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Smart drone positioning for drone-to-vehicle communication

P. J. Wiersma

Abstract—Currently, self-driving vehicles have trouble detect-
ing partially and fully occluded objects such as pedestrians,
vehicles, and static obstacles. It has been proven that a drone
surveilling the area around the vehicle improves the vehicle’s
awareness of its surroundings. This work explores planning
strategies for the drone and evaluates how much the strategies
assist the vehicle. Previous work proposed a metric called PKL,
which describes the awareness of a vehicle as a function of the
detections of the vehicle using a planner model. Subtracting
this metric calculated using detections done by the drone from
the metric without these detections results in an awareness
improvement metric. This metric was used to evaluate drone
positions and therefore the drone planning strategies. It was
found that aiming to hover directly above the autonomous vehicle
improves the awareness of the vehicle measured by median PKL
improvement by 1.8%. Using only the relative position of the
autonomous vehicle to the drone, the velocity of the vehicle in
x and y directions and the number of vehicles visible to the
drone, an imitation learning-based strategy performed the best
with 11.6% median PKL improvement. If the drone’s planner
knows the future position of the autonomous vehicle or the
positions of all vehicles in the area, the median PKL improvement
is 74.5% and 80.8%, respectively. Optimizing the trajectories
using a genetic algorithm further improves the performance to
96.7%. From these numbers, we can conclude that aiming to stay
directly above the vehicle does not benefit the autonomous vehicle
the most. We show that intelligent drone trajectory planning
strategies can be learned which improve the awareness of the
autonomous vehicle and therefore the safety of the people in and
around this vehicle.

I. INTRODUCTION

A challenge for self-driving vehicles is to detect partially
and fully occluded objects such as pedestrians, vehicles, and
static obstacles. Current high-performance object detection
algorithms miss approximately 1 out of every 10 partially
occluded vehicles and 2 out of every 10 heavily occluded
vehicles [1]]. The problem is even more highlighted by the fact
that Waymo claims that 2 out of the 8 incidents involving their
self-driving vehicles were due to occlusion in intersection
scenarios [2]]. Smaller objects like pedestrians and cyclists
are missed even more frequently. Fully occluded objects can
be detected by tracking them while not being fully occluded,
but this is not possible if objects were not detected beforehand.

A possible method to detect every relevant detection is
to view the scene from a point where the objects are not
occluded, such as from the air. The Horus-stationary [3]
dataset was generated to test the effectiveness of a method
where a drone hovers statically above the ego vehicle. It
proved that more detections are done when such an additional
view is used. This thesis aims to build on top of this current
method by testing various strategies for controlling drones,
such that the vehicles are aware of all relevant objects in
their vicinity and help the vehicle look ahead. The different

strategies that are evaluated vary from the baseline method (a
single drone flying right above a single vehicle) to rule-based
and RL-based planners.

Ideally, the drone planning strategies should not require
knowledge of the environment and little information from
the autonomous vehicle. This way, the planning strategy
could be applied in every city and would not require a lot
of bandwidth for the communication between the drone
and the autonomous vehicle. These limitations challenge
the models to exploit the information available to them and
use it intelligently. It is a challenging task to train an RL
model in a 3D real-time simulation environment due to the
computational requirements of the simulation in combination
with the large number of timesteps required to train models.
A possible solution would be to use recordings/footage from
the simulation. In this case, closed-loop training would be
impossible, as the footage is fixed for fixed positions of the
drone. To store every possible camera image for the positions
the drone could be at would result in a massive dataset, which
makes using it difficult.

Also, detecting vehicles which are not detected by the
vehicle itself is not enough to improve the awareness of an
autonomous vehicle, as these detections can range from: not
relevant to the vehicle at all (e.g. parked vehicles, vehicles
that are behind the autonomous vehicle and moving in the
opposite direction) to crucial (e.g. vehicles at intersections
that are occluded by other vehicles or buildings). For this
reason, a metric should be chosen which is able to estimate
the relevance of the detection to the autonomous vehicle.
Previous work [4] proposed PKL, a metric capable of this
task. Using this metric requires knowledge of the road
network, which should be extracted from the simulation
tool which is used. Finally, using a single drone for every
autonomous vehicle does not seem economical when there
are many autonomous vehicles. The visible area of drones
would overlap and more complex behaviour would be
possible which makes better use of the drones. This requires
communication between the drones which could be achieved
through a centralized unit. For this reason, a 2D simulation
environment was created which is based on data created by
a 3D real-time simulation environment. Using this simulation
environment, models were trained and tested, resulting in the
following main contributions:

o Simulation tool: A simulation tool was created that allows
closed-loop training and evaluation of drone planning
models to be done, which are used to increase awareness
of autonomous vehicles resulting in safer vehicle trajec-
tories. It uses an (almost) orthogonal view of a city. This
view is cropped to the drone’s field of vision allowing
drone footage to be used for an infinite number of drone

All code is available in the GitHub repository: https://github.com/tudelft-iv-students/pellewiersma.git
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positions while requiring little computational effort.

o Informed model: A novel drone trajectory planner is
proposed which is optimized using a Genetic Algorithm
(GA). The parameters of the GA’s population are the
coefficients of a polynomial which describes the trajec-
tory. The GA’s population is optimized using the mean
PKL improvement as the fitness indicator. This approach
requires knowledge of the positions of all vehicles in the
scenario.

o Uninformed model: To create behaviour similar to the
informed model, but without the knowledge of the posi-
tions of all vehicles, an Imitation Learning (IL) model
was trained using the informed model’s behaviour as
demonstrations. Behaviour Cloning (BC) was applied
resulting in unique behaviour using a small amount of
required knowledge.

II. RELATED WORK

As mentioned in Section [, Horus-stationary [3]] generated
a dataset to test the effectiveness of a method where a drone
hovers statically above the ego vehicle. This dataset has (on
top of the sensor suite used in the nuScenes dataset [5]) a
view from a drone, statically connected above a vehicle. This
drone captures images viewing down towards the vehicle. This
provides the autonomous vehicle with additional information
about its surroundings. The Transfusion detector [[6] was used
to fuse the camera images recorded by the drone with the
lidar point clouds recorded by the lidar sensor on the vehicle.
The environment and physics were simulated using the Carla
simulation tool [7]]. The dataset is in the same format as
nuScenes, which makes using the dataset easier, as tools that
work on nuScenes (like the nuScenes devkit and Transfusion
devkit) can be utilized directly on Horus-stationary. The main
downside of this method is that there is no control done on the
position of the drone. This is unrealistic as there are dynamics
of the drone which introduce a delayed response, increased by
the latency between the controller and the drone itself. Also,
possibly a better position for the drone can be found which
helps the vehicle more effectively. A different issue is that
having a single drone for every single vehicle is expensive. It
would economically be more interesting if a number of drones
smaller than the number of vehicles could be used. This does
however lead to a problem of how to strategically place these
drones.
A different paper [8] suggests a future where a drone helps
an autonomous vehicle by taking off from the vehicle, and
moving towards areas that are occluded for the vehicle. The
vehicle scans its surroundings, determines which areas are
occluded using a 2D grid map, and calculates a trajectory for
the drone to travel along. This method differs from the method
presented in this work, as the calculation of the trajectory
is done on the vehicle, and therefore requires much more
computations from the vehicle. An upside of this method
compared to the method presented in this work, is that the
drone does not assume where the occluded areas are based on
a limited observation space, but receives the locations known
to be occluded. The presence of occluded areas is more likely

in scenarios with a high density of traffic and buildings, such
as cities. This means that the drone would be less active in
scenarios with less traffic density and fewer buildings. Horus
could provide a solution for this, as the drone(s) can change
which vehicle they are helping based on whether they are in
the city area, and therefore reduce the idle time and increase
the effectiveness of the drone.

Unlike communication between vehicles and drones, many
works research communication between vehicles (V2V) and
between vehicles and infrastructure (V2I). V2Vnet [9] re-
searches V2V by sending features of vehicles to one another
in order to predict the trajectories of the vehicles in the area.
Although they manage to prevent collisions using very little
bandwidth, it is mentioned that their approach only works
when multiple autonomous vehicles capable of communicating
with each other are present in the same area. This is not
required if the infrastructure communicates with autonomous
vehicles. DAIR-V2X [10] presents a dataset consisting of
recorded traffic scenarios at intersections. Installing sensors
at intersections for V2I communication makes sense as inter-
sections are areas where autonomous vehicles require help as
mentioned in [2[]. Additionally, by using statically installed
sensors there are no problems regarding the safety of the
drones themselves. However, modifying the infrastructure is
a major investment which only makes sense if a significant
number of vehicles can communicate with this infrastructure,
which is unlikely in the near future. We present a method
which would require no modifications to the infrastructure and
could be deployed before V2I is an economical solution.

III. METHODS

The varied nature of the planning strategies that will be
trained and evaluated require a simulation environment ca-
pable of handling such variations. For this reason, a custom
simulation environment was developed. This section covers the
design of the tools required to experiment with the planning
strategies. In Figure [I] a flowchart visualizes the process of
simulating a traffic scenario. Section [[lI-A]explains the process
of creating scenarios and storing them such that they can be
used for training and evaluation of drone planning strategies.
In Section [[TI-B3] the perception module is explained, followed
by a detailed description of all planning strategies which
convert the drone’s observation into an action (Section [[II-C).
Next, Section shows how the drone action translates into
movement in the simulation. The final section, Section |[l1I-E]
explains how the planning strategies are evaluated and what
metric was used for evaluation.

A. Dataset

One of the main challenges for the dataset generation is that
the drone should be able to generate an observation for every
possible position the drone could be in to be able to control
the drone in closed loop. If rendered images or video footage
were used as a method to store scenarios, the large dataset
size would make it difficult to use. This is why a format was
created that only consists of the information required for top-
down view applications.
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Fig. 1: This flowchart visualizes how a model is evaluated on a single scenario. The letters in the boxes represent the subsections

in which they are discussed.

1) Map data: All static objects like buildings and roads
look identical in every traffic scenario taking place in the same
city (assuming lighting and weather conditions are ignored).
It would therefore save a lot of data if the static objects could
be stored only once and reused at every timestamp and every
scenario. This is why a top-down HD render (39MP) of the
image was made, along with an HD render of objects that
could be in between the traffic and the drone such as tree
foliage and bridges. The camera settings were chosen to create
images which resemble an orthogonal image as closely as
possible. This was done by moving the camera as high as
the rendering distance of the Carla simulator allows (1.9km),
and reducing the field of view to 9° to view only the city and
not its surroundings. Furthermore, weather conditions were
specified to avoid reflections and shadows. Also, sprites are
stored for every vehicle type. This allows the vehicle sprites
to be rendered on top of the city image and then covered with
foliage and bridges. While our perception layer does not take
foliage into account as mentioned in Section[[II-B3] this would
be important as a realism factor if detections were done based
on the images of the camera. A visualization of this top-down
view is shown in Figure

2) Scene data: The scenario-specific data is stored sepa-
rately. It is divided into two parts: metadata and positional
data:

Metadata: This information includes every vehicle’s id, di-
mensions and vehicle model.

Positional data: This information includes the location of
each vehicle, along with its orientation. Ids are used to match

the scenario-specific data with the metadata. This information
is stored for every timestamp.

3) Dataset size: If top-down images were used for every
timestamp, the resulting size would be 16.2GB per ego-
vehicle. For 6 scenes of 40s each, this would result in 97GB
if detections were stored for every possible ego-vehicle. If
only a single ego-vehicle would be used per scene, a dataset
of 600 ego-vehicles would be 9.7TB.

Our format requires much less storage:
« Map data: 51.7MB
e Scene data: 37.7MB for 6 scenes of 40s each containing
600 possible ego-vehicles in total
If only a single ego-vehicle would be used per scene, a dataset
of 600 ego-vehicles would be 3.8GB. This is only 3.9% of the
dataset size if images were used.

B. Perception

Information about the scene at a certain timestamp is fed
to the perception module. To prevent the performance of the
perception module from interfering with the evaluation of
the planning strategies, the drone’s camera and lidar sensor
are implemented as perfect sensors. How this was done is
explained in this section.

1) LiDAR: To model a LiDAR sensor, 2D raytracing was
used. 1 ray per degree is traced. Any vehicle reached by a ray
within a range of 100m is classified as a detected vehicle by
the ego-vehicle. To simulate buildings occluding sensor rays,
the drivable area was used (How the drivable_area polygons
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Fig. 2: The top-down view of the city. Note that some
perspective is still present, as can be seen in the bottom-left
corner. However, due to the sidewalk, this would not occlude
any vehicles.

were determined is explained in Appendix [A). The rays will
only be traced as long as they are on the drivable area.

2) Camera: Cameras usually detect vehicles using a trained
model. To create the perfect detector, any vehicle inside the
visible area of the drone is classified as a detected vehicle by
the drone.

3) Sensor fusion: With vehicles detected by either the ego-
vehicle, the drone, or both, they can now be fused. The fusion
is done by taking the union of the detections done by the ego-
vehicle (LiDAR) and the drone. Given that both the drone
and ego-vehicle provide only detections which are part of
the ground truth, no false positives or false negatives can be
produced. Figure [3] shows what the detections look like.

C. Planning strategy

This section describes the strategies that were created and
tested. The experiments cover a range of planning strategies
both rule-based and Reinforcement Learning (RL) based.
For all experiments, the drone’s altitude was fixed to 50m,
to reduce the number of variables in the results. The results
are shown for three different traffic density levels, as this
parameter has a large influence on the results.

1) Above ego (baseline) strategy: As a baseline, the drone
always aims to hover directly above the ego-vehicle. This
is done by passing the known location of the ego-vehicle
to the low-level planner, which provides an action resulting
in movement towards the ego-vehicle. This is visualized in

Figure

o
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Fig. 3: A traffic scenario visualized in the environment. The
red rectangle denotes the visible area of the drone’s camera.
The pink rectangle denotes which vehicle is the ego-vehicle,
the yellow rectangles denote detections done by the ego-
vehicle (LiDAR), the blue rectangles the detections done by
the drone, and the green rectangles the vehicles detected by
both the ego-vehicle and the drone.

2) Horus-stationary strategy: This approach is very similar
to the baseline strategy but does not use a drone model to
control the drone. Instead, the drone is fixed at a stationary
position located above the ego-vehicle.

3) Flying ahead strategy: Next, the rule-based strategy
“flying ahead” was tested. This strategy is tested because we
think being aware of the vehicles at the future location of the
ego-vehicle is valuable, especially because the ego-vehicle
can not look around corners of buildings. Lead/lag time is
used instead of lead/lag distance, as the distance to the future
position the ego-vehicle will occupy is proportionally related
to the velocity of the ego-vehicle. This means that when
the ego-vehicle is on a highway, the drone will fly ahead,
and when the ego-vehicle is stationary, the drone will hover
above the vehicle. The best amount of time to lag or lead
the ego-vehicle was determined by evaluating a set of 24
scenarios, and graphing the median % PKL improvement
as a function of lag/lead time as shown in Figure [ The
best-performing lag/lead time was used for comparison with
the other strategies and is visualized in Figure

4) RL-based strategy: Following this, a reinforcement-
learning model was trained. It is based on the Proximal Policy
Optimization (PPO [11]]) method. This optimization method
is applicable in a wide range of problems and is especially
useful in online reinforcement learning applications where
continuous action and observation spaces are required. Other
algorithms like A3C and DPPO were considered.
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Fig. 4: The resulting PKL improvements (%) of the scenario
with drone observation compared to no drone observation.

However, due to the complexity of running multiple agents
at the same time and given that DPPO and A3C are not
implemented in StableBaselines3 [14], the framework that
was used for RL implementations, the more common PPO
was chosen as a suitable algorithm. The reward function was
designed to be a dense function in line with the guideline
provided in [15]]. Sparse rewards are a major problem in many
reinforcement learning problems. This is also true for the
problem present in this paper as “not detecting a vehicle” vs
“detecting a vehicle” is a discrete step. This means that partial
improvements (i.e. moving in the direction of the undetected
vehicle) provide no partial reward if detections are part of
the reward function. This would also be the case if PKL
was used as a reward or part of the reward. This was tested
and quickly discarded due to the slow training speed and the
sparse rewards. Although methods have been developed which
make a sparse function dense using guidance from an offline
demonstration [16]] [17], we provide partial rewards based
on the distance to a good location (determined using data
which is not accessible to the RL-model). The reward function
is separated into two parts: A partial reward based on the
distance from the ego-vehicle (promotes staying in the vicinity
of the ego-vehicle), and the unseen vehicle component, which
promotes seeing vehicles that are not visible to the ego-vehicle.
The RL algorithm that was used has the following parameters:
Algorithm: PPO [11]
Action space:

« target location rel. to drone (x;y)
Observation space:

« ego location rel. to drone (x;y)
« ego velocity (vx;vy)
o # vehicles in drone camera view

Reward function:

« Near ego component:
f=02%(5—|degol)
This component is 1 when the drone is at the same
location as the ego vehicle and linearly decreases with
distance.

« Unseen vehicle component:
g= Z?:l 6_0‘2*‘d1’| —0.1
For every unseen vehicle i, this component is 1 when
the drone is at the same location as the unseen vehicle
and becomes negative when the vehicle is more than
10m away. The final reward is equal to f when g < 0.
Otherwise, the reward function is g.

5) Informed trajectory without GA: For every 5th
timestep, the ideal location was determined. This was done
by calculating the PKL value between the ego-vehicle’s
detections with and without every single unseen vehicle. The
ideal location is defined as the location where the cumulative
sum of PKL improvements (not %) is maximal. This means

n

that for every location fpki _giin = > AP; is calculated,

where n denotes the number of deteclt?a(()i vehicles, AP; the
difference in PKL score between detecting this vehicle or not.
The location where this equation is maximal was stored. This
results in the location where the most relevant unseen vehicles
are detected. To limit the number of helpful vehicles which
improve the PKL by a negligible amount, a minimum PKL
difference threshold was implemented at 3%. While these
ideal locations give the expert agent information about what
area to move towards, this does not consider the constraints
of the drone. To optimize the trajectory using the constraints
specified by the motion model, the Genetic Algorithm (GA)
was used.

6) Informed trajectory with GA: Using information about

the scenario outside of the relative position and the velocity of
the ego-vehicle (i.e. the location of all vehicles), a theoretically
perfect trajectory can be generated. As calculating the PKL
value at every location or grid is expensive, some smart
optimization method was used which is capable of handling
functions which have many local optima. GA has proven
to be a useful method of optimizing trajectories for UAVs
[18]] [19]. To speed up the training using GA, an informed
baseline trajectory was created. This was achieved using the
ideal locations mentioned in Section [I-C3]
The genetic algorithm used here aims to maximize the median
PKL value by evaluating and mutating trajectories. Every
specimen has a genome which describes the trajectory. If the
action for every 5th timestep would be part of the genome,
this would result in a genome consisting of 160 variables
(400/5 = 80 for both x and y). To reduce this number, the
trajectory was parametrized by fitting a 15-degree polynomial
to the trajectory. This results in 30 degrees of freedom for the
GA. The mutation function modifies a number of coefficients
with a probability. The details including parameters of the
algorithm used are described in Appendix



7) IL-based strategy: The informed strategies use infor-
mation about all vehicles in the scenario to construct the
trajectories. We now propose a strategy which aims to imitate
the behaviour executed by the drones following the optimized
trajectories, without the optimization procedure and without
knowledge of the entire scenario. This is done by using a
method called Behaviour Cloning (BC) as implemented in
[20]. It uses demonstrations known to be correct to create
state-action pairs. To use BC in our machine learning problem,
100 scenarios from the optimized trajectories mentioned in
Section were fed to the PPO model using BC. The pol-
icy was then trained using these demonstrations. The specific
parameters of the BC and PPO models are shown in App. [C|

D. Controller

When a drone model is used, it produces an action, based
on the observation. While the observation space varies from
experiment to experiment, the action space is always a target
waypoint. The waypoint is part of the action space rather than
direct accelerations in x and y directions, as this would (in real-
life scenarios) be a safer action space. Packet losses or latency
could result in inaccurate and possibly dangerous movements
if accelerations were used. At every timestamp the drone’s x
and y accelerations are calculated, along with its velocities
and positions, to head towards this target waypoint (action).
This is done using a Model Predictive Control (MPC) [21]]
implementation. For this, the following parameters are used:

e Model for movement in +x direction:

(=00 of ]+ ol
=1 9l

To reduce the complexity of the model, the term c¢/m
was set to 1, making the input action u equal to the
acceleration of the drone. An identical state-space model
exists for movement in the y direction.

o Control horizon: 10 timesteps (1s)

e Acceleration bounds: [-5, +5]

o Optimization tolerance: 0.1m

« Update frequency: 2Hz
To speed up simulation, the control action is calculated
every 5 timesteps, resulting in a 2Hz update frequency.
This also forces the model to commit to an action, as
actions are executed for longer and will therefore be
penalized more if they are not good actions.

E. Evaluation

Every 5 timesteps, the current position of the drone is
evaluated. This evaluation is used to compare the different
planning strategies. The evaluation metric uses the planner-
centric metric PKL [4]. This metric compares a vehicle
trajectory plan based on ground truth detections with a plan
based on observed detections by calculating the KL divergence
between the two. If we calculate this metric on the observed
detections done by the lidar sensor only and also on the

observed detections done by the drone and the lidar sensor
together, we can assess the difference in PKL to find the PKL
improvement. The PKL improvement values of all vehicles
in the area will be calculated once every 5 timesteps when
improvement is possible (PKL improvement not equal to 0),
such that at the end of a scene lasting 40s, a list of PKL
improvements is stored. By evaluating the performance on a
set of 96 ego vehicles, we can take the median of all PKL
improvement scores to find the final score. The median is
used instead of the mean, as the median closer represents the
performance when there are a significant number of outliers.
[22] To calculate PKL on data which is not part of the
nuScenes dataset, the Carla map was converted to the nuScenes
format. How this was done is described in Appendix [A]

IV. RESULTS

This section shows the performance of the tested strategies.
First, some qualitative results will be shown. These give an
impression of the behaviour of the strategies using example
scenarios. Then quantitative results describe the performance
of the strategies across a test set of scenarios.

A. Qualitative results

To show the variety in behaviour between the strategies,
Figure [5] visualizes the trajectories of the drone for a sample
scenario. The flying ahead strategy does not directly follow the
path of the vehicle, even though it is aware of its future posi-
tion. This is due to overshooting of the low-level controller. At
the end of the trajectory, the overshooting oscillations reduce
and it stops at the same location as the baseline strategy.
The action graphs shown in Figure [6] help us understand the
differences in behaviour between the different strategies. We
can only construct such graphs for strategies where the strategy
uses the location relative to the ego-vehicle to determine an
action. The optimized trajectories and Horus-stationary do not
have such a graph as these do not have policies.
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Fig. 5: Trajectories for a sample scenario.
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20-: 60
Ly —
104 - ~ 508
FA AR ;‘

. 1 AR 40§
€ 0 g < s EREA 5
et (2]
x TN = [ I S ( + ¢ % 5
Vi A TR I 1+ + v v [ 30 D
eyl A L %

— 10 T A R T [
Vod -7/ (Rl A Rt bt Y N Y | |20
e/ E I RS it (N

_20_’ /ﬂ /’ /’ I’ /‘ I‘ I" F* l‘ F ’ ’ *I *\ ‘\\

e /2 B BRI+t b Y | 10
=20 =10 0 10 20
y [m]
(b) Flying-ahead strategy
P U
T e o e B L .

20 55 = \
//,// y PR AR . | 6
K 2 L SR | |
- | sy S A""‘\\\\ —_—

10 A T T R S_E
X , ATRERE [ AW | g
. 2 va B R ETAF. =

— ~ [ 4 ©
E o4 £t : sl AT e S
X R o o b2 S NN XREK X Ee]
N7~ < N gl -3
: S \ o
e 1 R R A | | o
~10 4 : ©
Vs A, (| f —2'_

g R AZ | /| s |

7 AN TRt (. S S| S

—20 ¥ R e e -1
s SR W |+ | | |
-20 -10 0 10 20

y [m]

(d) IL-based strategy

Fig. 6: Action graphs for the drone. The x and y coordinates denote the position of the drone relative to the ego-vehicle. The
magnitude of the vectors denotes the distance to the target position, which is proportional to the acceleration.

B. Quantative results

Table [[] shows the performance for each strategy. The
“overall” column is the most important, as this indicates
the strategies’ performance across a wide range of traffic
densities. Additionally, results are shown for 3 different traffic
densities separately, as the performance of some strategies
is highly dependent on this variable. The informed column

Traffic density

Informed  Overall ‘ Low Medium High
Above ego (baseline) 3 7.8 81.8 202 0.0
Horus-stationary bS 11.1 81.8 226 0.0
RL-based strategy x 11.2 845 232 0.0
IL-based strategy =< 11.6 0.0 63.4 0.0
Flying ahead strategy v 74.5 80.6  76.5 70.4
Informed trajectory v 80.8 89.5 81.6 76.4
Informed trajectory GA | v 96.7 99.5 88.8 924

TABLE I: Median % PKL improvement for the strategies

denotes whether or not the strategies use knowledge which is
not the relative position of the drone to the ego-vehicle, the
velocity of the ego-vehicle and the number of vehicles visible
by the drone. In the case of the flying ahead strategy, this
information is the future location of the ego-vehicle. In the
case of the informed trajectories, all vehicles’ locations in the
scenario are used. The Horus-stationary row does not have
the “Informed” checkmark as it does not require additional
knowledge. However, it does not use a motion model and is
therefore not a realistic strategy.

V. DISCUSSION

In this paper, various drone trajectory planning strategies
were tested and trained. Their performance was evaluated and
compared using the median % PKL improvement and yielded
varying results.



A. Uninformed knowledge strategies

1) Above ego (baseline) strategy: The ”Above ego” (base-
line) method has a performance which is highly dependent on
the traffic density. From Table I, it is clear that when there
is a high traffic density, having the drone above the vehicle
does not help the vehicle’s awareness, while in a low traffic
density scenario, the vehicle does benefit. This is likely due
to the number of vehicles that are present outside of the ego-
vehicle’s visibility. When the traffic density is high, the number
of undetected vehicles is larger, especially when the drone is
above the vehicle, as their detections overlap for the most part.

2) Horus-stationary: The evaluation of Horus-stationary
[3] shows that the drone dynamics we implemented, have
little impact on the results compared to having the drone
statically placed above the vehicle. The slight difference could
be explained by the fact that by following the ego-vehicle, the
drone will always slightly lag behind the vehicle.

3) RL-based strategy: When a RL model is trained using
the properties as mentioned in Section an interesting
result is found: The performance of the RL model is very
similar to the performance of the baseline strategy. It only
slightly outperforms the baseline as well as Horus-stationary.
The action graph Figure [6c| also shows us that the behaviour
is very similar to the baseline’s action graph. This graph
is identical (relative to the ego-vehicle) for each direction,
irrespective of the number of vehicles in the visible area of
the drone. This shows that the part of the reward function
responsible for movement towards undetected vehicles did not
influence the behaviour of the drone.

Tests show that the magnitude of the “unseen vehicle” com-
ponent of the reward function is similar to that of the “near
ego” component which is desirable as no component makes
the other component insignificant. Another positive property
of the reward component is that it provides partial rewards
for desirable behaviour. Also, if all vehicles in the scene
were considered, there would be no discrete steps in the
reward function. However, to reduce computational effort, only
vehicles within 100m of the ego-vehicle are considered. This
does result in discrete steps when vehicles enter or leave this
100m zone. A different issue with this reward function is that
every undetected vehicle is treated equally. As mentioned, this
was done intentionally to create an “almost” continuous reward
function. This does mean that for the drone, flying behind the
ego-vehicle would result in a similar reward as flying ahead of
the ego-vehicle given the vehicles in the scene are distributed
uniformly. By not indicating a preferred position relative to
the ego-vehicle based on the “unseen vehicle” component, on
average, every position relative to the ego-vehicle is equally
good. This is an explanation for the fact that on average the
drone aims to hover directly above the ego-vehicle, just like the
baseline strategy. Lastly, an issue with this reward component
is that the magnitude is very dependent on the number of
vehicles in the vicinity of the ego-vehicle. A scenario where
there are a high number of vehicles in the 100m range lowers
the reward (as many will be more than 10m from the drone).
Obviously, the model should not be punished by this fact.
Scaling the reward based on the number of vehicles could
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solve this issue. The questions that remain are then: Why is
the action graph different from the baseline’s action graph?
And why does this difference improve the performance? The
main difference in the action graphs Figure [6c| and Figure [6a]
is the small target distances (vector lengths) resulting in small
accelerations anywhere except directly behind the ego-vehicle.
This could be explained by the fact that the ego-vehicle in
these scenarios never moves backwards. This means that if the
drone flies ahead, left or right of the ego-vehicle it is either
beneficial to stay where you are (in case the ego-vehicle turns
left, right or keeps moving forward), or to move towards the
ego-vehicle (in case the ego-vehicle stops moving or does not
turn), resulting in behaviour that moves (on average) a little
bit towards the ego-vehicle. If the drone is flying behind the
ego-vehicle, it is always beneficial to move towards the ego-
vehicle (so forward) irrespective of what the ego-vehicle will
do, as the vehicle will never reverse. As this action graph
displays the sole difference between the baseline strategy and
the RL-model strategy, this must also be the cause of the
better performance. The model seems to have learned that the
ego-vehicle will never reverse, therefore adjusting its policy
to always accelerate towards the ego-vehicle, mostly when
behind the vehicle. As the performance is also better than that
of the Horus-stationary strategy, the RL-based strategy does
not follow the vehicle better than the baseline, as that would
have resulted in performance between the baseline and Horus-
stationary. A possible explanation for this is that the large
acceleration right behind the ego-vehicle results in slightly
overshooting the ego-vehicle’s position, therefore leading the
ego-vehicle by a small amount. Due to the small difference in
performance, this was not analysed further.

4) IL-based strategy: The IL-based strategy learned its
trajectories by imitating the informed trajectories which were
optimized using GA. Figure [6d] seems to suggest that there
is no clear direction the drone moves towards. This could be
due to too little training data/overfitting but is also likely to
be the cause of why this strategy outperforms the baseline as
well as the RL-follower in medium traffic density scenarios.
The drone never stops moving but is always in the vicinity
of the ego-vehicle (as can be seen by the arrows moving
inwards or equidistant far from the ego-vehicle in Figure [6d).
By analysing the informed trajectories we found that there
is no clear strategy for the drone to follow. Sometimes it is
beneficial to move very far ahead of the ego-vehicle, while
at other times it is beneficial to move very far behind the
ego-vehicle. This makes it difficult to imitate behaviour and
generalize this to a policy which would work in any scenario.
The results of the IL-based strategy shown in Table |I| indicate
that the strategy performs the best when applied in medium
traffic density scenarios. From Figure [6d] we know that this
strategy does not aim to hover directly above the ego-vehicle,
but instead always moves the drone in the vicinity of the ego-
vehicle. This could be the reason why the IL-based strategy
performs better in medium traffic scenarios compared to the
low and high traffic density scenarios, as this behaviour is most
beneficial in the medium traffic density scenarios. We know
this as Figure ] shows that the further ahead of the ego-vehicle
the drone flies, the higher the median % PKL improvement.



Regarding the algorithm that was used for IL, a basic be-
havioural cloning technique was used which directly learns
a policy from demonstrated state-action pairs. As mentioned
in the documentation of [20], this approach often generalizes
poorly and does not often recover easily if an error is made.
A more advanced method such as Generative Adverserial
Imitation Learning [23]], could improve the performance due
to its robustness.

B. Informed knowledge strategies

1) Flying ahead strategy: Figure [ shows that it is most
beneficial to fly ahead 7s. For completeness, also lagging be-
hind the vehicle was evaluated. This is clearly less beneficial,
as the vehicles around the future position of the ego-vehicle are
more relevant than those that are already past. We hypothesised
that the lower the traffic density, the further the drone should
be ahead to detect the most relevant vehicles, as fewer vehicles
around the ego-vehicle would mean that fewer vehicles can
occlude others. In Figure 4 we notice that this is the case for
medium and high traffic densities, but surprisingly not for the
low traffic density. Analysis shows that this has to do with the
distributions in median % PKL improvement. Figure [/| shows
that a much broader range of median % PKL improvements
is present in low traffic density scenarios compared to the
median % PKL improvements in medium and high traffic
density scenarios as shown in Figure [8| The broad range of the
P,5 — Ps5 percentiles makes the peak at 4s less relevant. What
can be concluded from this Figure [/|is that from 1s ahead and
more the ego-vehicle benefits from the drone’s detections.
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time lag/lead [s]

Fig. 7: The resulting PKL improvements (%) with percentiles
for the low traffic density scenarios.

Looking at the performance of flying ahead strategy in
Table [l we notice it exceeds the performance of staying
above the vehicle for medium to high traffic densities. This
can be explained by the fact that more unseen vehicles are
seen when not hovering above the ego-vehicle at higher
traffic densities. To fly ahead of the ego-vehicle does however
require additional knowledge about the future position of the
ego-vehicle. In real life this could be achieved by predicting
the future location of the ego-vehicles trajectory as done in
[24].
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Fig. 8: The resulting PKL improvements (%) with percentiles
for the medium and high traffic density scenarios.

2) Informed trajectories: The highest performance is
achieved by the Informed trajectories. These require knowl-
edge about the current location of all vehicles in the sce-
nario. The informed trajectories without GA optimization
already outperform all previous other strategies. The difference
between the performance of the informed trajectories with
and without GA is likely due to the aggressive movements
required for optimal performance. When moving towards the
ideal location at every timestamp as done in the informed
trajectories without GA, the drone stays in between the optimal
locations and reaches them less often. The GA then mutated
the trajectories such that these optimal locations are reached
more often. An example displaying this behaviour is shown in
Figure [9]
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Fig. 9: A sample trajectory shown with and without GA
optimization. The non-optimized trajectory tends to move in
between ideal locations, while the optimized trajectory gets
closer to the ideal locations.



3) Genetic Algorithm: Although the GA significantly im-
proved the performance compared to the informed trajectories
without GA, a number of improvements could be made to
enhance the performance of the GA implementation:

o A total population of 10 specimens with 3 elites makes
exploration and exploitation a very slow process. This
was left low intentionally as evaluation of these spec-
imens is a very time-consuming process, requiring +2
minutes per specimen. Speeding up the evaluation process
would allow for more specimens and therefore more
diversity in the population.

Currently, the mutation and crossover probabilities are
kept constant throughout all generations. To promote
exploration in the early stages of evolution and promote
exploitation in the later stages of evolution, the mutation
and cross-over probabilities could be reduced as the
generation number increases.

The parameters in the genome are currently mutated
by adding or subtracting a randomly generated number
within bounds. As the order of magnitudes of the param-
eters has a wide range (ranging from 1 to as much as 10%)
adding or subtracting a value irrespective of the current
value, does not result in an equal amount of mutation
for every parameter. Multiplication with a factor = + b,
where b is a randomly generated number able to change
the sign of the parameter, z a set fixed number and a
a randomly generated number ranging from —a to a,
would result in a mutation proportional to the current
value of the parameter with an added constant.

C. Future work

While all results in this work aim to find the optimal
drone planning strategy, the performance in real-life scenarios
will differ. A way of closing this gap would be to evaluate
strategies in Carla itself, where perspective, shadows and other
elements are taken into account which improve realism. Also,
the degrees of freedom of the drone have been limited to
enhance the learning and evaluation speed. Adding the heading
of the drone as a degree of freedom (or camera angle) would
allow for higher possible performance at the cost of simulation
speed. Furthermore, in this work the assumption is made that
2D raytracing provides an accurate model for an autonomous
vehicle’s lidar sensor, and the camera’s detections are 100%
accurate. This is not the case in real life, and adding a
perception module with realistic detectors and a fusion model
such as TransFusion [6] would enhance the significance of the
results. As the Carla simulation tool already models LiDAR
sensors, which are used in Horus-stationary [3]], the detector
could be applied directly to the pointcloud generated by the
Carla simulations tool. In addition to these improvements,
there are a number of factors which further enhance the realism
and challenge the strategies. These improvements include:

« Sensor noise

o Communication latency

o Weather conditions
Conditions such as wind gusts, or rain/fog reduce visibility in
case a realistic perception layer is implemented.
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The economic feasibility of this technology can be increased
when drones help more than a single vehicle at a time. To
accommodate multiple drones, the algorithms used require
modifications. A task allocation algorithm such as the Hungar-
ian algorithm [25]] could be implemented. This way the model
could utilize the same action space and observation space. To
take interaction into account in a more intelligent manner, a
multidimensional action space and observation space could be
used, where the action space and observation space is an array
of the action and observation spaces of a single drone.

VI. CONCLUSION

We present a simulation environment which is capable of
evaluating drone planning strategies using a metric specifically
designed to evaluate autonomous vehicles’ awareness. It uses
traffic scenarios simulated in the Carla simulator stored in an
efficient format. An almost orthogonal top-down image of the
city is stored. With this information, entire traffic scenarios can
be rendered. The drone’s footage can be artificially generated
by cropping the topdown view (with the traffic rendered on
top) to the area where the drone is located. This makes closed-
loop training of models possible while keeping the storage re-
quirements and computational effort low. A range of strategies
were developed and tested in this simulation environment. The
performance of these strategies was compared to the baseline
method (i.e. aiming to hover directly above the ego-vehicle).
While the baseline method provided useful data to the ego-
vehicle as proven in [3[], we prove that superior strategies exist,
which require little data to function. If extra data is available
to the model, such as the future position of the ego-vehicle or
the location of all vehicles in the area, the awareness of the
autonomous vehicle can be improved even more.
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APPENDIX A
CREATING A PKL-COMPATIBLE MAP FROM THE
OVERDRIVE FORMAT

Carla simulator allows users to save the map data in the
OverDrive format. This format is not compatible with the
PKL library, which requires the map to be in the nuScenes
format. The steps to convert the map format from OverDrive
to nuScenes are described in this appendix.

1) The map data is loaded into Python using the pyxodr
library [26].
2) Drivable area:

a) All lane sections are extracted, of which the nodes
are first rounded to an 80cm grid. This is done
to eliminate imperfect connections between lane
sections which would otherwise result in slits/cuts
into the lanes which are not correct (e.g. shown in
Figure [10).

b) The outer boundaries of these lane sections are
added to a list of polygons.

c) All lane section polygons part of a junction are
merged by calculating the convex hull of the
polygons, to eliminate holes/imperfections which
would otherwise be known as not drivable area.

d) The union of the lane section polygons are merged
with the junction polygons by calculating the
union. The resulting polygon is known as the
drivable area polygon.

3) Road segments (OverDrive term: lane section):

a) Each road segment can be directly extracted from
the map data.

b) The road segment nodes are rounded to 10cm to
eliminate imperfections such that adjacent road
segments connect correctly.

¢) The resulting road segments are converted to poly-
gons.

4) Lane:

a) The lane_reference_line and boundary_line are ex-
tracted from the OverDrive data as lists of coordi-
nates.

b) The coordinates of the lane_reference_line are re-
versed to get a clockwise list of points around the
lane.

¢) The points of the lane_reference_line and bound-
ary_line are merged to form a polygon.

5) Lane divider:

a) All lanes which have a lane to the left of them
(heading in the same direction!) are selected.

b) The lane_reference_line of these lanes are stored
as lane dividers.

6) Road divider:

a) All lanes which have a lane to the left of them
heading in the opposite direction are selected.

b) The lane_reference_line of these lanes are stored
as road dividers.

Now all required items have been extracted or fabricated,

they are stored in a dictionary according to the nuScenes
format:

1) Node: For every coordinate of every polygon and line, a
node dict is created (if this coordinate does not yet exist
as a node), which consists of the x and y coordinate, as
well as a randomly generated token consisting of 128
bits. These 128 bits are stored as in hex format.

e token: A randomly generated id.

e x: x coordinate of the node.

e y: y coordinate of the node.

2) Line:

o token: A randomly generated id.

e node_tokens: A list of tokens which cover all nodes
part of the line.

3) Polygon: For every polygon, a polygon dict is created
consisting of the following items:

o token: A randomly generated id.

o exterior_node_tokens: All node tokens part of the
exterior of the polygon

e holes: The tokens of the hole polygons in the poly-
gon. In the map we use, this part is only applicable
for the drivable_area polygon.

4) Road_segment:

o token: A randomly generated id.

e polygon_token: Token of the road segments’ poly-
gon.

o is_intersection: Whether or not the is_junction flag
is True in the OpenDrive format for that road
segment.

o drivable_area_token: In the case of this map, there
is a single drivable area polygon. Its token is entered
here.

5) Lane:

o token: A randomly generated id.

o polygon_token: The token denoting the lanes’
boundary polygon.

o lane_type: Always "CAR” for this map.

o from_edge_line_token: The first node of the lanes’
lane_reference_line and boundary_line form a line
object. The token of this line is stored here.

o to_edge_line_token: The last node of the lanes’
lane_reference_line and boundary_line form a line
object. The token of this line is stored here.

o left_lane_divider_segments: Not required for PKL
and thus left empty.

o left_lane_divider_segments: Not required for PKL
and thus left empty.

6) Lane_divider:

o token: A randomly generated id.

o line_token: The token denoting the lane_dividers’
line object.

o lane_divider_segments: A list of items consisting
of:

— node_token: The node id of the node part of the
lane divider.



— segment_type: The type of line, can be "DOU-
BLE_DASHED_WHITE” or "NIL”.
7) Road_divider:

e token: A randomly generated id.

o line_token: The token denoting the road_dividers’
line object.

e road_segment_token: The token of the road segment
this divider is a part of.

These items are stored in a JSON file. A visualization of
the map using the nuScenes library is shown in Figure

drivable_area

800
600
400

200

0
0

200

400 600 800

Fig. 10: Imperfections in the map data result in slits/cuts into
the lanes which should be eliminated.
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Fig. 11: The converted map is visualized using the nuScenes
map expansion library.



APPENDIX B
OPTIMIZING DRONE TRAJECTORIES USING GENETIC
ALGORITHMS

To optimize the drone’s trajectories, a genetic algorithm
was used. This is a method which is useful when there are
many local optima in a function/process and especially if the
evaluation of a function/process is time-consuming. As the
performance of the function is quantified by using PKL as a
metric (a time-consuming metric to calculate), GA is a suitable
tool to optimize this function. The GA we implemented
significantly improved the mean % PKL improvement. An
example showing a learning curve is shown in Figure
Section [A] states the parameters and functions used during the
optimization process, and Section [B|explains which steps were
taken to optimize the trajectories.

A. Parameters

« Population size: The population consists of 10 individu-
als.

o Number of generations: The population is mutated and
evaluated 80 times.

o Cross-over probability: Every specimen has a 50% chance
that its’ parameter is exchanged for that same parameter
but of a different specimen.

« Mutation probability: Every specimen has a 20% chance
to mutate a parameter. This is true for 20 out of 30
parameters, resulting in 4 mutated parameters on average.

o Mutation function: Every parameter that is mutated, is
modified by adding a randomly generated value ranging
from -5 to +5.

« Fitness function: The fitness function is the median PKL
improvement of perception including the drones’ view
compared to perception without the drones’ view.

B. Steps

1) Inmitialization: A 15-parameter polynomial is fitted to
waypoints which would be the ideal position to be at.
This polynomial does not take into account the motion
model of the drone and the feasibility of the trajectory.
This initial polynomial does serve as a good baseline for
the ideal trajectory. An initial population is generated
consisting of 3 elite individuals with as a genome the
initial polynomials’ parameters (15 parameters for x
direction, 15 parameters for y direction).

2) Reproduction: These 3 specimens are mutated to form
a population of 10 specimens.

3) Evaluation: The 10 specimens are evaluated by exe-
cuting the polynomials’ trajectory in the simulation and
calculating the median PKL improvement.

4) Selection: The 3 specimens with the highest fitness are
selected as elites.

5) Crossover: Crossover takes place between the 3 best
individuals to create 7 new specimens.

6) Mutation: The 7 new specimens are mutated.

7) Steps 3 to 7 are repeated for every generation.

8) When all generations have been evaluated, the best
individual is stored and used as the best expert trajectory.
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Fig. 12: Learning curve of the GA optimizing a trajectory. The
mean % PKL improvement is increased from 26% to 71% in
63 generations



APPENDIX C
REINFORCEMENT LEARNING PARAMETERS

This appendix shows the parameters of the models used.

. Proximal Policy Optimization

learning _rate=0.0003
n_steps=128
batch_size=64
n_epochs=10
gamma=0.99
gae_lambda=0.95
clip_range=0.2
normalize_advantage=True
ent_coef=0.0
vf_coef=0.5
max_grad_norm=0.5

. Behaviour Cloning

policy=PPO

batch_size=32
optimizer_cls=’torch.optim.adam.Adam’
ent_weight=0.001

12_weight=0.0

n_epochs=1000

17



	Introduction
	Related work
	Methods
	Dataset
	Map data
	Scene data
	Dataset size

	Perception
	LiDAR
	Camera
	Sensor fusion

	Planning strategy
	Above ego (baseline) strategy
	Horus-stationary strategy
	Flying ahead strategy
	RL-based strategy
	Informed trajectory without GA
	Informed trajectory with GA
	IL-based strategy

	Controller
	Evaluation

	Results
	Qualitative results
	Quantative results

	Discussion
	Uninformed knowledge strategies
	Above ego (baseline) strategy
	Horus-stationary
	RL-based strategy
	IL-based strategy

	Informed knowledge strategies
	Flying ahead strategy
	Informed trajectories
	Genetic Algorithm

	Future work

	Conclusion
	References
	Appendix A: Creating a PKL-compatible map from the OverDrive format
	Appendix B: Optimizing drone trajectories using Genetic Algorithms
	Parameters
	Steps

	Appendix C: Reinforcement Learning parameters
	Proximal Policy Optimization
	Behaviour Cloning


