
human-AI decision-making. Having examined a few studies for reference, we acknowl-
edged the necessity for further research on this topic. This gap is further exacerbated by
the lack of standardized measures to evaluate task context in decision-making studies
and compare findings across different studies. To this end, we proposed a theoretical
framework for evaluating different decision tasks by their levels of complexity. Task
complexity is a key factor in differentiating decision-making situations and determining
the appropriate decision support. Using this framework, we compared current decision
tasks, examined ongoing research efforts, and highlighted potential areas for future
study.

Chapter 3 introduces ’DecisionTime’, a configurable framework that integrates vari-
ous variables and elements to establish a rigorous and controlled experimental setting.
This modular framework allows researchers and practitioners to systematically manip-
ulate task context parameters, enabling them to investigate the impact of these factors
on decision-making behaviors and outcomes. The framework can also be customized
to accommodate diverse decision-making scenarios, expanding the potential for wider
applications and deeper insights. Chapters 4 and 5 utilized this framework to provide
empirical evidence on how task complexity and uncertainty influence individual and
group decision-making processes.

Chapter 4 delves into the impact of task context on decision-making outcomes in
real-world scenarios. We have identified task complexity and uncertainty as funda-
mental contextual elements that can significantly influence decision-making outcomes.
Varying the levels of complexity and uncertainty in simulated decision tasks, we
conducted a series of experiments to examine how individuals adapt their decision
strategies based on the task context. We incorporated the DecisionTime framework to
create a controlled experimental environment that closely reflects real-world decision-
making scenarios. In this study, we measured various decision-making metrics,
including decision accuracy, decision time, participant trust and reliance on decision
support, and interaction patterns. Participants could apply a variety of decision-making
patterns derived from the ASPECT model. This involves considering a wide range of
characteristics for attribute-based patterns and evaluating potential consequences for
each option to make optimal decisions while adhering to specific guidelines. Our results
showed that the contextual factors significantly influence participants’ behavior. They
tend to rely more on AI systems as tasks become more complex and uncertain while
consistently maintaining their trust in these systems.
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The original contributions of Part I are the following:

• We provide an overview of the literature from the lens of task complexity on
human-AI decision-making (Chapter 2), highlighting the gaps in research and
identifying the need for further investigation in this area.

• We operationalize the concept of task complexity and propose a framework for as-
sessing task complexity in decision-making scenarios (Chapter 2), which will serve
as the foundation for future studies.

• We demonstrate that the lens of complexity can provide an axis to compare
decision-making tasks across different contexts and settings (Chapter 2).

• We propose a customizable framework that allows researchers to create repro-
ducible studies closely aligned with real-world decision-making scenarios (Chap-
ter 3). This modular framework includes adaptable components tailored to fit spe-
cific research questions and contextual factors, enabling systematic manipulation
and comparison of different configurations.

• We propose a framework to operationalize task uncertainty (Chapter 4), providing
a comprehensive understanding of their effects on decision outcomes.

• We examine the impact of task uncertainty and complexity on human-AI decision-
making, including factors such as trust, reliance on AI systems, and performance
measures (Chapter 4). This study represents the first comprehensive effort to ex-
plore the influence of task context on decision-making outcomes, with particular
emphasis on complexity and uncertainty.

• We provide empirical evidence to endorse the significance of considering task
complexity and uncertainty in decision-making situations (Chapter 4), which can
aid in developing specific interventions and approaches to improve decision mak-
ing within complex and uncertain environments.

Part I is based on the following publications:

Chapter 2 is based on a peer-reviewed paper at UMAP ’23:

• Sara Salimzadeh, Gaole He, and Ujwal Gadiraju. 2023. A Missing Piece in the
Puzzle: Considering the Role of Task Complexity in Human-AI Decision Making. In
UMAP ’23: Proceedings of the 31st ACM Conference on User Modeling, Adaptation
and Personalization (UMAP ’23), June 26– 29, 2023, Limassol, Cyprus. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3565472.3592959

Chapter 3 is based on one peer-reviewed paper at UMAP ’24:

• Sara Salimzadeh and Ujwal Gadiraju. 2024. “DecisionTime”: A Configurable
Framework for Reproducible Human-AI Decision-Making Studies. In Adjunct Pro-
ceedings of the 32nd ACM Conference on User Modeling, Adaptation and Person-
alization (UMAP Adjunct ’24), July 01–04, 2024, Cagliari, Italy. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3631700.3664885

https: //doi.org/10.1145/3565472.3592959
https://doi.org/10.1145/3631700.3664885
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Chapter 4 is based on one peer-reviewed paper at CHI ’24:

• Sara Salimzadeh, Gaole He, and Ujwal Gadiraju. 2024. Dealing with Uncertainty:
Understanding the Impact of Prognostic Versus Diagnostic Tasks on Trust and Re-
liance in Human-AI Decision-Making. In Proceedings of the CHI Conference on
Human Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3613904.
3641905.

PART II: ADDING GROUPS TO THE MIX: HUMAN-AI GROUP DECISION-
MAKING
After investigating the impact of contextual factors on individual decision-making
outcomes in Part I, we shifted our focus to exploring the dynamics of group decision-
making in Part II. In Chapter 5, we explored the impact of task complexity and
uncertainty within group settings on their behavior and decision-making results. We
conducted experiments in which participants were assigned to groups and given deci-
sion tasks similar to the previous part, with varying levels of complexity and uncertainty.
We incorporated the DecisionTime framework to create a controlled experimental envi-
ronment that closely reflects real-world decision-making scenarios. Through this study,
we evaluated a variety of factors, focusing in particular on performance outcomes and
group efficiency. In our task context, participants could apply various decision-making
patterns from the ASPECT model to make informed decisions. Group members could
consider different attributes, compare the consequences of choices, and adhere to pre-
defined rules. Collaborating in a group setup promotes socially-based patterns where
the perspectives and actions of others influence members. Our findings reveal that
task complexity and uncertainty have a detrimental effect on group decision-making
performance. Despite longer decision-making processes due to challenges posed by
complexity, the study suggests that collaborative efforts enhance group efficiency in
complex situation, leading to better outcomes in such environments.

The original contributions of Part II are the following:

• We investigate how group decision-making is affected by the uncertainty and com-
plexity of the task (Chapter 5). This research marks the first step in thoroughly ex-
ploring the context of a task in a group setting, focusing specifically on complexity
and uncertainty.

• We provide empirical evidence that integrating decision support systems within
a group setting can significantly improve decision-making outcomes in complex
environments(Chapter 5).

Part II is based on the following publications:

Chapter 5 is based on a peer-reviewed paper at UMAP ’24:

• Sara Salimzadeh and Ujwal Gadiraju. 2024. When in Doubt! Understanding the
Role of Task Characteristics on Peer Decision-Making with AI Assistance. In Pro-

https://doi.org/10.1145/3613904.3641905.
https://doi.org/10.1145/3613904.3641905.
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ceedings of the 32nd ACM Conference on User Modeling, Adaptation and Person-
alization (UMAP ’24), July 01–04, 2024, Cagliari, Italy. ACM, New York, NY, USA, 13
pages. https://doi.org/10.1145/3627043.3659567

PART III: IMPROVING INFORMATION ACCESS: THE CASES OF WEB SEARCH

AND DATABASES

Individuals need to gather the necessary information before making informed de-
cisions. Depending on the specific task, they frequently rely on external resources
to inform their decision-making process. This information can be collected from a
variety of sources, such as search engines, which provide unstructured information that
requires active searching and evaluation, or databases, which offer structured and easily
accessible information. In this section of the thesis, our focus is solely on improving
information access independent of the decision-making process itself. Our specific
goal is to enhance the interfaces of search engines and databases to facilitate better
information accessibility in the upcoming chapters.

In Chapter 6, we introduced entity cards, or information cards, as a new component
to facilitate information access in search engines. These cards provide summaries
of entities along with key facts, images, and links to additional resources retrieved
from search results and knowledge graphs. They are designed to present users with a
structured and organized view of the relevant information, facilitating the exploration of
complex and unfamiliar topics or domains. To assess the effectiveness of this approach,
we conducted an empirical study to measure user learning outcomes and searching
behavior using traditional search interfaces and interfaces enhanced with entity cards
of varying quality. Our findings suggest that entity cards significantly impact users’
information-seeking behavior, helping them to formulate more focused queries and
explore related entities. Additionally, participants’ learning outcomes are influenced by
both the complexity of the search task and the quality of the entity cards, suggesting the
potential to improve outcomes in decision-making contexts.

In Chapter 7, we redirect our attention from search engines to natural language
interfaces for databases. These interfaces serve as a bridge between users and databases,
allowing users to ask questions and access information conversationally. These inter-
faces have demonstrated the potential to enhance the accessibility of database systems
for a wider range of users. Nonetheless, the performance of interfaces significantly
declines for complex and ambiguous questions, limiting their usability in real-world
scenarios. To address this issue, we propose a question decomposition technique that
breaks down complex questions into relatively simpler sub-questions that the interfaces
can accurately process. Having employed this technique on a benchmark dataset, we
evaluated its efficiency when inputted into the interface compared to the initial complex
questions. Our findings suggest that decomposition holds promise as an approach to
improve the performance of these interfaces and enhance information access process.
The crowd-powered decomposition could also be a scalable solution that leverages
human intelligence to provide training data to build an automatic question decomposi-
tion system on top of existing natural language interfaces. This can further improve the

https://doi.org/10.1145/3627043.3659567
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efficiency and accuracy of natural language interfaces for databases without modifying
the underlying model architectures.

The original contributions of Part III are the following:

• We investigate the impact of entity cards on information access and search behav-
ior (Chapter 6), providing insights on their potential to influence search behavior.
At the time of our research, entity cards had not been enhanced in search engines,
making our findings unique in assessing their effectiveness.

• We propose a new approach for enhancing the performance of natural language
interfaces without changing the underlying technology by leveraging question de-
composition (Chapter 7).

• We show that the crowd-powered approach is a promising solution for generat-
ing training data for automatic query decomposition systems and improving the
efficiency and accuracy of natural language interfaces for databases (Chapter 7).

• We publish a decomposed version of the standard benchmark (Chapter 7), which
is a valuable resource for future research on natural language interfaces and create
automatic question decomposition systems.

Part III is based on the following publications:

Chapter 6 is based on a peer-reviewed paper at ICTIR ’21:

• Sara Salimzadeh, David Maxwell, Claudia Hauff. 2021. On the Impact of En-
tity Cards on Learning-Oriented Search Tasks. In Proceedings of the 2021 ACM
SIGIR International Conference on the Theory of Information Retrieval (ICTIR
’21), July 11, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3471158.3472255. Honorable Mention for Best
Student Paper.

Chapter 7 is based on a peer-reviewed paper at HT ’22:

• Sara Salimzadeh, Ujwal Gadiraju, Claudia Hauff, and Arie van Deursen. 2022. Ex-
ploring the Feasibility of Crowd-Powered Decomposition of Complex User Ques-
tions in Text-to-SQL Tasks. In Proceedings of the 33rd ACM Conference on Hyper-
text and Social Media (HT ’22), June 28-July 1, 2022, Barcelona, Spain. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3511095.3531282.

https://doi.org/10.1145/3471158.3472255.
https://doi.org/10. 1145/3511095.3531282.
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2
A MISSING PIECE IN THE PUZZLE:
CONSIDERING THE ROLE OF TASK

COMPLEXITY IN HUMAN-AI
DECISION MAKING

Recent advances in the performance of machine learning algorithms have led to the adop-
tion of AI models in decision making contexts across various domains such as health-
care, finance, and education. Different research communities have attempted to optimize
and evaluate human-AI team performance through empirical studies by increasing trans-
parency of AI systems, or providing explanations to aid human understanding of such
systems. However, the variety in decision making tasks considered and their operational-
ization in prior empirical work, has led to an opacity around how findings from one task
or domain carry forward to another. The lack of a standardized means of considering
task attributes prevents straightforward comparisons across decision tasks, thereby limit-
ing the generalizability of findings. We argue that the lens of ‘task complexity’ can be used
to tackle this problem of under-specification and facilitate comparison across empirical
research in this area. To retrospectively explore how different HCI communities have con-
sidered the influence of task complexity in designing experiments in the realm of human-
AI decision making, we survey literature and provide an overview of empirical studies on
this topic. We found a serious dearth in the consideration of task complexity across vari-
ous studies in this realm of research. Inspired by Robert Wood’s seminal work on the con-
struct, we operationalized task complexity with respect to three dimensions (component,

This chapter is based on a peer-reviewed paper: Sara Salimzadeh, Gaole He, and Ujwal Gadiraju. 2023. A Miss-
ing Piece in the Puzzle: Considering the Role of Task Complexity in Human-AI Decision Making. In UMAP ’23:
Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’23), June
26– 29, 2023, Limassol, Cyprus. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3565472.
3592959
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coordinative, and dynamic) and quantified the complexity of decision tasks in existing
work accordingly. We then summarized current trends and proposed research directions
for the future. Our study highlights the need to account for task complexity as an impor-
tant design choice. This is a first step to help the scientific community in drawing mean-
ingful comparisons across empirical studies in human-AI decision making and to provide
opportunities to generalize findings across diverse domains and experimental settings.

2.1. INTRODUCTION
Recent advances in the performance of machine learning algorithms have led to a rise
in human-AI decision making in a wide variety of domains. For example, recidivism
prediction algorithms have been used to help judges determine whether defendants are
likely to re-offend [92, 118, 274, 283], medical diseases are being diagnosed with AI sys-
tems [65, 248, 260], and loan risk prediction algorithms are employed to approve or reject
loan applications [38, 43, 84, 162].

To take advantage of AI systems and achieve an ideal complementary team perfor-
mance, human decision makers need to recognize the strengths and weaknesses of AI
systems and effectively use AI advice to optimize their decision making. To this end,
a wide variety of mechanisms have been proposed to facilitate effective human-AI col-
laboration such as increasing transparency of AI systems, and their interpretability. For
instance, many studies provide explanations along with AI decisions to help humans
interpret AI systems’ decisions [43, 44, 162, 164, 278]. It is also common to present infor-
mation about the AI systems to create a better perception of their functionality among
users [64, 176, 243]. Prior work has also examined how human trust and reliance on AI
systems is affected by different design choices through empirical studies [53, 239, 277,
314].

Apart from different features of AI systems and inherent human factors, the choice
of decision tasks also affects the performance of human-AI teams [11, 27, 38]. Although
several studies have examined the role of human factors in shaping interactions with
AI systems, there is a limited understanding of task characteristics in the human-AI de-
cision making context [5, 26, 334, 405]. Even though some studies incorporate tasks
with different characteristics [243, 246, 258], task attributes haven’t been identified sys-
tematically in the literature, so their impact on human-AI complementary performance
has not been fully investigated. Consequently, there is no standard and coherent way
to compare decision tasks, hindering research efforts and preventing generalizability
across domains explored in empirical studies. For example, it is difficult to say how hu-
man trust shapes in the context of recidivism prediction task [424] compares to movie
recommendation task [239]. Although this is not a straightforward endeavor, being able
to make such comparisons will allow us to build a deeper understanding of when, why,
and how humans rely on AI systems and how users can be best supported in their inter-
actions. [115] have argued that to create and advance a ‘rigorous science’ in the realm of
human-AI decision making, there is room for empirical work that considers functionally-
grounded explanations with proxy users and tasks, human-grounded evaluation with
real users and simple tasks, and application-grounded evaluation with real users and
real tasks. In practice, however, it is difficult to understand the transferability of findings
across these levels of empirical work. Moreover, our exploratory analysis of rationales
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reported for the tasks considered in recent empirical work on human-AI decision mak-
ing revealed a lack of depth. For instance, in a recent study, a specific task was selected
due to the abundance of datasets in its domain [38], and in another because it has been
used in previous studies [344]. We believe that this contributes to – and is indicative of –
the opacity around tasks and the transferability of concomitant findings.

To facilitate comparison across distinct human-AI decision making tasks, we pro-
pose the lens of task complexity in this thesis. Complexity of a task is influenced by
task characteristics which increase information load, information diversity, or rate of in-
formation change. The complexity of tasks is an important dimension differentiating
one task from the other, playing a significant role in determining the performance of a
human-AI team [5, 171, 273]. It has been found to be an essential predictor of human
performance and behaviour [5, 75, 273], affecting the success of team work [26]. Task
complexity can also impact trust and reliance on AI systems. Intuitively, more complex
tasks demand more effort from decision makers to complete and one can expect that
human decision makers perform worse on highly complex tasks. On one hand, more
complex tasks may imply a greater need for humans to rely on AI systems [99] as a result
of increased information overload in such tasks [75]. On the other hand, human decision
makers may struggle to identify errors created by AI systems on complex tasks, leading
to over-reliance [26, 334]. Note that we consider the construct of task complexity inde-
pendently from the users’ standpoint or abilities, i.e., independently from factors which
influence the perceived task complexity [71].

In this chapter, we first shed light on the extent to which task complexity has been
considered in the design of recent empirical studies across research communities that
have explored human-AI decision making. Next, we propose a means to operationalize
task complexity to facilitate comparisons across empirical works and provide us with
an instrument to gauge potential transferability of findings along this axis. We thereby
address the following research questions:

RQ1: How has recent research in human-AI decision making considered the in-
fluence of task complexity?

RQ2: How can task complexity facilitate a comparative lens for empirical work
on human-AI decision making?

To answer the RQs, we provide an overview of the current state of human-AI decision
making research through a retrospective study. We focus on studies in which decision
tasks were adopted within the human-AI team setting to evaluate or improve their per-
formance, either as the team or individual component. We limited our scope to articles
published in HCI conferences and journals in the last four years, considering most rele-
vant articles have been published in the last four years based on our preliminary analy-
sis on Google Scholar hits. We found little evidence of task complexity being considered
or controlled as a factor within the study design. Inspired by Robert Wood’s seminal
construct of task complexity [435], we coded different aspects of existing decision tasks
based on three dimensions of complexity — component, coordinative, and dynamic
complexity. Next, we annotated the empirical study setups in different articles in our
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corpus (N = 127) corresponding to each dimension of task complexity, highlighted cur-
rent trends, and proposed research directions for the future.

Original Contributions. We analyzed recent empirical studies of human-AI deci-
sion making from an under-explored but important perspective of task complexity. To
the best of our knowledge, this is the first systematic analysis of task complexity across
empirical human-AI decision making studies. We operationalized task complexity in
decision tasks, measured and annotated task complexity of decision tasks considered
in recent literature across research communities. We found that tasks in the literature
are distributed across all levels and dimensions of complexity. Based on our analysis,
most tasks that have been considered in empirical studies have a low or medium level
of component complexity. We found that highly-complex tasks generally represent real-
world problems by incorporating higher risk levels and requiring domain expertise that
demands a greater level of trust and reliance by humans. Despite existing limitations
in operationalizing task complexity such as difficulty in accounting for features like task
stakes we argue that task complexity can provide us with an axis along which we can
engage in comparisons across decision tasks in empirical human-AI studies. Our work
offers a starting point on which we hope that future work can build upon, extend our
framework, and model various aspects and attributes of decision-making tasks in greater
depth. Our findings can assist researchers in making meaningful comparisons across
studies, provide opportunities to generalize findings across diverse domains, and inspire
future work to tackle issues pertaining to transferability of findings in empirical human-
AI decision making research.

2.2. RELATED WORK

HUMAN-AI DECISION MAKING

Since AI systems have shown promising performance on various intelligent tasks like
financial risk estimation [318] and medical diagnosis [24], a growing number of re-
searchers and practitioners have begun to propose such AI systems in augmenting hu-
man decision making [245]. One main goal of such human-AI collaboration is to achieve
complementary team performance [274]. For this purpose, human decision makers are
expected to identify when they should rely on AI and when they should work on the
tasks themselves, thereby exhibiting ‘appropriate reliance’ on AI systems [253]. Only
a few empirical studies have reported such appropriate reliance [245, 274]. However,
there is substantial evidence that corroborates how challenging it is to foster appropri-
ate reliance among users on AI systems [277, 445]. To promote appropriate reliance on
AI systems, different interventions including explanations of AI advice [424], cognitive
forcing functions [53], and user tutorials [78, 79] have been proposed in empirical stud-
ies of human-AI decision making with varying extent of success and befitting varying
contexts. Existing studies have also found that human-AI decision making is affected by
a number of factors. The information shown to users along with AI advice can greatly
impact their trust and reliance. Explanations [274, 424], stated performance [26, 449,
463], risk perception [161], and uncertainty [401] have been studied extensively in this
context. User factors like expertise [108], machine learning literacy [78], and task charac-
teristics like task subjectivity and proximity [58], and task types [155, 202, 243, 258, 306]
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have also been broadly investigated. Despite the significance of tasks in the human-AI
decision making field, a limited number of studies have focused on explicitly consid-
ering task complexity and understanding the impact of varying task complexity. [26]
defined the number of features in each task instance as task dimensionality and con-
ducted a user study controlling the number of human-visible features. They found that
human-AI team performance decreases as task dimensionality increases. Similarly, [334]
investigated how the number of features impacts the capability of participants to sim-
ulate AI predictions. Participants struggled detecting errors when faced with more task
features due to information overload, which can be detrimental to the complementary
human-AI team performance. In contrast, having considered two levels of complexity
in their task design, [399] found that complexity does not impact participants’ perfor-
mance due to a learning effect. In terms of comparing human and AI systems, according
to [268], AI systems outperform humans when they have access to extensive amount of
information.

In this thesis, we specifically focus on the task complexity, which is under-explored
in human-AI decision making studies. We first reviewed studies published in recent four
years to evaluate the extent to which they take task complexity into account while de-
signing user studies. Towards this goal, we adapted a framework to conceptualize differ-
ent dimensions of task complexity and annotated the tasks accordingly. We then evalu-
ated how tasks with various levels of complexity have been distributed in the past based
on the proposed framework. Based on this review, we present our findings on how vari-
ous dimensions of task complexity could influence human-AI decision making.

TASK COMPLEXITY

Task complexity became a point of interest for over 50 years. In the late-1980s, some
frameworks were proposed to define and analyze task complexity; they were adapted in
many domains such as psychology, management, information systems, and etc. [71, 173,
273, 435]. Among all works, the theories introduced by [71, 435] gained popularity with
more than 2000 citations and became the basis of other frameworks. According to [71],
complexity of a task is influenced by task characteristics that increase information load,
information diversity, or rate of information change. More importantly, task complex-
ity is defined independently of any task doer’s ability [71]. Aligned with this definition,
[435] recognized three factors contributing to task complexity which are (i) the number
of distinct pieces of information required to complete the task, (ii) the number of steps,
and (iii) any changes in either piece of information or steps over time. They named these
factors as component complexity, coordinative complexity, and dynamic complexity.

Through adapting the framework proposed by [435], we operationalize task com-
plexity in empirical studies in a human-AI decision making context. Note that we study
tasks given to humans, not AI systems in our thesis. We then explore how decision tasks
are distributed in existing work and discuss the limitations of current experimental stud-
ies and the implication for researchers to consider task complexity as their design choice.
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2.3. METHOD

2.3.1. SCOPING OUR LITERATURE REVIEW
We followed a semi-systematic literature review, widely adopted in prior studies [316,
340], including the four stages summarized in Figure 2.1 below.

Figure 2.1: A workflow diagram of the semi-systematic literature review process that we followed.

DEFINE INCLUSION AND EXCLUSION CRITERIA

The purpose of this study is to examine empirical human-subject studies pertaining to
human-AI decision making, which evaluate or improve the performance of human-AI
as a team or individual component. We applied the following inclusion and exclusion
criteria to filter the articles.

• Human-AI Decision Making: Selected articles need to include at least one empirical
human-subjects study in which humans are asked to accomplish a decision task with
the aid of an AI system. We thus exclude non-empirical articles or articles focusing on
tasks such as debugging, creativity, and sketching.

• Qualitative Human-Subjects Studies: Human-subjects studies must be evaluated
quantitatively in the selected articles. Therefore, studies considering only interviews
with humans to determine design decisions or asking about their preferences and un-
derstandings resulting in only filling questionnaires were excluded.

• Proceedings: Selected articles are published in HCI conferences or journals, including
CHI, CSCW, IUI, UMAP, FAccT, TOCHI, HCOMP, and UIST within recent four years, as
of January 2019 up to August 2022.

• Format: We included only full papers in our collection. Most HCI conferences and
journal articles are published through ACM Digital Library, so we identify it as our
source. For the articles in Proceedings of AAAI Conference on Human Computation
and Crowdsourcing, which do not exist in ACM Digital Library, we retrieve the articles
from their proceedings.

SEARCH

We conducted an exploratory search in the ACM Digital Library to determine search
queries. We searched for articles that included user studies in which participants were
tasked to complete decision tasks. We retrieved 50 articles from the proceeding men-
tioned in our inclusion criteria using “empirical studies” and “human-AI decision mak-
ing” as keywords. We manually analyzed these articles and extracted seven common key-
words. We then utilize the keywords as our final search query. The search query included
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the following terms, “AI-assisted decision making,” “decision support systems,” “human
AI collaboration,” “human AI team,” “human in the loop,” “human subject studies,” and
“empirical studies.” An initial search yielded 5037 articles after limiting the proceedings
specified in our criteria.

SELECT

We manually screened the articles according to our inclusion and exclusion criteria. We
looked for articles containing empirical studies by searching through the full texts of
all articles with the keywords “user study” and “empirical study”. We then examined the
detail and type of study to decide whether we could add this article to the final collection.
For instance, we removed articles containing only interviews or surveys as user studies.
After excluding out-of-scope studies, we reached a collection of 127 articles.

ANALYZE

In order to evaluate how each article considered the influence of task complexity, we first
reviewed the full text of the articles. We then started annotating the decision tasks by ex-
tracting relevant information such as: what kind of decision tasks, the risk of the decision
tasks, how much knowledge is required to perform tasks, explicit justification of choos-
ing decision tasks, and whether tasks are proxy tasks or actual decision making task [58].
Furthermore, we coded the component, coordinative, and dynamic complexity of deci-
sion tasks based on how many information cues are required to accomplish the tasks and
the number of steps required to complete the tasks according to our rubrics explained
in Section 2.3.3. In case of any changes in a number of information cues or steps, we re-
ported dynamic complexity. We created our rubrics for operationalizing task complexity
in a decision making context while annotating the articles and observing new scenar-
ios. As identification of information cues and steps could be subjective, we discussed
the rubrics iteratively along the way to ensure the integrity of the process. Authors of
this chapter iterated over 30 articles, before finalizing and converging on the rubrics.
The full list of articles and our annotations are publicly accessible for the benefit of the
research community and in the spirit of open science 1.

2.3.2. OPERATIONALIZING TASK COMPLEXITY

In this section, we, introduce the general definitions represented by [435] and clarify the
concepts using an example in the context of human-AI decision making. In the next sub-
section 2.3.3, we leverage these terminologies to explain how our framework to models
task complexity in the context of human-AI decision making. Note that all of the termi-
nologies and definitions in this section are adopted from the [435] work.

All tasks contain three essential components: products, required acts, and informa-
tion cues. We follow the example in Figure 2.2 to elaborate on each component and
introduce terminologies. The example presents a two-stage decision making process for
recidivism prediction task. According to the defendant’s profile, a human decision maker
has to decide whether the defendant re-offends the crime in two years. We identified 3
constructs to calculate task complexity:

1https://osf.io/9bg8c/?view_only=7c0fedff68514fca892b16afa385a0e8

https://osf.io/9bg8c/?view_only=7c0fedff68514fca892b16afa385a0e8
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Figure 2.2: A decision task study. The features of the defendant profile are recognized as information cues,
each step is an act, and the final decision is considered the product.

• Product: Products are entities created by behaviours that can be identified separately
from behaviours that produce them. They are identified as a set of assembled at-
tributes such as an object or event and contain some defining attributes like quantity,
quality, and cost. The final decision of a human is the Product in Figure 2.2.

• Acts: Acts serve as a specific activity or process carried out with some identifiable pur-
pose. Acts are defined as the component of the task which is independent of an indi-
vidual who performs them. In figure 2.2, making an initial decision, reviewing model
prediction, and making a final decision are classified as acts.

• Information Cues: Information cues are pieces of information upon which an indi-
vidual can make judgments during the performance of the tasks. Each variable in the
defendant’s profile, such as race, gender, etc., is considered an information cue. The
model prediction is also a distinct information cue in Figure 2.2.

Acts and information cues are referred to as task inputs that determine the complex-
ity of tasks. In other words, task complexity describes the relationship between task
inputs and will be a significant determinant of individual performance. Task complexity
is defined with three dimensions:

• Component Complexity: It refers to the total number of distinct information cues
that need to be processed to perform the task. In our example, race, gender, age, prior
count, charge name, charge degree, days in custody, and model predictions form com-
ponent complexity as 8.

• Coordinative Complexity: It is defined by a number of sequences of acts that are re-
quired in the task performance. The number of steps to accomplish the task is three in
figure 2.2.

• Dynamic Complexity: Changes in either value of information cues or number of acts
lead to dynamic complexity. We count the number of information cues with variable
quantities or additional steps required for accomplishing the task as dynamic com-
plexity. In our example, both component and coordinative complexities are static dur-
ing the process of decision making, indicating that the dynamic complexity is 0.
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(a) Baseline

(b) Demographic

(c) Additive feature

(d) Feature importance

(e) Feature contribution

(f) Counterfactual

(g) Example-based

Figure 2.3: The complexity of different experimental conditions of a decision Task. Participants are asked to
make a prediction on whether this defendant would re-offend within two years on 30 trials. The study con-
tains seven experimental conditions providing different types of explanations. The component complexity
of each conditions is: a)12, b) 13, c) 12, d) 13, e) 14, f ) 14, and g) 14 . This task has coordinative and dynamic
complexities of 30 and 0, respectively. Except for condition 3, the dynamic complexity is 120. More details
on how to calculate each dimension will be found on the companion page.

Note that a task can be a combination of multiple sub-tasks. So, these definitions can
be assessed at both task and sub-task levels. As a result, the overall complexity of the task
in each dimension is the aggregation of the complexity across all sub-tasks. According to
[435], the overall task complexity is expressed as the linear combination of component,
coordinative, and dynamic complexities:

TCover al l =α ·TCcomponent +β ·TCcoor di nati ve +γ ·TCd ynami c .

However, it is not evident how the three dimensions of relate to one another [435]. There-
fore, we consider each dimension separately in our study.

2.3.3. MEASURING TASK COMPLEXITY

We operationalize the theoretical model of task complexity proposed in seminal work
by [435] in the realm of human-AI decision making. We model the information cues
and required acts defined in previous Section 2.3.2 to decision tasks in our article col-
lection and calculate three dimensions of complexity (i.e., component, coordinate, and
dynamic) for each task. Such a framework can assist us in comparing complexity across
various tasks and domains.

As a first step, we need to identify the information cues and required acts in the
human-AI decision making context so we can determine each dimension of complex-
ity defined in the previous section. To identify information cues, we created a set of
rubrics. Additionally, the mandatory steps that are required to complete the task are the
required acts. We categorize our rubrics into two groups: general rules applied to all
cases and specific rules depending on each dimension of task complexity. In order to il-
lustrate how these rubrics can be applied in practice, Figure 2.3 shows seven conditions
of decision tasks along with their complexity.
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GENERAL RULES

1 We excluded all task-independent components when calculating the task com-
plexity: such as pilot studies, questionnaires for user factor assessment, tutorials
before the actual decision task. As all of these factors do not contribute to the task
complexity, they are discarded in our measurement.

2 When dynamic complexity is not zero, (due to changes in component or coordina-
tive complexities), we report the minimum static complexity for component com-
plexity/coordinative complexity. The dynamic dimension is indicated as the dif-
ferential between maximum and minimum component/coordinative complexity.

3 Different experimental conditions of a decision task can vary in each dimension
of complexity. We only consider the condition in which the authors investigate
the effectiveness of their proposed approach or evaluate their primary hypothesis.
Such a condition is typically the condition with the maximum complexity, among
others.

4 We consider explanation methods as information cues. Although they are sup-
posed to assist humans to interpret AI decisions, they augment task complexity as
humans should digest them along with the AI decisions. However, such methods
affect the complexity differently; one can directly increase component complex-
ity,and the other may dynamically change leading to dynamic complexity.

5 Information cues can be presented in various ways, such as plots, paragraphs, ta-
bles, and images, each requiring a different amount of steps to interpret. Using a
table as an information cue might be easier to digest than using a sophisticated
plot. Since we do not have any references to determine the number of steps each
require, we assume all of them have a similar coordinative complexity.

6 Tasks with different stakes (risks) may intuitively have different complexity levels.
However, there is no way to map risk levels to either information cues or required
actions. So, we consider it as the limitation of this framework as it can not capture
them.

7 For each task, a set of features is required to make an informed decision. Missing
any of these features will cause the task to be complex and error-prone. However,
with this framework, we can not account for this type of complexity; since we can-
not figure out this set of features for each specific task.

COMPONENT COMPLEXITY

1 We count the total number of distinct human-visible features, considering each as
an information cue. The number of information cues indicates component com-
plexity. Note that redundant information cues are not counted according to the
definition.

2 In addition to features, the correlation between each combination of them is also
considered a distinct information cue. If we have n features and their correlations,
then the number of distinct information cues equals 2n −1. For e.g., for n = 2, the
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component complexity would equal three as we have three distinct information
cues: feature_1, feature_2, and correlation between them.

3 Each of the following factors is examined as one information cue: 1) model pre-
diction, 2) model uncertainty score, 3) model performance, and 4) overview of the
model or algorithm distribution.

4 Each explanation method is counted as one or more information cues. 1) feature
importance highlighting key features is considered as one information cue. 2) fea-
ture contribution showing top key features and their coefficients are counted as
two information cues. 3) counterfactual explanation focusing on what changes in
feature values result in an opposite AI prediction are recognized as two distinct
information cues - as they provide both what features and which new values, 4)
demographic-based information is one information cue, 5) example-based expla-
nation such as nearest neighbour methods is considered as one information cue if
only examples with similar predictions are presented; in case of providing exam-
ples with different predictions, based on the number of various predictions, they
can be counted 2 to n distinct information cues.

5 The feedback regarding the performance of the humans or AI is also considered as
one information cue.

COORDINATIVE COMPLEXITY

1 We count the total number of steps to accomplish the decision task as coordinative
complexity.

2 Each task instance is recognized as one separate step.

DYNAMIC COMPLEXITY

1 When the quantity of any feature changes during the process of decision mak-
ing (any changes in component complexity), the dynamic complexity should be
greater than zero. Otherwise, the dynamic complexity is zero.

2 There is dynamic complexity if any feature affects the sequence of performing the
task (changes in coordinative complexity).

3 The additive feature attribution explanation method contributes to dynamic com-
plexity. Providing additive feature attribution method, a human decision maker
can modify the values of any features (Rule 1) and observe their correlation among
other features and their impact on AI predictions. Based on Rule 2 in component
complexity, the maximum component complexity with n features, given their cor-
relation, is calculated as 2n −1. As we report the differential of maximum (2n −1)
and minimum (n) component complexity as dynamic complexity, then, the dy-
namic complexity would be 2n −1−n.

4 If we let humans choose whether and when to see the AI recommendation, then
the steps required to accomplish the task (coordinative complexity) would be dy-
namic depending on whether the decision makers request AI recommendation or
not.
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2.4. RESULTS

2.4.1. TASK COMPLEXITY IN HCI LITERATURE
RQ1 asks to what extent recent HCI literature has considered the impact of task complex-
ity in the design of decision making tasks. Among all the relevant articles we collected,
a limited number of studies have considered task complexity in designing their deci-
sion tasks [26, 334, 399]. This finding corroborates that there is no standard framework
to quantify the complexity of decision tasks. We analyzed existing tasks according to
the framework we proposed in Section 2.3.3, operationalizing the measurement of task
complexity. We first shed light on the descriptive statistics; distribution across the com-
ponent, coordinative, and dynamic complexities, the extremities observed in our data,
and the outliers.

(a) Component (b) Coordinative (c) Dynamic

Figure 2.4: Distribution of component, coordinative, and dynamic complexity in the decision tasks corre-
sponding to our corpus.

COMPONENT COMPLEXITY
Component complexity was found to be within the range of 1 to 23, shown in Figure 2.4a.
The task with the component complexity score of 1 is related to a mind wandering de-
tection task in which crowd workers were asked to identify whether people’s attention in
the presented video clip drifted away [49]. On the other end of the spectrum, a task re-
lated to music recommendation was found to have a component complexity of 23 [296].
In this study, a wide range of features associated with user’s preferences, attributes of
artists, and explanations for suggested songs were incorporated. The average compo-
nent complexity of tasks in our data was found to be 6.9 (±4.3).

Research in neuroscience led by [298] revealed that the average human information
processing capacity ranges between 5 and 9, which is the number of objects an average
human can hold in their short-term memory. This indicates the range of component
complexity for human decision makers. Based on this, we consider three bins of com-
ponent complexity. First, tasks with the number of information cues (indicating compo-
nent complexity) below 5 as those corresponding to low complexity. Next, tasks with 5-9
information cues are considered to have a medium component complexity, while those
with more than 9 being highly complex. We note that the decision tasks considered in re-
cent literature have a medium level of component complexity on average (6.9). In total,
33.7% of tasks have a low level, 40% have a medium level, and 26.2% have a high level of
component complexity. Furthermore, 12% of tasks were found to be outliers with a high
level of complexity between 24 to 132. The decision task with a component complex-
ity of 132 relates to predicting the risk of not paying back a loan and a convict’s chance
of recidivism [38] within the same task. The study included 18 variables in which the



2.4. RESULTS

2

29

three-dimensional relationship between some features was presented, including two de-
cision tasks from different domains and many variables (shown as scatter plots) which
increased the task complexity. All outliers leveraged specific datasets, included many
features, and employed sophisticated plots.

COORDINATIVE COMPLEXITY

We found that the coordinative complexity of tasks considered in our data lies between
1 and 100. There are four tasks with the lowest coordinative complexity, where partici-
pants were asked to react to the hypothetical scenario in which their Facebook account
is suspended by an algorithmic content moderation system [407], movie recommenda-
tion [457], and medical diagnosis [33]. The task with the highest coordinative complexity
was found to be bail decision making for 50 cases. We found that the coordinative com-
plexity was 25.1±25.9 on average, meaning that participants must follow 25.1 steps to ac-
complish the task. Based on the Figure 2.4b, 75.6% of the complexity of tasks distributed
between a range of 1 to 40.

We divided the level of coordinative complexity as low, medium, and high based on
the quartiles; with the bottom quartile corresponding to low, top quartile corresponding
to high, and the other two constituting the medium level. Tasks in the bin of low com-
plexity corresponded to a coordinative complexity below 5; those with a medium level
of complexity corresponded to between 5 to 50; highly complex tasks corresponded to
a coordinative complexity of over 50. In total, 25.9% of tasks were found to correspond
to a low level of coordinative complexity, 56.8% have a medium level of complexity, and
17.2% have a high level of complexity.

We also observed articles with coordinative complexity of 130 to 420 as outliers. In
the task with a score of 420, participants were presented with 210 questions regarding
quality control in a drinking glass-making factory scenario [450]. There is evidence to
suggest that having more task instances, with a greater level of coordinative complexity,
can cause mental fatigue. This is the result of prolonged periods of demanding cognitive
activity [216] and has been shown to negatively affect performance [300, 427]. Therefore,
it is important to set the number of task instances in empirical studies at a reasonable
level to avoid the fatigue effect.

DYNAMIC COMPLEXITY

As explained, dynamic complexity depends on any changes in components or coordi-
native complexities. Our analysis revealed that dynamic complexity was distributed be-
tween 0 to 6 (cf. Figure 2.4c). We classified the level of dynamic complexity according to
the bottom and top quartiles. As the result, tasks with a complexity of 0 corresponds to
low dynamic complexity; task with dynamic complexity of 1 to 3 correspond to medium
complexity; and tasks with dynamic complexity of 4 or more assigns to high dynamic
complexity. We also observed that 95% of decision tasks have dynamic complexity be-
tween 0 to 2. This finding indicates that dynamic complexity is not common among deci-
sion tasks considered in empirical human-AI studies. The source of dynamic complexity
was found to be the non-stationary nature of coordinative complexity. Some studies let
the participants choose whether and when to see AI recommendations. This approach
forced participants to be more cognitively involved in the decision making process by
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first probing the task inputs. This resulted in a variable number of steps depending on
the participants, leading to dynamic complexity. We found outliers with a dynamic com-
plexity ranging from 12 to 1890. The source of dynamicity for the study with the score of
1890 was changes in component complexity. This study includes a video activity search-
ing tool to build specific queries and sort the number of videos about policies being
followed by kitchen staff [314]. Dynamic complexity was a result of the fact that queries
and responses were not constant.

ACTUAL AND PROXY TASKS

We also examined whether researchers conducted proxy tasks or actual tasks [58]. Par-
ticipants in actual tasks are asked to make an informed decision with AI assistance, eval-
uating the performance of humans and AI as a team. In contrast, participants in proxy
tasks have to simulate the model decision or decision boundaries. [58] showed how eval-
uations with proxy tasks do not predict the evaluation with actual tasks which can limit
the generalizability of findings. In total, we observed that 86% of studies were conducted
with actual tasks while the remaining 14% were proxy tasks in the set of articles in our
corpus.

HIGH-STAKE AND LOW-STAKE

We also analyzed the risk of tasks as this is identified as one of four dimensions that vary
in decision tasks by [245]. Among all, 67.7% of studies did not specify how risky their
task was. Although this aspect could be inferred from the context, this suggests a po-
tential lack of explicit consideration of stakes. Of the remaining, 18.3% are classified as
high-stake, 8.6% low-stake, and 5.4% set up their studies in both conditions, either by
changing the decision task [12] or artificially modifying the scenario. For instance, in a
study by [169], participants were asked to check user requests for approval to run differ-
ent software on company computers. In the high-stake domain, they were targeted by a
malicious hacker, while in a low-stake setup, participants were told that they would be
invited to a party if they performed well. As another approach for converting low-stake
tasks to high-stake, participants were rewarded money/points in case of correct deci-
sions and lost more amount of money/points serving as the punishment for incorrect
decisions.

Note that we manually annotated tasks in which the stakes were not indicated. In
total, 39.7% of tasks were found to be high-stakes, 54.8% were low-stake, followed by
5.4%, which contained both low-stake and high-stake scenarios. As there is limited un-
derstanding about the correlation between task stake and task complexity, future work
could explore how these factors relate to each other and influence human-AI decision
making. Example annotations of task complexity is shown in Tables 2.1a and 2.1b. The
full list of articles and our annotations are publicly accessible for the benefit of the re-
search community and in the spirit of open science.2

2https://osf.io/9bg8c/?view_only=7c0fedff68514fca892b16afa385a0e8

https://osf.io/9bg8c/?view_only=7c0fedff68514fca892b16afa385a0e8
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Decision Task Complexity

Stroke Rehabilitation Assessment (25,60,0)[255, 257]
Medical Image Retrieval (14,6,1023)[65]
Medical Diagnosis (7,4,2)[320],(6,1,0)[33],

(6,240,0)[139]
Nutrition Prediction (5,26,156)[56],(3,24,0)[58],

(4,48,24)[147]
Recidivism Prediction (10,64,32)[424],(11,200,50)[164],

(8,12,6)[110],(132,10,0)[38],
(11,50,0)[283]

Monitoring and Administration (15,130,390)[325]
Job Application Approval (5,24,0)[326]

(a) Task complexity in high-stake domains

Decision Task Complexity

House Price Prediction (9,15,0)[4],(11,24,12)[334],
(12,40,10)[78]

Deceptive Review Prediction (6,20,0)[243],
(4,20,0)[244]

Sketch Recognition (4,6,0)[64],(6,84,42)[460]
Movie Recommendation (2,4,0)[239],(28,1,0)[457],

(4,15,0)[266],
(10,4,0)[34]

Place Recommendation (12,2,0)[411],
(51,12,0)[187]

Food Recommendation (2,51,0)[158],
(9,3,0)[305]

Image Classification (3,12,0)[6],(5,216,0)[445],
(4,90,0)[191],
(3,40,0)[313]

Sentiment Analysis (4,3,0)[377],(6,50,0)[27]

(b) Task complexity in low-stake domains

Table 2.1: Example annotations of task complexity in low-stake and high-stake domains. Task complexity
is shown as a tuple (component, coordinative, dynamic).

2.4.2. TASK COMPLEXITY AS A COMPARATIVE LENS

RQ2 focuses on how task complexity can facilitate a comparative lens for empirical work
on human-AI decision making. To address this research question, we examined tasks
in each level of complexity, from low to high, and across all complexity dimensions. We
found that there were some consistencies within each level of complexity and across
dimension such as task stake, task expertise, and task type. However, there were also
some differences across the levels in each dimension, which we discuss below.

DIFFERENT TASKS SAME COMPLEXITIES

Our analysis has indicated that there are different decision tasks with the same complex-
ity. For most score levels of component complexity, there are at least two studies with the
same score. Among all cases, score 3 and 5 is dominant, with 11 and 12 decision tasks, re-
spectively. Considering low-complex tasks, they are comparable in terms of their stake,
domain expertise, and task types. More than 93% are low-stake tasks that can be accom-
plished without domain knowledge. A majority of these tasks involve recommendations
or binary decisions. Such binary decision tasks are primarily artificial, with no explicit
real-world applications. As the tasks are straightforward, they imply lower demand for
humans to rely on [99].

Looking towards tasks with higher levels of complexity, we observe diversity among
tasks in terms of their stake and expertise, which is not comparable. For instance, we
found two scenarios of child clinical decision making [227] and nutrition prediction [56]
tasks with the same component complexity; the first high-stakes task requires extensive
domain knowledge, while the second task can be performed without any background
and has a low risk. In addition to binary decision and recommendation tasks, tasks in the
bin of medium complexity were found to include multi-class, regression, and retrieval
tasks. Compared to low-complex tasks, the number of tasks resembling real-world prob-
lems was found to be higher in the bin of tasks with medium level of complexity. Our
examination, established that around half of the tasks were still artificial [323, 460] or do
not necessarily require human intervention. For instance, sentiment analysis [377] and
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text classification [345] tasks can be fully automatic; thereby, human intervention may
not be needed.

Lastly, on the other side of the spectrum, we found that highly complex tasks tend
to be high-stake tasks requiring domain knowledge to complete. The existing low-stake
tasks in this bin are dedicated to recommendation systems tasks. Including a wide range
of features to capture human preferences makes such recommendation tasks complex.
It is important to point out that high-complex tasks are found to be explicit examples of
real-life problems. In our study, we found that as tasks got more complex, they resem-
bled real-world use cases more, demanded more domain knowledge, and had a bigger
stake. To simulate real-world problems and human interaction with AI systems, it is
pragmatic to adapt actual tasks in which humans may want to rely on AI support.

We also observed decision tasks with similar scores of coordinative complexity, rep-
resenting the number of steps required to finish the tasks. Tasks with low levels of com-
plexity consist of low-stake tasks without the expertise needed. On the other end, high-
complex tasks were found to have higher risks and require expertise. Interestingly, these
tasks also have a medium or high score of component complexity at the same time. That
could be due to the fact that researchers may increase task instances for such tasks to ex-
amine human behaviors over time. Consequently, human decision-makers familiarize
themselves with AI systems, form their mental models, and calibrate their trust. Nev-
ertheless, having a higher level of component complexity and stake for these tasks, the
cognitive load of performing tasks could grow simultaneously. Such cognitive load could
lead to mental fatigue in participants earlier [216]. It seems that researchers might ne-
glect the fatigue effect in their studies. Comparing these user studies with actual sce-
narios, it’s also rare for a human decision maker to do 100 tasks concurrently in real-life
cases. Instead of doing a hundred cases in one session, it’s recommended to examine
human behavior over time in different sessions to mitigate the fatigue effect and model
the real world better.

Based on our analysis, low-complexity tasks have almost no expertise required, are
low-stake, and are easy to do, so findings across studies can be generalizable. With the
increasing complexity of tasks, we observe a wide variety of task types, task stakes, more
features, and a variety of explanation methods adapted, which makes it hard to carry
findings from one study to another.

SAME TASKS DIFFERENT COMPLEXITIES

In contrast to studies with the same complexity score, we found some similar decision
tasks with varied complexity scores. Recidivism prediction, loan approval, movie rec-
ommendation, and image classification tasks dominate our corpus. These tasks are pre-
sented in each level of component complexity, low to high. The underlying dataset is
similar throughout the studies for the recidivism prediction [38, 424] and loan approval
tasks [156, 162]. They incorporate different explanation methods, enriched with addi-
tional visualizations along with the AI decision to modify the component complexity of
those tasks. For the movie recommendation [239, 457], the reason for having a spec-
trum of complexity is integrating different user preferences to improve the quality of AI
recommendations. Lastly, we can see distinct types of images in image classification
tasks [6, 46], from clinical, nutrition-related, animal, and animal images. Since the con-
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text of images differs, the type and number of component complexity vary among them.
Our survey showed that researchers could control component complexity by enhancing
explanations, visualizations, and user preferences when making recommendations or
changing domains.

2.5. DISCUSSION AND IMPLICATIONS

2.5.1. IMPLICATIONS OF OUR WORK

POTENTIAL REASONS WHY TASK COMPLEXITY HAS BEEN OVERLOOKED IN STUDY DESIGN

Reflecting on tasks with a high complexity, we observed that interest in promoting the
need to rely on AI or opportunities to propose explanation methods can typically inform
such task design choices. Researchers have shown that explanations can effectively in-
form mental models of humans and improve their understanding, especially for laypeo-
ple [157, 172, 390]. Additionally, to fill the knowledge gap between domain experts and
laypeople or improve AI literacy, empirical studies engage with more explanations [77,
260, 356, 460]. A higher level of complexity can also result from adding more user pref-
erences to improve the quality of recommendations [187, 305, 457]. Another reason
to increase task complexity could be a need to study trust formation and reliance on
AI systems in such contexts [78, 277, 334, 449, 457]. Incorporating various features can
ensure that human decision-makers access salient features required to make better de-
cisions, especially in high-stake domains [46, 65, 164, 255]. Missing a salient feature
could be more harmful than presenting additional information. There’s also a relation-
ship between task complexity and the nature of the task. Tasks representing real-world
cases, especially those with higher risk, tend to have more features and require more
expertise to accomplish [38, 260]. Additionally, cognitive forcing interventions are ap-
plied in studies to engage human decision-makers more thoughtfully with AI systems.
By increasing task complexity, such approaches affect human cognitive processes by: (I)
asking humans to make decisions before seeing model predictions [424, 463], (II) vary-
ing AI systems response time [56, 323], and (III) providing feedback to humans [27, 164,
445, 450]. In terms of the arbitrary choice of task instances observed in many articles,
researchers may include more instances to explore the impact of human-AI interaction
over time. Having more time to collaborate with AI, human decision-makers familiarize
themselves with AI systems, form their mental models, and calibrate their trust.

In contrast to orchestrating high task complexity, task complexity is mitigated in
some studies. Due to the cost and limited accessibility to hire real-end users of AI sys-
tems, crowd workers simulate the decision making process. As crowd workers’ knowl-
edge is limited, decision tasks are either simplified, artificially created, or substitutes
with common tasks that crowd workers have experience in are considered [58, 239, 377,
450]. Tasks with low complexity can help human decision makers have a better under-
standing of AI systems [64, 375].

COMMON LIMITATIONS AND CHALLENGES IN EMPIRICAL HUMAN-AI STUDIES

Our observations indicate an arbitrary selection of task design parameters like task type,
number of features, etc is common in existing empirical studies. Depending on the
factors that are investigated in experiments, task types can play a significant role. For
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instance, the pattern of reliance on AI systems in a decision task with high-stakes in
healthcare domain could vary in comparison to a low-stakes task in the commercial do-
main. Features of a decision task are largely set from the dataset that the AI systems were
trained on. However, not all of the features are relevant to a given task and some of them
can even mislead users. Task parameters are also typically determined due to external
factors such as associated costs, or available time. In many studies, the number of task
instances, as well as the length of the study, are set according to the available budget.
Furthermore, limited access to domain experts (where expertise is required) results in
studies with fewer participants. Regarding whether tasks are actual or proxy tasks [58],
we observed that 25% of studies in our corpus employed proxy tasks to evaluate their hy-
potheses. Evaluations of human-AI decision making using proxy tasks do not necessarily
transfer to actual real-world tasks [58]. This pitfall can affect the generalizability and re-
liability of findings. A human-subject study often hinges on simulating real-world tasks
accurately. While many parameters have to be simplified in isolated studies, the simu-
lation still needs to be valid. There are sometimes tasks that are artificially created [64,
460], or tasks that do not fit into human-AI decision making are adapted [377, 445]. Ex-
planation methods increase human understanding and transparency, but can inadver-
tently increase task complexity, which can be in conflict with what they are meant to
achieve. It can be also detrimental to human-AI complementary performance if a lot of
complicated and diverse visuals of task features are presented [390]. Although decision
tasks are sometimes simplified for lay people to complete, some knowledge and famil-
iarity, such as AI literacy [78], numeracy, and statistics background [166], may still be
required to accomplish tasks, which may not be feasible to expect from all crowd work-
ers — expert recruitment on-demand remains a challenge.

2.5.2. CAVEATS AND LIMITATIONS OF THIS STUDY

We limited our scope to articles published in HCI venues published in the last four years.
Although our corpus is representative of literature, our sample frame may have resulted
in not considering related articles published in other venues. We do not claim to provide
exhaustive insights into why task complexity has not been widely considered in empir-
ical human-AI studies. As the first to model task complexity in a human-AI decision
making context, our thesis advances the current conversation in this community. Fur-
ther work is required to extend the operationalization of task complexity to incorporate
other task characteristics, and differentiate diverse methods of information visualiza-
tion (e.g. plots, text, images), or task stakes. We hope to inspire future work in proposing
methods to help inform and facilitate meaningful comparisons across empirical studies
on human-AI decision making.

2.6. CONCLUSIONS AND FUTURE WORK

In this chapter, we examined to what extent recent literature in human-AI decision mak-
ing has considered task complexity in the design of empirical studies (RQ1) and how
task complexity can facilitate comparisons across experimental settings (RQ2). To an-
swer our research questions, we reviewed the published literature on human-AI deci-
sion making tasks in the last four years. We found little evidence of its consideration as
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a design parameter. We then operationalized task complexity based on Robert Wood’s
seminal work. We analyzed different dimensions of task complexity and measured them
using a set of well-defined rubrics. Our analysis found that tasks in the literature range
in complexity across all levels and dimensions. Most of the tasks considered in empirical
studies have low or medium complexity. The most complex tasks, which largely resem-
ble real-world problems, were found to have higher risk levels, requiring domain exper-
tise. Despite the limitations in our operationalization of task complexity — we did not
account for other task characteristics that may effect task complexity — we found that it
can still provide us with an axis for comparing decision tasks in human-AI studies. Such
comparisons are particularly meaningful in tasks with lower levels of complexity. Based
on our analysis of empirical human-AI studies, we found that it is important to measure
and report the different types of expertise or domain knowledge that the participants
might have (numeracy, AI literacy, familiarity with statistics or information visualiza-
tion), so that comparisons across studies can be made meaningfully. Future work in this
realm can consider explicitly controlling the level of task complexity across the experi-
mental conditions. In the imminent future, we aim to expand our operationalization of
task complexity to account for other task features and build a tool that can automatically
measure the complexity of tasks across Wood’s three dimensions and inform researchers
in their design of empirical human-AI studies.





3
“DECISIONTIME”: A

CONFIGURABLE FRAMEWORK FOR

REPRODUCIBLE HUMAN-AI
DECISION-MAKING STUDIES

Empirical studies have extensively investigated human decision-making processes in var-
ious domains where AI systems are incorporated. However, comparing and replicating
these studies can be challenging due to different experimental configurations. Moreover,
the existing contexts often have limited scope and may not fully capture the complexity
of real-world decision-making scenarios that are riddled with varying levels of uncer-
tainty. Our framework addresses these practical gaps by providing a configurable and
reproducible environment for conducting human-AI decision-making studies in the route
planning domain that captures many complexities of real-world scenarios. Researchers
can customize parameters, conditions, and factors involved in decision-making tasks to
help address research and empirical gaps through rigorous experiments. With various
modules such as map generation, chat components, and different AI systems available
within the “DecisionTime” framework, researchers can effortlessly design experiments
exploring multiple aspects of human-AI interaction and decision-making.

3.1. INTRODUCTION
AI systems have been increasingly adapted in various domains to assist individuals in
making decisions that directly impact their lives, such as allocating resources [84], rec-
ommending products [239], and even predicting medical conditions [256]. AI systems

This chapter is based on a peer-reviewed paper: Sara Salimzadeh and Ujwal Gadiraju. 2024. “DecisionTime”:
A Configurable Framework for Reproducible Human-AI Decision-Making Studies. In Adjunct Proceedings of
the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct ’24), July 01–04,
2024, Cagliari, Italy. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3631700.3664885
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can potentially enhance the effectiveness of decision-making processes and the overall
quality of outcomes as decision-support tools [54]. With AI systems having the potential
to make significant real-world decisions that can significantly affect individual lives, it is
essential to guarantee these systems’ trustworthiness, fairness, and accountability [247].
Researchers have investigated various factors affecting the interaction between humans
and AI in decision-making, aiming to understand their impact on human behavior [167].
This understanding can contribute to developing approaches to enhance the human-AI
decision-making processes.

Numerous empirical studies have explored the factors that influence interactions be-
tween humans and AI systems in decision-making situations, such as AI systems’ ex-
plainability [408], the accuracy of AI suggestions [179], the level of trust and reliance on
AI systems [25, 181], and the decision context in which AI systems are employed [334].
Empirical studies involve human participants engaging in decision-making activities
with assistance from AI systems. This allows researchers to observe and analyze their
behavior, decision-making processes, and perceptions. Previous studies have also devel-
oped strategies, methods, and techniques to address existing challenges and utilize em-
pirical investigations to evaluate the efficiency of these strategies. These methods may
involve creating explainable AI systems [315], offering visualizations and interfaces that
improve transparency and trustworthiness [105], and implementing evaluation met-
rics [359] to assess the impact of AI systems in decision-making processes.

While these empirical studies provide valuable insights into the dynamics of human-
AI decision-making, there is a need for a more systematic and reproducible approach to
designing experiments in this field [115]. This is crucial for laying a solid groundwork
for advancing and assessing AI systems in decision-making. The context and domain
of the decision-making tasks is a critical factor in designing empirical studies, as it de-
termines the relevance and applicability of the findings to real-world scenarios [247]. It
also influences the selection of appropriate evaluation metrics and experimental proto-
cols [247]. For instance, the trustworthiness of AI systems would be evaluated differently
in healthcare decision-making with high-stakes and potential harm compared to a low-
stakes scenario like recommending movies. However, current decision tasks vary widely
and lack standardization, making comparing results across studies challenging. T hey
are often too simplified or artificially created, lacking ecological validity and real-world
complexity [354].

To address these challenges, we propose “DecisionTime”, a configurable framework
for designing reproducible studies in a route-planning context. Researchers and practi-
tioners can manipulate and measure various variables in a controlled manner or extend
the framework to incorporate more context-specific AI-related factors as needed. With
these configurations, they can systematically investigate the impact of different variables
on human-AI decision-making, including AI performance, system explainability, hu-
man trust and reliance, as well as contextual factors such as task complexity, time pres-
sure, stakes, and information availability. Furthermore, a diverse range of participants
with different levels of expertise can be engaged as individuals or in groups to perform
tasks in route-planning domain. DecisionTime allows for a more precise representa-
tion of decision-making scenarios in terms of real-world complexity and user diversity,
thereby enhancing the generalizability of the findings. Designing such a framework can
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be adapted for various decision-making domains to ensure reproducibility and enable
meaningful comparisons across different studies. To the best of our knowledge, this is
the first framework that addresses the need for systematic and reproducible experimen-
tal studies in human-AI decision-making using a configurable route-planning context.

The contribution of this work can be summarized as follows:

A configurable framework that enables researchers to design reproducible stud-
ies in route-planning contexts and potentially other decision-making domains. The
framework will facilitate the design of experiments that closely align with real-world
decision-making scenarios, increasing the ecological validity and generalizability of
the findings.

A modular framework with adaptable components that can be customized to
fit specific research questions and contextual factors. Our framework provides ex-
tensive control over the variables, allowing for systematic manipulation and com-
parison of various configurations. In prior research, experiments mainly have been
conducted using the same dataset to train AI systems, resulting in limited flexibility.

3.2. ARCHITECTURE

3.2.1. DECISION DOMAIN

We selected route-planning as the specific decision domain for this framework due to
several factors. First, route-planning is a common decision-making context in every-
day life, making it relevant and relatable to many individuals. Participants of empirical
studies can also perform route-planning tasks individually or collaboratively in groups,
allowing for diverse participation and capturing of different decision-making dynamics.
Second, route-planning involves considering multiple factors, such as time constraints
and various possible route options, and evaluating cost, efficiency, and potential risks as-
sociated with routes. Various goals, such as minimizing travel time, avoiding toll roads,
or optimizing fuel consumption, can be incorporated into the decision-making process,
enabling a rich and diverse set of decision scenarios and tasks to be explored within this
domain. Third, route-planning often involves the use of AI algorithms and technologies,
making it a suitable domain for studying human-AI decision-making interactions and
evaluating the impact of varying attributes in AI systems on decision outcomes.

DecisionTime framework comprises three central layers: a map and metadata gen-
erator, a web server, and a user interface. Researchers and practitioners can choose to
utilize the layers separately or together to construct a tailored framework based on their
specific research objectives and needs. All code for this framework is made publicly
available to support future research in the community 1.

3.2.2. MAP AND METADATA GENERATOR

This is the core layer of the framework that generates realistic maps and relevant meta-
data that represent the decision-making task. The map and metadata generator utilizes

1https://anonymous.4open.science/r/rp-364E/README.md

https://anonymous.4open.science/r/rp-364E/README.md
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spatial data and tailored functions to create maps with various features such as roads,
landmarks, and points of interest. This metadata is based on OpenStreetMap data ob-
tained using OSMnx [45], a Python library for retrieving, modeling, and analyzing street
networks. The traffic, weather, and other related variables can also be incorporated into
the generated maps to provide a more realistic environment for decision-making. Maps
can be generated into HTML files, allowing easy integration with the web server layer,
shown in Figure 3.1. The image of the generated map can also be exported for visual-
ization purposes. Metadata is stored in JSON format, allowing researchers to access and
manipulate the data for analysis and experimentation.

3.2.3. WEB SERVER
The web server layer acts as the backbone of the framework, providing the infrastruc-
ture to support data storage, processing, and communication between different compo-
nents. It handles requests from user interface, manages map data and metadata storage
and retrieval, and facilitates communication with the user interface layer through the
REST APIs. The existing APIs are programmed for decision-making studies, while they
can be extended to include new functionalities based on specific research needs.

3.2.4. INTERFACE
The user interface layer is responsible for providing a user-friendly interface through
which participants of empirical studies can interact with the framework. It includes map
visualization, route-planning, and decision-making functionalities. The design of the
user interfaces enables researchers to use them as they are or customize them according
to their specific study requirements. Additionally, the user interface allows researchers
to collect data on participants’ decision-making processes and interactions with the ex-
isting components.

Figure 3.1: An illustration of the map within the interface, allowing participants to engage with the system
and make decisions.
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3.3. CUSTOMIZATION
Customization is a crucial aspect of the DecisionTime framework, allowing researchers
and practitioners to tailor it to their needs and objectives. While every architectural layer
provides default functionality and customization, the main contribution of this frame-
work lies in the ability to customize the map and metadata generator, as well as the ex-
tensible user interface to widen the scope of decision-making studies.

3.3.1. BASIC MAP CONFIGURATION

The framework consists of several basic configurations for map generation that can be
customized based on specific research requirements to ensure reproducibility and flexi-
bility. These configurations include:

ROUTE-SPECIFIC ATTRIBUTES

Researchers can identify the particular characteristics of a route that aim to be consid-
ered in the decision-making processes. These attributes may include distance, time,
traffic conditions, road quality, and potential hazards. The choice of particular attributes
can depend on the research questions and design choices. The presentation of attributes
can also be tailored, for example, by displaying them as numerical values or graphical
representations on a map. The initial and final points of the route, as well as any stops in
between, can be adjusted to align with the researchers’ needs. Additionally, customizing
visual elements such as colors and icons for presenting routes or locations is essential
for creating an intuitive and user-friendly interface for participants of empirical studies.

MAP DISPLAY

DecisionTime framework provides different options for displaying the map interface
for researchers. These options include different map styles (e.g., satellite view, street
view) and zoom levels. Furthermore, researchers can include additional information
on the map, such as points of interest, landmarks, and different types of roads (e.g.,
highways, local roads). The map display can also be interactive, allowing participants
to zoom in and out and toggle between different layers of information. Maps can be for-
matted as HTML files to be displayed on web browsers or as images embedded in user
interfaces or presentation materials.

3.3.2. MODULAR MAP AND METADATA GENERATOR

Researchers are able to study how various factors affect human-AI decision-making by
adapting the framework’s map and metadata generator module. These factors can be di-
vided into contextual elements and attributes of AI systems, which can be systematically
manipulated to create different experimental scenarios. Contextual factors include the
complexity of the decision-making task, the level of uncertainty in the environment, the
presence of time constraints, risk factors, the availability of information, and the cogni-
tive effort required to process the data. Additionally, attributes of the AI systems can be
manipulated, such as the reliability of the AI predictions, the level of transparency in the
decision-making process, the degree of autonomy given to the AI system, updating the
knowledge of AI systems over time, and the level of user control or interaction with the AI
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system. By systematically manipulating and operationalizing these factors on the gener-
ated maps and metadata, researchers can study how different combinations of contex-
tual elements and AI attributes influence human-AI decision-making outcomes.

3.3.3. IN-BUILT SCAFFOLDING

The framework contains in-built scaffolding modules that enable researchers to assist
participants before the decision-making phase. These supportive modules are designed
to minimize potential biases or misunderstandings, ensuring participants make deci-
sions based on accurate information and a comprehensive understanding of the task.
This ultimately leads to more reliable and valid data for analysis. The scaffolding com-
ponents consist of tutorials, detailed guides, and hand-in experiences designed to assist
participants in understanding the contextual factors and getting acquainted with the in-
terface and navigation features. Standardizing these modules while adapting them to
specific task details ensures consistency across different studies while maintaining con-
sistent support for all participants. Additionally, we incorporate quiz questions as part
of our sample assessment process to gauge participant comprehension of material cov-
ered in the scaffolding modules and their readiness for engaging in the decision-making
process. These modules can be augmented, removed, or tailored based on the specific
needs and requirements of the study, allowing for customization and flexibility in the
implementation process.

3.3.4. CHAT COMPONENT EXTENSION

The user interface of DecisionTime supports a chat component extension that facili-
tates collaborative decision-making and group discussions. This feature enables groups
of various sizes to engage in real-time conversations, exchange perspectives, and collec-
tively reach consensus. Additionally, participants can use the chat to ask questions, seek
clarifications, and receive timely feedback from facilitators or researchers. It also pro-
vides an avenue for sharing feedback on AI predictions or suggestions, contributing to a
more interactive and dynamic decision-making process.

3.3.5. ONLINE AI SYSTEM EXTENSION

Our framework can integrate multiple AI systems to suggest and generate decision-
making options for participants according to their preferences, task objectives, and con-
textual information in offline and online settings. In offline scenarios, the AI system
provides pre-computed suggestions to participants during the decision-making pro-
cess. This represents the default operation mode, during which maps and routes are
pre-generated to facilitate efficient navigation and exploration. For real-time interac-
tions in online setting, AI suggestions can be augmented into the user interface with live
data feeds, allowing participants to receive up-to-date information and recommenda-
tions where maps and routes are dynamically generated based on real-time data.

3.4. CONCLUSION
In this work, we introduce our configurable framework, DecisionTime, for reproducible
human-AI decision-making studies, which incorporates various modules to support ef-
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fective decision-making processes. Our framework empowers researchers to design em-
pirical studies tailored to their needs and research questions, highlighting the need for
a systematic and rigorous approach to studying human-AI decision-making. It offers
different layers of functionality and adaptability, from map generation to setting up the
entire study flow. With scaffolding modules, a chat component extension, and an on-
line AI system extension included, our framework provides a comprehensive tool-set for
conducting human-AI decision-making studies. In the future, our goal is to improve
our framework by broadening the scope of study scenarios and domain applications,
enhancing data analysis capabilities, and incorporating additional templates for simple
reproduction and adaptation for a larger community.





4
DEALING WITH UNCERTAINTY:

UNDERSTANDING THE IMPACT OF

PROGNOSTIC VS. DIAGNOSTIC

TASKS ON TRUST AND RELIANCE IN

HUMAN-AI DECISION-MAKING

While existing literature has explored and revealed several insights pertaining to the role
of human factors (e.g., prior experience, domain knowledge) and attributes of AI systems
(e.g., accuracy, trustworthiness), there is a limited understanding around how the impor-
tant task characteristics of complexity and uncertainty shape human decision-making
and human-AI team performance. In this work, we aim to address this research and
empirical gap by systematically exploring how task complexity and uncertainty influence
human-AI decision-making. Task complexity refers to the load of information associated
with a task, while task uncertainty refers to the level of unpredictability associated with
the outcome of a task. We conducted a between-subjects user study (N = 258) in the con-
text of a trip-planning task to investigate the impact of task complexity and uncertainty
on human trust and reliance on AI systems. Our results revealed that task complexity and
uncertainty have a significant impact on user reliance on AI systems. When presented with
complex and uncertain tasks, users tended to rely more on AI systems while demonstrating
lower levels of appropriate reliance compared to tasks that were less complex and uncer-
tain. In contrast, we found that user trust in the AI systems was not influenced by task

This chapter is based on a peer-reviewed paper: Sara Salimzadeh, Gaole He, and Ujwal Gadiraju. 2024.
Dealing with Uncertainty: Understanding the Impact of Prognostic Versus Diagnostic Tasks on Trust and Re-
liance in Human-AI Decision-Making. In Proceedings of the CHI Conference on Human Factors in Comput-
ing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3613904.3641905.

45

https://doi.org/10.1145/3613904.3641905.
https://doi.org/10.1145/3613904.3641905.


4

46 4. THE IMPACT OF PROGNOSTIC VS. DIAGNOSTIC TASKS

complexity and uncertainty. Our findings can help inform the future design of empirical
studies exploring human-AI decision-making. Insights from this work can inform the de-
sign of AI systems and interventions that are better aligned with the challenges posed by
complex and uncertain tasks. Finally, the lens of diagnostic versus prognostic tasks can
inspire the operationalization of uncertainty in human-AI decision-making studies.

4.1. INTRODUCTION AND BACKGROUND
With the emergence of human-AI decision-making as a prominent paradigm across var-
ious domains, numerous investigations have been dedicated to understanding the fac-
tors that can impact trust and reliance on AI systems [277, 449, 463]. Such factors can
be broadly classified into three primary categories: human-related factors [121, 313,
314], attributes of the AI systems [315, 321], and characteristics of the decision-making
tasks [57, 202, 408]. Human factors such as prior experience [356, 390], cognitive bi-
ases [281, 326], and AI literacy [78], which can shape individuals’ perceptions and in-
teractions with AI systems. Attributes of the AI system include aspects such as predic-
tions generated by AI [239, 252, 323], information about model predictions [27, 110, 311],
as well as interventions that impact cognitive processes [54]. Furthermore, the level of
trust and reliance on AI may differ across various domains and applications due to the
attributes associated with decision tasks [155, 409].

The characteristics of tasks have been demonstrated to play a pivotal role in deter-
mining the level of reliance on AI systems, emphasizing the importance of methodically
recognizing and comprehending these features in human-AI decision-making context.
However, limited task characteristics have been systematically explored and their im-
pact on human reliance on AI systems is not yet fully understood [247, 354]. Although
a few studies have included multiple tasks with varying attributes [12, 46, 416], a sys-
tematic and empirical understanding of task features is notably absent from existing lit-
erature [247, 354]. Additionally, it remains unclear whether task attributes chosen in
existing empirical studies have been appropriately considered, in a manner that is com-
mensurate with the claims of the studies [155, 247, 258]. These limitations have the po-
tential to undermine the credibility and generalizability of research findings, hindering
our progress in developing effective strategies for human-AI decision-making [247, 354].

In this work, we propose empirically examining task complexity and task uncer-
tainty as two essential objective task characteristics that are manipulable from the task’s
standpoint. Task complexity pertains to the characteristics of a task that contribute to an
increased load of information [435], and it is distinct from task difficulty [324], which re-
lates to an individual’s perception of the task-based on their capabilities and previous ex-
perience [435]. It has been shown that task complexity is a crucial factor in determining
both human performance and behaviour [5, 75, 273], as well as the success of human-AI
teams [26]. Additionally, prior work has demonstrated that individuals tend to rely more
heavily on AI systems when confronted with more complex tasks [100] due to the chal-
lenges associated with analyzing large volumes of information [75]. In line with work by
[324, 408], we operationalize task complexity as an objective task-related characteristic
that can be measured based on the number of constraints involved in the task. On the
other hand, the level of task uncertainty refers to the extent of unpredictability inherent
in a given task [17]. We operationalize uncertainty in our study using diagnostic and
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prognostic tasks to capture different levels of uncertainty. Diagnostic tasks involve situ-
ations where participants are provided with detailed and comprehensive information
about the task, (theoretically) enabling them to make accurate decisions. Prognostic
tasks, on the other hand, involve situations where participants must make predictions
about future events based on incomplete or limited information. By operationalizing
uncertainty in this manner, we can effectively capture the diverse levels of uncertainty
that arise from the inherent nature of a task and its connection to information avail-
ability. Intuitively, in prognostic tasks, users can benefit from using AI systems due to
their ability to reduce uncertainties, particularly when choosing the optimal route for a
future trip by considering anticipated weather and traffic conditions. Unlike planning
immediate trips, this task entails a greater degree of uncertainty owing to future events’
unpredictability.

Prior work has highlighted that appropriate trust and reliance play a critical role in
achieving complementary human-AI team performance [207, 297, 450, 460]. Thus, it
is essential to comprehend how task-related factors impact human trust and reliance
on AI systems, as separate constructs [232, 297, 358], to foster successful collaboration
between humans and AI. We thereby address the following research questions:

RQ1: How does task complexity influence user trust and reliance on an AI sys-
tem?

RQ2: How does task uncertainty, characterized by prognostic versus diagnostic
tasks, influence user trust and reliance on an AI system?

RQ3: How does task complexity interact with task uncertainty to shape user trust
and reliance on an AI system?

To address these research questions, we selected the real-world scenario of trip-
planning where both task complexity and uncertainty are prominent factors. In such
scenarios, individuals are confronted with circumstances that necessitate a choice be-
tween relying on an imperfect AI system or exercising their own judgment. We con-
ducted a 3 (task complexity) × 2 (task uncertainty) between-subjects study with 258 par-
ticipants recruited from the Prolific crowdsourcing platform.

We found that users’ reliance on the AI system varied depending on the level of com-
plexity and uncertainty in the task. Individuals facing tasks characterized by medium
complexity and uncertainty i.e., prognostic tended to rely excessively on the AI system.
However, their ability to differentiate accurate AI advice from misleading advice was
compromised, leading to a relatively low appropriate reliance, a higher over-reliance on
AI, and subsequently lower overall task performance. However, we observed a point of
transition where participants started to increase their appropriate reliance on the AI sys-
tem. This led to enhanced overall performance in prognostic tasks with high complexity,
revealing a significant interaction between complexity and uncertainty.

4.2. RELATED WORK
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HUMAN-AI COLLABORATIVE DECISION-MAKING

In recent years, the use of AI technologies has evolved to encompass more collaborative
approaches that involve both humans and AI systems working together [9, 64, 65, 257,
418]. While fully automated decision-making by AI systems may not always be appro-
priate, certain tasks still require human judgment. For example, in high-stake scenarios
such as in the medical [139, 227, 241, 320], legal [12, 267, 283, 416], and financial [84, 129,
156, 160, 163] domains, individuals tend to exhibit a preference for human decision-
makers over AI systems. This preference could be motivated by ethical and legal con-
cerns [247, 255, 329], as well as a desire for individual agency and accountability [191,
244, 267, 375]. Additionally, it may also stem from the limited trust [61, 62] surrounding
AI systems, coupled with concerns about potential biases or errors in algorithms [260,
399], particularly when human lives or ethical considerations are at stake due to possi-
ble failures of AI systems [247, 255, 329].

The primary objective of integrating human and AI is to unite their respective
strengths, resulting in enhanced decision outcomes through complementary capabili-
ties [54, 182]. To this end, previous research has focused on identifying the factors that
influence human-AI decision-making. Recent studies have explored variables that con-
tribute to the fairness [39, 110, 252, 417] and trustworthiness [119, 167, 266, 450] of AI
systems, as well as the impact of assigning different decision-making roles to humans
and AI on the reliance on such systems [188, 327, 403, 465]. Prior work has also been ded-
icated to developing and evaluating interfaces [49, 105, 291, 296] and visualizations [156,
166, 440, 445, 457] aimed at improving human-AI collaboration.

TRUST AND RELIANCE ON AI SYSTEMS

It is important to distinguish between trust and reliance, as they have different implica-
tions for the context of human-AI decision-making. [253] proposed the following defini-
tion of trust, which we adopt for the scope of our work:

Trust is an attitude that an agent will achieve an individual’s goal in a situa-
tion characterized by uncertainty and vulnerability.

Reliance, on the other hand, refers to the extent to which individuals rely on AI sys-
tems [253, 410]. When user decisions differ from AI advice, there are mainly three dis-
cernible patterns of reliance behavior [18, 359, 363], (i) appropriate reliance, switching
to the AI advice when it is correct and overriding it when it is incorrect, (ii) over-reliance,
excessively relying on AI advice even when it is incorrect, and (iii) under-reliance, not
fully utilizing AI advice even when it is correct. While trust is an essential factor in deter-
mining the level of reliance on AI systems [200, 232, 253, 358], it is not always a guarantee.
Prior studies have shown that individuals may not necessarily increase their reliance on
AI systems even if they trust them [229, 232, 297]. Instead, they might rely more on their
own judgments despite acknowledging the capabilities of the AI system. This highlights
that the trusting behavior of users can differ from their trusting beliefs. The evaluation of
the system’s trustworthiness by individuals to establish perceived trustworthiness signif-
icantly influences (subjective) trust and trusting behaviour (i.e., objective reliance) [361].
Even if a system is trustworthy, it does not automatically ensure accurate perceived trust-
worthiness [25, 361]. To align the perceived trustworthiness of AI systems with their ac-
tual value, it is essential to consider aspects like the availability and relevance of system
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information and the detection and utilization of this information by human decision-
makers [361]. Trust in AI systems, namely perceived trustworthiness, can be evaluated
through different methodologies, including subjective self-reported measures [81, 213,
232, 430] and relatively objective trust-related behavioral measures [182, 410, 449, 463],
such as agreement and compliance.

Through a wide range of studies, researchers have consistently found that reliance on
AI systems is influenced by various factors including human-related aspects [130, 182,
267, 325, 399], attributes of the AI systems [156, 263, 345, 346], and characteristics of the
decision-making tasks [26, 33, 57, 160, 408]. Human factors encompass a variety of in-
dividual characteristics, including previous experience [313, 356], cognitive biases [281,
326], and AI knowledge [78]. For instance, cognitive [121, 247, 314] or meta-cognitive bi-
ases [182] have the potential to influence how individuals comprehend and appraise the
outcomes generated by AI systems which in turn can affect their reliance on AI. In addi-
tion, the attributes of AI systems can enhance decision-making outcomes [247], which
include aspects such as predictions generated by AI [239, 252, 323], information about
AI predictions or AI systems themselves [34, 244, 380, 442], and interventions that im-
pact cognitive processes [238, 323, 334]. For instance, various explanation methods have
been explored to enhance the interpretability and transparency of AI algorithms, allow-
ing humans to better understand AI advice [4, 180, 239]. [25] discovered that reliance on
AI systems is negatively affected when untrustworthy AI systems overstate their capabil-
ities compared to trustworthy ones. This is primarily because users struggle to differen-
tiate between the competence of trustworthy and untrustworthy AI systems, leading to
deception and excessive reliance on the untrustworthy system. Moreover, the character-
istics of the decision-making tasks can also significantly impact human reliance on AI
systems [247, 354]. Hence, the level of reliance may differ across various domains and
applications due to the attributes associated with decision-making tasks [155, 409]. For
instance, in high-stake fields like healthcare or finance, individuals may exhibit distinct
behaviours compared to low-stake areas such as entertainment [296, 442].

Recent research has revealed several challenges in fostering appropriate reliance on
AI systems. Prior work has shown that depending on different factors [408, 464], users
may blindly follow AI advice, leading to over-reliance [54], or underestimate the capa-
bilities of AI, resulting in under-reliance [130, 416]. To overcome such challenges and
improve performance-related outcomes, it is important to ensure that users can strike a
balance between utilizing AI effectively while also considering the limitations of a given
AI system. To this end, researchers and practitioners have explored the use of expla-
nation methods [239, 315, 408], interventions such as tutorials [78, 277] and cognitive
forcing functions [54] to foster appropriate reliance on AI systems with varying degrees
of success.

Building on the body of literature, our study aims to enhance the comprehension of
appropriate reliance on AI systems in human-AI decision-making by investigating how
task complexity and uncertainty influence user trust and reliance. To this end, we con-
ducted a between-subjects study in the context of trip-planning task. We measured the
extent to which individuals rely on AI systems for decision-making in various conditions
by leveraging a series of common metrics in the field.
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TASK CHARACTERISTICS IN HUMAN-AI DECISION-MAKING

Although much attention has been given to the effect of human and AI-related factors
in shaping human reliance on AI, few studies have explored the influence of task char-
acteristics. [258] found that individuals exhibited lower trust in AI systems in tasks that
involve human skills, such as work evaluation, compared to tasks that require more an-
alytical skills. Additionally, [408] has also examined the concept of task difficulty by
considering the cognitive load required. Their findings indicate that as tasks become
more difficult, there is a tendency among users to rely excessively on AI advice, leading
to over-reliance. A few studies have also explored the effect of task features on human-
AI team performance. [26] conducted a study where participants had to assess whether
objects passing through a pipeline were defective or not. They manipulated the com-
plexity by changing the number of the task features, such as color, shape, and size. They
found that an excessive number of task features diminished the performance of human-
AI teams significantly. Similarly, in a study by [334], participants were presented with
varying numbers of features to predict apartment selling prices. The features included
variables such as the number of rooms, area size, days on the market, distance to ameni-
ties, and building maintenance fees. They also found that participants struggle to distin-
guish AI errors in tasks with more features, leading to decreased performance. In con-
trast, [399] showed that the complexity of tasks did not significantly impact human-AI
performance due to a learning effect. They conducted an experiment in which par-
ticipants were tasked with finding a suitable house based on a set of constraints. The
complexity of the tasks was manipulated, with some scenarios having three constraints
(such as rent type, budget, and registration condition), while others had five constraints
(including rental duration and proximity to amenities). [57] conducted a study examin-
ing the influence of proxy tasks, where participants were tasked to anticipate AI advice,
compared to actual tasks where participants directly received AI advice. Their results
indicate that participants’ behavior in proxy tasks did not align with their behaviour in
actual tasks, underscoring the importance of carefully designing experiments to draw
valid conclusions. Additionally, high-stake [12, 160, 163, 320] tasks and low-stake [158,
160, 239] tasks have been studied individually in literature in relation to human reliance
on AI systems.

Furthermore, there is a lack of comprehensive investigations into categorizing task
attributes and their specific implications for human-AI decision-making [354]. [247]
proposed a framework that categorizes task characteristics in terms of their domain,
required expertise, risk, and subjectivity. According to [243], tasks can also be differ-
entiated based on whether they are emulating human intelligence, like object recogni-
tion [63], or based on discovered patterns in data such as recidivism prediction [283].
Some prior works have also provided a taxonomy of task types existing in the literature [1,
307]. However, these taxonomies often focus on general task types rather than specifi-
cally addressing the impact of these characteristics on human-AI decision-making. [17]
introduced diagnostic and prognostic tasks in which there is clear grand-truth in diag-
nostic tasks, while prognostic tasks involve making predictions about future outcomes.
They emphasized that the level of inherent uncertainty in predicting future outcomes is
a crucial factor that can impact human reliance on AI systems. Inspired by this work,
we operationalize task uncertainty in our study using the distinction between diagnostic
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and prognostic tasks.
In this thesis, we aim to fill an empirical and research gap by examining the impact

of task complexity and uncertainty, as important attributes in decision-making in real-
world contexts. By providing application-grounded evaluation [116] with users relying
on an AI system for assistance in practical tasks, our work is the first to explore task
uncertainty and how task uncertainty interacts with task complexity in shaping human-
AI decision-making.

4.3. HYPOTHESES AND TASK DESIGN

4.3.1. HYPOTHESES

The degree of task complexity is deemed one of the primary indicators for determining
the success of Human-AI teams [5, 26, 75, 273]. Consequently, it can be anticipated
that as tasks become more complex, their influence on human reliance on AI systems
increases [75, 268, 334]. More complex tasks tend to require more cognitive effort [75],
making individuals more likely to rely on AI systems for assistance. Moreover, as task
complexity increases, the verifiability [140] and plausibility [206, 215] of AI advice tend
to decrease. This can pose challenges for individuals in distinguishing misleading AI
suggestions, leading to reduced levels of appropriate reliance on AI systems. Although
there may not be a correlation between trust and reliance on AI systems [232, 253, 297,
362], prior work suggests a higher likelihood of individuals placing greater trust in AI
systems for more complex tasks [190, 253].

When faced with prognostic tasks, individuals are likely to perceive them as more
complex and unpredictable, thus increasing their reliance on AI systems for assistance.
With the presence of uncertainty in a task, individuals may lack sufficient capability
to verify the correctness of AI advice and therefore rely more heavily on the AI sys-
tems [17], leading to reduced appropriate reliance on AI systems. Previous research has
also demonstrated the influence of uncertainty on trust formation in AI systems [401].
Considering highly complex and prognostic tasks, we hypothesize that individuals ex-
hibit higher levels of trust and reliance on AI systems while showing a decrease in ap-
propriate reliance. This could be due to the high cost of engaging cognitively in com-
plex decision-making processes, leading to a greater reliance on AI systems for guid-
ance [408]. Therefore, we formulate our hypotheses as shown in Table 4.1.

Table 4.1: Summary of Our Hypotheses.

Hypothesis Description

H1a Users demonstrate a lower level of appropriate reliance on AI systems for complex tasks com-
pared to relatively less complex tasks.

H1b Users trust AI systems to a greater extent in complex tasks compared to relatively less complex
tasks.

H2a Users demonstrate a lower level of appropriate reliance on AI systems in tasks with high levels of
uncertainty compared to tasks with low levels of uncertainty.

H2b Users trust AI systems to a greater extent in tasks with a high degree of uncertainty (prognostic)
compared to tasks with lower levels of uncertainty (diagnostic).

H3 Users demonstrate a relatively low level of appropriate reliance on AI systems in tasks with rela-
tively high complexity and uncertainty.
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4.3.2. TRIP-PLANNING TASK
We chose trip-planning to as the scenario for our study due to two primary reasons.
Firstly, trip-planning is a common real-world problem that individuals frequently en-
counter and seek assistance from AI systems to make decisions. Secondly, this task al-
lows us to meaningfully manipulate complexity levels (e.g., the number of constraints)
and uncertainty levels in our experimental conditions, thereby enhancing the ecolog-
ical validity of our findings. In our study, participants are presented with a practical
scenario where external assistance is potentially useful to successfully accomplish the
task. We utilized an imperfect AI system with a 66.7% accuracy rate for trip-planning
and manipulated its features accordingly (cf. section 4.4.1). This setup with the neces-
sary complexity creates the desired sense of vulnerability and uncertainty, making it a
suitable situation for analyzing human trust and reliance on AI systems [207, 253]. Note
that while trip planning is a frequently encountered real-world task, the inclusion of time
and budget limitations makes it unique, affecting how individuals rely on AI assistance.
We also employed the DecisionTime framework 3 to design the experiments described
in this section.

Figure 4.1: An overview of the trip-planning task interface that participants used including five compo-
nents: (1) task scenario and description, (2) map, (3) route information, (4) general information, and (5)
two-stage decision-making. Note that this screenshot is meant to convey a bird’s-eye view of the interface.
This interface is also dedicated to a highly complex scenario encompassing all constraints and the prognos-
tic experimental condition with high uncertainty.

Planning a trip involves determining the most suitable route for travel, taking into ac-
count factors such as time limitations and budget constraints. Participants are tasked to
select the trip that minimizes both travel time and expenses. Each task typically consists
of multiple components that support participants in making well-informed decisions,
as depicted in a bird’s-eye view of the task interface in Figure 4.1.

Quality Control: To ensure the accuracy and reliability of the collected data in our
study, we employed multiple methods. We initially offered instructional materials on the
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interface and task-related features, followed by a training session for participants that
included both theoretical instruction and hands-on practice. Secondly, we evaluated
participants’ comprehension by administering a quiz on task-related constraints. Indi-
viduals who scored below a certain threshold were excluded from the study to maintain
the quality of data. Lastly, we incorporated four attention-check questions in the pre-
questionnaire and post-questionnaire to screen out individuals who may not be fully
engaged or attentive throughout the study. Detailed explanations of these methods are
publicly available on our companion page1.

DESIGN CONSIDERATIONS AND SETUPS: TASK COMPLEXITY VS. TASK UN-
CERTAINTY
Wood’s seminal work [435] proposed that task complexity consists of three constructs:
component, coordinative, and dynamic complexities. Component complexity relates to
the number of features in a task, while coordinative complexity pertains to executing se-
quences or steps within the task. Dynamic complexity arises from changing world states
requiring further considerations at the point of decision-making. We utilized compo-
nent complexity to define task complexity and also adjusted the uncertainty as incom-
plete information in our setup. In dynamically complex tasks, decision-making must
adapt as the situation changes, with all information accessible at each point. However,
uncertain tasks involve incomplete information at the point of decision-making, setting
them apart from dynamically complex tasks. Therefore, it is valid to consider these fac-
tors as separate dimensions although task uncertainty can increase task complexity.

TASK COMPLEXITY

To operationalize task complexity in our experimental conditions, we manipulated the
number of constraints that are given to participants. This approach has been used
in previous studies to control the level of complexity for a given task [26, 334, 399].
We categorized the tasks into three levels of complexity: low, medium, and high. In
low-complexity tasks, participants are presented with four features to consider while
in medium-complexity tasks, eight features are provided. High-complexity tasks entail
twelve different features that must be taken into account. This design choice is guided
by prior neuroscience research by [298], suggesting that human cognitive capacity for
processing information is limited to around seven (± two) chunks of information at a
time. Hence, we established five to nine task features as representative of a medium
level of complexity based on this finding. Any number exceeding nine would classify as
high complexity, while four or fewer would indicate low complexity [354].

TASK UNCERTAINTY

Diagnostic tasks entail circumstances where participants are given access to well-
defined and comprehensive information about the current task, allowing them to make
precise judgments [17]. Prognostic tasks, on the other hand, involve scenarios in which
participants are presented with restricted or unclear data and need to generate predic-
tions regarding future outcomes [17]. The necessity to anticipate uncertain results gives

1https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c

https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c
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rise to increased uncertainty throughout the process of making decisions. To opera-
tionalize uncertainty in the contrasting experimental conditions pertaining to diagnostic
and prognostic tasks, we employed various strategies.

For diagnostic tasks, participants are instructed to schedule a trip for the present mo-
ment within the narrative, while for prognostic tasks, participants are assigned to plan
a trip that will take place two weeks later. Next, we customized the way task attributes
are presented to align with the level of uncertainty. In situations involving diagnostic
tasks, participants are given precise values for each constraint, eliminating any poten-
tial ambiguity. On the other hand, in prognostic tasks, a certain degree of uncertainty is
introduced by offering participants ranges or estimates instead of exact values for each
attribute. We also presented the probability of different outcomes for certain constraints.
For example, we highlighted the high likelihood of encountering traffic congestion dur-
ing the rush hour or the low chance of experiencing rain during the scheduled trip.

We created one task scenario for each task. In total, we generated 24 different sce-
narios, with four scenarios in each experimental condition that differed in terms of task
complexity and uncertainty. The full list of these task scenarios and all code for our
implementation is publicly accessible for the benefit of the research community and in
the spirit of open science1.

TASK FEATURES

We designed task features to impart and define constraints in the decision-making tasks
such that they do not affect each other and can be independently manipulated and mea-
sured. We communicated this independence explicitly and implicitly by ensuring that
each feature is presented separately and does not rely on or interact with other features.
All task features were inspired by considerations typical in real-world trip-planning con-
texts. In our research, we can classify task characteristics from two different viewpoints:
each feature has the potential to influence either the overall duration of travel, the as-
sociated expenses, or both factors. Furthermore, each feature can be categorized as
being either time-dependent or time-independent. Time-dependent features, such as
traffic conditions and weather patterns, are prone to temporal changes based on ex-
ternal factors and their presentation differs when considering diagnostic tasks versus
prognostic tasks. In tasks that have low complexity, we designed an equal distribution
of time-dependent and time-independent features. However, for tasks with medium or
high complexity, we increase the number of time-dependent features to enhance the de-
gree of uncertainty that need to be considered in decision-making processes. Detailed
explanations of all features are publicly available on our companion page1.

4.4. STUDY DESIGN

4.4.1. EXPERIMENTAL CONDITIONS

Our study was approved by our institutional ethics board. We designed a between-
subject study with a 3×2 factorial design. The three levels for task complexity were cat-
egorized as low, medium, and high, while the two distinct levels for uncertainty were
diagnostic and prognostic tasks. We refer to these conditions as LowDiag, LowProg,
MedDiag, MedProg, HighDiag, and HighProg. Participants were randomly assigned to
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one of the six experimental conditions while ensuring a balanced distribution of par-
ticipants across the different task complexity and uncertainty levels. In each condition,
participants were presented with three different task instances to complete with the as-
sistance of an AI system. The three task instances were determined based on each con-
dition’s assigned complexity and uncertainty levels. Detailed explanations regarding the
complexity and uncertainty levels are provided in section 4.3.2.

We fine-tuned the AI system to suggest routes that satisfy the given criteria with an
accuracy of 66.7% across all experimental conditions. This level of accuracy was chosen
since it is helpful if the system is relied on but still involves some risks. Hence, it calls
for appropriate reliance instead of blindly following the AI system’s advice. This design
choice is motivated by prior work emphasizing the role of uncertainty in dictating the
need to facilitate appropriate reliance [253]. This implies that within each batch of three
task instances that a participant completes, to control for potential ordering effects, we
ensure that incorrect advice is offered by the AI system once at random.

4.4.2. MEASURES

We leveraged a set of objective metrics to quantify participants’ reliance on the AI system
(cf. Table 4.2) [207, 292, 297, 361, 450, 460]. These metrics include Agreement Fraction,
Switch Fraction [182, 449, 463], and Accuracy with Disagreement [182], Relative Posi-
tive AI Reliance, and Relative Positive Self-Reliance [359]. These parameters are com-
monly adapted in literature to capture the level of reliance within the human-AI interac-
tion context. In addition to these measures of reliance, we also evaluated participants’
decision-making accuracy, demonstrating the human-AI team performance [27, 348].
By measuring trust and reliance variables alongside human-AI team performance, we
can gain a deeper understanding of whether performance outcomes result from under-
reliance, appropriate reliance, or over-reliance on AI systems.

The subjective trust in the AI system was assessed using the Trust in Automation
questionnaire (TiA) [232], which is a commonly employed and validated tool for mea-
suring trust [262, 364, 399]. The questionnaire comprises multiple items that evalu-
ate various aspects such as participants’ perceptions regarding Reliability/Competence
(TiA-R/c), Understanding/Predictability (TiA-U/P), Familiarity (TiA-Familiarity), Inten-
tion of Developers (TiA-IoD), the Propensity to Trust (TiA-PtT), and the overall level of
trust placed in the AI system, Trust in Automation (TiA-Trust).

We collected information about participants’ perceived numeracy skills as well as
their affinity for technology in the pre-task questionnaire. To measure numeracy skills,
we employed the Subjective Numeracy Scale [132], which is a self-report measure of
perceived ability to perform various mathematical tasks and preference for the use of
numerical information. Additionally, we administered the Affinity for Technology Inter-
action Scale (ATI) [143] to determine participants’ level of comfort and familiarity with
technology [399].

4.4.3. PARTICIPANTS

We first estimated the required sample size using G*Power software, considering a
medium effect size of 0.25, a power of 0.90, and a significance level of 0.05, leading to
a recommended minimum sample size of 210 participants, i.e., 35 participants in each
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Table 4.2: An overview of the different metrics that we considered in our user study.

Metric Type Metric Name Value Type Value Range

Performance Accuracy Continuous [0,1]

Reliance
Switch Fraction Continuous [0,1]

Agreement Fraction Continuous [0,1]

Appropriate Reliance [182, 359]
Accuracy-wid Continuous [0,1]

RAIR Continuous [0,1]
RSR Continuous [0,1]

Trust

TiA-ReliabilityCompetence Likert 5-point, strong distrust to strong
trust

TiA-
UnderstandingPredictability

Likert 5-point, strong distrust to strong
trust

TiA-Intention of Developers Likert 5-point, strong distrust to strong
trust

TiA-Trust in Automation Likert 5-point, strong distrust to strong
trust

Covariates

Subjective Numeracy (SNS) Likert 6-point: from low to high
Affinity for Technology (ATI) Likert 6-point: low to high

TiA-Familiarity Likert 5-point, strong distrust to strong
trust

TiA-Propensity to Trust
(TiA-PtT)

Likert 5-point, strong distrust to strong
trust

of our experimental condition. To obtain a sufficient sample for our study while ac-
counting for potential exclusion, we enlisted the participation of 285 individuals using
the Prolific crowdsourcing platform. To ensure the reliability of the data gathered, we ap-
plied inclusion criteria that were designed to select native English speakers with a min-
imum approval rate of 95% on the platform and at least 100 completed studies. A total
of 27 participants who failed any attention-check questions or the quiz were excluded
from participation in the study, resulting in a final sample size of 258 participants. On
average, participants took approximately 25 minutes to complete the entire study. All
participants were compensated at the fixed rate of 8 GBP per hour regardless of their
performance in the study. Additionally, participants received bonus rewards amounting
to 0.2 GBP for each accurate response they provided during the study period. Overall,
participants earned an average of 8.44 GBP per hour, well over the wage considered to
be ‘good’ and recommended by the Prolific platform.

4.4.4. PROCEDURE

The entire workflow of the study is illustrated in Figure 4.2. When participants entered
the study, they were first provided with informed consent, a brief overview of the study’s
goals, and instructions on how to complete the tasks (step 1). If they consented to par-
ticipate, they were directed to the pre-task questionnaire in step 2, where they were pre-
sented with a series of questions related to their numeracy skills and affinity for tech-
nology. Participants were then randomly assigned to one of the six different experimen-
tal conditions. According to the assigned condition, participants were presented with
an interface tutorial and task tutorial that provided step-by-step instructions on how to
navigate and complete the task followed by a training session on a sample task. The
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participants were given sufficient time to familiarize themselves with the sample task
and the interface. To ensure the understanding of the task, participants were required
to answer a quiz related to the task features before proceeding to the main task. If par-
ticipants did not pass the quiz, they were excluded from the study. Otherwise, they re-
ceived immediate feedback on their quiz performance to ensure that participants pro-
ceeded to the main task with a complete understanding of the task and devoid of famil-
iarity or comprehension-related biases. Participants were then asked to complete three
trip-planning tasks. Each task instance consisted of a decision-making scenario, where
participants had to analyze the information provided and make an AI-assisted decision.
Lastly, participants were directed to fill out a post-task questionnaire to assess their per-
ception of the task features and trust in the AI system.

Figure 4.2: Illustration of the procedure participants followed within our study.

4.5. RESULTS

4.5.1. DESCRIPTIVE STATISTICS
The resulting sample of 258 participants had an average age of 38 years old (SD = 11.8)
and consisted of 39% females and 61% males. To account for potential confounding vari-
ables, we gathered information about the participants’ subjective numeracy skill (SNS),
affinity for technology (ATI), TiA-Familiarity, and TiA-Propensity to Trust (TiA-PtT). Par-
ticipants reported a moderate level of perceived numeracy (M = 4.28,SD = 0.80) on the
6-point scale. Similarly, participants were found to have a moderate affinity for tech-
nology interaction (M = 4.04,SD = 0.56) measured on a 6-point scale, low familiarity
(M = 2.87,SD = 1.17), and a moderate propensity to trust AI (M = 3.72,SD = 0.49) mea-
sured on a 5-point scale.

4.5.2. HYPOTHESIS TESTS

H1A. IMPACT OF TASK COMPLEXITY ON APPROPRIATE RELIANCE

To explore the main effect of complexity on appropriate reliance, we conducted a
Kruskal–Wallis test, Table 4.3. Subsequently, we conducted Dunn’s post-hoc test to de-
termine which levels of complexity resulted in significant differences in appropriate re-
liance. We reported adjusted p-values, calculated using Bonferroni correction to account
for the increased likelihood of falsely declaring statistical significance when conducting
multiple tests. If the adjusted p-value for an individual hypothesis is less than the signif-
icance level (0.05), then the null hypothesis is rejected, indicating a statistically signifi-
cant result [441]. We first report the influence of complexity on reliance, followed by our
examination of appropriate reliance.

The observed significant difference in switch fraction between high and low-
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Table 4.3: Kruskall-Wallis test for the main effect of task complexity on reliance. † indicates that the effect
of the variable is significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-
p

M ±SD
(Low)

M ±SD
(Medium)

M ±SD
(High)

Post-hoc Results

Agreement Fraction .8 0.62±0.20 0.54±0.25 0.55±0.28 -
Switch Fraction .003† 0.18±0.32 0.26±0.30 0.34±0.36 Low < Medium < High
Accuracy <.001† 0.79±0.22 0.58±0.27 0.61±0.29 Low > Medium, High
Accuracy-wid .001† 0.61±0.40 0.40±0.37 0.50±0.35 Low > Medium, High
RAIR .001† 0.22±0.41 0.33±0.41 0.43±0.45 Low < Medium, High
RSR <.001† 0.64±0.48 0.34±0.48 0.38±0.49 Low > Medium, High

complexity tasks implies that task complexity does indeed exert an influence on re-
liance. In tasks with higher complexity levels, individuals tend to shift from relying on
their own judgment to relying on the AI system. This can be attributed to a decrease in
self-confidence regarding their decision-making abilities and, as a result, seeking guid-
ance from the AI system.

Tasks of higher complexity tend to diminish the appropriate reliance on the AI sys-
tem. Participants demonstrated significantly lower levels of Accuracy-wid in tasks with
greater complexity compared to those with lower complexity. A similar trend is observed
when examining RSR, wherein participants displayed significantly reduced levels of con-
fidence in themselves during tasks with higher complexity than those with lower com-
plexity. Consistent with these findings, participants exhibited a contrasting trend in dis-
playing a significantly higher level of reliance on the AI system for tasks that were more
complex compared to those of lower complexity, as indicated by higher RAIR. The rise in
RAIR does not necessarily imply a higher appropriate reliance on the AI system. Rather, it
suggests that individuals under-rely on the AI system in tasks with relatively lower com-
plexity, and over-rely on the AI system in tasks with relatively higher complexity without
being able to recognize when the advice may be inaccurate. This excessive reliance can
ultimately have a negative impact on performance by reducing appropriate reliance lev-
els.

Furthermore, we found that the accuracy of participants is significantly lower in
tasks with higher levels of complexity than those with lower complexity. This finding pro-
vides additional evidence to our previous findings regarding the influence of task com-
plexity on appropriate reliance. Overall, these results partially support our hypothesis
H1a.

H1B. IMPACT OF TASK COMPLEXITY ON TRUST

We aimed to examine the main effect of task complexity on trust in the AI system. There-
fore, we conducted a two-way ANCOVA to consider the potential confounding effects of
the covariates, namely subjective numeracy skill, affinity for technology, TiA-Familiarity,
and TiA-Propensity to Trust. We did not find a significant effect of task complexity on
human trust in the AI system, leading us to reject our hypothesis H1b. However, this
finding supports that the subjective nature of trust in the AI system does not always fol-
low the objective measure of reliance on the AI system [297, 362].
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H2A. IMPACT OF TASK UNCERTAINTY ON APPROPRIATE RELIANCE

We investigated the main effect of task uncertainty on reliance by conducting the
Kruskal–Wallis test, reported in Table 4.4. We found that task uncertainty significantly
affects participants’ reliance on the AI system. Participants showed significantly higher
levels of switch fraction when faced with prognostic tasks, indicating their tendency to
rely more on the AI system due to lower self-confidence. Our findings further suggest
that individuals can accurately assess the level of uncertainty in a task and adjust their
reliance on the AI system accordingly.

Table 4.4: Kruskall-Wallis test for the main effect of task uncertainty on reliance. † indicates the effect of the
variable is significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-
p

M ±SD
(Diagnostic)

M ±SD
(Prognostic)

Post-hoc Results

Agreement Fraction .01† 0.60±0.23 0.54±0.26 Diagnostic > Prognostic
Switch Fraction .02† 0.22±0.32 0.31±0.34 Diagnostic < Prognostic
Accuracy <.001† 0.72±0.30 0.60±0.24 Diagnostic > Prognostic
Accuracy-wid .04† 0.56±0.43 0.45±0.33 Diagnostic > Prognostic
RAIR .02† 0.27±0.42 0.38±0.44 Diagnostic < Prognostic
RSR .1 0.50±0.50 0.40±0.49 -

Furthermore, our findings revealed that the degree of uncertainty in a task signifi-
cantly influenced participants’ appropriate reliance on the AI system. We found that
participants were more likely to appropriately rely on the AI system in diagnostic tasks,
leading to higher accuracy rates, as indicated by higher Accuracy-wid compared to prog-
nostic tasks. In line with this finding, we also observed that participants exhibited a
slightly higher level of reliance on their own decision-making skills (RSR) when faced
with diagnostic tasks. On the other hand, in prognostic tasks, participants showed sig-
nificantly higher degree of reliance on the AI system as indicated by higher RAIR. This
finding suggests that participants tend to rely heavily on the AI system in uncertain sit-
uations. However, this does not necessarily lead to appropriate reliance. It can be chal-
lenging for them to distinguish between accurate and inaccurate AI advice in prognostic
tasks, resulting in lower appropriate reliance on the AI system and decreased accuracy
levels. As a result, our findings partially support the hypothesis H2a.

H2B. IMPACT OF TASK UNCERTAINTY ON TRUST

The main effect of task uncertainty on trust in the AI system was also examined in this
study through the ANCOVA test. The results indicated that there was no significant main
effect of task uncertainty on any trust subscales. These findings indicate that partici-
pants’ trust in the AI system remains relatively stable regardless of the level of uncer-
tainty in the task. Thus, we reject our hypothesis H2b.

H3. INTERACTION EFFECT OF TASK COMPLEXITY AND UNCERTAINTY

We conducted an ANOVA to investigate the interaction effect of task complexity and un-
certainty on appropriate reliance and trust. We found a significant interaction effect
between task complexity and uncertainty on Accuracy-wid as a measure of appropri-
ate reliance. Figure 4.3a illustrates the interaction effect of task complexity and uncer-
tainty on Accuracy-wid, focusing on different levels of complexity. We observed that the
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(a) Different task complexity levels across uncertainty levels (b) Different task uncertainty level across complexity levels

Figure 4.3: Interaction effects between task complexity and uncertainty on the Accuracy-wid metric reflect-
ing appropriate reliance.

trend of Accuracy-wid is descending for tasks with low and medium complexity while
increasing the level of uncertainty. However, for tasks with high complexity, the trend
is the opposite, where Accuracy-wid increases with increasing uncertainty. Although we
found earlier that participants have a lower Accuracy-wid for prognostic tasks, the in-
teraction effect suggests that the impact of uncertainty on appropriate reliance depends
on the level of task complexity. This finding suggests that participants tend to engage
more cognitively in tasks they perceive as less complex, believing they can make accurate
judgments. This trend is also observed in diagnostic tasks with high complexity. How-
ever, when faced with highly complex and prognostic tasks, participants are more likely
to relinquish some cognitive control and rely heavily on the AI system. This could be
attributed to their perception of the task’s complexity exceeding their own capabilities.
Participants may also view the AI advice as being more reliable and trustworthy, result-
ing in increased agreement and appropriate reliance. This finding is further supported
by the significant interaction effect identified in Accuracy, Figure 4.4a, demonstrating
that participants’ ability to make accurate predictions increases when they are faced with
prognostic tasks with high complexity, compared to prognostic tasks with medium and
low complexity. Consequently, their level of accuracy aligns with that of the AI system
due to their increased appropriate reliance. Figures 4.5a and 4.5b illustrate the Accuracy
and Accuracy-wid for different levels of task complexity and uncertainty.

(a) Different task complexity levels across uncertainty levels (b) Different task uncertainty levels across complexity levels
Figure 4.4: Interaction effect between complexity and uncertainty on Accuracy metric.

We can observe the interaction effect of complexity and uncertainty for diagnostic
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(a) Mean of Accuracy-wid (b) Mean of Accuracy
Figure 4.5: Mean of Accuracy-wid and Accuracy across different levels of task complexity and uncertainty.

and prognostic tasks in Figure 4.3b. For diagnostic tasks, the trend Accuracy-wid is de-
scending as the complexity of the task increases. However, for prognostic tasks, different
effects are observed. Participants tend to have lower Accuracy-wid as we increase the
complexity from low to medium. In medium-complexity tasks, Accuracy-wid reaches
its local minimum. So, as we further increase the complexity to high levels, Accuracy-
wid starts to rise again, suggesting that participants rely more appropriately on the AI
system, and their accuracy improves in highly complex prognostic tasks, aligning more
closely with accuracy of the AI system (cf. Figure 4.4b). Furthermore, we can see that the
appropriate reliance is always greater for diagnostic tasks compared to prognostic tasks,
except for high complexity, where the values for prognostic tasks surpass those for diag-
nostic tasks, further supporting our findings. In summary, we found that the interaction
effect between complexity and uncertainty in conditions with high complexity and un-
certainty plays a significant role in human-AI decision-making. While the appropriate
reliance drops as the complexity and uncertainty of a task increase, there is a turning
point where participants start to rely more appropriately on the AI system, resulting in
increased accuracy in prognostic tasks with high complexity. Thus, our findings reject
hypothesis H3.

4.6. DISCUSSION

4.6.1. KEY FINDINGS
Our study examined the impact of task complexity and uncertainty on human-AI
decision-making. The results of our study demonstrated that increasing the level of
complexity and uncertainty in decision-making tasks led to significant differences in
users’ reliance on the AI system. In more complex and uncertain tasks, we found that
users were often in initial disagreement with the advice provided by the AI system. How-
ever, they demonstrated a heavy reliance on AI advice during the second stage of the
decision-making process, leading to higher Switch Fraction. This can be attributed to
the potential recognition that AI offers valuable insights for decision-making under com-
plexity and uncertainty, coupled with a lack of confidence in their own judgment, cor-
roborating what has been uncovered by other work in human-AI decision-making [75,
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334]. Furthermore, the greater cognitive effort linked to complex tasks may also be a
contributing factor. The cost of relying on the AI system would prove to be less com-
pared to evaluating the reliability of the AI advice, thereby prompting individuals to lean
towards following AI advice [408]. Additionally, users showed higher engagement and
information-gathering behavior in prognostic scenarios, demonstrated by significantly
more clicks on route control buttons, indicating greater inclination to explore different
route options.

We also found that the appropriate reliance on the AI system varied significantly
depending on task complexity and uncertainty. Users exhibited lower appropriate re-
liance on the AI system ( lower Accuracy-wid), leading to lower accuracy in tasks with
medium complexity or uncertainty compared to those with low. However, users demon-
strated higher appropriate reliance on the AI system, resulting in improved accuracy in
the experimental conditions with tasks with high complexity or uncertainty compared
to those with medium complexity or uncertainty. Users perceived that tasks with higher
complexity and uncertainty required greater effort and information processing, making
them more willing to rely on the AI system. In such scenarios, their performance ap-
proaches AI accuracy, indicating the effectiveness of integrating AI in decision-making.

Our findings showed that individuals generally place significantly more reliance on
the AI system when faced with tasks characterized by high uncertainty. However, in
such prognostic tasks, their ability to appropriately rely on AI advice is lower compared
to diagnostic tasks, subsequently affecting their overall performance. Tasks that involve
inherent uncertainty are often those where humans tend to rely on AI systems for ad-
vice, such as loan approval [39, 84, 119], recidivism prediction [110, 165, 283], house
price estimation [4, 34, 78], and student admission [34, 77]. Individuals may be more in-
clined to adhere to AI advice in these types of tasks. This could stem from the belief that
AI systems possess advanced analytical abilities and have access to a greater amount of
data [258]. On the other hand, when individuals are faced with tasks that have lower un-
certainty, such as annotation and classification task [6, 260, 375], they tend to rely less
on the AI advice and rely more on their expertise and judgment. Since the heavy reliance
on AI systems in uncertain situations does not always lead to improved decision-making
accuracy, several mechanisms have been proposed to optimize the combination of hu-
man and AI decisions to achieve the best outcomes and facilitate appropriate reliance
on the AI system. These mechanisms include providing interpretable explanations for
AI advice [65, 256, 404], using cognitive forcing functions[54, 165, 323], and incorpo-
rating feedback loops to enhance the interaction between humans and AI systems [27,
28, 450]. Despite implementing a two-stage decision-making process to encourage in-
dividuals to be cognitively involved in the procedure, as well as incorporating visual and
textual explanations for increased transparency, our research emphasizes the necessity
for additional exploration into strategies that can facilitate appropriate reliance on AI
systems in contexts characterized by high levels of uncertainty.

The complexity of tasks plays a significant role in determining the degree of reliance
on AI advice, consistent with the findings of [26, 334]. The more complex a task is, the
more individuals may be inclined to rely on the AI system. We use the number of fea-
tures or constraints as the measure of task complexity similar to previous studies [26,
334, 399]. Tasks with a larger number of constraints that need to be accounted for in
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decision-making are often more challenging for individuals to process, making them
more likely to seek guidance from AI [232, 297, 358]. Our findings, which were based
on objective measures, align with [408] study and suggest that users tend to rely more
heavily on AI systems when faced with complex tasks that demand higher cognitive ef-
fort. This is further backed by [324] indicating that the complexity of a task can elevate
its perceived difficulty, potentially resulting in greater reliance on AI systems. As shown
by [354], the majority of tasks that have been studied in the context of decision-making
are characterized by low and medium complexity. Prior studies that investigated tasks
exceeding individual information processing capabilities (i.e., 9 constraints [298]) sug-
gested employing visualization techniques to assist individuals in understanding the AI
advice and the underlying decision-making process [156, 445, 457]. We used visual and
textual techniques to support individuals in understanding the factors playing a role in
shaping the given AI advice. However, in higher complexity scenarios, an individual still
lacks cognitive engagement with the AI system and may be more likely to rely heavily on
its advice. This is supported by the tendency of individuals to rapidly make their decision
within approximately twenty seconds after receiving advice from AI, without carefully
reassessing the provided information or exploring alternative route options. Although
these visual and textual strategies have shown promise in improving decision-making
outcomes in literature, they were not sufficient to mitigate over-reliance on AI advice in
high complexity tasks.

According to the Trustworthiness Assessment Model (TrAM) [358], accurate per-
ceived trustworthiness of AI systems is essential for establishing meaningful trust and
reliance on AI systems. Factors such as relevance and availability of system information,
as well as the ability of individuals to detect and utilize this information, play a crucial
role in determining accurate perceived trustworthiness. In our study, we only presented
relevant task features using visual and textual formats to participants. We utilized user
behavior metrics and validation of participant perceptions through training and quizzes
to ensure the detection of these features. However, we expected the complexity and un-
certainty of tasks to impact the availability and utilization of system information, thus af-
fecting perceived trustworthiness [321]. However, participant trust remained consistent
regardless of task complexity or uncertainty, which was in contrast to what is suggested
by the TrAM framework.

4.6.2. IMPLICATIONS OF OUR WORK

IMPLICATIONS FOR METHODOLOGY AND THE HCI COMMUNITY

The implications of methodology in HCI research pertain to the design and analysis of
studies [37]. These implications specifically address data collection methods and the
construction of new knowledge. Our work has important implications for the methods
used to study human-AI decision-making, for increasing the external validity of empir-
ical work and strengthening the understanding of the transferability of findings across
different studies. It has been observed that task characteristics, such as complexity
and uncertainty, are seldom examined or analyzed systematically in human-AI decision-
making studies. While it may not be experimentally feasible to account for every facet
of a task, our research emphasizes the significance of considering these factors when as-
sessing human-AI collaboration. Future research should consider the incorporation of
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methodologies that take into account task-related features when evaluating human-AI
decision-making. Our findings also contribute to the interpretation of human behaviour
and reliance on AI systems through the lens of task complexity and uncertainty. Current
studies often focus on generic decision-making scenarios or tasks with low to medium
complexity, which may not fully reflect or represent the challenges and dynamics of the
full range of real-world scenarios. This is particularly important in highly complex tasks
coupled with high uncertainty, where humans tend to require, appreciate, and rely on
advice from an AI system. Future research should consider the systematic identifica-
tion and inclusion of task-specific characteristics in the design of studies in the realm of
human-AI decision-making.

To initiate a systematic evaluation of task characteristics, we propose the lens of
diagnostic and prognostic tasks as a framework for modeling uncertainty in decision-
making, which can be used as a basis for designing experiments and gathering data
on human-AI interactions. This approach acknowledges the inherent uncertainty in
determining or estimating different constraints that influence decision outcomes. Ad-
ditionally, it offers a relatively more precise representation of decision-makers’ chal-
lenges. Incorporating this lens into research methodology would involve designing stud-
ies that specifically control the uncertainty inherent in diagnostic and prognostic tasks
and exploring their impact on human-AI decision-making processes and outcomes. We
also encourage researchers to consider highly complex tasks in their experiments to
capture the challenges and nuances of decision-making in real-world scenarios. This
can be achieved by developing scenarios or simulations that closely resemble complex
decision-making situations in different domains. Our task details and all code for the
interface are made publicly available to support future research in the community1.

Our study also highlights the need for further examination and development of tech-
niques tailored specifically to support high-complexity and prognostic tasks in human-
AI decision-making. Although many interventions have been developed for decision-
making in various domains, there is still a need to focus on the unique challenges posed
by high complexity and prognostic tasks. Such interventions could be targeted to of-
fer users indicators that can help them accurately assess the reliability, plausibility, and
verifiability of the AI advice. Consequently, these methods will promote appropriate re-
liance on the AI system in complex and uncertain decision-making scenarios. There is a
heightened urgency in developing and creating these mechanisms to prevent potential
deception arising from the complexity and uncertainty of tasks, which can make it chal-
lenging to detect untrustworthy AI systems [25]. By reducing the cost of verifiability and
plausibility of such XAI techniques, decision-makers can gain a better understanding of
the basis for AI advice based on their own expertise and judgment, potentially leading to
improved performance and appropriate utilization of AI systems.

The decline in performance of human-AI teams when tackling tasks of medium com-
plexity suggests that users may have faced challenges in accurately assessing their own
abilities and the capabilities of AI systems, primarily by overestimating their own abili-
ties [235]. This aligns with previous research findings, highlighting the need for interven-
tions to assist users in evaluating their skills and appropriately adjusting their reliance
on AI systems [78, 182, 243]. This may be particularly important in tasks with relatively
moderate complexity which may lead to illusory self-assessments among some users,
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compared to tasks with evidently low or discernibly high complexity.

IMPLICATIONS FOR THEORY

Theoretical implications focus on the understanding of task characteristics and their im-
pact on human-AI decision-making. Based on our findings, it is evident that the com-
plexity and uncertainty of tasks significantly influence how humans rely on AI systems.
This study serves as the application-grounded evaluation [116] in the context of trip-
planning, centering on the individuals the system intends to support in actual tasks.
It empirically validates the commonly held belief that task complexity and uncertainty
play a crucial role in determining human reliance on AI systems. While the primary
objective of combining humans and AI is to achieve enhanced performance through
collaboration, an over-reliance on AI can potentially impede the advantages offered by
human judgment and decision-making abilities. Therefore, it is crucial for researchers to
develop theoretical frameworks that can help identify and motivate the optimal balance
between human and AI involvement in decision-making, taking into consideration task
complexity and uncertainty.

Contrary to previous research suggesting that trust in AI systems increases with the
complexity and uncertainty of tasks, our findings indicate that trust is orthogonal to
these factors. These results suggest that trust is not the sole determinant of reliance
on AI advice, and other factors such as task characteristics play a significant role. This
also indicates the difference between human trustworthy beliefs and behavior toward AI
systems, where trust may not always translate into increased reliance, highlighting the
need to measure, calibrate, and understand factors beyond trust that influence human-
AI decision-making.

4.6.3. CAVEATS AND LIMITATIONS

According to the checklist of cognitive biases provided by [117], it is important to ac-
knowledge that humans are prone to cognitive biases. In our task, we identify the famil-
iarity bias and availability heuristic, which can cause individuals to exhibit an inclination
towards decisions that align with their pre-existing beliefs or past experiences. Although
we created artificial routes, individuals may still tend to prefer familiar or known options
or prefer specific transport modes due to personal biases. Confirmation bias and over-
confidence bias are other potential limitations, as individuals may be more likely to seek
out and give more weight to information that confirms their preconceived notions or
beliefs regarding AI capabilities and their decision-making abilities. We should also con-
sider the self-interest bias, where individuals may prioritize their own monetary reward
over objective decision-making criteria.

The findings discussed in this chapter are not universally applicable to all decision-
making tasks. Different tasks may have varying characteristics and contexts that can
influence human-AI decision-making. Although this is a valid approach to operational-
ize uncertainty, it is important to acknowledge that there could be other approaches
to capturing task uncertainty that were not explored in this study (e.g., missing data
or conflicting information). Future research should consider exploring different oper-
ationalizations of task complexity and uncertainty to further understand their impact
on human reliance on AI systems. It is worth noting that we asked participants in our
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study to consider that the traffic features were unrelated to each other and carried equal
weights in determining the best route. This may not always be the case in real-world
contexts. We also considered traffic conditions in both diagnostic and prognostic sce-
narios, although, in the real world, traffic conditions can change over time and at the
time of decision-making, making them predominantly prognostic.

4.7. CONCLUSION AND FUTURE WORK
In this study, we explored how task complexity (RQ1) and task uncertainty (RQ2) and
their interaction (RQ3) inform user trust and appropriate reliance on AI systems. To this
end, we conducted a user study with 258 participants across six experimental conditions
varying in three levels of task complexity (low, medium, and high) and two levels of task
uncertainty (diagnostic and prognostic). We selected trip-planning as the decision-
making task and evaluated participants’ trust, reliance, and decision-making behaviors
when interacting with an AI system. The study showed that task complexity and uncer-
tainty significantly impact human reliance on AI systems. Participants tended to rely
more on AI in tasks with higher complexity and uncertainty, with no significant differ-
ences in human trust across different levels of complexity and uncertainty.

Future studies should further explore the relationship between task complexity and
uncertainty to better understand their interconnections in human-AI decision-making.
Further research is needed across a range of domains and task types to fully understand
the impact of task complexity and uncertainty. We encourage researchers to investigate
the impact of other task characteristics, such as time pressure and information over-
load, on human-AI decision-making. Future work should also focus on understanding
how to effectively present AI-generated predictions and explanations to enhance human
understanding and decision-making, particularly in complex and uncertain situations.
Given the increasing complexity and uncertainty of tasks, it becomes crucial to develop
strategies that can help users evaluate the reliability and verifiability of AI advice in these
scenarios.
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5
WHEN IN DOUBT!

UNDERSTANDING THE ROLE OF

TASK CHARACTERISTICS ON PEER

DECISION-MAKING WITH AI
ASSISTANCE

With the integration of AI systems into our daily lives, human-AI collaboration has become
increasingly prevalent. Prior work in this realm has primarily explored the effectiveness
and performance of individual human and AI systems in collaborative tasks. While much
of decision-making occurs within human peers and groups in the real world, there is a
limited understanding of how they collaborate with AI systems. One of the key predictors
of human-AI collaboration is the characteristics of the task at hand. Understanding the
influence of task characteristics on human-AI collaboration is crucial for enhancing team
performance and developing effective strategies for collaboration. Addressing a research
and empirical gap, we seek to explore how the features of a task impact decision-making
within human-AI group settings. In a 2×2 between-subjects study (N = 256) we examine
the effects of task complexity and uncertainty on group performance and behaviour. The
participants were grouped into pairs and assigned to one of four experimental conditions
characterized by varying degrees of complexity and uncertainty. We found that high task
complexity and high task uncertainty can negatively impact the performance of human-
AI groups, leading to decreased group accuracy and increased disagreement with the AI
system. We found that higher task complexity led to higher efficiency in decision-making,

This chapter is based on a peer-reviewed paper:Sara Salimzadeh and Ujwal Gadiraju. 2024. When in Doubt!
Understanding the Role of Task Characteristics on Peer Decision-Making with AI Assistance. In Proceedings
of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP ’24), July 01–04, 2024,
Cagliari, Italy. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3627043.3659567
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while a higher task uncertainty had a negative impact on efficiency. Our findings high-
light the importance of considering task characteristics when designing human-AI col-
laborative systems, as well as the future design of empirical studies exploring human-AI
collaboration.

5.1. INTRODUCTION
The increasing capabilities of AI systems to perform tasks with high accuracy have led
to increasing interest in incorporating these systems into human decision-making pro-
cesses across various fields, such as finance [84, 128, 156, 160], healthcare [139, 227,
241, 320], and the legal domain [12, 267, 283, 425]. The main goal of such collaboration
is to leverage the complementary strengths of humans and the AI systems to improve
overall performance [27, 224, 381, 420]. Human-AI collaboration is also crucial for mit-
igating potential issues that may arise from relying solely on AI systems [244, 247, 255,
275, 375]. Empirical research in the HCI community has investigated factors that affect
human-AI collaborative decision-making. This includes exploring the impact of human
expertise [260, 313, 356], the level of human trust and reliance on the AI systems [55, 130,
408, 425], and the context of decision-making tasks [11, 155, 258].

Numerous studies have focused on group recommendation systems and AI support
for individual decision-making. However, there is still a gap in the research concern-
ing how AI can assist in group decision-making processes, specifically regarding task
characteristics and their impact on the decision-making process [80, 208, 287, 465]. For
instance, in healthcare, AI systems can assist multidisciplinary teams of doctors in di-
agnosing and planning treatment for patients, while in group trip-planning scenarios,
individuals may rely on AI advice to make itinerary decisions. The dynamics of group
decision-making can be complex, with various social and cognitive factors influenc-
ing the process and outcomes which need to be carefully considered when designing
human-AI collaborative systems [19, 141, 276, 302, 465]. It is important to understand
how human-AI collaboration can be fostered effectively in group decision-making set-
tings, where multiple individuals interact with one or several AI systems to make joint
decisions. Understanding these aspects can also offer insights into designing AI systems
and interventions to promote effective collaboration among group members with AI sys-
tems, enhancing the overall outcomes.

In this thesis, we aim to explore the potential of human-AI collaboration in group
decision-making by investigating the role of task characteristics on group dynamics
and outcomes. Task features are the predictor factors that could impact group decision-
making performance [5, 402, 403]. While existing research has examined the role of
task characteristics within individual human-AI decision-making realm [26, 155, 258,
408], there is a limited understanding of how these factors influence human-AI group
decision-making processes. In our work, we specifically examine the influence of task
complexity and task uncertainty on the performance and interaction between human
peers and AI systems. These elements have been recognized as crucial factors in de-
termining the effectiveness of group decision-making processes [211, 403, 412]. Prior
studies have also shown that people tend to need a group to collectively make a de-
cision when faced with complex and uncertain decision-making scenarios [203]. Task
complexity is defined by the amount of information that needs to be processed due to
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task features, such as the number of variables, interdependencies, and decision con-
straints [435]. On the other hand, task uncertainty pertains to the degree of unpre-
dictability linked with the outcome of a task [17]. To the best of our knowledge, this
is the first study that explicitly investigates the role of task characteristics in human-AI
collaboration within a group decision-making context. We thereby address the following
research questions in our study:

RQ1: How does task complexity influence user behaviour and performance in
AI-assisted collaborative decision-making?

RQ2: How does task uncertainty influence user behaviour and performance in
AI-assisted collaborative decision-making?

To address these research questions, we selected the real-world context of group trip-
planning as our study domain. This complex decision-making scenario is characterized
by numerous variables and elements of uncertainty, requiring peers to identify the most
efficient route from a set of options by relying on an imperfect AI system or exercising
their group judgments. We conducted a 2×2 between-subjects study with 256 partici-
pants randomly assigned to one of the four experimental conditions, manipulating task
complexity (high vs. low) and task uncertainty (low vs. high). The complexity levels
were determined by considering the different number of constraints in the task, while
task uncertainty was altered by giving participants precise value of task constraints as
opposed to probabilities or likelihood estimates. For instance, in low uncertainty con-
ditions, participants would know the specific values of traffic conditions and weather
forecasts, whereas in high uncertainty conditions, participants would only be provided
with probabilities or a potential range of values corresponding to these variables. Note
that when at least two individuals collaborate with an AI system, it can be characterized
as a group decision-making process, as at least three distinct entities are involved: the
two human participants and the AI assistant. In this chapter, we refer to the two hu-
man participants as the pair or peer, and the entire arrangement is considered a group
decision-making scenario.

We found that task complexity and task uncertainty significantly influence user be-
haviour and performance when collaborating with an AI system in a group setting. Per-
formance of groups in the high complexity or uncertainty conditions was significantly
lower compared to the low complexity or uncertainty conditions. Moreover, incorporat-
ing of AI advice for final decisions resulted in increased performance compared to the
initial decisions across all conditions, specifically in high complexity tasks. This perfor-
mance gain is not attributed to the higher agreement with the AI advice but rather to the
ability of participants to integrate the AI advice with their own judgment and resulting
in more informed decisions. Interestingly, participants demonstrated a higher level of
efficiency in tasks with high complexity, while task uncertainty was detrimental to group
efficiency as it led to longer discussion times after receiving AI advice.

Original contributions: Our study contributes to the understanding of how task
complexity and uncertainty impact group trip-planning when collaborating with an
AI system. The context of group planning serves as an application-grounded evalua-
tion [115], focusing on the individuals that such systems are designed to assist in making
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real-life decisions. To the best of our knowledge, this is the first study to explore the com-
bined effects of task complexity and uncertainty on user behaviour and performance in
a group setting with AI collaboration. Our study also provides empirical evidence that
integrating AI advice with human groups can enhance performance and efficiency, par-
ticularly in high complexity tasks. Our work highlights the importance of considering
task complexity and uncertainty when designing AI systems for group collaboration, and
has important implications for the UMAP community.

5.2. RELATED WORK

HUMAN-AI DECISION-MAKING

With the increasing performance of AI systems, there has been growing interest in un-
derstanding how humans can effectively collaborate with AI systems in decision-making
tasks [58, 127]. The main goal of such collaboration is to leverage the complementary
strengths of humans and AI systems to improve overall performance, exceeding what
either humans or AI systems could achieve alone [27, 224, 381, 420]. However, reaching
such complementary performance is not always achievable [247, 274] due to various fac-
tors including human cognitive biases [121, 181, 281, 314, 326], the degree of trust and
reliance on AI systems [130, 267, 293, 325], and human understanding of the boundaries
within which AI systems can make errors [26, 140, 215, 391, 463]. The context of decision-
making tasks has been found to have a substantial influence on the extent to which AI
systems are trusted, consequently affecting overall performance [11, 155, 258, 347]. Each
domain has its own unique characteristics and requirements, which might not be trans-
ferable to other domains, highlighting the need for domain-specific studies on human-
AI decision-making [247, 354]. Decision-making tasks can have varying levels of risk and
stake across different domains, which can influence user behaviour, especially in high-
stake situations where vulnerability and potential consequences are significant [12, 162,
207, 255]. The significance of creating suitable tasks in studies to arrive at valid findings
has been emphasized by researchers [58, 247, 354]. For example, in proxy tasks that re-
quire users to predict AI advice, user behaviour, and performance might vary from tasks
where users make decisions directly based on AI advice [58]. The level of complexity in
tasks can also affect the performance of human-AI teams [26, 75, 334], with individuals
tending to rely more on the AI systems for complex tasks that demand specialized knowl-
edge or extensive analysis [258]. Task complexity may be gauged by factors such as the
number of constraints involved [26, 334, 400] or the depth of mathematical calculations
and analysis needed [155]. [408] also manipulated task difficulty levels by adjusting the
cognitive effort needed to complete the task, thereby expanding the decision space. In
addition to the complexity of the tasks, the uncertainty associated with task constraints
can also impact human behaviour and reliance on the AI systems [17, 401]. In this study,
we investigate how group performance is affected by task complexity and uncertainty in
a collaborative decision-making scenario involving two individuals and an AI system.

GROUP DECISION-MAKING

Group decision-making involves a collective process of reaching a decision within a
group consisting of two or more individuals with their own perceptions and personal-
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ities, all accessing the same information to address a shared problem [60]. Research
in group decision-making has shown that the group dynamics and interaction within a
group can significantly influence the decision outcomes [189, 233, 383]. Although many
studies suggest that group decision-making can result in better outcomes than individ-
ual decision-making [23, 32, 308], there are also factors that can hinder effective group
decision-making [276, 302], such as group-think [31, 432], social loafing [185], and con-
formity biases [134, 402]. To achieve effective group decision-making, it is essential to
understand the factors that influence the performance and outcomes of groups. Group
performance refers to the collective ability of a group to achieve its goals and objec-
tives [106], arising from their interactions, coordination, and cooperation rather than
simply being the sum of individual capabilities [20]. Prior studies have investigated the
factors that affect the performance of group decision-making [30, 48, 59, 102, 103, 197].
Composition of the group has been identified to be an important determinant of the
group performance [192, 193, 373, 439]. A few studies have also focused on the role
of task characteristics in influencing group performance and behaviour. [5] found that
group efficiency surpasses the highest-scoring and most efficient members of nominal
groups, similarly sized collection of individuals working independently, when dealing
with complex tasks as opposed to relatively simple ones. They also observed that both
individuals and groups have lower performance in complex tasks compared to simple
tasks. [402] also explored the impact of task uncertainty and group size on the group
performance, finding that higher levels of uncertainty with larger group sizes can neg-
atively impact decision-making outcomes. In our research, we create a group of two
individuals with an AI system to investigate how task complexity and uncertainty affect
the collective intelligence and decision-making performance of the group.

GROUP DECISION-MAKING WITH AI ASSISTANCE

Extensive research has been conducted on individual decision-making with AI systems
and group recommender systems [208, 287]. However, there remains a gap in the lit-
erature regarding how AI can adequately facilitate group decision-making processes,
particularly when considering distinct characteristics of tasks and their impact on the
decision-making process [67, 94, 287, 398]. [20] highlighted the factors that contribute
to successful human-AI group decision-making, such as the cognitive processes, algo-
rithms, and psychological constructs that can provide a framework to model and un-
derstand the dynamics of human-AI team decision-making. [19] also found that indi-
vidual expertise and cognitive biases play a crucial role in shaping social influence and
decision-making dynamics within a human-AI group. [465] explored the equal power of
AI in a group decision-making process, where AI systems have an equal say in the final
decision. [228] also found that the collective intelligence, a factor measures group ability
to perform together on a range of task, is one of the key predictor variables of group per-
formance, specifically in complex tasks. [80] compared group and individuals along six
aspects, including decision accuracy and confidence, reliance on the AI system, under-
standing AI system, fairness, and accountability in the recidivism risk assessment task.
They found that groups over-rely more on AI systems compared to individuals but their
performance may not necessarily be superior. In this study, we aim to delve deeper into
the impact of task complexity and uncertainty on the interactions and performance of
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groups of two individuals with an AI system.

5.3. HYPOTHESES AND TASK DESIGN

5.3.1. HYPOTHESES
The complexity of tasks have been identified as a key factor in affecting the performance
of groups in general, either as humans-only groups [5, 402] or individual human-AI
groups [26, 75, 334]. Based on prior studies, we hypothesize that as the complexity of
tasks increases, the performance of groups of humans with an AI system would be neg-
atively affected. As tasks become more complex, the likelihood of interpersonal con-
flict among group members may rise [382], resulting in sub-optimal outcomes and re-
duced performance [5]. Cognitive biases like social loafing [226] and group-think [210]
are more likely to be noticeable in complex tasks, which can further hinder group per-
formance. On the other hand, integrating input from each individual and the AI system
may require more time, resulting in prolonged decision-making processes and a poten-
tially reduced overall efficiency in decision-making.

(H1a.) Groups exhibit a lower performance in complex tasks compared to rela-
tively less complex tasks.

(H1b.) Groups spend more time for decision-making in complex tasks com-
pared to relatively less complex tasks.

We hypothesize that the presence of uncertainty in tasks could further exacerbate the
negative impact on group performance. Uncertainty can introduce further challenges
for human peers in reaching a consensus and making timely effective decisions. It may
also lead to increased reliance on AI systems [401], potentially impeding group coordi-
nation.

(H2a.) Groups exhibit a lower performance in tasks with high uncertainty com-
pared to tasks with relatively lower uncertainty.

(H2b.) Groups spend more time in tasks with high uncertainty compared to
tasks with relatively lower uncertainty.

5.3.2. TASK SCENARIO
In our study, we devised a trip-planning scenario in which participants were tasked with
identifying the most efficient route that minimizes both time and budget from a selec-
tion of ten possible routes. Participants worked in pairs and were presented with prac-
tical situations in which they could receive guidance from an AI system on the optimal
route or make decisions based solely on their own judgments as a team. We also em-
ployed the DecisionTime framework 3 to design the experiments described in this sec-
tion.

The context of group trip-planning serves as an application-grounded evalua-
tion [115], focusing on the individuals that such systems are designed to assist in making



5.3. HYPOTHESES AND TASK DESIGN

5

75

real-life decisions. We chose trip-planning as our task scenario to test our hypotheses for
several reasons: participants are familiar with the concept of the task, allowing us to sim-
ulate a realistic scenario. Nevertheless, including time and budget constraints makes this
task unique in affecting participants’ behaviour and decision-making process. Further-
more, a trip-planning scenario allows the meaningful manipulation of task complexity
and uncertainty, thus enhancing the ecological validity of our findings. We incorporated
an imperfect AI system to evoke the intended feeling of uncertainty and vulnerability,
prompting deliberate collaboration and exchange of information among team members
to validate the accuracy of the AI advice rather than relying solely on it.

TASK COMPLEXITY

Inspired from prior work [26, 334, 400], we manipulate the complexity of the tasks by
varying the number of constraints that participants have to consider when planning
their trip. We curated two levels of task complexity: low complexity and high com-
plexity. In the low complexity condition, participants only have to consider four con-
straints when planning their trip (e.g., length of the route, transportation, travel time,
and transportation fare). In the high complexity condition, participants have to con-
sider eight constraints when planning their trip (e.g., length of the route, transportation,
travel time, transportation fare, weather conditions, traffic jam, seating capacity of the
transportation, and ticket subscription). We determined the number of constraints per
condition according to an individual’s information processing ability [298], suggesting
that individuals can efficiently process between five and nine variables simultaneously.

TASK UNCERTAINTY

Task uncertainty pertains to the level of unpredictability associated with the given task.
This can be influenced by various factors such as the amount and reliability of informa-
tion available, the likelihood of unexpected events occurring, and the level of variability
in task conditions. We operationalized task uncertainty by manipulating the amount
and reliability of information available in two levels: low uncertainty and high uncer-
tainty. In the low uncertainty condition, participants are provided with accurate and
reliable information about all constraints involved in planning their trip. In the high
uncertainty condition, participants are given a range of possible values or probabilities
for certain constraints, reflecting the inherent unpredictability and variability in real-
world conditions. Such constraints include weather conditions, traffic jam, availability
of transportation options, and their seating capacity, as these constraints can change
over time and are subject to various unforeseen events.

DESIGN CONSIDERATION: TASK COMPLEXITY VS. TASK UNCERTAINTY

Wood’s seminal work suggests that task complexity could be devised into three dimen-
sions: component, coordinative, and dynamic complexity [435]. Component complexity
refers to the number of distinct constraints that need to be considered in a task, while co-
ordinative complexity relates to the number of steps required to complete the task and
the interdependencies between those steps. Dynamic complexity, on the other hand,
arises when the world states change requiring to potentially adjust decisions based on
the changing conditions. In our work, we operationalized task complexity as component
complexity taking into account the number of constraints involved in planning a trip [26,



5

76 5. THE ROLE OF TASK CHARACTERISTICS ON PEER DECISION-MAKING

334, 400]. Task uncertainty pertains to the level of unpredictability associated with the
task, reflecting the missing information and likelihood of unexpected events. By defi-
nition, dynamic complexity and uncertainty are two distinct constructs; in dynamically
complex tasks, all the information are accessible and can be considered for decision-
making at each point, while in uncertain tasks, decision-making is inherently challenged
by the lack of complete and reliable information. Although these two constructs could
interact and influence each other, it is valid to consider that task complexity and task
uncertainty as separate constructs that can independently influence decision-making
processes.

5.4. STUDY DESIGN

5.4.1. EXPERIMENTAL CONDITIONS
Our study was approved by our institutional ethics board. We designed a between-
subject study with 2×2 factorial design. The experimental conditions included two inde-
pendent variables: task complexity (high vs. low) and task uncertainty (high vs. low). We
randomly assigned participants to one of four experimental conditions and balanced
the number of participants in each condition across the different task complexity and
uncertainty levels. Participants in each scenario were given three distinct task instances,
according to the complexity and level of uncertainty associated with the specific condi-
tion. In groups of two individuals with an AI system, participants were required to make
decisions based on the task constraints, while also considering the AI advice.

AI SYSTEM

Our AI system was developed to consider factors like distance, traffic, weather condi-
tions, and time and budget limitations to offer the most efficient route from the possible
ten options. We fine-tuned the AI system at a 66.7% accuracy rate, such that the AI sys-
tem provided incorrect advice in one out of the three tasks. This design choice aimed to
encourage participants to critically evaluate the AI system’s advice while still benefiting
from its guidance.

FOUR-STAGE DECISION-MAKING

To engage each member in the decision-making process, we implemented a four-stage
procedure [203]. The first stage includes recording individual initial decisions in isola-
tion to prevent bias or influence from others [177, 333]. In the second stage, initial de-
cisions are shared in a chat box and openly discussed. The AI system then suggests the
best route based on the available information in the third stage. The peers then engage
in a collaborative discussion during the fourth stage to reach a consensus on the final
decision.

ICE-BREAKING

We included an ice-breaking activity at the beginning of the collaboration to provide
an opportunity for peers to build common ground and enhance their communication
throughout the trip-planning task [7, 16, 212, 428]. To this end, we suggested a number
of questions that encouraged participants to share personal experiences, interests, and
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goals, inspired by [218]. Peers are also allowed to share any concerns or questions they
may have, further fostering open communication and collaboration within the group.

5.4.2. MEASURES

Measures: Our measures aim to assess the effectiveness of collaboration within the
group, individual decision-making skills, and the impact of the AI system on the
decision-making process across all conditions. These measures included objective
performance criteria such as the accuracy of the final decision made by the group
(Group Accuracy_Final), the accuracy of individual initial decisions (Individual Accu-
racy_Initial), and the peer agreement with AI advice (AI Agreement). Additionally, we
recorded the time taken to reach an individual initial decision (Average Individual De-
cision Time_Initial), the time taken to reach a consensus for the final decision (Average
Group AI Consideration Time_Final), and the total task completion time (Average De-
cision Time). To get insight into participants’ engagement and exploration of solution
space, we also tracked participants’ interaction with the map and exploration of alter-
native routes. Furthermore, we calculated group efficiency (Group Efficiency_Final) and
individual efficiency (Individual Efficiency_Initial), defined as the performance divided
by the duration. To assess the potential confounding effect of participants’ mathemati-
cal skills on their task performance, we incorporated a pre-task questionnaire to evalu-
ate their perceived numerical skills [132]. Additionally, we administered the Affinity for
Technology Scale questionnaire [143] to gauge participants’ level of comfort and profi-
ciency in using technology [400].

5.4.3. PARTICIPANTS

We calculated the minimum sample size required for this research by conducting a
power analysis using G*Power software, resulting in 256 participants, i.e. 64 participants
(32 pairs) per experimental condition with a medium effect size of 0.25, the significance
level of 0.05, and the power of 0.80. We totally recruited 303 participants from the Prolific
crowdsourcing platform, where 47 participants rejected due to our quality control crite-
ria, resulting in a final sample size of 256 participants. On average, participants spent
45 minutes completing the entire study. All participants were compensated at the fixed
rate of 9 GBP per hour regardless of their performance, as deemed good according to the
standards set by the Prolific platform.

Quality Control: To ensure the quality of our study, we implemented various mea-
sures. First, we conducted a pilot test with a small sample of participants to identify any
potential issues or ambiguities in our instructions and procedures. Second, we recruited
native English participants who had at least 100 previous successful task completions in
the Prolific crowd sourcing platform, with at least 95% approval rate ensuring a certain
level of experience and reliability. Third, we provided detailed training to participants
to ensure they had a clear understanding of the interface, the task, and how to collabo-
rate within the group to submit their decisions. We also evaluated their understanding
through a brief quiz at the end of the tutorial and practice session. Participants who
did not pass the quiz were excluded from the study. Finally, we closely monitored the
participants’ progress throughout the study and were available for any clarifications or
assistance they may have required.
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5.4.4. PROCEDURE
When participants entered the study, they were provided with a consent form that ex-
plained the procedure of the study. If they agreed to participate, they were randomly
assigned to one of the four experimental conditions. In the first step, participants were
given a pre-task questionnaire to help us capture their numeracy skills. On completing
this questionnaire, participants were introduced to the interface and familiarized with
its functionalities through a tutorial. They were then instructed on the details of the trip-
planning task, including the specific goals and constraints involved. In the next stage,
participants were presented with a sample scenario and were asked to make decisions
based on the provided information to practice and apply their understanding of the task.
To ensure participants’ understanding and consistency across experimental conditions,
participants were given a brief quiz at the end of the practice session. The quiz aimed
to ensure participants’ comprehension of the task and the impact of each constraint on
the decision-making process. Participants who passed the quiz proceeded to the lobby,
while those who did not were excluded from the study1. In the lobby, participants had
to wait for a partner to be matched with. During this waiting period, participants were
provided with optional fillers– a game and breathing exercises– to help them relax and
stay engaged. Such activities were designed to keep participants engaged and reduce the
perceived waiting time [2, 3]. Participants in the lobby had to wait to be matched with
a partner. Upon the arrival of another participant under the same experimental con-
ditions, they were grouped and given guidance on how to collaborate within the chat
environment for the main tasks. Figure 5.1 displays a bird’s-eye view of the interface
without the chat component.

Figure 5.1: An overview of the trip-planning task interface that participants used including five compo-
nents: (1) the task scenario and description, (2) map, (3) route information, (4) general information, and
(5) chat box, located at the bottom of the interface. Note that this screenshot is meant to convey a bird’s-eye
view of the interface. This interface corresponds to a highly complex task scenario encompassing all con-
straints.

During the collaboration phase, peers were provided with the same interface and
could communicate with each other in a chat environment. They shared their opin-
ions, received AI advice simultaneously, and submitted their decisions as text messages
within the chat interface. At the beginning of their interaction, participants could use
three minutes to communicate with their partners on the ice-breaker questions sug-

1All participants were compensated fairly irrespective of whether or not they passed the quiz.



5.5. RESULTS

5

79

gested within the chat environment. This aimed to initiate conversation and facilitate
a comfortable common ground between the participants that could aid collaboration2.
Participants were tasked to follow the four-stage decision-making process to submit
their final decision for each trip-planning task. To ensure that participants adhere to the
decision-making procedure, prompts were provided at each stage of their collaboration.
While there were no time limits for each stage, these prompts served as a road-map for
systematic progression. After completion of three consecutive tasks, participants were
redirected to the post-task questionnaire where they were asked to provide feedback on
their experience. All code for our implementation of the interface along with task scenar-
ios and in-depth details of our user study are made publicly available to support future
research in the community and in the spirit of Open Science3.

5.5. RESULTS

5.5.1. DESCRIPTIVE STATISTICS
Our study involved a sample of 256 participants, with 59.7% being male and 40.3 % fe-
male. The average age of the participants was 34 years, ranging from 18 to 61 years. Par-
ticipants’ numeracy skills were also found to be moderately high (M = 4.40,SD = 0.77),
with no significant differences or confounding effects observed across the four experi-
mental conditions. Similarly, participants reported their affinity with technology to be
moderately high (M = 4.09,SD = 0.57), indicating that they were familiar and comfort-
able using technological tools for communication and collaboration.

(a) Mean of Individual Accuracy_Initial (b) Mean of Group Accuracy_Final

Figure 5.2: Mean of Individual Accuracy_Initialand Group Accuracy_Finalacross different levels of task
complexity and uncertainty. The accuracy improved after the peers received AI advice.

5.5.2. HYPOTHESES TESTS

H1A. IMPACT OF TASK COMPLEXITY ON GROUP PERFORMANCE

To investigate the main effect of task complexity on group performance, we conducted a
Kruskal-Wallis test, comparing the accuracy of groups across complexity levels (cf. Table

2Note that analyzing the role of relationship strengths in the context of peer decision-making with AI assistance
is beyond the scope of this work.

3https://osf.io/kvt7p/?view_only=0d90e14a2eeb4ea8889000b409720987

https://osf.io/kvt7p/?view_only=0d90e14a2eeb4ea8889000b409720987
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5.1). We also assessed the accuracy of initial decisions submitted per individual in a
group to evaluate if the AI advice provided after their individual choices had an effect on
group performance. Similarly, we evaluated the level of agreement between the peers
decisions and AI advice to gauge the impact of the AI system on decision-making.

The observed significant difference between low complexity tasks and high complex-
ity tasks indicates that task complexity does impact group performance (Group Accu-
racy_Final). In the low complexity tasks, groups exhibited higher accuracy compared to
high complexity tasks, suggesting that the level of task complexity has a negative impact
on group performance. Furthermore, we observed that the performance of each individ-
ual in making initial decisions (Individual Accuracy_Initial), also significantly differed
across complexity levels. Similarly, the initial performance are lower in high complex-
ity tasks compared to low complexity tasks, indicating that the complexity of the tasks
also affects individual performance. We found that the collective performance signifi-
cantly improved (Accuracy Gain) when participants were given AI advice following their
initial decision-making, in situations where the task complexity was high compared to
low complexity tasks, demonstrated in Figures 5.2a and 5.2b. However, there was no sig-
nificant difference between AI agreement across complexity levels. This suggests that AI
advice and group discussions can positively impact group performance, particularly in
high complexity tasks, regardless of the level of agreement between the peers decisions
and AI advice. Overall, these results support our hypothesis H1a.

Table 5.1: Kruskall-Wallis test for the main effect of task complexity on performance. † indicates that the
effect of the variable is significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p M ±SD (Low) M ±SD (High) Post-hoc Results

Individual Accuracy_Initial <.001† 0.76±0.26 0.55±0.35 Low > High
Group Accuracy_Final <.001† 0.79±0.24 0.62±0.32 Low > High
Accuracy Gain 0.017† 0.03±0.15 0.07±0.17 Low < High
AI Agreement 0.06 0.56±0.21 0.51±0.25 -

H1B. IMPACT OF TASK COMPLEXITY ON GROUP BEHAVIOUR

To examine the influence of task complexity on group behaviour, we conducted a
Kruskal-Wallis test comparing the average time taken by groups to make decisions
across complexity levels, reported in Table 5.2. We also considered the time taken by
individual participants to make their initial decisions and the time taken for peers to
reach a consensus after receiving AI advice. We also assessed the effectiveness of group
decision-making by evaluating how quickly the peers reached correct decision during
each minute of their decision-making process. Additionally, we investigated the individ-
ual efficiency in making initial decisions to compare their performance before and after
receiving AI advice.

We found no significant difference in the average time taken by groups (Average De-
cision Time) to make decisions across complexity levels. The time taken by individual
participants to make their initial decisions (Average Individual Decision Time_Initial)
and the time taken for peers to reach a consensus after consideration of AI advice (Aver-
age Group AI Consideration Time_Final) also did not significantly differ across complex-
ity levels. This indicates that task complexity does not have a significant impact on the
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speed at which groups make decisions or reach consensus. However, task complexity
did significantly affect the group efficiency (Group Efficiency_Final) in terms of the per-
formance per unit of decision-making time. In high complexity tasks, groups tended to
be more efficient in reaching a correct decision compared to low complexity tasks. How-
ever, the impact of task complexity on individual decision-making efficiency (Individual
Efficiency_Initial) was not significant, suggesting that task complexity primarily affects
group dynamics and enhances the collective efficiency. We also recorded the user inter-
action with the interface including time spent navigating different routes on the map, the
number of clicks on different routes, and the extent they explored the available features
and options. We observed that participants exhibited similar exploration and utilization
of the map and route options regardless of the complexity of the task at hand. The pres-
ence of additional features and information did not appear to prompt participants to
explore or make extensive use of them. Thus, we reject our hypothesis H1b.

Table 5.2: Kruskall-Wallis test for the main effect of task complexity on behaviour. † indicates that the effect
of the variable is significant in the comparisons shown in the ‘Post-hoc Results’ column. Note that Efficiency
is the measure of performance over one minute. The times are also reported in seconds.

Dependent Variable adjusted-p M ±SD (Low) M ±SD (High) Post-hoc Results

Individual Efficiency_Initial 0.13 0.30±0.10 0.28±0.11 -
Group Efficiency_Final <.001† 0.03±0.02 0.04±0.02 Low < High
Average Decision Time 0.91 483±171 477±179 -
Average Individual Decision Time_Initial 0.59 389±149 376±137 -
Average Group AI Consideration Time_Final 0.31 94±52 100±77 -

H2A. IMPACT OF TASK UNCERTAINTY ON GROUP PERFORMANCE

We investigated the main effect of task uncertainty on group performance by conduct-
ing a Kruskal-Wallis test on a number of performance metrics including group accuracy,
individual accuracy, and peer agreement with the AI system, Table 5.3.

Tasks uncertainty is found to have a significantly negative impact on group perfor-
mance (Group Accuracy_Final). Participants in high uncertainty tasks showed lower ac-
curacy in their decisions compared to groups performing low uncertainty tasks. Addi-
tionally, the level of task uncertainty also significantly affected the initial decision ac-
curacy (Individual Accuracy_Initial), with individuals facing high uncertainty demon-
strated lower initial decision accuracy compared to those facing low uncertainty. This
suggests that task uncertainty hinders the overall performance and decision-making
ability of groups, leading to lower accuracy in decisions either with or without the AI
advice. The remarkable gap between group performance in high and low uncertainty
tasks highlights the significant role that task uncertainty plays in influencing group per-
formance and decision-making accuracy. We also found that task uncertainty signifi-
cantly increased disagreement with AI advice, with high uncertainty tasks experiencing
lower levels of AI agreement compared to low uncertainty tasks. The impact of AI ad-
vice on improving accuracy (Accuracy Gain) from the initial decision is not significantly
influenced by task uncertainty, shown in Figures 5.2a and 5.2b. However, this suggests
that presenting the AI advice may still have assisted peers in enhancing their decision-
making process, even in high uncertainty tasks where agreement with the AI advice was
lower. As a result, our findings support hypothesis H2a.
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Table 5.3: Kruskall-Wallis test for the main effect of task uncertainty on performance. † indicates that the
effect of the variable is significant in the comparisons shown in the ‘Post-hoc Results’ column.

Dependent Variable adjusted-p M ±SD (Low) M ±SD (High) Post-hoc Results

Individual Accuracy_Initial <.001† 0.87±0.21 0.45±0.28 Low > High
Group Accuracy_Final <.001† 0.91±0.16 0.51±0.26 Low > High
Accuracy Gain 0.12 0.04±0.16 0.06±0.16 -
AI Agreement <.001† 0.65±0.14 0.43±0.24 Low > High

H2B. IMPACT OF TASK UNCERTAINTY ON GROUP BEHAVIOUR

We examined the main effect of task uncertainty on group behaviour by analyzing the
decision making time of groups as wells as their efficiency using Kruskal-Wallis tests,
reported in Table 5.4.

Our findings illustrate that task uncertainty did not significantly impact the decision-
making time of groups (Average Decision Time) and the time it takes to submit the initial
decision (Average Individual Decision Time_Initial). However, the time taken to reach
from initial decision to final decision (Average Group AI Consideration Time_Final) was
significantly longer for groups facing high uncertainty compared to those facing low
uncertainty tasks. This indicates that task uncertainty prolongs the decision-making
process when presenting the AI advice, potentially leading to more thorough analysis
and consideration of the uncertain tasks. Task uncertainty also had a significant im-
pact on efficiency (Group Efficiency_Final), with groups facing high uncertainty demon-
strating lower efficiency in their decision-making process compared to those in low un-
certainty experimental conditions. However, the individual efficiency (Individual Effi-
ciency_Initial), measured by the time taken to submit the initial decision, did not show
a significant difference between high and low uncertainty tasks. These findings suggest
that task uncertainty not only slows down the decision-making process but also reduces
overall efficiency in groups. We also observed that participants exhibited similar explo-
ration and utilization of the map and route options regardless of the uncertainty of the
task at hand. One explanation for this could be that participants did not get extra in-
formation from the interface or map that could help reduce the uncertainty in high un-
certainty tasks. As a result, they invested additional time with their partner engaging
in discussion and exploring possible solutions after receiving AI advice, relying on their
collective knowledge and perspectives to navigate the uncertain task and make informed
decisions. These results support hypothesis H2b.

Table 5.4: Kruskall-Wallis test for the main effect of task uncertainty on behaviour. † indicates that the effect
of the variable is significant in the comparisons shown in the ‘Post-hoc Results’ column. Note that Efficiency
is the measure of performance over one minute. The times are also reported in seconds.

Dependent Variable adjusted-p M ±SD (Low) M ±SD (High) Post-hoc Results

Individual Efficiency_Initial 0.17 0.30±0.11 0.28±0.10 -
Group Efficiency_Final <.001† 0.04±0.02 0.02±0.02 Low > High
Average Decision Time 0.35 464±150 500±196 -
Average Individual Decision Time_Initial 0.92 373±119 392±163 -
Average Group AI Consideration Time_Final .01† 91±64 108±66 Low < High
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5.6. DISCUSSION AND IMPLICATIONS

5.6.1. KEY FINDINGS AND IMPLICATIONS OF OUR WORK
Our study investigated the impact of task complexity and uncertainty on group perfor-
mance and behavior. We found that task complexity negatively affects the accuracy of
decision-making in groups, with higher complexity leading to lower accuracy. This find-
ing is consistent with prior studies that have shown the challenges posed by complex
tasks which can lead to increased decision-making errors [5, 26, 75, 334]. The higher
performance gain obtained with AI advice in complex tasks while maintaining a similar
level of agreement with the AI system suggests that leveraging the AI system can help
mitigate the negative impact of task complexity on group accuracy. One potential ex-
planation for this finding is that the AI advice provides a point of discussion and refer-
ence for peers, helping them navigate through the challenges and potentially improving
their decision-making process. Although the AI advice was not appropriately followed by
peers in tasks with high complexity, it was utilized to facilitate more thorough analysis
and consideration of the complex task, leading to improved decision-making outcomes.

We also did not find any significant influence of task complexity on the time taken to
reach the consensus or the total time spent on decision-making. However, task complex-
ity positively impacted the efficiency of the groups, with groups facing high-complexity
tasks demonstrating a higher efficiency compared to those facing low-complexity tasks.
One explanation for this contrasting finding could be that peers were able to utilize their
collective insights and knowledge to make more efficient decisions in complex tasks,
whereas in low-complexity tasks, the decision-making process may be more straightfor-
ward and less strategic and thorough. Another possible explanation could be that the
higher complexity tasks prompted peers to allocate more resources towards thorough
discussions and information gathering, leading to more informed and carefully consid-
ered decisions. We did not observe any significant difference in the efficiency of indi-
viduals in their initial decisions across tasks of varying complexity, suggesting that task
complexity does not inherently impact individual efficiency. Although we expected that
individuals facing high-complexity tasks may experience decreased efficiency, our find-
ings suggest that the presence of a group and the opportunity for collaborative thinking
and initial discussion can offset such a potential decrease in individual efficiency caused
by task complexity.

Our study also revealed that task uncertainty plays a crucial role in group perfor-
mance. The levels of task uncertainty were found to negatively influence the collective
accuracy of the groups. Task uncertainty also significantly impacts the agreement with
the AI advice, with higher levels of uncertainty leading to lower agreement. Neverthe-
less, the use of AI advice led to improved decision-making outcomes across all levels of
task uncertainty. This finding highlights the potential of the AI system as a valuable tool
in decision-making processes, especially in situations where task uncertainty is high. In
such situations, the AI system could provide additional insights that can help mitigate
the negative effects of task uncertainty and support more accurate decision-making.

We found that task uncertainty significantly impacts the time taken to reach a con-
sensus after receiving the AI advice. This could be because high task uncertainty cre-
ates more divergent viewpoints within the group, requiring more time for discussion
and consideration of various perspectives along with AI advice. Nevertheless, the total
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decision time and time taken to make the initial individual decision remained relatively
consistent across different levels of task uncertainty. With the lower group accuracy and
longer time reaching the consensus which is associated with higher task uncertainty, we
observed that the group efficiency drops in high levels of task uncertainty compared to
tasks with relatively low uncertainty. We did not observe any significant difference in the
efficiency of individuals in their initial decisions across tasks of varying uncertainty, sug-
gesting that the presence of a group and collaborative thinking before making an indi-
vidual decision could help mitigate the negative impact of task uncertainty on efficiency.

Comparing the performance of the human-AI group with the accuracy of the AI sys-
tem (0.66) revealed that the group was able to achieve higher accuracy in tasks with rel-
atively low complexity (0.79) or uncertainty (0.91). This suggests that in situations with
low task complexity or uncertainty, collective intelligence and collaboration within the
group can lead to more accurate outcomes compared to relying solely on the AI sys-
tem, achieving complementary performance. In high-complexity situations, however,
the AI system’s accuracy slightly surpassed that of the group (0.62), suggesting that the
AI system may have an advantage in handling complex tasks. The AI system’s accuracy
exceeds that of the group in tasks with high levels of uncertainty (0.51), demonstrating
its potential as a reliable and precise tool for making decisions. Therefore, peers should
consider leveraging AI advice to augment their decision-making processes, particularly
in situations with high levels of task uncertainty or complexity.

Overall, this study emphasizes the importance of considering task complexity and
uncertainty in a human-AI decision-making context and highlights the potential ben-
efits of incorporating AI advice to enhance accuracy and efficiency in group decision-
making. Although AI advice has been shown to improve accuracy potentially through
facilitating improved discussions, there is still a need for the design and development of
more nuanced approaches and support systems to help groups fully leverage AI advice,
especially in highly complex and uncertain scenarios.

5.6.2. CAVEATS AND LIMITATIONS

Individuals and groups are prone to a range of biases that can impact the accuracy and
effectiveness of their decision-making processes. In our task, we identify the familiar-
ity bias that could lead individuals or groups to rely too heavily on their own experiences
and knowledge, neglecting the valuable insights provided by the AI system or the partner.
We also recognize the potential for groupthink, wherein group members may conform
to a dominant opinion or suppress dissenting views to maintain harmony or consensus
within the group. While we formed small groups and delegated tasks accordingly, it is
crucial to account for the potential differences in outcomes when working with larger
groups in future work. Furthermore, group communication in face-to-face settings may
differ from chat communication, potentially influencing the decision-making process.
The findings from this study should be interpreted with caution as they may not gener-
alize to all decision-making contexts. Different contexts may have different levels of task
uncertainty or complexity, and the dynamics within groups may vary. The use of AI sys-
tems with different attributes may also impact the decision-making process. Although
we operationalized task complexity and task uncertainty in this study, further research
is needed to explore the impact of other factors such as group size, group diversity, and
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communication dynamics on the accuracy of decision-making outcomes. Analyzing the
impact of task characteristics on peer trust and reliance on AI systems was beyond the
scope of this work. However, it could provide valuable insights into how group perfor-
mance was affected by these factors. Additionally, our study did not explore the con-
tent and number of messages exchanged within the group, which may have influenced
decision-making processes. Future research should aim to investigate these factors to
gain deeper insights into the role of AI systems in human-AI group decision-making.

5.7. CONCLUSION AND FUTURE WORK
In this study, we investigated the impact of task complexity (RQ1) and task uncer-
tainty (RQ2) on the performance and behaviour of human-AI group decision-making.
Each group consisted of two participants with an AI system who collaborated on three
decision-making tasks in the context of trip planning. We conducted a user study with
256 participants to explore our research questions across four experimental conditions
varying in level of complexity (high or low) and uncertainty (high or low). Our results re-
vealed that task complexity and task uncertainty significantly influence the performance
and dynamics of human-AI group decision-making. Specifically, we found that in tasks
with high complexity or high uncertainty, group performance diminishes significantly
compared to tasks with low complexity or low uncertainty. AI advice was also found to
positively impact decision-making performance, but this effect was statistically signifi-
cant in conditions of high complexity. This positive impact does not necessarily imply
that groups always agree with AI advice, as individual and group factors may still influ-
ence the decision-making process. On the other hand, we have shown that task com-
plexity and uncertainty can have varying effects on the efficiency of human-AI group
decision-making. While higher task complexity tends to increase efficiency, higher task
uncertainty can decrease efficiency and prolong the time needed to reach a consensus.
Overall, this study highlights the importance of considering task complexity and un-
certainty in human-AI group decision-making, and the need for tailored strategies and
guidelines to optimize the integration of AI systems in group decision-making, especially
in uncertain environments.

Future studies should further investigate the dynamics of trust and reliance in group
decision-making with AI systems to gain a more comprehensive understanding of the
factors that influence group behaviour and decision-making processes. Moreover, future
research should explore how AI systems can be designed and utilized to mitigate the neg-
ative effects of task complexity and uncertainty, as well as develop strategies to enhance
collaboration and communication between humans and AI systems to improve group
decision-making outcomes. Additionally, it would be valuable to explore other factors
that may influence human-AI group decision-making, such as different task contexts
and features, group sizes, group diversity, group dynamics, and the impact of potential
biases in the group setting.
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ON THE IMPACT OF ENTITY CARDS

ON LEARNING-ORIENTED SEARCH

TASKS

Entity cards are a common occurrence in today’s web Search Engine Results Pages (SERPs).
SERPs provide information on a complex information object in a structured manner. Typ-
ically, they combine data from several search verticals. They have been shown to: (i) in-
crease users’ engagement with the SERP; and (ii) improve decision making for certain types
of searches (such as health searches). In this chapter, we investigate whether the benefits
of showing entity cards also extend to the Search as Learning (SAL) domain. Do learners
learn more when entity cards are present on the SERP? To answer this question, we de-
signed a series of learning-oriented search tasks (with a minimum search time of 15 min-
utes), and conducted a crowdsourced Interactive Information Retrieval (IIR) user study
(N = 144) with four interface conditions: (i) a control with no entity cards; (ii) displaying
relevant entity cards; (iii) displaying somewhat relevant entity cards; and (iv) displaying
non-relevant entity cards. Our results show that (i) entity cards do not have an effect on
participants’ learning, but (ii) they do significantly impact participants’ search behaviours
across a range of dimensions (such as the dwell time and search session duration).

6.1. INTRODUCTION
Learning is an important aspect of our lives. Thanks to the prevalence of the World Wide
Web (WWW), learning is today often achieved in an informal way, with web search en-
gines acting as the information source. [285] defined these search episodes as a part
of exploratory search. Known as Search as Learning (SAL) [88] today, SAL is an iterative

This chapter is based on a peer-reviewed paper: Sara Salimzadeh, David Maxwell, Claudia Hauff. 2021. On
the Impact of Entity Cards on Learning-Oriented Search Tasks. In Proceedings of the 2021 ACM SIGIR Inter-
national Conference on the Theory of Information Retrieval (ICTIR ’21), July 11, 2021, Virtual Event, Canada.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3471158.3472255.
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process where the goal of the learner is to gain knowledge about their specific infor-
mation need, or learning objective. A large body of research now encompasses the SAL
domain [87, 89, 125, 145, 151, 223, 270, 271, 317, 389, 431, 433, 451], with most of these
works concerning the analysis of query logs to attain insights into how those subjected to
learning-oriented search tasks behave. Another prominent research direction is how to
measure learning in a scalable manner, as only with cheap to compute metrics derived
from observable search behaviours at scale will we be able to fulfil the vision of a search
interface that adapts to a user’s learning needs. In fact, the adaptation of the search sys-
tem itself—either at the front-end or the back-end—have largely been left unexplored
in the SAL domain. Exceptions to this are a small number of works that propose re-
trieval functions that surface documents suitable for learning [387–389], and works that
designed and evaluated search engine result page widgets for learning purposes [69, 82,
352].

Modern web search engines do not provide interfaces that are explicitly designed for
learning-oriented searches, though they have changed remarkably over their lifespan.
Until a few years ago, the ten blue links paradigm dominated the look and feel of SERPs.
Contrasted to contemporary SERPs, results are now shown from multiple modalities and
search verticals. One prominent result type is the entity card. Each entity card (or infor-
mation card) contains a summary of the entity (e.g., the name, description, associated
images, and related entities)—and thus often helps users find information without the
need to interact with other search results.

Although research into the usability and usefulness of entity cards is somewhat lim-
ited, several studies [50, 214, 309] have shown that entity cards can enhance the search
experience in several ways. Entity cards provide concise content corresponding to the
user query by merging information from various information sources, such as images,
maps, Wikipedia, or social media [50]. They assist users in accomplishing their task [242,
309], and increase users’ engagement with organic search results [50].

Despite these advantages however, entity cards have not been evaluated in the SAL
context. To this end, we investigate in this chapter whether entity cards are beneficial
to users that undertake learning-oriented search tasks in terms of the achieved learning
outcomes. We conduct an Interactive Information Retrieval (IIR) study, and design four
SERP variants: (i) the control condition which provides a standard SERP without an en-
tity card (No-EC); (ii) a SERP with an entity card relevant to the query (Good-EC); (iii) a
SERP with an entity card that is somewhat relevant to the query (Fair-EC); and (iv) a
SERP with a non-relevant entity card (Bad-EC)1. We implemented these variants on top
of the SearchX framework [335], and conducted a between-group study with N = 144
participants. Each participant was assigned to one of the four conditions to assess how
different variants of entity cards impact human learning while searching. Concretely,
our research questions are as follows.

RQ1: Does the inclusion of entity cards of various quality impact the amount of
learning taking place during a learning-oriented search task?

1As a concrete example from our query log, for the query radioactivity, a good entity card is radioactive
decay, a fair one is radionuclide and a poor one is time.
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RQ2: Does the inclusion of entity cards of various quality impact users’ search
behaviours during a learning-oriented search task?

Our main findings can be summarised as follows. (i) The inclusion (or not) of an
entity card has no discernible impact on participants’ learning gains. (ii) In contrast,
the quality of the entity card with respect to the query has a significant effect on partici-
pants’ search behaviour across a range of dimensions (such as the dwell time and search
session duration).

This is the first work to begin to shed light on the influence of entity cards on users’
learning gain. Despite observed changes in search behaviour led to no positive changes
in learning gain, these findings point to many open issues in terms of entity card design
optimised for human learning.

6.2. RELATED WORK

ENTITY CARDS
Despite the fact that entity cards are ubiquitous in web search engines today, there is a
limited amount of research published about them. Most research focuses on exploring
the impact of entity cards on users’ search behaviour. [309] undertook a user study to
determine the impact a non-linear SERP layout has on eye and mouse movement be-
haviours. They were able to show that users spend more time on relevant entity cards
than their non-relevant counterparts. When entity cards are relevant, they are beneficial
to reduce the task completion time (at least sometimes). This is because the information
need can be directly answered by the card’s content. [NLagun_2014] interleaved entity
cards within organic search results and carried out a user study in a mobile setting. In
line with [309], they found that in the presence of non-relevant entity cards, users gloss
over them. Upon not finding an answer, they continue to examine results below, leading
to an increased amount of time spent further down the SERP. [50] explored how entity
cards affect users’ search behaviours and perceived workload. While they went in-depth
into generating different types of entity cards (i.e., on-topic and off-topic), results gener-
ally showed that participants were more likely to interact (in terms of clicks and mouse
hovers) with cards that are relevant to their information need. Furthermore, the pres-
ence of entity cards on search result pages increases the users’ engagement with organic
search result pages. Relevant entity cards also do not significantly increase users’ work-
loads.

Apart from behavioural aspects, prior works have considered how to generate and
present entity cards on SERPs. [178] examined the content of entity cards, introduced
the task of dynamic entity summarisation, and proposed an approach to generate query-
dependent entity summaries. Their user study found participants to favour dynamic
summaries over static ones. Recently, [214] have shown in the health IR setting that
when searching for information about a particular condition, users typically consider
the entity card presented first—and then continue to the remainder of the SERP. In addi-
tion, they proposed an entity-focused SERP with multiple entity cards, and showed that
the presence of relevant entity cards regardless of the interface type (i.e., one or multiple
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cards) leads to a higher probability of making correct decisions. Lastly, the SERP variant
with multiple entity cards shown at once allowed participants to make health decisions
with significantly less effort as measured by the number of clicks.

KEYPHRASE EXTRACTION

In order to determine which entity card(s) to show for a given query (and without access
to a large query log for training), we rely on the top retrieved documents for that query.
As a first step, we need to extract the keyphrases from each of those documents. The task
of keyphrase extraction can be defined as “automatically selecting a small set of phrases
that best describe a given free text document” [35]. Here, we only focus on unsupervised
methods, as they are most suitable for our user study due to their domain indepen-
dence and no required training data. Unsupervised algorithms are divided into two pri-
mary groups: (i) corpus-dependent approaches [123, 126, 289, 336, 414, 421, 448] which
rely on the entire corpus that the current document may be linked to; and (ii) corpus-
independent approaches [35, 51, 72, 137, 230, 250, 251, 294, 319, 374, 414, 422], which rely
on the current document only. Within the corpus-independent category, approaches
follow different strategies such as: (i) graph-based methods [51, 137, 294, 374, 414, 422]
which exploit graph-based language representations to detect keywords; (ii) embedding-
based approaches [35, 230, 250, 251, 319]; (iii) statistical-based methods [72] which rely
on statistical features of the text. For our work, we picked one graph-based [374], one
embedding-based [35], and one statistical-based approach [72]—each reporting state-
of-the-art effectiveness within their category. We picked the best model for our use case
in a validation study, as described in the following section.

SEARCH AS LEARNING (SAL)
SAL is concerned with exploring how search engines can aid users in learning, in both
the formal and informal setting. Prior studies [145, 351] explored the impact of domain
expertise on learning. [145] observed that participants who are less familiar with a par-
ticular topic achieve slightly greater knowledge than users already familiar with the topic
(though it is not yet clear whether this finding is mainly an artefact of the topics and the
manner of how learning is measured). [351] noticed the difference between experts and
non-experts in terms of their learning toward the end of the search task. Previous re-
search also suggests that domain experts employ different search strategies (in terms of
queries posed, documents viewed, etc.) to find what they are looking for compared to
non-experts [351, 431].

An important aspect of SAL are cheap and easy to measure user behaviours that al-
low us to estimate the amount of learning taking place—this in turn would allow us to
adapt search algorithms and interfaces on-the-fly. [125] studied the flow of evolving ex-
pertise within search sessions purely based on users’ search behaviours. It was shown
that SERP snippets and documents viewed inspire users’ queries and reveal informa-
tion about users’ domain knowledge. Other proxies for learning explored include: eye
movement patterns [87]; documents saved and opened [14, 145, 462]; as well as SERP
clicks [14, 89]. While most studies focus on lower cognitive levels, [223] studied how
search behaviours correlate with information needs at different cognitive levels. They
found that users’ search interactions with the SERP increased as participants moved to-
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wards tasks with higher cognitive levels of complexity.
To explicitly measure the learning gain (instead of inferring it from search be-

haviours), many lab-based user studies assess the knowledge of users before and after
the search sessions via vocabulary tests, mind maps and the writing of summaries [89,
270, 271, 317, 389, 433]. Following this setup, we investigate in this work the impact that
entity cards have on users’ vocabulary learning and search behaviour during a learning-
oriented search task.

6.3. ENTITY CARD IMPLEMENTATION
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Figure 6.1: The SearchX interface as used for this study. Included in this screenshot at the 10 superimposed
annotation marks: (1) the query box with (2) autocompletion; (3) the timer that indicates the time spent in
the search session so far; (4) the task description; (5) the ten search results per page which can be (6) saved
to the (9) Saved Documents box; (7) the entity card; (8) the list of Recent Queries; and finally (10) pagination.
Note that this figure shows an entity card from the Good-EC condition.

The present study was undertaken using SearchX [335], an open-source, modular
retrieval framework that allows one to undertake crowdsourced IIR experiments. Out-
of-the-box, SearchX provides quality assurances and basic logging functionalities, en-
suring that only high-quality participants complete a study—and that the necessary in-
teractions are logged. As entity cards are not yet supported by SearchX, we implemented
a novel entity card component for it.

Figure 6.1 demonstrates the user interface that was used by the participants of our
study. Users can issue their queries in the query box which also offers query auto-
completion provided by the Bing Autosuggest API2. We present ten search result snip-
pets per page, drawn from the Bing Search API. Pagination is provided at the bottom of
the SERP. Participants can easily bookmark documents and access them in the Saved
Documents box. In addition, Recent Queries a user issued are also shown in a separate

2All Bing APIs used can be found at https://www.microsoft.com/en-us/bing/—all URLs listed in this
chapter were last accessed on April 27th, 2021.

https://www.microsoft.com/en-us/bing/
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box. The description of the search task appears in the top right corner of the SERP. The
timer above the task box helps users gauge the elapsed time. Our entity card is always
presented at the position shown in Figure 6.1 and presents concise information regard-
ing one significant entity within the query and search results. The remainder of this
section discusses the structure of our entity cards, and the three variants of entity cards
we evaluate—good (Good-EC), fair (Fair-EC) and poor/bad (Bad-EC) quality cards.

6.3.1. ENTITY CARD STRUCTURE

Figure 6.2 illustrates the structure of our entity cards. Each entity card consists of up to
four components: (i) a set of images, which were obtained from the Bing Image Search
API ; (ii) the entity’s title; (iii) its’ Wikipedia-based summary; and (iv) multiple attributes
whose existence and number are dependent on DBPedia’s open knowledge graph, which
contains structured content of various Wikipedia projects. In Figure 6.2, only attributes
for the entity Barack Obama are shown. This is not the consequence of the experimental
condition, but instead due to our decision of filtering out rare attributes. More con-
cretely, we processed DBpedia version 2016-103, and remove all attributes that occurred
in fewer than 20% of attributes of a particular type to avoid distracting users by the pres-
ence of unusual attributes (such as eye colour for entities of type Person).

6.3.2. ENTITY CARD RANKERS

The most important question in the setup of our study is how to determine the ranking
of entities: for a given query, once a ranking of entities has been established, we are able
to determine the good, fair and bad entities for a query by considering the ranks at which
entities are retrieved. For each query a user submits, we concatenate the user query and
the top 10 search results snippets. We opted to not include the actual document content
in this step as this would require an additional ten HTTP requests, slowing down our
SERP’s responsiveness significantly (and a slow responsiveness is known to decrease user
engagement [249]).

After setting up the context as the concatenation of the query and top ten retrieved
document snippets, we then need to retrieve the ranking of the entities through key-
word extraction methods. As described in Section 6.2, several unsupervised approaches
for keyphrase extraction exist. Besides the already noted advantages of unsupervised
approaches, we also aim to detect keyphrases on-the-fly, thus requiring a fast algo-
rithm (and inference of a large neural network for instance has significant speed con-
straints). Based on prior works, we selected three keyphrase extraction approaches that
are all corpus-independent: Yake [72], RaKUn [374] and EmbedRank [35]. We select
these algorithms as: (i) they have functioning open-source implementations; (ii) they
are lightweight, unsupervised algorithms that produce output in a timely manner; and
(iii) they are robust (i.e., they do not degrade in effectiveness significantly) to changes in
collections and domains. For each of these algorithms, we provide our query and docu-
ment snippets as input, and consider the resulting top 20 ranking of keyphrases. Highly-
ranked keyphrases have the highest relevance score with respect to query and document
snippets. In order to convert the ranking of these 20 keyphrases into a ranking of 20 en-

3https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
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Figure 6.2: Demonstration of the three types of entity cards (for the query barack obama). From left to right:
(a) Good-EC, a high-quality, on-topic entity card; (b) Fair-EC, another somewhat relevant entity card, but
not the first choice; and (c) Bad-EC, an entity card not relevant to the query.

tities, we employ the TagMe API4. This API links each keyphrase to at least one pertinent
Wikipedia page. In any cases, TagMe returns at least one output. We chose the output
of TagMe with the highest probability score and fixed this as the entity corresponding to
the keyphrase.

For simplicity, we refer to the keyphrase extraction algorithms now as our entity
rankers, as the procedure to convert the extracted keyphrases to entity rankings (via the
TagMe API) is the same for all three. Next, we describe the user study we conducted to
determine which of the three entity rankers provides us with the best ranking.

6.3.3. COMPARISON OF ENTITY CARD RANKERS

First, we fixed a list of ten topics5 randomly drawn from the TREC 2019 Decision (Health
Misinformation) Track6. We asked ten volunteers of a computer science lab to provide up
to five queries for each of the topics, whose TREC topic description we provided to them.
This resulted in between 10 and 27 unique queries per topic, with a median number of
12 unique queries. Each of these queries was submitted to the Bing Search API, from
which the top ten result snippets were extracted. Based on this input, we retrieved the
entity rankings from Yake, RaKUn and EmbedRank respectively.

As in our actual experiment, we only show one entity card per query as we are most
interested in the top-ranked entity retrieved by each algorithm. For this reason, we now
focus on the top ranked entity. We discard queries for which at least two of the three al-
gorithms produced the same entity, leaving us with 70 queries—and the three respective

4https://sobigdata.d4science.org/web/tagme/tagme-help
5The ten TREC topic titles are acupuncture insomnia, ear drops remove ear wax, honey wound, melatonin

jet lag, magnesium muscle cramps, insulin gestational diabetes, vaccine common cold, antibiotics children
pneumonia, caffeine asthma, and surgery obesity.

6https://trec.nist.gov/data/misinfo2019.html

https://sobigdata.d4science.org/web/tagme/tagme-help
https://trec.nist.gov/data/misinfo2019.html
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Table 6.1: An example query chain, as drawn from a search session under the Glycolysis topic. Correspond-
ing entity cards that were presented for each query across conditions Good-EC, Fair-EC, and Bad-EC are
shown in their respective columns.

Query Good-EC Fair-EC Bad-EC

1. glycolysis glycolysis nicotinamide adenine dinucleotide river source
2. pyruvate pyruvic acid lysosomal acid lipase pyruvic acid ration
3. cellular respiration cellular respiration adenosine triphosphate art
4. major phases of glycolysis glycolysis sugar steps

top-retrieved entities.
We then randomly selected three topics from our initial list of 10 topics. For each

topic, we randomly drew four queries from the collected queries and assigned them to
32 volunteers to judge which of the three top-ranked entity cards from Yake, RaKUn,
and EmbedRank respectively are useful given the information need (i.e., the TREC topic).
They could select multiple options or select None to signify that they do not consider
any of the presented entity cards to be useful. Overall, EmbedRank’s top retrieved entity
was selected as the useful entity for 35% of the queries, in contrast to RaKUn’s and Yake’s
17% and 15% respectively. For 21% of queries, none of the algorithms returned a useful
top-ranked entity.

Based on these results, we opted to take EmbedRank forward as our entity ranker
throughout the remainder of the experiment discussed in this chapter.

6.3.4. ENTITY CARD TYPES
Given a query and an entity ranking produced by EmbedRank, we create three types of
entity cards.

• Good-EC The top ranked entity is selected.

• Fair-EC The entity at the rank five is selected.

• Bad-EC The entity at rank 20 is selected.

To provide the reader with an impression of the entities retrieved for the three entity
card conditions, we refer to Table 6.1. For example, for query cellular respiration (the
third query), the entities in descending order of quality are as follows: cellular respiration
(Good-EC); adenosine triphosphate (Fair-EC); and art (Bad-EC). For completeness, the
No-EC condition is our control condition: here, no entity card is presented on the SERP.

Note that besides retrieving different entities for the different conditions, we do not
alter the way the entity card looks for each entity type. In particular, what type of at-
tributes and imagery is shown depends on the information available on Wikipedia/DB-
Pedia, and not the entity card type. As stated previously, Figure 6.2 provides an example
query and the three entity cards generated.

Evaluation of Entity Cards. In order to determine whether our intended quality levels
of the entity cards were in fact correct, we manually evaluated the quality of the entity
cards the participants received in response to their queries across all conditions.

In our manual labelling effort, we labelled entity cards as good when the entity card
title exists in the query. The label fair is given to entity cards when their title aligns with
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any concepts related to the query. Lastly, we mark entirely off-topic entity cards as bad.
The manual annotation of 743 participants’ queries (and the corresponding entity card)
led to the following results: 87.2% of entity cards shown in the Good-EC condition were
annotated as good, 82.4% of entity cards shown in the Fair-EC condition were labelled
as fair, and 99.2% of entity cards shown in the Bad-EC condition were labelled as bad.
This gives us confidence that the entity cards presented to participants during the exper-
iment fell into line with our expectations.

Additionally, we asked the participants post-test to evaluate the relevance of the en-
tity cards to their queries. 82.8% of the participants in the Good-EC condition asserted
that entity cards are Mostly/Always Relevant to the queries, while the proportion is 76.1%
for the participants of the Fair-EC condition, and 7.5% for participants in the Bad-EC
condition.

Table 6.2: Example annotations of participants’ definitions of vocabulary terms for the topic Glycolysis.

Vocabulary term pyruvate

Correct A compound that is produced via glycolysis and is related to pyruvic acid.

Partially correct It is a product of glycol is it can help with fat burning.

Incorrect A molecular unit of sugar.

Vocabulary term krebs cycle

Correct The Krebs cycle is also called the citric acid cycle. It’s a series of chemical reactions which require oxygen
and get energy from food. It can only be aerobic. It produces ATP and also other compounds used by
the electron transport chain.

Partially correct Also known as they citric acid cycle.

Incorrect A cellular process that helps an organism live.

6.4. STUDY DESIGN

We now describe our user study in more detail. We go over the search topics, how to
measure learning, and the workflow the participants of the study followed.

6.4.1. TOPICS

We employ three of the topics introduced by [301]’s search as learning study: Glycolysis,
Radioactive Decay, and Qubits. Each of these topics comes with a list of 10 vocabulary
terms that have been manually curated by the authors.

For example, for the Glycolysis topic, vocabulary terms include krebs cycle, electron
transport chain, and cellular respiration. These vocabulary terms are terms that: (i) were
mentioned in a specific video lecture about the topic at least once; and that (ii) do not
frequently occur outside of this domain-specific context. In their work, [301] proposed
a list of in total 10 topics. We chose the three listed above based on the availability of
entity cards: concretely, we received the query log of [301], submitted all the queries for
each topic to the Bing Search API, and ran EmbedRank to retrieve the respective entity
rankings. We then selected the three topics with the largest number of relevant entities.
Specifically, the topic Radioactive Decay (with a rate of 6.02 entities per query) has the
greatest number of entities per query, followed by topics Glycolysis and Qubits with 5.4
and 4.7 entities per query, respectively.
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6.4.2. LEARNING GAIN
We measure our participants’ learning gain by measuring their difference in knowledge
in a pre-test (conducted right before the search session) and a post-test (conducted right
after the search session) in line with [Yu_2018, 145, 301, 351, 388, 389]. As in [301, 351],
we employ the slightly modified Vocabulary Knowledge Scale (VKS) test [378, 389, 429],
which demonstrate the incremental stage of stages of word learning [97]. For every vo-
cabulary term, our participants are asked about their knowledge across four levels:

(1) I don’t remember having seen this term/phrase before.

(2) I have seen this term/phrase before, but I don’t think I know what it means.

(3) I have seen this term/phrase before, and I think it means ___ .

(4) I know this term/phrase. It means ___.

Note that for levels (3) and (4), we require participants to write their definition of the
term. The difference between the two is in the certainty of the participants’ knowledge:
in level (3) the uncertainty is high; with level (4), participants are certain about their
knowledge.

Again, in line with prior works [90, 301, 387, 389], we employ Realised Potential
Learning (RPL) to measure the learning gain which normalises Absolute Learning Gain
(ALG) by the Maximum possible Learning Gain (MLG). ALG is an aggregated difference
in knowledge level before and after the search session across all vocabulary terms—with
the added proviso that knowledge cannot degrade over the time of the search session (be-
tween the pre- and post-tests).

Here, vkspr e (vi ) and vkspost (vi ) indicate the scores assigned to vocabulary term vi

in the pre- and post-test, respectively. We set the vks score to 0 knowledge levels (1) or
(2). We also assign the score of 1 for both knowledge levels (3) and (4), which is in line
with the binary setup employed in [301]. RPL is computed as follows.

ALG = 1

n

n∑
i=1

max(0, vkspost (vi )− vkspr e (vi ))

MLG = 1

n

n∑
i=1

maxScor e − vkspr e (vi )

RPL = ALG

MLG

6.4.3. PROCEDURE
When a participant enters the study, the online learning experiences questionnaire is
presented, consisting of seven questions. These questions are inspired by [350], and fo-
cus on online learning experiences with the goal to prime participants for the upcoming
task. Then, we present the pre-test for the three topics to each participant. For each topic
(in addition to the 10 vocabulary knowledge questions), we include three more general
questions to probe the participants.



6.4. STUDY DESIGN

6

99

• How much do you know about this topic?

• How interested are you to learn more about this topic?

• How difficult do you think it will be to search for information about this topic?

Thus, in the pre-test, each participant answers a total of 7+ 3× 13 = 46 questions.
Subsequently, the participants move on to the search phase where they are randomly
assigned to one of our four experimental conditions. For the topic, the one with the least
amount of prior knowledge (computed from the answers to their pre-test questions) is
selected. Before starting the search task, a tutorial is shown to the participant providing
information about how to interact with different interface components. The search task
presented to the participants is the following (the underlined phrases are specific to each
search topic).

Imagine that you are taking an introductory Physics course this term. For your term
paper, you have decided to write about Radioactivity. You also would like to write
about how Radioactivity happens and what types of Radioactivity exist.

The minimum search time was fixed to fifteen minutes to provide sufficient time
to search and learn while alleviating fatigue. We relied on the Bing Search API as our
search backend, and filtered out any search results originating from Wikipedia or any of
its mirrored pages. As we aim for our participants to search in order to learn, we removed
this source of information to avoid participants spending their search time reading a
single Wikipedia document.

During the search session, participants can search, view, and bookmark documents.
We disable copy and paste options and limit the tab changes to a maximum of two to
avoid participants searching the web to answer our questions. At three browser tab
changes, a participant is disqualified from the study.

The experiment ends with a post-test, which contains the same vocabulary knowl-
edge test as the pre-test this time though only focused on the one topic assigned to the
participant. Additionally, participants are tasked with writing a summary with a mini-
mum of 100 words, and the term paper’s outline as indicated in the search task descrip-
tion. Lastly, we include 10 questions regarding the entity cards, their experience working
with our search system, their perceived learning, and perceived search success.

6.4.4. PARTICIPANTS
We conducted our user study on the Prolific Academic Platform. We required our N =
144 participants to: (i) have at least 15 accepted Prolific task submissions; (ii) be native
English speakers (limiting participants to be from only the United Kingdom); and (iii)
have a minimum approval rate of 85%. The study took approximately 40 minutes to
complete. We paid our participants GBP£6.43 per hour for the experiment. Among our
participants, 64.5% were female, and 35.5% were male. We report a mean age of 32.4
(minimum 18 years, maximum 74 years). Due to the nature of crowd-sourced studies, we
continued to add more participants to our Prolific task until we reached 36 participants
for each condition.
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6.4.5. VOCABULARY KNOWLEDGE ASSESSMENT
In total, participants provided us with 394 concept definitions (across both the pre-test
definitions written for the topic that was eventually selected for the respective partici-
pant, and the post-test definitions) when self-assessing their knowledge as level (3) or
(4) (see §6.4.2). We manually evaluated all provided concept definitions and labelled
each one as either correct, partially correct, or incorrect. Examples of definitions and the
labels we assigned to them are provided in Table 6.2. More formally, we employed the
following criteria to judge each definition provided by a participant.

(2) Correct If a participant explains one related concept without any errors, their defi-
nition was assigned the highest score. Furthermore, the highest score was given to
the participant’s definition which explains multiple related concepts, while leeway
was given if an error was in one of the concepts.

(1) Partially Correct The participant’s definition describing one related concept with
any errors was given a score of 1. This score also applied to participants whose
definition provided a correct synonym for the term. For example, the Krebs cycle is
also known as the citric acid cycle.

(0) Incorrect Definitions that are either entirely incorrect or trivial (e.g., ‘beta-minus
decay is a kind of decay’).

As a first step in our annotation, we randomly sampled 50 of the vocabulary term def-
initions (13% of the total available terms). The authors then annotated them indepen-
dently according to the above correctness criteria. Inter-annotator agreement, computed
as Cohen’s kappa, is 0.83. With this high rate of agreement, we then split the remaining
definitions and annotated them independently. In contrast to prior works [69, 301, 352],
we did not rely on self-assessments of knowledge. Instead, we instead manually veri-
fied to what extent these self-assessments were correct. We found that for knowledge
level (3) (see §6.4.2): 31% of the provided term definitions were identified as being cor-
rect; 38% were partially correct; with the remaining 31% incorrect. From the vocabulary
terms self-assessed as knowledge level (4): 48% were correct; 25% were partially correct;
with the remaining 27% incorrect.

6.5. RESULTS
To address our two research questions as outlined in Section 6.1, measures were anal-
ysed by using a two-way ANOVA. These were conducted considering both the conditions
and topics as factors; main effects were examined where α = 0.05. For post-hoc analy-
sis, the TukeyHSD pairwise test was used. For results in all tables, ± values denote the
standard deviation.

ENTITY CARDS AND LEARNING (RQ1)
RQ1 asks to what extent entity cards of varying quality impact the amount of learning
taking place. Table 6.3, row X, presents the RPL across the four experimental conditions.
To complement this, rows XI-XII also report the RPL achieved over each of the three top-
ics. As these measures only provide a high-level overview of the learning gain, Figure 6.3
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Table 6.3: Mean (± standard deviations) of RPL and search behaviour measures across all participants over
each of the four experimental conditions. A † indicates two-way Anova significance, while G ,F,B ,N reveals
post-hoc significance (TukeyHSD pairwise test, p < 0.05) increases vs. Good-EC, Fair-EC, Bad-EC, and
No-EC conditions, respectively.

Good-EC Fair-EC Bad-EC No-EC

B
eh

av
io

u
ra

l

I Number of participants 36 36 36 36

II Search session duration (mm:ss)† 16:43 (± 4:22) 16:15 (± 2:04) 16:58 (±
3:06)N

15:44 (±
0:45)B

III Number of queries 4.89(±2.23) 5.18(±2.41) 5.62(±2.69) 6.03(±2.89)

IV Fraction of entity card terms within the subse-
quent query†

0.69(±0.30)F B 0.34(±0.29)GB 0.02(±0.05)GF -

V Average time between queries (secs) 221.08(±187.32) 197.56(±162.22) 187.99(±113.41) 164.5(±80.87)

VI Number of hovers over entity cards 14.94(±9.01) 16.62(±9.73) 13.94(±6.35) -

VII Average time between documents (secs) 79.41(±82.75) 63.96(±43.36) 73.57(±60.10) 67.43(±49.68)

VIII Average document dwell time (secs)† 126(±69.6) 117(±65.4) 151.2(±93.6)N 113.4(±48.6)B

IX Number of unique documents viewed 8.25(±4.22) 8.56(±3.8) 8.68(±3.24) 9.75(±3.98)

L
ea

rn
in

g X RPL (over all topics) 0.19(±0.21) 0.22(±0.22) 0.17(±0.22) 0.18(±0.17)

XI RPL for topic Radioactive Decay 0.16(±0.19) 0.12(±0.17) 0.09(±0.14) 0.13(±0.16)

XII RPL for topic Qubits 0.15(±0.19) 0.22(±0.23) 0.11(±0.12) 0.15(±0.11)

XIII RPL for topic Glycolysis 0.26(±0.26) 0.35(±0.20) 0.34(±0.31) 0.25(±0.22)

Table 6.4: Summary statistics for the three topics used in our study (± standard deviations). A † indicates
two-way Anova significance, while R ,Q,G indicate post-hoc significance (TukeyHSD pairwise test, p < 0.05)
vs. Radioactive Decay, Qubits, and Glycolysis, respectively.

Radioactive Decay Qubits Glycolysis

#

I Total participants 48 48 48

II # in conditions Good-EC, Fair-EC,
Bad-EC, and No-EC

12 12 12

B
eh

av
io

u
ra

l

III Average number of queries 5.0(±2.40) 5.90(±2.44) 5.39(±2.93)

IV Median number of queries 4 5.5 4

V Average time between queries (sec)† 210.56(±102.47)Q 145.48(±55.35)RG 224.99(±215.84)Q

VI Median time between queries (sec) 183.53 142.07 148.54

VII Average number of bookmarks 2.88(±2.83) 3.15(±3.67) 3.25(±2.97)

VIII Median number of bookmarks 2.5 2 3

IX Average number of unique documents
viewed†

7.90(±3.66)G 8.83(±3.72) 9.80(±3.99)R

X Median number of unique documents
viewed

7 8.5 9

R
P

L XI RPL† 0.12(±0.16)G 0.16(±0.16)G 0.30(±0.25)RQ

XII Median RPL 0.10 0.11 0.30

plots the distribution of learning gain across participants for each of the four conditions
and each of the three topics respectively.

We first focus on the learning gain across four experimental conditions. For our con-
trol condition (No-EC), the average RPL is 0.18, which means that participants gain
on average 18% of the knowledge they could have gained at best. When comparing
No-EC with the other conditions, we do not observe significant differences in learning
gain. We also observed that the learning gain for the Bad-EC is the lowest compared
to other conditions; lower than even No-EC. Additionally, Figure 6.3(a) shows that for
both Good-EC and Fair-EC, the variability in RPL scores across participants is larger
than for the other two conditions. Although there is no significant difference across con-
ditions, these findings suggest that (at least partially) relevant entity cards may improve
learning gain, but only marginally. In contrast, poor entity cards could negatively impact
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Table 6.5: Source of terms for query reformulations. A † indicates two-way Anova significance, while G ,F,B ,N

indicate post-hoc significance (TukeyHSD pairwise test, p < 0.05) vs. Good-EC, Fair-EC, Bad-EC, and No-EC
conditions, respectively.

Good-EC Fair-EC Bad-EC No-EC

I Fraction of query terms from prior snippets† 0.29(±0.25) 0.18(±0.19)N 0.25(±0.23) 0.34(±0.17)F

II Fraction of query terms from prior documents† 0.50(±0.33)N 0.35(±0.33)N 0.41(±0.36)N 0.58(±0.21)GF B

III Fraction of query terms from prior entity card titles† 0.24(±0.17)F B 0.12(±0.14)GB 0.01(±0.03)GF -

IV Fraction of query terms from prior entity card
summaries†

0.53(±0.24)F B 0.39(±0.31)GB 0GF -

on learning—with the suggestion that a bad entity card may distract participants from
learning within complex topics. Rows XI-XIII of Table 6.3 also report the RPL across each
condition, splitting it up by each of the three topics trialled.

Table 6.4 presents a summary of the RPL (amongst behavioural measures) from a
per-topic perspective. We can see on row XI a large variation in the mean RPL attained
over the three topics: 0.12±0.16 for Radioactive Decay; 0.16±0.16 for Qubits; and 0.30±
0.25 for Glycolysis. Indeed, Glycolysis was found to have a significantly higher level of
RPL than either Radioactive Decay or Qubits. This meant that Glycolysis was considered
the easier topic on average, with Radioactive Decay appearing to be the more complex.
The differences between topics are also visible in Figure 6.3(b): Glycolysis has the highest
median with the greatest variability in learning gain. What had an impact on knowledge
gain is the distribution of topics among participants.

Realised Potential Learning (RPL): Over Conditions and Topics

R
PL

(a) Condition (b) Topic
Radioactive Decay

0.0
Qubits Glycolysis

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
PL

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 6.3: RPL, considered over both the four experimental conditions (a), and (b) the three topics trialled.

Given these observations, we find the presence of entity cards (no matter their quality
with respect to the issued queries) to not lead to higher learning gains (thus addressing
RQ1). However, comparing the RPL across our conditions, we can see that bad/poor
entity cards (Bad-EC) have detrimental impact on an individual’s learning. Results show
that topic difficulty does play a major role, with significant differences found between
the mean performance of participants when the three topics are considered separately.

ENTITY CARDS AND SEARCH BEHAVIOURS (RQ2)
We return to Table 6.3 for insights into the search behaviours exhibited by participants
over each of the four conditions trialled, as shown on rows I-IX.

We first examine the recorded search session duration reported on row II of Table 6.3.
With results presented in minutes and seconds, we observe that for both Good-EC
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(16:43±4:22) and Fair-EC (16:15±2:04), the mean session time is approximately one
minute longer than for No-EC (15:44±0:45). We also note that participants spent sig-
nificantly longer using interface Bad-EC(16:58±3:06) (with a higher variance) than on
No-EC. Together, these findings suggest a slightly higher engagement with the task and
interface when entity cards were present on our search interface, regardless of the qual-
ity of the cards provided. Looking deeper, we find that this pattern was repeated when
considering average document dwell times, with the same patterns once again being
observed (see row VIII). Examining the interactions with the entity cards themselves,
we note that the mean number of hovers over the entity cards was found to be approx-
imately 15 for all three conditions containing them (Table 6.3, row VI). No significant
differences were observed. A similar number of documents were examined across all
four conditions, once again without any observed significant differences (Table 6.3, row
IX). Here, No-EC has the highest number of viewed documents on average, at 9.75±3.98.
This intuitively makes sense: no entity cards means the only source that participants
could gain information was to go and read the linked documents. To complement this,
we observe a trend: a decrease in the number of unique documents viewed as the quality
of the presented entity cards increases. Here, we hypothesise that as entity card quality
increased, participants had a greater likelihood of being able to satisfy their information
need on the SERP without having to resort to clicking links.

In terms of the number of queries issued, participants in the No-EC condition on av-
erage issued the greatest number of queries on average (6.03±2.89), though this was not
significantly so (Table 6.3, row III). We observe a consistent increasing trend in the num-
ber of queries issued as the entity card quality drops (or the entity card is absent), starting
from Good-EC (4.89±2.23) and ending at No-EC (6.03±2.89). When receiving (partially)
relevant information from the entity cards, we speculate that participants were able to
obtain important information for their information need from them. Correspondingly,
in terms of the average time between queries, participants in the Good-EC condition
recorded the highest time (221.08 seconds) with that time dropping as we move along
the conditions towards poor entity cards (Table 6.3, row V).

Within the post-test, we also asked participants how much they paid attention to
entity cards to ensure the impact of entity cards on their behaviour. A total of 90% of
participants of Good-EC stated they examined entity cards regularly. 90.3% and 82.5%
of Fair-EC and Bad-EC participants respectively also self-reported paying attention to
them regularly.

In order to examine whether entity cards influenced the terms that appeared in sub-
sequent queries in the search sessions, we examined the fraction of entity card terms
occurring within the queries issued by the participants (Table 6.3, row IV). We found
significant differences between the three conditions that presented entity cards, with a
clear, increasing trend from Bad-EC (0.02±0.05), through to Fair-EC (0.34±0.20), up to
Good-EC (0.69±0.30). Significant differences existed between all conditions, suggesting
that participants were able to judge the quality of the entity cards and employed them
when formulating their queries (e.g., through the learning of terms to then issue to the
search engine). Spurred by this finding, we examined this phenomenon in more detail.

In terms of query reformulations, we observed entity cards to have a considerable
impact. In Table 6.5, we examined the source of participant’s query terms. We report the



6

104 6. IMPACT OF ENTITY CARDS

following statistics.

• Fraction of query terms from prior snippets Here, we consider previously ob-
served snippets as a potential source for query terms.

• Fraction of query terms from prior documents For each query, we consider all
previously viewed documents, and compute the fraction of query terms that ap-
peared in at least one of them.

• Fraction of query terms from prior entity card titles Here, instead of considering
previously viewed documents, we consider only entity card titles.

• Fraction of query terms from prior entity card summaries. Finally, we consider
the entity card summary text, instead of the title.

We acknowledge that this can only be considered an approximation, as we do not
know whether for instance a term present in a viewed document was even read by a
participant (this likely requires eye-tracking hardware and analysis, as per [124]). How-
ever, significant differences were found across all four additional measures. If we first
consider the measures corresponding to the entity cards, it is unsurprising to note that
the fraction of query terms from both entity card titles and summaries were significantly
higher for Good-EC than Bad-EC, with Fair-EC once again, on average, landing in be-
tween the two extremes. From the Good-EC summaries, for example, the fraction of
terms in participant queries jumped from 0.53±0.24 down to a flat 0 for Bad-EC—this
acts as a sanity check, confirming that Bad-EC entity cards always yielded entity cards
that did not correspond to the given query.

Taking this analysis further, we also extracted query chains from our gathered interac-
tion logs to examine what terms were actually used. Table 6.1 presents an example query
chain drawn from a participant’s interaction log over the Radioactive Decay topic. Along
the first column are the queries issued by the participant, with the associated entity card
titles shown for each of the three conditions. We can see that the terms that appear in
the issued queries correspond closely to those in Good-EC, with the third query’s terms
matching those of the suggested Good-EC exactly.

These results show that there is at least some interaction effect in the search and
learning process, where entity cards are priming and providing participants with query
terms to assist in their query formulation patterns. Further work is required to investi-
gate this.

6.6. CONCLUSIONS
In this chapter, we examined to what extent entity cards impact users’ learning gains
(RQ1) and search behaviours (RQ2) for learning-oriented search tasks.

To answer our two research questions, we conducted a crowdsourced user study,
where N = 144 participants were assigned to one of four conditions. The conditions con-
trolled whether entity cards were present on the SERP, and if present, dictated whether
they were good (relevant to the query), fair (contained a degree of relevant information),
or bad (not relevant to the query). We evaluated participants’ knowledge with a vocabu-
lary learning test.
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Our results show that entity cards—as used in our experimental setup—do not signif-
icantly affect human learning, with RPL scores consistently low and without significant
differences between conditions. On the other hand, significant differences were found
when examining topic effects.

When considering the search behaviours of participants, we did observe a number of
significant differences across the four conditions. For example, varying the entity cards
presented significantly impacted on the dwell time spent over documents, and overall
session duration. We also observed a consistent trend that with lower quality entity
cards the number of queries increase, although this was not significant. Similarly, as
the entity card quality decreases, the number of unique documents viewed was shown
to increase consistently across conditions (though again, not significantly so). When ex-
amining query terms issued by our participants, we began to see evidence that demon-
strated that participants may indeed be examining the entity cards and using them to
reformulate their queries, assisting in the learning process. Significant differences were
observed when considering the fraction of query terms appearing in entity card title and
summaries.

Our study has several limitations related to the task (artificial in nature), evaluation
regime (we only consider vocabulary learning) and study setup (we are limited to a single
search session).

Our study did not regard concept difficulty, and instead focused purely on provid-
ing entity cards based on the entity rankings derived from EmbedRank. We also opted
to show a single entity card, as this is the common web search setup. However, some
evidence [article] suggests that multiple entity cards may also be suitable for a learning
environment. Introducing different entity card styles (depending on a participant’s prior
knowledge levels or their search strategies) would also be an interesting direction for fu-
ture work. Instead of simply taking a Wikipedia summary and some basic attributes for
the entity in question, richer content could be included based upon prior search his-
tory. In order to gain insights into the impact of entity cards on higher-level learning,
we also need to explore more complex learning tasks and move beyond a single search
session setup. As continuation of work by [406], we may also want to study the effect
of entity cards in different domains along various cognitive processes (apply, evaluate,
create) and knowledge types (factual, conceptual, procedural).
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EXPLORING THE FEASIBILITY OF

CROWD-POWERED

DECOMPOSITION OF COMPLEX

USER QUESTIONS IN TEXT-TO-SQL
TASKS

Natural Language Interfaces to Databases (NLIDB), also known as Text-to-SQL mod-
els, enable users with different levels of knowledge in Structured Query Language (SQL)
to access relational databases without any programming effort. By translating natural
languages into SQL query, not only do NLIDBs minimize the burden of memorizing the
schema of databases and writing complex SQL queries, but they also allow non-experts
to acquire information from databases in natural languages. However, existing NLIDBs
largely fail to translate natural languages to SQL when they are complex, preventing
them from being deployed in real-world scenarios and generalizing across unseen com-
plex databases. In this chapter, we explored the feasibility of decomposing complex user
questions into multiple sub-questions — each with a reduced complexity — as a means to
circumvent the problem of complex SQL generation. We investigated the feasibility of de-
composing complex user questions in a manner that each sub-question is simple enough
for existing NLIDBs to generate correct SQL queries, using non-expert crowd workers in
juxtaposition with SQL experts. Through an empirical study on an NLIDB benchmark
dataset, we found that crowd-powered decomposition of complex user questions led to

This chapter is based on a peer-reviewed paper: Sara Salimzadeh, Ujwal Gadiraju, Claudia Hauff, and Arie
van Deursen. 2022. Exploring the Feasibility of Crowd-Powered Decomposition of Complex User Questions
in Text-to-SQL Tasks. In Proceedings of the 33rd ACM Conference on Hypertext and Social Media (HT ’22),
June 28-July 1, 2022, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3511095.3531282.
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an accuracy boost of an existing Text-to-SQL pipeline from 30% to 59% (96% accuracy
boost). Similarly, decomposition by SQL experts resulted in boosting the accuracy to 76%
(153% accuracy boost). Our findings suggest that crowd-powered decomposition can be
a scalable alternative to producing the training data necessary to build machine learn-
ing models that can automatically decompose complex user questions, thereby improving
Text-to-SQL pipelines.

7.1. INTRODUCTION
Building Natural Language Interfaces to Databases (NLIDBs) has been identified as one
of the most significant semantic parsing tasks for decades [36, 70, 112, 385, 395, 467].
By automatically converting text into the Structured Query Language (SQL), NLIDBs al-
low users to communicate with relational data in natural languages (NL) without any
programming effort. These NL questions often cannot be directly answered by search
engines. For example, in response to the question ‘What are the total population and
average area of countries in the continent of North America whose area is bigger than
3000?’, an NLIDB would return 480753000 and 1344763 for the total population and av-
erage area respectively; while a search engine would present a number of tables and
leave the computation to the user. Such interfaces (also known as Text-to-SQL models
within the NLP community) relieve users who are not proficient in query languages from
the burden of learning techniques for querying databases by allowing them to pose NL
questions.

Within recent years, the emergence of complex, large, and human-annotated
datasets consisting of NL questions and their corresponding SQL queries has signifi-
cantly developed the field. Traditionally these have included in-domain datasets such
as WikiSQL [467], ATIS [96, 204], and Advising [135], more recently the family of Spider
cross-domain datasets, including Spider [yu2019spider], SParC [453], and CoSQL [452]
challenge the generalizability of models to unseen databases. Although recent stud-
ies have demonstrated the high accuracy (above 70%) of state-of-the-art Text-to-SQL
models trained and evaluated on the Spider dataset, the performance of these mod-
els on complex queries is rather low, as many struggle to predict complex SQL queries,
Complex SQL Generation. Parsing a question into a SQL query with nested queries,
multiple SELECT clauses, GROUP BY, ORDER BY, UNION, INTERSECT, and EXCEPT re-
quires a model to capture the semantic dependency between the NL question, database
schema, and SQL syntax. According to the Spider criteria, SQL queries are classified
into four difficulty levels – easy, medium, hard, and extra hard. The difficulty level is
determined based on the number of SQL components, selections, conditions, nested
sub-queries, column selections, aggregators, etc. Further, a question is complex when
the corresponding SQL query is hard or extra hard.

Evaluating the accuracy of the top-five state-of-the-art Text-to-SQL models only
on complex questions within the development set of Spider as the preliminary step,
we found that their performance is below 50%. On questions with corresponding SQL
queries of easy and medium difficulty levels, however, such models perform with an ac-
curacy of over 80%. Therefore, we explore to what extent the decomposition of complex
questions, as a novel stage within the Text-to-SQL pipeline, can bring us further in
the area of Text-to-SQL. This is guided by our intuition that by decomposing complex
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Figure 7.1: (a) An example of a complex question in the Spider dataset. In addition to the complex question,
the corresponding SQL query, the answer, and tables are shown. (b) The decomposition of the question in
(a) is illustrated; Instead of feeding the complex question in (a) into Text-to-SQL models, we manually
decompose the question into the three sub-questions. These sub-questions are classified as simpler than
the original question. Executing sub-questions sequentially on the database, we can observe that answer to
the complex question is the same as sub-question 3 in (a).

questions into multiple easy and medium questions, Text-to-SQL models can convert
them into correct SQL queries with a higher accuracy, thereby circumventing the chal-
lenge of complex SQL generation, illustrated in Figure 7.1.

Note that the proposed decomposition stage is different from standard text simpli-
fication in NLP [353], a task in which text is rewritten to make it easier to process for a
given audience. The complexity of questions in the Spider dataset originates from the
underlying SQL query and the dependency between the text and database schema as op-
posed to the linguistic complexity of NL questions. To verify this, we analyzed whether
metrics that are popularly used in text simplification tasks such as Flesch-Kincaid read-
ability score, Flesch’s reading ease score, Type-Token Ration, and Lexical variation are ef-
fective in distinguishing levels of difficulty in complex user questions. We found that
easy and medium questions have the same lexical complexity and lexical richness as
hard and extra hard questions, confirming that the existing text simplification methods
are ill-suited for decomposing complex user questions. In order to assess the feasibility
of decomposition, we thereby raise the following research questions:

RQ1: To what extent can we leverage the decomposition of complex user ques-
tions as a means to circumvent the challenge of complex SQL generation facing ex-
isting Text-to-SQL pipelines?

RQ2: To what extent can non-expert crowd workers aid in the decomposition of
complex user questions in Text-to-SQL tasks in comparison to SQL experts?

To assess the potential benefit of decomposing complex questions, we first manu-
ally decomposed the questions and corresponding queries within the development set
of the Spider dataset serving as an oracle decomposition. We then compared the accu-
racy gained by Text-to-SQL models with the new pipeline in which the oracle decom-
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position was augmented, realizing an increase in accuracy by over 163% (i.e., from 30%
to 79%). Despite the promise of decomposition, to develop ML models that can (semi)
automate the decomposition of complex user questions in a generalizable fashion, we
would require a substantial amount of training data. Since hiring groups of experts is a
costly endeavour [355], the viability of decomposing complex user questions at a bene-
ficial scale hinges on its cost-effectiveness. Crowdsourcing has proved to be a reliable,
effective, and efficient approach in many tasks [175, 290, 360] and across different do-
mains [366], including within the NLP field [Zheng_20150, 195, 422]. Thus, we explored
whether non-expert crowd workers (recruited from the Prolific crowdsourcing platform)
can power such a cost-effective alternative. In comparison to the accuracy boost of 153%
as a result of the decomposition carried out by a small group of SQL experts (N = 5),
decomposition by non-expert crowd workers (N = 83) led to an accuracy boost of over
96%. Our findings show that crowd workers can effectively decompose complex user
questions and thereby aid in circumventing the challenge of complex SQL generation in
Text-to-SQL pipelines.

Our experiments pave the way towards extending crowd-powered decomposition on
available Text-to-SQL datasets to gather a substantial amount of training data. This
is a crucial prerequisite for building ML-based automatic decomposition models inte-
grated into the existing Text-to-SQL pipeline to circumvent the challenge of complex
SQL generation.

7.2. BACKGROUND AND RELATED WORK

CONTEXT INDEPENDENT TEXT-TO-SQL PARSING

Generating SQL queries from natural language questions has been an active field of
study for a long period in both database and NLP communities [10, 184, 261, 265, 332,
426, 438, 458, 459]. Previous Text-to-SQL parsers employed either expert-designed
rules [393, 397, 437] or statistical techniques [240, 396, 458]. Over the past few years,
driven by the development of a large in-domain context-independent dataset, Wik-
iSQL [467], many deep learning models proposed by researchers have shown promising
results for this task [168, 183, 386, 467]. All of these studies focus on mapping a single
query to the corresponding SQL query which is known as context-independent pars-
ing. Deep learning models generally adapt an encoder-decoder framework to solve the
Text-to-SQL problem as a sequence-to-sequence problem [112, 113, 234, 386, 467]. To
show and test the limitations of the Text-to-SQL models on generalizability on various
domains and databases, [454] proposed a complex cross-domain dataset called Spider.
In addition to the sequence-to-sequence paradigm, namely the generation-based meth-
ods, state-of-the-art neural models leverage more strategies such as sketched-based
techniques (generates a SQL skeleton first and then fills the skeleton with database
schema tokens) [83, 111, 183, 201, 279, 280, 443, 456, 467], data augmentation [416,
438], various attentional architectures for question/schema encoding such intermedi-
ate representation for decoding [149, 166, 186, 455], graph representation of databases in
schema encoding [47, 73, 76], schema linking (correctly identify column and value men-
tions in an natural language questions and link them to the given database schema) [47,
66, 104, 112, 114, 166, 259, 272, 274, 369, 417, 456].
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While there are some attempts to tackle the complex SQL generation issue, it is still
a significant challenge for Text-to-SQL models [135, 259, 454]. For instance, schema
linking methods by capturing the alignment between text and table indirectly address
this challenge. On the other hand, intermediate representation approaches are designed
to bridge the gap between text and SQL. Furthermore, some studies have examined de-
composing complex SQL queries within the decoder to generate multiple clauses and
sub-queries [252, 455]. Unlike these studies, in this work, we investigate the potential
performance gain by adding a decomposition stage in the Text-to-SQL pipeline to de-
compose complex natural language questions before submitting them to Text-to-SQL
models.

CONTEXT DEPENDENT TEXT-TO-SQL PARSING

Recently, context-dependent Text-to-SQL parsing has drawn a lot of attention. Com-
pared to benchmarks with single-turn questions, ATIS, a simple in-domain context-
dependent benchmark, was proposed first. The models evaluated on ATIS lever-
aged the sequence-to-sequence framework[8]. Later, to overcome the lack of gener-
alizability of models, two large-scale context-dependent datasets were introduced for
the Text-to-SQL task, SParC [453] and CoSQL [452] modelling conversational depen-
dencies between questions. The Text-to-SQL models, also known as conversational
Text-to-SQL models, require understanding the context of sequentially related ques-
tions compared to single-turn models. Several studies were conducted on these two
benchmarks that proposed EditSQL [461], IGSQL [68], IST-SQL [423], R2SQL [199], RAT-
SQL-TC [264] models. In addition to employing strategies in the previous section to
tackle the problem of translating Text to SQL, these models track dialogue states to gen-
erate SQL queries according to the context. [264] conducted an exploratory study within
context-dependent parsing to determine how far we are from effective context mod-
elling. In this work, we employed R2SQL as the baseline to assess the accuracy gain
of decomposing complex questions in the Text-to-SQL pipeline. It was the first open-
source context-dependent model in the SParC leaderboard 1 at the time of carrying out
the experiments in this chapter.

TEXT-TO-SQL DATASETS

The growing interest in Text-to-SQL applications has led to various datasets includ-
ing in-domain datasets ATIS [96, 204], GeoQuery [332, 458], Restaurants [332, 392],
Scholar [204], Advising [135], Academic [261], Yelp [444], IMDB [444] which have been
studied for decades. WikiSQL is among the first large-scale datasets with relatively sim-
ple questions and single tables extracted from Wikipedia. Although WikiSQL contains
80654 questions and SQL pairs for 24241 databases, it is generated from a limited set of
templates and only covers the single SELECT column, aggregation, and WHERE clause.
Furthermore, keywords like JOIN, GROUP BY, and ORDER BY are not included. The fam-
ily of Spider datasets, Spider [454], SparC [453], and CoSQL [452] contain the most dif-
ficult questions having nested queries, covering many SQL syntaxes, and multiple table
joins. These datasets evaluate the Text-to-SQL models to generalize not only new SQL

1https://yale-lily.github.io/sparc

https://yale-lily.github.io/sparc
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queries and database schemas but also new domains. Spider contains 10,181 questions
and 5,693 unique complex SQL queries on 200 databases with multiple tables, covering
138 domains. It also supports a wide range of SQL syntax. Thus, we examined our pro-
posed solution on the development set of the Spider dataset.

DATA ANNOTATION & CROWDSOURCING
Natural Language Processing research has been spurred on by the growing number
of annotated corpora [195, 422, 466]. Such corpora are leveraged to train, evaluate,
and compare NLP algorithms. However, annotating data is an expensive and time-
consuming process [355]. The emergence of crowdsourcing [131] platforms such as
MTurk 2 has led to a widespread adoption of crowd-powered workflows to create an-
notated corpora [40, 74, 93, 146, 159, 254, 290, 310, 322, 331, 357, 376]. Crowdsourc-
ing has been shown to be a cheaper and faster alternative compared to expert anno-
tation [142, 415]. In addition to data labelling, crowdsourcing proved to be a reliable
approach in many tasks [175, 290, 360] and domains [366]. Several prior works have pro-
posed methods to improve the effectiveness of crowd-sourced data acquisition [133, 174,
337]. Although much research is conducted to quality control and quality assurance in
crowdsourcing [98, 148, 194], several studies have also shown the benefit of employing
experts to provide higher quality labels [21, 434]. Prior works have proposed augmenting
crowd worker labels with those from experts to optimize the cost and quality of data la-
belling [222, 341, 368, 446]. We employ both domain experts and crowd workers for data
annotation in this work. Our findings suggest the potential benefit of leveraging crowd
workers to create training data and then build ML-based decomposition model in the
future.

7.3. GOLD STANDARD FOR DECOMPOSITION OF COMPLEX

QUESTIONS
This section introduces the steps for developing a gold standard for the decomposi-
tion, creating SpiderDec serving as the oracle decomposition. We then employ a
Text-to-SQL model to assess the potential accuracy boost by decomposition. Note that
the accuracy is measured based on comparing the execution result of each SQL query
with the corresponding gold query.

SPIDERDEC: EXTENSION OF THE SPIDER DATASET
In the Spider dataset, data is split into training, development, and a hidden test set.
We manually decomposed the questions, and corresponding queries within the devel-
opment set of the Spider dataset on questions with hard and extra hard SQL queries,
thereby creating SpiderDec3. State-of-the-art Text-to-SQL models have over 80% ex-
ecution accuracy for SQL queries with easy and medium hardness levels, while the per-
formance is less than 50% for hard and extra hard SQL queries. So, decomposing hard
and extra hard questions into multiple easy and medium questions can lead to a higher
accuracy of Text-to-SQL pipeline. For simplicity, we refer to the hard and extra hard

2https://www.mturk.com
3https://github.com/sarasal/decomposition

https://www.mturk.com
https://github.com/sarasal/decomposition
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questions of Spider dataset as complex questions. We limited our approach to the
development set first to explore the potential benefit of the decomposition task; we
leave the annotation of the training set as future work in case of accuracy boost in the
Text-to-SQL pipeline. Our rationale behind considering the Spider dataset as a lens
to circumvent the problem of complex user questions is governed by the scale and diver-
sity of the Spider dataset compared to others. Furthermore, the cross-domain setup of
Spider allows Text-to-SQL models to use different databases for training and testing.
Within the Spider dataset, there are 332 complex training examples over 20 databases
in total. Each example consists of a natural language question and its corresponding
SQL gold query. In the remainder of the chapter, we refer to each instance in the dataset
as a pair of the NL question and the SQL query. We annotated Spider development set
in two stages: sub-SQL annotation and sub-question annotation. As the complexity of
the Text-to-SQL task derives from the underlying SQL queries, we created SpiderDec
from a SQL-centered perspective, annotating SQL queries and questions.

SQL ANNOTATION

In the SpiderDec decomposition, we first broke down each complex SQL query into
multiple subsequent easy or medium SQL sub-queries. Based on our rubric inspired by
prior work [454], each sub-SQL meets one of the conditions in Table 7.1 to be considered
as easy or medium. Among 332 pairs of the NL question and the SQL query, 26.8% of SQL
queries contain these keywords: EXCEPT, UNION, and NOT IN on which decomposition
to medium or easy is not applicable. Therefore, we only decomposed their nested sub-
queries into simpler ones and kept the keyword without the necessity of having all the
SQL sub-queries with the easy or medium level of difficulty.

Table 7.1: Criteria to identify whether a SQL query is easy or medium used as a guideline for decomposition.

Easy or Medium SQL Query

Condition 1 1) one SELECT column, 2)maximum one aggregator, 3)maximum one keyword
from [WHERE, GROUP BY, ORDER BY, LIMIT, JOIN, OR, LIKE, HAVING], 3) no key-
words from [EXCEPT, UNION, INTERSECT, IN, NOT IN]

Condition 2 1) maximum two conditions from [number of aggregator > 1, number of SELECT
columns > 1, number of WHERE conditions > 1, number of GROUP BY clauses > 1],
2) maximum one keyword from [WHERE, GROUP BY, ORDER BY, LIMIT, JOIN, OR,
LIKE, HAVING], and 3) no keywords from [EXCEPT, UNION, INTERSECT, IN, NOT
IN]

Condition 3 1) maximum one condition from [number of aggregator > 1, number of SELECT
columns > 1, number of WHERE conditions > 1, number of GROUP BY clauses >
1], 2) two keywords from [WHERE, GROUP BY, ORDER BY, LIMIT, JOIN, OR, LIKE,
HAVING], and 3) no keywords from [EXCEPT, UNION, INTERSECT, IN, NOT IN]

SUB-QUESTIONS ANNOTATION

Given decomposed SQL sub-queries per SQL query from the previous stage, we assigned
a natural language sub-question to each of the annotated sub-queries. In order to de-
termine whether sub-questions are semantically equivalent to their associated complex
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questions, two experts manually evaluated them and resolved any conflicts with each
other.

EVALUATION OF SPIDERDEC

To investigate the potential accuracy boost achievable by adding the decomposition
stage to the Text-to-SQL pipeline, we are required to measure the performance of
Text-to-SQL models on the newly generated dataset. Instead of complex questions,
we gave decomposed sub-questions to pre-trained models as input data. We then cal-
culated the execution accuracy gained on the entire development set and separately
per hardness category. To this end, we leveraged R2SQL [199], a context-dependent
BERT-based Text-to-SQL model trained on SParC [453] dataset. We then assessed the
execution results of predicted sub-SQLs by R2SQL and compared them with the result
obtained from the original development set of Spider (existing Text-to-SQL pipeline).
R2SQL can effectively model contextual questions and database schemas. SParC dataset
is built on top of the Spider, providing rich contextual phenomena and thematic re-
lations between the questions. Because the sub-questions are thematically depen-
dent on each other acting as contextual utterances, we adapted the context-dependent
Text-to-SQL model, which maps the entire sub-questions to the corresponding SQL
queries. Furthermore, the R2SQL is the first open-source model on the leaderboard at
the time of experimenting4.

7.4. CROWD-POWERED DECOMPOSITION
We now describe our crowd-powered study in more detail. We go over the annotation
tool, the task, participants, the workflow. We then explain our measurement to evaluate
participants’ decomposition.

7.4.1. ANNOTATION TOOL

We developed an annotation tool on top of the R2SQL pre-trained model for crowd
workers to decompose complex questions. We first created a Text-to-SQL API from
R2SQL, translating contextual natural language questions into SQL queries. We lever-
aged Vue.js JavaScript framework 5 for the frontend and Flask 6 for the backend. Within
the annotation process, the question to be decomposed and its associated database are
presented to participants. They can easily interact with tables, search an item, sort rows,
and scroll them. They can also execute the predicted SQL corresponding to their sub-
questions.

In creating SpiderDec, we decomposed SQL queries. We then assigned NL ques-
tions to the queries (SQL-centered decomposition), while the crowd workers only access
the NL questions and decompose them (question-centered decomposition). In the real-
world scenarios, we do not necessarily have the gold SQL queries and labeled data, so we
designated our crowd-powered study to investigate the feasibility of decomposing natu-
ral language questions and explore to what extent the question-centered decomposition
result in accuracy boost compared to SpiderDec.

4https://yale-lily.github.io/spider
5https://vuejs.org
6https://flask.palletsprojects.com/en/2.0.x/

https://yale-lily.github.io/spider
https://vuejs.org
https://flask.palletsprojects.com/en/2.0.x/
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7.4.2. PARTICIPANTS
In our study, participants included SQL experts and non-expert crowd workers. We hired
five computer science students with at least two years of experience with SQL as experts.
Due to the high cost of hiring experts, we limited the number of experts to five students.
Since the number of students was below sufficient samples to carry out statistical com-
parisons, we assigned them the entire set to gain more insight into their decomposition
performance and quality. Each student spent between 12-30 hours for the whole corpus
in the development set of Spider. According to the institutional regulations, the par-
ticipants were paid between 22-30 € per hour based on their course credits. In addition
to experts, 83 non-experts were employed through the Prolific Academic Platform. With
the Prolific platform, we required the participants to (i) have at least 100 accepted Pro-
lific task submissions, (ii) to be native English speakers, and (iii) and have a minimum
approval rate of 90%. The study took approximately 50 minutes to decompose six com-
plex questions. We also paid our participants 7.5 £ (9 € ) per hour for the experiment.
For simplicity, we refer to Prolific participants as non-experts in the remainder of the
chapter.

SQL KNOWLEDGE

We measured the SQL knowledge of participants in a post-test conducted right after the
decomposition task to avoid cognitive biases [117]. To this end, we manually designed
our survey as no standard SQL assessment test is available in the literature. The survey
took 10 minutes to complete and consists of 10 questions. First, participants were asked
one question to self-report on their SQL proficiency, followed by seven questions regard-
ing the key concepts of SQL 7. Inspired by prior work [378, 389, 429], we employed the
modified VKS test to measure participants’ knowledge across four levels. Our questions
are related to key concepts of SQL, which are used in our dataset, including relational
databases, primary key, foreign key, SELECT statement, WHERE clause, JOIN tables, and
Aggregate functions. Participants were asked to write their concept definitions for levels
(3) and (4). Finally, participants were given a simple question, Write a SQL query that re-
turns the name of the 3 youngest winners across all matches found in the table matches.,
with a schema of the database to write down a SQL for. This question helps us to inves-
tigate their knowledge in practice.

(1) I don’t remember having seen this term/phrase before.

(2) I have seen this term/phrase before, but I don’t think I know what it means.

(3) I have seen this term/phrase before, and I think it means ___ .

(4) I know this term/phrase. It means ___.

ENGLISH PROFICIENCY

In addition to SQL proficiency, we hypothesized that the participants’ proficiency in
reading and writing could affect their performance. Decomposition a NL question first
requires understanding the questions -associated with participants’ reading skill- and

7https://www.interviewbit.com/sql-interview-questions/#sql

https://www.interviewbit.com/sql-interview-questions/#sql
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Figure 7.2: Overview of the flow of the user study and SpiderDec creation

then paraphrasing them in multiple sub-questions- connected with participants’ writ-
ing skill. Therefore, we leveraged the self-assessment grid of CEFR scales, Common Eu-
ropean Framework of Reference for Languages: Learning, Teaching, Assessment 8. CEFR
is an international standard describing reading, listening, speaking, and writing skills on
a six-point scale, starting from A1 as a beginner to C2 as a master. Our task was only
dependent on participants’ reading and writing skills; we, therefore, included the self-
assessment questions of these skills. As we included native English speakers in the study,
we assumed their knowledge level is above A2 and excluded A1 and A2 from the options.
In total, the participants answered three questions related to their reading and writing
skill in English.

7.4.3. PROCEDURE
When participants entered the study, a 15-minute tutorial video provided information
about their task and how to interact with different annotation tool components to de-
compose questions. All explained concepts were simplified, avoiding any technical bur-
den for participants. Furthermore, the study was also elaborated on two examples within
two stages: 1) how to decompose a complex question into multiple sub-questions and
2) how to work with the annotation tool. Subsequently, the participants moved on to the
training phase, where they were given those two examples again to work with the an-
notation tool and learn the task in practice. Participants could stay in this stage as long
as they wish to. Participants were then redirected to the actual decomposition task by
clicking the respective button in the training stage— all 332 complex questions from the
development set of Spider were randomly assigned to experts, while non-experts were
given six questions. They could also skip a question if they were not certain about how
to decompose it.

The experiment ended with a post-test where the SQL knowledge survey and English
proficiency self-assessment were given to participants. We set these surveys as the post-
test to avoid cognitive biases [117] such as Anchoring Effect-where the participants may
overlay focus on answering the survey question rather than the actual task-, Overcon-
fidence or Optimism Bias- where the participants overestimate their ability to perform
the task when they can answer all the questions in the survey-, and Loss Aversion Bias-
when the participants suspect that the answers to the questions may affect their pay-
ment. Lastly, we included five questions regarding the annotation tool and tutorial,9

8http://ebcl.eu.com/wp-content/uploads/2011/11/CEFR-all-scales-and-all-skills.pdf
9https://www.ueq-online.org

http://ebcl.eu.com/wp-content/uploads/2011/11/CEFR-all-scales-and-all-skills.pdf
https://www.ueq-online.org
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their experience working with our annotation tool, and the perceived performance. The
workflow corresponding to data annotation by participants is illustrated in Figure 7.2.

7.4.4. EVALUATION OF DECOMPOSITION
In total, experts provided us with 1515 sub-questions. These sub-questions are asso-
ciated with 623 decomposed questions, indicating that each question on average con-
tains 2.43 sub-questions. Non-experts created 1082 sub-questions in total for 453 de-
composed questions, showing on average 2.37 sub-questions per question.

Table 7.2: Example evaluation of a participant’s sub-questions

Question: What is the country with the most number of TV channels and how many does it have?

Correct Which country has the most number of TV channels? What is target country and
how many TV channels does it have?

Partially Correct Which country appears in the list of TV channels the most times? How many TV
channels does this country have?

Incorrect What are TV channels in the countries?

ASSESSMENT OF SUB-QUESTIONS

We manually evaluated whether sub-questions were semantically equivalent to ques-
tions or not. Among 1515 sub-questions provided by experts, we randomly sampled
312 questions with the confidence interval of 95% from the population size while we
evaluated all sub-questions generated by non-experts. As we assured the quality of data
generated by experts, we randomly sampled experts’ sub-questions rather than check-
ing all of them. We labeled the entire block of sub-questions as either correct, partially
correct, or incorrect. Examples of sub-questions and the labels we assigned to them are
provided in Table 7.2. We employed the following criteria to judge the equivalency of
sub-questions to the original complex question.

(2) Correct. If a participant’s sub-questions include all concepts that appear in a
question, it indicates that the question is semantically equivalent to the sub-
questions. In that case, the entire block of sub-questions is assigned the highest
score of 2.

(1) Partially Correct. If the participant’s decomposition misses one concept from the
original question, a score of 1 is given to that. For example, if the question asks
about the name and birth date and the participant only included name, we la-
belled the decomposition as 1.

(0) Incorrect. Sub-questions that are either entirely incorrect, incomplete, or missed
more than one concept from the original question.

ASSESSMENT OF SUB-SQL’S

To examine whether participants’ decomposition leads to the Text-to-SQL pipeline
performance boost, we employed our baseline, R2SQL, which is also in line with our
approach in Section 7.3. First, the baseline predicted the sub-SQLs. We then compared
the execution result of the block of sub-questions with the execution result of the gold
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Table 7.3: Accuracy of the Text-to-SQL pipeline on
Spider and SpiderDec reported on hard and extra
hard questions.

Dataset Total Hard Extra

I Spider 0.3 0.37 0.23
II SpiderDec 0.79 0.82 0.76
III Diff. 0.49 0.45 0.53

Table 7.4: Number of correct SQL predictions out of
332 complex questions on Spider and SpiderDec in
the Text-to-SQL pipeline.

Dataset Ques. # Hard # Extra

I Spider 100 62 38
II SpiderDec 265 138 127
III Diff. 165 76 89

SQL query. We labeled the sub-SQL’s either correct or incorrect. The block of the sub-
SQL’s is correct if its execution result is equivalent to the execution result of the gold SQL;
otherwise, it is incorrect.

7.5. RESULTS

PERFORMANCE OF THE BASELINE ON SPIDERDEC (RQ1)
In RQ1, we examine to what extent the decomposition of complex questions affects the
performance of the Text-to-SQL pipeline facing the challenge of complex SQL genera-
tion. We return to Table 7.3 and Table 7.4 for insights into the performance of the R2SQL
(cf. Section 7.3) over the original dataset and decomposed set which is elaborated on
each difficulty level.

The baseline predicted 100 questions correctly out of 332 questions in the develop-
ment set, 62 questions among the hard and 38 questions from the extra hard division.
On the other hand, after decomposing complex questions, the model predicted 165 more
correct questions leading to 265 questions in total, including 138 hard questions and 127
extra hard questions (cf. Table 7.4).

By comparing the execution accuracy of the baseline on Spider and SpiderDec, we
observed that the accuracy on complex data raised from 0.3 to 0.79, (cf. Table 7.3). We
note that the contribution of decomposition on performance gain to each division of
data is nearly the same, with 76 and 89 more correct questions for hard and extra hard,
respectively.

In Section 7.3, we discussed that sub-questions for keywords NOT IN, EXCEPT, and
UNION are still hard, being less difficult than the original question. To gain insight on
the impact of decomposition on complex keywords, we focus on Table 7.5. For the NOT
IN keyword, the baseline predicted 18 questions out of 46 from the original Spider while
this number increased to 38 considering the SpiderDec. Similarly, this number raised
from 4 to 21 for the EXCEPT keyword, and from 0 to 5 for the UNION. Although the
decomposition did not lead to the sub-questions with an easy or medium difficulty level
for these complex data, the baseline outperformed significantly on SpiderDec. Given
these observations, we can see the benefit of decomposition on all types of complex
questions.

Looking deeper, we also examined the cases where the Text-to-SQL model failed
to predict the correct SQL query even after the decomposition had applied, which is 67
questions in total. We classified the majority of errors into two groups. Table 7.7 shows
more examples for each category. This is understandable since the decomposition task
only simplifies questions by breaking them down into multiple questions. As mentioned
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Table 7.5: Distribution of complex keywords in
Spider dev. set. The number of questions predicted
correctly in the Text-to-SQL pipeline w/o decom-
position is reported.

Keywords Total Spider SpiderDec

I NOT IN 46 18 38
II EXCEPT 32 4 21
III UNION 11 0 5
IV Total 89 22 64

Table 7.6: Errors generated by experts and non-
experts

Error Type Experts Non-Experts

Complex Sub-Questions 5 49
Missed Final Sub-Questions 2 24

Missed One Keyword 8 19
Different Interpretation of Questions 5 0

Other 7 44
Total 27 136

earlier, as it does not add any additional knowledge to sub-questions, they do not con-
tribute to any solutions for the following issues.

• Implicit Column Names: Within this group of questions, some of the col-
umn names in the SQL query are implicitly mentioned in the question, so the
Text-to-SQL model requires to infer them. For instance, we have this question.
Which airlines have departing flights from both APG and CVO airports? The col-
umn SourceAirport should be inferred from the phrase departing flights

• General Knowledge or Table Content: This group of questions includes one or
multiple values of the tables. Sometimes these table values are considered general
knowledge. Within this example, What is the name of a country that has the shortest
life expectancy in Asia?, Asia is the continent, so the model needs to know this
general knowledge or recognize it as the table content.

Table 7.7: Example of errors remain after adding the decomposition stage to the Text-to-SQL pipeline

Implicit Column Names

Src. or Dest. Airport Which city has most number of departing flights?
SELECT T1.City FROM airports AS T1 JOIN flights AS T2 ON
T1.AirportCode = T2.SourceAirport GROUP BY T1.City ORDER BY
count(*) DESC LIMIT 1

Current Address What are the last name of the students who live in North Carolina
SELECT T1.last-name FROM Students AS T1 JOIN Addresses
AS T2 ON T1.current-address-id = T2.address-id WHERE
T2.state-province-county="NorthCarolina"

General Knowledge or Table Content

Continent What is the name of country that has the shortest life expectancy in Asia?
SELECT Name FROM country WHERE Continent = "Asia" ORDER BY
LifeExpectancy LIMIT 1

Language Which cities are in European countries where English is the official language?
SELECT T3.Name FROM country AS T3 JOIN countrylanguage AS T4
ON T3.Code = T4.CountryCode WHERE T4.IsOfficial = "T" AND
T4.Language = "English"

PERFORMANCE OF CROWD WORKERS ON DECOMPOSITION TASK (RQ2)
RQ2 investigates to what extent crowd workers can decompose complex question com-
pared to the oracle decomposition. We first report the result of SQL knowledge survey
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Table 7.8: Decomposition performance of experts
and non-experts reported in percentage

Total Hard Extra

I Expert 61.8 64.9 59.5
II Non-Experts 48 55.6 40

Table 7.9: Accuracy of the Text-to-SQL pipeline on
Spider dev. set and decomposed data created by ex-
perts and non-experts

Total Hard Extra

I Spider 0.3 0.37 0.23
II Experts 0.76 0.75 0.77
III Non-Experts 0.59 0.69 0.5

and English proficiency. Then, we examine to what extent the decomposition leads to
an accuracy boost with decomposition compared to existing Text-to-SQL pipeline.

In the SQL knowledge survey, all five SQL experts assessed themselves as level (4).
By manually evaluating the concept definitions, we verified that all of the answers were
correct and the experts had sufficient SQL knowledge to carry out the task. In terms of
reading and writing skills in English, all experts had the highest levels, C2.

In total, 83 non-experts provided us with 67 SQL concept definitions when self-
assessing their knowledge as level (3) or (4). All 67 definitions were labeled as incorrect.
This result suggests that our non-experts group indeed did not have any background
knowledge in SQL. Evaluating non-experts’ English proficiency in reading and writing,
we found that their skills were distributed within the level of B1 to C2. We observed
26.8% of non-experts with level B (B1, B2) and the remaining 73.1% with level C (C1, C2)
in reading. In writing, we reported these numbers as 29.2% and 70.7% with level B and
level C, respectively. Regarding the demographic data, among non-experts, 35.7% were
female, and 62.4% were male. The ean age of participants was 32, with a minimum of 18
years and a maximum of 55 years.

Table 7.8 illustrates the decomposition performance of experts. We applied our de-
composition approach to the hard and extra hard division of the Spider development
set and evaluated the experts’ performance in each division separately. Experts were
able to decompose 61.8% of questions correctly contributed to 64.9% on hard division
and 59.5% on extra hard. Although the performance on hard division is higher than the
extra hard, the low difference between these two numbers suggest that the difficulty of
questions does not impact the experts’ decomposition performance. On the other hand,
we reported that non-experts decompose 48% of questions, with 55.6% and 40% sep-
arately on hard and extra hard questions. As the performance of non-experts on hard
questions is higher than extra hard questions, we can see that non-experts perceived the
extra hard question as more difficult than the hard ones.

In addition to decomposition performance, we examined the potential benefit of ex-
perts’ decomposition on Text-to-SQL pipeline accuracy. The accuracy on the original
development set of Spider is calculated as 0.3, particularly 0.37 and 0.23 on hard and
extra hard questions. Table 7.9 presents the accuracy of the baseline on the Spider
and the decomposed questions by crowd workers. In terms of the accuracy boost, ex-
perts’ decomposition led to 0.76 accuracy on complex questions split to 0.75 and 0.77
for hard and extra hard. We can also see that experts contributed more to improving the
accuracy on extra hard questions from 0.23 to 0.77 (+0.54). Non-experts decomposition
also prompted 0.59 accuracy on the complex questions, with 0.69 and 0.5 accuracies
on hard and extra hard questions. Furthermore, we found that experts outperformed
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non-experts (accuracy 0.76 vs. 0.59), which is also in line with our finding regarding
the decomposition performance. In contrast to experts, non-experts impact more on
hard data, with 0.32 and 0.27 boost on hard and extra hard, respectively. Experts decom-
position remarkably increased the accuracy for extra hard questions while non-experts
decomposition contributed more to hard questions. In other words, the results demon-
strate that when question difficulty increases, non-experts’ performance deviates from
the experts.

Taking these analyses further, we can see that the performance of experts (0.76) is
in line with the accuracy boost achieved by SpiderDec (0.79). SpiderDec is created
according to guideline in 7.3 based on SQL gold query while decomposition by experts
only applied on natural language questions.

In terms of English proficiency, we also found that the reading and writing skill of
non-experts significantly affected their decomposition performance. As the number of
experts was limited, we only analyzed the impact of reading and writing factors in the
non-experts group measured by a two-way ANOVA test. The test considered reading
and writing as factors; the main effects were examined where α = 0.05. For post-hoc
analysis, the Tukey HSD pairwise test was used. We found that non-experts with level
B1 in writing and reading significantly had lower performance than other levels. These
results suggest that we can gain higher performance if we pre-screen the participants
and reject those with reading and writing skills of B1.

Among the data created by experts, 37.6% of the provided decomposition were iden-
tified as errors, 6% were partially correct, and the remaining 31.4% were incorrect. On
the other hand, among the decomposed questions created by non-experts, we observed
51.8% of the decompositions were error, with 13% and 38.8% were labeled as partially
correct and incorrect, respectively. Taking this analysis further, we also examined dif-
ferent types and frequencies of errors produced by experts and non-expert, illustrated in
Table 7.6. We subjectively categorized the error types into two groups: recoverable errors
and costly errors.

• Recoverable Errors: These are errors that can be fixed through a relatively simple post-
hoc analysis without modifying the decomposed queries substantially, either through
expert intervention or through algorithmic interventions.

• Costly Errors: These errors cannot be fixed easily through post-hoc analysis without
modifying the decomposed queries significantly. Experts would need to rewrite one or
more complete sub-queries to fix such errors.

We also manually checked the errors and classified them into five groups. We first
introduce these types. We then determine which of them are recoverable and which are
costly. Examples for each categories are shown in Table 7.10.

• Complex Sub-Questions: Sub-questions in this group have the same difficulty level
as the corresponding questions. Participants cannot identify how to break down the
questions to make it less difficult, so they only paraphrase the question or write down
sub-questions as complex as the questions. This type of error can be easily detected
automatically by comparing the difficulty level of the sub-SQL queries to the gold SQL
queries. However, it is a costly error. An expert is required to revise this decomposition
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or rewrite it from scratch, having monetary and time costs. As expected, this type
of error mainly occurred for non-experts as they do not have sufficient knowledge to
determine how complex their sub-questions are. An example, in Row I in Table 7.10,
sub-questions are only the paraphrased form of the question. Converting them to SQL,
their SQL queries are as complex as the question. Alternative sub-questions could be
(i) which student owns a cat as a pet? (ii) which students are not among them? (iii)
return their age and major.

• Missed Final Sub-Questions: Sub-questions in this category are nearly correct, only
missing the last sub-question required to return the target result set. By comparing
the execution result of the question and the sub-questions, we can determine the ex-
istence of some errors. However, it is difficult to identify whether the errors fit in this
group. An expert is needed to identify this error category manually. Similarly, the ex-
perts should write down the final sub-question. Therefore, this error type is among
costly errors, while their recovery leads to remarkable performance gain. This error
is more frequent among non-experts than experts which also intuitively make sense.
To resolve the sub-questions in the Row II, we need to add this sub-question: which
airports are not among those lists? Find their name.

• Missed One Keyword: Sub-questions are one keyword away from the related ques-
tions. When Participants created decomposition data, they skipped or modified one
keyword of the questions in their sub-questions. This type of error could mistakenly
happen, or participants may not understand the role of the keyword, so they did not
take that keyword into account. This error can be automatically discovered and revised
by adapting an attention model to identify keywords. So, they are recoverable errors.
This group of errors is the most frequent error type among experts. The sub-questions
in the example of Row III skipped the word Currently. According to the tables associ-
ated with the question, students both have a current and permanent address. So, the
term Currently plays an important role in distinguishing which columns to return.

• Different Interpretation of Questions: For some questions, participants interpret
them differently from what existed in the gold standard. Although these interpreta-
tions are valid, we mark them as an error because of different execution results with the
corresponding questions. As resolving this error requires rewriting the sub-questions,
we classify them as a costly error. Only Experts generate this type of error. Looking
into the example of Row IV, we can see that the word predominant can be interpreted
differently. Does it mean that the language is official? Does it mean the language is
spoken with the highest percentage? Although both interpretations could be correct,
the second meaning is incorporated into the dataset.

• Other: Sub-questions within this error category are partly correct or thoroughly incor-
rect. Participants’ sub-questions are not satisfied with the condition of being semanti-
cally equivalent to the corresponding questions. Finding and resolving such errors are
not only time-consuming, but also they require the cost of expert interventions.
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Table 7.10: Examples of error generated by experts and non-experts

Examples

I. Complex Sub-Questions Question:What major is every student who does not own a cat as a pet, and also
how old are they?
Sub-Questions

• How old are the students who do not own a cat as a pet?

• What major is each student which does not own a cat?

II. Missed Final Sub-Questions Question: Find the name of airports which do not have any flight in and out?
Sub-Questions

• Which airports are source airports?

• Which airports are destination airports?

III. Missed One Keyword Question: Find the last name of the students who currently live in the state of
North Carolina but have not registered in any degree program.
Sub-Questions

• List the address ids of all addresses in North Carolina.

• Find the student whose address corresponds with the list in North Carolina.

• Find which of these students have not enrolled in any degree program?

• Find the surnames associated with these students who have not enrolled
and live in North Carolina.

IV. Different Interpretation of Questions Question: Count the number of countries for which Spanish is the predominantly
spoken language.
Sub-Questions

• What countries speak Spanish?

• Given Spanish countries, count the number of officials.

7.6. DISCUSSION

7.6.1. IMPLICATIONS OF OUR WORK
This study shows that decomposition leads to the accuracy boost for the Text-to-SQL
pipeline on complex questions. This can begin to shed light on the influence of decom-
position as a promising approach in improving the accuracy of Text-to-SQL tasks. As
the follow-up study, we can build a fully automatic ML-based decomposition model in-
tegrated into the existing Text-to-SQL pipeline. For training such a model, it is crucial
to collect a substantial amount of labeled data, such as decomposition of the family of
Spider dataset. Our findings support the evidence of employing crowd workers for this
task as a scalable method. According to our error analysis in 7.5, a fully automatic de-
composition model might face several challenges. Among five error groups discussed
in 7.5, the major challenges for automatic decomposition can be error types of Com-
plex Sub-Questions and Missed One Keyword. Circumventing the challenge of Complex
Sub-Questions is difficult since verifying the sufficient level a question should be broken
down is difficult for even a human. There is a trade-off between the granularity of sub-
questions and their complexity. The fine-grained the sub-questions, the less complex
sub-questions we have. However, we might oversimplify questions that are not required
at all. In terms of Missed One Keyword challenge, we demand an attention model to
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identify the keywords within the questions and evaluate whether those keywords existed
in the sub-questions. Many of these keywords are dependent on the schema of tables.
However, the attention model in training would not be enough.

7.6.2. CAVEATS AND LIMITATIONS
We had an imbalance number of SQL experts, restricting us from gaining insight into
their performance individually and employing any statistical tests. We also did not con-
sider workflows to optimize decomposition such as aggregation of crowd-workers’ an-
swers and double-checking their decomposition answers by experts, which means that
it would be possible to achieve higher accuracy than what we observed in our work
when optimized. Furthermore, we only leveraged one Text-to-SQL model in our study.
Although our decomposition approach is independently defined of any Text-to-SQL
models, a comprehensive analysis of state-of-the-arts Text-to-SQL models can give us
a better insight into the impact of decomposition on different models.

7.7. CONCLUSIONS AND FUTURE WORK
This chapter explores the feasibility of decomposing complex user questions within the
Text-to-SQL pipeline as a means to circumvent one of the significant shortcomings of
Text-to-SQL models in complex SQL generation (RQ1). We first adapted the decompo-
sition on the development set of the Spider dataset, breaking complex questions down
into simpler sub-questions in a way that Text-to-SQL models can convert them cor-
rectly to corresponding SQL queries. We then investigated the feasibility of leveraging
crowd workers to produce sufficient training data for building a ML-based model de-
composing complex questions automatically (RQ2).

We defined the decomposition task for complex questions in which a complex ques-
tion is split into multiple subsequent sub-questions. Having assessed the decomposition
approach on complex questions in Spider dev. set (SpiderDec), we found that the ac-
curacy raised remarkably from 30% to 79%. Our results support the evidence of decom-
position as a promising approach to boost the performance of existing Text-to-SQL
pipelines.

We then examined the performance of 88 crowd workers on decomposing the natural
language questions within the development set of Spider. Compared to the accuracy
boost of 153% (30% to 76%) as a result of the decomposition carried out by a small group
of SQL experts (N = 5), decomposition by non-expert crowd workers (N = 83) led to an
accuracy boost of over 96% (30% to 59%). Our findings show that crowd workers can
effectively decompose complex user questions and thereby aid in creating training data
at a beneficial scale for generalization of decomposition in Text-to-SQL pipelines.
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CONCLUSIONS

This thesis contributes to understanding the various task-related contextual factors and
stages involved in decision-making, highlighting their significant impact on decision
outcomes and individuals’ behavior. The insights from this research can guide future
empirical research to refine their methodologies, improve the design of decision-making
processes, and develop interventions and AI systems that enhance decision outcomes.
Continuous assessment of socio-technical systems allows researchers, designers, and
practitioners to pinpoint areas for improvement and refine current methods and frame-
works to adapt them to particular decision-making contexts and the complexity of real-
world situations. This can ultimately lead to complementary human-AI collaboration
and the development of decision support systems that leverage the strengths of both
humans and AI, resulting in improved decision outcomes. In our effort to delve into
decision-making environments, we have underscored the significance of rigorous and
replicable research by presenting frameworks and approaches for examining decision-
making procedures.

In this concluding chapter, we revisit our research questions to summarize our key
findings and contributions. We then discuss the implications of our research from tech-
nical, methodological, and theoretical perspectives, followed by the limitations of our
work. Finally, we highlight future research directions that can further build upon these
theories and methodologies to advance the field of human-AI decision-making.

8.1. SUMMARY OF FINDINGS
With the findings and discussion presented in three parts of this thesis, we revealed
the importance of considering task-related contextual elements and group settings in
decision-making scenarios. Adapting empirical research, AI system design, and inter-
vention strategies according to these factors can lead to a better understanding of deci-
sion processes and improved decision outcomes. This section outlines the key findings
and contributions of this research based on three main themes:

125
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PART I: UNDERSTANDING THE ROLE OF TASK CONTEXT

In the first part of this thesis, we sought to evaluate task context in human-AI decision-
making (RQ1), specifically by narrowing down our focus to task complexity and uncer-
tainty. We proposed a conceptual framework for evaluating decision-making contexts
through the lens of complexity to enable comparison and evaluation of empirical stud-
ies. Using this theoretical framework, we compared various decision-making tasks in the
literature and synthesized current patterns and challenges. We applied the framework
practically, along with an additional task-related contextual factor - uncertainty - to ex-
plore differences in decision-making behavior and outcomes across diverse real-world
settings.

Using the framework outlined in Chapter 2, we discovered that tasks with lower lev-
els of complexity share common contextual factors that can impact decision-making re-
sults. These tasks are typically low-stakes with no prior domain knowledge required.
On the other hand, complex tasks tend to be high-stakes and resemble some real-world
decision-making scenarios requiring specialized knowledge and expertise. While com-
paring relatively simple tasks through the lens of complexity is beneficial, it is equally im-
portant to adapt the framework to address the nuances and challenges associated with
more complex decision-making scenarios where there is greater potential for human re-
liance. Furthermore, our research highlighted a significant theoretical and empirical gap
in studying task complexity within human-AI decision-making processes. Existing stud-
ies primarily focus on simpler scenarios, overlooking complex decision-making tasks
that also reflect real-world challenges.

In Chapter 3, we empirically assessed how task complexity and uncertainty affect in-
dividuals’ behavior and decision outcomes through a series of experiments conducted
in a real-world context. Our results indicate that complex and uncertain tasks can lead to
sub-optimal outcomes, especially when people over-rely on AI systems without carefully
assessing their suggestions. We also found that despite the influence of complexity and
uncertainty on individuals’ behavior, their level of trust in AI systems remained relatively
stable across various decision-making contexts. These findings emphasize the need to
consider the specific characteristics of decision-making tasks when designing empirical
research and developing decision-support systems tailored to the needs and challenges
of complex decision-making environments. We also proposed our configurable frame-
work as a starting point for future empirical research, allowing for customization and
adaptation to different decision-making contexts and settings, and increasing the repro-
ducibility of the findings.

PART II: ADDING GROUPS TO THE MIX: HUMAN-AI GROUP DECISION-
MAKING

In the second part of this thesis, we focused on the impact of task-related contextual fac-
tors, task complexity, and uncertainty on group decision-making processes and outcomes
(RQ2). We particularly explored the effects of AI systems on group dynamics, includ-
ing coordination, communication, consensus-building, efficiency, and overall decision
quality. Furthermore, we investigated how task complexity and uncertainty influence
the usage of AI systems in group settings and how they differ from individual decision-
making. To this end, we conducted experiments in group decision-making scenarios
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with varying levels of task complexity and uncertainty.
Chapter 4 demonstrates that task complexity and uncertainty significantly affect

group AI decision-making processes, leading to lower performance in high-complexity
or uncertain situations. Compared to individual setups, AI systems have also shown
a positive effect on group performance, especially in more complex tasks. The results
show that integrating AI systems into group decision-making can improve outcomes by
fostering collaboration and discussion among group members, leading to well-informed
decisions. We also found that the efficiency of groups increased in complex tasks, yet
the overall decision accuracy remained lower compared to simpler tasks. Conversely, in
uncertain scenarios, the performance and efficiency of groups declined, underscoring
the necessity for a more nuanced design approach when incorporating AI systems into
group decision-making.

We should understand and analyze contextual factors before integrating AI systems
into decision-making processes, as the success of AI integration depends on the spe-
cific task complexity and level of uncertainty. Blindly adopting AI without considering
specific contextual elements may impede effective decision-making and lead to sub-
optimal outcomes. Our study also emphasizes the need to provide tailored support
and interventions to help groups navigate decision-making tasks effectively amid uncer-
tainty and complexity. Future research should consider the context within which group
decision-making occurs, as these factors greatly influence the success of interactions be-
tween groups and AI systems in decision-making processes.

PART III: IMPROVING INFORMATION ACCESS: THE CASES OF WEB SEARCH

AND DATABASES

In the final part of this thesis, we focused on improving information access, specifi-
cally through search engines and databases to ultimately enhance decision-making pro-
cesses(RQ3). This part focuses on information access that enables decision-making,
rather than on decision-making directly. We proposed using entity cards to summarize
relevant information from search results, which search engines can integrate into their
interface. We designed and evaluated various entity card variations and assessed their
impact on users’ learning and behavior change through an empirical user study. Addi-
tionally, we suggested utilizing a decomposition approach to enhance the performance
of natural language interfaces for databases in complex situations without modifying
the underlying systems. Then, we assessed the viability and efficiency of this approach
through a series of experiments.

Our findings from Chapter 7 indicate that entity cards can have a significant impact
on users’ learning, particularly for simpler subjects. It has been demonstrated that low-
quality entity cards can have a negative effect on users’ learning outcomes, underlining
the importance of designing accurate and informative entity cards. Additionally, we ob-
served that entity cards play a significant role in shaping user engagement and behavior
during the information-seeking process. Users tend to spend more time interacting with
and exploring both the interface and search results than using a traditional interface.
Furthermore, we found that entity cards assist users in refining their search queries and
exploring related concepts.

Chapter 8 has focused on enhancing natural language interfaces for databases
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(NLIDB) by employing the decomposition approach. This approach can significantly
improve NLIDBs’ performance in complex real-world scenarios, enabling a wide range
of users to access accurate information efficiently. By evaluating the feasibility of an au-
tomated decomposition mechanism, we showed that utilizing a crowd-based approach
harnessing collective intelligence can successfully produce training data for building
agnostic decomposition models and improve the overall accuracy and effectiveness of
NLIDBs regardless of their underlying structure.

Overall, these findings highlight the importance of customizing and optimizing user
interfaces in complex scenarios to facilitate information access. By integrating entity
cards into search engine interfaces and improving the performance of NLIDBs through
decomposition, we can enhance the information access and ultimately enable users to
make more informed decisions.

8.2. IMPLICATIONS AND METHODOLOGICAL INSIGHTS
The key implication of this research is encouraging the rigorous design of future re-
search studies to better understand the underlying mechanisms and factors that in-
fluence decision-making outcomes, ultimately improving decision-making in various
contexts. It also provides valuable insights for research communities, designers, and
practitioners, which can be utilized to enhance the development of interventions and AI
systems that aid decision-making in accordance with the contextual needs of decision-
makers. We outline several key implications derived from this research:

CHALLENGES OF DECISION-MAKING IN COMPLEX SCENARIOS

In our study of complex contexts, we have discovered that making decisions and search-
ing for information can be especially demanding. Complexity in such environments
stems from a range of factors, including the unpredictable nature of the environment,
the multitude of available information sources, and the need to consider multiple per-
spectives and resources in order to make informed decisions. Limited cognitive re-
sources of individuals may further exacerbate these challenges and hinder the ability to
navigate complex decision-making contexts effectively. In these scenarios, individuals
often heavily rely on AI systems and interfaces to help them acquire, process, and or-
ganize relevant information without critically evaluating its quality or considering alter-
native perspectives. This is primarily due to the fact that using these tools incurs lower
costs compared to manually evaluating and processing all the accessible information,
often resulting in sub-optimal results. While integrating AI systems and adapting user
interfaces can offer potential solutions, further research is needed to explore tailored
approaches and interventions that can effectively support decision-making in complex
scenarios. These strategies should aim at reducing cognitive overload associated with
evaluating given suggestions and improving information comprehensibility and acces-
sibility while promoting critical thinking and consideration of alternative perspectives.

We also sought to identify and define elements that may increase the complexity of
decision-making situations. In particular, we explored various aspects of task complex-
ity, uncertainty, and topic intricacy. While these factors have had a significant impact
on decision-making procedures and information access, we acknowledge that further
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research is necessary to identify other elements and dimensions of complexity that may
influence decision-making outcomes. For instance, the complexity of decision-making
could also stem from factors such as the dynamic nature of the decision context, the cog-
nitive load of decision-making, the interdependence of different variables, and the time
limitations placed on decision-makers. Future research should investigate the effect of
these factors on decision-making outcomes and explore strategies to mitigate their neg-
ative impact. Furthermore, we focused on the complexity from the perspective of deci-
sion context rather than focusing on individual decision-makers. By examining the per-
ceived complexity of decision-making contexts in future work, we can better understand
the challenges faced by decision-makers and develop strategies to adapt their decision-
making processes accordingly.

INTEGRATION OF AI SYSTEMS INTO DIFFERENT CONTEXTS

The integration of AI systems into decision-making scenarios is intended to enhance
the outcome of decision-making processes by capitalizing on the unique strengths of
humans and AI systems. The benefits of incorporating AI into group decision-making
processes are apparent in complex situations, as AI systems can effectively augment the
collective intelligence and diverse perspectives of group members to enhance decision-
making outcomes. These results indicate that the advantages of AI systems differ sig-
nificantly based on the particular task environment. Therefore, successfully integrating
them into decision-making scenarios depends on an in-depth understanding of the spe-
cific challenges and needs within each setting.

Before integrating AI systems into a decision-making scenario, it is crucial to care-
fully consider these three questions: Is there a need to add AI systems to the decision-
making process? What are the potential benefits and risks of incorporating AI into the
context? How can AI be effectively integrated into decision-making to improve outcomes
and address the unique challenges individual decision-makers face? Answering these
questions requires careful consideration of the potential role of AI systems in each spe-
cific context and how they can be adapted to meet the unique needs and constraints
of each situation. It is also essential to contemplate what constitutes an appropriate AI
system for a given context and how to optimize the interaction between humans and AI
systems to achieve desired outcomes. This optimization can be employed by developing
appropriate AI algorithms, designing user-friendly interfaces, and providing clear guide-
lines and training for individuals tailored explicitly to the context and needs of decision-
makers.

TOWARDS RIGOROUS EMPIRICAL STUDIES IN HCI
Our retrospective review revealed a lack of systematic research on identifying and ana-
lyzing contextual factors in human-AI decision-making scenarios. While we briefly ad-
dressed task-related contextual factors like task complexity, task uncertainty, and group
dynamics, future studies should recognize additional specific contextual factors that
could impact decision-making behavior. Our findings highlight that these factors should
be considered and controlled for in rigorous empirical studies to ensure accurate and re-
liable results. Neglecting to account for these variables may lead to confounding effects
and erroneous conclusions in human-AI decision-making research. Understanding the
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effect of these factors can also contribute to shaping the design of AI systems that are
tailored to specific decision-making contexts and user needs.

Conducting rigorous field studies is essential for assessing the success of human
decision-making in real-world settings. Our retrospective review revealed that most ex-
isting studies involve relatively simple decision scenarios, often based on hypothetical
settings, which deviate from the complexities of actual decision-making contexts. This
lack of ecological validity limits the generalizability and transferability of findings, un-
dermining their practical significance in real-world decision-making. To address these
limitations, we designed our studies to examine decision-making in a naturalistic set-
ting, considering the complexities and uncertainties that decision-makers face. Future
research should focus on conducting studies that closely replicate real-world decision-
making scenarios to improve the applicability and relevance of research findings.

The reproducibility issue in HCI research also highlights the need for rigorous em-
pirical studies in decision-making situations where we clearly define the relevant vari-
ables and factors that can affect decision outcomes. Researchers should strive to pro-
vide transparent methodologies, detailed descriptions of experimental conditions, and
open access to data and analysis code. This can enhance the credibility and reliability of
research findings and promote replication and further exploration of decision-making
processes on top of existing knowledge. In our efforts to address these concerns, we
proposed our modular and configurable framework for conducting such studies to en-
courage rigorous empirical studies in real decision-making contexts. This framework
serves as the groundwork for researchers to design and implement robust experiments
and extend them to new domains and contexts.

8.3. LIMITATIONS AND FUTURE WORK
Despite our efforts to design rigorous empirical studies, we acknowledge the limitations
of our work. Future research can address these limitations and further explore and
refine methods for studying decision-making in real-world settings.

More contextual elements to be investigated. In this thesis, we assessed how
contextual factors, task complexity, and uncertainty affect decision-making outcomes.
However, some limitations need to be addressed in future research. Although we
operationalized these factors using real-world data, alternative approaches or measure-
ments could offer additional insights. For instance, task uncertainty can be determined
by various elements, including resource availability, time constraints, and limited
understanding of decision implications. Future research should explore integrating
these various operationalizations into the study design and analysis to gain a better
understanding of decision-making processes. We narrowed our task scenarios to
low-risk contexts, which may not fully capture the challenges and decision dynamics
in high-stakes situations where complexity and uncertainty are amplified. Future
empirical studies should explore our research questions in high-stakes contexts to
better understand the strategies and cognitive processes involved. Our studies did
not explicitly examine several task-related elements, such as stake, time pressure,
information overload, information loss, cognitive load, and decision-maker expertise
level. While it is not possible to investigate and control all potential factors in a few
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studies, future research should explore these additional variables and their interplay
to inform the design of tailored decision-making interventions that address specific
challenges encountered in these decision-making contexts. Furthermore, we restricted
our research to a single decision-making scenario. Future studies should seek to validate
our results in various decision-making areas to explore the broader applicability and
specific contexts of the observed impacts.

Group decision-making requires further examinations. Studying the impact of
group dynamics, we focused on small groups with members paired randomly. The
complexity of group dynamics becomes more evident in larger settings, where diverse
perspectives and potential power dynamics come into play. Additionally, it’s important
to note that the randomly formed groups may not fully mirror the dynamics found
in real-world group settings, where members are often selected based on specific
expertise, roles, or relationships. The small groups we considered in our study served
as a starting point for examining group decision-making processes. However, future
research should also investigate the implications and dynamics of decision-making in
larger or more specifically defined groups. We also acknowledge that numerous factors
can influence the effectiveness of decision-support tools in a group context, which
were not examined in this study. These include leadership dynamics, communication
patterns, varied hierarchical structures, individual biases, conflict resolution strategies,
and decision-making norms. Future research should, therefore, explore and integrate
these factors to develop an in-depth understanding of decision-making processes in
group settings.

Sociotechnical factors need to be assessed collectively over time. While we aimed
to create a naturalistic setting for decision-making, there are still limitations in terms
of external validity and generalizability. Our studies may not have fully captured
numerous factors that can influence decision-making tasks in the real world. We did
not consider individual differences in decision-making styles, personality traits, or
cognitive abilities, which could impact the strategies employed by decision-makers
and ultimately determine their decision-making outcomes. In the pursuit of con-
structing sociotechnical systems tailored to various contexts, we should examine the
task contexts, decision-makers, and AI systems in scenarios that emulate real-world
conditions while taking into account a variety of individual, contextual, and social
factors simultaneously. Moreover, influential factors can change over time, requiring
continuous adjustments to decision-making situations. For instance, the approaches
and methods for making decisions may evolve based on the knowledge gained by
decision-makers during a specific session. The dynamic nature of decision-making
scenarios necessitates empirical research to observe the processes and outcomes of
decision-making over a prolonged period. Therefore, future research should focus on
studying decision-making in real-world contexts, considering individual and contextual
factors, and examining the long-term effects of AI adoption on decision outcomes.

Evaluation criteria need to be enhanced. Through our empirical studies, we
measured different behavioral indicators and performance metrics to assess the success
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of human-AI teams in decision-making. We mainly focused on measuring accuracy,
efficiency, trust, and reliance as crucial metrics and comparing them with the ideal
criteria like appropriate reliance and complementary performance. However, these
metrics alone may not capture the full complexity and nuances of decision-making
outcomes. Depending on different contexts, the success of human-AI decision-making
may also be determined by factors such as stakeholder satisfaction, ethical considera-
tions, long-term consequences, and adaptability to changing conditions. For instance,
the efficiency of the decision-making process may be prioritized in specific scenarios. In
contrast, performance metrics or ethical considerations may take precedence in others,
such as high-risk situations or morally sensitive decision-making contexts. Therefore,
a range of metrics should be considered based on the specific objectives and needs of
each decision-making scenario. Furthermore, we had access to ground truth data to
evaluate the performance of human-AI teams. However, in real-world decision-making
contexts, there may be limited or no availability of such data. Therefore, indicators for
appropriate reliance on AI systems and the quality and consequences of decisions may
not be immediately apparent or even become absent. This highlights the need for future
studies to explore robust evaluation criteria that can accurately assess decision-making
outcomes in dynamic environments with uncertain or unavailable ground truth data.

Additional methodologies for deeper insights. We examined the decision outcomes
of individuals and groups and analyzed their behavioral and cognitive processes using
established questionnaires, experimental tasks, and log data. However, this approach
may have limitations in capturing all the steps involved in decision-making processes
and understanding the rationale behind each action taken by the decision-makers.
Therefore, future research should incorporate more detailed and context-specific meth-
ods such as thinking-aloud protocols and tailored interviews to gain deeper insights into
decision-making processes. These insights may reveal the cognitive biases, heuristics,
and reasoning patterns that impact decision-making outcomes. Additionally, they can
aid in a better understanding of users’ diverse needs and inform the customization of AI
systems to address those specific requirements.

Expert decision-making requires a different approach. Within this thesis, we
sought to target general decision-making contexts where no expertise or specific do-
main knowledge is required. This scoping was chosen to ensure that the findings and
recommendations from this research can benefit a wide range of decision-makers in var-
ious contexts. Furthermore, experts often rely on their experience and knowledge rather
than predominantly engaging in analytical decision-making processes or information-
seeking. Therefore, the influence of AI systems on experts could be mediated by the level
of expertise and domain knowledge, which should be further explored in future research.

Decision-making in the age of Generative AI. The emergence of large language
models in recent years has significantly altered the adoption of AI technologies in
decision-making settings, particularly impacting people’s daily lives. Generative AI
systems have brought many challenges and concerns regarding transparency, trust,
reliance on these systems, and explainability. These challenges are magnified as AI sys-
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tems become more complex and the broader range of user needs and preferences come
into play. However, concerns about human-AI interaction have been long-standing in
the HCI domain, which has emphasized the necessity of explainable, transparent, and
reliable systems. For example, recommender systems have great potential to support
decision-making processes. However, their lack of transparency and explainability has
raised questions about their reliability. The impact of search engines and social media
algorithms on information access and decision-making is also significant. The lack of
transparency and potential bias in the ranking algorithms can greatly affect the quality
and diversity of the information available to users, ultimately shaping individuals’
behaviors and decisions. These issues highlight the importance of considering the
behavior of the users and their understanding of the AI system’s capabilities, limitations,
and the consequences of relying on the system’s decisions. Inspired by solutions to
similar challenges in the field of HCI, future studies should continue evaluating user
behaviors and decision-making outcomes with AI assistance in today’s rapidly changing
technological landscape. This can help identify specific challenges and opportunities
that influence the design of AI systems while also increasing awareness about the
implications of using AI in different decision-making scenarios.

8.4. ETHICAL CONSIDERATIONS AND CHALLENGES
As humans play a critical role in decision-making processes, we should consider the eth-
ical implications and potential challenges associated with the use of AI systems. These
may include privacy and confidentiality issues and biases that may arise in AI-driven
decision-making systems.

We emphasized the importance of interventions to assist decision-makers in navi-
gating complex and uncertain scenarios, aiming to mitigate over-reliance on AI systems
and highlighting the continued value of human judgment. However, to ensure the ef-
fectiveness of these interventions, user behaviors and performance need to be carefully
monitored and assessed, which may conflict with privacy concerns and GDPR. Conse-
quently, striking a balance between harvesting the benefits of AI systems and safeguard-
ing user privacy is essential for enhancing decision-making outcomes and maintaining
ethical standards. In addition, potential biases that may arise in AI-driven decision-
making systems should be thoroughly examined and addressed to ensure fair and eq-
uitable outcomes. These biases can stem from the data used to train AI algorithms, po-
tentially leading to unfair outcomes or perpetuating existing societal inequalities. To
address these challenges and ensure fairness and equity in AI-driven decision-making,
transparency and interpretability should be incorporated into AI systems. This will en-
able users to comprehend the AI system’s decision-making process and understand the
rationale behind its actions, thus promoting accountability and allowing for the detec-
tion and mitigation of biases.

8.5. CONCLUDING REMARKS
This thesis adds to the current body of literature on human-AI decision-making by
emphasizing the significance of contextual factors in influencing decision-making out-



8

134 8. CONCLUSIONS

comes. It also offers methodological guidance for understanding the impact of AI sys-
tems on decision-making, thereby informing empirical research design in this field. By
proposing a configurable framework, we encourage future research to systematically in-
vestigate more factors that contribute to the success of human-AI decision-making while
ensuring the reproducibility and generalizability of findings. In several empirical stud-
ies, we have found that contextual factors such as task complexity, task uncertainty, and
group dynamics can significantly influence decision-making outcomes. High levels of
uncertainty and complexity in tasks often cause individuals to rely too heavily on AI
systems, as they exceed their cognitive capacity. Similarly, groups tend to follow simi-
lar patterns, with collective decision-making becoming increasingly influenced by the
AI system’s recommendations in more complex tasks. Over-reliance on AI systems has
been observed in such complex decision-making contexts, leading to sub-optimal out-
comes and reduced critical thinking abilities. Our results also indicate that integrating AI
systems is more beneficial for groups than individuals, as the collective intelligence and
diverse perspectives within a group can foster critical thinking and enhance decision-
making outcomes.

Future studies should aim to identify additional influential factors and develop in-
terventions that help users make more informed decisions when using AI systems in
different domains and contexts. Understanding the impact of AI assistance on indi-
viduals and groups will enable us to design AI support that improves decision-making
outcomes and encourages critical thinking tailoring to the specific needs and charac-
teristics of decision-making contexts. We hope this research contributes to these goals
by shedding light on the complex relationship between human factors, AI systems, and
contextual elements. These goals can be achieved through the combined efforts of re-
searchers, practitioners, and designers who recognize the importance of understanding
the potential benefits and limitations of AI systems in decision-making.
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[287] Judith Masthoff and Amra Delić. “Group Recommender Systems: Beyond Prefer-
ence Aggregation”. In: Recommender Systems Handbook. Ed. by Francesco Ricci,
Lior Rokach, and Bracha Shapira. New York, NY: Springer US, 2022, pp. 381–420.
ISBN: 978-1-0716-2197-4. DOI: 10.1007/978-1-0716-2197-4_10. URL: https:
//doi.org/10.1007/978-1-0716-2197-4_10.

[288] Joseph Edward McGrath. “Groups: Interaction and performance”. In: (No Title)
(1984).

[289] O. Medelyan, E. Frank, and I.H. Witten. “Human-competitive tagging using auto-
matic keyphrase extraction”. In: Proc. EMNLP. Aug. 2009, pp. 1318–1327.

[290] Bart Mellebeek et al. “Opinion Mining of Spanish Customer Comments with
Non-Expert Annotations on Mechanical Turk”. In: Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s Mechani-
cal Turk. CSLDAMT ’10. Los Angeles, California: Association for Computational
Linguistics, 2010, pp. 114–121.

[291] Gonzalo Mendez, Luis Galárraga, and Katherine Chiluiza. “Showing Academic
Performance Predictions during Term Planning: Effects on Students’ Decisions,
Behaviors, and Preferences”. In: Proceedings of the 2021 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’21. Yokohama, Japan: Association for
Computing Machinery, 2021. ISBN: 9781450380966. DOI: 10 . 1145 / 3411764 .
3445718. URL: https://doi.org/10.1145/3411764.3445718.

[292] Stephanie M. Merritt et al. “Are Well-Calibrated Users Effective Users? Asso-
ciations Between Calibration of Trust and Performance on an Automation-
Aided Task”. In: Human Factors 57.1 (2015), pp. 34–47. DOI: 10 . 1177 /
0018720814561675. URL: https://doi.org/10.1177/0018720814561675.

[293] Stephanie M. Merritt et al. “Are Well-Calibrated Users Effective Users? Associ-
ations Between Calibration of Trust and Performance on an Automation-Aided
Task”. In: Human Factors 57.1 (2015). PMID: 25790569, pp. 34–47. DOI: 10.1177/
0018720814561675. eprint: https://doi.org/10.1177/0018720814561675.
URL: https://doi.org/10.1177/0018720814561675.

[294] R. Mihalcea and P. Tarau. “TextRank: Bringing Order into Text”. In: Proc. EMNLP.
2004, pp. 404–411.

[295] Katherine L Milkman, Dolly Chugh, and Max H Bazerman. “How can deci-
sion making be improved?” In: Perspectives on psychological science 4.4 (2009),
pp. 379–383.

https://doi.org/10.1007/978-1-0716-2197-4_10
https://doi.org/10.1007/978-1-0716-2197-4_10
https://doi.org/10.1007/978-1-0716-2197-4_10
https://doi.org/10.1145/3411764.3445718
https://doi.org/10.1145/3411764.3445718
https://doi.org/10.1145/3411764.3445718
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675
https://doi.org/10.1177/0018720814561675


BIBLIOGRAPHY

8

163

[296] Martijn Millecamp et al. “What’s in a User? Towards Personalising Transparency
for Music Recommender Interfaces”. In: Proceedings of the 28th ACM Conference
on User Modeling, Adaptation and Personalization. UMAP ’20. Genoa, Italy: Asso-
ciation for Computing Machinery, 2020, pp. 173–182. ISBN: 9781450368612. DOI:
10.1145/3340631.3394844. URL: https://doi.org/10.1145/3340631.
3394844.

[297] David Miller et al. “Behavioral Measurement of Trust in Automation: The Trust
Fall”. In: Proceedings of the Human Factors and Ergonomics Society Annual Meet-
ing 60.1 (2016), pp. 1849–1853. DOI: 10 . 1177 / 1541931213601422. eprint:
https://doi.org/10.1177/1541931213601422. URL: https://doi.org/
10.1177/1541931213601422.

[298] George A. Miller. “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information”. In: The Psychological Review 63.2
(Mar. 1956), pp. 81–97. URL: http://www.musanim.com/miller1956/.

[299] Jyoti Mishra, David Allen, and Alan Pearman. “Information seeking, use, and de-
cision making”. In: Journal of the association for information science and technol-
ogy 66.4 (2015), pp. 662–673.

[300] Tina Möckel, Christian Beste, and Edmund Wascher. “The Effects of Time on Task
in Response Selection - An ERP Study of Mental Fatigue”. In: Scientific Reports 5
(Mar. 2015). DOI: 10.1038/srep10113.

[301] F. Moraes, S.R. Putra, and C. Hauff. “Contrasting Search as a Learning Activity
with Instructor-Designed Learning”. In: Proc. 27th ACM CIKM. 2018, pp. 167–176.

[302] Lev Muchnik, Sinan Aral, and Sean J Taylor. “Social influence bias: A randomized
experiment”. In: Science 341.6146 (2013), pp. 647–651.

[303] Kanchan Mukherjee. “A dual system model of preferences under risk.” In: Psy-
chological review 117.1 (2010), p. 243.

[304] Hendrik Müller, Aaron Sedley, and Elizabeth Ferrall-Nunge. “Survey research in
HCI”. In: Ways of Knowing in HCI (2014), pp. 229–266.

[305] Cataldo Musto et al. “Exploring the Effects of Natural Language Justifications
in Food Recommender Systems”. In: Proceedings of the 29th ACM Confer-
ence on User Modeling, Adaptation and Personalization. UMAP ’21. Utrecht,
Netherlands: Association for Computing Machinery, 2021, pp. 147–157. ISBN:
9781450383660. DOI: 10.1145/3450613.3456827. URL: https://doi.org/
10.1145/3450613.3456827.

[306] Meike Nauta et al. From Anecdotal Evidence to Quantitative Evaluation Methods:
A Systematic Review on Evaluating Explainable AI. 2022. DOI: 10.48550/ARXIV.
2201.08164. URL: https://arxiv.org/abs/2201.08164.

[307] Meike Nauta et al. “From Anecdotal Evidence to Quantitative Evaluation Meth-
ods: A Systematic Review on Evaluating Explainable AI”. In: ACM Comput. Surv.
55.13s (July 2023). ISSN: 0360-0300. DOI: 10.1145/3583558. URL: https://doi.
org/10.1145/3583558.

https://doi.org/10.1145/3340631.3394844
https://doi.org/10.1145/3340631.3394844
https://doi.org/10.1145/3340631.3394844
https://doi.org/10.1177/1541931213601422
https://doi.org/10.1177/1541931213601422
https://doi.org/10.1177/1541931213601422
https://doi.org/10.1177/1541931213601422
http://www.musanim.com/miller1956/
https://doi.org/10.1038/srep10113
https://doi.org/10.1145/3450613.3456827
https://doi.org/10.1145/3450613.3456827
https://doi.org/10.1145/3450613.3456827
https://doi.org/10.48550/ARXIV.2201.08164
https://doi.org/10.48550/ARXIV.2201.08164
https://arxiv.org/abs/2201.08164
https://doi.org/10.1145/3583558
https://doi.org/10.1145/3583558
https://doi.org/10.1145/3583558


8

164 BIBLIOGRAPHY

[308] Joaquin Navajas et al. “Aggregated knowledge from a small number of debates
outperforms the wisdom of large crowds”. In: Nature Human Behaviour 2.2
(2018), pp. 126–132.

[309] V. Navalpakkam et al. “Measurement and Modeling of Eye-Mouse Behavior in the
Presence of Nonlinear Page Layouts”. In: Proc. 22nd WWW. 2013, pp. 953–964.

[310] Matteo Negri et al. “Divide and Conquer: Crowdsourcing the Creation of Cross-
Lingual Textual Entailment Corpora”. In: Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing. Edinburgh, Scotland, UK.:
Association for Computational Linguistics, July 2011, pp. 670–679. URL: https:
//aclanthology.org/D11-1062.

[311] Dong Nguyen. “Comparing Automatic and Human Evaluation of Local Explana-
tions for Text Classification”. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, June 2018, pp. 1069–1078. DOI: 10.18653/v1/
N18-1097. URL: https://aclanthology.org/N18-1097.

[312] Raymond S Nickerson. “Confirmation bias: A ubiquitous phenomenon in many
guises”. In: Review of general psychology 2.2 (1998), pp. 175–220.

[313] Mahsan Nourani, Joanie King, and Eric Ragan. “The Role of Domain Expertise
in User Trust and the Impact of First Impressions with Intelligent Systems”. In:
Proceedings of the AAAI Conference on Human Computation and Crowdsourcing
8.1 (Oct. 2020), pp. 112–121. DOI: 10.1609/hcomp.v8i1.7469. URL: https:
//ojs.aaai.org/index.php/HCOMP/article/view/7469.

[314] Mahsan Nourani et al. “Anchoring Bias Affects Mental Model Formation and User
Reliance in Explainable AI Systems”. In: 26th International Conference on Intelli-
gent User Interfaces. IUI ’21. College Station, TX, USA: Association for Computing
Machinery, 2021, pp. 340–350. ISBN: 9781450380171. DOI: 10.1145/3397481.
3450639. URL: https://doi.org/10.1145/3397481.3450639.

[315] Mahsan Nourani et al. “The Effects of Meaningful and Meaningless Explanations
on Trust and Perceived System Accuracy in Intelligent Systems”. In: Proceedings
of the AAAI Conference on Human Computation and Crowdsourcing 7.1 (Oct.
2019), pp. 97–105. DOI: 10.1609/hcomp.v7i1.5284. URL: https://ojs.aaai.
org/index.php/HCOMP/article/view/5284.

[316] Francisco Nunes et al. “Self-Care Technologies in HCI: Trends, Tensions, and Op-
portunities”. In: 22.6 (Dec. 2015). ISSN: 1073-0516. DOI: 10.1145/2803173. URL:
https://doi.org/10.1145/2803173.

[317] H.L. O’Brien et al. “The Role of Domain Knowledge in Search as Learning”. In:
CHIIR ’20. 2020, pp. 313–317.

[318] Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer. “Deep
learning for financial applications: A survey”. In: Applied Soft Computing 93
(2020), p. 106384.

https://aclanthology.org/D11-1062
https://aclanthology.org/D11-1062
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.18653/v1/N18-1097
https://aclanthology.org/N18-1097
https://doi.org/10.1609/hcomp.v8i1.7469
https://ojs.aaai.org/index.php/HCOMP/article/view/7469
https://ojs.aaai.org/index.php/HCOMP/article/view/7469
https://doi.org/10.1145/3397481.3450639
https://doi.org/10.1145/3397481.3450639
https://doi.org/10.1145/3397481.3450639
https://doi.org/10.1609/hcomp.v7i1.5284
https://ojs.aaai.org/index.php/HCOMP/article/view/5284
https://ojs.aaai.org/index.php/HCOMP/article/view/5284
https://doi.org/10.1145/2803173
https://doi.org/10.1145/2803173


BIBLIOGRAPHY

8

165

[319] M. Pagliardini, P. Gupta, and M. Jaggi. “Unsupervised Learning of Sentence Em-
beddings Using Compositional n-Gram Features”. In: Proc. NAACL HLT. 2018,
pp. 528–540.

[320] Cecilia Panigutti et al. “Understanding the Impact of Explanations on Advice-
Taking: A User Study for AI-Based Clinical Decision Support Systems”. In: Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
CHI ’22. New Orleans, LA, USA: Association for Computing Machinery, 2022.
ISBN: 9781450391573. DOI: 10.1145/3491102.3502104. URL: https://doi.
org/10.1145/3491102.3502104.

[321] Andrea Papenmeier et al. “It’s Complicated: The Relationship between User
Trust, Model Accuracy and Explanations in AI”. In: ACM Trans. Comput.-Hum.
Interact. 29.4 (Mar. 2022). ISSN: 1073-0516. DOI: 10.1145/3495013. URL: https:
//doi.org/10.1145/3495013.

[322] Gabriel Parent and Maxine Eskenazi. “Clustering Dictionary Definitions Using
Amazon Mechanical Turk”. In: Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Mechanical Turk. CSLDAMT
’10. Los Angeles, California: Association for Computational Linguistics, 2010,
pp. 21–29.

[323] Joon Sung Park et al. “A Slow Algorithm Improves Users’ Assessments of the Al-
gorithm’s Accuracy”. In: Proc. ACM Hum.-Comput. Interact. 3.CSCW (Nov. 2019).
DOI: 10.1145/3359204. URL: https://doi.org/10.1145/3359204.

[324] Alison Parkes. “The effect of individual and task characteristics on decision aid
reliance”. In: Behaviour & Information Technology 36.2 (2017), pp. 165–177.

[325] Andisheh Partovi et al. “Relationship between Device Performance, Trust and
User Behaviour in a Care-Taking Scenario”. In: Proceedings of the 27th ACM
Conference on User Modeling, Adaptation and Personalization. UMAP ’19. Lar-
naca, Cyprus: Association for Computing Machinery, 2019, pp. 61–69. ISBN:
9781450360210. DOI: 10.1145/3320435.3320440. URL: https://doi.org/
10.1145/3320435.3320440.

[326] Andi Peng et al. “What You See Is What You Get? The Impact of Representation
Criteria on Human Bias in Hiring”. In: vol. 7. 1. Oct. 2019, pp. 125–134. DOI: 10.
1609/hcomp.v7i1.5281. URL: https://ojs.aaai.org/index.php/HCOMP/
article/view/5281.

[327] Martin Petrin. “Corporate Management in the Age of AI”. In: SSRN Electronic
Journal (Jan. 2019). DOI: 10.2139/ssrn.3346722.

[328] Jella Pfeiffer. Interactive decision aids in e-commerce. Springer Science & Business
Media, 2011.

[329] Samuele Lo Piano. “Ethical principles in machine learning and artificial intelli-
gence: cases from the field and possible ways forward”. In: Palgrave Communi-
cations 7.1 (2020), pp. 1–7. URL: https://EconPapers.repec.org/RePEc:
pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-0501-9.

https://doi.org/10.1145/3491102.3502104
https://doi.org/10.1145/3491102.3502104
https://doi.org/10.1145/3491102.3502104
https://doi.org/10.1145/3495013
https://doi.org/10.1145/3495013
https://doi.org/10.1145/3495013
https://doi.org/10.1145/3359204
https://doi.org/10.1145/3359204
https://doi.org/10.1145/3320435.3320440
https://doi.org/10.1145/3320435.3320440
https://doi.org/10.1145/3320435.3320440
https://doi.org/10.1609/hcomp.v7i1.5281
https://doi.org/10.1609/hcomp.v7i1.5281
https://ojs.aaai.org/index.php/HCOMP/article/view/5281
https://ojs.aaai.org/index.php/HCOMP/article/view/5281
https://doi.org/10.2139/ssrn.3346722
https://EconPapers.repec.org/RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-0501-9
https://EconPapers.repec.org/RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-0501-9


8

166 BIBLIOGRAPHY

[330] Peter Pirolli and Stuart Card. “Information foraging.” In: Psychological review
106.4 (1999), p. 643.

[331] Massimo Poesio et al. “Phrase Detectives: Utilizing Collective Intelligence for
Internet-Scale Language Resource Creation”. In: ACM Trans. Interact. Intell. Syst.
3.1 (Apr. 2013). ISSN: 2160-6455. DOI: 10.1145/2448116.2448119. URL: https:
//doi.org/10.1145/2448116.2448119.

[332] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. “Towards a Theory of Nat-
ural Language Interfaces to Databases”. In: Proceedings of the 8th International
Conference on Intelligent User Interfaces. IUI ’03. Miami, Florida, USA: Associa-
tion for Computing Machinery, 2003, pp. 149–157. ISBN: 1581135866. DOI: 10.
1145/604045.604070. URL: https://doi.org/10.1145/604045.604070.

[333] Margaret Potter, Sandy Gordon, and Peter Hamer. “The nominal group tech-
nique: a useful consensus methodology in physiotherapy research”. In: NZ Jour-
nal of Physiotherapy 32.3 (2004), pp. 126–130.

[334] Forough Poursabzi-Sangdeh et al. “Manipulating and Measuring Model Inter-
pretability”. In: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. CHI ’21. Yokohama, Japan: Association for Computing Ma-
chinery, 2021. ISBN: 9781450380966. DOI: 10 . 1145 / 3411764 . 3445315. URL:
https://doi.org/10.1145/3411764.3445315.

[335] S.R. Putra, F. Moraes, and C. Hauff. “SearchX: Empowering Collaborative Search
Research”. In: Proc. 41st ACM SIGIR. SIGIR ’18. 2018, pp. 1265–1268.

[336] Minghui Qiu, Y. Li, and Jing Jiang. “Query-Oriented Keyphrase Extraction”. In:
AIRS. 2012.

[337] Sihang Qiu et al. “Using Worker Avatars to Improve Microtask Crowdsourcing”.
In: Proceedings of the ACM on Human-Computer Interaction 5.CSCW2 (2021),
pp. 1–28.

[338] Howard Rachlin. The science of self-control. Harvard University Press, 2004.

[339] Tim Rakow and Ben R Newell. “Degrees of uncertainty: An overview and frame-
work for future research on experience-based choice”. In: Journal of Behavioral
Decision Making 23.1 (2010), pp. 1–14.

[340] Amon Rapp, Lorenzo Curti, and Arianna Boldi. “The human side of human-
chatbot interaction: A systematic literature review of ten years of research on
text-based chatbots”. In: International Journal of Human-Computer Studies 151
(2021), p. 102630.

[341] Alexander J. Ratner et al. “Snorkel: Rapid Training Data Creation with Weak Su-
pervision”. In: Proceedings of the VLDB Endowment. International Conference on
Very Large Data Bases 11 3 (2017), pp. 269–282.

[342] Pamela Ravasio, Sissel Guttormsen-Sc, and Tscherter. “The Qualitative Experi-
ment in HCI: Definition, Occurrences, Value and Use”. In: (Jan. 2004).

[343] Daniel Read et al. “Choice bracketing”. In: Elicitation of preferences (2000),
pp. 171–202.

https://doi.org/10.1145/2448116.2448119
https://doi.org/10.1145/2448116.2448119
https://doi.org/10.1145/2448116.2448119
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.1145/3411764.3445315


BIBLIOGRAPHY

8

167

[344] Amy Rechkemmer and Ming Yin. “When Confidence Meets Accuracy: Ex-
ploring the Effects of Multiple Performance Indicators on Trust in Ma-
chine Learning Models”. In: Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’22. <conf-loc>, <city>New Or-
leans</city>, <state>LA</state>, <country>USA</country>, </conf-loc>: Asso-
ciation for Computing Machinery, 2022. ISBN: 9781450391573. DOI: 10.1145/
3491102.3501967. URL: https://doi.org/10.1145/3491102.3501967.

[345] Maria Riveiro and Serge Thill. “The Challenges of Providing Explanations of AI
Systems When They Do Not Behave like Users Expect”. In: Proceedings of the
30th ACM Conference on User Modeling, Adaptation and Personalization. UMAP
’22. Barcelona, Spain: Association for Computing Machinery, 2022, pp. 110–120.
ISBN: 9781450392075. DOI: 10.1145/3503252.3531306. URL: https://doi.
org/10.1145/3503252.3531306.

[346] Vincent Robbemond, Oana Inel, and Ujwal Gadiraju. “Understanding the Role
of Explanation Modality in AI-Assisted Decision-Making”. In: Proceedings of the
30th ACM Conference on User Modeling, Adaptation and Personalization. UMAP
’22. Barcelona, Spain: Association for Computing Machinery, 2022, pp. 223–233.
ISBN: 9781450392075. DOI: 10.1145/3503252.3531311. URL: https://doi.
org/10.1145/3503252.3531311.

[347] Vincent Robbemond, Oana Inel, and Ujwal Gadiraju. “Understanding the Role
of Explanation Modality in AI-assisted Decision-making”. In: Proceedings of the
30th ACM Conference on User Modeling, Adaptation and Personalization. 2022,
pp. 223–233.

[348] Y. Rong et al. “Towards Human-Centered Explainable AI: A Survey of User Stud-
ies for Model Explanations”. In: IEEE Transactions on Pattern Analysis &amp;
Machine Intelligence 01 (Nov. 5555), pp. 1–20. ISSN: 1939-3539. DOI: 10.1109/
TPAMI.2023.3331846.

[349] Robert Rosenthal and Ralph L Rosnow. Essentials of behavioral research: Methods
and data analysis. 2008.

[350] J. Rovira, Joan María Senent, and Miquel Àngel Essomba Gelabert. “Educational
leadership and teacher involvement as success factors in schools in disadvan-
taged areas of Spain”. In: RELIEVE 22 (2016), p. 4.

[351] N. Roy, F. Moraes, and C. Hauff. “Exploring Users’ Learning Gains within Search
Sessions”. In: Proc. 5th ACM CHIIR. 2020, pp. 432–436.

[352] N. Roy et al. “Note the Highlight: Incorporating Active Reading Tools in a Search
as Learning Environment”. In: Proc 6th ACM CHIIR. 2021, pp. 229–238.

[353] Horacio Saggion and Graeme Hirst. Automatic Text Simplification. Morgan &
amp; Claypool Publishers, 2017. ISBN: 1627058680.

https://doi.org/10.1145/3491102.3501967
https://doi.org/10.1145/3491102.3501967
https://doi.org/10.1145/3491102.3501967
https://doi.org/10.1145/3503252.3531306
https://doi.org/10.1145/3503252.3531306
https://doi.org/10.1145/3503252.3531306
https://doi.org/10.1145/3503252.3531311
https://doi.org/10.1145/3503252.3531311
https://doi.org/10.1145/3503252.3531311
https://doi.org/10.1109/TPAMI.2023.3331846
https://doi.org/10.1109/TPAMI.2023.3331846


8

168 BIBLIOGRAPHY

[354] Sara Salimzadeh, Gaole He, and Ujwal Gadiraju. “A Missing Piece in the Puzzle:
Considering the Role of Task Complexity in Human-AI Decision Making”. In: Pro-
ceedings of the 31st ACM Conference on User Modeling, Adaptation and Person-
alization. UMAP ’23. Limassol, Cyprus: Association for Computing Machinery,
2023, pp. 215–227. ISBN: 9781450399326. DOI: 10.1145/3565472.3592959. URL:
https://doi.org/10.1145/3565472.3592959.

[355] Mike Schaekermann et al. “Expert Discussions Improve Comprehension of Diffi-
cult Cases in Medical Image Assessment”. In: Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 1–13. ISBN: 9781450367080. URL: https :
//doi.org/10.1145/3313831.3376290.

[356] James Schaffer et al. “I Can Do Better than Your AI: Expertise and Explanations”.
In: Proceedings of the 24th International Conference on Intelligent User Inter-
faces. IUI ’19. Marina del Ray, California: Association for Computing Machinery,
2019, pp. 240–251. ISBN: 9781450362726. DOI: 10.1145/3301275.3302308. URL:
https://doi.org/10.1145/3301275.3302308.

[357] Arno Scharl et al. “Leveraging the Wisdom of the Crowds for the Acquisition of
Multilingual Language Resources”. In: May 2012, pp. 379–383.

[358] Nicolas Scharowski et al. “Trust and Reliance in XAI–Distinguishing Between At-
titudinal and Behavioral Measures”. In: arXiv preprint arXiv:2203.12318 (2022).

[359] Max Schemmer et al. “Should I follow AI-based advice? Measuring appropri-
ate reliance in human-AI decision-making”. In: arXiv preprint arXiv:2204.06916
(2022).

[360] Eric Schenk and Claude Guittard. “Crowdsourcing: What can be Outsourced to
the Crowd, and Why ?” In: 2009.

[361] Nadine Schlicker et al. “Calibrated Trust as a Result of Accurate Trustworthiness
Assessment–Introducing the Trustworthiness Assessment Model”. In: (2022).

[362] Anuschka Schmitt et al. Towards a Trust Reliance Paradox? Exploring the Gap
Between Perceived Trust in and Reliance on Algorithmic Advice. en. 2021. URL:
https://www.alexandria.unisg.ch/handle/20.500.14171/111308.

[363] Jakob Schoeffer et al. “On the Interdependence of Reliance Behavior and Accu-
racy in AI-Assisted Decision-Making”. In: arXiv preprint arXiv:2304.08804 (2023).

[364] Patrick Schramowski et al. “Making deep neural networks right for the right sci-
entific reasons by interacting with their explanations”. In: Nature Machine Intel-
ligence 2.8 (2020), pp. 476–486.

[365] Barry Schwartz. “The paradox of choice”. In: Positive psychology in practice: Pro-
moting human flourishing in work, health, education, and everyday life (2015),
pp. 121–138.

[366] Armin Schwienbacher and Benjamin Larralde. “Crowdfunding of Small En-
trepreneurial Ventures”. In: The Oxford Handbook of Entrepreneurial Finance
(Sept. 2010). DOI: 10.2139/ssrn.1699183.

https://doi.org/10.1145/3565472.3592959
https://doi.org/10.1145/3565472.3592959
https://doi.org/10.1145/3313831.3376290
https://doi.org/10.1145/3313831.3376290
https://doi.org/10.1145/3301275.3302308
https://doi.org/10.1145/3301275.3302308
https://www.alexandria.unisg.ch/handle/20.500.14171/111308
https://doi.org/10.2139/ssrn.1699183


BIBLIOGRAPHY

8

169

[367] Javier Fernández Serrano, Silvia T. Acuña, and José A. Macías. “A Review of Quan-
titative Empirical Approaches in Human-Computer Interaction”. In: Proceedings
of the XV International Conference on Human Computer Interaction. Interacción
’14. Puerto de la Cruz, Tenerife, Spain: Association for Computing Machinery,
2014. ISBN: 9781450328807. DOI: 10 . 1145 / 2662253 . 2662309. URL: https :
//doi.org/10.1145/2662253.2662309.

[368] Burr Settles. “Active Learning Literature Survey”. In: 2009.

[369] Tianze Shi et al. “On the Potential of Lexico-logical Alignments for Semantic Pars-
ing to SQL Queries”. In: Findings of the Association for Computational Linguis-
tics: EMNLP 2020. Online: Association for Computational Linguistics, Nov. 2020,
pp. 1849–1864. DOI: 10.18653/v1/2020.findings-emnlp.167. URL: https:
//aclanthology.org/2020.findings-emnlp.167.

[370] Ben Shneiderman. Human-centered AI. Oxford University Press, 2022.

[371] Katie A Siek et al. “Field deployments: Knowing from using in context”. In: Ways
of Knowing in HCI (2014), pp. 119–142.

[372] Herbert A Simon. “A behavioral model of rational choice”. In: The quarterly jour-
nal of economics (1955), pp. 99–118.

[373] Tony Simons, Lisa Hope Pelled, and Ken A Smith. “Making use of difference: Di-
versity, debate, and decision comprehensiveness in top management teams”. In:
Academy of management journal 42.6 (1999), pp. 662–673.

[374] B. Škrlj, A. Repar, and S. Pollak. “RaKUn: Rank-based Keyword Extraction via Un-
supervised Learning and Meta Vertex Aggregation”. In: Stat. Lang. & Speech Proc.
2019, pp. 311–323.

[375] Alison Smith-Renner et al. “No Explainability without Accountability: An Em-
pirical Study of Explanations and Feedback in Interactive ML”. In: Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20.
Honolulu, HI, USA: Association for Computing Machinery, 2020, pp. 1–13. ISBN:
9781450367080. DOI: 10.1145/3313831.3376624. URL: https://doi.org/
10.1145/3313831.3376624.

[376] Rion Snow et al. “Cheap and Fast – But is it Good? Evaluating Non-Expert An-
notations for Natural Language Tasks”. In: Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing. Honolulu, Hawaii: Asso-
ciation for Computational Linguistics, Oct. 2008, pp. 254–263. URL: https://
aclanthology.org/D08-1027.

[377] Aaron Springer and Steve Whittaker. “Progressive Disclosure: Empirically Moti-
vated Approaches to Designing Effective Transparency”. In: Proceedings of the
24th International Conference on Intelligent User Interfaces. IUI ’19. Marina del
Ray, California: Association for Computing Machinery, 2019, pp. 107–120. ISBN:
9781450362726. DOI: 10.1145/3301275.3302322. URL: https://doi.org/
10.1145/3301275.3302322.

[378] K. Stahl and M. Bravo. “Contemporary Classroom Vocabulary Assessment for
Content Areas”. In: READ TEACH 63 (Apr. 2010), pp. 566–578.

https://doi.org/10.1145/2662253.2662309
https://doi.org/10.1145/2662253.2662309
https://doi.org/10.1145/2662253.2662309
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://aclanthology.org/2020.findings-emnlp.167
https://aclanthology.org/2020.findings-emnlp.167
https://doi.org/10.1145/3313831.3376624
https://doi.org/10.1145/3313831.3376624
https://doi.org/10.1145/3313831.3376624
https://aclanthology.org/D08-1027
https://aclanthology.org/D08-1027
https://doi.org/10.1145/3301275.3302322
https://doi.org/10.1145/3301275.3302322
https://doi.org/10.1145/3301275.3302322


8

170 BIBLIOGRAPHY

[379] Keith E Stanovich, Richard F West, and JE Alder. “Individual differences in rea-
soning: Implications for the rationality debate?-Open Peer Commentary-Three
fallacies”. In: Behavioral and Brain Sciences 23.5 (2000), pp. 665–665.

[380] Alain D. Starke, Martijn C. Willemsen, and Chris Snijders. “Using Explanations
as Energy-Saving Frames: A User-Centric Recommender Study”. In: Adjunct Pro-
ceedings of the 29th ACM Conference on User Modeling, Adaptation and Personal-
ization. UMAP ’21. Utrecht, Netherlands: Association for Computing Machinery,
2021, pp. 229–237. ISBN: 9781450383677. DOI: 10.1145/3450614.3464477. URL:
https://doi.org/10.1145/3450614.3464477.

[381] David F Steiner et al. “Impact of deep learning assistance on the histopathologic
review of lymph nodes for metastatic breast cancer”. In: The American journal of
surgical pathology 42.12 (2018), p. 1636.

[382] Ivan Dale Steiner. Group process and productivity. Academic press New York,
1972.

[383] Joachim Stempfle and Petra Badke-Schaub. “Thinking in design teams-an analy-
sis of team communication”. In: Design studies 23.5 (2002), pp. 473–496.

[384] Constantine Stephanidis. “User interfaces for all: New perspectives into human-
computer interaction”. In: User interfaces for all-concepts, methods, and tools 1.1
(2001), pp. 3–17.

[385] Yu Su et al. “Building Natural Language Interfaces to Web APIs”. In: CIKM ’17.
Singapore, Singapore: Association for Computing Machinery, 2017, pp. 177–186.
ISBN: 9781450349185. DOI: 10.1145/3132847.3133009. URL: https://doi.
org/10.1145/3132847.3133009.

[386] Yibo Sun et al. “Semantic Parsing with Syntax- and Table-Aware SQL Generation”.
In: Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Com-
putational Linguistics, July 2018, pp. 361–372. DOI: 10.18653/v1/P18- 1034.
URL: https://aclanthology.org/P18-1034.

[387] R. Syed and K. Collins-Thompson. “Exploring Document Retrieval Features As-
sociated with Improved Short- and Long-Term Vocabulary Learning Outcomes”.
In: Proc. 3rd ACM CHIIR. 2018, pp. 191–200.

[388] R. Syed and K. Collins-Thompson. “Optimizing search results for human learning
goals”. In: IRJ 20 (2017), pp. 506–523.

[389] R. Syed and K. Collins-Thompson. “Retrieval Algorithms Optimized for Human
Learning”. In: Proc. 40th ACM SIGIR. 2017, pp. 555–564.

[390] Maxwell Szymanski, Martijn Millecamp, and Katrien Verbert. “Visual, Textual or
Hybrid: The Effect of User Expertise on Different Explanations”. In: 26th Interna-
tional Conference on Intelligent User Interfaces. IUI ’21. College Station, TX, USA:
Association for Computing Machinery, 2021, pp. 109–119. ISBN: 9781450380171.
DOI: 10 . 1145 / 3397481 . 3450662. URL: https : / / doi . org / 10 . 1145 /
3397481.3450662.

https://doi.org/10.1145/3450614.3464477
https://doi.org/10.1145/3450614.3464477
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.1145/3132847.3133009
https://doi.org/10.18653/v1/P18-1034
https://aclanthology.org/P18-1034
https://doi.org/10.1145/3397481.3450662
https://doi.org/10.1145/3397481.3450662
https://doi.org/10.1145/3397481.3450662


BIBLIOGRAPHY

8

171

[391] Sarah Tan et al. “Investigating human+ machine complementarity for recidivism
predictions”. In: arXiv preprint arXiv:1808.09123 (2018).

[392] Lappoon R. Tang and Raymond J. Mooney. “Using Multiple Clause Constructors
in Inductive Logic Programming for Semantic Parsing”. In: ECML. 2001.

[393] Marjorie Templeton and John Burger. “Problems in Natural-Language Interface
to DBMS with Examples from EUFID”. In: Proceedings of the First Conference on
Applied Natural Language Processing. ANLC ’83. Santa Monica, California: Asso-
ciation for Computational Linguistics, 1983, pp. 3–16. DOI: 10.3115/974194.
974197. URL: https://doi.org/10.3115/974194.974197.

[394] Loren Terveen, Joseph A Konstan, and Cliff Lampe. “Study, build, repeat: Using
online communities as a research platform”. In: Ways of Knowing in HCI (2014),
pp. 95–117.

[395] Jesse Thomason et al. “Learning to Interpret Natural Language Commands
through Human-Robot Dialog”. In: Proceedings of the 24th International Confer-
ence on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, 2015,
pp. 1923–1929. ISBN: 9781577357384.

[396] C. Thompson. “Acquiring Word-Meaning Mappings for Natural Language Inter-
faces”. In: Journal of Artificial Intelligence Research 18 (Jan. 2003), pp. 1–44. ISSN:
1076-9757. DOI: 10.1613/jair.1063. URL: http://dx.doi.org/10.1613/
jair.1063.

[397] Frederick B. Thompson et al. “REL: A Rapidly Extensible Language system”. In:
ACM ’69. 1969.

[398] Nava Tintarev and Judith Masthoff. “Beyond Explaining Single Item Recom-
mendations”. In: Recommender Systems Handbook. Ed. by Francesco Ricci, Lior
Rokach, and Bracha Shapira. New York, NY: Springer US, 2022, pp. 711–756. ISBN:
978-1-0716-2197-4. DOI: 10.1007/978- 1- 0716- 2197- 4_19. URL: https:
//doi.org/10.1007/978-1-0716-2197-4_19.

[399] Suzanne Tolmeijer et al. “Second Chance for a First Impression? Trust Develop-
ment in Intelligent System Interaction”. In: Proceedings of the 29th ACM Con-
ference on User Modeling, Adaptation and Personalization. UMAP ’21. Utrecht,
Netherlands: Association for Computing Machinery, 2021, pp. 77–87. ISBN:
9781450383660. DOI: 10.1145/3450613.3456817. URL: https://doi.org/
10.1145/3450613.3456817.

[400] Suzanne Tolmeijer et al. “Second Chance for a First Impression? Trust Develop-
ment in Intelligent System Interaction”. In: Proceedings of the 29th ACM Con-
ference on User Modeling, Adaptation and Personalization. UMAP ’21. Utrecht,
Netherlands: Association for Computing Machinery, 2021, pp. 77–87. ISBN:
9781450383660. DOI: 10.1145/3450613.3456817. URL: https://doi.org/
10.1145/3450613.3456817.

[401] Richard Tomsett et al. “Rapid trust calibration through interpretable and
uncertainty-aware AI”. In: Patterns 1.4 (2020), p. 100049.

https://doi.org/10.3115/974194.974197
https://doi.org/10.3115/974194.974197
https://doi.org/10.3115/974194.974197
https://doi.org/10.1613/jair.1063
http://dx.doi.org/10.1613/jair.1063
http://dx.doi.org/10.1613/jair.1063
https://doi.org/10.1007/978-1-0716-2197-4_19
https://doi.org/10.1007/978-1-0716-2197-4_19
https://doi.org/10.1007/978-1-0716-2197-4_19
https://doi.org/10.1145/3450613.3456817
https://doi.org/10.1145/3450613.3456817
https://doi.org/10.1145/3450613.3456817
https://doi.org/10.1145/3450613.3456817
https://doi.org/10.1145/3450613.3456817
https://doi.org/10.1145/3450613.3456817


8

172 BIBLIOGRAPHY

[402] Wataru Toyokawa, Andrew Whalen, and Kevin N Laland. “Social learning strate-
gies regulate the wisdom and madness of interactive crowds”. In: Nature Human
Behaviour 3.2 (2019), pp. 183–193.

[403] A Trunk, H Birkel, and E Hartmann. On the current state of combining human and
artificial intelligence for strategic organizational decision making. Bus. Res. 13 (3).
2020.

[404] Chun-Hua Tsai et al. “Exploring and Promoting Diagnostic Transparency and Ex-
plainability in Online Symptom Checkers”. In: Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems. CHI ’21. Yokohama, Japan: As-
sociation for Computing Machinery, 2021. ISBN: 9781450380966. DOI: 10.1145/
3411764.3445101. URL: https://doi.org/10.1145/3411764.3445101.

[405] Aybike Ulusan et al. ““Rather Solve the Problem from Scratch”: Gamesplor-
ing Human-Machine Collaboration for Optimizing the Debris Collection Prob-
lem”. In: 27th International Conference on Intelligent User Interfaces. IUI ’22.
Helsinki, Finland: Association for Computing Machinery, 2022, pp. 604–619.
ISBN: 9781450391443. DOI: 10.1145/3490099.3511163. URL: https://doi.
org/10.1145/3490099.3511163.

[406] Kelsey Urgo, Jaime Arguello, and Robert Capra. “The Effects of Learning Objec-
tives on Searchers’ Perceptions and Behaviors”. In: Proc 6th ACM ICTIR. 2020,
pp. 77–84.

[407] Kristen Vaccaro, Christian Sandvig, and Karrie Karahalios. “"At the End of the
Day Facebook Does What ItWants": How Users Experience Contesting Algorith-
mic Content Moderation”. In: Proc. ACM Hum.-Comput. Interact. 4.CSCW2 (Oct.
2020). DOI: 10.1145/3415238. URL: https://doi.org/10.1145/3415238.

[408] Helena Vasconcelos et al. “Explanations Can Reduce Overreliance on AI Systems
During Decision-Making”. In: Proc. ACM Hum.-Comput. Interact. 7.CSCW1 (Apr.
2023). DOI: 10.1145/3579605. URL: https://doi.org/10.1145/3579605.

[409] Michael Veale, Max Van Kleek, and Reuben Binns. “Fairness and Accountabil-
ity Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-
Making”. In: Proceedings of the 2018 CHI Conference on Human Factors in Com-
puting Systems. CHI ’18. Montreal QC, Canada: Association for Computing Ma-
chinery, 2018, pp. 1–14. ISBN: 9781450356206. DOI: 10.1145/3173574.3174014.
URL: https://doi.org/10.1145/3173574.3174014.

[410] Oleksandra Vereschak, Gilles Bailly, and Baptiste Caramiaux. “How to Evaluate
Trust in AI-Assisted Decision Making? A Survey of Empirical Methodologies”.
In: Proc. ACM Hum.-Comput. Interact. 5.CSCW2 (Oct. 2021). DOI: 10 . 1145 /
3476068. URL: https://doi.org/10.1145/3476068.

[411] Sruthi Viswanathan, Behrooz Omidvar-Tehrani, and Jean-Michel Renders. “What
is Your Current Mindset?” In: Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems. CHI ’22. New Orleans, LA, USA: Association for
Computing Machinery, 2022. ISBN: 9781450391573. DOI: 10.1145/3491102.
3501912. URL: https://doi.org/10.1145/3491102.3501912.

https://doi.org/10.1145/3411764.3445101
https://doi.org/10.1145/3411764.3445101
https://doi.org/10.1145/3411764.3445101
https://doi.org/10.1145/3490099.3511163
https://doi.org/10.1145/3490099.3511163
https://doi.org/10.1145/3490099.3511163
https://doi.org/10.1145/3415238
https://doi.org/10.1145/3415238
https://doi.org/10.1145/3579605
https://doi.org/10.1145/3579605
https://doi.org/10.1145/3173574.3174014
https://doi.org/10.1145/3173574.3174014
https://doi.org/10.1145/3476068
https://doi.org/10.1145/3476068
https://doi.org/10.1145/3476068
https://doi.org/10.1145/3491102.3501912
https://doi.org/10.1145/3491102.3501912
https://doi.org/10.1145/3491102.3501912


BIBLIOGRAPHY

8

173

[412] Georg Von Krogh. “Artificial intelligence in organizations: New opportunities
for phenomenon-based theorizing”. In: Academy of Management Discoveries 4.4
(2018), pp. 404–409.

[413] Peter P Wakker. Prospect theory: For risk and ambiguity. Cambridge university
press, 2010.

[414] X. Wan and J. Xiao. “Single Document Keyphrase Extraction Using Neighborhood
Knowledge”. In: Proc. 23rd AAAI. 2008, pp. 855–860.

[415] Aobo Wang, Cong Duy Vu Hoang, and Min-Yen Kan. “Perspectives on crowd-
sourcing annotations for natural language processing”. In: Language Resources
and Evaluation 47 (2013), pp. 9–31.

[416] Bailin Wang et al. “Learning to Synthesize Data for Semantic Parsing”. In: Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Online: Associa-
tion for Computational Linguistics, June 2021, pp. 2760–2766. DOI: 10.18653/
v1/2021.naacl-main.220. URL: https://aclanthology.org/2021.naacl-
main.220.

[417] Bailin Wang et al. “RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers”. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Online: Association for Computational Lin-
guistics, July 2020, pp. 7567–7578. DOI: 10.18653/v1/2020.acl- main.677.
URL: https://aclanthology.org/2020.acl-main.677.

[418] Dakuo Wang et al. “Human-AI Collaboration in Data Science: Exploring Data
Scientists’ Perceptions of Automated AI”. In: Proc. ACM Hum.-Comput. Interact.
3.CSCW (Nov. 2019). DOI: 10.1145/3359313. URL: https://doi.org/10.
1145/3359313.

[419] Danding Wang et al. “Designing Theory-Driven User-Centric Explainable AI”.
In: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. CHI ’19. Glasgow, Scotland Uk: Association for Computing Machinery,
2019, pp. 1–15. ISBN: 9781450359702. DOI: 10.1145/3290605.3300831. URL:
https://doi.org/10.1145/3290605.3300831.

[420] Guangyu Wang et al. “A deep-learning pipeline for the diagnosis and discrimina-
tion of viral, non-viral and COVID-19 pneumonia from chest X-ray images”. In:
Nature biomedical engineering 5.6 (2021), pp. 509–521.

[421] J. Wang, J. Liu, and C. Wang. “Keyword Extraction Based on Pagerank”. In:
PAKDD. 2007, pp. 857–864.

[422] R. Wang. “Corpus-independent Generic Keyphrase Extraction Using Word Em-
bedding Vectors”. In: 2015.

[423] Runze Wang et al. “Tracking Interaction States for Multi-Turn Text-to-SQL Se-
mantic Parsing”. In: AAAI. 2021.

https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.naacl-main.220
https://aclanthology.org/2021.naacl-main.220
https://aclanthology.org/2021.naacl-main.220
https://doi.org/10.18653/v1/2020.acl-main.677
https://aclanthology.org/2020.acl-main.677
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3359313
https://doi.org/10.1145/3290605.3300831
https://doi.org/10.1145/3290605.3300831


8

174 BIBLIOGRAPHY

[424] Xinru Wang and Ming Yin. “Are Explanations Helpful? A Comparative Study of the
Effects of Explanations in AI-Assisted Decision-Making”. In: 26th International
Conference on Intelligent User Interfaces. IUI ’21. College Station, TX, USA: Asso-
ciation for Computing Machinery, 2021, pp. 318–328. ISBN: 9781450380171. DOI:
10.1145/3397481.3450650. URL: https://doi.org/10.1145/3397481.
3450650.

[425] Xinru Wang and Ming Yin. “Are Explanations Helpful? A Comparative Study of the
Effects of Explanations in AI-Assisted Decision-Making”. In: 26th International
Conference on Intelligent User Interfaces. IUI ’21. College Station, TX, USA: Asso-
ciation for Computing Machinery, 2021, pp. 318–328. ISBN: 9781450380171. DOI:
10.1145/3397481.3450650. URL: https://doi.org/10.1145/3397481.
3450650.

[426] David H.D. Warren and Fernando C.N. Pereira. “An Efficient Easily Adaptable Sys-
tem for Interpreting Natural Language Queries”. In: American Journal of Compu-
tational Linguistics 8.3-4 (1982), pp. 110–122. URL: https://aclanthology.
org/J82-3002.

[427] Edmund Wascher et al. “Frontal theta activity reflects distinct aspects of mental
fatigue”. In: Biological psychology 96 (Dec. 2013). DOI: 10.1016/j.biopsycho.
2013.11.010.

[428] Linda R Weber and Allison Carter. “On constructing trust: temporality, self-
disclosure, and perspective-taking”. In: International Journal of Sociology and
Social Policy 18.1 (1998), pp. 7–26.

[429] M. B. Wesche and T. Paribakht. “Assessing Second Language Vocabulary Knowl-
edge: Depth Versus Breadth.” In: Canadian Modern Lang. Review 53 (1996),
pp. 13–40.

[430] Lawrence R. Wheeless and Janis Grotz. “The Measurement of Trust and Its Re-
lationship to Self-Disclosure”. In: Human Communication Research 3.3 (Mar.
2006), pp. 250–257. ISSN: 0360-3989. DOI: 10 . 1111 / j . 1468 - 2958 . 1977 .
tb00523.x. eprint: https://academic.oup.com/hcr/article- pdf/3/
3/250/22344414/jhumcom0250.pdf. URL: https://doi.org/10.1111/j.
1468-2958.1977.tb00523.x.

[431] R.W. White, S.T. Dumais, and J. Teevan. “Characterizing the Influence of Domain
Expertise on Web Search Behavior”. In: Proc. 2nd WSDM. 2009, pp. 132–141.

[432] Clifton Wilcox. Groupthink: an impediment to success. Xlibris Corporation, 2010.

[433] M.J. Wilson and M.L. Wilson. “A comparison of techniques for measuring sense-
making and learning within participant-generated summaries”. In: JASIST 64.2
(2013), pp. 291–306.

[434] Peter Woitek, Paul Bräuer, and Holger Grossmann. “A Novel Tool for Capturing
Conceptualized Audio Annotations”. In: Proceedings of the 5th Audio Mostly Con-
ference: A Conference on Interaction with Sound. AM ’10. Piteå, Sweden: Asso-
ciation for Computing Machinery, 2010. ISBN: 9781450300469. DOI: 10.1145/
1859799.1859814. URL: https://doi.org/10.1145/1859799.1859814.

https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1145/3397481.3450650
https://aclanthology.org/J82-3002
https://aclanthology.org/J82-3002
https://doi.org/10.1016/j.biopsycho.2013.11.010
https://doi.org/10.1016/j.biopsycho.2013.11.010
https://doi.org/10.1111/j.1468-2958.1977.tb00523.x
https://doi.org/10.1111/j.1468-2958.1977.tb00523.x
https://academic.oup.com/hcr/article-pdf/3/3/250/22344414/jhumcom0250.pdf
https://academic.oup.com/hcr/article-pdf/3/3/250/22344414/jhumcom0250.pdf
https://doi.org/10.1111/j.1468-2958.1977.tb00523.x
https://doi.org/10.1111/j.1468-2958.1977.tb00523.x
https://doi.org/10.1145/1859799.1859814
https://doi.org/10.1145/1859799.1859814
https://doi.org/10.1145/1859799.1859814


BIBLIOGRAPHY

8

175

[435] Robert Wood. “Task complexity: Definition of the construct”. In: Organizational
Behavior and Human Decision Processes 37 (Feb. 1986), pp. 60–82. DOI: 10.1016/
0749-5978(86)90044-0.

[436] Wendy Wood and David T Neal. “A new look at habits and the habit-goal inter-
face.” In: Psychological review 114.4 (2007), p. 843.

[437] W. A. Woods. “Progress in Natural Language Understanding: An Application to
Lunar Geology”. In: Proceedings of the June 4-8, 1973, National Computer Confer-
ence and Exposition. AFIPS ’73. New York, New York: Association for Computing
Machinery, 1973, pp. 441–450. ISBN: 9781450379168. DOI: 10.1145/1499586.
1499695. URL: https://doi.org/10.1145/1499586.1499695.

[438] William Woods, Ronald Kaplan, and Bonnie Webber. “The Lunar Science Natural
Language Information System: Final Report”. In: (Jan. 1972).

[439] Anita Williams Woolley et al. “Evidence for a collective intelligence factor in the
performance of human groups”. In: science 330.6004 (2010), pp. 686–688.

[440] Austin P. Wright et al. “RECAST: Enabling User Recourse and Interpretability of
Toxicity Detection Models with Interactive Visualization”. In: Proc. ACM Hum.-
Comput. Interact. 5.CSCW1 (Apr. 2021). DOI: 10.1145/3449280. URL: https:
//doi.org/10.1145/3449280.

[441] S. Paul Wright. “Adjusted P-Values for Simultaneous Inference”. In: Biometrics
48.4 (1992), pp. 1005–1013. ISSN: 0006341X, 15410420. URL: http://www.jstor.
org/stable/2532694 (visited on 09/09/2023).

[442] Tongshuang Wu, Daniel S. Weld, and Jeffrey Heer. “Local Decision Pitfalls in In-
teractive Machine Learning: An Investigation into Feature Selection in Sentiment
Analysis”. In: ACM Trans. Comput.-Hum. Interact. 26.4 (June 2019). ISSN: 1073-
0516. DOI: 10.1145/3319616. URL: https://doi.org/10.1145/3319616.

[443] Xiaojun Xu, Chang Liu, and Dawn Song. SQLNet: Generating Structured Queries
From Natural Language Without Reinforcement Learning. 2017. arXiv: 1711 .
04436 [cs.CL].

[444] Navid Yaghmazadeh et al. “SQLizer: Query Synthesis from Natural Language”. In:
Proc. ACM Program. Lang. 1.OOPSLA (Oct. 2017). DOI: 10.1145/3133887. URL:
https://doi.org/10.1145/3133887.

[445] Fumeng Yang et al. “How Do Visual Explanations Foster End Users’ Appropriate
Trust in Machine Learning?” In: Proceedings of the 25th International Conference
on Intelligent User Interfaces. IUI ’20. Cagliari, Italy: Association for Computing
Machinery, 2020, pp. 189–201. ISBN: 9781450371186. DOI: 10.1145/3377325.
3377480. URL: https://doi.org/10.1145/3377325.3377480.

[446] Xiangli Yang et al. “A Survey on Deep Semi-supervised Learning”. In: CoRR
abs/2103.00550 (2021). arXiv: 2103.00550. URL: https://arxiv.org/abs/
2103.00550.

[447] Yi Yang, Wei Qian, and Hui Zou. “Insurance premium prediction via gradient
tree-boosted Tweedie compound Poisson models”. In: Journal of Business & Eco-
nomic Statistics 36.3 (2018), pp. 456–470.

https://doi.org/10.1016/0749-5978(86)90044-0
https://doi.org/10.1016/0749-5978(86)90044-0
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/1499586.1499695
https://doi.org/10.1145/3449280
https://doi.org/10.1145/3449280
https://doi.org/10.1145/3449280
http://www.jstor.org/stable/2532694
http://www.jstor.org/stable/2532694
https://doi.org/10.1145/3319616
https://doi.org/10.1145/3319616
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3377325.3377480
https://doi.org/10.1145/3377325.3377480
https://doi.org/10.1145/3377325.3377480
https://arxiv.org/abs/2103.00550
https://arxiv.org/abs/2103.00550
https://arxiv.org/abs/2103.00550


8

176 BIBLIOGRAPHY

[448] W.-T. Yih, J. Goodman, and V.R. Carvalho. “Finding Advertising Keywords on Web
Pages”. In: Proc. WWW. 2006, pp. 213–222.

[449] Ming Yin, Jennifer Wortman Vaughan, and Hanna Wallach. “Understanding the
Effect of Accuracy on Trust in Machine Learning Models”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. CHI ’19. Glas-
gow, Scotland Uk: Association for Computing Machinery, 2019, pp. 1–12. ISBN:
9781450359702. DOI: 10.1145/3290605.3300509. URL: https://doi.org/
10.1145/3290605.3300509.

[450] Kun Yu et al. “Do I Trust My Machine Teammate? An Investigation from Percep-
tion to Decision”. In: Proceedings of the 24th International Conference on Intel-
ligent User Interfaces. IUI ’19. Marina del Ray, California: Association for Com-
puting Machinery, 2019, pp. 460–468. ISBN: 9781450362726. DOI: 10 . 1145 /
3301275.3302277. URL: https://doi.org/10.1145/3301275.3302277.

[451] R. Yu et al. “Predicting User Knowledge Gain in Informational Search Sessions”.
In: 2018, pp. 75–84.

[452] Tao Yu et al. “CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-
Domain Natural Language Interfaces to Databases”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, Nov.
2019, pp. 1962–1979. DOI: 10 . 18653 / v1 / D19 - 1204. URL: https : / /
aclanthology.org/D19-1204.

[453] Tao Yu et al. “SParC: Cross-Domain Semantic Parsing in Context”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Flo-
rence, Italy: Association for Computational Linguistics, July 2019, pp. 4511–4523.
DOI: 10.18653/v1/P19-1443. URL: https://aclanthology.org/P19-1443.

[454] Tao Yu et al. “Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task”. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp. 3911–3921.
DOI: 10.18653/v1/D18-1425. URL: https://aclanthology.org/D18-1425.

[455] Tao Yu et al. “SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-
Domain Text-to-SQL Task”. In: EMNLP. 2018.

[456] Tao Yu et al. “TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Gen-
eration”. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). New Orleans, Louisiana: Association for Computational
Linguistics, June 2018, pp. 588–594. DOI: 10.18653/v1/N18-2093. URL: https:
//aclanthology.org/N18-2093.

https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1145/3301275.3302277
https://doi.org/10.1145/3301275.3302277
https://doi.org/10.1145/3301275.3302277
https://doi.org/10.18653/v1/D19-1204
https://aclanthology.org/D19-1204
https://aclanthology.org/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://aclanthology.org/P19-1443
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/D18-1425
https://doi.org/10.18653/v1/N18-2093
https://aclanthology.org/N18-2093
https://aclanthology.org/N18-2093


BIBLIOGRAPHY

8

177

[457] Rachael Zehrung et al. “Vis Ex Machina: An Analysis of Trust in Human versus Al-
gorithmically Generated Visualization Recommendations”. In: Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. CHI ’21. Yoko-
hama, Japan: Association for Computing Machinery, 2021. ISBN: 9781450380966.
DOI: 10 . 1145 / 3411764 . 3445195. URL: https : / / doi . org / 10 . 1145 /
3411764.3445195.

[458] John M. Zelle and Raymond J. Mooney. “Learning to Parse Database Queries Us-
ing Inductive Logic Programming”. In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence - Volume 2. AAAI’96. Portland, Oregon: AAAI
Press, 1996, pp. 1050–1055. ISBN: 026251091X.

[459] Luke S. Zettlemoyer and Michael Collins. “Learning to Map Sentences to Logical
Form: Structured Classification with Probabilistic Categorial Grammars”. In: Pro-
ceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence.
UAI’05. Edinburgh, Scotland: AUAI Press, 2005, pp. 658–666. ISBN: 0974903914.

[460] Qiaoning Zhang, Matthew L Lee, and Scott Carter. “You Complete Me: Human-
AI Teams and Complementary Expertise”. In: Proceedings of the 2022 CHI Con-
ference on Human Factors in Computing Systems. CHI ’22. New Orleans, LA,
USA: Association for Computing Machinery, 2022. ISBN: 9781450391573. DOI:
10.1145/3491102.3517791. URL: https://doi.org/10.1145/3491102.
3517791.

[461] Rui Zhang et al. “Editing-Based SQL Query Generation for Cross-Domain
Context-Dependent Questions”. In: Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 5338–5349. DOI: 10.
18653/v1/D19-1537. URL: https://aclanthology.org/D19-1537.

[462] X. Zhang, M. Cole, and N. Belkin. “Predicting Users’ Domain Knowledge from
Search Behaviors”. In: Proc. 34th ACM SIGIR. 2011, pp. 1225–1226.

[463] Yunfeng Zhang, Q. Vera Liao, and Rachel K. E. Bellamy. “Effect of Confidence and
Explanation on Accuracy and Trust Calibration in AI-Assisted Decision Making”.
In: Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency. FAT* ’20. Barcelona, Spain: Association for Computing Machinery, 2020,
pp. 295–305. ISBN: 9781450369367. DOI: 10 . 1145 / 3351095 . 3372852. URL:
https://doi.org/10.1145/3351095.3372852.

[464] Zelun Tony Zhang et al. “Is Overreliance on AI Provoked by Study Design?” In:
IFIP Conference on Human-Computer Interaction. Springer. 2023, pp. 49–58.

[465] Chengbo Zheng et al. “Competent but Rigid: Identifying the Gap in Empowering
AI to Participate Equally in Group Decision-Making”. In: Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. CHI ’23. Hamburg,
Germany: Association for Computing Machinery, 2023. ISBN: 9781450394215.
DOI: 10 . 1145 / 3544548 . 3581131. URL: https : / / doi . org / 10 . 1145 /
3544548.3581131.

https://doi.org/10.1145/3411764.3445195
https://doi.org/10.1145/3411764.3445195
https://doi.org/10.1145/3411764.3445195
https://doi.org/10.1145/3491102.3517791
https://doi.org/10.1145/3491102.3517791
https://doi.org/10.1145/3491102.3517791
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://aclanthology.org/D19-1537
https://doi.org/10.1145/3351095.3372852
https://doi.org/10.1145/3351095.3372852
https://doi.org/10.1145/3544548.3581131
https://doi.org/10.1145/3544548.3581131
https://doi.org/10.1145/3544548.3581131


8

178 BIBLIOGRAPHY

[466] Yudian Zheng et al. “QASCA: A Quality-Aware Task Assignment System for
Crowdsourcing Applications”. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’15. Melbourne, Victo-
ria, Australia: Association for Computing Machinery, 2015, pp. 1031–1046. ISBN:
9781450327589. DOI: 10.1145/2723372.2749430. URL: https://doi.org/
10.1145/2723372.2749430.

[467] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating Struc-
tured Queries from Natural Language using Reinforcement Learning. 2017. arXiv:
1709.00103 [cs.CL].

[468] Rami Zwick et al. “Consumer sequential search: Not enough or too much?” In:
Marketing Science 22.4 (2003), pp. 503–519.

https://doi.org/10.1145/2723372.2749430
https://doi.org/10.1145/2723372.2749430
https://doi.org/10.1145/2723372.2749430
https://arxiv.org/abs/1709.00103


SUMMARY

Decision-making has become increasingly intertwined with the use of AI systems to aug-
ment human capabilities. The primary goal of human-AI collaboration is to enhance
outcomes by leveraging the strengths of both parties. However, as AI systems become
more sophisticated, the relationship between humans and AI in decision-making has
grown more complex, presenting both challenges and opportunities. For instance, the
integration of AI systems can lead to over-reliance, reduced critical thinking, and sub-
optimal decision-making outcomes, deviating from the intended benefits. The error rate
and biases of AI systems, as well as the user’s misunderstanding of the system’s capabil-
ities and limitations, can negatively impact the decision-making process and outcomes.
To address these issues, researchers have examined various factors that can shape hu-
man decision-making behavior and outcomes, including human-related attributes (e.g.,
cognitive biases, individual differences, expertise), features of AI systems (e.g., trans-
parency, explainability), and contextual factors (e.g., task complexity, uncertainty, time
pressure). While many studies have been focused on the human-related factors and fea-
tures of AI systems, less attention has been paid to the influence of contextual elements
on human-AI decision-making.

This work contributes to the growing body of research on human-AI decision-making
by empirically investigating the influence of contextual factors on decision-makers be-
haviors and outcomes. Through a series of studies, we demonstrate that factors such
as task complexity, task uncertainty, and group dynamics can significantly impact the
adoption of AI systems in decision-making contexts. Over-reliance on AI systems is
more prevalent in complex and uncertain tasks, leading to sub-optimal outcomes and
reduced critical thinking abilities. Additionally, we found that integrating AI systems can
be more beneficial for groups than for individuals, as the collective intelligence and di-
verse perspectives within a group can enhance critical thinking and decision-making.
These findings can inform the design of AI systems and the development of interven-
tions that promote the appropriate use of AI in decision-making, tailored to the specific
needs and characteristics of the context.

This thesis also informs the design of future empirical studies that aim to better un-
derstand the complex relationship between humans, AI systems, and the surrounding
context. While it may not be practical to control all contextual factors in real-world set-
tings, an awareness of their influence can guide the development of rigorous studies
that can capture the dynamics of human-AI decision-making in realistic scenarios. Ad-
ditionally, by proposing a configurable framework, this thesis provides a methodological
toolset to enable future researchers to systematically investigate the various factors that
contribute to the success of human-AI decision-making.
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Besluitvorming raakt steeds meer verweven met het gebruik van AI-systemen om men-
selijke capaciteiten te vergroten. Het primaire doel van de samenwerking tussen mens
en AI is om de resultaten te verbeteren door gebruik te maken van de sterke punten van
beide partijen. Naarmate AI-systemen geavanceerder worden, wordt de relatie tussen
mens en AI in de besluitvorming echter complexer, wat zowel uitdagingen als kansen
met zich meebrengt. De integratie van AI-systemen kan bijvoorbeeld leiden tot te veel
vertrouwen, minder kritisch denken en suboptimale besluitvormingsresultaten, waar-
door de beoogde voordelen niet worden behaald. De foutmarge en vooroordelen van
AI-systemen, evenals het onbegrip van de gebruiker over de mogelijkheden en beper-
kingen van het systeem, kunnen het besluitvormingsproces en de resultaten negatief
beïnvloeden. Om deze problemen aan te pakken, hebben onderzoekers verschillende
factoren onderzocht die het menselijke besluitvormingsgedrag en de resultaten kunnen
beïnvloeden, waaronder mensgerelateerde eigenschappen (zoals cognitieve bias, indi-
viduele verschillen en expertise), kenmerken van AI-systemen (zoals transparantie en
uitlegbaarheid) en contextuele factoren (zoals de complexiteit van taken, onzekerheid
en tijdsdruk). Terwijl veel studies zich hebben gericht op de mensgerelateerde facto-
ren en kenmerken van AI-systemen, is er minder aandacht besteed aan de invloed van
contextuele elementen op de besluitvorming tussen mens en AI.

Dit werk draagt bij aan het groeiende corpus van onderzoek naar mens-AI-
besluitvorming door de invloed van contextuele factoren op het gedrag en de resulta-
ten van besluitvormers empirisch te onderzoeken. Door middel van een reeks studies
tonen we aan dat factoren zoals taakcomplexiteit, taakonzekerheid en groepsdynamiek
een significante invloed kunnen hebben op de adoptie van AI-systemen in besluitvor-
mingscontexten. Overdreven vertrouwen op AI-systemen komt vaker voor bij complexe
en onzekere taken, wat leidt tot suboptimale uitkomsten en verminderd kritisch denk-
vermogen. Daarnaast ontdekten we dat de integratie van AI-systemen gunstiger kan zijn
voor groepen dan voor individuen, omdat de collectieve intelligentie en verschillende
perspectieven binnen een groep het kritisch denken en de besluitvorming kunnen ver-
beteren. Deze bevindingen kunnen bijdragen aan het ontwerp van AI-systemen en de
ontwikkeling van interventies die het juiste gebruik van AI in besluitvorming bevorde-
ren, afgestemd op de specifieke behoeften en kenmerken van de context.

Dit proefschrift levert ook informatie voor het ontwerpen van toekomstige empiri-
sche studies die als doel hebben de complexe relatie tussen mensen, AI-systemen en de
omringende context beter te begrijpen. Hoewel het misschien niet praktisch is om alle
contextuele factoren in real-world omgevingen te controleren, kan een bewustzijn van
hun invloed de ontwikkeling van rigoureuze studies leiden die de dynamiek van mens-
AI besluitvorming in realistische scenario’s kunnen vastleggen. Daarnaast biedt deze
proefschrift, door een configureerbaar raamwerk voor te stellen, een methodologische
toolkit waarmee toekomstige onderzoekers systematisch de verschillende factoren kun-
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nen onderzoeken die bijdragen aan het succes van de besluitvorming tussen mens en
AI.
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