tablishing a synergy between communist industrial sites residential areas in the context of energy transition

Re-Defining **Energy Scapes** in Elbasan, Albania

Patterns of Production in Albania

toring Service (2020)

climate change challenge

big hydropowers in Albania

Energy produced from hydropower sector **dominates the electricity production** in Albania, with river Drin alone being responsible of 90% of the country's electricity supply (IRENA, 2021).

potentials for renewable energy sources in Albania

energy poverty challenge

environmental challenge

conceptual framework

"How can the establishment of an **energy-space nexus** in the **Pattern of Production** contribute to **energy security** for a social and environmental sensitive transition in Elbasan?"

analysis

Elbasan region

Problem 1. Climate vulnerability of local vision

Problem 2. **Increase of electricity demand**

Problem 3. **Energy-social segregation**

Problem 4. **High usage of wood as energy source**

Problem 5. **Environmental 'hostspots'**

Problem 6. **Social sensitivity of the industrial area**

analysis

pattern of production

analysis

pattern of production

MAIN NEEDS

Energy Security

reliable energy grid and infrastructure

diversify energy sources

increase energy efficiency

Energy Equity

access to clean energy sources

affordable clean energy for all

participate in decision-making

Environmental Qualities

resilient from extreme weather conditions

mitigate air, soil, water pollution from industrial area

green and better neighborhoods conditions

analysis stakeholders

analysis stakeholders

structure

structure

multi-level perspective framework

macro scale

high potential to harness clean energy sources

P1.1 maximize clean energy

macro scale

high potential to harness clean energy sources

P1.1 maximize clean energy

wood as primary energy source for heating

P1.2 localize clean energy production

macro scale

high potential to harness clean energy sources

P1.1 maximize clean energy

wood as primary energy source for heating

P1.2localize cleanenergy production

strategic location in the national energy infrastructure

P2.1 redundancy and interconenctions

macro scale

high potential to harness clean energy sources

→ P1.1 maximize clean energy

wood as primary energy source for heating

→ P1.2 localize clean energy production

strategic location in the national energy infrastructure

P2.1 redundancy and interconenctions

increasing energy demand due to rising temperatures P2.2 mitigate and adapt

meso scale

before

after

micro scale

A1.1

A2.2 every sunray counts

A3.1 start with public roofs

A4.1

A4.2 solar agriculproduce on

A5.1 upgrade

A6.1

A7.1 community microgrids

A7.2 close to energy sources

macro scale

W3.

lack of energy
efficiency within
urban areas

P3.1 reduce consumption

macro scale

W3.
lack of energy
efficiency within
urban areas

P3.1 reduce consumption

W1. — P3.2
energy - social sharing is caring segregation

macro scale

W3.
lack of energy
efficiency within
urban areas

P3.1 reduce consumption

w1. energy - social segregation

P3.2 sharing is caring

proximity of Communist industrial sites to residential areas

P4.1 proximity to energy sources

macro scale

W3.
lack of energy
efficiency within
urban areas

P3.1 reduce consumption

w1. energy - social segregation

P3.2 sharing is caring

proximity of Communist industrial sites to residential areas

P4.1 proximity to energy sources

w6. the existence of off-grid residential areas

P4.2 resilient infrastructure

meso scale

before

after

micro scale

A1.1 insulating

A1.2

facade

A2.1 shading the shared solar parks

A2.2 localized

A3.1 energy parks energy supply open to public energy

A3.2 share public rooftops

A4.1

private

storages for

A5.2 A5.1 community water for heating production

A6.1 prioritize marginalized

A6.2 vulnerable communities

A7.1 store local solar energy

fossil fuels storages

A7.2

A8.1 community microgrids

A8.2 community owned projects

macro scale

environmental hotspots caused by pollution

P5.1 soil and water revitalization

macro scale

environmental hotspots caused by pollution

P5.1 soil and water revitalization

S4. \longrightarrow **P5.2** presence of green corridors green spaces

macro scale

environmental hotspots caused by pollution

P5.1 soil and water revitalization

S4. \longrightarrow **P5.2** presence of green corridors green spaces

T1. — P6.1 climate responsive ability of the energy system

macro scale

environmental hotspots caused by pollution

P5.1 soil and water revitalization

S4. — **P5.2** presence of green corridors green spaces

T1. — P6.1 climate responsive ability of the energy system

maximize environmental qualities

meso scale

before

after

maximize environmental qualities

micro scale

A1.1

A1.2

A3.1

A4.1

recreational A4.2

A5.1

A5.2

A6.1

A6.2

A7.1

A8.1

A8.2

pattern field

A1.2

A2.1

A2.2

A3.1

A3.2

A4.1

A4.2

A5.1

A7.2

community

A7.1

A6.1

A5.2

storages

production

people

energy

projects

A6.2

A1.1

optimization

vision

macro scale

conflict 1

maximize clean energy

A2.1 water for heating

corridors
S4 blue-green

macro scale

44/78

conflict 1

maximize clean energy

A2.1 water for heating

green
corridors
S4 blue-green

macro scale

macro scale

conflict 4

vision

stakeholders strategy

meso scale

A3.1

P1 ecological solar parks

Solar panels integrated into parks do not disrupt ecological values of these natural landscapes and provide clean energy production.

Eco-park by FABRICations, 2019

meso scale

A3.1

energy

parks open

P2 centralized energy open to public

hypothesis

Designing centralized solar energy production areas as a public space for the residents increases the environmental qualities of the city and this energy scape specifically.

CopenHill Energy Plant, Copenhagen

centralized energy open to public

A2.1

A5.1 green roofs and streets

A8.2

meso scale

A3.2

my own

solar roof

A3.1

energy

A3.2

rooftops energy

A3.1

share public

A2.1

A5.1

P3 symbiotic landscape

Providing structures for the marginalized community to have their own solar green garden increases energy equity and environmental qualities.

Derbyshire Community Garden (Photo by Embry-

solar agricul-

tural land

A1.2

energize the

industrial site

communities

A8.2

meso scale

A3.1

energy

A3.2

my own

solar roof

A2.1

A1.1

A5.1

Using the rooftop for solar energy production and greenery gives people direct access to clean energy and reduces the risk of high urban island effect in the densified areas.

"Biosolar" roof by Vegetek, France (Puthod, 2024)

P3

A3.2

A8.2

A4.2

produce on

my courtyard

A3.1

energy parks

open to public

A5.2

solar

community

A6.2

2 in 1 for

productive rooftops and solar public spaces

P4

A4.2

A2.1

meso scale

A3.2

my own

solar roof

A3.1

energy

A3.2

rooftops energy

A3.1

share public

A2.1

A5.1

A6.2

2 in 1 for

vulnerable

P5 blue-green corridor

Transforming the river into a blue-green corridor will increase ecological values, biodiversity and protect from flooding in extreme weather condi-

Public Space Merwede in Utrecht, NL (LOLA, 2023)

centralized energy open to public

P3

A1.2

energize the

industrial site

symbiotic landscape

P5

blue-green corridor

A4.2

A4.2

produce on

my courtyard

energy parks

open to public

A5.2

solar

community

production

A4.1

A2.1

parks

shared solar

A3.2

share public

A5.2 solar

A8.2

meso scale

solar park

A3.1

energy

A5.1

A6.2

vulnerable

P6 agrivoltaic restoring landscape

Elevated solar panels integrated with trees that remove heavy metals from the soil in agricultural lands contribute to healthier soil and food for locals, while also producing clean energy.

Solar farm in Kenya. Photo is by Chloride Exide

centralized energy open to public

A3.2

my own

solar roof

share public

A3.2

A2.1

A8.2

landscape

A2.1

parks

A3.1

energy parks

open to public

A5.2

agrivoltaic restoring landscape

61/78

BEFORE - Metalurgjiku open lands

assessment

diversify energy sources

increase energy efficiency

access to clean energy sources

affordable clean energy for all

participate in decision-making

resilient from extreme weather conditions

mitigate air, soil, water pollution from industrial area

green and better neighborhoods conditions

conclusions

"How can the establishment of an **energy-space nexus** in the **Pattern of Production** contribute to **energy security** for a social and environmental sensitive transition in Elbasan?"

conclusions

