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PREFACE

At the time of writing, traveling has become difficult in a world where countries are lock-
ing down. While longing for better times ahead to come, I can at least look back at a long
and hectic journey over the last four years. It was quite an experience that I would like
to share. At the start, I imagined to be sitting on a small raft on a river, when a thick mist
came down, obscuring my view of the surroundings. Not knowing where to go, I slowly
found my way and made it to the shore. I was drawn towards the forest, as trees loomed
out of the mist. The wind was blowing through the canopy when I entered the maze of
paths. I was captivated by the complexity, ingenuity and diversity of this world I had
joined, with all its hidden treasures rooted under the surface. The density of the forest
suddenly vanished and a wide open landscape stretched out ahead. And guided by the
lights, I wandered in this beautiful, mysterious and hilly scenery. After a steep ascent,
somewhere along my unsettled way, I sat back and enjoyed the view. I hope you will too,
it is laid out in front of you.

Laurène Judith Estelle Bouaziz
Delft, January 2021
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SUMMARY

Contemplating the Meuse or any other river of the world, one may wonder about the
journey of rain in becoming river. This fascinates hydrologists, as they develop theories
to understand movement, storage and release of water through the landscape across cli-
mates. These theories are translated to hydrological models, which describe the complex
reality in a simpler way. Models are then used to predict the hydrological cycle for the
nearby or long-term future.

This thesis aims to assist the Dutch Ministry of Infrastructure and Water Manage-
ment in improving the reliability of hydrological modeling of the Meuse basin for op-
erational and policy applications. Using in-situ and remote-sensing data, the value of
representing additional processes in models is explored, as well as the creative use of
additional data to improve hydrological predictions.

First, water balance data is used to identify the potential presence of intercatchment
groundwater flows (Chapter 3). These underground flow paths cross topographic catch-
ment boundaries and mainly play a role in headwater catchments (< 500 km2) of the
Meuse basin, which are underlain by productive aquifers. Representing this flux as a
preferential threshold-initiated process improves low and high flow model performance
and increases the consistency between modeled and remote-sensing estimates of actual
evaporation.

Besides the importance of quantifying the long-term hydrological partitioning of
precipitation into streamflow, evaporation and potentially intercatchment groundwater
flows, another key element of the hydrological response is the amount of water available
in the root-zone of vegetation. The temporal dynamics of root-zone soil moisture con-
trol how much more water can be stored in the soil and how much water is available for
transpiration. In Chapter 4, meaningful estimates of root-zone soil moisture are inferred
from satellite observations of near-surface soil moisture, by establishing a link between
the catchment-scale root-zone storage capacity and the Soil Water Index.

Interestingly, hydrological models with different internal process representations of
root-zone soil moisture, evaporation, snow and total storage at the catchment scale may
lead to a similar aggregated streamflow response (Chapter 5). This discrepancy implies
that models are not necessarily providing the right answers for the right reasons, as they
cannot simultaneously be close to reality and different from each other. To circumvent
the uncertainty of process representation, which is inherent to hydrological science, the
use of multiple model structures is advocated for operational and policy applications.
Nonetheless, testing the consistency between modeled hydrological behavior and inde-
pendent remote-sensing data can foster model developments and lead to creating better
models.

Finally, we move beyond the use of historical in-situ and remote-sensing data to pre-
dict long-term hydrological behavior of the Meuse basin under projected global warm-
ing (Chapter 6). If environmental conditions change, it is likely to also assume ecosystem
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x SUMMARY

adaptation in response to climate change and a potential natural and/or anthropogenic
shift in dominant species across the landscape. Non-stationarity in the representation
of hydrological systems is introduced in a process-based model with three hydrologi-
cal response units to account for the spatial variability of hydrological processes. More
specifically, we adapt the root-zone storage capacity parameter using the information
contained in the projected climate data. This is an important step forward in the great
challenge of hydrological predictions under change.

Despite data uncertainties and a lack of data at the required temporal and spatial res-
olutions, many possibilities are at hand with what is currently available to develop new
theories, test and improve hydrological models. Requiring creativity, this is a beautiful
challenge to further unravel the mysteries of the hydrological landscape.



SAMENVATTING

Het bewonderen van de Maas of een andere rivier ter wereld wekt nieuwsgierigheid over
de afgelegde reis van regen tot het ontstaan van een rivier. Dit fascineert hydrologen,
die zich bezighouden met het ontwikkelen van theorieën om berging, verdamping en
stroming van water door het landschap te begrijpen. Deze theorieën worden vertaald
naar hydrologische modellen, die de complexe werkelijkheid eenvoudiger beschrijven.
Vervolgens worden deze modellen gebruikt om de hydrologische cyclus voor de nabije
of lange termijn toekomst te voorspellen.

Dit proefschrift heeft als doel om Rijkswaterstaat te ondersteunen bij het verbeteren
van de betrouwbaarheid van hydrologische modellen van het Maasstroomgebied voor
operationele- en beleidstoepassingen. Met behulp van in-situ en satellietgegevens is er
onderzoek gedaan naar het belang van het beschrijven van aanvullende processen en
het creatief gebruiken van gegevens om hydrologische voorspellingen te verbeteren.

Ten eerste zijn waterbalansgegevens gebruikt om de mogelijke aanwezigheid van
grondwateruitwisselingen tussen stroomgebieden te identificeren (Hoofdstuk 3). Deze
ondergrondse stromingen doorkruisen stroomgebiedsgrenzen die zijn afgeleid uit de to-
pografie. De grondwateruitwisselingen spelen vooral een rol in bovenstroomse gebieden
van het Maasstroomgebied, gelegen op productieve watervoerende lagen. Het represen-
teren van deze flux als een preferentieel proces, geïnitieerd boven een drempelwaarde,
verbetert zowel laag- als hoogwater modelprestaties en verhoogt daarnaast ook de con-
sistentie tussen gemodelleerde en satellietschattingen van werkelijke verdamping.

Naast het belang van het kwantificeren van de lange-termijn hydrologische verde-
ling van neerslag naar verdamping, afvoer en mogelijke grondwateruitwisselingen, is de
hoeveelheid water die beschikbaar is in de wortelzone van vegetatie een ander belang-
rijk aspect van de hydrologische respons. De temporele dynamiek van bodemvocht in
de wortelzone bepaalt hoeveel meer water er in de bodem kan worden opgeslagen en
hoeveel water er beschikbaar is voor transpiratie van vegetatie. In Hoofdstuk 4 worden
degelijke schattingen van bodemvocht in de wortelzone afgeleid uit satellietwaarnemin-
gen van bodemvocht in de bovenste paar centimeters van het aardoppervlak, door een
verband te leggen tussen de wortelzonecapaciteit op stroomgebiedschaal en de Soil Wa-
ter Index.

Interessant is dat hydrologische modellen met verschillende representaties van in-
terne processen, zoals bodemvocht in de wortelzone, verdamping, sneeuw en totale ber-
ging, kunnen leiden tot een vergelijkbare afvoerrespons (Hoofdstuk 5). Deze discrepan-
tie houdt in dat modellen mogelijk niet de juiste antwoorden geven om de juiste rede-
nen, aangezien ze niet tegelijkertijd dichtbij de werkelijkheid kunnen staan en van elkaar
kunnen verschillen. De inherente onzekerheid van procesrepresentatie in de hydrologie
kan expliciet worden meegenomen door meerdere modelstructuren te gebruiken ter on-
dersteuning van operationele- en beleidstoepassingen. Daarnaast kan het ontwikkelen
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van betere modelstructuren ook worden bevorderd door een evaluatie van de consisten-
tie tussen gemodelleerd hydrologisch gedrag en onafhankelijke satellietgegevens.

Tenslotte worden niet alleen historische in-situ- en satellietgegevens gebruikt om het
hydrologische gedrag van het Maasstroomgebied te begrijpen en te voorspellen, maar
daarnaast ook een lange termijn projectie van klimaatverandering als gevolg van de op-
warming van de aarde (Hoofdstuk 6). Als het klimaat verandert, is het aannemelijk dat
ecosystemen zich zullen aanpassen aan de nieuwe omstandigheden. Daarnaast kan er
een natuurlijke en/of antropogene verschuiving plaatsvinden van dominante soorten in
het landschap. We introduceren verandering in de beschrijving van het hydrologische
systeem in een model met drie hydrologische responseenheden om rekening te houden
met de ruimtelijke variabiliteit van hydrologische processen. In het model wordt de pa-
rameter van de wortelzone capaciteit aangepast aan de nieuwe klimaatgegevens. Dit is
een belangrijke stap voorwaarts in de geweldige uitdaging van hydrologische voorspel-
lingen onder veranderende omstandigheden.

Ondanks onzekerheden in bestaande data en het gebrek aan meer gegevens op de
gewenste temporele en ruimtelijke resolutie, zijn er ontelbare mogelijkheden om met
beschikbare gegevens nieuwe theorieën te ontwikkelen, hydrologische modellen te toet-
sen en te verbeteren. Met de vereiste creativiteit, is dit een mooie uitdaging om de mys-
teries van het hydrologisch landschap verder te ontraadselen.
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CSR U. Texas / Center for Space Research
DMIP Distributed Model Intercomparison Project
dS2 distributed simple dynamical systems
ECAD European Climate Assessment Dataset
ECMWF European Center for Medium-Range Weather Forecasts
FDC Flow Duration Curve
FUSE Framework for Understanding Structural Errors
GFZ GeoForschungsZentrum Potsdam
GLEAM Global Land Evaporation Amsterdam Model
GR4H Génie Rural à 4 paramètres Horaire
GRACE Gravity Recovery and Climate Experiment
HAND Height Above the Nearest Drainage
HBV Hydrologiska Byråns Vattenbalansavdelning
HRU Hydrological Response Unit
IGF Intercatchment Groundwater Flows
IGME International Geological Map of Europe
IHME International Hydrogeological Map of Europe
JPL Jet Propulsion Laboratory
KGE Kling-Gupta Efficiency
KNMI Royal Netherlands Meteorological Institute
LPRM Land Parameter Retrieval Model
LSASAF Satellite Application Facility on Land Surface Analysis
MODIS Moderate Resolution Imaging Spectroradiometer
MSG Meteosat Second Generation
NAM NedborAfstrommings Model
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NSE Nash-Sutcliffe Efficiency
PRESAGES PREvision et Simulation pour l’Annonce et la Gestion des Etiages Sévères
RC Runoff coefficient
RCM Regional Climate Model
RFI Radio Frequency Interference
SAR Synthetic Aperture Radar
SMAP Soil Moisture Active Passive
SPW Service Public de Wallonie

xiii



xiv NOMENCLATURE
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1
INTRODUCTION

Als je fietst met tegenwind, dan merk je dat voortdurend. Als de wind draait en je helpt,
merk je dat alleen de eerste minuut. Daarna voelt het normaal.

Ben Tiggelaar - Wie succesvol wil zijn moet vooral een beetje geluk hebben (2019)
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2 1. INTRODUCTION

"The Meuse is a lady - the French say so, and they should know." This is how Bernard
Newman begins his book The lazy Meuse on his cycling journey along la Meuse in 1948,
to tell about ancient and modern history lived along her banks. Exactly 70 years later
and about a year after starting my PhD journey on the hydrology of the Meuse, I also
embarked on a cycling trip along the Meuse. And I couldn’t agree more with Bernard
Newman, when he says: "She is, as I hope to show, a fascinating river".

1.1 RELIABLE HYDROLOGICAL PREDICTIONS FOR THE MEUSE

The Meuse river originates in North-West France and follows its course through Belgium
to the Netherlands. The Meuse is a rain-fed river with a large seasonal streamflow vari-
ability. People living in the areas around Brussels, Antwerp and Rotterdam drink water
withdrawn from the Meuse. Besides providing recreational and ecological functions, it
also provides water for industry, agriculture, navigation and electricity generation. Lim-
ited water availability during low flows increases the pressure experienced by the users,
as recently occurred during the 2018 and 2019 summers. On the other hand, periods of
high flow may cause floods with large societal impact as happened in 1993, 1999, and
more recently in 2011. Projected climate change may further exacerbate the pressure by
increasing extremes, in particular, heat waves, drought and heavy precipitation events
(Kovats et al., 2014). Therefore, it is of critical importance to make reliable predictions of
high and low flows within the Meuse river basin for operational and policy applications.

The Dutch Ministry of Infrastructure and Water Management currently uses a hydro-
logical model (HBV-96) to predict flows at Monsin, where the Meuse enters the Nether-
lands. The model functions adequately under normal conditions, but does not perform
at the required level under exceptional circumstances and does not optimally make use
of the available data. For example, in 2011 widespread flooding caused by rain on snow
was not accurately predicted. The model also shows shortcomings during low flow peri-
ods or transition periods from low to high flows.

To overcome these limitations, understanding the hydrological processes in the Meuse
river basin has sparked the interests of many researchers. Berger (1992) conducted a
system analysis of each tributary of the Meuse to set-up models for flood forecasting.
An overall description of the physical properties of the Meuse river basin is provided
by de Wit (2008a). He describes four main lithological zones to characterize the spatial
variability of hydrological properties in the basin. The gentle hills in the French part are
underlain by consolidated sedimentary rocks, while the steep Belgian Ardennes are char-
acterized by relatively impermeable metamorphic rocks. Deep groundwater systems in
porous chalk layers are found on the Western side of the Meuse in Wallonia (Reggiani
and Rientjes, 2010), in contrast to unconsolidated sedimentary rocks in the Northern
lowlands. Land use mainly consists of forestry (35%), agriculture (32%), pasture (21%)
and urban areas (9%). Since the 18th century, large areas of broadleaved forests have
been converted to agricultural land and coniferous plantations in the Walloon region,
while these forests largely remained in the French part of the basin (Tu, 2006). Land-use
management and climate variability over the last century had a significant impact on the
hydrological behavior of the Meuse river basin (de Wit et al., 2001; Booij, 2005; Ashagrie
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et al., 2006; Fenicia et al., 2009; Tu, 2006).

More recently, de Boer-Euser (2017) developed a flexible model structure based on
topographic and land-use catchment characteristics, which was extensively tested in
the catchment of the Ourthe, an important tributary of the Meuse. The study shows
the added value of spatially distributing forcing and hydrological processes to improve
model performance. Important processes were identified and included in the model
structure, e.g. a reduced infiltration capacity when soils are frozen and a very quick
runoff component from artificial drainage on agricultural land.

The current research aims to further identify dominant hydrological processes and
understand the drivers of spatial variability at the scale of the Meuse river basin. In col-
laboration with Delft University of Technology, Deltares and the Dutch Ministry of In-
frastructure and Water Management, this study contributes to increasing the reliability
of low and high flow predictions.

1.2 HYDROLOGICAL MODELING

Hydrological modeling is a well-established field. A considerable amount of the knowl-
edge we currently rely on has been developed more than 30 years ago (e.g. Turc, 1954;
Budyko, 1961; Tóth, 1963; Klemeš, 1986; Beven, 1989; Beven and Binley, 1992; Milly,
1994; Dooge, 1997). The numerous studies in the past 30 years have not lead to a unified
approach on hydrological modeling, but rather to competing modeling philosophies
(Hrachowitz and Clark, 2017) and probably thousands of hydrological models.

Despite differences in model philosophies, models fulfill two main roles. The first is
to provide a means for hypotheses testing of the representation of internal processes to
understand catchment functioning. This is exploratory science (Beven, 2019a). The sec-
ond is to provide predictions and simulations for future short- or long-term applications
to support decision-making on the impact of changes into the future (Beven, 2019a).
Ideally, knowledge gained through science is applied in practice.

In the plethora of available models, the selection of a suitable model is often driven
by personal preference and experience instead of detailed model test procedures (Hol-
länder et al., 2009; Clark et al., 2015; Addor and Melsen, 2019). Yet the choice of model
structure and parameterization has considerable impacts on the outcome, making mod-
els less objective than they might seem at first sight (Melsen et al., 2019). In fact, models
usually reflect the system understanding of their developer.

Models consist of simplified representations of the complex interactions of hydro-
logical processes in a heterogeneous landscape. There are three main modeling philoso-
phies. In the bottom-up philosophy, high-resolution descriptions of small-scale pro-
cesses are numerically integrated to a larger scale (Hrachowitz and Clark, 2017). The
top-down approach, on the other hand, describes emerging parsimonious patterns at
the larger-scale from the small-scale natural heterogeneity of the system: "the whole is
greater than the sum of the parts" (Aristotle 384-322 BC and Heraclitus 535-475 BC as
cited by Savenije and Hrachowitz, 2017). Empirical methods derive governing relations
from large catchment samples of data.
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In the bottom-up approach, the so-called physically-based models usually discretize
the study area in grid cells, connected through surface and lateral subsurface flow along
the river network. The model represents several soil layers and their properties, where
water can be stored before it leaves the system as evaporation or runoff. Recent ad-
vances in computational power allows modelers to run these models at hyper-resolution
(Bierkens et al., 2015), with the associated challenge of identifying parameters for each
grid cell. The use of pedo-transfer functions to relate soil and landscape characteristics
to model parameter values has shown interesting results (Samaniego et al., 2010, 2017;
Imhoff et al., 2020). However, these high-resolution parameter maps may suggest a high
level of certainty despite the limited number of field measurements they rely on and the
use of pedo-transfer functions derived at the lab-scale and applied to a heterogeneous
landscape (Beven et al., 2015).

In contrast, process-based models (or so-called conceptual models) associated with
the top-down approach are usually developed at the catchment or sub-catchment scale.
They typically consist of storage, transmission and release of water to represent the dom-
inant hydrological processes occurring in a specific catchment. These models accom-
modate features of spatial organization and evolution of the catchment that translate to
parsimonious relations (Savenije and Hrachowitz, 2017). They rely on a limited number
of effective parameters at the catchment scale, which require calibration but are linked
to a physical understanding of catchment functioning. Key parameters such as the root-
zone storage capacity can be robustly estimated using water balance data (Gao et al.,
2014; de Boer-Euser et al., 2016; Wang-Erlandsson et al., 2016). The root-zone storage
capacity may vary with time as catchments themselves are evolving/adapting as living
organisms (Nijzink et al., 2016a; Savenije and Hrachowitz, 2017; Hrachowitz et al., 2020).
The spatial variability of dominant hydrological processes, based on land-use or physical
characteristics, can be implemented by delineating Hydrological Response Units (HRU)
within the sub-catchment scale (Savenije, 2010; Fenicia et al., 2016; de Boer-Euser, 2017;
Dal Molin et al., 2020). The definition of these HRU to improve the modeling process
requires creativity, experience and skill (Savenije, 2009).

Other approaches include the empirical relations derived from a large sample of
catchment data. The most noteworthy is likely the Budyko framework (Turc, 1954; Mezent-
sev, 1955; Budyko, 1961) which relates the dryness index (ratio of potential evaporation
over precipitation) to the runoff coefficient (Fig. 1.1). Many studies aim to understand
why catchments may deviate from the Budyko curve (e.g., Gentine et al., 2012; Li et al.,
2014; Le Moine et al., 2007; Bouaziz et al., 2018). Others use the framework to predict the
impact of climate or land-use changes on evaporation and streamflow (Berghuijs et al.,
2017; Teuling et al., 2019) or to constrain and evaluate models (Hrachowitz et al., 2014;
Nijzink et al., 2018).

The similarity of these three approaches is the quest to understand the causes of
streamflow variability due to climate and catchment characteristics. This is the holy
grail of hydrology, allowing us to design models able to represent hydrological processes
across a variety of hydrological settings, at multiple spatiotemporal scales, and under
changing environmental conditions (Gupta et al., 2014).
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Figure 1.1: Long-term water balance components following the Budyko curve in the non-dimensional repre-
sentation of the evaporative index as a function of the dryness index

1.3 THE WATER BALANCE

As complex as hydrological models may be, they all rely on conservation of mass. The
change in water storage in a catchment (dS/dt ) equals the difference between precipita-
tion (P ) and the sum of streamflow (QRiver) and actual evaporation (EA), as represented
in Fig. 1.2. Over the long term, the change in storage is assumed to be close to zero and
the water balance reduces to P = QRiver + EA. The long-term partitioning of precipi-
tation into evaporation and drainage is controlled by the dryness index (defined as the
ratio of potential evaporation over precipitation EP/P ), according to the Budyko curve
(or variants thereof, Turc, 1954; Mezentsev, 1955; Budyko, 1961; Zhang et al., 2004). This
is a powerful framework to get a first estimate of the long-term water balance in a catch-
ment (Fig. 1.1).

These are fundamental concepts in hydrological science taught in freshman classes.
Yet, this water balance formulation neglects the potential presence of regional ground-
water flows across topographic catchment boundaries. Catchments are not closed en-
tities underlain by impervious layers. Groundwater gains or losses through intercatch-
ment groundwater flows are likely related to physical catchment properties including
deep permeable layers, catchment size and the presence of complex geological features.
Despite the presence of limestone and karstic features underlying significant parts of the
Meuse basin, the presence of intercatchment groundwater flows has not been studied.
Nevertheless, assuming this process to be negligible may introduce misrepresentation
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of the natural system in hydrological models, also affecting our understanding of other
processes.

One of these elements is the representation of the root-zone storage capacity (SR,max)
in hydrological models. It is a key element regulating the partitioning of water fluxes
of terrestrial hydrological systems. The root-zone storage capacity represents the max-
imum amount of soil moisture accessible to the roots of vegetation for transpiration.
There is increasing evidence that vegetation adapts to its environment in an efficient
way, by developing a root system which ensures access to sufficient water to survive dry
periods (Milly, 1994; Gentine et al., 2012). Using the long-term water balance as starting
point, we can estimate transpiration as the main evaporation component after deduc-
ing interception and potential intercatchment groundwater flows. Next, we can derive
annual water deficits experienced by vegetation from the seasonal water balance to es-
timate the root-zone storage capacity (de Boer-Euser et al., 2016; Nijzink et al., 2016a).

Intercatchment groundwater flows and root-zone storage capacities are two exam-
ples of processes that are very difficult to observe or measure directly in the field, es-
pecially at the scale typically required for modeling studies. Even if rooting profiles are
available, they are sparse snapshots in time and space (Fan et al., 2017) and difficult to
translate to root-zone storage capacity due to variations in horizontal and vertical root
density and uncertainties in soil profiles (Wang-Erlandsson, 2017). To overcome these
limitations, the creative use of in-situ and remote-sensing data is explored.

QRiver

QIGF

EA

EP

P

S

Figure 1.2: Main components of a catchment’s water balance (with S for storage, P for precipitation, EA for
actual evaporation, EP for potential evaporation, QRiver for streamflow and QIGF for intercatchment ground-
water flows)
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1.4 CREATIVE USE OF IN-SITU AND REMOTE-SENSING DATA

Hydrology is a challenging discipline because it belongs to the field of inexact sciences
(Beven, 2019a). We lack knowledge on the subsurface through which water is flowing.
We are unable to measure meteorological information at sufficient temporal and spatial
scale. The data we use to evaluate models is uncertain and consists at most of several
pieces of the puzzle. This implies that models have more degrees of freedom than the
evaluation data available to constrain the model parameters, which leads to an ensemble
of (more or less) acceptable solutions. This is the equifinality thesis (Beven, 2006).

Enriching our evaluation data through a creative use of in-situ and remote-sensing
data in addition to streamflow is key to support or adapt the developed theories in hy-
drological models (Melsen, 2017). Remote-sensing datasets of e.g. snow, soil moisture,
vegetation characteristics, total water storage and evaporation have been successfully
used for calibration, evaluation or assimilation in hydrological models (e.g., Crow et al.,
2005; Beck et al., 2009; Parajka et al., 2009; Sutanudjaja et al., 2014; Wanders et al., 2014;
Silvestro et al., 2015; Leroux et al., 2016; López López et al., 2016, 2017; Rakovec et al.,
2016a; Tian, 2007; Nijzink et al., 2018; Gevaert et al., 2018). These datasets are often
praised for their spatial information content (even at coarse resolution), although their
temporal resolution may be insufficient due to low revisit time, which can be overcome
by combining data from multiple satellites.

A drawback of many of these datasets is that the raw measured variables often lack
direct hydrological relevance. Near-surface soil moisture is not directly measured; in-
stead, the soil thermal properties (brightness temperature) and/or backscatter proper-
ties are measured and used to estimate near-surface soil moisture. For hydrological ap-
plications, an additional step is necessary to estimate root-zone soil moisture from near-
surface soil moisture. This implies that remote-sensing products often rely on models
themselves and can therefore hardly be treated as "reality". However, they can be used
as independent data sources, which are useful as reference or benchmark against which
to constrain or evaluate the dynamics of modeled states and fluxes. The growing avail-
ability of data is surely beneficial to unravel the hydrological functioning of catchments
around the world. However, the limitations of these data need to be considered.

Commensurability issues are not only affecting remote-sensing products. Point-scale
measurements of precipitation, soil moisture or piezometric levels are often not repre-
sentative of the catchment-scale inputs or response. Yet, these observations are critical
as they provide pieces to understand the hydrological puzzle and they are needed to cal-
ibrate and evaluate remote-sensing data products (Vidon, 2015; Burt, T. P., McDonnell,
2015; van Emmerik et al., 2018).

1.5 SYSTEMS UNDER CHANGE

Using in-situ and remote-sensing observations from the past, theories on hydrological
functioning are developed and translated to models, that are subsequently used to pre-
dict the future. If the future is several days, weeks, months or seasons ahead, it seems
acceptable to consider no fundamental changes in the system. However, if projections
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are for several years or decades ahead in changing environmental conditions, one may
question the validity of assuming a static system (Milly et al., 2008; Merz et al., 2011). Yet,
in many climate change studies, models calibrated to historical conditions are used to
assess the impact of future change (Booij, 2005; de Wit et al., 2007; Prudhomme et al.,
2014; Wanders and Wada, 2015; Gao et al., 2020; Hakala et al., 2019). In doing so, the hu-
man interference in system management and the adaptation of ecosystems to a chang-
ing environment to maintain crucial hydrological functions are implicitly disregarded
(Savenije and Hrachowitz, 2017).

The difficulty is that we lack information on how systems will evolve in response to
changing environmental conditions. Especially as land-use and climate change are oc-
curring at unprecedented rates (Hurtt et al., 2011; Ostberg et al., 2015; Gleeson et al.,
2020). Moreover, changes in a system usually affect several aspects of hydrological func-
tioning (Seibert and van Meerveld, 2016; Levia et al., 2020). When 18th century broadleaved
forests were converted to coniferous plantations in the Belgian Ardennes, not only vege-
tation changed, but also soil properties and runoff generation mechanisms (Jacquemin
et al., 2014). Increasing drought severity and heat stress associated with climate change
already affect tree mortality in Europe and could fundamentally alter the composition
and structure of forests in many regions (Allen et al., 2010). While the integration and
quantification of all these feedback mechanisms of change into models are highly un-
certain and perhaps still unfeasible; opportunities are at hand to test the sensitivity of a
changing system in response to climate change using readily available data.

1.6 THIS THESIS

To increase our understanding of the spatial and temporal variability of hydrological
processes in the Meuse river basin, we benefit from the creative use of additional data
to evaluate the theories we develop in our hydrological models. Additionally, a key ap-
proach is to combine knowledge from different fields, including groundwater hydrology
and remote sensing to answer the main question:

How can we increase the reliability of hydrological models within the Meuse river
basin using remote-sensing and in-situ data?

Several research directions are explored to improve hydrological modeling of the
Meuse basin (Fig. 1.3). They include identifying and quantifying dominant hydrologi-
cal processes, increasing our understanding on how to use additional data, evaluating
internal process representation between models and putting models to the test under
changing climate and land use.

First, a general overview of landscape, climate, hydrological and land-use character-
istics of the Meuse river basin is provided in Chapter 2.

In Chapter 3, we identify and quantify the magnitude and spatial variability of inter-
catchment groundwater flows in the Meuse basin using water balance data within the
Budyko framework, conceptual models and remote-sensing data of actual evaporation.
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Improve hydrological modeling
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add data evaluate
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under change

Figure 1.3: Overview of the research directions to improve hydrological modeling

Several options are tested to represent intercatchment groundwater flows as additional
process in a model structure.

The water available in the root zone of vegetation for transpiration is a key element
to understand the partitioning of precipitation into streamflow and evaporation. Satel-
lites provide worldwide estimates of near-surface water content within the first few cen-
timeters of the soil. In Chapter 4, we hypothesize that root-zone soil moisture can be
inferred from remote-sensing near-surface soil moisture estimates through the link with
catchment-scale vegetation accessible water storage capacities.

In Chapter 5, we hypothesize that process-based models with similar streamflow
performance have similar representations of internal state and flux variables. We iden-
tify and quantify the benefits, limitations and uncertainties associated with the use of
remote-sensing products to evaluate the plausibility of a suite of different hydrological
models, which were calibrated by several research institutes and universities working on
the Meuse basin.

In Chapter 6, we propose a methodology to represent potential system changes in
process-based hydrological models in response to +2◦C global warming using readily
available climate change data. We rely on long-term water balance components to esti-
mate potential shifts in the Budyko framework due to potential changes in climate and
land use. We implement a larger root-zone storage capacity parameter to represent the
adaptive behavior of vegetation in response to increasing water storage deficits during
dry periods and evaluate the effect on hydrological predictions.

The concluding Chapter 7 provides a synthesis of the main findings and discusses
further opportunities for scientists and practitioners.





2
THE MEUSE RIVER BASIN

I’ve been following the river, until it joins hands with the sea

The Rolling Stones (1972)

The Meuse river basin, in North-Western Europe, is the area of interest of this thesis. The
Meuse is important for drinking water production, navigation, recreation, ecology, indus-
try and agriculture. Reliable short- and long-term predictions of streamflow entering the
Netherlands are of high importance, due to relatively short response times and the large
seasonal variability of streamflow. General characteristics of the basin are given in this
chapter. In the subsequent chapters, additional information is provided on the selection
of catchments used for a specific study.

11
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2.1 LANDSCAPE

The Meuse basin upstream of Borgharen, at the border between Belgium and the Nether-
lands, covers an area of approximately 21,300 km2 in mainly France and Belgium and can
be divided in three main zones. The French Southern part of the basin is characterized
by thick soil layers, broad valleys bottoms and gentle slopes, underlain by sedimentary
consolidated rock from the Middle and Late Jurassic. Thin soils on relatively imperme-
able Cambrian metamorphic rock and Early Devonian sandstone dominate the steeper
and relatively high Ardennes Massif in Belgium. On the West bank of the Meuse in Wallo-
nia, the lithology is characterized by porous chalk layers with deep groundwater systems.
Elevation in the basin ranges between 50 and 700 m (Fig. 2.1).

2.2 HYDRO-CLIMATIC SETTING

The Meuse is a rain-fed river with relatively short response times. During floods, stream-
flow can rise within several hours due to the steep slopes and impermeable soils of the
Ardennes. The strong streamflow seasonality with low summer and high winter flows
reflects the seasonality of potential evaporation, as precipitation is relatively uniformly
distributed throughout the year. Streamflow was at its lowest during the summer of 1976
with 20 m3 s−1 and at its highest in the winter of 1993 with 3000 m3 s−1, while mean
annual flows at Borgharen are around 250 m3 s−1. The large storage capacity due to
relatively thick soils in the French part of the Meuse basin increases the hydrological
memory of the system, implying a strong influence of winter precipitation on stream-
flow deficits in the subsequent summer (de Wit et al., 2007). Snow is not a major compo-
nent of the water balance, but snow melt can have a significant influence during specific
events (de Wit et al., 2001). For example in 2011, when rain on snow caused widespread
flooding in the catchments of the Belgian Ardennes. Mean annual precipitation, po-
tential evaporation and streamflow is approximately 950 mm yr−1, 580 mm yr−1 and
407 mm yr−1, implying a runoff ratio of 0.44 and an aridity index of 0.61.

2.3 LAND USE

Land use in the basin consists of 35% forest, 32% agriculture, 21% pasture and 9% ur-
ban areas (Fig. 2.1, European Environment Agency, 2018). The large majority of forests
in the French part of the basin has been continuously wooded since at least the middle
of the 19th century (Cateau et al., 2015). These broadleaved forests consist primarily of
European Oak, Sessile Oak and Beech (Institut National de l’Information Géographique
et Forestière, 2019). In contrast, only 44% of the 18th century Walloon forests of Belgium
has remained from the original broadleaved forest, while 26 % of the original forest has
been converted to coniferous plantations (Scots pine, Norway spruce and Douglas-fir)
on the poor soils of the Ardennes and 30 % has been cleared for agriculture on high fertil-
ity soils in the North West (Kervyn et al., 2018). A relatively higher evaporation water use
is expected in these younger, short-rotation exotic plantations in comparison to older,
more natural forests.
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Figure 2.1: (a): Overview map of Meuse basin in North-West Europe. (b): Digital elevation model and outline of
the Meuse basin with main catchments. (c): Main land-use types according to CORINE Land Cover (European
Environment Agency, 2018).
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REDRESSING THE BALANCE:

QUANTIFYING NET

INTERCATCHMENT GROUNDWATER

FLOWS

The Meuse had passed by a dozen villages, but now approached her first town. How
appalling—thousands of people to see her, and in her bed! At such a thought she

promptly gets under it. La Perte de la Meuse it is called. [...] After a couple of miles the
Meuse finds this underground travel uncomfortable. After all, she must face many towns

in her course: better brazen it out. So she emerges, showing a new confidence as she
pushes her way through a tangle of weeds and water flowers.

Bernard Newman - The lazy Meuse (1948)

Conservation of mass is the main physical law on which all hydrological models rely.
The change of water storage in a catchment is equal to the difference between incoming
fluxes (precipitation) and outgoing fluxes (e.g. evaporation, streamflow and intercatch-
ment groundwater flows). Many models neglect the presence of intercatchment ground-
water flows across topographic divides, despite their potential contribution in the water
balance. In this chapter, we use water balance data to identify, quantify and evaluate the
potential presence of net intercatchment groundwater flows in the Meuse river basin.

Parts of this chapter have been published in Hydrology and Earth System Sciences (Bouaziz et al., 2018)
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SUMMARY

Intercatchment groundwater flows (IGFs), defined as groundwater flows across topo-
graphic divides, can occur as regional groundwater flows that bypass headwater streams
and only drain into the channel further downstream or directly to the sea. However,
groundwater flows can also be diverted to adjacent river basins due to geological fea-
tures (e.g., faults, dipping beds and highly permeable conduits). Even though intercatch-
ment groundwater flows can be a significant part of the water balance, they are often
not considered in hydrological studies. Yet, assuming this process to be negligible may
introduce misrepresentation of the natural system in hydrological models, for example
in regions with complex geological features. The presence of limestone formations in
France and Belgium potentially further exacerbates the importance of intercatchment
groundwater flows, and thus brings into question the validity of neglecting intercatch-
ment groundwater flows in the Meuse basin. To isolate and quantify the potential rel-
evance of net intercatchment groundwater flows in this study, we propose a three-step
approach that relies on the comparison and analysis of (1) observed water balance data
within the Budyko framework, (2) results from a suite of different conceptual hydrolog-
ical models and (3) remote-sensing-based estimates of actual evaporation. The data of
58 catchments in the Meuse basin provide evidence of the likely presence of significant
net intercatchment groundwater flows occurring mainly in small headwater catchments
underlain by fractured aquifers. The data suggest that the relative importance of net in-
tercatchment groundwater flows is reduced at the scale of the Meuse basin, as regional
groundwater flows are mostly expected to be self-contained in large basins. The analysis
further suggests that net intercatchment groundwater flow processes vary over the year
and that at the scale of the headwaters, net intercatchment groundwater flows can make
up a relatively large proportion of the water balance (on average 10 % of mean annual
precipitation) and should be accounted for to prevent overestimating actual evapora-
tion rates.
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3.1 INTRODUCTION

Intercatchment groundwater flows are defined as groundwater fluxes crossing topographic
divides, implying that precipitation falling in one catchment affects the streamflow in
another catchment. A theoretical framework to describe groundwater flows was intro-
duced by Tóth (1963). He classified different systems of groundwater flows, starting from
local flow paths, nested in larger intermediate systems, which in turn are nested in re-
gional flow systems. The theory describes that regional groundwater flow paths trans-
port water from small headwaters to the larger and lower elevation basin, meaning that
small basins tend to export or import water and large basins are likely self-contained
(Schaller and Fan, 2009). This is based on the assumption that regional flow paths occur
within surface drainage boundaries at the largest scale; however, systems with dipping
sedimentary beds can divert groundwater away from the basin, leading to complications
of the above-described theories and to intercatchment groundwater flows between ad-
jacent basins (Schaller and Fan, 2009; Frisbee et al., 2016). Regional flow paths within
a basin and between adjacent basins are the subject of this study as they characterize
intercatchment groundwater flows.

Large-scale studies and theoretical models can help to understand the link between
intercatchment groundwater flows and physical catchment characteristics. Schaller and
Fan (2009) assessed the role of topography, aquifer properties, climate and geology on in-
tercatchment groundwater flows. On the continental scale, they found that arid climates
favor intercatchment groundwater flows. However, on the regional and basin scale, ge-
ology exerts the strongest control on intercatchment groundwater flows. The particular-
ities of the geological systems (e.g., faults, connectivity between faults, subsurface flow
conduits) can inhibit expected correlations between the magnitude of intercatchment
groundwater flows and physical catchment characteristics (e.g., lithology), as was also
pointed out by Le Moine et al. (2007). This highlights the difficulty to generalize the
presence of intercatchment groundwater flows based on similarities in climate and to-
pography between catchments.

Intercatchment groundwater flows cannot be directly measured and are therefore
difficult to quantify, which can explain why they are often neglected in small catchment
studies (Genereux et al., 2002). However, Schaller and Fan (2009) showed that intercatch-
ment groundwater flows can be a significant portion of a basin’s water balance across the
continental United States; with up to 90 % of flow leaving catchments as groundwater
export and up to 50 % of river flow originating from groundwater imported from other
basins. Methods to identify and quantify intercatchment groundwater flows in real-
world basins either rely on stream chemistry and isotope analyses (Genereux et al., 2002;
Genereux and Jordan, 2006; Ajami et al., 2011; Frisbee et al., 2011, 2012, 2016), numeri-
cal groundwater flow and transport modeling (Gleeson and Manning, 2008; Welch and
Allen, 2012; Ameli et al., 2018), or on water budget analyses (within the Budyko frame-
work) (Genereux et al., 2005; Le Moine et al., 2007, 2008; Schaller and Fan, 2009; Hra-
chowitz et al., 2014). Depending on the type of solute (Ameli et al., 2017), higher solute
concentrations in regional groundwater flows (due to longer residence time) compared
to local flow paths can provide evidence for groundwater gains through intercatchment
groundwater flows. Water budget analyses, using observed streamflow in real-world
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catchments, can in contrast show net gains or losses due to intercatchment groundwater
inflow or outflow (Genereux et al., 2002).

Intercatchment groundwater flows impact water quality in higher order streams, the
alteration of nonpoint source agricultural pollution, water replenishment in aquifers, the
generation and migration of petroleum and mineral deposits and the ecological func-
tioning of a catchment (Ameli et al., 2018), and it is therefore essential to understand
intercatchment groundwater flows in spite of the difficulties in quantifying them.

Most conceptual hydrological models, including HBV (Bergström, 1992), TOPMODEL
(Beven and Kirkby, 1979), HyMOD (Wagener et al., 2001), SUPERFLEX (Fenicia et al.,
2014a), VHM (Willems et al., 2014) and NAM (Nielsen and Hansen, 1973), solely rely on
closing the water balance and neglect the possible presence of intercatchment ground-
water flows by relating the change in storage over time to the difference between pre-
cipitation and the sum of actual evaporation and streamflow. These models assume wa-
tertight catchment boundaries derived from surface elevation, an impermeable substra-
tum and no deep subsurface flow bypassing the stream. These assumptions imply the
absence of intercatchment groundwater flows. Adding a loss or gain term to represent
such intercatchment groundwater flows is often not warranted in models due to limited
data availability for calibration (often only streamflow) and the difficulties involved in
determining potential and actual evaporation (Beven, 2001; Mouelhi et al., 2006). Con-
ceptual models have several possibilities to adjust the water balance and a “correction”
factor on climatic input data has often been favored over an explicit representation of
intercatchment groundwater flows. Yet, this common practice may introduce misrep-
resentation of the natural system in hydrological models, for example in regions with
complex geological features (Zhang and Savenije, 2005; Zhang et al., 2005; Reggiani and
Rientjes, 2010). In the absence of robust quantitative evidence on the magnitude and
temporal variability of intercatchment groundwater flow, the errors introduced by an
omission of this process in models is typically compensated for by the actual evapo-
ration term. Examples of conceptual (or empirical) models that explicitly account for
net intercatchment groundwater flows include the GR4J empirical model (Perrin et al.,
2003) often applied in French catchments, HYDROLOG (Chiew and McMahon, 1990),
SMAR (Goswami et al., 2007; Goswami and O’Connor, 2010), mHM (Samaniego et al.,
2011) and the flexible model structure used in Hrachowitz et al. (2014).

Including intercatchment groundwater flows in conceptual models has been studied
in a large set of French catchments (Le Moine et al., 2007) and results in a more plausible
partitioning between evaporation, streamflow and underground fluxes than methods
correcting for potential errors in climatic input data or catchment area instead. Isotopic
and chemical analyses indicate an intra-annual variability of intercatchment groundwa-
ter flow processes (Ajami et al., 2011; Frisbee et al., 2012).

While several studies used extensive tracer and geochemical data or developed de-
tailed flow and transport models to quantify intercatchment groundwater flows, we pro-
pose a framework that uses widely available hydrometric observations. Previous re-
search also using water balance data shows that different methods for estimating inter-
catchment groundwater flows are characterized by different uncertainties. The novelty
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Table 3.1: Catchment characteristics. Meteorological and hydrological data are based on data between Octo-
ber 2006 and September 2016. ∗Fissured denotes the percentage of highly productive fissured aquifers based
on the International Hydrogeological Map of Europe, IHME.

Station Straimont Ste-Marie Tintigny Chiny Membre P Huccorgne Yvoir Belval Pierrepont V-le-C
River Vierre Semois Semois Semois Semois Mehaigne Bocq Sormonne Crusnes Aroffe
Area (km2) 182 143 381 738 1226 305 230 369 207 198
Mean elev. (m) 440 366 405 407 390 158 268 254 340 367
Mean slope (–) 0.067 0.044 0.055 0.060 0.083 0.026 0.064 0.066 0.054 0.060
Forest (%) 34 38 50 47 56 3 16 28 23 48
Pasture (%) 29 26 22 24 18 1.7 14 48 13 20
Urban (%) 8 11 6 6 5 15 10 4 4 1
Crop (%) 29 26 22 22 21 80 60 20 60 30
Hillslopes (%) 7.4 1.5 4.6 6.0 15 0.9 7.5 9.1 6.6 8.4
Fissured∗ (%) 0 63 27 16 9 16 71 48 94 72
P (mm y−1) 1176 1041 1110 1152 1183 753 867 1114 939 833
Qobs (mm y−1) 665 455 570 600 665 206 297 422 337 88
EP (mm y−1) 608 615 611 614 611 627 618 620 618 621
Qobs/P (–) 0.57 0.44 0.51 0.52 0.56 0.27 0.34 0.38 0.36 0.11
EP/P (–) 0.52 0.59 0.55 0.53 0.52 0.83 0.71 0.56 0.66 0.75

of this study is that, here, we aim to limit these uncertainties and to detect and quantify
net intercatchment groundwater flows (i.e., QIGF, in−QIGF,out) in a complementary three-
step approach through (1) water budget accounting, (2) testing a set of model concepts
and (3) evaluating the results against remote-sensing estimates of actual evaporation. In
a proof-of-concept study in the Meuse basin, we test the following hypotheses:

1. Observed water balance data in combination with the Budyko framework can pro-
vide robust evidence of the likelihood and spatial variability of net intercatchment
groundwater flows.

2. Simple hydrological conceptual models enable to quantify the magnitude and intra-
annual variability of net intercatchment groundwater flows over mesoscale catch-
ments and to assess the likelihood that intercatchment groundwater flows occur
within a basin or between neighboring basins.

3. Actual evaporation estimates from remote sensing provide additional evidence to
support the presence of net intercatchment groundwater flows.

3.2 STUDY AREA

This study uses data from 58 catchments within the Meuse basin (Fig. 3.1) with areas
varying between 50 and 16 500 km2, with a median value of 370 km2. Mean annual pre-
cipitation varies between 750 and 1200 mm yr−1 and median annual streamflow and po-
tential evaporation in these catchments are approximately 420 and 620 mm yr−1, respec-
tively.

From the 58 available stations, five stations are available in the Semois River catch-
ment (Fig. 3.2 and Table 3.1) and are studied in more detail along with five additional
stations (Fig. 3.1a and Table 3.1).

The Semois catchment upstream of Membre-Pont is interesting because it combines
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(a) (c)

(b)

France

Figure 3.1: (a): Overview map of the Meuse basin. (b): Digital elevation model and outline of the Meuse basin
with all catchments (black), catchments plotting beyond the energy limit (red), catchments very close to the
energy limit (orange). The location of the Semois catchment at Membre-Pont is indicated in pale turquoise. (c):
International Hydrogeological Map of Europe (IHME), location of main dams (black squares, FAO database)
and catchments close to (orange) and beyond (red) the energy limit.
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10 km

Figure 3.2: Digital elevation model of the Semois catchment and location of the stations from upstream to
downstream: Sainte-Marie (orange), Tintigny (dark blue), Chiny (light blue), Membre-Pont (pale turquoise)
and additional tributary in the north is the Vierre at Straimont (green). The catchment of Sainte-Marie plots
very close to the energy limit as shown in Fig. 3.3.

both the Jurassic and Early Devonian geological horizons: only the upstream catchment
of Sainte-Marie consists of marl (and limestone), while further downstream the basin is
underlain by relatively impermeable sandstone and schist. In addition, several stream-
flow stations along the Semois river are available and allow us to detect how net inter-
catchment groundwater flows (IGFnet) evolve as we move further downstream along the
same river. Characteristics of the Semois catchments are included in Table 3.1 and a map
is provided in Fig. 3.2.

In the French part of the Meuse basin, the tributary of the Aroffe River at Vannes-le-
Châtel (198 km2; Fig. 3.1a) flows underground through limestone deposits towards the
Moselle catchment (Fister, 2012). The Aroffe is a typical example of an overflow spring
that is activated when the capacity of the conduit is exceeded, while it flows underground
to the Moselle the rest of the time. The Aroffe is one of the additional five catchments
where IGFnet is quantified (Sect. 3.5.2).

3.3 DATA

3.3.1 METEOROLOGICAL AND HYDROLOGICAL DATA

For each catchment, areal averages of precipitation, potential evaporation and observed
streamflow (available between 2006 and 2016) are required for the analyses.

Hourly precipitation measurements are interpolated using climatological monthly
background grids, using a combination of the HYRAS (Rauthe et al., 2013) and E-OBS
(Haylock et al., 2008) datasets and following the method described in van Osnabrugge
et al. (2017). Precipitation measurements in Belgium were provided by the Service Public
de Wallonie (2018); in France data were retrieved from the Dutch operational forecasting
system. Potential evaporation estimates are based on the Makkink formula (Hooghart
and Lablans, 1988) and rely on hourly interpolated temperature station data (using a
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lapse rate of 6.6×10−3 ◦C m−1) and hourly radiation data from Maastricht (Royal Nether-
lands Meteorological Institute, 2018). Mean hourly values of precipitation and potential
evaporation are derived from the 1200 m resolution gridded data for each catchment.

Observed streamflow data are available at the hourly time step for the stations in Bel-
gium from the Service Public de Wallonie (2018) and at the daily timestep for the stations
in France from Banque Hydro (2018). In the Semois catchments, streamflow between
March and mid-June 2013 were set to missing because of high observed streamflow with
too-limited precipitation amounts.

3.3.2 REMOTE-SENSING-BASED ACTUAL EVAPORATION ESTIMATES

Two products of remote-sensing-based actual evaporation estimates are used for com-
parison with modeled actual evaporation: the Global Land Evaporation Amsterdam Model
(GLEAM, Miralles et al., 2011; Martens et al., 2017) and Satellite Application Facility on
Land Surface Analysis daily MSG actual evaporation (LSA SAF, Trigo et al., 2011).

GLEAM v3a calculates actual evaporation based on satellite-observed soil moisture,
vegetation optical depth and snow water equivalent, reanalysis air temperature and ra-
diation, and a multi-source precipitation product. GLEAM provides actual evaporation
estimates at a spatial resolution of 0.25◦and accounts for subgrid heterogeneity by con-
sidering three land surface types (bare soil, short vegetation and vegetation with a tall
canopy). GLEAM estimates are available for the entire studied period between 2006 and
2016.

LSA SAF daily MSG (Meteosat Second Generation) actual evaporation (hereafter re-
ferred to as LSA SAF) includes soil evaporation, interception and transpiration and is
calculated by solving the energy balance by combining radiative, land surface, vegeta-
tion and meteorological data. Each pixel (3 km× 3 km resolution at nadir) is split into
four tiles to represent main land cover types (bare soil, grassland, crops and forests) and
the surface energy balance is solved for each tile separately and results in an actual evap-
oration value per pixel based on the weighted average of the tiles (https://landsaf.
ipma.pt/en/products/evapotranspiration/dailymet/, 29 November 2018). LSA
SAF estimates are only available for the validation period (2012–2016).

3.4 METHODS

This study consists of three parts aimed to identify, quantify and test for the presence of
net intercatchment groundwater flows (IGFnet) in the Meuse basin. First, we use long-
term observed water balance data in combination with the Budyko framework (Budyko,
1961) to identify catchments with evidence of water losses or gains through IGFnet. Sec-
ond, we use conceptual hydrological models to assess the magnitude and temporal vari-
ability of potential IGFnet in the Meuse basin and we assume that they are the main cause
of water balance discrepancies and thereby neglect uncertainties in forcing data. We
model IGFnet as independent losses or gains in alternative model concepts and evalu-
ate their magnitude in several catchments of the Meuse basin. To assess if part of the

https://landsaf.ipma.pt/en/products/evapotranspiration/dailymet/
https://landsaf.ipma.pt/en/products/evapotranspiration/dailymet/
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groundwater flow bypasses the headwater stream to reach the river further downstream,
we model the losses or gains in increasingly large catchments along the same tributary.
Thirdly, we use actual evaporation from remote-sensing estimates to provide additional
evidence for the likelihood and magnitude of IGFnet.

3.4.1 IDENTIFYING NET INTERCATCHMENT GROUNDWATER FLOWS FROM OB-
SERVED DATA SIGNALS

The water balance of a catchment reads as follows:

dS

dt
= P (t )−Qobs(t )−EA(t )−QIGF(t ), (3.1)

where S is the storage in the catchment, P is the precipitation at time step t , Qobs is the
observed streamflow at the catchment outlet, EA is the actual evaporation and QIGF is
the groundwater net loss (if QIGF is positive, meaning that the groundwater flow out of
the catchment is larger than the flow into the catchment) or net gain (if QIGF is negative)
to the catchment, where all variables represent instantaneous fluxes (in mm h−1).

Intercatchment groundwater flows are often not considered and over a long period
(several years), the change in storage is assumed to be zero, and long-term mean pre-
cipitation P , actual evaporation EA and observed streamflow Qobs (in mm yr−1) can be
reduced to the following:

P =Qobs +EA (3.2)

The Budyko framework (Budyko, 1961) describes the empirical global relation between
the long-term evaporative index (EA/P ) and the dryness index (EP/P , with EP the long-
term mean potential evaporation) and shows that natural catchments show a tendency
to plot along the Budyko curve in the theoretical range located in between the energy and
water limits. The water limit implies that a catchment cannot evaporate (or streamflow)
more water than it receives from precipitation; this implies that catchments with higher
streamflow than precipitation plot beyond the water limit (gaining catchments) in the
Budyko framework. The energy limit implies that catchments cannot evaporate (EA)
more than the energy available for evaporation (EP), and therefore catchments where
the difference between precipitation and streamflow is larger than potential evapora-
tion are beyond the energy limit (leaky catchments), as shown in Fig. 3.3a. Assuming
negligible observation errors, they are likely affected by net intercatchment groundwater
inflows (gaining catchments) or outflows (leaky catchments). Andréassian et al. (2012)
suggest replacing the axis of the evaporative index (EA/P = 1−Qobs/P ) with the runoff
ratio (Qobs/P ) in the Budyko framework because gaining catchments would otherwise
have a negative evaporative index and because EA itself is not measured at the catch-
ment scale. We therefore plot each catchment in the nondimensional representation of
the runoff ratio (Qobs/P ) as a function of the dryness index (EP/P ), hereinafter referred to
as the Budyko framework for the sake of convenience, using hydrological years between
October 2006 and September 2016 (10 years) with more than 350 days of streamflow data
per year.

Catchments show a tendency to plot close to the Budyko curve or other alternative
expressions. The Turc–Mezentsev formula (Turc, 1954; Mezentsev, 1955) plots very close
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Figure 3.3: (a) Dimensionless representation of the runoff ratio (Qobs/P ) as a function of the dryness index
(EP/P ), referred to as the Budyko framework. The red line is the energy limit (Qobs = P −EP) beyond which
catchments are leaking water; the blue line is the water limit (Q = P ) above which catchments are gaining wa-
ter; the dark grey line is the measurement limit (Q = 0). The domain within these three limits is the theoretical
feasible domain. The Turc–Mezentsev and the Budyko curves plot very close to each other. The 5 % uncer-
tainty bound around the Turc–Mezentsev curve is also shown. For each catchment, the ratio of the distance
to the energy limit (da ) over the distance of Turc–Mezentsev to the energy limit (db ) is used as a proxy for the
presence of net intercatchment groundwater flows. (b) The catchments of the Meuse basin are located around
the Turc–Mezentsev curve (black circles). However, four catchments plot beyond the energy limit (red squares)
and eight catchments plot very close to the energy limit and are beyond the lower 5 % range of Turc–Mezentsev
(orange squares). In these catchments, we expect net intercatchment groundwater flow losses to occur.

to the Budyko curve (Fig. 3.3) and has often been used in studies of French catchments
(Le Moine et al., 2007) and was therefore applied in our analysis. The Turc–Mezentsev
formula is the most general function that fulfills the two conditions Qobs ∼ 0 when P ¿
EP (in very dry, moisture-constrained catchments) and Qobs ∼ P − EP when P À EP

(in very wet, energy-constrained catchments) (Turc, 1954; Lebecherel et al., 2013), and
transposed to streamflow, it reads as follows:

Qobs

P
= 1− 1

(1+ ( P
EP

)n)
1
n

, (3.3)

in which n is an exponent to estimate. Depending on the value of the parameter n, the
Turc–Mezentsev relation occupies the domain from the energy limit to the water limit;
Turc (1954) retained a value of n = 2. Here we define catchments plotting more than 5 %
away from this curve (which implies a narrower range than in Gentine et al., 2012, but
wider than in Li et al., 2014) and close to the limits as likely to be affected by IGFnet. More
specifically, catchments plotting beyond the energy limit and between the energy limit
and the lower boundary of the Turc–Mezentsev uncertainty range (Fig. 3.3) potentially
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Figure 3.4: Conceptual model schematizations. (a) Reference model without net intercatchment groundwa-
ter flows. (b) Reference model with net constant intercatchment groundwater flows from the slow reservoir.
(c) Reference model with net preferential intercatchment groundwater flows retrieved from or added to the
recharge to the slow reservoir (using an error function that relates the percentage or recharge lost or gained
to net intercatchment groundwater flows as a function of the recharge rate). (d) Overflow model used for the
Aroffe catchment at Vannes-le-Châtel that simulates river flows in the Aroffe only when the underground stor-
age capacity is exceeded. The rest of the time, flows occur underground towards neighboring basins. Here, we
define P as precipitation, PE as effective precipitation, E as evaporation, R as an internal flux and Q as surface
or subsurface streamflow (all in mm h−1) and S as storage (in mm). For the subscripts, we define I as intercep-
tion, R as root zone, S as slow response, F as fast response and P as percolation. The parameter Perc defines the
maximum percentage of recharge as net intercatchment groundwater flow.

indicate the presence of net subsurface losses. Indeed, catchments that plot very close
to the energy limit imply that the difference between precipitation and streamflow ap-
proximates the total energy available for evaporation (P −Qobs ≈ EP). During dry and/or
very warm periods, however, evaporation is constrained by water availability and mean
annual actual evaporation is therefore expected to be considerably lower than potential;
this in turn means that water must be leaving the catchment through another route to
comply with the observed long-term water balance. We hypothesize that water is leaving
the catchment through underground pathways.

We consider the shortest distance between each catchment and the energy limit in
the Budyko framework as a proxy for the presence of IGFnet. The closer a catchment
is to the energy limit, the higher the probability of IGFnet. We adjust this distance by
the shortest distance of the point on the Turc–Mezentsev curve at the catchment’s EP/P
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to the energy limit (Fig. 3.3a) because arid catchments have lower runoff ratios and are
therefore expected to be further away from the energy limit. Negative distances imply
that catchments plot beyond the energy limit.

We then assess if the adjusted distance to the energy limit is correlated with several
physical catchment characteristics that may influence the formation of IGFnet, includ-
ing the percentage of highly productive fissured aquifers (including karstified rocks) as
provided by the International Hydrogeological Map of Europe (IHME, https://www.
bgr.bund.de/ihme1500, last access: 29 November 2018) and International Geologi-
cal Map of Europe (IGME), catchment area, and percentage of hillslopes (slopes steeper
than 13 %, Gharari et al., 2011).

3.4.2 QUANTIFYING NET INTERCATCHMENT GROUNDWATER FLOW PROCESSES

USING CONCEPTUAL MODELS

MODELS DESCRIPTION

A reference conceptual model is developed including interception, soil moisture, fast
and slow reservoirs, but no IGFnet (Fig. 3.4a). This conceptual model is similar to the
model used by Fovet et al. (2015) and has 10 calibration parameters. The characteristic
timescale of the recession of the slow reservoir is determined with a master recession
curve analysis.

Two options are investigated to incorporate IGFnet in the reference model. The first
one involves a continuous constant groundwater exchange flux (loss or gain) from or
to the slow reservoir (QIGF(t ) = CIGF), assuming a slowly draining, homogeneous, low-
permeability aquifer (Fig. 3.4b). The second relies on preferential permeable pathways,
activated above a certain threshold, to lose or gain water (Fig. 3.4c and Appendix A). In
the preferential model, part of the recharge is lost or gained (before entering the slow
reservoir) when the recharge exceeds a certain threshold. An error function is used to
simulate this behavior: QIGF(t ) = erf(RRS(t ), µ, m3) ·perc ·RRS(t ), with RRS(t ) the recharge
from the root zone storage to the slow reservoir,µ the threshold parameter of the recharge
above which IGFnet occurs, Perc the maximum fraction of the recharge to IGFnet and m3

a shape parameter of the error function (not calibrated). The constant loss–gain model
resembles the one in Hrachowitz et al. (2014) and counts one extra parameter, while
the preferential IGFnet model has two additional parameters compared to the reference
model.

In the catchment of the Aroffe River, water sinks in the karstified limestone after trav-
eling through sandstone and marl deposits and emerges again in the neighboring catch-
ment of the Moselle (which is a tributary of the Rhine River). During peak flows, the
conduit capacity is exceeded and water flows in the river bed of the Aroffe (Fister, 2012).
To simulate the hydrological functioning of the Aroffe river, an overflow type of model
is developed to quantify the losses of this catchment to the neighboring Moselle basin,
according to QIGF(t ) = K −1

IGF · SS(t ), with KIGF the characteristic timescale of the under-
ground stores (SS), as shown in Fig. 3.4d.

Parameters, water balance and constitutive equations of all models are provided in

https://www.bgr.bund.de/ihme1500
https://www.bgr.bund.de/ihme1500
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Appendix A and model schematizations are shown in Fig. 3.4. All models are programmed
in Python and an implicit Euler time stepping scheme is used to solve the model equa-
tions.

MODEL EXPERIMENTS – GENERAL PROCEDURE

The model was run between 1 January 2006 and 31 December 2011, using 2006 as a
warm-up year, to explore the parameter space with a Monte Carlo strategy and sampling
from uniformed prior parameter distributions (105 realizations). This was done at an
hourly time step because of the fast processes occurring in the Meuse river basin. Fea-
sible parameter sets are retained based on their simultaneous ability to reproduce high-
and low-flow metrics during calibration with Nash–Sutcliffe efficiencies of at least 0.7
for different indicators (Nash–Sutcliffe efficiency of the flows ENS,Q and of the log of the
flows ENS,logQ , Nash–Sutcliffe efficiency of the flow duration curve of the log of the flows
ENS,FDC,logQ ), and to reproduce streamflow volumes at different temporal scales (relative
volume error ERVE, Nash–Sutcliffe efficiency of runoff ratios for 6-monthly ENS,RC,6m,
monthly ENS,RC,m and weekly ENS,RC,w periods). The tested models are evaluated in an
independent validation period running from 1 January 2012 to 31 December 2016.

Prior and posterior parameter ranges are provided in Appendix A. The characteristic
timescale of the recession of the slow reservoir is estimated with a master recession curve
analysis for each catchment (Fenicia et al., 2006). A range of 10 days around the derived
value is used as a calibration range to account for nonlinear recession when a constant
loss or gain is added to the slow reservoir.

The experiments designed to test the hypotheses of this paper are described in the
following sections.

REPRESENTATION: HOW TO REPRESENT NET INTERCATCHMENT GROUNDWATER FLOWS –
ZERO, CONSTANT OR PREFERENTIAL FLOWS?

The stations on the Semois River and its tributary (Vierre at Straimont and Semois at
Sainte-Marie, Tintigny, Chiny, Membre-Pont, shown in Fig. 3.2) are used to assess three
alternative model concepts: the reference model without IGFnet, constant IGFnet from
or to the slow reservoir and preferential IGFnet from or to the recharge to the slow reser-
voir. These stations are selected because they also allow us to quantify how IGFnet evolve
from upstream to downstream along the same river (Sect. 3.4.2). The five stations are
calibrated independently using the three models to quantify the magnitude of IGFnet in
the subsequent catchments. The most suitable model structure is determined based on
a visual inspection of hydrographs and modeled streamflow regime, a comparison of
performance indicators in the validation period, and a comparison between the magni-
tude of the loss and the distance to the energy limit (long-term mean and annual vari-
ability). Additionally, modeled mean annual actual evaporation are compared to Turc–
Mezentsev estimates and we assess the shift of the modeled water balance in the Budyko
framework when IGFnet are considered versus neglected.
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DIRECTION: WHERE DO INTERCATCHMENT GROUNDWATER FLOWS GO?

To test if part of the groundwater flow bypasses the headwater stream to reach the river
only further downstream, we model the Semois River catchments (using the experiments
described in Sect. 3.4.2) to quantify how the loss–gain term varies as catchment size in-
creases along the same river. Additionally, we looked for examples in the literature lo-
cated in the Meuse basin to highlight the possible difference between IGFnet that is in-
ternal to a river basin and IGFnet to neighboring river basins.

MAGNITUDE: WHAT IS THE MAGNITUDE OF NET INTERCATCHMENT GROUNDWATER FLOWS

AT THE SCALE OF THE MEUSE BASIN?

Several catchments plotting close to or beyond the energy limit (from the analysis de-
scribed in Sect. 3.4.1) are modeled to quantify the magnitude of potential IGFnet at sev-
eral locations in the Meuse basin. Additional catchments where the magnitude of IGFnet

is evaluated using the preferential model (because it performed better for the Semois at
Sainte-Marie; see the results in Sect. 3.5.2) include the Sormonne at Belval, the Mehaigne
at Huccorgne, the Bocq at Yvoir and the Crusnes at Pierrepont (Fig. 3.1a). For the Aroffe
at Vannes-le-Châtel, the overflow type of model (Fig. 3.4d) is used to model the loss to-
wards the Moselle basin, based on findings from the literature (Fister, 2012).

3.4.3 EVALUATING NET INTERCATCHMENT GROUNDWATER FLOWS USING REMOTELY-
SENSED ACTUAL EVAPORATION ESTIMATES

We test for the presence of IGFnet using independent additional data sources. Actual
evaporation is a major component of the water balance at the catchment scale, but it is
also a great unknown. Reliable estimates of actual evaporation at the catchment scale
would allow us to attribute the gap in the water balance to IGFnet, assuming minor an-
thropogenic activities. Global evaporation products are, however, not derived directly
from earth observations, but rely on remotely sensed data in combination with models
to derive actual evaporation. In this study, we compare two sources of remotely sensed
actual evaporation estimates (LSA SAF and GLEAM) with our modeled actual evapora-
tion to test the hypothesis of IGFnet.

3.5 RESULTS

3.5.1 IDENTIFICATION OF NET INTERCATCHMENT GROUNDWATER FLOWS AND

LINK WITH PHYSICAL CATCHMENT CHARACTERISTICS

The analysis of observed water balances in the Budyko framework shows that relatively
small headwater catchments of the Meuse basin (50–700 km2; Fig. 3.1) plot closest to
or beyond the energy limit (Fig. 3.3b); this suggests that these catchments exhibit the
highest potential for the presence of net intercatchment groundwater flows (IGFnet).
Amongst them is the headwater catchment of the Semois at Sainte-Marie (Fig. 3.2), which
plots close to the energy limit, suggesting underground losses towards other catchments.
The water balance of two catchments in the northeast (Fig. 3.1) might be affected by the
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Figure 3.5: Adjusted distance of each catchment to the energy limit in the Budyko framework (as explained
in Fig. 3.3) is plotted as a function of several catchment characteristics. This distance is used as a proxy for
the presence of net intercatchment groundwater flows. The black line and dots show the correlation for all
stations of the Meuse basin and the colored dots (with sizes scaled to catchment area) and blue line display
the catchments of the Semois River only. (a) Distance to the energy limit as a function of the percentage highly
fissured aquifers including karstified rocks based on the International Hydrogeological Map of Europe (IHME),
indicating larger net losses as the percentage of highly fissured aquifers increases because of lower (or nega-
tive) values of the distance to the energy limit. (b) Distance to the energy limit as a function of percentage of
hillslopes defined as slopes above 13 % and representative for the competition between surface and subsur-
face drainage. (c) Distance to the energy limit as a function of catchment areas of the main tributaries (up to
4000 km2).

presence of dams (FAO, 2016) and the two catchments are therefore left out of further
analyses. The net losses calculated with long-term observed streamflow, precipitation
and Turc–Mezentsev estimates of actual evaporation in these headwater catchments
range between 70 mm yr−1 (for the Semois at Sainte-Marie, which corresponds to 7 %
of mean annual precipitation), and 260 mm yr−1 (for the Aroffe catchment at Vannes-le-
Châtel, which is 31 % of annual precipitation), with a median of 100 mm yr−1 (or 12 % of
median annual precipitation). The distance of the Aroffe catchment to the energy limit
is negative (the catchment plots beyond the energy limit) and approximately three times
larger than the (positive) distance of the Semois at Sainte-Marie.

The catchments of the Meuse basin show a significant trend (p = 0.001 and R2 = 0.22)
indicating more losses from the catchment (negative or shorter distance to the energy
limit) as the percentage of highly productive fissured aquifers increases, as shown in
Fig. 4.10a. Intercatchment groundwater flows in the Meuse basin are therefore likely to
occur in catchments with highly productive fissured aquifers, including karstified rocks
(see the IHME hydrogeological map in Fig. 3.1b). These productive aquifers are char-
acterized by limestone, marl or chalk lithologies (IGME). Karstification processes may
cause “piracy” routes to develop (Hartmann et al., 2014) and therefore be at the origin of
IGFnet.

We use the percentage of hillslopes in a catchment (defined as areas with a slope
steeper than 13 %, Gharari et al., 2011) as a proxy for how well the drainage network is
defined from the surface and relate it to the potential presence of IGFnet (through the
distance to the energy limit) as shown in Fig. 4.10b. The data show a significant trend
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(p = 0.001 and R2 = 0.22), indicating fewer losses from the catchment (larger distance
towards the energy limit) as the percentage hillslope increases. The underlying idea is
that surface topography displays the result of a competition between surface and sub-
surface flows. Catchments dominated by steep valleys, as encountered in the Ardennes,
clearly show their drainage network at the surface. The steeper the catchment, the higher
the relative importance of lateral flow through a subsurface preferential path network to
the channel or stream. On the other hand, catchments lying on permeable lithologies as
chalk and middle Jurassic limestones may be dominated by rivers cutting through rela-
tively flat plateaus and may hide an underground network of subsurface flow paths from
the surface (Le Moine, 2008). The flatter the catchment, the higher the potential impor-
tance of an underground flow network and therefore of subsurface losses or gains. In the
Meuse basin, IGFnet is therefore likely to occur in catchments dominated by a relatively
flat topography.

We also tested the hypothesis that part of the groundwater flow bypasses the channel
to reach the river only further downstream by correlating the distance of each catchment
to the energy limit (as a proxy for the presence of IGFnet) to the catchment area, for the
main tributaries of the Meuse basin (Fig. 4.10c). We expected the presence of IGFnet to
be reduced as catchment size increases, and although this trend is significant (p = 0.032
and R2 = 0.10), the correlation is weak. The data shown in Fig. 4.10c, however, suggest
that evidence for IGFnet is highest in small catchments (with areas less than 500 km2)
and much less pronounced in larger downstream catchments, although there are also
small catchments with little evidence of it. This is likely related to the variability of local
geological features underlying these small catchments.

3.5.2 VARIABILITY OF NET INTERCATCHMENT GROUNDWATER FLOWS ACROSS

THE MEUSE BASIN

REPRESENTATION: A PREFERENTIAL MODEL TO REPRESENT NET INTERCATCHMENT GROUND-
WATER FLOWS

The reference (without IGFnet), constant and preferential IGFnet models are calibrated
on subsequent catchments along the Semois river. In the following sections, the models
are evaluated based on (1) performance indicators during the validation period and vi-
sual inspection of the hydrographs and seasonal behavior, (2) the magnitude of modeled
IGFnet, and (3) modeled actual evaporation.

PERFORMANCE INDICATORS AND VISUAL INSPECTION OF THE HYDROGRAPHS

Performance indicators of the feasible realizations of the three models in the Semois
catchments during the calibration and validation period are shown in Fig. 3.6. The pref-
erential model shows an improvement in high- and low-flow indicators, and in mod-
eled runoff ratio in the Semois catchment at Sainte-Marie compared to the constant and
zero IGFnet models, whereas in the other catchments of the Semois River, performance
indicators are similar for the three models. Nash–Sutcliffe efficiencies of daily flows
(ENS,Q ) and log of the flows (ENS,logQ) increase when the reference model (no IGFnet)
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is extended with a constant IGFnet term and increase even more when a preferential
IGFnet term is included in the catchment upstream of Sainte-Marie. This also applies
for the Nash–Sutcliffe efficiency applied on monthly and weekly runoff ratio (ENS,RC,m

and ENS,RC,w). On the other hand, all performance indicators for the Vierre at Strai-
mont (Fig. 3.6) show similar results for the three models. Adding an exchange term in
this sandstone-dominated catchment (constant or preferential) does not lead to an im-
proved performance. This behavior also characterizes the other catchments at Tintigny,
Chiny and Membre-Pont (Fig. 3.6).

A visual inspection of the in 2014 modeled and observed hydrographs at Sainte-
Marie (Fig. 3.7) shows a decrease in modeled winter peak flows at the beginning of the
year and an increase of modeled peak flows after the dry season (October) for the pref-
erential model compared to the zero IGFnet model, which better approximates observed
behavior. Although this behavior might vary throughout the years, a higher performance
of the preferential model in reproducing the observed streamflow regime is also visible in
Fig. 3.8. Including preferential IGFnet in the model reduces the mean overestimation of
9 mm month−1 at the beginning of the year and the underestimation of 11 mm month−1

in October and November, simulated by the zero IGFnet model, to respectively 0.5 and
3 mm month−1 on average. This implies that the error is reduced by 94 % at the begin-
ning of the year and by 73 % in October and November. The improved simulation of the
seasonal behavior indicates a better representation of the underlying processes and the
resulting partitioning of water fluxes.

GROUNDWATER NET LOSSES OR GAINS IN THE SEMOIS CATCHMENT

In the catchment upstream of Sainte-Marie, a median annual loss term of 17 % and 20 %
of observed streamflow (corresponding to 77 and 90 mm yr−1) is modeled by the feasi-
ble realizations of the preferential and constant IGFnet model, respectively, as shown in
Fig. 3.9a, b. The magnitude of IGFnet decreases in the catchments further downstream
on the Semois River. At the catchment outlet (Membre-Pont) and in the Vierre tributary,
the magnitude of IGFnet is centered around zero. The range of IGFnet is larger for the
constant model compared to the preferential model. For the preferential model, IGFnet

approximates a value of zero for all other catchments than Sainte-Marie. In the con-
stant model, median values of IGFnet are positive (losses), but some realizations imply a
slight gain. Additionally, Fig. 3.9c, d show that the magnitude of IGFnet decreases as the
distance to the energy limit increases. This means that as catchments plot closer to the
Budyko curve (and further away from the energy limit), we see the relative importance
of IGFnet decreasing, which is in line with expectations.

EFFECT ON ACTUAL EVAPORATION

Turc–Mezentsev estimates of actual evaporation are compared with modeled mean an-
nual actual evaporation of the feasible realizations of the three models in all Semois
stations in Fig. 3.10. Including (constant or preferential) IGFnet in the catchment of
Sainte-Marie leads to median annual actual evaporation rates close to Turc–Mezentsev
estimates, whereas the reference model leads to 10 % higher actual evaporation rates



3

32
3. REDRESSING THE BALANCE: QUANTIFYING NET INTERCATCHMENT GROUNDWATER

FLOWS

0.8

1.0
(a) Calibration (b) Validation

Sainte-Marie
Zero
Constant
Pref.

0.8

1.0

Straimont
Zero
Constant
Pref.

0.8

1.0

Tintigny
Zero
Constant
Pref.

0.8

1.0

Chiny
Zero
Constant
Pref.

ENS, Q
ENS, logQ

ENS, FDC, logQ

ENS, RC, 6m

ENS, RC, m
ENS, RC, w

0.8

1.0

ENS, Q
ENS, logQ

ENS, FDC, logQ

ENS, RC, 6m

ENS, RC, m
ENS, RC, w

Membre-Pont
Zero
Constant
Pref.

Figure 3.6: Performance indicators during the calibration (2007–2011, a) and the validation period (2012–2016,
b) for the zero, constant and preferential models for the Semois at Sainte-Marie, the Vierre at Straimont, the Se-
mois at Tintigny, the Semois at Chiny and the Semois at Membre-Pont. Including net intercatchment ground-
water flows leads to an improved performance in the catchment of Sainte-Marie but not in the other catch-
ments of the Semois.
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Figure 3.7: Observed (black line) and feasible realizations of modeled hydrographs (orange) in the catchment
of the Semois at Sainte-Marie in 2014 for the three models (a, b: zero, c, d: constant and e, f: preferential
model) on a normal (a, c, e) and log (b, d, f ) scale. Including net intercatchment groundwater flows leads to
lower simulated winter streamflow (January–March) and higher streamflow in the wetting-up period (October–
November).
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Figure 3.8: (a) Mean monthly loss between 2007 and 2016 for the feasible model realizations in the Semois
catchment at Sainte-Marie. (b) Mean monthly streamflow between 2007 and 2016 for the feasible model real-
izations (orange) and observations (black dots) for the three models at Sainte-Marie. The preferential model
leads to better performances with lower simulated streamflow in the first half-year and higher streamflow in
the wetting-up period (October–November).
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Figure 3.9: (a, b) Ratio of modeled net loss over observed streamflow for the Semois stations for the period
2007–2016 (positive values indicate a net loss, whereas negative values indicate a net gain) for the constant
model (a) and the preferential model (b). (c, d) Mean annual net intercatchment groundwater flow rates (for
the feasible model realizations) as a function of the observed distance to the energy limit for the catchments of
the Semois river (same color code as a, b) for the constant model (c) and preferential model (d). Both models
show a decrease in net intercatchment groundwater flows as the distance to the energy limit increases. The
streamflow observations of all Semois stations are provided by the Service Public de Wallonie.
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(535 mm yr−1 for the preferential model versus 590 mm yr−1 for the zero IGFnet model).
The reference model compensates for the absence of an intercatchment groundwater
flow term by increasing actual evaporation rates to reproduce observed flow volumes.
For the majority of the other catchments, the effect of adding IGFnet on modeled actual
evaporation rates is less pronounced, but still visible.

When using observed river streamflow and neglecting IGFnet, the catchment of Sainte-
Marie plots close to the energy limit in the Budyko framework; however, when IGFnet

is modeled and added to river flows, the catchment of Sainte-Marie plots close to the
Turc–Mezentsev curve, as shown in Fig. 3.11. This shift in the Budyko framework occurs
because we acknowledge that part of the streamflow produced from the catchment by-
passes the measuring gauge in the river. Including IGFnet in the representation of the
system results in a higher degree of plausibility, based on the Budyko framework. The
shift is most obvious for the catchment of Sainte-Marie, although it also occurs in the
other catchments.

Figure 3.10: Best realizations of modeled mean annual actual evaporation in all stations in the Semois catch-
ment for the three models (zero, constant and preferential models) during 2007–2016. Colored horizontal lines
indicate mean annual potential evaporation used as forcing. Estimates of actual evaporation from the Turc–
Mezentsev curve are shown as black dots and GLEAM estimates are shown as grey crosses. In the catchment of
Sainte-Marie, the reference model without net intercatchment groundwater flows overestimates actual evap-
oration compared to the other two models and Turc–Mezentsev estimates.
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Figure 3.11: (a) Dimensionless representation of Qriver/P as a function of EP/P . Long-term observed values
between 2007 and 2016 are shown together with modeled river flows (runoff from fast and slow reservoirs) us-
ing the three models for all stations of the Semois River. (b) Dimensionless representation of (Qriver +QIGF)/P
as a function of EP/P . In this plot, we acknowledge that part of the groundwater bypasses the gauging station
and we consider this flow in addition to the river flow. For the catchment of Sainte-Marie, we see a shift towards
the Turc–Mezentsev curve when net intercatchment groundwater flows are acknowledged.

DIRECTION: GROUNDWATER BYPASS ROUTES VERSUS INTERCATCHMENT GROUNDWATER

FLOWS TO EXTERNAL BASINS

The magnitude of modeled IGFnet decreases from nested upstream to downstream catch-
ments along the Semois River (Fig. 3.9a,b), which is an indication that “losses” modeled
at Sainte-Marie are internal to the catchment of the Semois. Losses in the upstream
catchment of Sainte-Marie reappear as additional groundwater inflows in the down-
stream parts of the Semois, thereby reducing the IGFnet from upstream to downstream.

In contrast, experiments previously conducted in the Aroffe River catchment (Fister,
2012; Martin and Zany, a) revealed the presence of groundwater flows, leaving the Meuse
basin towards the Moselle catchment (which is part of the Rhine basin). Losses from
the Meuse basin also occur along the northern boundary of the tributary of the Geer
River catchment (Reggiani and Rientjes, 2010). Additionally, downstream of the village
of Bazoilles, the Meuse flows underground during a large part of the year, leaving its
surface bed empty, before emerging again at Noncourt, just upstream of Neufchâteau
(in the upstream part of the Meuse basin); this is referred to as “la Perte de la Meuse”
(translation: the Loss of the Meuse) (Newman, 1949; Martin and Zany, b). This variety of
processes highlights the contrast between stations that are losing water to neighboring
catchments (Aroffe to the Rhine) and catchments that are losing water to themselves
further downstream.
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(a) (b) (c)

Figure 3.12: Water balance components of additional modeled catchments over the period 2007–2016.
(a) Modeled (box plot) and observed (dot) mean annual streamflow overlap well. (b) Modeled mean annual
net loss (box plot) and observed mean annual streamflow (dot), showing the large proportion of net intercatch-
ment groundwater flows especially in the Aroffe catchment. (c) Modeled actual evaporation (box plot), GLEAM
actual evaporation (grey cross), LSA SAF actual evaporation (black cross) and Turc–Mezentsev estimates (black
dot). It should be noted that LSA SAF estimates are only available during the validation period (2012–2016).
Model results overlap relatively well with GLEAM and Turc–Mezentsev estimates of actual evaporation, but
LSA SAF estimates are lower.
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MAGNITUDE: QUANTIFICATION OF NET INTERCATCHMENT GROUNDWATER FLOWS AT THE

SCALE OF THE MEUSE BASIN

The magnitude of IGFnet is assessed in several other catchments of the Meuse basin that
plot close to or beyond the energy limit (annotated catchments in Fig. 3.1a). The pref-
erential model is used to assess the magnitude of IGFnet because it performed better in
the catchment of Sainte-Marie. In the Aroffe catchment, an overflow type of model is
applied to represent the functioning of the system based on a priori available knowl-
edge (Sect. 3.4.2). Modeled mean annual flows between 2007 and 2016 overlap well
with observations, as shown in Fig. 3.12a. The ratio of mean annual net intercatchment
groundwater flows to observed streamflow is always positive (indicating a loss). Mod-
eled losses can be substantial compared to observed streamflow, as shown in Fig. 3.12b.
In the Aroffe, the median loss rate (of 208 mm yr−1) is approximately 2.5 times higher
than observed river flows (85 mm yr−1). Median values of annual loss rates over observed
streamflow range from 0.1 % to 32 % (0.3 to 130 mm yr−1) in the other catchments. Mod-
eled actual evaporation is close to or slightly overestimates Turc–Mezentsev estimates
(Fig. 3.12c), showing that the models are able to reproduce the observed long-term wa-
ter balance in a meaningful way.

At the scale of the Meuse basin, intercatchment groundwater flow processes play
only a small role because they occur in relatively small catchments and because part of
these losses may be internal to the Meuse basin. However, IGFnet occurring at the scale
of headwater catchments make up a considerable part of the water balance (on average
10 % and up to 25 % of mean annual precipitation), which in many current models is
wrongly attributed to actual evaporation.

3.5.3 EVALUATION AGAINST ACTUAL EVAPORATION FROM REMOTE SENSING

GLEAM estimates of mean annual actual evaporation approximate or slightly overesti-
mate (< 5 %) modeled and Turc–Mezentsev estimates of actual evaporation, as shown
in Figs. 3.10 and 3.12c, whereas estimates from a land surface modeling approach, such
as LSA SAF data, are considerably lower (between 400 and 470 mm yr−1, Fig. 3.12c) in
the studied catchments. While the difference in both products highlights the uncer-
tainty in remote-sensing-based estimates of actual evaporation, it also shows that ac-
tual evaporation might even be less than that resulting from our models, which might
imply even larger magnitudes of losses due to IGFnet. The simple conceptualization
of soil-moisture-constrained evaporation used in our models, which does not account
for a temperature-based stress function, might lead to an overestimation of transpira-
tion. Thus, being arguably conservative modeled estimates, the low estimates of LSA
SAF evaporation lend further credibility to evidence suggesting the presence of consid-
erable IGFnet.
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3.6 DISCUSSION

3.6.1 IMPLICATIONS

In this study, we question in three steps the validity of neglecting intercatchment ground-
water flows in catchment-scale hydrological studies. In the Meuse basin, the poten-
tial presence of net intercatchment groundwater flows is detected from observed wa-
ter balance data in relatively small headwater catchments (< 500 km2) and is much less
pronounced in larger downstream catchments (Fig. 3.1). In the theory advanced by
Tóth (1963), regional groundwater flows occur from the headwaters to the bottom of
the basin. This implies that headwater catchments may export water through ground-
water flow paths into the river further downstream, thereby increasing the groundwa-
ter contributions in larger downstream catchments; this suggests a variability of domi-
nant hydrological (subsurface) processes across spatial scales, as also demonstrated by
Frisbee et al. (2011). Schaller and Fan (2009) found that the largest magnitudes of in-
tercatchment groundwater flow occur at catchment size near 100 km2, which also re-
sults from our analysis (Fig. 4.10c). Catchment size might not be the most important
control (as compared to geology or topography), but it is to some extent a proxy of the
position of a catchment in the landscape. We could show that the largest evidence for
intercatchment groundwater flows occurs in small headwater catchments, whereas in
the lowlands, where the proportion of larger catchments is also higher, net intercatch-
ment flow is of less relevance: the further downstream the catchment is situated, the
more the losses that occurred upstream become accounted for. Schaller and Fan (2009)
also report that efficient aquifers favor intercatchment groundwater flows. In the Meuse
basin, the identified headwater catchments are relatively flat and underlain by highly
productive and fissured aquifers (Fig. 4.10b,c), where karstification processes might be
at the origin of underground exchange flow paths between catchments. While previous
research (Gleeson and Manning, 2008; Ameli et al., 2018) showed that more intercatch-
ment groundwater flows are to be expected with increasing catchment slope, these stud-
ies assume a homogeneous subsurface, which is not the case in the Meuse basin. The
relatively weak correlations between physical catchment characteristics and intercatch-
ment groundwater flows shown in Fig. 4.10 can be explained by the high spatial variabil-
ity of intercatchment groundwater flows due to local geological features that overrule
theoretical relations at the basin scale, as also argued by Genereux et al. (2002), Schaller
and Fan (2009) and Frisbee et al. (2016).

We make one of the first steps to bridge the gap between regional groundwater mod-
els in which topographic catchment boundaries are not considered and lumped con-
ceptual hydrological models that treat catchments as well-defined impermeable enti-
ties, by adding an additional flux in conceptual models to represent net intercatchment
groundwater flows. We model net intercatchment groundwater flows as preferential
fluxes, occurring when recharge exceeds a threshold, to represent the filling of under-
ground stores before intercatchment flow paths are activated (Fig. 3.4c), rather than as
constant matrix flow. Interestingly, we show that accounting for net preferential inter-
catchment groundwater flows improves not only low-flow performance indicators, but
also high-flow simulations (Fig. 3.6). The increased performance achieved with the pref-
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erential model during both high and low flows suggests that the relative importance of
intercatchment groundwater flow processes change throughout the year, as also found
by Frisbee et al. (2012) based on a chemical and isotopic analysis. Ajami et al. (2011) also
suggest that local, intermediate and regional groundwater flow paths are active during
winter, while mainly local groundwater flow paths are active during summer. The ratio
of net intercatchment groundwater exports over total streamflow (QIGF/(QIGF +Qriver))
is about 70 % in the Aroffe catchment (where the flow is diverted into the neighboring
Moselle river) and is on average 17 % in the other catchments; these values are within
the range provided by Schaller and Fan (2009).

3.6.2 LIMITATIONS

In this work, we rely on the empirical organizing principle provided by the Turc–Mezentsev
or Budyko curves (Turc, 1954; Mezentsev, 1955; Budyko, 1961) and assume that catch-
ments of the Meuse basin plotting close to or beyond the energy limit (Fig. 3.3) may be
subject to losses due to net intercatchment groundwater flows. Changing vegetation,
climate and human interactions might, however, also be at the origin of catchments de-
viating from the Budyko curve (Velde et al., 2014; Berghuijs et al., 2014). The location
of each catchment within the Budyko framework is also subject to uncertainties in the
data used to calculate long-term mean precipitation, streamflow and potential evapora-
tion. Data uncertainties can originate from the spatial interpolation of the precipitation,
the choice of a potential evaporation formula, errors in streamflow measurements or
in catchment delineation, or the presence of unknown anthropogenic activities affect-
ing the water balance. The Budyko framework relies on long-term mean precipitation,
potential evaporation and streamflow data as well as the underlying assumption that
changes in total catchment water storage (for example in lakes, wetlands or groundwa-
ter) can be treated as negligible, i.e dS ∼ 0 [L T−1]. However, the assumption of dS ∼ 0
[L T−1] is unlikely to hold over shorter time periods, which implies that the framework
cannot be used in a meaningful way to estimate short-term differences (e.g., annual) in
intercatchment groundwater flows. In spite of these shortcomings, the three-step ap-
proach of this study, which combines different perspectives and data to estimate net
intercatchment groundwater flows, allowed us to plausibly attribute deficits in the ob-
served water balance to the potential presence of net intercatchment groundwater flows.

We treated intercatchment groundwater flows as independent net losses or gains
in lumped conceptual catchment models, without explicitly connecting the loss of one
catchment to the gain of another. By modeling several stations along the same tributary
(the Semois), we hypothesized that the loss in the headwater catchment at Sainte-Marie
might bypass the channel to reach the river only further downstream, implying an “in-
ternal” loss within the river system; but other configurations of groundwater flows in this
area might lead to similar results. Additionally, we found evidence in literature (Fister,
2012) that the Aroffe catchment flows underground to the Moselle catchment (a trib-
utary of the Rhine), but we could not relate the flow out of the relatively small Aroffe
catchment (198 km2) to its emergence in the much larger Moselle catchment near Toul
(3338 km2) due to the difference in catchment area. Interestingly, in the recent geolog-
ical past (250 000 years ago), the upstream catchment of the Moselle at Toul was flow-
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ing through the Meuse valley before it changed course to join the Rhine basin (de Wit,
2008b). Subsurface flow paths connecting both catchments may therefore still remain
from these earlier geological times.

We use independent data sources of remotely sensed actual evaporation estimates to
quantify the overestimation of actual evaporation modeled when intercatchment ground-
water flows are neglected. Both global actual evaporation products (GLEAM and LSA
SAF) rely on different models and remotely sensed data and provide relatively large dif-
ferences in mean annual values (up to 150 mm yr−1), highlighting the large uncertainty
in estimating actual evaporation. While GLEAM actual evaporation estimates approxi-
mate our model results and Turc–Mezentsev estimates, LSA SAF estimates indicate lower
evaporation rates (Figs. 3.10, 3.12c), potentially indicating an underestimation of actual
evaporation in this area, or the even larger importance of losses due to net intercatch-
ment groundwater flows in the studied catchments.

3.7 CONCLUSION

This proof-of-concept study in the Meuse basin shows strong evidence that we can iden-
tify net intercatchment groundwater flow processes from analyzing the long-term ob-
served water balance of a catchment. The results suggest that intercatchment ground-
water flows mainly play a role in headwater catchments (< 500 km2) with productive
aquifers. In these catchments, we then use simple conceptual models to show that a
net groundwater loss occurs when recharge exceeds a threshold. This preferential net
loss term represents the filling of underground stores before intercatchment flow paths
are activated, and ranges between 0 and 208 mm yr−1 (0 % and 25 % of annual precipi-
tation) with an average of 100 mm yr−1 (10 % of mean annual precipitation) in the stud-
ied catchments (Fig. 3.12b). Some of these underground flow paths may lead to down-
stream catchments along the same river (regional groundwater flow paths), while others
may lead to neighboring river basins (diverted groundwater flows due to the presence
of geological features), which explains why these net losses can be considerable at the
headwater catchment scale and negligible at the scale of larger catchments (modeled
net intercatchment groundwater flows reduced to zero at the most downstream station
of the Semois tributary). These findings therefore highlight that dominant streamflow
generation processes vary across spatial scales. Additionally, errors in simulating the
seasonal behavior are reduced by more than 70 % with the preferential model (Fig. 3.8b),
this suggests a pronounced intra-annual variability of the magnitude of net intercatch-
ment groundwater flow processes. Neglecting net intercatchment groundwater flows in
conceptual models may still result in high performances of streamflow simulation; how-
ever, it comes at the cost of overestimating actual evaporation rates to compensate for
this lack (Fig. 3.10). Including net intercatchment groundwater flow processes in mod-
els can considerably increase the correspondence between modeled actual evaporation
and remote-sensing estimates, and this provides additional evidence for the presence
and magnitude of net intercatchment groundwater flows.
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‘Nature is a living whole,’ he [Humboldt] later said, not a ‘dead aggregate’.

Andrea Wulf - The Invention of Nature (2015)

In the previous chapter, we used the long-term water balance to evaluate the presence of
intercatchment groundwater flow processes across the Meuse river basin. Once the dif-
ferent components of the long-term water balance in a specific catchment are identified,
they can be used to estimate the water storage accessible to the roots of vegetation for tran-
spiration. This root-zone storage capacity ensures the long-term survival of vegetation to
overcome droughts. The spatiotemporal dynamics of root-zone soil moisture can be in-
ferred from remote-sensing estimates of near-surface soil moisture through the Soil Water
Index. The aim of this chapter is to link the catchment-scale root-zone storage capacity to
the Soil Water Index.

Parts of this chapter have been published in Water Resources Research (Bouaziz et al., 2020)

43



4

44
4. GETTING TO THE ROOT OF THE T -VALUE: LINKING THE ROOT-ZONE STORAGE CAPACITY

WITH THE SOIL WATER INDEX AT THE CATCHMENT SCALE

SUMMARY

The spatio-temporal dynamics of water volumes stored in the unsaturated root-zone
are a key control on the response of terrestrial hydrological systems. Robust, catchment-
scale root-zone soil moisture estimates are thus critical for reliable predictions of river
flow, groundwater recharge or evaporation. Satellites provide estimates of near-surface
soil moisture that can be used to approximate the moisture content in the entire unsat-
urated root-zone through the Soil Water Index (SWI). The characteristic time length (T ,
in days), as only parameter in the SWI approach, characterizes the temporal variabil-
ity of soil moisture. The factors controlling T are typically assumed to be related to soil
properties and climate, however, no clear link has so far been established. In this study,
we hypothesize that optimal T values (Topt) are linked to the interplay of precipitation
and evaporation during dry periods, thus, to catchment-scale vegetation-accessible wa-
ter storage capacities in the unsaturated root-zone. We identify Topt by matching mod-
eled time series of root-zone soil moisture from a calibrated process-based hydrologi-
cal model to SWI from several satellite-based near-surface soil moisture products in 16
contrasting catchments in the Meuse river basin. Topt values are strongly and positively
correlated with vegetation-accessible water volumes that can be stored in the root-zone,
here estimated for each study catchment both as model calibration parameter and from
a water balance approach. Differences in Topt across catchments are also explained by
land cover (% agriculture), soil texture (% silt) and streamflow signatures (flashiness in-
dex).
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4.1 INTRODUCTION

Catchment-scale estimates of water volumes stored in the unsaturated root-zone are a
key element regulating the partitioning of water fluxes in terrestrial hydrological sys-
tems (Savenije and Hrachowitz, 2017). The spatio-temporal dynamics of this moisture
content control how much additional water can be stored in the soil of the unsaturated
root-zone and how much water is thus available for plant transpiration. Capillary forces
in soils have the ability to retain water against gravity to delay drainage. Conversely, ex-
cess water that cannot be held against gravity is released from soils as lateral flow and/or
groundwater recharge to eventually generate the runoff response in streams. For reliable
estimates of streamflow, accurate estimates of soil moisture contents in the unsaturated
root-zone are thus required (Blöschl and Zehe, 2005).

However, in-situ soil moisture observations are typically not available at sufficient
spatio-temporal scales and resolutions, except for in a handful of small experimental
catchments (e.g., Bogena et al., 2010). An increasing number of studies has therefore
previously explored the value of globally available remotely-sensed soil moisture esti-
mates for calibration and evaluation of or assimilation in different types of hydrological
models (e.g., Crow et al., 2005; Beck et al., 2009; Parajka et al., 2009; Sutanudjaja et al.,
2014; Wanders et al., 2014; Silvestro et al., 2015; Leroux et al., 2016; López López et al.,
2016, 2017; Rakovec et al., 2016a; Tian, 2007; Nijzink et al., 2018; Gevaert et al., 2018).

The use of remotely-sensed soil moisture products has proven to be relevant for a
variety of hydrological applications, however, a key issue is that the raw products often
lack direct hydrological relevance. Depending on the satellite mission, the soil moisture
estimates are generally limited to the upper-most few centimeters of the soil. This “near-
surface soil moisture” is in itself uninformative to quantify water release to streams,
which is regulated by the integrated moisture content over the entire unsaturated root-
zone. Establishing a systematic quantitative link between near-surface soil moisture
and the hydrologically relevant soil moisture in the unsaturated root-zone is therefore of
critical importance, but remains challenging (McCabe et al., 2017; Sheffield et al., 2018;
Blöschl et al., 2019).

Analytical, statistical or modelling methods have been proposed to estimate soil mois-
ture in the unsaturated root-zone by smoothing and delaying the near-surface soil mois-
ture signal (Ragab, 1995; Entekhabi et al., 1994; Wagner et al., 1999; Mahmood and Hub-
bard, 2007; Sabater et al., 2007; Manfreda et al., 2014). For example, Wagner et al. (1999)
proposes a simplified two-layer model to convolve the near-surface soil moisture signal
to a Soil Water Index (SWI) using an exponential filter. The underlying assumption im-
plies that the water fluxes from the surface through the entire root-zone is proportional
to the difference in soil moisture between both. Stroud (1999) and Albergel et al. (2008)
reformulate the exponential filter to a recursive filter to handle data more easily than
the original formulation. Despite its simplicity and lack of explicit link to physical pro-
cesses, SWI provides operationally useful estimates of aggregated soil moisture content
in the soil profile (Ceballos et al., 2005; Albergel et al., 2008; Brocca et al., 2010a, 2011;
Albergel et al., 2012; Ford et al., 2014).

The proposed recursive filter for the SWI calculation requires a single parameter, the
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characteristic time length T , expressed in unit of time (usually days), which is propor-
tional to the ratio of the depth of the reservoir below the surface and a pseudo-diffusivity
coefficient. The larger the value of T , the more smoothing and delaying of the near-
surface soil moisture signal occurs in the estimation of the root-zone soil moisture. The
parameter T has been interpreted to be a lumped surrogate for multiple interacting pro-
cesses influencing soil moisture dynamics, such as soil depth, evaporation, streamflow,
soil hydraulic properties or vegetation cover (Ceballos et al., 2005).

Optimal values of the characteristic time lengths Topt are often derived by relating
satellite-derived SWI to observed and/or modeled soil moisture time series integrated
to different depths (Wagner et al., 1999; Albergel et al., 2008; Ceballos et al., 2005; Brocca
et al., 2011; de Lange et al., 2008; Beck et al., 2009; Ford et al., 2014; Paulik et al., 2014).
Topt values increase with increasing depth of soil moisture measurements or deeper soil
moisture profiles (up to 100 cm), implying less temporal variability of soil moisture at
increasing depths (Wagner et al., 1999; Albergel et al., 2008; Ceballos et al., 2005; Paulik
et al., 2014; Wang et al., 2017).

To infer SWI from near-surface soil moisture in areas where no in-situ soil moisture
observations are available, it is important to understand the factors controlling the char-
acteristic time length T . Previous studies assessed either soil properties and/or climate
as main controls to explain the variability of Topt values.

The role of climate as a control on Topt was assessed by Albergel et al. (2008) and
Wang et al. (2017). Albergel et al. (2008) suggest that a weak relation with climate may
exist, with lower values of Topt in areas with higher evaporative demand and less frequent
but more intense precipitation. Wang et al. (2017) did not find a correlation with mean
annual potential evaporation. However, they found a negative correlation with mean
annual precipitation, suggesting that areas with mean annual precipitation larger than
500 mm yr−1 have smaller values of Topt due to stronger hydraulic connections between
the surface and deeper layers.

Ceballos et al. (2005), de Lange et al. (2008) and Wang et al. (2017) found that soil
texture is an important control on Topt. Sandy soils enable fast drainage and low water
retention as compared to clayey soils, therefore resulting in a low temporal persistence of
soil moisture in the system. This implies a stronger similarity between the near-surface
and deeper soil moisture and therefore lower Topt values for sandy than for clayey soils
(Ceballos et al., 2005; Wang et al., 2017). On the other hand, de Lange et al. (2008) report
higher Topt values for sandy than clayey soils. Albergel et al. (2008) and Paulik et al. (2014)
did not find a correlation between Topt and fractions of clay and sand.

These contradicting findings hinder our efforts to estimate T -values that represent
the integrated soil moisture content in the unsaturated root-zone. As a result of the in-
conclusive role of soil properties and climate, Topt values of 20 days are often assumed
from literature to represent soil moisture in the first 100 cm of the soil (Wagner et al.,
1999). However, the vegetation accessible water storage, which is a key variable in hy-
drological applications as it controls the partitioning between drainage and evaporation,
does not necessarily correspond to soil moisture in the first 100 cm of the soil.

Despite the important hydrological role of the root-zone storage capacity, it is diffi-
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cult to observe it at the catchment scale. Heterogeneity within catchments impedes our
ability to integrate soil and plant root properties beyond point-scale measurements. The
root-zone storage capacity is, therefore, often estimated from calibration of a hydrolog-
ical model, which includes a representation of this storage capacity in the dynamic part
of the unsaturated root-zone. However, the derived catchment representative value of
root-zone storage capacity may be subject to equifinality, even if additional data is used
to constrain the calibration, making it difficult to assess its plausibility (de Boer-Euser
et al., 2016).

Recent studies have demonstrated that root-zone storage capacities can be estimated
from the amount of water accessible to vegetation for transpiration (Gao et al., 2014;
Wang-Erlandsson et al., 2016; Nijzink et al., 2016a; de Boer-Euser et al., 2016). The un-
derlying assumption is that vegetation creates a buffer large enough to fulfill evaporative
demand and overcome dry spells with a certain return period to ensure their long-term
survival (Eagleson and Tellers, 1982; Milly, 1994). The interplay between water supply
through precipitation and evaporative water demand, accumulated over dry periods,
enables us to estimate catchment-scale vegetation-accessible water storage capacities in
the unsaturated root-zone (Kleidon and Heimann, 1998; Schymanski et al., 2008; Dono-
hue et al., 2012; Gentine et al., 2012; Gao et al., 2014; Nijzink et al., 2016a).

The overarching aim of our study is to establish a quantitative link between opti-
mal T -values and catchment-scale vegetation accessible water storage capacities. This
allows us to make informed decisions on optimal T -values to meaningfully use near-
surface soil moisture data in hydrological models. We first identify Topt values that max-
imize the correlation between time series of SWI derived from several remotely-sensed
products and modeled root-zone soil moisture using a process-based hydrological model.
We test this in 16 contrasting catchments of the Meuse river basin (Fig. 4.1 and Table 4.1)
to highlight the large variability of Topt values and therefore the need to adequately es-
timate Topt. We then test the relation between Topt and root-zone water storage capac-
ities derived as calibrated model parameter. This is useful to emphasis the role of Topt

in providing root-zone soil moisture estimates consistent with their representation in
hydrological applications. Finally, we use a well-established method relying on the in-
terplay between precipitation and evaporation to independently estimate catchment-
scale vegetation accessible water storage capacities (Milly, 1994; Nijzink et al., 2016b;
de Boer-Euser et al., 2016) and test for the relation with Topt to answer our overarching
hypothesis.
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Figure 4.1: (a) Outline of the Meuse river basin upstream of Borgharen at the border between Belgium and the
Netherlands, (b) Digital Elevation Model and 16 studied catchments with areas varying between 127 and 551
km2.
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4.2 DATA

4.2.1 SATELLITE-BASED NEAR-SURFACE SOIL MOISTURE PRODUCTS

The satellite-based near-surface soil moisture products used in this study included both,
passive and active microwave products, for L, C and X bands at spatial resolutions of
100 m x 100 m and 1 km x 1 km, respectively, as provided by VanderSat (http://docs.
vandersat.com/index.html, https://patents.google.com/patent/WO2017216186A1/
en) and Copernicus (Sentinel-1 based Surface Soil Moisture SSM1km, Bauer-Marschallinger
et al. (2019)), as well as at spatial resolutions of 9 km x 9 km or 25 km x 25 km as pro-
vided by the National Aeronautics and Space Administration (NASA, Owe et al. (2008);
Entekhabi et al. (2016)), as detailed in Table 4.2.

Copernicus SSM1km applies a change detection method on Sentinel-1 C-SAR backscat-
ter values to derive relative soil moisture in percentage saturation. VanderSat products
are based on the Land Parameter Retrieval Model (LPRM, van der Schalie et al. (2016))
method to estimate near-surface soil moisture, using descending overpasses at 6 AM
for the Soil Moisture Active Passive satellite (SMAP) and 1.30 AM for the Advanced Mi-
crowave Scanning Radiometer 2 (AMSR2). The NASA SMAP Level-3 SPL3SMP-E prod-
uct (Entekhabi et al., 2016) is based on a composite of ascending and descending over-
passes and uses the single channel algorithm to estimate soil moisture (Entekhabi et al.,
2014). The NASA AMSR2 soil moisture products are based on the LPRM algorithm (Owe
et al., 2008) and are available for both descending and ascending overpasses. Brocca
et al. (2011) mention that some studies find higher correlations between ascending over-
passes and in-situ measurements, while others favor night-time descending overpasses
to take advantage of the reduced difference between surface and canopy temperature,
making it relevant to assess both ascending and descending overpasses in this study.

The data of all used products were spatially averaged in the 16 catchments of the
Meuse basin for the study period 05/2016 until 12/2017. Radio frequency interferences
affect soil moisture estimations of NASA AMSR2 C1 and C2 bands and Copernicus Sentinel-
1 C-band Synthetic Aperture Radar (SAR) products for 01/2015 until 05/2016 and this
period was, therefore, left out from the analyses. Whenever mean daily catchment tem-
perature (Sect. 4.2.3) dropped below 1◦C , near-surface soil moisture estimates were set
to missing to avoid potential biases resulting from frozen soils.

4.2.2 SOIL WATER INDEX (SWI)

The Soil Water Index (SWI) approach estimates time series of soil moisture in deeper lay-
ers from antecedent satellite-based near-surface soil moisture estimates. The approach
relies on a two-layer water balance model, where the upper layer represents the near-
surface soil moisture and the bottom layer is a deeper reservoir with length L only in
contact with the surface layer. The soil moisture content in the deeper layer is fed by in-
filtration from the upper layer and is therefore explained by past dynamics, where more
recent events have a stronger influence. This model assumes that the water flux from the
surface through the entire deeper layer is proportional to the difference in soil moisture
between the two layers, as shown by Eq. 4.1.

http://docs.vandersat.com/index.html
http://docs.vandersat.com/index.html
https://patents.google.com/patent/WO2017216186A1/en
https://patents.google.com/patent/WO2017216186A1/en


4

50
4. GETTING TO THE ROOT OF THE T -VALUE: LINKING THE ROOT-ZONE STORAGE CAPACITY

WITH THE SOIL WATER INDEX AT THE CATCHMENT SCALE

Table 4.1: Mean annual precipitation (P ), potential evaporation (EP), streamflow (Q), aridity index (EP/P ),
runoff ratio (Q/P ), flashiness index (I f ) for hydrological years 2006-2011; and catchments characteristics
including percentage forest (for.) and agriculture cover (agr.), percentage of highly productive and fissured
aquifers (fiss.) based on the International Hydrogeological Map of Europe (IHME, https://www.bgr.bund.
de/), percentage clay, sand and silt (Ballabio et al., 2016), catchment area, drainage density (dd), mean slope,
of study catchments with IDs sorted on aridity index from the most to the least humid catchment.

(ID) Station P EP Q EP/P Q/P I f for. agr. fiss. clay sand silt area dd slope
mm y−1 % % % % % % % % % km2 km−1 %

(1) Straimont 1187 574 621 50 52 17 34 30 0 22 16 62 183 0.36 6.7
(2) Daverdisse 1142 568 555 51 49 15 57 28 0 21 19 61 303 0.32 7.7
(3) Jemelle 1005 563 477 56 47 18 68 20 0 20 25 55 274 0.40 9.4
(4) Mabompre 985 572 460 59 47 16 46 28 0 21 24 55 319 0.47 7.4
(5) Ortho 990 574 470 60 47 14 40 33 0 22 21 58 387 0.37 7.3
(6) Treignes 985 579 398 60 41 28 54 27 0 22 21 57 551 0.33 6.6
(7) Sainte-Marie 1043 600 418 60 40 36 38 26 63 23 17 60 144 0.28 4.4
(8) Longlaville 971 608 440 65 45 39 20 28 18 28 20 52 154 0.16 6.9
(9) Wiheries 889 590 356 67 40 30 19 43 0 25 15 59 140 0.33 4.9
(10) Yvoir 865 577 264 68 31 13 16 60 71 24 13 63 226 0.33 6.4
(11) Warnant 819 586 275 72 34 12 20 64 56 24 15 61 127 0.29 6.2
(12) Hastiere 802 582 285 73 36 32 41 40 0 24 21 55 169 0.40 5.4
(13) Soulosse 831 642 331 79 39 35 30 26 38 34 15 51 441 0.30 6.3
(14) Circourt 823 642 312 80 38 42 41 12 23 33 18 49 403 0.30 7.3
(15) Goncourt 815 646 295 81 36 40 19 23 19 34 14 52 376 0.27 5.6
(16) Huccorgne 737 593 181 82 25 19 3 80 16 21 9 70 307 0.25 2.6

Table 4.2: Satellite surface soil moisture products with associated IDs (where d indicates downscaled high-
resolution product), provider, sensor, band (where C1 and C2 corresponds to 6.9 and 7.3 GHz, respectively),
method or product name, overpass, resolution and range of observation count per catchment between 05/2016
and 12/2017 (Nr. obs.).

ID Provider Sensor Band Method/ Overpass Resol. Nr. obs.
Product km2

S1-CSAR Copernicus Sentinel-1 C-SAR SSM1km 6AM 6PM 1x1 199-290
SMAP-L-am_d VanderSat SMAP L LPRM 6 AM 0.1 x 0.1 297-415
SMAP-L NASA SMAP L SPL3SMP-E 6AM 6PM 9 x 9 316-345
AMSR2-X-am_d VanderSat AMSR2 X LPRM 1.30 AM 0.1 x 0.1 511-572
AMSR2-X-am NASA AMSR2 X LPRM 1.30 AM 25 x 25 508-556
AMSR2-X-pm NASA AMSR2 X LPRM 1.30 PM 25 x 25 495-570
AMSR2-C1-am_d VanderSat AMSR2 C1 LPRM 1.30 AM 0.1 x 0.1 511-571
AMSR2-C1-am NASA AMSR2 C1 LPRM 1.30 AM 25 x 25 508-556
AMSR2-C1-pm NASA AMSR2 C1 LPRM 1.30 PM 25 x 25 495-570
AMSR2-C2-am NASA AMSR2 C2 LPRM 1.30 AM 25 x 25 508-556
AMSR2-C2-pm NASA AMSR2 C2 LPRM 1.30 PM 25 x 25 495-570

https://www.bgr.bund.de/
https://www.bgr.bund.de/
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L · dW (t )

dt
=C · (Ws (t )−W (t )) (4.1)

With W the moisture content in the lower reservoir (m3 m−3 or percentage satura-
tion), L the depth of the reservoir [m], Ws the surface soil moisture content (m3 m−3

or percentage saturation) and C represents a pseudo-diffusivity coefficient dependent
on soil moisture and is assumed constant [m d−1]. The equation is solved by assum-
ing a constant parameter T [d], which increases with increasing soil depth or decreasing
pseudo-diffusivity constant (Eq. 4.2).

T = L

C
(4.2)

As only parameter in the SWI, the T -value is referred to as the characteristic time
length. More smoothing and delaying of the near-surface soil moisture signal occurs as
the T -value increases.

Stroud (1999) and Albergel et al. (2008) solve the differential equation in a recursive
form to handle the irregular time steps of satellite near-surface soil moisture data more
easily than the original exponential filter proposed by Wagner et al. (1999). Details are
provided in Appendix B.

SW I (tn) = SW I (tn−1)+Kn · (SSM(tn)−SW I (tn−1)) (4.3)

Where SW I , the Soil Water Index at time tn , has replaced the continuous W and
SSM , the near-surface soil moisture estimate at time ti , has replaced the continuous Ws

(all in m3 m−3 or percentage saturation).

The gain Kn [-] at time tn is given by the following recursive formula:

Kn = Kn−1

Kn−1 +e−
(tn−tn−1)

T

(4.4)

With initial values SW I (t0) = SSM(t0) and K0 = 1, and where tn and tn−1 are the ob-
servation times of the current and previous SSM observation in Julian days. The gain Kn

ranges between [0,1]. When many observations during the characteristic time length T
are available, the gain will be small, meaning that the prior value will only be changed
slightly towards the new observation. On the other hand, when no data has been re-
ceived in quite some time relative to T , the gain will be large implying that the new es-
timate of SWI will converge towards the value of the new observation. Therefore, the T -
value dictates how strongly previous near-surface soil moisture observations influence
the current SWI.

For each of the products and study catchments, we calculate time series of daily
catchment average SWI from near-surface soil moisture for values of T varying between
1 and 100 days (with time step of 1 day), according to the recursive formulation (Eq. 4.3)
for the period 05/2016 - 12/2017. Spin-up effects are reduced by starting the SWI calcu-
lation at the start of 2016.
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4.2.3 METEOROLOGICAL AND STREAMFLOW DATA

Hourly precipitation data from stations of Meteo France and the Service Public de Wal-
lonie (Service Public de Wallonie (2018), http://voies-hydrauliques.wallonie.be/
opencms/opencms/fr/hydro/Archive/annuaires/index.html), are spatially inter-
polated using climatological monthly background grids (van Osnabrugge et al., 2017)
and then spatially averaged over the catchments for a calibration (2006-2011) and eval-
uation (2012-2017) period. Potential evaporation is estimated based on the Makkink
equation (Hooghart and Lablans, 1988) and relies on hourly interpolated temperature
station data (provided by the Service Public de Wallonie and retrieved from the archive
of the Dutch operational flood forecasting system) and radiation grids from the Satel-
lite Application Facility on Land Surface Analysis (LSA SAF, Trigo et al. (2011)). Daily
observed river streamflow for stations in France (IDs 8, 13-15) are retrieved from Hydro
Banque (Banque Hydro (2018), http://hydro.eaufrance.fr/) and are provided by
the Service Public de Wallonie for Belgium (IDs 1-7, 9-12, 16).

Streamflow data between March and mid-June 2013 were discarded from the analysis
due to implausibly high streamflow compared to observed precipitation amounts at all
stations except in the Vair at Soulosse-sous-Saint-Élophe (ID13), Mouzon at Circourt-
sur-Mouzon (ID14) and Meuse at Goncourt (ID15) (Bouaziz et al., 2018).

4.3 METHODS

Sect. 4.3.1 describes the set-up of a process-based lumped hydrological model to com-
pute soil moisture time series. Sect. 4.3.2 details the methodology to derive water bal-
ance estimates of root-zone storage capacities. Subsequently in Sect. 4.3.3, the optimal
characteristic time lengths (Topt) in the 16 study catchments are derived using the re-
tained set of feasible model-generated time series of daily soil moisture contents in the
unsaturated root-zones (SR). In Sect. 4.3.4, we then test for a relation between root-
zone water storage capacity (SR,max) inferred from the set of calibrated model parameters
SR,max retained as feasible for each study catchment and from a water balance approach.
We also assess how the interactions between soil texture, land cover, hydrometeorolog-
ical variables, streamflow signatures, geological features and topographical indices ex-
plain the variability in Topt between catchments.

4.3.1 HYDROLOGICAL MODEL

A process-based lumped hydrological model (Fig. 4.2a) is set-up and calibrated for each
of the 16 study catchments to estimate the dynamics of catchment-scale, daily soil mois-
ture content in the unsaturated root-zone. The model consists of four storage compo-
nents, including an interception reservoir (SI), a reservoir representing the unsaturated
root-zone (SR), a fast responding (SF) as well as a slow responding reservoir (SS), repre-
senting the groundwater, Fig. 4.2b. The storage components are linked through water
fluxes, which also include losses to or gains from deep groundwater, which can be a sig-
nificant factor in the water balance in the headwaters of the Meuse basin (Bouaziz et al.,
2018). This model was selected because of the satisfying performance achieved in catch-

http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/Archive/annuaires/index.html
http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/Archive/annuaires/index.html
http://hydro.eaufrance.fr/
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ments of the Meuse (Bouaziz et al., 2018). The model has 12 calibration parameters and
resembles in its core formulation FLEX-type model concepts, in the past successfully
used in a wide range of environments (Fenicia et al., 2006, 2008; Hrachowitz et al., 2014;
Euser et al., 2015; Fovet et al., 2015; Nijzink et al., 2016b,a; Mostbauer et al., 2018).

The model was run at hourly time steps which were aggregated to daily for model
calibration, post-calibration evaluation and further analyses. After a one-year warm-up
period in 2006, the model was calibrated for the 01/2007 to 12/2011 period, based on
a multi-objective calibration strategy (Hulsman et al., 2019). The parameter space was
explored with a Monte Carlo approach, sampling 105 realizations from uniform prior
parameter distributions. Similar to Bouaziz et al. (2018), feasible parameter sets were
retained based on their ability to simultaneously and adequately reproduce six different
aspects of the observed hydrograph including daily flows (Q), the logarithm of the daily
flows (log(Q)), the logarithm of the flow duration curves (FDC, log(Q)) as well as the time-
series of weekly (RC,w), monthly (RC,m) and seasonal (RC,s) runoff ratios. This calibra-
tion approach was followed to limit uncertainties in medium- to long-term partitioning
between drainage and evaporative fluxes and to thus approximate at least longer-term
conservation of energy (Hrachowitz and Clark, 2017). All the six above described mod-
eled variables were evaluated against their observed values based on their associated
Nash-Sutcliffe Efficiencies (EN S ) as objective functions. Feasible parameter sets were re-
tained when EN S scores of all six variables were at least above the 90th percentile best
value. For evaluation, the model was tested without further calibration in an indepen-
dent period from 01/2012 to 12/2017 based on the same performance metrics as above.
All relevant model equations as well as prior and posterior parameter ranges are pro-
vided in Appendix A.

Figure 4.2: (a) Hydrological model with root-zone soil moisture SR (mm, variable in time) and root-zone water
storage capacity SR,max (mm, calibrated and constant in time) (b) associated perceptual model, where the area
above the green curve represents the root-zone storage capacity. Both SR and SR,max are spatially heteroge-
neous but aggregated to lumped effective values for each individual catchment. We define P as precipitation,
PE as effective precipitation, E as evaporation, R as an internal flux, Q as surface or subsurface drainage (all in
mm d−1) and S as storage (in mm). For the subscripts, we define I as interception, R as unsaturated root-zone,

S as slow response, F as fast response, P as percolation, IGF as net groundwater losses or gains. The parameter
Perc defines the maximum percentage of recharge as net groundwater losses or gains.
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4.3.2 WATER-BALANCE-DERIVED ROOT-ZONE STORAGE CAPACITY

While hydrological models estimate root-zone storage capacities through an inverse pro-
cess of calibration with associated risk of equifinality, the water balance approach di-
rectly infers root-zone storage capacities from hydrometeorological data. The absence
of calibration considerably limits computational power and calculation time of the water
balance approach. Daily time series of precipitation and potential evaporation are used
as inputs in combination with an estimate of long-term runoff ratio, while a thorough
calibration of a hydrological model would also require daily time series of streamflow to
constrain the model parameters.

More importantly, there is increasing evidence that catchment-scale root-zone wa-
ter storage capacities SR,max can be robustly and readily estimated following this water
balance approach (Gao et al., 2014; Wang-Erlandsson et al., 2016; Nijzink et al., 2016a;
de Boer-Euser et al., 2016). This root-zone storage capacity reflects the integrated inter-
actions between atmospheric water supply and vegetation water demand as controlled
by energy supply (i.e. potential evaporation) and vegetation type within a specific spa-
tial domain (here: catchment). It should be clear that the root-zone storage capacity is
not necessarily related to root depth but rather to root density as it reflects the pore vol-
ume within the influence area of roots (Schenk and Jackson, 2002; Gentine et al., 2012;
de Boer-Euser et al., 2016). The underlying assumption implies that vegetation adapts
its storage to overcome dry spells with certain return periods (Milly, 1994; Kleidon and
Heimann, 1998; Donohue et al., 2012; Gentine et al., 2012).

The approach requires to estimate daily actual transpiration, as it depletes the root-
zone storage during dry periods. We first derive the long-term actual transpiration from
the water balance of the catchment:

ER ≈ P −EI −QRiver −QIGF (4.5)

with long-term annual mean actual transpiration ER, precipitation P , interception
evaporation EI, streamflow QRiver and potential intercatchment groundwater flow losses
QIGF, all provided in mm yr−1.

An interception reservoir is simulated to quantify effective precipitation PE that reaches
the soil, interception evaporation and storage, as a function of the interception storage
capacity (Imax; see Appendix A for the detailed equations). Due to the lack of more de-
tailed information, we quantified the effect of different interception storage capacities
in a sensitivity analysis, i.e. Imax = 0.5, 1.0, 2.0 and 3.0 mm.

If the difference between mean annual precipitation and streamflow exceeds poten-
tial evaporation, catchment are likely affected by deep groundwater losses, as they were
shown to be significant in several catchments of the Meuse (Bouaziz et al., 2018). We
estimate mean annual intercatchment groundwater flow losses with the Budyko/Turc-
Mezentsev framework (Turc, 1954; Mezentsev, 1955; Budyko, 1961). Long-term mean
annual actual transpiration can then be determined from mean annual effective precip-
itation, streamflow and where applicable groundwater losses (Eq. 4.5).
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Daily actual transpiration is subsequently scaled to the daily signal of potential evap-
oration after removal of the interception evaporation. This scaling allows us to introduce
seasonality in actual transpiration.

The storage deficits are then calculated by accumulating the difference between ef-
fective precipitation and transpiration assuming an "infinite-reservoir". The initial deficit
is assumed to be zero at the start of the calculation, i.e. end of the wet period. The deficit
increases when transpiration exceeds effective precipitation during summer until it be-
comes zero again when all excess water is assumed to drain away as direct runoff. The
annual maximum cumulative deficit (SR,def) between the time where the deficit equals
zero until the time where the total deficit returns to zero is illustrated in Fig. 4.3 for two
consecutive years. The maximum storage deficit decreases as the maximum intercep-
tion capacity increases because more water is intercepted and less goes to transpiration.
However, the magnitude of the fluctuations due to interception is minor relative to the
magnitude of the storage deficits, as shown in Fig. 4.3.

The annual maxima of the storage deficit SR,def are fitted to the extreme value dis-
tribution of Gumbel. Following Gao et al. (2014) and Nijzink et al. (2016a), the 20 years
drought return period is used to estimate the water-balance-derived root-zone moisture
capacity SR,max for each catchment using hydrometeorological data between 2006 and
2011. The detailed equations for the calculation are provided in Appendix C.
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Figure 4.3: Annual maximum cumulative storage deficits SR,def calculated from estimated daily effective pre-
cipitation, transpiration and groundwater losses for two consecutive years and several values of interception
capacity (Imax) in the Hermeton catchment at Hastière (ID12).

4.3.3 IDENTIFYING THE OPTIMAL CHARACTERISTIC TIME LENGTH (Topt)

Spearman rank correlations are calculated between time series of daily SWI for T values
ranging from 1 to 100 days and modeled time series of daily soil moisture content in the
unsaturated root-zone SR (from Sect. 4.3.1; Fig. 4.2a,b). This calculation is done for each
catchment, each parameter set kept as feasible and each satellite soil moisture product
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for the period 05/2016 - 12/2017, when all products are available. The optimal T value
maximizes the median Spearman rank correlation between SWI and SR across the fea-
sible model realizations and provides the best representation of the moisture content in
the unsaturated root-zone. We use a variety of remotely-sensed products to understand
how much of the variability in Topt is related to the product itself. For comparison, the
Spearman rank correlation between raw and thus unfiltered values of the near-surface
soil moisture SSM (note: lim

T→0
SW I (t ) = SSM(t )) and the modeled root-zone soil mois-

ture content SR is also calculated for each product and catchment. Also note that the
strong seasonal cycle of both variables, SWI and SR, may excessively inflate Spearman
rank correlation coefficients, however, with less than 2 years of data, it remains prob-
lematic to meaningfully discount seasonality from the time series.

4.3.4 UNDERSTANDING CONTROLS OF THE OPTIMAL CHARACTERISTIC TIME

LENGTH (Topt)

We first test the relation between Topt and root-zone storage capacities derived as cali-
brated parameters for the studied catchments by calculating Spearman rank coefficients
for each remotely-sensed product. Catchments with relatively small water storage ca-
pacities are expected to show a high variability of integrated soil moisture from one time
step to another, while catchments with relatively large storage capacities are likely to
show a more damped response. Indeed, a small water storage capacity is likely to fill
through precipitation and empty through evaporation and drainage more rapidly than
a large water storage capacity, leading to an increased variability in time. This is also in
line with Eq. 4.2, where T is proportional to the depth of the reservoir below the surface.

We then test the relation between Topt and root-zone storage capacities derived from
the water balance approach using meteorological and streamflow data for each catch-
ment. We also compare calibrated and water-balance-derived root-zone water storage
capacities between each other.

Finally, we go beyond our main hypothesis and also test the link between Topt and
hydrometeorological variables, land cover, soil texture, geological features, topographic
indices and streamflow characteristics (provided in Table 4.1) to further explain the ob-
served differences in Topt values between catchments. Similarly to Wang et al. (2017),
we consider mean annual precipitation and potential evaporation. Additionally, we as-
sess the link with runoff ratio, aridity index, and percentage of forest and agriculture.
We also assess the relation between Topt and soil texture (clay, sand and silt percent-
ages), as it has been the subject of several studies (de Lange et al., 2008; Albergel et al.,
2008; Wang et al., 2017) and to the presence of highly productive aquifers including kars-
tified rocks (based on the International Hydrogeological Map of Europe, IHME, http:
//www.brg.bund.de/). As topography is related to climate, land cover and soil char-
acteristics, especially in natural landscapes (Savenije and Hrachowitz, 2017), we include
catchment size, drainage density and mean slope as potential predictors to explain the
variability in Topt between catchments. While Topt characterizes the temporal variability
of soil moisture, the flashiness index (If) is a measure of the responsiveness of a catch-
ment in terms of the variability of its streamflow from one time step to another (Fenicia

http://www.brg.bund.de/
http://www.brg.bund.de/
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et al., 2016). We therefore test for a relation between the flashiness index and Topt, as
slow dynamics in root-zone soil moisture can be expected to result in a smooth runoff
response.

4.4 RESULTS

4.4.1 MODEL EVALUATION

The calibration and evaluation performance, in terms of the six objective functions, have
rather similar performances in both periods except for some modest divergence of the
models’ ability to reproduce runoff ratios for the evaluation period in several catch-
ments (Fig. 4.4). ENS,Q during evaluation ranges between 0.51 and 0.93 for all catchments
with a mean of 0.83, while ENS,RC,m range between 0.52 and 0.97 with a mean of 0.82.
The model slightly overestimates peak flows (Fig. 4.5a,d), but reproduces flow duration
curves (Fig. 4.5b,e) and monthly runoff ratios (Fig. 4.5c,f) relatively well.

Overall, the models can reproduce high- and low flow metrics quite well and exhibit
plausible long-term partitioning of water fluxes into streamflow and actual evaporation
(i.e. EA = EI + ER), according to runoff ratio, enabling us to use soil moisture SR and
SR,max for the subsequent analyses.

4.4.2 VARIABILITY OF IDENTIFIED Topt

Highest Spearman rank correlation coefficients r between time series of daily SWI and
time series of modeled root-zone soil moisture SR are obtained for T -values between 6
and 32 days (median of 18 days) per soil moisture product for one illustrative catchment
(see Fig. 4.6). The maximum Spearman rank correlation achieved with the SWI is always
higher than with the near-surface soil moisture SSM (Fig. 4.6), as also found by Paulik
et al. (2014). Especially for S1-CSAR, the Spearman rank correlation from SSM to SWI
increases on average (over all catchments) from 0.54 to 0.83, as opposed to an increase
from 0.75 to 0.88 for SMAP-L-am_d, possibly related to higher variance of the SSM signal
of S1-CSAR compared to SMAP-L-am_d. Introducing noise to near-surface soil moisture
time series leads to a larger increase in Spearman rank correlations from SSM to SWI
and slightly higher Topt values, suggesting noise filtering by the Soil Water Index. The
narrow band in Fig. 4.6 suggests that Spearman rank correlations are not very sensitive to
the uncertainty in model parameters, implying relatively similar root-zone soil moisture
dynamics between parameter sets.

Fig. 4.7 shows modeled daily root-zone moisture SR for each parameter set kept as
feasible, near-surface soil moisture SSM and SWI as inferred from a selection of satel-
lite products using the associated Topt (see Fig. 4.6) for two of the 16 study catchments.
Higher values of Topt lead to more smoothing and delaying of the original near-surface
soil moisture signal (Fig. 4.7b-e versus 4.7g-j showing the effect of Topt of 6-26 days ver-
sus 2-6 days) and can therefore reproduce daily fluctuations of the modeled soil mois-
ture SR reasonably well (Spearman rank correlations r > 0.82 for the best performing
products S1-CSAR and SMAP L-band products versus r > 0.61 for the poorer perform-
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Figure 4.4: Calibration (filled boxplot) and evaluation (no fill) performances of Nash-Sutcliffe efficiencies of
the: (a) flows; (b) logarithm of the flows; (c) flow duration curve of the logarithm of the flows; (d) seasonal
runoff ratio; (e) monthly runoff ratio; (f) weekly runoff ratio for the 16 study catchments (colors as in Fig. 4.1)
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Figure 4.5: Observed (dashed black lines) and feasible modeled (colored lines) hydrographs for the period with
available SSM data (05/2016-12/2017), and associated flow duration curves of the log of the flows and monthly
runoff ratios for (a-c) the Hermeton at Hastière (ID12) and (d-f) the Mouzon at Circourt-sur-Mouzon (ID14)
(colors as in Fig. 4.1).



4

60
4. GETTING TO THE ROOT OF THE T -VALUE: LINKING THE ROOT-ZONE STORAGE CAPACITY

WITH THE SOIL WATER INDEX AT THE CATCHMENT SCALE

0.0

0.2

0.4

0.6

0.8

1.0
Sp

ea
rm

an
 c

or
re

la
tio

n

Topt=26 d

S1-CSAR

Topt=15 d

SMAP-L-am_d

Topt=16 d

SMAP-L

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

Topt=32 d

AMSR2-X-am_d

Topt=20 d

AMSR2-X-am

Topt=18 d

AMSR2-X-pm

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

Topt=27 d

AMSR2-C1-am_d

Topt=6 d

AMSR2-C1-am

Topt=15 d

AMSR2-C1-pm

SSM
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 c
or

re
la

tio
n

50 100
Char. time scale T 

 [d]

Topt=10 d

AMSR2-C2-am

SSM 50 100
Char. time scale T 

 [d]

Topt=21 d

AMSR2-C2-pm

Figure 4.6: Spearman rank correlations coefficients between time series of modeled daily root-zone soil mois-
ture SR [mm] and SWI [-] for different values of the characteristic time scale T [d] in the Hermeton at Hastière
(ID12) for the period 05/2016 to 12/2017 for each soil moisture product. In the narrow subplots on the left
side of each larger subplot, the correlation of the time series of daily near-surface soil moisture SSM and mod-
eled root-zone soil moisture SR is shown. The black line and colored band represent the median value and
associated 25th to 75th percentiles of SR from the ensemble of parameter sets retained as feasible. The vertical
dashed line indicates the optimal value of the characteristic time scale Topt [d] here defined to be at the highest
correlation of the median value.
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ing AMSR2-C1-am product). For the S1-CSAR product in the Hermeton catchment at
Hastière (ID12), the variance decreases from 0.066 for near-surface soil moisture SSM
to 0.034 for SWI, while a reduction of variance from 0.065 to 0.046 can be seen for the
Mouzon at Circourt-sur-Mouzon (ID14).

During the wetting phase in the catchment of the Hermeton at Hastière (ID12), S1-
CSAR (Fig. 4.7b) and SMAP-L (Fig. 4.7d) have the highest visual similarity with modeled
root-zone moisture SR (Fig. 4.7a), while the drying phase behavior is best reproduced
by SMAP-L-am_d (Fig. 4.7c) and SMAP-L (Fig. 4.7d). Noise in AMSR2-C1-am occurs in
the Hermeton at Hastière (ID12), possibly caused by radio frequency interference (RFI)
in the area. More spread in SSM of S1-CSAR is also observed compared to SSM of the
L-band products (Fig. 4.7b and 4.7g versus 4.7c-d and 4.7h-i).

Note that in the month following May 22th of 2016, a series of heavy and long-lasting
precipitation events occurred over France and Belgium, with total monthly volumes be-
tween 146 and 236 mm month−1 over the study catchments. Despite the large spatial
scale of these events, most satellite products only show a limited increase in soil mois-
ture, except S1-CSAR, in particular in the Mouzon at Circourt-sur-Mouzon (Fig. 4.7g).
The underlying reason remains unclear.

Topt varies per product (Figs. 4.6 and 4.8a) with lowest 5th and highest 95th per-
centiles of 1 and 98 days (median of 17.5 days), with product AMSR2-C1-am showing
the lowest Topt (5/95th percentiles of 1 and 30 days with a median of 4 days) and prod-
uct S1-CSAR the highest values (5/95th percentiles of 6 and 98 days with a median of 33
days). The higher Topt of the only radar (active microwave) S1-CSAR product amongst
radiometers (passive microwave) are likely related to the different sensing techniques,
the larger initial variance of the SSM data compared to variances of the passive products
and to the larger sampling intervals (see Table 4.2). de Lange et al. (2008) investigated
the influence of satellite sampling intervals on the T parameter and suggested that for
larger sampling intervals, soil dynamics are less well reflected, therefore, higher values
of the characteristic time scale are expected.

Similarly, Topt varies across the study catchments (Fig. 4.8b), with lowest 5th and
highest 95th percentiles of 1 and 89 days (median of 17 days). The catchment of the
Mehaigne at Huccorgne (ID16) exhibits the largest values (5/95th percentiles of 33.5 and
89 days with a median of 58 days), this catchment is characterized by 80% agriculture
cover, relatively low runoff ratio (25%) and low flashiness index (19%), see Table 4.1. The
Bocq at Yvoir (ID10) and the Molignée at Warnant (ID11), catchments with relatively
similar characteristics, also show high outlier values of Topt (Fig. 4.8b). The three most
upstream catchments (IDs 13-15) exhibit the lowest Topt values (5/95th percentiles of 1
and 6 days with a median of approximately 3 days) and these catchments are, on the
other hand, more responsive in time (relatively high flashiness indices varying between
35-42%) and have relatively low agriculture cover (12-26%), Table 4.1.

In general, the strongest correlations with median Spearman rank correlation coeffi-
cients r between the daily times series of SWI and SR of 0.84, 0.88 and 0.91, respectively,
can be found for the S1-CSAR and L-band (SMAP-L-am_d, SMAP-L) products, while the
lowest correlations are observed for AMSR2-C1-am with a median of r =0.63 (Fig. 4.8c).
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R

Figure 4.7: Time series of (a,f) modeled root-zone soil moisture SR for all model parameter sets retainted as
feasible, (b-e and g-j) SSM and SWI based on the respective Topt values for a selection of products with high-
est performance (S1-CSAR, SMAP-L-am_d and SMAP-L) and lowest performance (AMSR2-C1-am) for (a-e) the
Hermeton catchment at Hastière (ID12) and (f-j) the Mouzon catchment at Circourt-sur-Mouzon (ID14). The
grey shaded area in summer 2016 indicates a series of very wet events. Units vary between soil moisture prod-
ucts as they are either provided as volumetric weigths [m3 m−3] or percentage saturation [-]. The blue shades
used for each soil moisture product follow the color scheme of Fig. 4.8a,c.
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A higher sensitivity to soil moisture is expected for L-band retrievals over C- and X-band
as a result of a higher penetration depth, a higher sensitivity of the dielectric constant to
soil moisture and an increased transmissivity of vegetation. SAR provides information
at a higher spatial resolution compared to passive radiometers (Entekhabi et al., 2010).
The reason explaining the lower correlations of AMSR2-C1-am is likely related to RFI.
The AMSR2 low-resolution ascending products (overpass at 1.30 PM) show a higher de-
gree of similarity with modeled root-zone water storage dynamics than the descending
overpasses (Fig. 4.8c). This is in line with findings from Brocca et al. (2011), despite the
benefit of reduced difference between surface and canopy temperature of night-time
overpasses.

Similarly, lowest median correlations (r varying between 0.62 and 0.72) are found
in the wettest, steep and forested Ardennes catchments (IDs 1-5; Fig. 4.8d) and highest
(0.80-0.84) in the catchments with highest aridity index (IDs 13-16), see Table 4.1. Accu-
racies of soil moisture retrieval are indeed affected by a complex topography and high
vegetation density (Brocca et al., 2017). It should be noted that the comparison of Spear-
man rank correlation is based on a different number of observations for each product
(Table 4.2).

4.4.3 INFLUENCE OF CATCHMENT CHARACTERISTICS ON Topt

Root-zone storage capacities SR,max were available as calibrated parameters from the hy-
drological model and from the water balance approach described in Sect. 4.3.2 and Ap-
pendix C. We calculate the 20-year return period root-zone water storage capacity for
several values of the interception capacity Imax. Both approaches provide broadly con-
sistent values with a Spearman rank correlation coefficient of r =0.67 with p=0.004 (and
Pearson correlation of 0.86 with p=2 x 10−5) for median values of SR,max retained as fea-
sible and median SR,max values estimated from the water balance approach (Fig. 4.9).

High (median r >0.80) and significant positive (p <0.05) correlations are found be-
tween Topt values of all soil moisture products and the calibrated root-zone storage ca-
pacities SR,max (Table 4.3a and Fig. 4.10a for a selection of products). Spearman rank
correlations between Topt values and water-balance-derived root-zone storage capaci-
ties are less strong but still statistically significant (p <0.05) for most soil moisture prod-
ucts (Table 4.3a and Fig. 4.10b). The correlations are strongest for the S1-CSAR prod-
uct (r =0.65), while the weakest link was found with the AMSR2-C1-am product (r =0.36).
Similarly, Topt in the AMSR2-C1-am product is less sensitive to SR,max (dTopt/dSR,max =
0.23 d mm−1), possibly because of RFI, while the S1-CSAR product exhibits the highest
sensitivity (dTopt/dSR,max = 0.52 d mm−1), which is likely related to the larger spread in
Topt values (Fig. 4.8a, Fig. 4.10b). In addition, all products suggest that Topt is insensitive
to SR,max at SR,max values below 100 mm, this could be related to the already very low Topt

(< 6 days) in these catchments. The vertical error bars in Fig. 4.10 suggest that Topt is not
very sensitive to the uncertainty in model parameters. While previous studies (Albergel
et al., 2008; Paulik et al., 2014) showed an increase in Topt for increasing depth of the soil
profile, in line with Eq. 4.2, we explicitly make the link with root-zone storage capacity
derived from streamflow, precipitation and evaporation data.
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Figure 4.8: (a) Topt range across the 16 study catchments per product. (b) Topt range across all products per
catchment. (c) Spearman rank correlations coefficients between SWI using the optimal T value and modeled
time series of root-zone soil moisture SR for the period 05/2016 to 12/2017 per product for all 16 catchments.
(d) Spearman rank correlations coefficients between SWI using the optimal T value and time series of modeled
root-zone soil moisture SR for the period 05/2016 to 12/2017 per catchment for all products.

We found no significant correlations between Topt and aridity index, runoff ratio or
mean annual precipitation and potential evaporation (Table 4.3a). Instead, the interplay
between accumulated precipitation and actual evaporation during dry periods repre-
sented by the root-zone storage capacity SR,max, shows a significant positive correlation
with Topt.

Topt values are inversely correlated with the flashiness indices If of the study catch-
ments (Table 4.3a, Fig. 4.10c), implying that a more flashy streamflow (high flashiness
index) indicates lower Topt and, by extension, lower SR,max and therefore higher tempo-
ral variability in soil moisture.

We found significant positive correlations between Topt and percentage agriculture
(Table 4.3b, Fig. 4.10d), suggesting a low temporal variability of soil moisture in agriculture-
dominated catchments, also implying higher SR,max values in these catchments, which
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Figure 4.9: Relation between water-balance-derived (WB) and calibrated (cal.) SR,max from all 16 study catch-
ments. The symbols indicate the median SR,max for each method, the horizontal error bars indicate the range

of feasible SR,max values (25/75th percentiles) from the model and vertical error bars indicate the min-max
range obtained from several Imax values (colors as in Fig. 4.1).

are related to low runoff ratios and, therefore, high evaporation rates (Table 4.1). Inter-
estingly, Topt is positively related to percentage silt in a catchment (Table 4.3b, Fig. 4.10e),
and therefore also to the percentage of agriculture, which is likely related to the fertility
and suitability of silt for growing crops as it promotes water retention and air circula-
tion. No significant relations are found between Topt and the percentages of clay and
sand (Table 4.1 and 4.3).

No significant relations between Topt and geological features (percentage of highly
productive aquifers) or topographic indicators (catchment area, drainage density and
mean slope) are found (see Table 4.3b).
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(a) (b) (c) (d) (e)

SR,max cal. SR,max WB

Figure 4.10: Optimal value of the characteristic time length Topt (with vertical bars associated with the 25/75th

percentiles of Topt from parameter sets kept as feasible) as a function of (a) calibrated root-zone water storage

capacities (SR,max cal., median and 25/75th percentiles of parameter sets kept as feasible ), (b) water-balance-
derived root-zone water storage capacities (SR,max WB, median and min-max range based on Imax values for a
20-year return period), (c) flashiness index, (d) percentage agriculture and (e) percentage silt for the 16 studied
catchments for a selection of products (colors as in Fig. 4.1). Spearman rank coefficients r with associated
p-values are calculated for the median values.
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Table 4.3: Spearman rank correlation coefficients between the optimal values of the characteristic time length
Topt [d] per product and (a) the calibrated (cal.) and water-balance-derived (WB) root-zone water storage
capacities SR,max, mean annual precipitation (P ) and potential evaporation (EP), aridity index (EP/P ), runoff
ratio (Q/P ), flashiness index (I f ), and (b) percentage of forest cover (for.), percentage of agricultural cover
(agr.), percentage of highly productive and fissured aquifers (fiss., based on IHME), percentage clay, sand and
silt, and catchment area, drainage density (dd) and mean slope.

(a)
Product SR,max (cal.) SR,max (WB) P EP EP/P Q/P I f

S1-CSAR 0.87∗∗ 0.65∗ -0.01 -0.32 -0.11 -0.16 -0.65∗
SMAP-L-am_d 0.90∗∗ 0.56∗ 0.04 -0.43 -0.18 -0.17 -0.66∗
SMAP-L 0.95∗∗ 0.60∗ 0.05 -0.39 -0.21 -0.05 -0.57∗
AMSR2-X-am_d 0.80∗∗ 0.44 -0.34 -0.16 0.16 -0.44 -0.40
AMSR2-X-am 0.81∗∗ 0.56∗ -0.24 -0.18 0.07 -0.38 -0.43
AMSR2-X-pm 0.92∗∗ 0.54∗ -0.12 -0.40 -0.08 -0.22 -0.62∗
AMSR2-C1-am_d 0.61∗ 0.37 -0.11 -0.39 -0.12 -0.14 -0.44
AMSR2-C1-am 0.57∗ 0.36 -0.20 -0.38 0.02 -0.33 -0.53∗
AMSR2-C1-pm 0.85∗∗ 0.60∗ 0.02 -0.44 -0.19 -0.12 -0.60∗
AMSR2-C2-am 0.90∗∗ 0.56∗ 0.01 -0.50∗ -0.20 -0.11 -0.70∗
AMSR2-C2-pm 0.82∗∗ 0.55∗ -0.17 -0.28 -0.01 -0.31 -0.46

(b)
Product for. agr. fiss. clay sand silt area dd slope
S1-CSAR -0.45 0.83∗∗ -0.01 -0.38 -0.29 0.77∗∗ -0.42 0.07 -0.27
SMAP-L-am_d -0.28 0.68∗ -0.01 -0.49 -0.21 0.78∗∗ -0.34 0.19 -0.21
SMAP-L -0.30 0.67∗ -0.13 -0.47 -0.15 0.69∗ -0.28 0.11 -0.12
AMSR2-X-am_d -0.45 0.80∗∗ -0.02 -0.20 -0.26 0.59∗ -0.44 0.09 -0.42
AMSR2-X-am -0.41 0.82∗∗ 0.01 -0.24 -0.26 0.66∗ -0.51∗ -0.00 -0.44
AMSR2-X-pm -0.30 0.78∗∗ -0.09 -0.44 -0.17 0.68∗ -0.39 0.22 -0.21
AMSR2-C1-am_d -0.07 0.67∗ -0.36 -0.33 0.03 0.51∗ -0.37 0.33 -0.26
AMSR2-C1-am -0.07 0.65∗ -0.15 -0.48 -0.06 0.62∗ -0.24 0.16 -0.25
AMSR2-C1-pm -0.24 0.73∗ -0.17 -0.51∗ -0.25 0.83∗∗ -0.37 0.16 -0.23
AMSR2-C2-am -0.24 0.73∗ -0.14 -0.54∗ -0.20 0.78∗∗ -0.32 0.18 -0.08
AMSR2-C2-pm -0.31 0.74∗ -0.05 -0.38 -0.19 0.66∗ -0.40 0.12 -0.35
∗p < 0.05
∗∗p < 0.001
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4.5 DISCUSSION

4.5.1 IMPLICATIONS

We found a median Topt of 17 days, which is close to the often used value of 20 days (Wag-
ner et al., 1999), however, we show that Topt significantly varies between catchments
(5/95th percentiles of 1 and 98 days) and products (highest Topt for S1-CSAR). This is in
line with the variability reported by other studies. Ceballos et al. (2005) found values of
approximately 50 days to represent the soil profile between 0 and 100 cm based on soil
moisture measurements in agricultural fields in Spain. de Lange et al. (2008) mentions a
general characteristic time length of 20 days based on observed and modeled soil mois-
ture series, while Beck et al. (2009) found a Topt value of 5 days for the calculation of SWI
in Australian catchments.

Previously, Topt was shown to increase with increasing depth of the soil profile at the
point-scale (Wagner et al., 1999; Albergel et al., 2008; Ceballos et al., 2005; Paulik et al.,
2014; Wang et al., 2017). However, Topt was not linked to a defined storage in the subsur-
face at the catchment scale. Here, we explicitly show the increase of Topt with increasing
estimates of catchment-scale root-zone water storage capacities SR,max. For modeling
applications and data assimilation of satellite soil moisture products in streamflow fore-
casting applications (Brocca et al., 2010b; Wanders et al., 2014; Laiolo et al., 2016; López
López et al., 2017; Loizu et al., 2018), our results suggest that suitable values of T can be
inferred from a calibrated model or based on estimates of root-zone water storage ca-
pacities. These estimates can readily be determined using available hydrometeorolog-
ical data, instead of selecting a standard value of 20 days based on the work of Wagner
et al. (1999).

Albergel et al. (2008) and Wang et al. (2017) suggest that T values are low in areas
with high evaporative demand and less frequent but more intense precipitation. The
results from our water balance approach rather suggest that these are typically areas
where vegetation needs to overcome long dry spells and, therefore, with relatively high
root-zone water storage capacities and Topt. This is an important conclusion as it shows
that the interplay between precipitation and evaporation is the main climatic driver that
controls T , and not the precipitation and evaporation individually, as often tested.

The highest Topt values occur in agricultural-dominated catchments, which is in line
with the relatively high values of Topt (40-60 days) reported by Ceballos et al. (2005) in
agricultural fields in Spain. In the Meuse, these catchments are characterized by low
flashiness indices, low runoff ratios and, therefore, high actual evaporation, resulting in
a small temporal variability of soil moisture (high Topt) and large root-zone water stor-
age capacities SR,max. The high agricultural cover also coincides with a relatively high
silt percentage, related to the fertility and suitability of silt for growing crops due to the
high water holding capacity. Soils with fine texture promote high water retention, slow
drainage and, therefore higher Topt than soils with coarser textures, as also mentioned
by Ceballos et al. (2005). These findings highlight the interactions between soil prop-
erties (% silt), the interplay between precipitation and evaporation (SR,max), land cover
(% agriculture) and streamflow signatures (If) to characterize soil moisture behavior and
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estimate Topt to infer root-zone from near-surface soil moisture.

SMAP-L-am_d, SMAP-L and S1-CSAR derived times series of SWI show the highest
similarity with modeled root-zone soil moisture SR. The longer wavelength of L-band
compared to C- and X-bands allows for a deeper soil penetration and a higher sensitivity
to soil moisture. The difference in Spearman rank correlations between modeled root-
zone soil moisture and SWI for the high- and low-resolution products is, therefore, less
than between bands (Fig. 4.8c). The advantage of S1-CSAR is the high spatial resolution
to capture small-scale changes, easily missed out by coarse resolution sensors (Bauer-
Marschallinger et al., 2019). During large scale and high intensity precipitation events
from end of May until end of June 2016, the S1-CSAR product also shows the expected
sharp increase in soil moisture, which is, for unknown reasons, missed by or relatively
limited in most passive microwave products (Fig. 4.7).

The variability of Topt values is related to the soil moisture product itself. The larger
variance of the near-surface soil moisture signal of S1-CSAR leads to a larger range of
Topt values (Fig. 4.8a). Paulik et al. (2014) show a stronger agreement between in-situ
measurements and SWI compared to SSM, which could be related to noise being filtered
out by the SWI. Our findings further suggest that Topt values are likely to increase with
increasing noise in the observations.

Both the remote sensing and the hydrological communities can benefit from our
analysis, as it provides guidance for hydrologists to meaningfully infer root-zone soil
moisture from near-surface soil moisture for hydrological applications, while it clarifies
the behavior of T for several near-surface soil moisture products and its relation with
hydrometeorological variables, soil texture, land cover and streamflow dynamics for the
remote sensing community .

4.5.2 LIMITATIONS

In previous studies, Topt was often estimated using observed soil moisture time series.
However, these point observations often fail to represent the spatial heterogeneity at the
catchment scale. In this study, we instead calibrate a process-based hydrological model
(Fig. 4.2a) against observed streamflow to derive Topt by relating the time series of SWI to
modeled daily root-zone soil moisture SR (Fig. 4.6 and 4.7). However, it implies that the
model provides a meaningful representation of true soil moisture at catchment scale. As
we are interested in root-zone soil moisture and because T is a function of the depth of
the layer below the surface (Eq. 4.2), we related Topt to root-zone water storage capaci-
ties SR,max estimated as a calibration parameter and, in an independent way, from a wa-
ter balance approach. The water balance approach, however, also relies on assumptions
related to estimation of the return period, interception evaporation, actual evaporation,
groundwater losses and periods where infiltration takes place and deficits start to accu-
mulate. Yet, the important additional information used in both methods is the stream-
flow data, from which actual evaporation can be estimated and, by extension, the water
storage capacity in the root-zone, which influences root-zone soil moisture behavior.

As the selected catchments are relatively similar in size and all located in a temperate
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climate zone, an interesting next step would be to assess the relation between Topt and
SR,max, land cover and soil texture in a larger variety of catchments, differing in size and
climate zone. We expect the positive correlation between Topt and SR,max to be trans-
ferable to other areas, as the water balance approach has successfully been applied in a
variety of climate zones (New Zealand in de Boer-Euser et al. (2016), Australia in Dono-
hue et al. (2012) and United States in Gentine et al. (2012) and Gao et al. (2014)) or even
globally (Wang-Erlandsson et al., 2016). The positive relation between agricultural cover,
silt percentage and Topt found in the studied catchments might not apply in other areas,
in contrast to the expected relation between Topt and flashiness index. Furthermore, the
approach could be tested using several other models. However, if they provide a plau-
sible long-term partitioning of water fluxes to evaporation and drainage from the root-
zone soil moisture, we do not expect our results to be significantly affected by model
selection. Additionally, our results with respect to differences in Spearman rank correla-
tions between products could be affected if ten years of satellite near-surface soil mois-
ture data based on SMAP and Sentinel-1 would be available, instead of the less than two
years of data available here.

4.6 CONCLUSION

The Soil Water Index (SWI) enables us to infer root-zone soil moisture from satellite-
based near-surface soil moisture, using an estimate of the characteristic time length (T )
of the water flux from the surface to the root-zone. Estimating T has so far proven dif-
ficult as no clear link with climate or soil has been established. Using a process-based
lumped hydrological model calibrated on streamflow data, we identified optimal T val-
ues (Topt) that lead to the highest correlation between SWI and modeled root-zone soil
moisture SR in the Meuse basin (Fig. 4.6 and 4.7). While the median Topt value of 17 days
approximates the often used standard value of 20 days, Topt significantly varies between
catchments and soil moisture products (5/95th percentiles of 1 and 98 days, Fig. 4.8a,b).
In the past, T has been conceptually linked to an undefined storage volume in the sub-
surface. We now show for 16 contrasting catchments in the Meuse river basin that T
is strongly and positively related with the root-zone water storage capacity (Fig. 4.10).
This catchment-scale vegetation accessible water storage capacity can be readily and
robustly estimated based on water balance data. Our key finding implies that the inter-
play between precipitation and evaporation during dry periods, which regulate the size
of the storage capacity in the unsaturated root-zone, is the main driver controlling Topt

in temperate climates. Such a clear link between Topt and hydrometeorological variables
opens the opportunity to generate meaningful estimates of water contents in the root-
zone from globally available remotely-sensed near-surface soil moisture data. These are
of critical importance for hydrological and meteorological applications, as root-zone soil
moisture controls how much water is available for plant transpiration and, therefore, the
partitioning of precipitation to streamflow and evaporation.
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STREAMFLOW PERFORMANCE:
COMPARING INTERNAL PROCESS

REPRESENTATION

L’opinion publique, c’est sacré : pas d’affolement, surtout pas d’affolement.

Albert Camus - La Peste (1947)

In the previous chapters, we quantified the long-term water balance and the root-zone soil
moisture dynamics in several catchments of the Meuse river basin. Remotely-sensed esti-
mates of evaporation and near-surface soil moisture were used as additional sources of in-
formation to increase our understanding of hydrological processes. However, streamflow
is often the only variable used to constrain and evaluate hydrological models. Here, we test
if twelve process-based models with similar streamflow performance have a similar rep-
resentation of internal processes. Using expert knowledge in combination with remotely-
sensed estimates of snow cover, evaporation, soil moisture and total storage anomalies, we
test the plausibility of model behavior.

Parts of this chapter have been published in Hydrology and Earth System Sciences (Bouaziz et al., 2021)
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SUMMARY

Streamflow is often the only variable used to evaluate hydrological models. In a previous
international comparison study, eight research groups followed an identical protocol to
calibrate twelve hydrological models using observed streamflow of catchments within
the Meuse basin. In the current study, we quantify the differences in five states and fluxes
of these twelve process-based models with similar streamflow performance, in a system-
atic and comprehensive way. Next, we assess model behavior plausibility by ranking the
models for a set of criteria using streamflow and remote-sensing data of evaporation,
snow cover, soil moisture and total storage anomalies. We found substantial dissimilari-
ties between models for annual interception and seasonal evaporation rates, the annual
number of days with water stored as snow, the mean annual maximum snow storage
and the size of the root-zone storage capacity. These differences in internal process rep-
resentation imply that these models cannot all simultaneously be close to reality. Mod-
eled annual evaporation rates are consistent with GLEAM estimates. However, there is a
large uncertainty in modeled and remote-sensing annual interception. Substantial dif-
ferences are also found between MODIS and modeled number of days with snow stor-
age. Models with relatively small root-zone storage capacities and without root water
uptake reduction under dry conditions tend to have an empty root-zone storage for sev-
eral days each summer, while this is not suggested by remote-sensing data of evapora-
tion, soil moisture and vegetation indices. On the other hand, models with relatively
large root-zone storage capacities tend to overestimate very dry total storage anomalies
of GRACE. None of the models is systematically consistent with the information avail-
able from all different (remote-sensing) data sources. Yet, we did not reject models given
the uncertainties in these data sources and their changing relevance for the system un-
der investigation.
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5.1 INTRODUCTION

Hydrological models are valuable tools for short-term forecasting of river flows, long-
term predictions for strategic water management planning but also to develop a better
understanding of the complex interactions of water storage and release processes at the
catchment scale. In spite of the wide variety of existing hydrological models, they mostly
include similar functionalities of storage, transmission and release of water to represent
the dominant hydrological processes of a particular river basin (Fenicia et al., 2011), dif-
fering mostly only in the detail of their parameterizations (Gupta et al., 2012, 2014; Hra-
chowitz and Clark, 2017).

In all of these models, each individual model component constitutes a separate hy-
pothesis of how water moves through that specific part of the system. Frequently, the
individual hypotheses remain untested. Instead only the model output, i.e. the aggre-
gated response of these multiple hypotheses, is confronted with data of the aggregated
response of a catchment to atmospheric forcing. Countless applications of different hy-
drological models in many different regions across the world over the last decades have
shown that these models often provide relatively robust estimates of streamflow dynam-
ics, for both calibration and evaluation periods. However, various combinations of dif-
ferent untested individual hypotheses, can and do lead to similar aggregated outputs,
i.e. model equifinality (Beven, 2006; Clark et al., 2016).

To be useful for any of the above applications, it is thus of critical importance that not
only the aggregated but also the individual behaviors of the respective hypotheses are
consistent with their real-world equivalents. Given the complexity and heterogeneity of
natural systems together with the general lack of suitable observations, this remains a
major challenge in hydrology (e.g., Jakeman and Hornberger, 1993; Beven, 2000; Gupta
et al., 2008; Andréassian et al., 2012).

Studies have addressed the issue by constraining the parameters of specific mod-
els through the use of additional data sources besides streamflow. Beven and Kirkby
(1979); Güntner et al. (1999) and Blazkova et al. (2002) mapped saturated contributing
areas during field surveys to constrain model parameters, while patterns of water ta-
bles in piezometers were used by Seibert et al. (1997); Lamb et al. (1998) and Blazkova
et al. (2002). Other sources include satellite-based total water storage anomalies (e.g.,
Winsemius et al., 2006; Werth and Güntner, 2010; Yassin et al., 2017), evaporation (e.g.,
Livneh and Lettenmaier, 2012; Rakovec et al., 2016a; Bouaziz et al., 2018; Demirel et al.,
2018; Hulsman et al., 2019), near-surface soil moisture (e.g., Franks et al., 1998; Brocca
et al., 2010a; Sutanudjaja et al., 2014; Adnan et al., 2016; Kunnath-Poovakka et al., 2016;
López López et al., 2017; Bouaziz et al., 2020), snow cover information (e.g., Gao et al.,
2017; Bennett et al., 2019; Riboust et al., 2019), or a combination of these variables (e.g.,
Nijzink et al., 2018; Dembélé et al., 2020). Reflecting the results of many studies, Rakovec
et al. (2016b) showed that streamflow is necessary but not sufficient to constrain model
components to warrant partitioning of incoming precipitation to storage, evaporation
and drainage.

Hydrological simulations are, however, not only affected by model parameter uncer-
tainty, but also by the selection of a model structure and its parameterization (i.e. the
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choice of equations). Modeling efforts over the last four decades have led to a wide vari-
ety of hydrological models providing flexibility to test competing modeling philosophies,
from spatially lumped model representations of the system to high-resolution small-
scale processes numerically integrated to the catchment scale (Hrachowitz and Clark,
2017). Haddeland et al. (2011) and Schewe et al. (2014) compared global hydrological
models and found that differences between models are a major source of uncertainty.
Nonetheless, model selection is often driven by personal preference and experience of
individual modelers rather than detailed model test procedures (Holländer et al., 2009;
Clark et al., 2015; Addor and Melsen, 2019).

A suite of comparison experiments tested and explored differences between alter-
native modeling structures and parameterizations (Perrin et al., 2001; Reed et al., 2004;
Duan et al., 2006; Holländer et al., 2009; Knoben et al., 2020). However, these stud-
ies mostly restricted themselves to analyses of the models’ skills to reproduce stream-
flow ("aggregated hypothesis"), with little consideration for the model internal processes
("individual hypotheses"). The Framework for Understanding Structural Errors (FUSE)
was one of the first initiatives towards a more comprehensive assessment of model struc-
tural errors, with special consideration given to individual hypotheses (Clark et al., 2008).

Subsequent efforts towards more rigorous testing of competing model hypotheses,
partially based on internal processes include Smith et al. (2012a,b) who tested multi-
ple models for their ability to reproduce in-situ soil moisture observations as part of the
Distributed Model Intercomparison Project 2 (DMIP2). They found that only two out of
sixteen models provided reasonable estimates of soil moisture. In a similar effort, Koch
et al. (2016) and Orth et al. (2015) also compared modeled soil moisture to in-situ ob-
servations of soil moisture for a range of hydrological models in different environments.
In contrast, Fenicia et al. (2008) and Hrachowitz et al. (2014) used groundwater obser-
vations to test individual components of their models. There are actually relatively few
studies that comprehensively quantified differences in internal process representation
by simultaneously analyzing multiple models and multiple state and flux variables.

Here, in this model comparison study, we instead use globally available remote-
sensing data to evaluate five different model state and flux variables of twelve process-
based models with similar overall streamflow performance, which are calibrated by sev-
eral research groups following an identical protocol. The calibration on streamflow was
conducted in our previous study (de Boer-Euser et al., 2017), in which we compared
models using hourly streamflow observations, leaving the modeled response of internal
processes unused.

In a direct follow-up of the above study, we here hypothesize that process-based
models with similar overall streamflow performance rely on similar representations of
their internal states and fluxes. We test our hypothesis by simultaneously quantifying
the differences in the magnitudes and dynamics of five internal state and flux variables
of twelve models, in a comprehensive and systematic way. Our primary aim is to test
if models calibrated to streamflow with similar high-performance levels in reproducing
streamflow, follow similar pathways to do so, i.e. represent the system in a similar way.
A secondary objective is to evaluate the plausibility of model behavior by introducing a
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set of "soft" measures based on expert knowledge in combination with remote-sensing
data of evaporation, snow cover, soil moisture and total water storage anomalies.

5.2 STUDY AREA

We test our hypothesis using data from three catchments in the Belgian Ardennes, the
Ourthe upstream of Tabreux (ID1), the nested Ourthe Orientale upstream of Mabompré
(ID2) and the Semois upstream of Membre-Pont (ID3), as shown in Fig. 6.1a,b.

The rain-fed Ourthe River at Tabreux (ID1) is fast-responding due to shallow soils
and steep slopes in the catchment. Agriculture is the main land cover (27 % crops and
21 % pasture), followed by 46 % forestry and 6 % urban cover in an area of 1607 km2

and an elevation ranging between 107 m and 663 m (European Environment Agency,
2000; de Boer-Euser et al., 2017). Mean annual precipitation, potential evaporation and
streamflow are 979 mm yr−1, 730 mm yr−1 and 433 mm yr−1 respectively for the period
2001–2017.

Nested within the Ourthe catchment (ID1), the Ourthe Orientale upstream of Mabom-
pré (ID2) is characterized by a narrow elevation range from 294 m to 662 m, with 65 %
of the catchment falling within a 100 m elevation band, making this catchment suitable
to analyze snow processes modeled by lumped models. The Ourthe Orientale upstream
of Mabompré has an area of 317 km2 which corresponds to 20 % of the Ourthe area up-
stream of Tabreux and has similar land cover fractions. Mean annual precipitation, po-
tential evaporation and streamflow for the period 2001–2017 are also relatively similar
with 1052 mm yr−1, 720 mm yr−1 and 462 mm yr−1, respectively.

Forest is the main land cover in the Semois upstream of Membre-Pont (ID3) with
56 %, followed by agriculture (18 % pasture and 21 % crop) and 5 % urban cover. The Se-
mois upstream of Membre-Pont is 24 % smaller than the Ourthe upstream of Tabreux
with 1226 km2 and elevation ranges between 176 m and 569 m. Mean annual precipita-
tion, potential evaporation and streamflow are respectively 38 %, 4 % and 46 % higher in
the Semois at Membre-Pont with 1352 mm yr−1, 759 mm yr−1 and 634 mm yr−1.

5.3 DATA

5.3.1 HYDROLOGICAL AND METEOROLOGICAL DATA

Hourly precipitation gauge data are provided by the Service Public de Wallonie (Service
Public de Wallonie, 2018) and are spatially interpolated using Thiessen polygons. Daily
minimum and maximum temperatures are retrieved from the 0.25◦ resolution gridded
E-OBS dataset (Haylock et al., 2008) and disaggregated to hourly values by linear interpo-
lation using the timing of daily minimum and maximum radiation at Maastricht (Royal
Netherlands Meteorological Institute, 2018). Daily potential evaporation is calculated
from daily minimum and maximum temperatures using the Hargreaves formula (Har-
greaves and Samani, 1985) and is disaggregated to hourly values using a sine function
during the day and no evaporation at night. We use the same forcing for 2000–2010 as
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Figure 5.1: (a) Location of the study catchments in Belgium, northwestern Europe. (b) Digital elevation model
and catchments of the Ourthe upstream of Tabreux (ID1), Ourthe Orientale upstream of Mabompré (ID2) and
Semois upstream of Membre-Pont (ID3). Pixel size of GRACE, GLEAM, MODIS and SCATSAR-SWI1km. Colored
dots are the streamflow gauging locations and black dots are the precipitation stations.
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in the previous comparison study (de Boer-Euser et al., 2017) and follow the same ap-
proach to extend the meteorological dataset for the period 2011–2017. Uncertainty in
meteorological data is not explicitly considered, but our primary aim is to compare the
models forced with identical data. Observed hourly streamflow data for the Ourthe at
Tabreux, Ourthe Orientale at Mabompré and Semois at Membre-Pont are provided by
the Service Public de Wallonie for the period 2000–2017.

5.3.2 REMOTE-SENSING DATA

GLEAM EVAPORATION

The Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011; Martens
et al., 2017) provides daily estimates of land evaporation by maximizing the information
recovery on evaporation contained in climate and environmental satellite observations.
The Priestley and Taylor (1972) equation is used to calculate potential evaporation for
bare soil, short canopy and tall canopy land fractions. Actual evaporation is the sum
of interception and potential evaporation reduced by a stress factor. This evaporative
stress factor is based on microwave observations of vegetation optical depth and es-
timates of root-zone soil moisture in a multi-layer water balance model. Interception
evaporation is estimated separately using a Gash analytical model and only depends on
precipitation and vegetation characteristics. GLEAM v3.3a relies on reanalysis net radi-
ation and air temperature from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 data, satellite and gauge-based precipitation, satellite-based vege-
tation optical depth, soil moisture and snow water equivalent. The data are available at
0.25◦ resolution (Fig. 6.1b) and account for subgrid heterogeneity by considering three
land cover types. We spatially average GLEAM interception and total actual evaporation
estimates over the Ourthe catchment upstream of Tabreux for the period 2001–2017.

MODIS SNOW COVER

The Moderate Resolution Imaging Spectroradiometer (MODIS) AQUA (MYD10A1, ver-
sion 6) and TERRA (MOD10A1, version 6) satellites provide daily maps of the areal frac-
tion of snow cover per 500 m × 500 m cell (Fig. 6.1b) based on the Normalized Difference
Snow Index (Hall and Riggs, 2016a,b). For each day, AQUA and TERRA observations are
merged into a single observation by taking the mean fraction of snow cover per day. The
percentage of cells with a fractional snow cover larger than zero and fraction of cells
without missing data (i.e. due to cloud cover) for the catchment of the Ourthe Orientale
upstream of Mabompré is calculated for each day. For this study, we disregard observa-
tions during the summer months (JJA, when temperatures did not drop below 4◦C) and
only use daily observations in which at least 40 % of the catchment area has snow cover
retrievals not affected by clouds, implying that we have 1463 valid daily observations of
mean fractional snow cover. This corresponds to 32 % of all observations of the Ourthe
Orientale catchment upstream of Mabompré between 2001 and 2017.
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SCATSAR-SWI1KM SOIL WATER INDEX

SCATSAR-SWI1km is a daily product of soil water content relative to saturation at a 1 km× 1 km
resolution (Fig. 6.1b) obtained by fusing spatio-temporally complementary radar sen-
sors (Bauer-Marschallinger et al., 2018). Estimates of the moisture content relative to
saturation at various depths in the soil, referred to as Soil Water Index (SWI), are obtained
through temporal filtering of the 25 km METOP ASCAT near-surface soil moisture (Wag-
ner et al., 2013) and 1 km Sentinel-1 near-surface soil moisture (Bauer-Marschallinger
et al., 2018). The Soil Water Index features as single parameter the characteristic time
length T (Wagner et al., 1999; Albergel et al., 2008). The T -value is required to convert
near-surface soil moisture observations to estimates of root-zone soil moisture. The T -
value increases with increasing root-zone storage capacities (Bouaziz et al., 2020), re-
sulting in more smoothing and delaying of the near-surface soil moisture signal. The
Copernicus Global Land Service (2019) provides the Soil Water Index for T -values of 2,
5, 10, 15, 20, 40, 60 and 100 days. Since Sentinel-1 was launched in 2014, the Soil Water
Index is available for the period 2015–2017. We calculate the mean soil moisture over all
SCATSAR-SWI1km pixels within the Ourthe upstream of Tabreux for the available period.

GRACE TOTAL WATER STORAGE ANOMALIES

The Gravity Recovery and Climate Experiment (GRACE, Swenson and Wahr, 2006; Swen-
son, 2012) twin satellites, launched in March 2002, measure the Earth’s gravity field changes
by calculating the changes in the distance between the two satellites as they move one
behind the other in the same orbital plane. Monthly total water storage anomalies (in
mm) relative to the 2004–2009 time-mean baseline are provided at a spatial sampling
of 1◦ (approximately 78 km x 110 km at the latitude of the study region, Fig. 6.1b) by
three centers: U. Texas / Center for Space Research (CSR), GeoForschungsZentrum Pots-
dam (GFZ) and Jet Propulsion Laboratory (JPL). These centers apply different process-
ing strategies which lead to variations in the gravity fields. These gravity fields require
smoothing of the noise induced by attenuated short wavelength. The spatial smoothing
decreases the already coarse GRACE resolution even further through signal "leakage" of
one location to surrounding areas (Bonin and Chambers, 2013), which increases the un-
certainty especially at the relatively small scale of our study catchments. We apply the
scaling coefficients provided by NASA to restore some of the signal loss due to processing
of GRACE observations (Landerer and Swenson, 2012). The data of the three process-
ing centers are each spatially averaged over the catchments of the Ourthe upstream of
Tabreux and the Semois upstream of Membre-Pont for the period April 2002 to February
2017.

5.3.3 DATA UNCERTAINTY

The hydrological evaluation data are all subject to uncertainties (Beven, 2019a). Stream-
flow is not measured directly but depends on water level measurements and a rating
curve. Westerberg et al. (2016) quantify a median streamflow uncertainty of±12 %, ±24 %
and ±34 % for average, high and low streamflow conditions, respectively, using a Monte
Carlo sampling approach of multiple feasible rating curve for 43 UK catchments. We
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sample from these uncertainty ranges to transform the streamflow observations (100
realizations). We then quantify signature uncertainty originating from streamflow data
uncertainty using the 100 sampled time series for a selection of streamflow signatures
(Sect. 5.4.2). The 5-95th uncertainty bounds of median annual streamflow, baseflow and
flashiness indices result in ±11 %, ±9 % and ±12 %, respectively. These magnitudes are
similar to those reported by Westerberg et al. (2016).

GLEAM evaporation estimates are inferred from models and forcing data which are
all affected by uncertainty. Yet, uncertainty estimates of GLEAM evaporation are not
available. However, GLEAM evaporation was evaluated against FLUXNET data by Mi-
ralles et al. (2011). For the nearby station of Lonzee in Belgium, they report similar
annual rates and a high correlation coefficient of 0.91 between the daily time series.
GLEAM mean annual evaporation was compared to the ensemble mean of five evap-
oration datasets in Miralles et al. (2016) and shows higher than average values in Europe
(of approximately 60 mm yr−1 or 10 % of mean annual rates for our study area). The par-
titioning of evaporation in different components (transpiration, interception and soil
evaporation) differs substantially between different evaporation datasets, as shown by
Miralles et al. (2016). GLEAM interception currently only considers tall vegetation and
underestimates in-situ data (Zhong et al., 2020) and is ∼50 % lower than estimates from
other datasets (Miralles et al., 2016). These uncertainties underline that GLEAM (and
other remote-sensing data) cannot be considered as a reliable representation of real-
world quantities. However, the comparison of daily dynamics and absolute values of
this independent data source with modeled results is still valuable to detect potential
outliers and understand their behavior. Besides, the different methods used to estimate
potential evaporation of GLEAM and our model forcing should not impede us from test-
ing the consistency between the resulting actual evaporation (Oudin et al., 2005).

Most frequent errors within the MODIS snow cover products are due to cloud/snow
discrimination problems. Daily MODIS snow maps have an accuracy of approximately
93 % at the pixel scale, with lower accuracy in forested areas, complex terrain and when
snow is thin and ephemeral and higher accuracy in agricultural areas (Hall and Riggs,
2007). However, here, MODIS data is used to estimate the number of days with snow
at the catchment scale. We expect lower classification errors at the catchment scale as
it would require many pixels to be misclassified at the same time. For each day and
each pixel of valid MODIS observations, we sample from a binomial distribution with a
probability of 93 % that MODIS is correct when the pixel is classified as snow and assume
a higher probability of 99 % that MODIS is correct when the pixel is classified as no-
snow to prevent overestimating snow for days without snow (Ault et al., 2006; Parajka
and Blöschl, 2006). We repeat the experiment for 1000 times in a Monte Carlo procedure.
This results in less than ±2 % uncertainty in the number of days when MODIS observes
snow at the catchment scale.

The soil water content relative to saturation of SCATSAR-SWI1km is estimated from
observed radar backscatter through a change detection approach, which interprets changes
in backscatter as changes in soil moisture, while other surface properties are assumed
static (Wagner et al., 1999). The degree of saturation of the near-surface is given in rela-
tive units from 0 % (dry reference) to 100 % (wet reference) and is converted to deeper
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layers through an exponential filter called the Soil Water Index. The smoothing and
delaying effect of the Soil Water Index narrows the range of the near-surface degree of
saturation. Therefore, data matching techniques are often used to rescale satellite data
to match the variability of modeled or observed data (Brocca et al., 2010a), which sug-
gests the difficulty to meaningfully compare the range of modeled and remote-sensing
estimates of root-zone soil moisture content relative to saturation. However, the dynam-
ics of SCATSAR-SWI1km data have been evaluated against in-situ stations of the Inter-
national Soil Moisture Network, despite commensurability issues of comparing in-situ
point measurements and areal satellite data. Spearman rank correlation coefficients of
0.56 are reported for T -values up to 15 days and 0.43 for T -value of 100 days (Bauer-
Marschallinger, 2020).

GRACE estimates of total water storage anomalies suffer from signal degradation due
to measurement errors and noise. Filtering approaches are applied to reduce these er-
rors, but induce leakage of signal from surrounding areas. The uncertainty decreases
as the size of the region under consideration increases. However, time series of a sin-
gle pixel may still be used to compare dynamics and amplitudes of total water storage
anomalies despite possible large uncertainty (Landerer and Swenson, 2012). We esti-
mate an uncertainty in total water storage anomalies of ∼18 mm in the pixels of our
catchments by combining measurement and leakage errors in quadrature, which are
both provided for each grid location (Landerer and Swenson, 2012).

5.4 METHODS

5.4.1 MODELS AND PROTOCOL

Eight research groups (Wageningen University, Université de Lorraine, Leuven Univer-
sity, Delft University of Technology, Deltares, Irstea (now INRAE), Eawag and Flanders
Hydraulics Research) participated in the comparison experiment and applied one or
several hydrological models (Fig. 5.2). The models include WALRUS (Wageningen Low-
land Runoff Simulator, Brauer et al., 2014a,b), PRESAGES (PREvision et Simulation pour
l’Annonce et la Gestion des Etiages Sévères, Lang et al., 2006), VHM (Veralgemeend con-
ceptueel Hydrologisch Model, Willems, 2014), FLEX-Topo which was still under devel-
opment when it was calibrated for our previous study (Savenije, 2010; de Boer-Euser
et al., 2017; de Boer-Euser, 2017), a distributed version of the HBV model (Hydrologiska
Byråns Vattenbalansavdelning, Lindström et al., 1997), SUPERFLEX M2 to M5 models
(Fenicia et al., 2011, 2014b), dS2 (distributed simple dynamical systems, Buitink et al.,
2020), GR4H (Génie Rural à 4 paramètres Horaire, Mathevet, 2005; Coron et al., 2017,
2019) combined with the CemaNeige snow module (Valéry et al., 2014) and NAM (Nedb-
orAfstrommings Model, Nielsen and Hansen, 1973). Main differences and similarities
between models in terms of snow processes, root-zone storage, total storage and evapo-
ration processes are summarized in Tables 5.1-5.3.

In our previous study (de Boer-Euser et al., 2017), we defined a modeling protocol
to limit the degrees of freedom in the modeling decisions of the individual participants
(Ceola et al., 2015), allowing us to meaningfully compare the model results. The proto-
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col involved forcing the models with the same input data and calibrating them for the
same time period, using the same objective functions. However, participants were free
to choose a parameter search method, as we considered it to be part of the modelers ex-
perience with the model, even if this would make comparison less straightforward. The
models were previously calibrated using streamflow of the Ourthe at Tabreux (ID1) for
the period 2004 to 2007, using 2003 as a warm-up year (de Boer-Euser et al., 2017). The
Nash-Sutcliffe efficiencies of the streamflow and the logarithms of the streamflow were
simultaneously used as objective functions to select an ensemble of feasible parameter
sets to account for parameter uncertainty and ensure a balance between the models’
ability to reproduce both high and low flows. The temporal and spatial transferability
of the models was tested by evaluating the models in a pre- and post-calibration period
and by applying the calibrated model parameter sets to nested and neighboring catch-
ments, including catchment ID2 and ID3 (Klemeš, 1986). Results thereof are presented
in de Boer-Euser et al. (2017).

In the current study, we run the calibrated models for an additional period from 2011
to 2017 for the Ourthe at Tabreux (ID1), the Ourthe Orientale at Mabompré (ID2) and the
Semois at Membre-Pont (ID3). The modeling groups have provided simulation results
for each catchment in terms of streamflow, groundwater losses/gains, interception evap-
oration, root-zone evaporation (transpiration and soil evaporation), total actual evapo-
ration, snow storage, root-zone storage and total storage as a sum of all model storage
volumes (Table 5.2) at an hourly time step for the total period 2001–2017. We compare
these modeled states and fluxes and evaluate them against their remote-sensing equiv-
alents as further explained in Sects. 5.4.2 and 5.4.3.

5.4.2 MODEL EVALUATION: WATER BALANCE

All models are evaluated in terms of the long-term water balance, which indicates the
partitioning between drainage and evaporative fluxes and allows us to assess long-term
conservation of water and energy. We compare mean annual streamflow with observa-
tions and mean annual actual evaporation and interception evaporation with GLEAM
estimates for the Ourthe at Tabreux during the evaluation period 2008–2017. A detailed
description of streamflow performance for specific events (low and high flows, snowmelt
event, transition from dry to wet period) has been detailed in the previous paper (de Boer-
Euser et al., 2017). In the current study, differences in streamflow dynamics are briefly
summarized by assessing observed and modeled baseflow indices (Ib, van Dijk, 2010)
and flashiness indices (If, Fenicia et al., 2016), as these are representative of the parti-
tioning of drainage into fast and slow responses. Seasonal dynamics of actual evapora-
tion over potential evaporation and runoff ratios during winter (Oct-Mar) and summer
(Apr-Sep) are compared between models.

5.4.3 MODEL EVALUATION: INTERNAL STATES

We compare modeled snow storage, root-zone soil moisture and total storage between
models and with remote sensing estimates of MODIS snow cover, SCATSAR-SWI1km Soil
Water Index and GRACE total storage anomalies, respectively, as shown in Tables 5.2-5.3.
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Figure 5.2: Simplified schematic overview of 12 model structures (adapted from de Boer-Euser et al., 2017) with
the aim to highlight similarities and differences between the models. Solid arrows indicate fluxes between
stores, while dashed arrows indicate the influence of a state to a flux. Colored arrows indicate incoming or
outgoing fluxes, whereas black arrows indicate internal fluxes. The narrow blue rectangle in GR4H indicates
the presence of an interception module without interception storage capacity (Table 5.3). Storages with a
color gradient indicate the combination of several components in one reservoir. FLEX-Topo consists of three
hydrological response units connected through a shared slow reservoir and wflow_hbv is a distributed model.

SNOW DAYS

As most models used in this study are lumped, it is not possible to spatially evaluate
modeled snow cover versus MODIS snow cover. However, we can classify each day in a
binary way according to the occurrence of snow, based on a threshold for the percentage
of cells in the catchment where snow cover is detected. MODIS snow cover observations
are classified as days with and without snow using thresholds of both 10 and 15 % of
snow-covered cells in the catchment to be counted as a day with snow, in a sensitivity
analysis. For each model, snow days are distinguished from non-snow days whenever
the water stored as snow is above 0.05 mm to account for numerical rounding. For each
model (and each retained parameter set), we then compare if modeled snow coincides
with ’truly’ observed snow by MODIS, for each day with a valid MODIS observation. We
create a confusion matrix with counts of true positives when observations and model
results agree on the presence of snow (hits), false positives when the model indicates
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the presence of snow but this is not observed by MODIS (false alarms), false negatives
when the model misses the presence of snow observed by MODIS (miss) and true nega-
tives when observations and model results agree on the absence of snow (correct rejec-
tions). This allows us to identify the trade-off between, on the one hand, the miss rate
between model and remote-sensing observation, as the ratio of misses over actual pos-
itives (number of days when snow is observed by MODIS) and, on the other hand, the
false discovery rate as the ratio of false alarms over predicted positives (number of days
when snow is modeled). We also compare annual maximum snow storage and num-
ber of days with snow between the seven models with a snow module (GR4H, M5, NAM,
wflow_hbv, M4, FLEX-Topo, WALRUS). The snow analysis is performed in the catchment
of the Ourthe Orientale upstream of Mabompré as it features the narrowest elevation
range among the study catchments (i.e. 294-662 m a.s.l. versus 108-662 m for the Ourthe
upstream of Tabreux) and thus plausibly permits a lumped representation of the snow
component.

ROOT-ZONE SOIL MOISTURE

We compare the range of the relative root-zone soil moisture SR (SR = SR/SR,max, Ta-
ble 5.1) between models for the period in which SCATSAR-SWI1km is available (2015–
2017). Time series of catchment-scale root-zone soil moisture are available for all mod-
els except WALRUS and dS2 as these models have a combined soil reservoir (Fig. 5.2).
The dS2 model only relies on the sensitivity of streamflow to changes in total storage. In
WALRUS, the state of the soil reservoir (which includes the root zone) is expressed as a
storage deficit and is therefore not bound by an upper limit (Table 5.2). Root-zone stor-
age capacities (SR,max, mm) are available as calibration parameter for all other models.
We relate the range in relative root-zone soil moisture to the maximum root-zone stor-
age capacity SR,max, because we expect models with small root-zone storage capacities
SR,max to entirely utilize the available storage, through complete drying and saturation.

We then compare the similarity of the dynamics of modeled time series of the rel-
ative root-zone soil moisture with remotely sensed SCATSAR-SWI1km Soil Water Index
for several values of the characteristic time length parameter (T in days). The T -value
has previously been positively correlated with root-zone storage capacity, assuming a
high temporal variability of root-zone soil moisture and therefore a low T -value for small
root-zone storage capacities SR,max (Bouaziz et al., 2020). For each model and feasible re-
alization, we identify the T -value that yields the highest Spearman rank correlation be-
tween modeled root-zone soil moisture and Soil Water Index. We then relate the optimal
T -value to the root-zone storage capacity SR,max. This analysis enables us to identify po-
tential differences in the representation and the dynamics of root-zone storage between
models.

TOTAL STORAGE ANOMALIES

For each model, we calculate time series of total storage (Table 5.2) and mean monthly
total storage anomalies relative to the 2004-2009 time-mean baseline for comparison
with GRACE estimates for the Ourthe upstream of Tabreux (ID1) and the Semois up-
stream of Membre-Pont (ID3). Both catchments coincide with two neighboring GRACE
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cells, allowing us to test how well the models reproduce the observed spatial variability.
We further relate the modeled range of total storage (maximum minus minimum total
storage over the time series) to Spearman rank correlation coefficients between modeled
and GRACE estimates of total storage anomalies.

5.4.4 INTERACTIONS BETWEEN STORAGE AND FLUXES DURING DRY PERI-
ODS

The impact of a relatively large (> 200 mm) versus relatively small (< 150 mm) root-zone
storage capacity on actual evaporation, streamflow and total storage is assessed dur-
ing a dry period in September 2016 by selecting two representative models with high
streamflow model performance (GR4H and M5). The plausibility of the hydrological
response of these two model representations is evaluated against remote-sensing esti-
mates of root-zone soil moisture and actual evaporation.

5.4.5 PLAUSIBILITY OF PROCESS REPRESENTATIONS

The models are subsequently ranked and evaluated in terms of their consistency with
observed streamflow, remote-sensing data and expert knowledge with due considera-
tion of the uncertainty in the evaluation data, as detailed in Sect. 5.3.3. We summarize
our main findings by evaluating the models in terms of their deviations around median
annual streamflow, flashiness and baseflow indices, median annual actual evaporation
and interception compared to GLEAM estimates, the number of days with snow over
valid MODIS observations, the number of days per year with empty root-zone storage
and the very dry total storage anomalies compared to GRACE estimates.

5.5 RESULTS

5.5.1 WATER BALANCE

STREAMFLOW

All models show high Nash-Sutcliffe Efficiencies of the streamflow and the logarithm
of the streamflow (ENS,Q and ENS,logQ) with median values of above 0.7 for the post-
calibration evaluation period 2008–2017 (Fig. 5.3a and Table 5.2 for the calculation of
the Euclidean distances). The interannual variability of streamflow agrees strongly with
observations for each model in the period 2008–2017 (Fig. 5.3b). The difference between
modeled and observed median streamflow varies between -5.6 % and 5.6 % and the dif-
ference in total range varies between -9.6 % and 20 %. This is in line with our results in
the previous paper, in which we also showed that all models perform well in terms of
commonly used metrics (de Boer-Euser et al., 2017). However, there are differences in
the partitioning of fast and slow runoff, as shown by the flashiness and baseflow indices
(If and Ib) in Fig. 5.3c. Largest underestimation of the flashiness index occurs for M2
and dS2 (∼20 %), while FLEX-Topo shows the highest overestimation (26 %). FLEX-Topo
and WALRUS underestimate the baseflow index most (41 % and 70 % respectively), while
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GR4H and M5 show the highest overestimation (15 % and 21 % respectively). There is a
strong similarity between modeled and observed hydrographs for one of the best per-
forming models M5, as quantified by its low Euclidean distance (Fig. 5.3d and Table 5.2).
The GR4H model is the only model which includes deep groundwater losses, but they
are very limited and represent only 1.6 % of total modeled streamflow of the Ourthe at
Tabreux, or approximately 7 mm yr−1.

(a) (b)

(d)(c)

Figure 5.3: Evaluation of modeled streamflow performance for the Ourthe at Tabreux for the period 2008–
2017. (a) Nash-Sutcliffe Efficiencies of the streamflow ENS,Q and the logarithm of the streamflow ENS,logQ

(median, 25/75th percentiles across parameter sets). (b) Modeled mean annual streamflow for hydrological
years between 2008–2017 across feasible parameter sets. The models are ranked from the highest to the low-
est performance according to the Euclidean distance of streamflow performance (see Table 5.2). The dashed
line and grey shaded areas show median, 25/75th and minimum-maximum range of observed mean annual
streamflow. (c) Baseflow index Ib as a function of the flashiness index If (median, 25/75th percentiles across
parameter sets). Observed values are shown by the grey dashed lines. (d) Observed and modeled hydrographs
of model M5 with high streamflow model performance (low Euclidean distance).

ACTUAL EVAPORATION

Modeled median annual actual evaporation EA (computed as the sum of soil evapora-
tion, transpiration, (separate) interception evaporation and, if applicable, sublimation,
Table 5.3) for hydrological years between October 2008 and September 2017 varies be-
tween 507 and 707 mm yr−1 across models, with a median of 522 mm yr−1, which is ap-
proximately 10 % lower than the GLEAM estimate of 578 mm yr−1, as shown in Fig. 5.4a.
Annual actual evaporation of the VHM model is very high compared to the other mod-
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els, with a median of 707 mm yr−1 and approximates potential evaporation (median of
732 mm yr−1). Calibration of the VHM model is meant to follow a manual stepwise pro-
cedure including the closure of the water balance during the identification of soil mois-
ture processes (Willems, 2014). However, in the automatic calibration prescribed by the
current protocol, this step was not performed, which explains the unusual high actual
evaporation in spite of relatively similar annual streamflow compared to the other mod-
els, as there is no closure of the water balance (Fig. 5.3a).

Interception evaporation is included in four models, with GR4H showing the low-
est annual interception evaporation of 100 mm yr−1 (19 % of EA or 10 % of P ), FLEX-
Topo and wflow_hbv having relatively similar amounts of approximately 250 mm yr−1

(∼45 % of EA or 26 % of P ) and NAM having the highest annual interception evaporation
of 340 mm yr−1 (65 % of EA or 36 % of P ), as shown in Fig. 5.4a. Differences are related
to the presence and maximum size of the interception storage (Imax), as shown in Ta-
ble 5.3. GLEAM interception estimates of 189 mm yr−1 are almost twice as high as GR4H
estimates, 25 % lower than FLEX-Topo and wflow_hbv, and 44 % lower than NAM val-
ues, suggesting a large uncertainty in the contribution of interception and transpiration
to actual evaporation. For comparison, measurements of the fraction of interception
evaporation over precipitation in forested areas vary significantly depending on the site
location, with estimates of 37 % for a Douglas fir stand in the Netherlands (Cisneros Vaca
et al., 2018), 27 %, 32 % and 42 % for three coniferous forests of Great Britain (Gash et al.,
1980) and 50 % for a forest in Puerto Rico (Schellekens et al., 1999) and are difficult to
extrapolate to other catchments due to the heterogeneity and complexity of natural sys-
tems.

GLEAM estimates of actual evaporation show relatively high evaporation rates in
winter and are never reduced to zero in summer, as opposed to modeled M5 estimates,
as shown in Fig. 5.4b. GLEAM actual evaporation minus the separately calculated inter-
ception is 94 % of potential evaporation, implying almost no water-limited conditions,
as opposed to our models in which actual evaporation in summer (Apr–Sep) is, due to
water stress, reduced to approximately 73 % of potential evaporation on average for all
models except VHM (Fig. 5.4c). Larger differences between models occur in the ratio
EA/EP during winter (Oct–Mar), when FLEX-Topo, wflow_hbv and VHM show EA/EP ra-
tios close to unity, and dS2 the lowest values of EA/EP ∼ 0.75 as shown in Fig. 5.4c. The
dS2 model differs from all other models as it relies on a year-round constant water stress
coefficient (Ccst), independent of water supply, while the stress coefficient depends on
root-zone soil moisture content in all other models (Table 5.3).

Most models slightly overestimate summer runoff ratios with values between 0.22
and 0.26 which are very close to the observed value of 0.22, as shown in Fig. 5.4d. During
winter, runoff ratios vary between 0.55 and 0.71, which is close to the observed value of
0.66. This implies a relatively high level of agreement between models in reproducing
the medium- to long-term partitioning of precipitation into evaporation and drainage
and thus in approximating at least long-term conservation of energy (Hrachowitz and
Clark, 2017).
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(a) (c)

(d)(b)

Figure 5.4: Evaluation of modeled evaporation for the Ourthe upstream of Tabreux for the period 2008–2017.
(a) Modeled mean annual actual evaporation EA and minimum-maximum range of mean annual interception
evaporation EI for hydrological years between 2008–2017 across feasible parameter sets. The dark grey shaded
area shows the range of potential evaporation EP used as input for the models. The light grey shaded area
shows GLEAM actual and interception evaporation. (b) Daily actual evaporation from GLEAM and modeled by
the M5 model. (c) Summer against winter EA/EP ratios for each model (median and 25/75th percentiles across
parameter sets). (d) Summer against winter runoff ratio Q/P for each model (median and 25/75th percentiles
across parameter sets), plotted on the same scale. The dashed grey lines indicate the observed median runoff
ratios in summer and winter.

5.5.2 INTERNAL MODEL STATES

SNOW DAYS

MODIS snow cover is detected over most of the catchment area for some time each
year between November 2001 and November 2017, except for the periods of Novem-
ber 2006 to March 2007 and November 2007 to March 2008, when snow is detected in
less than half of the catchment cells, as shown in Fig. 5.5a. The number and magnitude
of modeled snow storage events varies between models (Fig. 5.5b). The modeled num-
ber of snow days per hydrological year varies from ∼28 days for FLEX-Topo, WALRUS
and wflow_hbv to ∼62 days for GR4H and ∼90 days for NAM, M4 and M5, as shown in
Fig. 5.5c. The variability in median annual maximum snow storage varies from 3 mm
for wflow_hbv and ∼5-6 mm for FLEX-Topo and WALRUS to ∼10 mm for GR4H, M4, M5
and 15 mm for NAM. We further evaluate the plausibility of these modeled snow pro-
cesses by comparing modeled and observed snow cover, for days when a valid MODIS
observation is available.
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The presence of snow modeled by FLEX-Topo, wflow_hbv and WALRUS coincides
for 92 % with the presence of snow observed by MODIS. However, these models fail to
model snow for ∼62 % of days when MODIS reports the presence of snow, implying that
these models miss many observed snow days, but when they predict snow, it was also
observed (Fig. 5.5d).

NAM, M4 and M5, on the other hand, predict the presence of snow which coin-
cides with observed snow by MODIS in ∼68 % of the positive predictions, implying a
relatively high probability of false alarm snow prediction of ∼32 %. However, they miss
only ∼29 % of actual positive snow days observed by MODIS (Fig. 5.5d). This suggests
that these models miss fewer observed snow days, but they also overpredict snow days
numbers, which could be related to the use of a single temperature threshold to distin-
guish between snow and rain, as opposed to a temperature interval in the other models
(Table 5.2).

GR4H is in between the two previously mentioned model categories, with a snow
prediction which coincides with observed snow by MODIS in 79 % of the positive pre-
dictions and therefore only 21 % of false alarms. The model misses 42 % of actual pos-
itive snow days observed by MODIS. GR4H therefore shows a more balanced trade-off
between the number of false alarms and the amount of observed snow events missed.
This is illustrated in Fig. 5.5d.

With an increased threshold to distinguish snow days in MODIS, from 10 % to 15 % of
cells in the catchment with a detected snow cover (Fig. 5.5d and Fig. 5.5e respectively),
we decrease the number of observed snow days. For all models, this leads to an increase
in the ratio of false alarms over predicted snow days but also a decrease of the ratio of
missed events over actual observed snow days by MODIS. However, as all models are
similarly affected by the change in threshold, our findings on the differences in perfor-
mance between models show little sensitivity to this threshold.

Despite the large variability in snow response between models, snow processes are
represented by a degree-hour method in all models, suggesting a high sensitivity of the
snow response to the snow process parameterization (Table 5.2).
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(a)

(b)

(c) (d) (e)

Figure 5.5: (a) Fraction of cells with a MODIS areal fraction snow cover greater than zero in the Ourthe Orientale
upstream of Mabompré for the period 2001–2017. MODIS data are available once every three days on average.
The dashed lines show the two thresholds of 10 % and 15 % selected to distinguish snow days. (b) Modeled
snow storage for two contrasting models M5 and WALRUS for the light orange shaded period. (c) Median
annual maximum snow storage as a function of number of days per year with snow. Light (yellowish) colors
indicate models with higher performance (lower Euclidean distances). The vertical and horizontal error bars
indicate the 25/75th percentiles over time and feasible parameter sets. (d,e) Two-dimensional representation
of the false discovery rate as a function of the miss rate, when applying a threshold of (d) 10 % and (e) 15 % of
cells within the catchment with snow cover greater than zero. In this representation, the perfect model would
be at the origin (0 % misses and 0 % false alarms).The dotted lines show the distance from the origin. The
vertical and horizontal error bars indicate the uncertainty within feasible parameter sets.
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ROOT-ZONE SOIL MOISTURE

Vegetation-accessible water volumes that can be stored in the root zone largely control
the long-term partitioning of precipitation into evaporation and drainage. Most hydro-
logical models include a representation of this root-zone storage capacity SR,max, which
is estimated through calibration (Table 5.2). The calibrated root-zone storage capacities
vary between 74 mm and 277 mm across studied models. The root-zone soil moisture
content relative to saturation of models with relatively large root-zone storage capaci-
ties (here defined as SR,max > 200 mm) tends to never fully dry out (>0.20) and saturate
(<0.94) as opposed to models with lower root-zone storage capacities (SR,max <150 mm),
in which the storage tends to either dry out completely and/or fully saturate (Fig. 5.6a).
If the vegetation-accessible water storage dries out, this will lead to water stress and re-
duced transpiration. On the other hand, if the root-zone storage is saturated, no more
water can be stored, resulting in fast drainage. The size of the root-zone storage capacity
is therefore a key control of the hydrological response, allowing us to explain some of the
observed variability between models.

We compare the dynamics of modeled and remote-sensing estimates of root-zone
soil moisture by calculating Spearman rank correlations between modeled root-zone soil
moisture and remote-sensing estimates of the Soil Water Index for the available T -values
of 2, 5, 15, 20, 40, 60 and 100 days. As the T -value increases, the Soil Water Index is more
smoothed and delayed. For each model realization, we identify the T -value which yields
the highest Spearman rank correlation between Soil Water Index and modeled root-zone
soil moisture (Fig. 5.6b). The optimal T -value increases with the size of the calibrated
root-zone storage capacity and varies between 15 and 60 days. A small root-zone stor-
age capacity is indeed likely to fill through precipitation and empty through evaporation
and drainage more rapidly than a large water storage capacity, leading to a higher tempo-
ral relative soil moisture variability. The mismatch between the relatively high root-zone
storage capacities of VHM (SR,max ∼ 200 mm) in relation to the relatively low optimal
T -values of 20 days is likely related to the unclosed water balance (Sect. 5.5.1). The sim-
ilarity between modeled root-zone soil moisture and Soil Water Index with optimal T -
values is high, as implied by Spearman rank correlations varying between 0.88 and 0.90
across models. However, the disparity in optimal T -values between models underlines
the different temporal representations of root-zone soil moisture content across models,
implying that all these models cannot simultaneously provide a plausible representation
of the catchment-scale vegetation-accessible water content.

TOTAL STORAGE ANOMALIES

Total water storage anomalies obtained from GRACE are compared to the storage as
simulated by the models, showing relatively similar seasonal patterns, as illustrated in
Fig. 5.7a for model M5. GRACE total storage anomalies of the Semois upstream of Membre-
Pont and the Ourthe upstream of Tabreux are mainly represented by two neighboring
cells (Fig. 6.1b), allowing us to test how models represent the observed spatial variabil-
ity. The range of anomalies in the Semois upstream of Membre-Pont is larger than in
the Ourthe upstream of Tabreux, implying 18 %, 3 % and 7 % less summer and 19 %, 19 %
and 10 % more winter storage in the Semois upstream of Membre-Pont for each of the
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(a) (b)

Figure 5.6: (a) Range of relative root-zone soil moisture SR in the Ourthe upstream of Tabreux for the period
2015–2017 as a function of the median root-zone storage capacity (SR,max) across parameter sets. The feasible
parameters for NAM are split in two groups due to the large variability of SR,max (subsets with SR,max of ∼130
mm and ∼240 mm). (b) Root-zone storage capacity SR,max as a function of the optimal T -value for each model
realization. Optimal T -values are derived at the highest Spearman rank correlation between Soil Water Index
and modeled root-zone soil moisture.

three GRACE processing centers (Fig. 5.7b). Median precipitation is also 37 % higher
in the Semois upstream of Membre-Pont than in the Ourthe upstream of Tabreux dur-
ing winter months (Oct-Mar), but relatively similar during summer months (Apr-Sep).
This difference in precipitation potentially leads to a wider range of modeled anoma-
lies in the Semois upstream of Membre-Pont than in the Ourthe upstream of Tabreux
for all models, as shown in Fig. 5.7c. This implies that all models reproduce the spatial
variability between both catchments observed by GRACE. As the models were calibrated
for the Ourthe at Tabreux and parameter sets were transferred to the Semois upstream
of Membre-Pont, the forcing data is the main difference to explain the modeled spatial
variability.

The models are also able to represent the observed temporal dynamics of total stor-
age anomalies, as suggested by Spearman rank correlation coefficients ranging between
0.62 and 0.80 for the Ourthe upstream of Tabreux (Fig. 5.7d). There is, however, no
relation between the Spearman rank correlations of the anomalies and the total mod-
eled storage range (difference between maximum and minimum values), as shown in
Fig. 5.7d. PRESAGES, WALRUS, VHM and dS2 have the largest ranges of total modeled
storage, varying between 260 and 280 mm and are also characterized by a relatively large
root-zone storage capacities (PRESAGES and VHM) or no separate root zone (WALRUS
and dS2), while the total storage range of all other models is between 200 and 220 mm.
The similarity in total storage range between most models is likely related to the iden-
tical forcing data and the similarity in the long-term partitioning of precipitation into
drainage and evaporation (Sect. 5.5.1). However, the absolute values of total storage dur-
ing a specific event or the partitioning in internal storage components may vary between
models (Sect. 5.5.3).
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(a)

(b) (c) (d)

Figure 5.7: (a) Total storage anomalies modeled by M5 and compared to GRACE for the Ourthe upstream
of Tabreux. The grey band shows the variability in total storage anomalies of the three processing centers.
(b) Range of GRACE total storage anomalies for the three processing centers for the Semois upstream of
Membre-Pont compared to the Ourthe upstream of Tabreux for the period 2001–2017. (c) Modeled total stor-
age anomalies for both catchments. (d) Spearman rank correlations between GRACE and modeled total stor-
age anomalies as a function of the range of modeled total storage for the Ourthe upstream of Tabreux.

5.5.3 INTERACTIONS BETWEEN STORAGE AND FLUXES DURING DRY PERI-
ODS

As previously seen in Fig. 5.6a, the relative root-zone soil moisture content of the GR4H
model is always above 0.2 for the three years for which SCATSAR-SWI1km data are avail-
able, as opposed to M5 which fully dries out for some time during the summers of 2015–
2017. The Normalized Difference Vegetation Index of MODIS (NDVI, Didan, 2015a,b)
also does not show a sharp decrease during these periods (Fig. 5.8a,b). Actual evapo-
ration in M5 is strongly reduced during these dry soil moisture periods unlike GR4H,
as shown in Fig. 5.8c,d. When zooming into the dry period around September 2016,
Fig. 5.8e,f shows median relative root-zone soil moisture in GR4H of ∼0.24 versus ∼0.01
for M5, while SCATSAR-SWI1km has a higher median value of ∼0.55 (for both optimal
T -values of 20 and 40 days). The dryness of root-zone soil moisture in M5 leads to
median daily evaporation of 0.8 mm d−1 against 1.3 mm d−1 for GR4H and prolonged
periods of almost zero evaporation in M5 (e.g. 31/08–03/09, 09/09–15/09 and 22/09–
30/09), while this neither occurs in GR4H nor in GLEAM actual evaporation, as shown in
Fig. 5.8g,h. Despite the high streamflow performance of model M5 (Fig. 5.3, Table 5.2),
it is unlikely that transpiration is reduced to almost zero for several days in a row each
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summer in a catchment where approximately half of the area is covered by forests. This
is also not supported by the remote-sensing data of soil moisture, NDVI and evaporation.
High streamflow performances, therefore, do not warrant the plausibility of internal pro-
cess representation. Despite the dried-out root-zone storage in M5, there is still water
available in the slow storage to sustain a baseflow close to observed values, as shown
in Fig. 5.8j,l. The streamflow responses of GR4H and M5 are both close to observations
(Fig. 5.8i,j) in spite of differences in storage and evaporation, suggesting different inter-
nal process representations for a similar aggregated streamflow response during a low
flow period.

5.5.4 PLAUSIBILITY OF PROCESS REPRESENTATIONS

The models are ranked and evaluated for a selection of criteria using observed stream-
flow, remote-sensing data and expert knowledge (Fig. 5.9). All models deviate less than
±6 % from observed median annual streamflow (Fig. 5.9a), which is less than the esti-
mated uncertainty of 11 % (Sect. 5.3.3). In contrast, the modeled flashiness and base-
flow indices of most models deviate more than the estimated uncertainty (Fig. 5.9b,c).
FLEX-Topo is the only model with a clear overestimation of the flashiness index, which
relates to the calibration aim of having a flashy model to reproduce small summer peaks
(de Boer-Euser et al., 2017).

Modeled median annual total actual evaporation deviates by approximately -10 %
from GLEAM estimates, except for the +22 % overestimation of the VHM model due to
the issue of the unclosed water balance, as shown in Fig. 5.9d. These results are con-
sistent with the evaluation study of GLEAM compared to other evaporation products
(Miralles et al., 2016) which reports higher than average values for GLEAM in Europe
(∼+10 % at our latitude).

Four models explicitly account for interception with a separate module. Median an-
nual interception rates deviate substantially from GLEAM estimates (-47 % to +80 %) as
shown in Fig. 5.9e. There is a high uncertainty in the partitioning of evaporation into
different components in evaporation products and GLEAM likely underestimates inter-
ception rates (Miralles et al., 2016; Zhong et al., 2020). Therefore, we consider a large
uncertainty of +50 % to evaluate and rank the models. The GR4H interception is lower
than GLEAM estimates. However, an interception storage was recently included in an
hourly GR model (GR5H), to better represent the interception processes (Ficchì et al.,
2019; Thirel et al., 2020).

All models substantially underestimate the number of days when snow is observed
by MODIS at the catchment scale for all valid MODIS observations (cloud cover < 40 %
and excluding summer months), as shown in Fig. 5.9f. Yet, we estimate a low uncertainty
of less than 2 % around this number (Sect. 5.3.3). The NAM, M4 and M5 models are clos-
est to MODIS estimates, but they are characterized by high false alarm rates (Fig. 5.5d),
which implies a mismatch in the modeled and observed days with snow for valid MODIS
observations. Based on expert knowledge (Royal Meteorological Institute Belgium, 2015)
and the trade-off between miss rate and false discovery rate (Fig. 5.5d,e), we expect the
annual number of days with snow storage to be between 28 and 62 days yr−1 as modeled
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Figure 5.8: (a,b) Modeled relative root-zone soil moisture SR, SCATSAR-SWI1km Soil Water Index with optimal
T -value and NDVI for the period 2015–2017 for GR4H (yellow) and M5 (orange) respectively. The error bars
and bands show the standard deviation of the remote-sensing data within the catchment area. (c,d) Actual
evaporation EA by GR4H and M5 for the period 2015–2017, showing a large reduction of evaporation during
summer for M5 unlike GR4H and GLEAM actual evaporation. (e,f ) Zoomed-in modeled SR and SCATSAR-
SWI1km root-zone soil moisture for the grey shaded period of September 2016 in (a,b,c,d). (g,h) Potential,
modeled and GLEAM actual evaporation, (i,j) Modeled and observed streamflow Q, (k,l) Total storage ST for
the September 2016 dry period. The narrow uncertainty band of the GR4H model is related to its converging
parameter search method.

by wflow_hbv, WALRUS, FLEX-Topo and GR4H, whereas the ∼90 days yr−1 of NAM, M4
and M5 seems too high.

The FLEX-Topo and M2 to M5 models are characterized by an empty root-zone stor-
age for approximately 10 days yr−1 (SR < 1 %) as shown in Fig. 5.9g. These models have
in common that evaporation from the root-zone occurs at potential rate and is not (or
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hardly) reduced when soils are becoming dry until the point where the storage is empty.
This is the case for models with very low or absence of the evaporation reduction pa-
rameter LP. This behavior is not supported by the remote-sensing data of evaporation,
soil moisture and NDVI (Sect. 5.5.3), nor by theory on root water uptake reduction under
dry conditions (Feddes et al., 1978). The additional slow groundwater reservoir added
in model M5 compared to M2-M4 leads to a smaller root-zone storage capacity as the
available storage is partitioned into the root-zone storage and the additional groundwa-
ter store. The smaller root-zone storage capacity of model M5 exacerbates the number
of annual days with empty storage. This highlights the complex interactions in internal
dynamics even in parsimonious lumped models with similar mean annual streamflow
performance.

Catchments with relatively large root-zone storage capacities underestimate GRACE
estimates of very dry storage anomalies most (Figs. 5.6 and 5.9h). The uncertainty of
GRACE is represented by the estimates of the three processing centers and the ∼18 mm
uncertainty estimate mentioned in Sect. 5.3.3. FLEX-Topo has a low root-zone stor-
age capacity and is the only model which overestimates the very dry storage anomalies.
Models with root-zone storage capacities of around 110 mm to 150 mm show the most
consistent behavior with GRACE estimates of very dry storage anomalies.

5.6 DISCUSSION

5.6.1 IMPLICATIONS

While streamflow alone may be used to evaluate hydrological models, we subsequently
use these models to understand internal states and fluxes in current and future condi-
tions (Alcamo et al., 2003; Hagemann et al., 2013; Beck et al., 2017) or to make opera-
tional streamflow predictions (e.g. HBV and GR types of models are used by the Dutch
and French forecasting services). Our findings show that similar streamflow responses
obtained by models calibrated according to an identical protocol rely on different inter-
nal process representations. While not unexpected, it implies that we might get the right
answers but for the wrong reasons (Kirchner, 2006), as these models cannot at the same
time all be right and different from each other (Beven, 2006).

Almost all models show a similar long-term partitioning of precipitation into drainage
and evaporation, as they are forced and constrained by the same data, also leading to
relatively similar volumes of total storage. However, the partitioning of total storage in
several internal storage components differs between models, resulting in distinct runoff
responses as expressed by the baseflow and flashiness indices.

None of the models is systematically consistent with the information available from
streamflow observations, remote-sensing data and expert knowledge. However, some
processes either play a limited role on the overall water balance or can be compen-
sated by other processes. Snow occurs every year but is not a major component of the
streamflow regime (de Wit et al., 2007), interception evaporation can be compensated
by root-zone evaporation, and very dry periods only occur for several weeks per year
when streamflow is already very low. There is also a large uncertainty in each of the data
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Figure 5.9: Ranking and evaluation of model behavior for a selection of criteria based on observed streamflow,
remote-sensing data and expert knowledge. The grey shaded areas are soft indications of more plausible be-
havior based on uncertainty estimates and expert knowledge. Model ranks as a function of the: (a) deviation
from observed median annual streamflow; (b) deviation from the flashiness index If; (c) deviation from the
baseflow index Ib; (d) deviation from median annual GLEAM actual evaporation; (e) deviation from median
annual GLEAM interception for models with a separate interception module; (f ) number of days with snow
cover for valid MODIS observations between 2001-2017, for models with a snow module; (g) annual number
of days when the root-zone storage is dry (filled with less than 1 % of its capacity); (h) deviation from the 1st

percentile of GRACE total storage anomalies for the three centers. The error bars show the 25-75th range across
the ensemble of feasible parameter sets. Results are for the Ourthe catchment upstream of Tabreux, except for
the snow analysis.
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sources, which makes us reluctant to use them to determine hard thresholds to reject
models. Instead, we ranked the models for a selection of "soft" criteria and found that
NAM, wflow_hbv and PRESAGES are overall most consistent with the evaluation data,
with median ranks of 2-3. While an overall ranking may be useful for practitioners, mod-
elers benefit more from the specific ranking for each criterion to detect specific model
deficiencies that could be improved in the model structure. An overall ranking is only a
mere indication, which should be interpreted carefully due to uncertainty in the evalua-
tion data and the applied calibration strategy.

The presence of interception or a slow storage (absent in M2-M4 but added in M5)
affects the representation of other internal processes, including transpiration and/or
root-zone soil moisture, implying that individual internal model components are altered
by the presence/absence of other potentially compensating processes. Adding an addi-
tional internal model component changes the internal representation of water storage
and fluxes through the system, which should be kept in mind if model parameters were
to be fixed in alternative model structures. Furthermore, model improvements through
additional process components and/or adapted parameterization should not only be
evaluated in terms of the aggregated response, but also in the partitioning of fluxes and
storages through the system (e.g. does the groundwater component improve the base-
flow index at the expense of the availability of root-zone soil moisture during dry peri-
ods?). Models should be confronted with expert knowledge, e.g. on the occurrence of
days with water stress or snow storage, to assess the plausibility of internal states and
fluxes (Gharari et al., 2014; Hrachowitz et al., 2014; van Emmerik et al., 2015).

Applying these models to a future, more extreme climate in the same region might
lead to contrasting insights regarding impacts of climate change, as also shown by stud-
ies of Hagemann et al. (2013), Melsen et al. (2018) and de Niel et al. (2019) in which model
structures may lead to different signs of change of mean streamflow. Using one model
or the other to assess the effect of rising temperatures on snow could lead to very dif-
ferent timescales of snow storage decline. Vegetation already experiences more intense
water stress in some models compared to others and this would be exacerbated in more
extreme drought scenarios (Melsen and Guse, 2019). More intense precipitation events
could affect interception evaporation and therefore water availability in the root-zone
differently from one model to another. Beyond model structure, the experience each
modeler has with its model and associated calibration procedure to constrain model pa-
rameters may also impact the simulation results (Melsen et al., 2019).

Our findings should, therefore, encourage modelers to use multiple data sources for
model calibration and evaluation, as already suggested by many other studies (Samaniego
et al., 2010; Rakovec et al., 2016a; Koch et al., 2018; Stisen et al., 2018; Nijzink et al., 2018;
Veldkamp et al., 2018; Dembélé et al., 2020). Remote-sensing estimates of soil moisture,
evaporation and total storage anomalies are available at the global scale and in spite of
potential biases with models, the temporal dynamics are useful to constrain our mod-
els (McCabe et al., 2017; Sheffield et al., 2018). Additionally, it seems essential to sup-
port decision-makers by studies relying on multi-model and multi-parameter systems,
as also suggested by Haddeland et al. (2011) and Schewe et al. (2014), to reveal uncer-
tainties inherent to the heterogeneous hydrological world (Beven, 2006; Savenije, 2010;
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Samaniego et al., 2010; Hrachowitz and Clark, 2017).

This study is the result of a joint research effort of scientists and practitioners gath-
ering each year in Liège at the International Meuse Symposium to exchange interdisci-
plinary and intersectoral knowledge related to the Meuse basin. Although coordination
of large international teams may be challenging, international studies favor a close col-
laboration between scientists and practitioners that can learn from each other to accel-
erate modeling advances (Archfield et al., 2015). Another advantage of comparing mod-
eling results of several research groups is to quickly detect small mistakes in the model-
ing process, including shifts in the time series or using forcing data of one catchment to
model another catchment. While hydrograph characteristics were the main focus of the
previous study (de Boer-Euser et al., 2017), we gain distinct insights on the plausibility of
model behavior by evaluating additional facets of internal process representation using
remote-sensing data.

5.6.2 LIMITATIONS AND KNOWLEDGE GAPS

Many aspects of the hydrological response remain unknown and can hardly be evaluated
against observations. While in-situ observations of snow, evaporation or soil moisture
are rarely available at sufficient spatio-temporal scale, remote-sensing estimates have
the advantage of high spatial resolution and worldwide spatial coverage, though they
often rely on models themselves and are affected by high and often unknown uncer-
tainty. Comparing models with these independent observations is valuable to evaluate
their consistency and detect outliers. However, these observations cannot be consid-
ered as representative of the truth as they rely on many assumptions themselves, hinder-
ing "real" hypotheses testing. The ratio of actual over potential evaporation as a result
of water stress at the catchment scale, therefore, remains highly uncertain (Coenders-
Gerrits et al., 2014; Mianabadi et al., 2019). While areal fractions of snow cover can be
estimated by MODIS, the presence of clouds limits the usability of the data and knowl-
edge of catchment-scale snow water equivalent is lacking. If remote-sensing estimates
of near-surface relative soil moisture are available, root-zone water content remains un-
certain and while GRACE provides estimates of total storage anomalies, we lack knowl-
edge on absolute total water storage. The spatial variability and the temporal dynamics
of these remote-sensing products provide useful, additional, independent information
to understand the hydrological puzzle, but certainly not all the answers to evaluate the
states typically included in process-based models. Measurements are, therefore, of cru-
cial importance to increase our understanding of hydrological processes at the catch-
ment scale, which in turn will improve the quality of remote-sensing products and model
development (Vidon, 2015; Burt, T. P., McDonnell, 2015; van Emmerik et al., 2018).

The evaluation of model behavior is conditional on the calibration procedure, which
was freely chosen by the individual contributing institutes. The use of different or more
calibration objectives and in-depth uncertainty estimation (Beven and Binley, 1992) may
have resulted in different conclusions in terms of the plausibility of the behavior of each
model.

We performed a thorough analysis of twelve models, five variables and three catch-
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ments. We deliberately chose to limit the number of study catchments to balance depth
with breadth, allowing us to dive into process-relevant insights.

5.7 CONCLUSIONS

Similar streamflow performance of process-based models, calibrated following an iden-
tical protocol, relies on different internal process representations. Most models are rel-
atively similar in terms of the long-term partitioning of precipitation into drainage and
evaporation. However, the partitioning between transpiration and interception, snow
processes and the representation of root-zone soil moisture varies significantly between
models, suggesting variability of water storage and release through the catchment. The
comparison of modeled states and fluxes with remote-sensing estimates of evaporation,
root-zone soil moisture and vegetation indices suggests that models with relatively small
root-zone storage capacities and without reduction in root water uptake during dry con-
ditions lead to unrealistic drying-out of the root-zone storage and significant reduction
of evaporative fluxes each summer. Expert knowledge in combination with remote-
sensing data further allows us to "softly" evaluate the plausibility of model behavior by
ranking them for a set of criteria. Even if none of the models is systematically consis-
tent with the available data, we did not formally reject specific models due to the uncer-
tainty in the evaluation data and their changing relevance for the studied catchments.
The dissimilarity in internal process representations between models implies that they
are not necessarily providing the right answers for the right reasons, as they cannot si-
multaneously be close to reality and different from each other. While the consequences
for streamflow may be limited for the historical data, the differences may exacerbate for
more extreme conditions or climate change scenarios. Considering the uncertainty of
process representation behind the scenes of streamflow performance and our lack of
knowledge and observations on these internal processes, we invite modelers to evaluate
their models using multiple variables, we encourage more experimental research, and
highlight the value of multi-model multi-parameter studies to support decision making.
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Table 5.1: Description of symbols used for fluxes, storages and parameters in Tables 5.2 and 5.3

Symbol unit Description

Fluxes
EP mm h−1 Potential evaporation
EI mm h−1 Interception evaporation
ER mm h−1 Transpiration and soil evaporation
EW mm h−1 Sublimation
EA mm h−1 Total actual evaporation (sum of soil evaporation, transpiration, (separate)

interception and, if applicable, sublimation)
P mm h−1 Precipitation
PR mm h−1 Precipitation entering the root-zone storage (after snow and/or interception

if present or fraction/total precipitation)
Q mm h−1 Streamflow
QR mm h−1 Flux from root-zone to fast and/or slow runoff storage
QP mm h−1 Percolation flux from root-zone storage to slow runoff storage
QC mm h−1 Capillary flux from slow runoff storage to root-zone storage
QG mm h−1 Seepage (up/down) / extraction
Storages

ST mm Total storage
SW mm Snow storage
SI mm Interception storage
SR mm Root-zone storage
SR - Relative root-zone storage (SR/SR,max)
SD mm Storage deficit
SVQ mm Very quick runoff storage
SF mm Fast runoff storage
SS mm Slow runoff storage
SSW mm Surface water storage
Parameters
CE - Correction factor for EP

Imax mm Maximum interception capacity
SR,max mm Maximum root-zone storage capacity
Sthresh mm Threshold of root-zone storage above which ER = EP

LP - Threshold of relative root-zone storage above which ER = EP

Ccst - Constant water stress coefficient to estimate ER

a, b, S0 - Parameters describing the shape of the streamflow sensitivity
aS - Fraction of land surface covered by surface water
aG - Fraction of land surface not covered by surface water
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Table 5.2: Number of calibrated model parameters, spatial distribution, and model performance calculated
for the period 2008–2017 with the Euclidean distance where a value of 0 would indicate a perfect model. Main
characteristics describing snow storage, root-zone storage and total storage per model. Notations are defined
in Table 5.1.
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Number of calibrated parameters 4 9 12 9 4 7 6 5 6 20 12 3
Lumped (L) / Semi-distributed (S) / Distributed (D) L L L D L L L L L S L L

Euclidean distance
√

(1−ENS,Q)2 + (1−ENS,logQ)2 0.17 0.18 0.18 0.20 0.21 0.23 0.23 0.24 0.24 0.26 0.26 0.34

Snow storage SW (compared to MODIS snow cover)

Snow module X X X X - X - - - X - X
Degree-hour method X X X X - X - - - X - X
Elevation zones X - - X - - - - - X - -
Temperature interval for rainfall and snow X - - X - - - - - X - X
Melt factor constant in time - X - X - X - - - X - X
Melt factor ∼ snow storage X - X - - - - - - - - -
Refreezing of liquid water - - X X - - - - - - - -
Sublimation - - - - - - - - - X - -
Calibration snow parameters - X X - - X - - - X - -

Root-zone storage SR (compared to SCATSAR-SWI1km Soil Water Index)

Separate root-zone module with capacity SR,max X X X X - X X X X X X -
dSR
dt = PR −ER - - - - - - - - - - X -

dSR
dt = PR −ER +QC - - X - - - - - - - - -

dSR
dt = PR −ER −QR X X - X - X X X X - - -

dSR
dt = PR −ER −QR −QP +QC - - - - - - - - - X - -

Total storage ST (anomalies are compared to GRACE total storage anomalies)

ST =−SD ·aG +SF ·aG +SSW ·aS - - - - - - - - - - - X
ST(Q) = 1

a
1

1−b ·Q1−b +S0 - - - - X - - - - - - -
ST = SR +SF - - - - - - X X - - - -
ST = SW +SR +SF - - - - - X - - - - - -
ST = SW +SR +SF +SS - X - - - - - - - - - -
ST = SR +SVQ +SF +SS - - - - - - - - X - X -
ST = SW +SR +SVQ +SF +SS X - - - - - - - - - - -
ST = SI +SW +SR +SF +SS - - - X - - - - - - - -
ST = SI +SW +SR +SVQ +SF +SS - - X - - - - - - X - -
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Table 5.3: Main characteristics describing evaporation processes per model (with X1 indicates LP = 1 and X2

indicates EI = 0). Notations are defined in Table 5.1.
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Correction factor for potential evaporation - X - - - X X X - - - -

Interception evaporation EI X - X X - - - - - X - -
Maximum interception storage Imax - - X X - - - - - X - -
Imax ∼ 1.1−3.4 mm - - - - - - - - - X - -
Imax ∼ 1.4−2.9 mm - - - X - - - - - - - -
Imax ∼ 5.3−6.9 mm - - X - - - - - - - - -

EI =
{

EP, if SI > 0.

0, otherwise.
- - X X - - - - - X - -

EI =
{

EP, if P > EP.

P, otherwise.
X - - - - - - - - - - -

Transpiration and soil evaporation ER X X X X X X X X X X X X
ER = EP ·Ccst - - - - X - - - - - - -

ER = EP · SR·(2−SR)
1+EP/SR,max·(2−SR)

X - - - - - - - X - - -

ER = EP ·CE · SR·(1+m1)
SR+m1

, with m1 = 10−2 - X - - - X X X - - - -

ER =
{

(EP −EI) · SR
LP

, if SR < LP .

EP −EI, otherwise.
- - X1 X - - - - - X X2 -

ER = EP · f(Sd) - - - - - - - - - - - X

Total actual evaporation EA X X X X X X X X X X X X
EA = ER - X - - X X X X X - X X
EA = ER +EI X - X X - - - - - - - -
EA = ER +EI +EW - - - - - - - - - X - -
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ADAPTING ECOSYSTEMS: TESTING

THE IMPACT OF TIME-VARIANT

HYDROLOGICAL MODELS IN

RESPONSE TO CLIMATE CHANGE

Hij zegt dat de toekomst belangrijker is omdat die nog moet komen, zodat je daar nog iets
aan kunt doen.

Ilja Leonard Pfeijffer - Grand Hotel Europa (2018)

In the previous chapters, in-situ and remote-sensing data are used to increase our un-
derstanding of hydrological behavior for historical conditions. If predicting present-day
hydrological functioning is already challenging, it is even more so under changing envi-
ronmental conditions. Ecosystems are likely to adapt in response to climate change and
other species might become dominant, both under natural and anthropogenic influence.
In this chapter, we introduce non-stationarity in the representation of hydrological sys-
tems for a long-term projection of global warming. Using the projected changes in magni-
tude and seasonality of hydro-climatic variables, we test the sensitivity of the hydrological
response to adapting the root-zone storage capacity parameter in a process-based hydro-
logical model and changing dominant land-use characteristics by trading space-for-time.

Parts of this chapter are in review in Hydrology and Earth System Sciences Discussions (Bouaziz et al., 2021)
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SUMMARY

To predict future hydrological behavior in a changing world, often use is made of models
calibrated on the past, disregarding that hydrological systems, hence model parameters,
will change as well. Yet, ecosystems likely adjust their root-zone storage capacity, which
is the key parameter of any hydrological system, in response to climate change. In ad-
dition, other species might become dominant, both under natural and anthropogenic
influence. In this study, we propose a top-down approach, which directly uses projected
climate data to estimate how vegetation adapts its root-zone storage capacity at the
catchment scale in response to changes in magnitude and seasonality of hydro-climatic
variables. Additionally, the Budyko characteristics of different dominant ecosystems in
sub-catchments are used to simulate the hydrological behavior of potential future land-
use change, in a space-for-time exchange. We hypothesize that changes in the predicted
hydrological response as a result of 2K global warming are more pronounced when ex-
plicitly considering changes in the sub-surface system properties induced by vegetation
adaptation to changing environmental conditions. We test our hypothesis in the Meuse
basin in four scenarios designed to predict the hydrological response to 2K global warm-
ing in comparison to current-day conditions using a process-based hydrological model
with (a) a stationary system, i.e. no changes in the root-zone storage capacity of veg-
etation and historical land use, (b) an adapted root-zone storage capacity in response
to a changing climate but with historical land use, and (c,d) an adapted root-zone stor-
age capacity considering two hypothetical changes in land use from coniferous planta-
tions/agriculture towards broadleaved forest and vice-versa. We found that the larger
root-zone storage capacities (+34 %) in response to a more pronounced seasonality with
drier summers under 2K global warming strongly alter seasonal patterns of the hydro-
logical response, with an overall increase in mean annual evaporation (+4 %), a decrease
in recharge (-6 %) and a decrease in streamflow (-7 %), compared to predictions with a
stationary system. By integrating a time-dynamic representation of changing vegetation
properties in hydrological models, we move towards more reliable hydrological predic-
tions under change.



6.1. INTRODUCTION

6

105

6.1 INTRODUCTION

Hydrological models are required to provide robust short-term hydrological forecasts
and long-term predictions of the impact of natural and human-induced change on the
hydrological response. Common practice is to predict the future using a hydrological
model calibrated to the past (Vaze et al., 2010; Blöschl and Montanari, 2010; Peel and
Blöschl, 2011; Coron, 2013; Seibert and van Meerveld, 2016). For the near future, it seems
acceptable to assume no fundamental change in the hydrological system, although we
know that ecosystems, the manager of the hydrological system, have the capacity to
adapt to climatic change (Savenije and Hrachowitz, 2017). For longer term predictions,
it is therefore not correct to assume an unchanged system within a changing world. This
raises the question on the robustness of hydrological predictions, especially in the con-
text of climate change (Coron et al., 2012).

For example, Merz et al. (2011) clearly shows the non-stationarity of hydrological
model parameters when calibrating 273 Austrian catchments in subsequent 5-years pe-
riods between 1976 and 2006. Being the core parameter of any hydrological system, Merz
et al. (2011) report almost a doubling of the root-zone storage capacity and this grad-
ual increase is assumed to be related to changing climatic conditions, such as increased
evaporation and drier conditions in the more recent years. The temporal variability of
model parameters could also be attributed to uncertainties in input and model structure
or inadequate calibration strategies. However, the observed trends in model parameters
are also likely to reflect transient catchment conditions over the historical period.

Under continued global warming, precipitation and temperature extremes are ex-
pected to further increase and the hydrological cycle is likely to further accelerate (Allen
et al., 2010; Kovats et al., 2014). In addition, natural land cover change and anthro-
pogenic activities of land-cover change and land-use management can substantially al-
ter a catchment’s water balance (Brown et al., 2005; Wagener, 2007; Fenicia et al., 2009;
Jaramillo and Destouni, 2014; Nijzink et al., 2016b; Hrachowitz et al., 2020; Levia et al.,
2020). Considering the unprecedented speed of change, Milly et al. (2008) declared that
stationarity is dead and no longer should serve as a default assumption in water man-
agement. He advocates the development of methods that quantify the non-stationarity
of relevant hydrological variables.

However, understanding and representing non-stationarity is challenging due to the
complex interactions and associated feedback between climate, vegetation, soils, ecosys-
tems and humans (Seibert and van Meerveld, 2016). The main methods to understand
how changes in hydrological functioning relate to changes in catchment characteristics
rely on paired watershed studies and hydrological modeling (Andréassian et al., 2003).
In many modeling studies, a selection of one or more parameters are changed using
values from literature in combination with adapted land-cover maps to (partly) reflect
the characteristics of the altered system (Mao and Cherkauer, 2009; Buytaert and Beven,
2009; Pomeroy et al., 2012; Gao et al., 2015). Alternatively, Duethmann et al. (2020) uses
satellite observations of vegetation indices to improve the representation of the surface
resistance dynamics to calculate reference evaporation used in conceptual hydrological
models over a historical record. A similar approach is applied by Fenicia et al. (2009) to



6

106
6. ADAPTING ECOSYSTEMS: TESTING THE IMPACT OF TIME-VARIANT HYDROLOGICAL

MODELS IN RESPONSE TO CLIMATE CHANGE

account for changes in evaporation as a result of land-use management changes in the
Meuse basin.

While these approaches are valuable to test the sensitivity of change on the hydro-
logical response (Seibert and van Meerveld, 2016), they require an understanding of how
catchment characteristics relate to model parameters. Yet, there is considerable uncer-
tainty in a priori parameter estimation and the use of regionalization approaches (Wa-
gener, 2007). Besides, the required data (e.g. future land-use maps or vegetation indices)
may not be available in the context of climate change impact assessment (Duethmann
et al., 2020). Instead, a way forward may be to develop robust top-down modeling ap-
proaches based on optimality principles by considering the co-evolution of soils, vege-
tation and climate in a holistic way (Blöschl and Montanari, 2010).

As complex and heterogeneous as landscapes may be across a diversity of climates,
the long-term hydrological partitioning of a catchment is governed by a surprisingly sim-
ple and predictable relation, which relies on the available water and energy for evapo-
ration (Turc, 1954; Mezentsev, 1955; Budyko, 1961; Fu, 1981; Zhang et al., 2004). The
Budyko hypothesis, as often referred to, describes that mean annual evaporation over
precipitation (EA/P ) is mainly controlled by the aridity index, defined as the ratio of
mean annual potential evaporation over precipitation (EP/P ). However, Troch et al.
(2013) found catchments to deviate from the Budyko hypothesis when exchanging cli-
mates across different catchments in a modeling experiment. Their results suggest that
long-term hydrological partitioning results from the co-evolution of catchment prop-
erties and climate characteristics, including not only the aridity index but also climate
seasonality, topography, vegetation and soils.

The combination of these other factors influencing the water balance partitioning
besides the aridity index are explicitly considered in the ω parameter of the parametric
description of the Budyko hypothesis (Fu, 1981; Zhang et al., 2004). Deviations from the
Budyko curve suggest that different vegetation develops in different climates, along a
different ω curve. If climate changes, catchments are likely not only to shift horizontally
in the Budyko space as a result of a changing aridity index, but also vertically as a result
of a changing vegetation cover (Jaramillo and Destouni, 2014). Vertical shifts within the
Budyko space can also be related to vegetation-CO2 interactions, e.g. CO2 fertilization
and improved water-use efficiency as a result of increasing CO2 levels (Keenan et al.,
2013; van der Velde et al., 2014; van Der Sleen et al., 2015; Ukkola et al., 2016; Jaramillo
et al., 2018).

The interdependence of climate seasonality, aridity index and vegetation to match
the expectation from the Budyko curve was also demonstrated by Gentine et al. (2012);
Donohue et al. (2012). Vegetation tends to efficiently adapt its root-zone storage capac-
ity to satisfy canopy water demand. This implies that vegetation creates a larger buffer
to survive dry spells when seasonal water supply and demand are out of phase, than in
a climate where demand and supply are in phase (Milly, 1994; Schymanski et al., 2008;
Gerrits et al., 2009; Gentine et al., 2012; Gao et al., 2014). The root-zone storage capacity
is, therefore, the key element regulating the partitioning of water fluxes in many terres-
trial hydrological systems. In addition, not only natural changes to the environment, but
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also human interference with vegetation affect transpiration water demand and hence
the root-zone storage capacity (Nijzink et al., 2016b; Hrachowitz et al., 2020).

Detailed observations of rooting-systems are very scarce in time and space and dif-
ficult to integrate to the catchment scale due to heterogeneity of landscapes (de Boer-
Euser et al., 2016; Hrachowitz et al., 2020). Instead, the catchment-scale root-zone stor-
age capacity is often estimated through calibration of a hydrological model. Other meth-
ods rely on optimality principles that maximize net primary production or carbon gain
(Kleidon, 2004; Guswa, 2008; Speich et al., 2018). Alternatively, there is increasing evi-
dence that the catchment-scale root-zone storage capacity can be robustly and directly
estimated from annual water deficits using water balance data (Gao et al., 2014; de Boer-
Euser et al., 2016; Wang-Erlandsson et al., 2016; Nijzink et al., 2016b; Bouaziz et al., 2020;
Hrachowitz et al., 2020). However, it remains unclear how vegetation may adapt its root-
zone storage capacity to climate change and how these changes affect future hydrologi-
cal behavior.

The objective of this study in the Meuse basin (Western Europe) is to quantify the
sensitivity of the hydrological response to potential changes in the root-zone storage
capacity of vegetation in combination with land-use changes as a result of 2K global
warming. Using the Budyko framework, we first estimate changes in the long-term hy-
drological partitioning. To evaluate the effect of land-use change under future condi-
tions, we exchange space-for-time by connecting the spatially variable ω parameter of
the Budyko curve to different land uses. We then use water balance data to estimate how
the root-zone storage capacity may adapt to increasing seasonal water deficits under
climate change.

We hypothesize that changes in the predicted hydrological response as a result of 2K
global warming in comparison to current-day conditions are more pronounced when
explicitly considering an adapted root-zone storage capacity to reflect changes in the
magnitude and seasonality of hydro-climatic variables as well as potential land-use changes.
We test our hypothesis using a process-based hydrological model and compare the dif-
ference in hydrological response when assuming (a) a stationary system without changes
in the root-zone storage capacity and historical land use, with three non-stationary sys-
tems involving (b) an adapted root-zone storage capacity in response to climate change
but no changes in land use, and (c,d) an adapted root-zone storage capacity and two
hypothetical land-use change scenarios.

6.2 STUDY AREA

The study is performed in the Meuse basin upstream of Borgharen (Fig. 6.1). The forests
in the French part of the basin are mainly characterized as "old growth", here defined
as forested area which has been continuously wooded since at least the middle of the
19th century (Cateau et al., 2015). These broadleaved forests consist primarily of Euro-
pean Oak, Sessile Oak and Beech (Institut National de l’Information Géographique et
Forestière, 2019). In contrast, only 44 % of the 18th century Walloon forests of Belgium
has remained from the original broadleaved forest, the rest being cleared for agriculture
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on high fertility soils in the North West (30 %) or converted to coniferous plantations
(Scots pine, Norway spruce and Douglas-fir) on the poor soils of the Ardennes (26 %,
Kervyn et al., 2018). The status of "old growth" forest does not exclude human distur-
bances, but assumes a relatively limited impact. Soils are less disturbed and their struc-
ture and biochemical composition have been preserved for several centuries. This favors
a high degree of biodiversity, which is a key element for the resilience of forest ecosys-
tems to perturbations. In contrast, recent short-rotation plantations lack many of these
characteristics. Particularly thick canopy plantations, such as the spruce and Douglas-
fir, significantly alter the typical biodiversity of forests. Additionally, relatively higher
evaporation water use is expected in these recent, short-rotation exotic plantations in
comparison to older, more natural forests (Fenicia et al., 2009).

50 km

Percentage broadleaved forest
 25-38% 
 12-25%
 01-12%

(a)

(b)

(c)

Figure 6.1: (a) Location of the Meuse basin in northwestern Europe. (b) Elevation in the basin and categoriza-
tion of catchments according to their areal percentage of broadleaved forest. (c) Main land-use types according
to CORINE Land Cover (European Environment Agency, 2018).
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6.3 DATA

6.3.1 OBSERVED HISTORICAL E-OBS CLIMATE DATA

The E-OBS dataset (v20.0e) includes daily precipitation, temperature and radiation fields
for the period 1980-2018 at a 25 km2 resolution (Cornes et al., 2018). The data are based
on station data collated by the European Climate Assessment Dataset (ECA&D) ini-
tiative. Temperature is downscaled using the digital elevation model and a fixed lapse
rate of 0.0065◦C m−1. Potential evaporation is estimated using the Makkink formula
(Hooghart and Lablans, 1988). There is a relatively large underestimation of precipita-
tion (> 20 %) in the E-OBS dataset in the center of the basin when compared to an opera-
tional dataset, which is based on local precipitation data provided by the Service Public
de Wallonie for the period 2005-2017 (Bouaziz et al., 2020). A monthly bias-correction
factor is applied to improve the consistency between both datasets.

6.3.2 SIMULATED HISTORICAL AND 2K CLIMATE DATA

To study the impact of 2K global warming on the hydrological response of the Meuse
basin, we use climate simulations of the historical period 1979-2018 and a 2K global
warming simulation, provided by the Royal Netherlands Meteorological Institute (KNMI).
The simulations are generated with the regional climate model KNMI-RACMO2 (van
Meijgaard et al., 2008) at 12 km x 12 km resolution. RACMO2 uses the land surface
scheme HTESSEL (Balsamo et al., 2009), which employs four soil layers with a total depth
of 2.9 m. Each land-grid cell includes separate tiles for high and low vegetation (16 veg-
etation types), bare soil, snow and intercepted water, for which the energy and water
balances are solved individually.

The historical simulation uses ERA5 reanalysis data (Hersbach et al., 2020) as initial-
and lateral boundary conditions. The 2K simulation is a so-called pseudo-global warm-
ing (PGW) simulation (e.g. Schär et al., 1996; Attema et al., 2014; Prein et al., 2017; Brogli
et al., 2019), which is an alternative method to generate high-resolution climate change
information. Instead of downscaling global climate model (GCM) projections, the his-
torical period is re-simulated, but set against a warmer climate background by adding
perturbations to the ERA5 initial- and boundary conditions. The perturbations repre-
sent the change in the mean climate state in a globally 2K warmer world, derived from
a large initial condition GCM ensemble (Aalbers et al., 2018). The method minimizes
biases in the mean climate state of the historical simulation, guaranties a realistic at-
mospheric circulation under both historical and ‘future’ conditions and increases the
signal-to-noise ratio of the climate change response. A full description of the dataset is
provided in Aalbers et al. (2021).

6.3.3 STREAMFLOW

Streamflow data is available for 35 catchments nested within the Meuse basin upstream
of Borgharen for the period 2005-2017 (Fig. 6.1, Service Public de Wallonie, 2018; Banque
Hydro, 2018). The streamflow at Borgharen is a constructed time series which sums the
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observed streamflow of the Meuse at St Pieter and of the Albert Canal at Kanne to rep-
resent the total flow from the tributaries before part of it is extracted in the Albert Canal
(de Wit et al., 2007).

6.4 METHODS

To quantify the importance of reflecting ecosystem adaptation in hydrological models
in response to climate change, the following stepwise approach is designed: (1) esti-
mate the long-term runoff coefficient in a 2K warmer world from movements in the
Budyko space as a result of a shift in aridity index and a potential shift in dominant land-
use from broadleaved forests to coniferous plantation and agriculture and vice-versa by
trading space-for-time in the Meuse basin; (2) estimate how the root-zone storage capac-
ity adapts in response to a more pronounced seasonality with drier summers and chang-
ing dominant land use using the observed historical and estimated long-term runoff co-
efficient in a 2K warmer world with potential changes in land use; (3) calibrate a hydro-
logical model with observed historical E-OBS climate data to represent current-day hy-
drological conditions; (4) test if the historical climate data simulated by the regional cli-
mate model leads to a plausible representation of current-day hydrological conditions;
(5) run the hydrological model with the 2K climate data in four scenarios describing (a) a
stationary system with historical root-zone storage capacity and historical land use, (b)
an adapted root-zone storage capacity in response to a changing climate but a historical
land use, (c,d) an adapted root-zone storage capacity and a shift in dominant land use;
and finally (6) compare the change in hydrological response between 2K and historical
conditions for these four scenarios.

6.4.1 CHANGING CLIMATE, VEGETATION AND LAND USE

LONG-TERM WATER BALANCE FRAMEWORK FOR ESTIMATING THE CHANGE IN RUNOFF CO-
EFFICIENT

The long-term partitioning of precipitation (P ) into evaporation (EA) and streamflow
(Q) is mainly controlled by the long-term aridity index (ratio of potential evaporation
over precipitation, EP/P ), according to the Budyko hypothesis. To account for additional
factors that influence the long-term hydrological partitioning, Fu (1981) introduces a
parameter ω to encapsulate the combined influences of climate, soils, vegetation and
topography (Equation 6.1).

EA

P
= 1− Q

P
= 1+ EP

P
−

(
1+

(EP

P

)ω)1/ω
(6.1)

We solve Equation 6.1 to determine the value ofω for each of the 35 catchments of the
Meuse basin for observed historical conditions for the period 2005 to 2017 (ωobs), using
the meteorological E-OBS data (Pobs and EP,obs) and observed streamflow (Qobs). As-
suming only a change in long-term mean climate conditions, i.e. aridity index, a catch-
ment will move along its ωobs-parameterized curve from its original position (p1) to a
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new position (p2) due to the horizontal shift in aridity index (∆EP/∆P , Fig. 6.2a). Here,
we use the simulated historical and 2K climate data to determine how the change in
potential evaporation (∆EP = EP,2K − EP,hist) and precipitation (∆P = P2K − Phist) lead
to a change in aridity index (Equation 6.2) and therefore in actual evaporation (∆EA =
EA,2K −EA,hist) and streamflow (∆Q =Q2K −Qobs), using Equation 6.1.

(EP

P

)
2K

= EP,obs +∆EP

Pobs +∆P
(6.2)

However, land cover and vegetation are likely to also change in response to a chang-
ing climate, introducing an additional vertical shift (∆ω) toward a position (p3) on a dif-
ferent ωchange curve (Fig. 6.2a). A downward vertical shift from ωobs to ωchange indicates
less water use for evaporation, as opposed to an upward shift for higher evaporative wa-
ter use. These vertical shifts in ω-values represent changes in drivers other than aridity
index, including e.g. land cover, tree species, forest age, biomass growth and water use
efficiency (Jaramillo et al., 2018).

To test the sensitivity of the hydrological response to a change in ω in addition to a
change in aridity index, we consider two scenarios. The catchments with relatively high
percentages of broadleaved forests (25-38% as in the French part of the basin) receive the
ω-values of catchments with relatively low percentages of broadleaved forests (1-12% as
mainly in the Belgian Ardennes) and vice-versa (Fig. 6.1b). We denoteωbroadleaved for the
catchments with relatively high percentages of broadleaved forests andωconiferous for the
catchments where broadleaved forests were largely converted to coniferous plantations
or agriculture. These scenarios are meant as a sensitivity analysis in the spirit of trad-
ing space-for-time (Singh et al., 2011) to evaluate the effect of potential future land-use
management on the overall water balance.

When converting broadleaved forest to coniferous plantations, we expect an increase
in water use for evaporation and therefore a vertical upward shift inω-values, as opposed
to a downward shift when converting coniferous plantations to more natural broadleaved
forests. The described vertical and horizontal movements in the Budyko space are used
to estimate the projected long-term runoff coefficients ((Q/P )2K, Equation 6.3) as a re-
sult of, both, climate change but no changes in vegetation cover (ωobs), and climate
change in combination with changes in vegetation cover (by swapping ωbroadleaved val-
ues to ωconiferous for a selection of catchments and vice-versa). The projected runoff
coefficients are subsequently used to estimate changes in the root-zone storage capacity
parameter (Sect. 6.4.1).

(Q

P

)
2K,ω

= Qobs +∆Q

Pobs +∆P
=−

((EP

P

)
2K

−
(
1+

(EP

P

)ω
2K

)1/ω)
(6.3)



6

112
6. ADAPTING ECOSYSTEMS: TESTING THE IMPACT OF TIME-VARIANT HYDROLOGICAL

MODELS IN RESPONSE TO CLIMATE CHANGE

SEASONAL WATER BALANCE FOR ESTIMATING THE CHANGE IN ROOT-ZONE STORAGE CAPAC-
ITY SR,max

The root-zone storage capacity represents the maximum volume of water which can be
held in pores of unsaturated soil and which is accessible to roots of vegetation for tran-
spiration. It is a key element controlling the hydrological response of hydrological sys-
tems. The long-term partitioning of precipitation into streamflow and evaporation in
a changed climate can only match expectations as estimated from movements in the
Budyko space (Sect. 6.4.1) if we consider that vegetation has adapted its root-zone stor-
age capacity to offset hydro-climatic seasonality, by creating a buffer large enough to
overcome dry spells (Gentine et al., 2012; Donohue et al., 2012; Gao et al., 2014). This
is the main assumption underlying the water balance method to estimate the root-zone
storage capacity at the catchment scale (Gao et al., 2014; Nijzink et al., 2016b; de Boer-
Euser et al., 2016; Wang-Erlandsson et al., 2016; Bouaziz et al., 2020; Hrachowitz et al.,
2020).

The water balance method requires daily time series of precipitation, potential evap-
oration and a long-term runoff coefficient to estimate transpiration, as it depletes the
root-zone storage during dry spells. Annual water deficits (SR,def) stored in the root-zone
of vegetation to fulfill canopy water demand for transpiration are estimated on a daily
time step as the cumulative sum of daily effective precipitation (PE) minus transpiration
(ER).

First, effective precipitation, i.e. the amount of precipitation that reaches the soil
after interception evaporation (EI), is estimated by solving the water balance of a canopy
storage (SI) with maximum interception storage capacity (Imax, here taken as 2.0 mm),
according to Equation 6.4.

PE(t ) = P (t )−EI(t )− dSI(t )

dt
(6.4)

Next, the long-term transpiration E R is estimated from the long-term water balance,
using mean annual streamflow and effective precipitation (Q and P E, all in mm yr−1,
Equation 6.5), assuming negligible changes in storage and intercatchment groundwater
flows (catchments where E A = P −Q < E P).

E R ≈ P E −Q (6.5)

The long-term transpiration E R is subsequently scaled to daily transpiration esti-
mates ER, using the daily signal of potential evaporation minus interception evapora-
tion, according to Equation 6.6 (Nijzink et al., 2016b; Bouaziz et al., 2020).

ER(t ) = (EP(t )−EI(t )) · E R

(E P −E I)
(6.6)

The maximum annual storage deficits can then be derived from the cumulative dif-
ference of effective precipitation (PE) and transpiration (ER), assuming an "infinite" stor-
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age, according to Equation 6.7 and illustrated in Fig. 6.2b. For each year, SR,def represents
the amount of water accessible to the roots of vegetation for transpiration during a dry
period. Storage deficits are assumed to be zero at the end of the wet period (T0, here
April) and increase when transpiration exceeds effective precipitation during dry peri-
ods, until they become zero again (T1) when excess precipitation is assumed to drain
away as direct runoff or recharge.

SR,def(t ) = min
∫ T1

T0

(PE(t )−ER(t ))dt (6.7)

By fitting the annual maximum storage deficits to the extreme value distribution of
Gumbel, the root-zone storage capacity at the catchment scale SR,max can be derived for
various return periods. Previous studies used a return period of 20 years for forested ar-
eas, meaning that forests develop root systems to survive droughts with a return period
of ∼20 years (Nijzink et al., 2016b; de Boer-Euser et al., 2016; Hrachowitz et al., 2020).
The root-zone storage capacity of cropland and grasslands is assumed to correspond to
deficits with a lower return period of ∼2 years (Wang-Erlandsson et al., 2016). It should
be noted that the methodology assumes that vegetation taps its water from the unsatu-
rated zone and not from the groundwater.

Using the above described methodology, we determine several sets of SR,max values
for each of the 35 catchments of the Meuse basin to represent the historical and adapted
root-zone storage capacity in response to a changing climate and changing/historical
land use, using historical climate observations (E-OBS) and the historical and 2K climate
simulations (Table 6.1).

SR,max,A : HISTORICAL ROOT-ZONE STORAGE CAPACITY FROM HISTORICAL LAND USE AND

OBSERVED HISTORICAL CLIMATE

The first set is SR,max,A, which represents the historical meteorological and land-use con-
ditions, derived from observed historical E-OBS data (Pobs, EP,obs for the period 1980-
2018) and observed streamflow data (Qobs for the period 2005-2017). SR,max,A is used as
parameter for three model runs, each forced with a different dataset: historical E-OBS
observations, simulated historical and 2K climate data (Sect. 6.4.4).

In this study, we assume that the observed E-OBS historical climate data is the best
available estimate of current-day climate conditions and use this data to estimate histor-
ical root-zone storage capacities SR,max,A and to calibrate the hydrological model (Sect.
6.4.3). The simulated historical climate data is also required to enable a fair comparison
with the simulated 2K climate data, as they are both generated with the regional cli-
mate model. Despite potential biases in the climate model simulations compared to the
observed historical data (here, E-OBS), we do not apply a formal bias-correction of the
climate data which may alter the relations between variables in climate models (Ehret
et al., 2012). Instead, we force the hydrological model with the native simulated histor-
ical climate data, but use the previously determined SR,max,A parameter. An alternative
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approach would have been to estimate the root-zone storage capacities using the sim-
ulated historical climate data, to directly correct for potential biases in the climate data
in the estimation of the root-zone storage capacity parameter but with the downside of
affecting spatial patterns across catchments.

SR,max,B : ADAPTED ROOT-ZONE STORAGE CAPACITY FROM HISTORICAL LAND USE AND 2K
CLIMATE

We then estimate the root-zone storage capacity SR,max,B based on the 2K climate and
historical land use to reflect vegetation adaptation to changing climatic conditions such
as differences in seasonality, aridity index (Equation 6.2) and the resulting runoff coef-
ficient (Equation 6.3), but under the assumption that the vegetation cover remains un-
changed. To account for differences in the observed and simulated historical climate
data, SR,max,B is determined by imposing the difference in storage deficits derived from
the 2K and historical climate simulations (SR,def,2K −SR,def,hist) on the observed storage
deficit derived with E-OBS data SR,def,obs, as shown in Table 6.1.

SR,max,C : ADAPTED ROOT-ZONE STORAGE CAPACITY FROM LAND-USE CONVERSION TO BROADLEAVED

FOREST AND 2K CLIMATE

Subsequently, the root-zone storage capacity is estimated for the 2K climate under two
land-use change scenarios, considering that if climate changes, a different vegetation
cover might become dominant under natural and anthropogenic influence (Table 6.1).
Making use of a space-for-time exchange, we connect the spatially variable ω parame-
ter of the Budyko curve to different land-use categories and use these to evaluate future
land-use scenarios. Here, the catchments are categorized according to the areal frac-
tion of broadleaved forest in a catchment (Fig. 6.1b). In the first scenario, land use in the
catchments with mainly coniferous plantations and agriculture (as mainly in the Belgian
Ardennes, Sect. 6.2 and Fig. 6.1) is assumed to be converted to broadleaved forest, using
sampled ωbroadleaved values of catchments within the French part of the basin to esti-
mate the 2K runoff coefficient with Equation 6.3. The sampling is performed because
the variability in ω-values in each category is also influenced by other factors besides
the dominant presence of broadleaved forest. The resulting SR,max,C thus represents an
adapted root-zone storage capacity in response to climate change and land-use conver-
sion to broadleaved forest.

SR,max,D : ADAPTED ROOT-ZONE STORAGE CAPACITY FROM LAND-USE CONVERSION TO CONIF-
EROUS PLANTATION AND AGRICULTURE AND 2K CLIMATE

Similarly, the adapted root-zone storage capacity SR,max,D is estimated for the 2K climate
in a land-use scenario where the broadleaved forest in the French part of the basin are
converted to coniferous plantations and agriculture, using sampled ωconiferous values of
catchments in the Belgian Ardennes.
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Figure 6.2: (a) Representation of the Budyko space, which shows the evaporative index (EA/P ) as a function
of the aridity index (EP/P ) and the water and energy limit. A catchment with aridity index (EP/P )obs and
evaporative index (EA/P )obs, derived from observed historical data, plots at location p1 on the parametric
Budyko curve with ωobs. A movement in the Budyko space towards p2 along the ωobs curve is shown as a
result of a change in aridity index (EP/P )∆ towards a projected (EA/P )2K,ωobs associated with aridity (EP/P )2K.
An additional vertical shift ∆ω towards a location p3 on a ωchange curve is shown if additional factors (e.g.
land use) are projected to change besides aridity index. Here, the represented downward shift inω reduces the
change in evaporative index to (EA/P )2K,ωchange. (b) Cumulative storage deficits (SR,def) derived from effective
precipitation (PE) and transpiration (ER) using the simulated historical and 2K climate data. Estimates of
transpiration (ER) are derived from long-term water balance projections as a result of movements within the
Budyko framework in response to climate and potential land-use changes.
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Table 6.1: Root-zone storage capacity SR,max description and symbols, derived from long-term transpiration
and storage deficits calculations for observed historical E-OBS data (Pobs) and simulated historical (Phist)
and 2K climate data (P2K) for historical land use (ωobs) and land-use change scenarios (ωbroadleaved and
ωconiferous). The overline symbol is omitted from P , Q and ER to increase readability.

Description SR,max [mm] Long-term transpiration
ER [mm yr−1] (Eq. 6.5)

Storage deficit
SR,def [mm] (Eq.
6.7)

Observed historical E-OBS
historical land use (ωobs)

SR,max,A PE,obs −Qobs SR,def,obs

Simulated historical climate
historical land use (ωobs)
(historical runoff coefficient)

- PE,hist −Qobs/Pobs ·Phist SR,def,hist

2K climate
historical land use (ωobs)

SR,max,B PE,2K − (Q/P )2K,B ·P2K

(Eq. 6.3)
max(|SR,def,obs +
min(0,SR,def,2K,B−
SR,def,hist)|)

2K climate
broadleaved land use
(ωbroadleaved)

SR,max,C PE,2K − (Q/P )2K,C ·P2K

(Eq. 6.3)
max(|SR,def,obs +
min(0,SR,def,2K,C−
SR,def,hist)|)

2K climate
coniferous land use
(ωconiferous)

SR,max,D PE,2K − (Q/P )2K,D ·P2K

(Eq. 6.3)
max(|SR,def,obs +
min(0,SR,def,2K,D−
SR,def,hist)|)
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6.4.2 WFLOW_FLEX-TOPO HYDROLOGICAL MODEL

The wflow_FLEX-Topo model (de Boer-Euser, 2017; Schellekens et al., 2020) is a fully
distributed process-based model, which uses different model structures for a selection
of Hydrological Response Units (HRUs) to represent the spatial variability of hydrolog-
ical processes. Here, we develop a model with three HRUs for wetlands, hillslopes and
plateaus connected through their groundwater storage (schematized in Fig. 6.3 and model
equations in Appendix A; Savenije, 2010; de Boer-Euser, 2017). Thresholds of 5.9 m for
the Height Above the Nearest Drainage (HAND Rennó et al., 2008) and 0.129 for slope are
used to delineate the three HRUs (Gharari et al., 2011) using the MERIT hydro dataset at
∼60 m x 90 m resolution (Yamazaki et al., 2019). Given the high proportion of forest on
hillslope and of agriculture on plateau, we here associated hillslope with forest and agri-
culture with plateau, using the CORINE land cover data (European Environment Agency,
2018). The areal fraction of each HRU are then derived for each cell at the model reso-
lution of 0.00833◦ (or ∼600 m x 900 m). The model includes snow, interception, root-
zone, fast and slow storage components. Streamflow is routed through the upscaled
river network at the model resolution (Eilander et al., 2020) with the kinematic wave
approach. Similar implementations of that model were previously successfully used in
a wide variety of environments (e.g. Gharari et al., 2013; Gao et al., 2014; Nijzink et al.,
2016b; de Boer-Euser, 2017; Hulsman et al., 2021; Bouaziz et al., 2021).
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Figure 6.3: Schematic representation of the wflow_FLEX-Topo model with three HRUs for plateau, hillslope
and wetland connected through their groundwater storage. The model includes storages for snow SW, inter-
ception SI, the root-zone SR, a fast runoff component SF and groundwater SS [mm]. The total streamflow Q
[mm d−1] is the sum of fast runoff QF from the three HRUs and groundwater runoff QS. Evaporation [mm
d−1] occurs from the snow storage (EW), the interception storage (EI) and the root-zone storage (ER). Main
parameters for snow processes include a threshold temperature TT [◦C ] to distinguish precipitation P falling
as rain PR or snow PS, a threshold temperature for melt TM [mm d−1] and a degree-day factor FM [mm d−1

◦C−1]. For each HRU, other parameters include a maximum interception capacity Imax [mm], a maximum
root-zone storage capacity SR,max [mm], a shape factor β [-], a transpiration water stress factor LP [-], a factor

for the fraction of preferential groundwater recharge D [-], a recession coefficient for the fast storage KF [d−1]
and a combined recession for the slow storage KS [d−1]. Parameters specific to plateau, hillslope and wetland
include a maximum percolation rate RP,max,P [mm d−1], a non-linear coefficient for fast runoff αP and αH [-],

and a maximum capillary rise rate RC,max,W [mm d−1]. Effective precipitation is denoted as PE, fluxes between
two stores are denoted as R with subscripts for the stores, and subscripts P, H and W are used to distinguish
between the three HRUs.
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6.4.3 MODEL CALIBRATION AND EVALUATION

CALIBRATION AND EVALUATION USING THE OBSERVED HISTORICAL E-OBS CLIMATE DATA

The wflow_FLEX-Topo model is calibrated using streamflow at Borgharen and the ob-
served historical E-OBS meteorological forcing data for the period 2007-2011, using 2005-
2006 as warm-up years. The observed historical E-OBS dataset is used for calibration of
the model as it is assumed to most closely represent current-day conditions. The pa-
rameter space is explored with a Monte Carlo strategy, sampling 10000 realizations from
uniform prior parameter distributions (Appendix A). The limited number of samples is
due to the high computational resources required to run the distributed model. How-
ever, our aim is not to find the "optimal" parameter set, but rather to retain an ensem-
ble of plausible parameter sets based on a multiobjective calibration strategy (Hulsman
et al., 2019). To best reflect different aspects of the hydrograph, including high flows, low
flows and medium-term partitioning of precipitation into drainage and evaporation, pa-
rameter sets are selected based on their ability to simultaneously and adequately repre-
sent four objective functions, including the Nash-Sutcliffe efficiencies of streamflow, the
logarithm of streamflow and, monthly runoff coefficients as well as the Kling-Gupta effi-
ciency of streamflow. Only parameter sets that exceed a performance threshold of 0.9 for
each metric are retained as feasible. The root-zone storage capacity parameter SR,max,A is
a fixed parameter, which is derived from annual maximum storage deficits with a return
period of 2 years for the wetland and plateaus HRUs and 20 years for the hillslopes HRU
(Sect. 6.4.1). Next, model performance is evaluated in the 2012-2017 post-calibration
period using the same performance metrics, a visual inspection of the hydrographs and
the mean monthly streamflow regime. The performance metrics are also evaluated for
the 34 remaining nested sub-catchments.

EVALUATION USING THE SIMULATED HISTORICAL CLIMATE DATA

The performance of the calibrated model for the ensemble of retained parameter sets is
also evaluated when the model is forced with the simulated historical climate data, using
SR,max,A for the root-zone storage capacity parameter. This is the reference historical run
against which the relative effect of 2K global warming is evaluated for different scenar-
ios (Fig. 6.4 and Sect. 6.4.4). In addition, we evaluate the performance of the calibrated
model forced with the simulated historical climate data but with a root-zone storage
capacity parameter derived directly from this data. While this alternative approach en-
ables to correct for potential biases in the simulated historical climate data directly in
the estimation of the root-zone storage capacity parameter, it may also affect the spatial
patterns of this parameter across catchments.

6.4.4 HYDROLOGICAL CHANGE EVALUATION

We then force the calibrated wflow_FLEX-Topo model for the ensemble of retained pa-
rameter sets with the 2K climate data in four scenarios each using a different root-zone
storage capacity parameter to represent either stationary or adapted conditions in re-
sponse to a changing climate and land use (Fig. 6.4 and Sect. 6.4.1). The difference
between the modelled historical hydrological response (1980-2018) and the hydrolog-
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ical responses predicted by each of the four model scenarios based on the 2K climate is
evaluated in terms of runoff coefficient, evaporative index, annual statistics (runoff co-
efficient, evaporative index, mean, maximum, minimum 7-days streamflow and median
volume deficit below the 90th percentile reference streamflow), and monthly patterns of
flux and state variables (streamflow, evaporation, root-zone storage, groundwater stor-
age) for a hypothetical 38-year period.

SCENARIO 2KA : HISTORICAL LAND USE AND HISTORICAL ROOT-ZONE STORAGE CAPACITY

(SR,max,A)

In scenario 2KA (Fig. 6.4), we assume an unchanged land use and that vegetation has
not adapted its root-zone storage capacity to the aridity and seasonality of the 2K cli-
mate. This scenario implies stationarity of model parameters by using SR,max,A in both
the historical and 2K runs, a common assumption of many climate change impact as-
sessment studies (Booij, 2005; de Wit et al., 2007; Prudhomme et al., 2014; Hakala et al.,
2019; Brunner et al., 2019; Gao et al., 2020; Rottler et al., 2020). This is the benchmark sce-
nario against which we compare the hydrological response considering non-stationarity
of the system, as in the following three scenarios.

SCENARIO 2KB : HISTORICAL LAND USE AND 2K CLIMATE ADAPTED ROOT-ZONE STORAGE

CAPACITY (SR,max,B)

In scenario 2KB (Fig. 6.4), we again assume an unchanged land use (ωobs). However,
we assume that vegetation has adapted its root-zone storage capacity to the aridity and
seasonality of the 2K climate conditions by selecting SR,max,B as parameter for the 2K
model run, while the historical SR,max,A is used as parameter in the historical run.

SCENARIO 2KC : LAND-USE CONVERSION TO BROADLEAVED FOREST AND 2K CLIMATE ADAPTED

ROOT-ZONE STORAGE CAPACITY (SR,max,C)

In scenario 2KC (Fig. 6.4), we adapt the root-zone storage capacity to the changing arid-
ity index and seasonality of the 2K climate. Additionally, we assume a change in vegeta-
tion cover for the catchments located mainly in the Belgian Ardennes and dominated by
coniferous plantation and agriculture to a land use of broadleaved forest as in the French
part of the basin. For this purpose, SR,max,C is used as parameter in the model run forced
with the 2K climate, while SR,max,A is used as parameter in the historical run.

SCENARIO 2KD : LAND-USE CONVERSION TO CONIFEROUS PLANTATION AND AGRICULTURE

AND 2K CLIMATE ADAPTED ROOT-ZONE STORAGE CAPACITY (SR,max,D)

In scenario 2KD (Fig. 6.4), the approach of scenario 2KC is repeated. However, now the
broadleaved forest in the French catchments are assumed to be converted to coniferous
plantations or agriculture as in the Belgian Ardennes. The parameter SR,max,D is used in
the model run forced with the 2K climate, while SR,max,A is used in the historical run.
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Figure 6.4: Model scenarios using the observed historical and the simulated historical and 2K climate data.
The model is calibrated using observed E-OBS data and the historical root-zone storage capacity SR,max,A.
The model is then forced with the simulated historical climate data using SR,max,A as root-zone storage ca-
pacity parameter. We then define four scenarios to compare the change in hydrological response to 2K global
warming in comparison to historical conditions for the ensemble of feasible parameter sets. In scenario 2KA,
we assume an unchanged system (no changes in land use, nor root-zone storage capacity). In scenario 2KB,
we assume that vegetation has adapted its root-zone storage capacity to the 2K climate, but no changes in
land use. In scenario 2KC, we test the combination of an adapted root-zone storage capacity in response to
the changed climate and a hypothetical conversion of coniferous plantations and agriculture to broadleaved
forests in part of the catchment. A similar but reversed approach in land-use changes is assumed in scenario
2KD.

6.5 RESULTS

6.5.1 ADAPTED ROOT-ZONE STORAGE CAPACITY SR,max FROM LONG-TERM

AND SEASONAL WATER BALANCES AND CHANGING LAND USE

LONG-TERM WATER BALANCE CHARACTERISTICS ACROSS CATCHMENTS

In solving the parametric Budyko curve (Equation 6.1) for the 35 catchments of the Meuse
basin using historical E-OBS data and observed streamflow (Fig. 6.5a), we found that
ωobs values tend to be lower (median of 2.43 ± 0.48) for catchments with relatively high
percentages of broadleaved forests (25-38 % as in the French part of the basin) as com-
pared to catchments with relatively low percentages of broadleaved forests (1-12 % as
in the Belgian part of the catchment) with median ω-values of 3.04 ± 0.54, as shown in
Fig. 6.5b. Higher values of ω for a same aridity index indicate more water use for evap-
oration, which is likely related to the increased water use of relatively young coniferous
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plantations and agriculture as opposed to older broadleaved forests (Fenicia et al., 2009;
Teuling et al., 2019).

SR,max,A FROM HISTORICAL LAND USE AND HISTORICAL CLIMATE

The root-zone storage capacity SR,max,A derived with observed historical E-OBS climate
data and observed streamflow is estimated at values of 101 ± 17 mm and 169 ± 24 mm
across all study catchments for a 2 year and 20 year return period, respectively (Fig. 6.5c).

If instead the simulated historical climate data is used to derive the root-zone storage
capacity, this results in slightly higher values with 110 ± 18 mm and 180 ± 28 mm for 2
and 20 year return periods, respectively. This overestimation of about +7 % is due to the
higher precipitation (on average +9 %) in the simulated historical climate data compared
to the observed E-OBS historical data, which leads to relatively lower runoff coefficients
and therefore larger evaporative indices and storage deficits in the water balance calcu-
lation of the root-zone storage capacity.

SR,max,B FROM HISTORICAL LAND USE AND 2K CLIMATE

The adapted root-zone storage capacity SR,max,B, in response to changing climate con-
ditions and an unchanged land use, strongly increases with respect to historical condi-
tions (SR,max,A) with estimated values of 129 ± 18 mm (+28 %) and 227 ± 27 mm (+34 %)
for return periods of 2 year and 20 year, respectively (Fig. 6.5c). This strong increase is
explained by larger storage deficits during summer due to an increase of about +10 % in
summer potential evaporation in the 2K climate and, therefore, a more pronounced sea-
sonality (Fig. 6.2b). In contrast, the change in aridity index between the historical and
2K climate simulations is relatively small with a median of +0.01 across all study catch-
ments. This can be explained by a simultaneous increase in mean annual precipitation
(+5 %) and potential evaporation (+7 %) on average over the basin area in the 2K climate
compared to the simulated historical climate data. This increase in precipitation mostly
occurs during the winter half year (Nov-Apr). In contrast, there is a relatively large vari-
ability in precipitation change in summer, characterized by years with wetter and drier
summers.

SR,max,C FROM 2K CLIMATE AND ADAPTED LAND USE TO BROADLEAVED FOREST

The adapted root-zone storage capacity SR,max,C, in response to changing climate condi-
tions and a land-use conversion from coniferous plantation and agriculture to broadleaved
forest, results in estimated values of 125 ± 17 mm and 219 ± 27 mm for return periods
of 2 year and 20 year, respectively (Fig. 6.5c). These values are almost similar to SR,max,B,
with a difference of about -3 %. This small decrease is in line with the expected reduced
water use of broadleaved forests compared to coniferous plantations.

SR,max,D FROM 2K CLIMATE AND ADAPTED LAND USE TO CONIFEROUS PLANTATIONS AND

AGRICULTURE

In contrast, the root-zone storage capacity SR,max,D, in response to changing climate con-
ditions and a conversion of broadleaved forest to coniferous plantation, result in esti-
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mated values of 140 ± 22 mm and 243 ± 35 mm for return periods of 2 year and 20 year,
respectively (Fig. 6.5c). This corresponds to an increase of +9 % and +7 % for both re-
turn periods in comparison with SR,max,B, which does not consider additional land-use
changes.

The difference in root-zone storage capacity between the 2K and historical climate
simulations as a result of a changing climate (aridity and seasonality) is larger (+58 mm
or +34 % for a return period of 20 years) than the difference between root-zone storage
capacity for a changing climate and additional changes in land use (-8 mm or -3 % for
SR,max,C and +16 mm or +7 % for SR,max,D). This indicates that with the assumed land-use
change in scenarios 2KC and 2KD, the strong increase in water demand during summer
as a result of a more pronounced seasonality has greater impact on the estimation of
the root-zone storage capacity than a change in ω-values. However, note that land use
is changed in only part of the catchment for both land-use change scenarios and that
it is plausible to assume that more pronounced changes in land use will reinforce the
observed effects.

ω (broadleaved forest %)

Figure 6.5: (a) Budyko space with parametric ωobs curves for each of the 35 catchments of the Meuse basin,
categorized according to their percentage of broadleaved forest. The dashes curves represent the medianωobs
curves for each category. The change in aridity index from historical to 2K climate conditions along each
parameterized ωobs curve is also shown for the median of the three categories. (b) Parameterized ωobs values
for each of the 35 catchments of the Meuse basin, categorized according to their percentage of broadleaved
forest. (c) Range of root-zone storage capacities across the 35 catchments of the Meuse basin for the four
scenarios. SR,max,A represents the root-zone storage capacity for historical conditions. SR,max,B represents an
adapted root-zone storage capacity in response to the 2K climate but no land-use change. In the estimation
of SR,max,C, catchments with a low percentage of broadleaved forest (1-12%) receive ω-values sampled from
catchments with a high percentage of broadleaved forest (25-38%), to represent changes in land use towards a
conversion to broadleaved forest. A similar but reversed approach is applied for the estimation of SR,max,D.
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6.5.2 MODEL EVALUATION (HISTORICAL PERIOD)

MODEL FORCED WITH OBSERVED HISTORICAL CLIMATE DATA

The ensemble of parameter sets retained as feasible after calibration mimics the ob-
served hydrograph at Borgharen relatively well for the evaluation period (Fig. 6.6a). Also
the seasonal streamflow regime is relatively well reproduced by the model, except for
a slight underestimation of about -9 % in the first half year (Fig. 6.6b). The four objec-
tive functions show a relatively similar performance during calibration and evaluation
with median values of approximately 0.93 and 0.78 at Borgharen and for the ensemble of
nested catchments of the Meuse, respectively (Fig. 6.7a,b).

MODEL FORCED WITH SIMULATED HISTORICAL CLIMATE DATA

When the calibrated model is instead forced with the simulated historical climate data,
peaks are slightly overestimated in comparison to the model run forced with the ob-
served historical E-OBS data (Fig. 6.6c). This is due to the on average +9 % overestima-
tion of precipitation in the simulated historical climate data compared to the observed
historical E-OBS climate data. This precipitation overestimation results in an overesti-
mation of about +12 % of modeled mean monthly streamflow during the wettest months
(Fig. 6.6d). The streamflow model performance at Borgharen slightly decreases when the
simulated historical climate data is used instead of E-OBS, but median values across the
ensemble of feasible parameter sets are still above 0.77 for each of the objective func-
tions (Fig. 6.7c). Although a decrease in model performance is found in a few nested
catchments, the performance in the ensemble of nested catchments of the Meuse re-
mains relatively high with median values of around 0.67 (Fig. 6.7d). The results of the
model run forced with the simulated historical data and with the root-zone storage ca-
pacity parameter derived directly from this data show a relatively similar behavior (not
shown).

The calibrated model forced with the simulated historical climate data shows a plau-
sible behavior with respect to observed streamflow and is also close to the performance
achieved with the observed historical E-OBS climate data. This is important because
the effect of the 2K climate on the hydrological response is evaluated with respect to the
model run forced with the simulated historical climate data, as they are both generated
with the regional climate model. Therefore, the relatively high model performance in the
evaluation period enable us to use the retained parameter sets from the calibration with
E-OBS data for the subsequent analyses with the simulated historical and 2K climate
data.
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(a) (b)

(d)(c)

Figure 6.6: Observed and modeled hydrographs and mean monthly streamflow at Borgharen for the ensemble
of parameter sets retained as feasible after calibration when the model is: (a,b) forced with E-OBS historical
data and using SR,max,A as model parameter, and (c,d) forced with the simulated historical climate data using
SR,max,A as model parameter.

(a) (c)

(d)(b)

Figure 6.7: Streamflow model performance during calibration and evaluation for the four objective functions
when the model is forced with (a,b) observed historical E-OBS data and (c,d) simulated historical climate data
at (a,c) Borgharen and (b,d) for the ensemble of nested catchments in the Meuse basin. The four objective
functions are the Nash-Sutcliffe efficiencies of streamflow, logarithm of streamflow and monthly runoff coeffi-
cient (ENS,Q, ENS,logQ, ENS,RC) as well as the Kling-Gupta efficiency of streamflow (EKG,Q). Note the different
y-axis between rows.
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6.5.3 HYDROLOGICAL CHANGE EVALUATION (2K WARMER CLIMATE)

SCENARIO 2KA : STATIONARITY WITH HISTORICAL LAND USE AND HISTORICAL ROOT-ZONE

STORAGE CAPACITY (SR,max,A)

In the 2KA scenario, representing a stationary system with identical parameters in the
historical and 2K climate, runoff coefficients are projected to increase with a median
of +3 %, the evaporative index (EA/P ) decreases with a median of -2 % and mean an-
nual streamflow increases with a median of +7 %. Maximum annual streamflow is also
projected to increase with a median of about +5 %, while the median change in annual
minimum of 7-days mean streamflow remains close to zero. The median annual deficit
volume below the 90th percentile historical streamflow increases with +10 %, as shown
in Fig. 6.8.

Streamflow is projected to increase from December until August with +8 % and de-
crease between September and November with -7 %. In the months where evaporation
demand exceeds precipitation, the root-zone soil moisture decreases, with a maximum
of -22 % in September. Actual evaporation increases throughout the year with +3 % ex-
cept in July and August (-4 %) when the availability of water in the root-zone of vege-
tation is not sufficient to supply canopy water demand. Recharge to the groundwater
storage increases with approximately +5 % in all months except November, as shown in
Fig. 6.9.

SCENARIO 2KB : HISTORICAL LAND USE AND ADAPTED ROOT-ZONE STORAGE CAPACITY

(SR,max,B)

Changes are substantially different in the 2KB scenario which considers that the root-
zone storage capacity of vegetation has adapted to the change in aridity and seasonality
of the 2K climate. Runoff coefficients are instead projected to decrease with a median
of -2 %, while the evaporative index increases with a median of +2 % and the median
change of mean annual streamflow is close to zero (Fig. 6.8). Also the median change
of, both, annual maximum streamflow and minimum 7-days mean streamflow remain
close to zero. However, there is a substantial increase of +38 % in median annual deficit
volume below the 90th percentile historical streamflow. This result suggests that while
the minimum streamflow remains relatively similar, the length of the low flow period
strongly increases if we consider that the root-zone storage capacity has adapted to the
2K climate (Fig. 6.8).

Seasonal changes indicate a decrease in streamflow of -19% between September and
November, which is longer and more pronounced than in the 2KA scenario (Fig. 6.9).
The root-zone soil moisture increases throughout the year with an average of +34 % due
to the larger root-zone storage capacities. Actual evaporation is no longer reduced as
a result of moisture stress in the root-zone and strongly increases with approximately
+7 % from May to October to supply canopy water demand. The increase in evaporation
during summer strongly reduces the groundwater recharge with -5 % from October to
February (Fig. 6.9).
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SCENARIO 2KC : LAND-USE CONVERSION TO BROADLEAVED FOREST AND ADAPTED ROOT-
ZONE STORAGE CAPACITY (SR,max,C)

The predicted hydrological response in the 2KC scenario is very similar to the response
of the 2KB scenario, despite considering additional changes in the root-zone storage ca-
pacity as a result of a land-use conversion from coniferous plantations and agriculture
to broadleaved forest (Figs. 6.8 and 6.9). This is in line with the limited differences in
root-zone storage capacities of approximately +3 % between both scenarios (Sect. 6.5.1).

SCENARIO 2KD : LAND-USE CONVERSION TO CONIFEROUS PLANTATIONS AND AGRICUL-
TURE AND ADAPTED ROOT-ZONE STORAGE CAPACITY (SR,max,D)

In contrast, the change in hydrological response is most pronounced for the scenario
SR,max,D, which considers land-use conversion of the broadleaved forests in the French
part of the basin to coniferous plantations and agriculture (Figs. 6.8 and 6.9). Runoff
coefficients decrease with a median of -4 %, while the evaporative index increases with
a median value of +4 % and mean annual streamflow decreases with a median of -2 %.
If the median change in streamflow extremes remains relatively close to zero, there is
a strong increase of +54 % in the median annual deficit volume, suggesting a strong in-
crease in the length of the low flow period (Fig. 6.8).

Streamflow decreases from August to January with an average of -23 % and evapo-
ration strongly increases from May to October with an average of +9 %. This increased
evaporation during summer further reduces recharge from October to February with -
7 % (Fig. 6.9). In comparison with the hydrological response of scenario 2KB, the addi-
tional land-use conversion in scenario 2KD results in relatively similar patterns of change
but with an additional +2 % increase in evaporation, -2 % decrease in streamflow and -
2 % decrease in recharge on average throughout the year.

STATIONARY VERSUS ADAPTIVE ECOSYSTEMS

There is a difference of -7 % in the change of mean annual streamflow between the sce-
narios 2KB, 2KC, 2KD with adaptive ecosystems and the stationary 2KA scenario. Ad-
ditionally, the scenarios with adaptive ecosystems show a more pronounced decrease
in streamflow from September to January and a delay in the occurrence of the lowest
streamflow from September to October. The change in mean annual actual evaporation
is approximately +4 % higher in the scenarios with adaptive ecosystems and the increase
mainly occurs between May and October. Instead of a year-round increase in recharge in
the 2KA scenario, there is a decrease in winter recharge in the three other scenarios, re-
sulting in a mean annual difference of -6 % between the scenarios with ecosystem adap-
tion and the stationary scenario 2KA. Hence, the hydrological response in the 2K climate
of the stationary scenario 2KA is substantially different from the responses of the three
scenarios 2KB, 2KC, 2KD, which consider a change in the root-zone storage capacity to
reflect ecosystem adaptation in response to climate change.
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(a) (b)

(e)

(c)

(f )(d)

Figure 6.8: Percentage change in annual hydrological response indicators between the 2K and historical model
runs for the four scenarios, each based on different assumptions for the root-zone storage capacity parameter
SR,max. Percentage change in (a) runoff coefficient Q/P , (b) evaporative index EA/P , (c) mean annual stream-
flow, (d) mean annual maximum streamflow, (e) minimum annual 7-days mean streamflow, (f ) median annual
deficit volume below the reference 90th percentile streamflow.

6.6 DISCUSSION

6.6.1 IMPLICATIONS

The hydrological response under 2K global warming with respect to historical condi-
tions shows distinct patterns of change if we explicitly consider the non-stationarity of
climate-vegetation interactions in a process-based hydrological model. We implement
a dynamic root-zone storage capacity parameter, which is directly inferred from long-
term and seasonal water balances of historical observations in combination with simu-
lated historical and future climate conditions. A time-dynamic parameterization of the
root-zone storage capacity was previously introduced by Nijzink et al. (2016b) in the con-
text of deforestation, while it was implemented by Speich et al. (2020) in the context of
climate change. In the latter study, forest growth in response to climate change leads to
a six times higher reduction of streamflow if a dynamic representation of, both, the Leaf
Area Index and the root-zone storage capacity is implemented as opposed to a study in
which only the Leaf Area Index varies (Schattan et al., 2013). These results are more pro-
nounced than our findings but point towards the same direction of change. While Speich
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(a) (b)

(c) (d)

Figure 6.9: Percentage change in mean monthly hydrological response of several flux and state variables be-
tween the 2K and historical model runs for the four scenarios, each based on different assumptions for the
root-zone storage capacity parameter SR,max. Percentage change in mean monthly (a) streamflow Q, (b) ac-
tual evaporation EA, (c) root-zone storage SR, (d) groundwater storage SS.

et al. (2020) combine a forest landscape model with a hydrological model to simultane-
ously represent the spatio-temporal forest and water balance dynamics, we rely on a
simpler approach of movements in the Budyko framework to include potential land-use
change.

The concept of trading space-for-time, which uses space as a proxy for time (Singh
et al., 2011) could be further explored by selecting a region outside the Meuse basin with
a current climate similar to the projected climate. This approach is also commonly re-
ferred to as climate-analogue mapping, i.e. statistical techniques to quantify the simi-
larity between the future climate of a given location and the current climate of another
location (Rohat et al., 2018; Bastin et al., 2019; Fitzpatrick and Dunn, 2019). Finding a
climate analogue for future projections in present conditions, may allow us to estimate
futureω or root-zone storage capacity values in a region where the future climate may re-
semble today’s climate elsewhere. These methods are intuitive but not straightforward,
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as they rely on the selection and combination of relevant climate variables and their re-
lation with vegetation, despite non-linear vegetation responses to climate change (Reu
et al., 2014).

In comparing several scenarios for the root-zone storage capacity parameter, we in-
clude some form of system representation uncertainty, which improves our understand-
ing in the modeled changes by placing them in a broader context (Blöschl and Monta-
nari, 2010). Actual evaporation in the study catchments is projected to decrease if the
historical root-zone storage capacity is used as a result of moisture stress in the root-zone
of vegetation. In contrast, the increased water demand during summer is met when we
assume that vegetation has adapted its root-zone storage capacity. This is an indication
of disagreements among model representations on processes that become relevant in
the future, in line with findings of Magand et al. (2015); Melsen and Guse (2021).

The impact of climate change on low flows in the Meuse basin has been previously
studied by de Wit et al. (2007). Using simulations from regional climate models which
project wetter winters and drier summers, they question if the increase in winter precip-
itation reduces the occurrence of summer low flows due to an increase in groundwater
recharge. However, they were unable to address this question with their model due to its
poor low-flow performance. Our results indicate an increase in groundwater recharge
during winter if the historical root-zone storage capacity parameter is used, as opposed
to a decrease for the models with a time dynamic root-zone storage capacity, as a result
of an increased water demand for evaporation during summer. This further emphasizes
the major impact of vegetation in regulating the water cycle (Luo et al., 2020; Wang et al.,
2020).

The land surface scheme HTESSEL, that is used in the regional climate model RACMO2
to generate the historical and 2K climate simulations, assumes, as most land surface
models, a fixed root-zone storage capacity. Ideally, this discrepancy between the land
surface model and the hydrological model could be reduced by updating the adapted
root-zone storage capacity from one model to the other in several iteration steps, thereby
including soil moisture - atmosphere feedback mechanisms.

6.6.2 LIMITATIONS AND KNOWLEDGE GAPS

Our study relies on the assumption that vegetation has had the time to adapt its root-
zone storage capacity in a changing climate. Yet, considering the unprecedented scale
and rate of change (Gleeson et al., 2020), it is unclear how ecosystems will cope with
climate change, also considering the impact of storms, heatwaves, fires and biotic infes-
tations as a result of water stress on forest ecosystems (Lebourgeois and Mérian, 2011;
Allen et al., 2010; Latte et al., 2017). Additionally, when exposed to different environ-
mental conditions, ecosystems may adapt their behavior by reducing or increasing their
water use to the water availability (Zhang et al., 2020). Similarly, direct human interven-
tions, such as the conversion of natural forests to fast-growing monoculture plantations
in many parts of the world has significantly altered forests, making them more suscep-
tible and vulnerable to disturbances (Schelhaas et al., 2003; Levia et al., 2020). However,
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humans also have the ability to positively influence the water cycle through vegetation,
by promoting sustainable agricultural practices and integrated forest management with
a simultaneous focus on biodiversity, recreation and timber production. Additionally,
the conversion of exotic to native species may also increase biodiversity and the re-
silience of ecosystems to climate change (Klingen, 2017). However, these processes are
slow, implying that current management practices shape the forests of decades and cen-
turies to come in an uncertain future. Increasing our understanding on how to include
these changes in hydrological models to reliably quantify their impact is a way forward
in the development of strategies to mitigate the adverse effects of climate change.

We quantify the changes in the hydrological response as a result of a changing cli-
mate in combination with several land-use scenarios (historical, conversion of broadleaved
forests to coniferous plantations and agriculture and vice-versa). These changes are in-
tegrated in the root-zone storage capacity as single parameter. However, climate and
land-use changes likely affect other aspects of catchment functioning (Seibert and van
Meerveld, 2016). For example, changes in the maximum interception storage capacity
(Calder et al., 2003) are not explicitly considered in the estimation of the adapted root-
zone storage capacities, as the impact was shown to be relatively minor in Bouaziz et al.
(2020). Additional effects of soil compaction and artificial drainage on peak flows as a
result of future land conversion (Buytaert and Beven, 2009; Seibert and van Meerveld,
2016) are difficult to quantify but may partly be captured in the changed ω-values.

In a first step towards temporally adaptive models, and trading space-for-time for
different land-use scenarios, we did not consider any additional vertical movements in
the Budyko space due to the effects of increasing CO2 levels in terms of increased pro-
ductivity through fertilization, on the one hand, or water use efficiency on the other
hand (Keenan et al., 2013; van der Velde et al., 2014; van Der Sleen et al., 2015; Ukkola
et al., 2016; Jaramillo et al., 2018; Yang et al., 2019), as these effects remain problematic
to quantify in a meaningful way. Neither did we, for the same reason, consider how the
relatively high ω-values may be related to intercatchment groundwater losses (Bouaziz
et al., 2018). Note that as our analyses should be understood in the context of a sensi-
tivity analyses of the impact of potential additional vertical shifts in the Budyko space as
a result of a changing land use (Fig. 6.2), the potential effects on groundwater losses on
the results are likely to be minor.

In addition, we performed a limited calibration of the hydrological model to retain
an ensemble of plausible solutions and only used a single climate simulation despite the
uncertainty in initial and boundary conditions of regional climate models. Our analy-
ses are intended as a proof-of-concept to introduce a top-down methodology to quan-
tify non-stationarity of the root-zone storage capacity parameter through optimal use of
projected climate data, rather than a comprehensive climate change impact assessment
of the Meuse basin.
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6.7 CONCLUSIONS

Understanding non-stationarity of hydrological systems under climate and environmen-
tal changes has been recognized as a major challenge in hydrology (Blöschl et al., 2019).
Despite our strong awareness of non-stationarity of hydrological parameters, we often
lack knowledge to implement system changes in hydrological models. In this proof-of-
concept study in the Meuse basin, we propose a top-down approach to introduce a time-
dynamic representation of the root-zone storage capacity parameter within process-
based hydrological models, using regional climate model simulations. Our approach
relies, on the one hand, on a space-for-time exchange of Budyko characteristics of dom-
inant land-use types to estimate the hydrological behavior of potential land-use changes
and, on the other hand, on the interplay between the long-term and seasonal water bud-
gets to represent climate-vegetation interactions under climate and land-use change.
Despite knowledge gaps on future ecosystem water use, we implement potential sys-
tem changes in a hydrological model based on our current understanding of hydrolog-
ical systems. The predicted hydrological response to 2K warming is strongly altered
if we consider that vegetation has adapted its root-zone storage capacity to offset the
more pronounced hydro-climatic seasonality under 2K global warming compared to a
stationary system. The increased vegetation water demand under global warming re-
sults on average annually in -7 % less streamflow, +4 % more evaporation and -6 % less
recharge for the scenarios assuming non-stationary conditions compared to a station-
ary system. These differences even lead to a distinct change of sign of median annual
streamflow. Our study contributes to the quest for more plausible representations of
catchment properties under change and, therefore, more reliable long-term hydrologi-
cal predictions.
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SYNTHESIS

Daarna was het zoals het altijd gaat: als je eindelijk hebt bereikt wat je wilde bereiken, is
het niet meer wat je wilde bereiken, maar eenvoudig datgene wat je hebt bereikt. Dan is

het vanzelfsprekend geworden.

Harry Mulisch - De ontdekking van de hemel (1992)

In the previous chapters, several directions are explored to improve and evaluate the rep-
resentation of internal processes in hydrological models of the Meuse basin. We have eval-
uated the relevance of specific processes and the use of additional data for reliable model
predictions under present-day and projected climate change conditions. In this synthesis
chapter, main findings for the Meuse basin are first outlined in terms of hydrological pro-
cesses and the use of additional data. Then, a synthesis is provided for modelers on how to
achieve more reliable hydrological predictions, based on insights gained from this thesis.
Next, a specific advice for Rijkswaterstaat is presented to carry on with hydrological mod-
eling of the Meuse basin for operational and policy applications. Finally, ideas for future
research and challenges ahead are discussed.
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7.1 MAIN FINDINGS FOR THE MEUSE BASIN

7.1.1 HYDROLOGICAL PROCESSES

Despite the shared temperate climate, catchments within the Meuse basin reveal a sub-
stantial spatial variability of hydrological processes. Productive aquifers, gentle slopes
and more natural broadleaved forests dominate the French part. In contrast, poorly pro-
ductive aquifers, steeper slopes and coniferous forests, agriculture and urban areas are
dominantly represented in the Belgian part. However, this simplified distinction is far
too rough and the spatial patterns of hydrological processes are influenced by local het-
erogeneity of hydrogeological, topographical and land-use properties.

Net intercatchment groundwater losses were identified in several headwater catch-
ments (< 500 km2) with productive aquifers in both the French and Belgian part of the
basin and represented on average 10 % of mean annual precipitation. Some of these un-
derground flow paths may lead to downstream catchments along the same river, while
others are diverted to neighboring basins, which explains why net losses could be con-
siderable at the scale of nested headwater catchments and negligible at the scale of larger
catchments. Including intercatchment groundwater flows increases high and low flow
model performance as well as the plausibility of long-term mean annual actual evapo-
ration estimates (Chapter 3).

Vegetation plays a key role in regulating the hydrological cycle by developing root
systems which can buffer a sufficient amount of water to survive dry periods. Also the
type of vegetation matters, as coniferous plantations in the Ardennes tend to have a
higher water use than the more natural broadleaved forests in the French part of the
basin (Chapter 6). The size of the root-zone storage capacity reflects the interactions
between water supply through precipitation and transpiration water demand, as con-
trolled by potential evaporation and vegetation type in the catchment. We found rela-
tively large differences in the size of the root-zone storage capacity across catchments
within the Meuse (∼100-250 mm), suggesting dissimilarities in seasonal climate proper-
ties and water demand at the catchment scale.

More importantly, this key parameter of hydrological models can directly be esti-
mated from readily available water balance data for present-day and projected climate
conditions. Ecosystems are likely to adapt by increasing their root-zone storage capacity
to cope with changing environmental conditions due to an increase of mean global tem-
peratures. This ecosystem adaptation in combination with potential land-use changes
strongly alters the monthly patterns of the hydrological response (Chapter 6).

To accommodate the spatial variability of hydrological processes, a flexible process-
based model is set-up for 35 nested catchments within the Meuse basin and three hy-
drological response units, derived from landscape characteristics. With the root-zone
storage capacity as time-variant parameter, we are able to parsimoniously predict his-
torical hydrological behavior and potential future behavior under change.
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7.1.2 HYDROLOGICAL DATA

To identify, quantify and evaluate hydrological processes, we rely on expert knowledge
and the availability of data. For the Meuse basin, the relatively large availability of in-
situ observations of precipitation, temperature and streamflow forms the base of the
studies in this thesis. In addition, the use of remote-sensing data provides independent
information for hypotheses testing on hydrological functioning.

The increased correspondence between modeled actual evaporation and remote sens-
ing estimates, when including intercatchment groundwater flow processes, provides ad-
ditional evidence for the presence of this flux (Chapter 3). From the combined use of ex-
pert knowledge and remote-sensing data of evaporation, vegetation indices, soil mois-
ture and total storage anomalies, we identified the drying-out of the root-zone storage
each summer as unlikely and, therefore, as a model deficiency to be improved in a next
step of the model comparison of Chapter 5. More generally, advances in model devel-
opment benefit from testing the consistency between independent remote-sensing data
and modeled behavior of hydrological state and flux variables.

However, uncertainty in remote-sensing data may be large and unquantified, and
many aspects of the heterogeneous hydrological world remain unknown. The variables
really measured through remote sensing often lack direct relevance for hydrological ap-
plications. As a result, a same variable, e.g. near-surface soil moisture, estimated indi-
rectly by different sensors and processing techniques displays substantial dissimilarities
(Chapter 4). As additional step, this near-surface soil moisture may require to be con-
verted to root-zone soil moisture, through the Soil Water Index, to correspond to the
variables of interest represented in hydrological models. To do so in a meaningful way,
we have linked the time-scale parameter of the Soil Water Index to the root-zone stor-
age capacity at the catchment scale (Chapter 4). This is an important step to adequately
represent the spatial variability of hydrological processes in remote-sensing data.

7.2 SYNTHESIS ON RELIABLE HYDROLOGICAL PREDICTIONS

How to improve the reliability of hydrological predictions is a question with many an-
swers. While there may be no wrong answers, surely there are different personal em-
phases or even contrasting views on the matter. For some, the key lies in improving cal-
ibration strategies (Gharari, 2016); or on the contrary, reducing the need for calibration
(Nijzink, 2018). The focus may be to assimilate data or to improve the interpolation of
forcing data (van Osnabrugge, 2020). Others choose to distribute model structures for a
few landscape classes (de Boer-Euser, 2017; Gao, 2015), as opposed to hyper-resolution
approaches with increasing model complexity (Bierkens et al., 2015; Imhoff et al., 2020).
For some the crux is a Darwinian understanding of the system as opposed to a Newto-
nian approach (Harman and Troch, 2014; Savenije and Hrachowitz, 2017). For many, it
will involve using (or performing) additional measurements (Winsemius, 2009; van Em-
merik, 2017; Jiménez-Rodríguez, 2020). Answers likely combine several of these path-
ways with the common aim to increase our understanding of the variability of hydrolog-
ical processes with respect to (changing) climate and catchment characteristics across
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spatial and temporal scales. From the previously conducted studies, several steps are
proposed as a way forward for improving the reliability of hydrological model predic-
tions.

7.2.1 INTERCATCHMENT GROUNDWATER FLOWS IN THE LONG-TERM WATER

BALANCE

Reliable streamflow estimates are often difficult and rely on indirect measurements. Yet,
observations of catchment-scale evaporation and intercatchment groundwater flows are
even harder or infeasible. Hence, it is unsurprising that the potential presence of in-
tercatchment groundwater flows is often silently omitted from the long-term water bal-
ance. In a recent study by Berghuijs et al. (2020), an adapted representation of the Budyko
framework is shown for 410 catchments of the US MOPEX dataset (Duan et al., 2006),
where the aridty index (EP/P ) is plotted against evaporation (estimated as EA = P −Q)
and streamflow (Q), thereby omitting the common denominator P . Interestingly, the
aridity index is strongly correlated to streamflow and the evaporative index (EA/P ), but
very weakly to evaporation. In my opinion, this is not only related to data uncertainty,
but also likely an indication of the potential presence of intercatchment groundwater
flows.

In a proof-of-concept study in the Meuse, we show that neglecting intercatchment
groundwater losses comes at the cost of overestimating actual evaporation to compen-
sate for this lack (Chapter 3). The Meuse basin has the benefit of being relatively well-
gauged and the subsurface is well-documented, which reduces the uncertainty. How-
ever, potential "inconsistencies" in the water balance should not blindly be attributed
to data uncertainty or intercatchment groundwater flows in relatively ungauged catch-
ments of the world. Instead, the potential presence of intercatchment groundwater flows
can be detected through a careful evaluation of uncertainty in (remote sensing) precip-
itation, evaporation and streamflow within the Budyko framework, hypothesis testing
through modeling and expert knowledge. If intercatchment groundwater flows are to be
neglected in hydrological modeling studies, the decision should be conscious and clearly
communicated.

7.2.2 ROOT-ZONE STORAGE CAPACITY FROM THE SEASONAL WATER BALANCE

Estimating the long-term water balance of a catchment is a sensible first step of any
modeling study, as it provides insight in the long-term partitioning of precipitation into
streamflow, evaporation and potential intercatchment groundwater flows. A next step
is to evaluate the seasonal water balance, as it reflects important ecosystems properties.
Vegetation tends to efficiently allocate its resources to balance above- and below-ground
growth to simultaneously meet requirements for light, nutrients and water (Hrachowitz
et al., 2020). In other words, vegetation efficiently adapts its root-zone storage capacity
to supply canopy water demand. If seasonal water supply and demand are out of phase,
a larger root-zone storage capacity is required to bridge dry spells than when supply and
demand are in phase.
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Hence, vegetation strongly regulates the water cycle by storing water when it is avail-
able and releasing it to the atmosphere through transpiration during dry periods. The
root-zone storage capacity is, therefore, an important parameter of hydrological models,
as it controls the long-term and seasonal hydrological partitioning. The water balance
method to estimate the catchment-scale root-zone storage capacity is robust and relies
on readily available information (Chapter 4 and 6). Moreover, it can be estimated as a
time-variant parameter to accommodate the dynamic state of ecosystems as a result of
natural and anthropogenic changes (Chapter 6). Thus, it is a key element to improve the
reliability of hydrological predictions under change, which has been recognized as one
of the major challenges in hydrological science (Blöschl et al., 2019).

7.2.3 SPECIFIC EVENTS AND THE SHORT-TERM WATER BALANCE

The third relevant time scale to consider is the event-based or short-term water balance.
As for the other time scales, an expert judgement on dominant hydrological processes is
developed by observing and evaluating catchment and climate characteristics, includ-
ing topography, land use, slope, geology, soils, seasonality and aridity index. Streamflow
signatures are also useful to quantify a specific aspect of hydrological functioning, as
well as a visual inspection of the hydrograph. Furthermore, remote-sensing data pro-
vides additional insights on the magnitudes and dynamics of hydrological processes
(Chapter 5). For example, accurate estimates of soil moisture contents in the unsatu-
rated root-zone are required for reliable streamflow predictions, e.g. floods caused by
heavy precipitation with high antecedent soil moisture. In Chapter 4, we show that we
can generate meaningful estimates of the water contents in the root zone from glob-
ally available remote-sensing estimates of near-surface soil moisture, through the estab-
lished link with catchment-scale root-zone storage capacities. Other relevant aspects of
hydrological functioning related to dry periods and snow dynamics in a catchment can
also be inferred from remote-sensing data of snow, total storage anomalies, soil moisture
and evaporation (Chapter 5).

7.2.4 MODEL DEVELOPMENT AND CALIBRATION

Once the modeler has reached a perceptual understanding of overall catchment behav-
ior from the evaluation of long-term, seasonal and event-based (remote-sensing) data,
his/her theories can be translated to hydrological models. These models are simplified
representations of the complex reality and heterogeneity of landscapes. The degree to
which processes are simplified in models is highly variable and the possibilities are end-
less. In the resulting plethora of hydrological models, several conceptualization can give
a similar aggregated response (i.e. streamflow) despite differences in internal process
representations (Chapter 5). This great challenge of hydrology, referred to as equifinal-
ity, is unlikely to be solved soon. Even if more data becomes available, the uncertainties
remain high and often unknown. If the use of several plausible hypotheses/models in
hydrological studies is a way to explicitly address our lack of knowledge and understand-
ing, it is not yet a cure.
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Progress in computational resources has enabled us to run models at increasing spa-
tial resolution. Fast run times are herein essential to efficiently allow thorough calibra-
tion and to adequately consider the uncertainty of catchment properties and their link
to parameter values. Despite the attractiveness of developing calibration-free models,
some degree of calibration seems inevitable to ensure a consistency with the available
evaluation data and to account for uncertainty. Of course, we should also aim to develop
methods to derive (time-dynamic) parameters from the available data, such as for the
root-zone storage capacity, to somehow limit the degrees of freedom during calibration
(Chapter 6). The calibration process should result in an ensemble of feasible parameters
from a multi-objective selection approach.

Alternatively, the spatial variability of hydrological processes may be represented in
a semi-distributed way, splitting a large basin in many smaller catchments. In each of
these unit catchments, it is then possible to distinguish a small number of hydrologi-
cal response units with different dominant hydrological processes, based on topogra-
phy, land use, and/or (hydro)geology (Savenije, 2010; Fenicia et al., 2016; de Boer-Euser,
2017). On the one hand, this may increase the subjectivity of model development, but
on the other hand, it promotes critical hydrological thinking and the development of
tailor-made models (Savenije, 2009).

7.2.5 EVALUATION AND DATA UNCERTAINTY

The alternative models are then confronted against independent observations in a pe-
riod outside the calibration period. If available, streamflow is typically used for model
evaluation, using hydrological signatures and inspecting specific events of the hydro-
graph (Euser et al., 2013; de Boer-Euser et al., 2017). However, there is a growing inter-
est to test the consistency between model behavior and remote-sensing data, which are
available globally. These data can increase our understanding of processes that are not
directly observable, such as the catchment-scale root-zone soil moisture or intercatch-
ment groundwater flows (Chapter 3 and 4).

Although the uncertainty of remote-sensing data may be high and unknown, it can
partly be estimated for a specific use when combined with expert knowledge (Chapter
5). Note that streamflow itself also relies on a rating-curve model with associated un-
certainty (Westerberg and McMillan, 2015; Westerberg et al., 2016). Nevertheless, the
combined use of uncertain streamflow, ground measurements and remote-sensing data
is valuable to increase the reliability of model predictions, as knowing something with
uncertainty is more valuable than knowing nothing with certainty.

The development of adequate models for a specific purpose is rarely straightforward
and requires an iterative process. Insights gained from a first iteration lead to new ques-
tions and ideas for model structure improvements. The iterative process may never end,
especially if the goal is exploratory science of hypotheses testing and hydrological pro-
cess understanding. If the purpose is to develop a model to support decision making,
a few iterations may be sufficient to achieve an a priori defined set of requirements for
model performance.
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7.3 ADVICE FOR PRACTITIONERS

The studies presented in this thesis result from a collaboration between Delft University
of Technology (TU Delft), Deltares research institute and the Dutch Ministry of Infras-
tructure and Water Management (Rijkswaterstaat) and contribute to improving hydro-
logical modeling of the Meuse basin for operational and policy applications. If in theory,
the choice of a modeling framework is considerable, e.g. SUMMA (Clark et al., 2015),
SUPERFLEX (Fenicia et al., 2011; Dal Molin et al., 2020), wflow (de Boer-Euser, 2017;
Schellekens et al., 2020), it is strongly narrowed in practice.

Having an open source code, which is able to communicate with other used soft-
ware and, most importantly, which is well known by the people who develop, main-
tain and use the models are determining practicalities. Hence, the wflow framework
is a logical step for operational and policy applications of Rijkswaterstaat, as it is de-
veloped and maintained by Deltares and because it hosts multiple model structures (e.g.
wflow_FLEX-Topo and wflow_sbm). Both the wflow_sbm and wflow_FLEX-Topo models
have been extensively developed by Deltares and TU Delft in the past years. An impor-
tant recommendation of this thesis for decision-makers is to explicitly consider model
structure uncertainty by selecting multiple models (Chapter 5). Additionally, the com-
parison of a process-based model (i.e. wflow_FLEX-Topo) with a physically-based model
(i.e. wflow_sbm) can foster model improvements by exposing model deficiencies.

The achieved model performance is already high following a brief calibration (Chap-
ter 6) and is expected to further increase in a recommended next iteration. Hence, it is
questionable if data-assimilation of remotely-sensed soil moisture data can be of signif-
icant added value to improve operational predictions. López López et al. (2016) showed
that data-assimilation of soil moisture data only strongly increases model performance
when applied in global models forced with global data, as opposed to local models with
local data. An improvement could possibly be achieved in the French part of the basin,
due to the lower density of precipitation stations. However, it is perhaps more sensible
to first study the potential benefit of including more precipitation stations, in an attempt
not to further complexify the operational system. On the other hand, it is recommended
to study the impact of data-assimilation of streamflow data to improve operational fore-
casts. In addition, a system which allows to easily retrieve archived operational data and
run hindcasts with complete model outputs would facilitate the continuous improve-
ments of hydrological predictions.

For policy applications addressing long-term hydrological projections, an important
recommendation of this thesis is to consider the effect of ecosystem adaptation in re-
sponse to climate change (Chapter 6). This implies to evaluate the impact of making
the vegetation parameters (i.e. root-zone storage capacity) time-variant, in response to
changes in magnitude and seasonality of hydro-climatic variables. The proposed ap-
proach in Chapter 6 also enables to consider changes in land-use management by ex-
changing space-for-time, whereby current hydro-climatic characteristics of a given lo-
cation allow to estimate potential future hydrological behavior of another location.
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7.4 CHALLENGES AHEAD

7.4.1 ECOSYSTEM ADAPTATION AND HUMAN INTERFERENCE

One grand challenge of hydrology is the prediction of future hydrological behavior under
change (Blöschl et al., 2019; Beven, 2019b). Nature is a living whole, not a dead aggregate
(Wulf, 2015), meaning that ecosystems are likely to adapt in response to changing envi-
ronmental conditions (Savenije and Hrachowitz, 2017). Adapting the root-zone storage
capacity in hydrological models is a sensible way to (partly) represent non-stationarity
of hydrological systems.

A time-dynamic root-zone storage capacity has been implemented in studies de-
scribing sudden changes, i.e. deforestation (Nijzink et al., 2016a; Hrachowitz et al., 2020),
and projected long-term changes in climatic conditions due to global warming (Chapter
6). However, there is more to learn from past gradual changes in the root-zone storage
capacity over the last decades. The study of Merz et al. (2011) shows almost a doubling
of this parameter over the last 40 years using data from over 250 Austrian catchments.
This is intriguing and deserves additional analyses with the water balance method. Also
for the Meuse basin, where long-time series are available, it is worthwhile to analyze the
changes which have already occurred until now, to increase our understanding of poten-
tial future changes.

The Budyko framework has been very valuable to study intercatchment groundwater
flows (Chapter 3) and to predict the long-term hydrological partitioning under climate
and land-use change (Chapter 6). However, our limited deeper understanding of the
framework hinders us from accurately predicting movements in the Budyko space in re-
lation to natural and anthropogenic changes in vegetation and climate. In addition, we
lack a quantitative understanding of the contrasting effects of increased CO2 levels on
both increased productivity through fertilization and water use efficiency. Furthermore,
it is highly uncertain how present-day vegetation may adapt its overall behavior and wa-
ter use to changes in water availability and environmental conditions. Finding a region
with a current climate that resembles the future climate of a region elsewhere may be
a way forward to predict future hydrological behavior. These fascinating topics require
further research.

The central role of vegetation in regulating the water cycle has repetitively been em-
phasized in this thesis. However, in many parts of the world, humans are the architects
that have reshaped nature to meet food, energy and water demands. The growing shift
from diverse and natural vegetation to monocultures has had adverse effects on the wa-
ter cycle and the resilience of ecosystems to natural threats (Levia et al., 2020). However,
humans also have the ability to reverse the past, enhance biodiversity, improve agricul-
tural and forestry practices and positively influence the hydrological cycle through veg-
etation. To optimally mitigate the adverse effects of climate change, future research is
required on how to meaningfully implement these changes in (hydrological) models to
reliably quantify their impact.
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7.4.2 TO MEASURE, OR NOT TO KNOW?

In hydrological science, our knowledge is often limited by a lack of data at the required
spatial and temporal resolution. Many aspects of the hydrological cycle remain un-
known and are hardly observable. Flow paths in the heterogeneous subsurface are only
visible in exceptional cases. The partitioning of terrestrial evaporation into interception,
transpiration and soil evaporation is highly uncertain (Coenders-Gerrits et al., 2014). Yet,
efficiently measuring these different fluxes at the catchment scale is so far infeasible, de-
spite promising advances with accelerometers and distributed temperature sensing (van
Emmerik et al., 2017; Schilperoort et al., 2018). While there is no doubt that our hydro-
logical process understanding benefits from additional innovative measurements, it is
less clear how these should be organized to be coherent and extrapolatable across tem-
poral and spatial scales.

Besides innovations in measuring techniques to improve hydrological data and the-
ories, there is also more to gain from what is currently available. In addition to the
petabytes of remote-sensing data openly available, dozens of new studies are published
every week, not only in the field of hydrology, but also in relevant related fields of e.g.
ecology, agriculture, forestry, meteorology, geology and remote sensing. Innovative over-
arching theories could be within reach by integrating and linking the knowledge gained
from these studies. The crux is to creatively filter and ingest this huge amount of infor-
mation to advance science and make these progresses also within reach of engineers and
practitioners. Undoubtedly, uncertainty is here to stay, but the mysteries of the natural
world are also the beauty of hydrological science.





A
MODEL EQUATIONS AND

PARAMETERS

The equations and parameter of the models used in Chapters 3, 4 and 6 are provided in
this Appendix.

A.1 MODEL EQUATIONS

The symbols for fluxes, storages and parameters are given in Tables A.1 to A.3. The equa-
tions of the four alternative process-based flexible model structures used in Chapter 3
(Fig. 3.4) are shown in Tables A.4 and A.5. From these models, the preferential model
structure is also used in Chapter 4 (Fig. 4.2).

In Chapter 6, a flexible model structure with three hydrological response units for
wetland, hillslope and plateau is used instead (Fig. 6.3). Model equations are provided
in Tables A.6 and A.7.

Table A.1: Definitions of the symbols used to denote the different stores in the models of Chapter 3, 4 and 6.

Storage (mm) Definition
SW Snow storage
SI Interception storage
SR Root-zone storage
SF Fast runoff storage
SS Slow runoff storage
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Table A.2: Definitions of the symbols used to denote the different fluxes in the flexible model structures of
Chapter 3, 4 and 6.

Fluxes (mm hr−1) Definition
P Precipitation
PR Rainfall
PS Snowfall
PM Snow melt
EP Potential evaporation
EW Evaporation from snow storage
EI Evaporation from interception
ER Evaporation from the root-zone storage
PE Effective precipitation
RR Outflow from the root-zone storage
RRS Recharge to the slow storage
RRF Recharge to the fast storage
RP Percolation
RC Capillary rise
QF Fast runoff
QS Slow runoff
QIGF Net intercatchment groundwater flows
QRiver (or Q) Streamflow which ends up in the river

Table A.3: Model parameters used in Chapter 3 and 4. For wflow_FLEX-Topo see Table A.12.

Parameter unit Definition
Imax mm Maximum interception capacity
SR,max mm Root-zone storage capacity
β - Shape parameter of storage capacity distribution
LP - Reduction parameter for potential evaporation
KF h Characteristic time scale of the fast recession
KS h Characteristic time scale of the slow recession
TF h Time lag
D - Fraction to slow storage
Pmax mm h−1 Maximum percolation rate
α - Non-linear coefficient of the fast storage
CIGF mm h−1 Constant net intercatchment groundwater flow (IGFnet)
µ mm h−1 Threshold of the recharge above which IGFnet occurs
Perc - Fraction of the recharge to IGFnet

KIGF h Characteristic time scale of the IGFnet

KRiver h Characteristic time scale of the river flow (overflow model)
SS,max mm Maximum capacity of underground storage
DIGF - Fraction to IGFnet storage
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Table A.4: Water balance equations for the zero, constant, preferential and overflow intercatchment ground-
water flows models (Chapter 3). The Xindicates for which model(s) the water balance equations apply. In
Chapter 4, the preferential model is used.

Water balance equation Zero Constant Preferential Overflow

dSI
dt = P −EI −PE X X X X

dSR
dt = PE −ER −RP −RRS −RRF X X X

dSR
dt = PE −ER −RRS X

dSF
dt = RRF −QF X X X

dSF
dt = RSF −QRiver X

dSS
dt = RRS +RP −QS X X

dSS
dt = RRS +RP −QS −QIGF X

dSS
dt = RRS −RSF −QIGF X

QRiver =QS +QF X X X

QTot =QRiver +QIGF X X X X
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Table A.5: Constitutive functions for the zero, constant, preferential and overflow intercatchment groundwater
flows models (Chapter 3). The Xindicates for which model(s) the constitutive functions apply. The following
values are fixed for the smoothing parameters m1 = m2 = m4 = 0.005 and m3 = 0.05 (σ value of the error
function). In Chapter 4, the preferential model is used.

Constitutive functions Zero Constant Preferential Overflow

SI = SI/Imax X X X X

SR = SR/SR,max X X X X

SS = SS/SS,max X

EI = EP · SI·(1+m1)
SI+m1

X X X X

PE = P · (1− (1−SI)(1+m2)
1−SI+m2

) X X X X

ER = (EP −EI) · SR
LP

X X X X

RR = RRS +RRF X X X

RR = P ·SR
β

X X X

RRS = RR ·D X X X

RRF = RR · (1−D) X X X

RP = Pmax ·SR X X X

QF = K −1
F ·SαF X X X

QS = K −1
S ·SS X X X

QIGF =CIGF X

QIGF = erf(RRS,µ,m3) ·Perc ·RRS X

QIGF = K −1
IGF ·SS X

RRS = P ·SR
β

X

RSF = RRS · SS·(1+m4)
SS+m4

X

QRiver = K −1
River ·SF X



A.1. MODEL EQUATIONS

A

147

Table A.6: Water balance equations for each class of the wflow_FLEX-Topo model used in Chapter 6. The three
classes share a common groundwater storage SS. QF,P, QF,H and QF,W denote the fast runoff of the classes
plateau, hillslope and wetland, respectively.

Water balance equation Plateau Hillslope Wetland

dSW
dt = PS −EW −PM X X X

dSI
dt = PR −EI −PE X X X

dSR
dt = PE +PM −ER −RRS −RRF −RP X

dSR
dt = PE +PM −ER −RRS −RRF X

dSR
dt = PE +PM −ER −RRS −RRF +RC X

dSF
dt = RRF −QF X X X

dSS
dt = RRS +RP −QS X

dSS
dt = RRS −QS X

dSS
dt =−RC −QS X

Q =QS +QF,P +QF,H +QF,W
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Table A.7: Constitutive functions of the wflow_FLEX-Topo model used in Chapter 6. T denotes temperature.
The groundwater storage is shared between all classes. Symbols for the parameters are detailed in Table A.12.

Constitutive functions Plateau Hillslope Wetland

Snow

PS =
P, if T < TT

0, if T ≥ TT

X X X

EW = min(EP,SW/dt) X X X

PM =
0, if T < TT

min(FM · (T −TM),SW/dt ), if T ≥ TT

X X X

Interception

SI = SI/Imax X X X

PR =
0, if T < TT

P, if T ≥ TT

X X X

PE = max(0,(SI − Imax)/dt ) X X X

EI = min(EP −EW, (SI − Imax)/dt ) X X X

Root-zone

SR = SR/SR,max X X X

RR = RRS +RRF X X

ER = min((EP −EI) ·min(SR/LP,1),SU/dt ) X X X

RR = (PE +PM) · (1− (1−SR)β) X X X

RP = RP,max ·SR X

RC = RC,max · (1−SR) X

Fast storage

RRF = RR · (1−D) X X

RRF = RR X

QF = K −1
F ·SαF X X

QF = K −1
F ·SF X

Slow storage

RRS = RR ·D X X

QS = K −1
S ·SS X X X
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A.2 PRIOR AND POSTERIOR PARAMETER DISTRIBUTIONS

Prior parameter distributions for the models used in Chapter 3 and 4 are shown in Ta-
ble A.8. Posterior parameter ranges for the zero, constant and preferential models of
Chapter 3 are given in Table A.9. For the Aroffe catchment, the posterior parameter dis-
tributions of the overflow model are shown in Table A.10. Posterior parameter ranges
for the preferential model used in Chapter 4 are given in Table A.11. Prior and posterior
parameter distributions for the wflow_FLEX-Topo flexible model with three hydrological
response units used in Chapter 6 are given in Table A.12.

Table A.8: Model parameters, units and prior range (∗MRC denotes the value determined with a master reces-
sion curve ± 10 days). The Xindicates for which model(s) the parameters apply (Chapter 3). In Chapter 4, the
preferential model is used with the same prior distributions.

Parameter unit Range Zero Constant Preferential Overflow
Imax mm 1 - 3 X X X X
SR,max mm 50 - 350 X X X X
β - 1 - 5 X X X X
LP - 0 - 1 X X X X
KF h 2 - 960 X X X
KS h MRC∗ X X X
TF h 1 - 20 X X X
D - 0 - 1 X X X
Pmax mm h−1 0 - 0.05 X X X
α - 1 - 2 X X X
CIGF mm h−1 -0.01 - 0.02 X
µ mm h−1 0.005 - 0.9 X
Perc - -0.5 - 1 X
KIGF h 5 - 600 X
KRiver h 5 - 600 X
SS,max mm 1 - 60 X
DIGF - 0.5 - 1 X
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Table A.9: Posterior parameter range (5-95 percentiles) for the zero, constant and preferential models for a
selection of parameters (Chapter 3)

Parameter SR,max LP KF D Pmax α CIGF Perc

Unit mm - h - mm h−1 mm h−1 -
Prior 50 - 350 0 - 1 2 - 960 0 - 1 0 - 0.05 1 - 2 -0.01 - 0.02 -0.5 - 1
Sainte-Marie - Zero 224 - 324 0.1 - 0.5 108 - 908 0.02 - 0.16 0.007 - 0.020 1.5 - 2.0
Sainte-Marie - Constant 220 - 309 0.5 - 0.9 83 - 747 0.00 - 0.15 0.016 - 0.038 1.3 - 2.0 0.004 - 0.016
Sainte-Marie - Pref. 64 - 273 0.0 - 0.8 68 - 542 0.17 - 0.42 0.003 - 0.020 1.1 - 1.9 0.7 - 1.0
Straimont - Zero 162 - 226 0.1 - 0.5 316 - 904 0.07 - 0.18 0.001 - 0.013 1.2 - 1.6
Straimont - Constant 102 - 292 0.0 - 0.9 234 - 934 0.06 - 0.20 0.001 - 0.020 1.1 - 1.5 -0.003 - 0.006
Straimont - Pref. 152 - 291 0.1 - 0.7 258 - 886 0.03 - 0.16 0.001 - 0.010 1.1 - 1.5 -0.3 - 0.6
Tintigny - Zero 144 - 318 0.3 - 0.8 177 - 931 0.02 - 0.12 0.002 - 0.012 1.2 - 1.6
Tintigny - Constant 125 - 248 0.3 - 0.8 151 - 896 0.02 - 0.13 0.002 - 0.028 1.2 - 1.7 -0.004 - 0.008
Tintigny - Pref. 152 - 303 0.4 - 0.8 108 - 876 0.03 - 0.20 0.001 - 0.011 1.1 - 1.6 -0.4 - 0.9
Chiny - Zero 166 - 283 0.2 - 0.8 203 - 948 0.01 - 0.14 0.003 - 0.016 1.2 - 1.6
Chiny - Constant 140 - 314 0.0 - 0.8 182 - 901 0.01 - 0.13 0.003 - 0.025 1.1 - 1.6 -0.002 - 0.008
Chiny - Pref. 111 - 268 0.2 - 0.7 122 - 865 0.03 - 0.18 0.004 - 0.016 1.1 - 1.6 -0.4 - 0.9
Membre-Pont - Zero 114 - 232 0.1 - 0.6 307 - 884 0.01 - 0.16 0.004 - 0.022 1.2 - 1.5
Membre-Pont - Constant 107 - 237 0.0 - 0.7 258 - 922 0.01 - 0.14 0.002 - 0.031 1.2 - 1.5 -0.005 - 0.003
Membre-Pont - Pref. 129 - 260 0.1 - 0.7 195 - 919 0.02 - 0.15 0.004 - 0.020 1.1 - 1.5 -0.4 - 0.9
Huccorgne Pref. 146 - 316 0.3 - 0.8 86 - 837 0.07 - 0.52 0.006 - 0.015 1.3 - 1.8 -0.5 - 1.0
Yvoir Pref. 110 - 250 0.4 - 0.9 179 - 908 0.39 - 0.65 0.009 - 0.024 1.4 - 1.9 0.7 - 0.9
Sormonne Pref. 119 - 299 0.0 - 0.8 70 - 818 0.41 - 0.58 0.000 - 0.017 1.3 - 2.0 0.6 - 1.0
Crusnes Pref. 112 - 295 0.2 - 0.7 271 - 782 0.36 - 0.58 0.001 - 0.017 1.0 - 1.4 0.4 - 0.9

Table A.10: Posterior parameter range (5-95 percentiles) for the overflow model used in the Aroffe catchment
at Vannes-le-Châtel (Chapter 3).

Parameter Imax SR,max β LP KRiver KIGF SS,max dIGF

Unit mm mm - - h h mm -
Prior 1 - 3 50 - 350 1 - 5 0 - 1 5 - 600 5 - 600 1 - 60 0.5 - 1
Aroffe - Overflow 1.0 - 2.9 88 - 210 2.0 - 4.9 0.2 - 0.8 87 - 226 212.7 - 594.1 30.9 - 52.0 0.75 - 0.83

Table A.11: Posterior parameter range (5-95 percentiles) for a selection of parameters for the model runs of
Chapter 4, ∗MRC denotes the value determined with a master recession curve ± 10 days

Parameter Imax SR,max β LP D KF KS Pmax α µ Perc

Unit mm mm - - - h h mm h−1 - mm h−1 -
Prior 1 - 3 50 - 350 1 - 5 0 - 1 0 - 1 2 - 960 MRC∗ 0 - 0.05 1 - 2 0.005 - 0.9 -0.5 - 1
(1) Straimont 1.2-2.9 160-282 3.5-4.8 0.03-0.48 0.01-0.17 336.06-890.69 1272-1713 0.001-0.013 1.2-1.5 0.09-0.76 -0.04-0.81
(2) Daverdisse 1.3-2.9 82-267 2.2-4.5 0.03-0.56 0.11-0.37 217.00-919.64 1554-1995 0.001-0.017 1.1-1.7 0.02-0.41 0.36-0.91
(3) Jemelle 1.1-2.6 139-207 3.1-4.8 0.08-0.58 0.11-0.29 168.53-904.74 1651-2013 0.005-0.016 1.1-1.7 0.18-0.77 -0.43-0.81
(4) Mabompre 1.2-3.0 147-277 2.8-4.8 0.19-0.81 0.01-0.17 183.66-894.08 1550-1959 0.001-0.009 1.0-1.4 0.04-0.85 -0.32-0.74
(5) Ortho 1.1-2.9 119-200 2.6-5.0 0.22-0.64 0.04-0.23 192.87-936.27 1627-2054 0.002-0.013 1.0-1.5 0.04-0.82 -0.44-0.93
(6) Treignes 1.1-2.8 126-231 2.3-4.9 0.07-0.48 0.06-0.33 147.23-807.97 1614-2009 0.001-0.013 1.3-1.9 0.05-0.58 0.47-0.96
(7) Sainte-Marie 1.4-2.9 80-249 2.0-4.8 0.16-0.81 0.27-0.46 76.33-715.85 1901-2290 0.001-0.015 1.3-2.0 0.05-0.37 0.65-0.94
(8) Longlaville 1.1-2.9 144-268 2.3-4.6 0.37-0.87 0.05-0.26 86.18-485.06 1572-1949 0.009-0.025 1.6-2.0 0.16-0.82 -0.50-0.93
(9) Wiheries 1.1-2.5 121-191 2.9-4.9 0.08-0.70 0.02-0.20 224.57-813.54 1588-2045 0.003-0.015 1.5-2.0 0.28-0.84 -0.15-0.94
(10) Yvoir 1.2-2.8 106-288 1.9-4.5 0.16-0.93 0.50-0.70 190.35-859.00 2758-3187 0.008-0.022 1.5-2.0 0.06-0.47 0.57-0.97
(11) Warnant 1.1-2.7 140-251 2.1-4.7 0.25-0.64 0.29-0.64 188.22-859.56 2648-3070 0.010-0.030 1.6-2.0 0.04-0.70 0.22-0.88
(12) Hastiere 1.1-2.8 119-176 2.6-5.0 0.14-0.64 0.01-0.20 136.48-738.16 1544-1936 0.003-0.015 1.4-2.0 0.20-0.79 -0.22-0.66
(13) Soulosse 1.1-2.9 51-113 1.5-4.7 0.13-0.96 0.02-0.18 187.97-920.87 1326-1728 0.001-0.014 1.5-1.9 0.06-0.82 -0.36-0.90
(14) Circourt 1.3-2.8 53-83 1.9-4.8 0.31-0.85 0.01-0.14 65.95-753.43 1041-1398 0.000-0.007 1.2-1.9 0.02-0.85 -0.20-0.72
(15) Goncourt 1.2-2.8 54-91 2.4-4.9 0.08-0.68 0.02-0.17 42.03-891.56 952-1282 0.000-0.005 1.1-1.9 0.07-0.82 -0.17-0.82
(16) Huccorgne 1.1-2.9 131-314 1.5-4.0 0.29-0.83 0.17-0.61 155.33-889.04 1869-2268 0.002-0.010 1.2-1.9 0.04-0.30 0.54-0.97
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Table A.12: Calibrated model parameters, units and prior range for the wflow_FLEX-Topo model used in Chap-
ter 6 (∗MRC denotes the value determined with a master recession curve ± 30 %).

Parameter unit Description Prior range Plateau Hillslope Wetland
TT °C Threshold temp. snow and rain 0.7 - 1.9 0.7 - 1.7 0.7 - 1.7 0.7 - 1.7
TM °C Threshold temp. snow melt 0.7 - 2.3 0.8 - 2.2 0.8 - 2.2 0.8 - 2.2
FM mm d−1 °C−1 Degree day factor 2.0 - 5.0 2.3 - 5.0 2.3 - 5.0 2.3 - 5.0
Imax mm Max. interception capacity 0.5 - 4.0 0.5 - 3.0 0.9 - 4.0 0.5 - 3.0
β - Shape parameter 0.2 - 0.4 0.2 - 0.4 0.2 - 0.4 0.2 - 0.4
LP - Evap. reduction coefficient 0.1 - 0.6 0.1 - 0.6 0.1 - 0.4 0.1 - 0.6
RC,max,W mm d−1 Max. capillary rise 0.1 - 0.5 0.1 - 0.5
RP,max,P mm d−1 Max. percolation 0.05 - 0.72 0.05 - 0.72
α - Non-linear coefficient 1 - 1.8 1.0 - 1.8 1.0 - 1.4
KF d Fast recession time scale 10 - 100 10 - 100 10 - 100 10 - 100
D - Fraction to slow storage 0.04 - 1 0.05 - 1 0.05 - 1
KS d Slow recession time scale MRC∗
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SOIL WATER INDEX (SWI)

The SWI aims to represent time series of soil moisture in deeper layers from past near-
surface soil moisture estimates. A two-layer water balance model is defined with the
upper layer representing the near-surface soil moisture and a second layer representing
a deeper reservoir with length L which is only in contact with the surface layer. The
following equation is used to link the water content in the surface and deeper reservoir
(Wagner et al., 1999).

L · dW (t )

dt
=C · (Ws (t )−W (t )) (B.1)

With W the moisture content in the lower reservoir (m3 m−3 or percentage satura-
tion), L the depth of the reservoir [m], Ws the surface soil moisture content (m3 m−3 or
percentage saturation) and C represents a pseudo-diffusivity coefficient dependent on
soil moisture and is assumed constant [m d−1]. The equation is solved by assuming a
constant parameter T [d]:

T = L

C
(B.2)

With increasing soil depth or decreasing pseudo-diffusivity constant, the value of T
increases.

The solution of the differential Equation B.1 is:

W (t ) = 1

T
·
∫ t

−∞
Ws (τ) ·exp(− t −τ

T
)dτ (B.3)

and:

T =
∫ t

−∞
exp(− t −τ

T
)dτ (B.4)
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where τ represents the time of the previous measurement.

As satellite-based estimates of near-surface soil moisture are available at irregular
intervals, the continuous formulation of Equation B.3 is replaced by a discrete equation
given in Equation B.5.

SW I (tn) =
∑n

i SSM(ti ) ·e−
tn−ti

T∑n
i e−

tn−ti
T

(B.5)

Where SW I , the Soil Water Index at time tn , has replaced the continuous W and
SSM , the near-surface soil moisture estimate at time ti , has replaced the continuous Ws

(all in m3 m−3 or percentage saturation).

Stroud (1999) and Albergel et al. (2008) reformulated this exponential filter to a re-
cursive formulation to handle irregular data more easily than the original exponential
filter:

SW I (tn) = SW I (tn−1)+Kn · (SSM(tn)−SW I (tn−1)) (B.6)

The gain Kn [-] at time tn is given by the following recursive formula:

Kn = Kn−1

Kn−1 +e−
(tn−tn−1)

T

(B.7)

With initial values SW I (t0) = SSM(t0) and K0 = 1, and where tn and tn−1 are the ob-
servation times of the current and previous SSM observation in Julian days. The gain Kn

ranges between [0,1]. When many observations during the characteristic time length T
are available, the gain will be small, meaning that the prior value will only be changed
slightly towards the new observation. On the other hand, when no data has been re-
ceived in quite some time relative to T , the gain will be large implying that the new esti-
mate of SW I will converge towards the value of the new observation.



C
WATER BALANCE METHOD TO

ESTIMATE THE ROOT-ZONE

STORAGE CAPACITY

There is increasing evidence that catchment-scale root-zone water storage capacities
SR,max can be robustly and readily estimated following a simple water balance approach
based on daily precipitation and potential evaporation in combination with long-term
runoff ratios (Gao et al., 2014; Wang-Erlandsson et al., 2016; Nijzink et al., 2016a; de Boer-
Euser et al., 2016). The underlying assumption implies that natural vegetation adapts
its storage to overcome dry spells with certain return periods (Milly, 1994; Kleidon and
Heimann, 1998; Donohue et al., 2012; Gentine et al., 2012).

The long-term water balance of a catchment used here (Equation C.1), with storage
(S), long-term mean annual precipitation (P ), interception evaporation (EI), plant tran-
spiration (ER), runoff (QRiver) and intercatchment groundwater flow losses (QIGF) pro-
vided in mm yr−1, accounts for deep groundwater losses as they were shown to be sig-
nificant in several catchments of the Meuse (Bouaziz et al., 2018). The long-term water
balance considered here therefore reads as:

dS

dt
≈ 0 ≈ P −EI −ER −QRiver −QIGF (C.1)

1. At first interception evaporation is estimated and used to quantify the effective
precipitation PE that reaches the soil (PE = P −EI − dSI

dt ). Here, EI is a function of
interception capacity (Imax; see Appendix A for the detailed equations). Due to the
lack of more detailed information, we quantified the effect of different interception
storage capacities, i.e. Imax = 0.5, 1.0, 2.0 and 3.0 mm, in a sensitivity analysis.
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2. Long-term mean annual deep groundwater losses are expected in catchments where
the difference between long-term mean annual precipitation and runoff approx-
imates or exceeds the energy available for evaporation (Andréassian et al., 2012;
Bouaziz et al., 2018). For each catchment, we check if the difference between mean
annual precipitation and runoff exceeds potential evaporation. We attribute this
gap in the water balance to deep groundwater losses as they were found to be sig-
nificant in several catchments of the Meuse (Bouaziz et al., 2018). We estimate
mean annual deep groundwater losses using the Turc-Mezentsev/Budyko (Turc,
1954; Mezentsev, 1955; Budyko, 1961) framework. We assume that actual evapora-
tion (EA = P−QRiver = EI+ER) should not deviate more than 5% from the long-term
mean annual evaporation determined with the Turc-Mezentsev/Budyko (Turc, 1954;
Mezentsev, 1955; Budyko, 1961) framework (EA,TM).

QIGF =


EA − (1.05 ·EA,TM), if EA = P −QRiver > EP.

0, if EA = P −QRiver < EP.

(C.2)

3. We then determine mean annual transpiration ER from long-term mean annual
effective precipitation PE, runoff QRiver and where applicable groundwater losses
QIGF (Equation C.3).

ER =


PE −QRiver −QIGF, if QIGF > 0.

PE −QRiver, if QIGF = 0.

(C.3)

4. To maintain the seasonal signal, mean transpiration is then scaled to the daily sig-
nal of potential evaporation minus interception evaporation, by using the ratio of
long-term mean annual transpiration over long-term mean annual potential evap-
oration minus long-term mean annual interception evaporation (Equation C.4).

ER(t ) = (EP(t )−EI(t )) · ER

(EP −EI)
(C.4)

5. As shown by Bouaziz et al. (2018), groundwater losses are expected to occur largely
during the wet period when recharge exceeds a certain threshold. In the absence
of clear seasonality in the annual precipitation signals, we accounted for this sea-
sonality in groundwater losses by estimating monthly groundwater losses based
on the inverse pattern of mean monthly potential evaporation. As mean monthly
groundwater losses mostly occur in the wet period, they only slightly affect the
maximum annual deficit.
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6. An initial storage deficit of zero is assumed at the end of the wet period, in April,
and the cumulative deficit is then calculated from daily effective precipitation,
transpiration and groundwater losses assuming an “infinite-reservoir”. The cumu-
lative deficit increases during summer until it becomes zero again when all excess
water is assumed to drain away through groundwater recharge or directly to the
river as it cannot be stored. The annual maximum cumulative deficit (SR,def) be-
tween the time where the deficit equals zero (T0) until the time where the total
deficit returns to zero (T1) is calculated following Equation C.5.

SR,def = min
∫ T1

T0

PE − (ER −QIGF)dt (C.5)

The maximum storage deficit decreases as the maximum interception capacity in-
creases as more water is intercepted and less goes to transpiration. However, the
magnitude of the fluctuations due to interception is minor relative to the magni-
tude of the storage deficits.

7. The annual maxima of the storage deficit SR,def are fitted to the extreme value dis-
tribution of Gumbel and, following Gao et al. (2014) and Nijzink et al. (2016a), the
20 years drought return period was used to estimate the water-balance-derived
root-zone moisture capacity SR,max.
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