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Abstract

The computational modeling of crack propagation is important in aerospace and automotive industries be-
cause cracks play a significant role in structural failure. In comparison with the quasi-static case, inertial
effects are significant in dynamic crack propagation. The classical numerical tool for modeling dynamic
crack propagation is the standard finite element method (FEM). However, the method suffers from problem
of mesh-dependency. Enriched finite element procedures such as the eXtended/Generalized finite element
method (X/GFEM) are able to solve this issue by adding enriched degrees of freedom (DOFs) to nodes of
the original mesh, thereby providing full decoupling between the mesh and cracks. Yet, X/GFEM suffers from
other issues that are inherent to the formulation such as the need for more complicated methods for applying
non-zero Dirichlet boundary condition, and an intricate computer implementation.

In the thesis, the Discontinuity-Enriched Finite Element Method (DE-FEM) is used to simulate dynamic
crack propagation as an alternative to X/GFEM. DE-FEM also decouples cracks from the background mesh
while solving X/GFEM’s aforementioned issues. This is achieved by adding enriched DOFs along cracks. Pre-
scribing non-zero essential boundary conditions is as straightforward as in standard FEM. Moreover, DE-
FEM’s enrichment strategy provides simplicity on crack propagation, as the crack tip node can be trans-
formed into a crack segment node directly with little effort. Also, fewer enriched DOFs than in X/GFEM are
appended while advancing cracks. In the numerical examples of either stationary crack with dynamic load-
ing or dynamically propagating cracks, DE-FEM is able to reproduce analytical and/or experimental results.
Both Bathe’s time integration method and the classical Newmark constant average acceleration method are
applied and compared. Results show DE-FEM is a suitable candidate to solve dynamic fracture problems.
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1
Introduction

Fracture in brittle solids is of interest in several industries, including aerospace [1], civil engineering [2],
biomechanics [3], and automotive [4]. Fracture raises concerns of both safety and cost in engineering prac-
tice [5]. Therefore, understanding fracture behavior, and particularly crack propagation, is of great impor-
tance in engineering. Experiments could be conducted to understand crack propagation [6, 7] but they
are time-consuming and easily affected by unwanted conditions like temperature and humidity. Numeri-
cal methods could get rid of these problems. In numerical analysis, crack propagation can be modeled either
as quasi-static or dynamic. While the material inertia is neglected in quasi-static propagation, dynamic crack
propagation is concerned with phenomena for which the role of it becomes significant [8], such as fast crack
growth or rapid time loading [9]. These dynamic cases are widely encountered in practice so this thesis is
going to look at numerical simulations of dynamic crack propagation.

The classical way to simulate dynamic crack propagation is to use the standard finite element method
(Std. FEM) where cracks align with element edges [10]. In order to match mesh with crack geometry, remesh-
ing is needed for each propagation step. Examples of this remeshing technique are works of Atluri et al. [11]
and Swenson et al [12]. However, this technique is computationally expensive because new mesh should be
regenerated at each finite element analysis. This problem becomes more serious if small time step is used or
the crack advances over a large domain of mesh.

The eXtended/Generalized finite element method (X/GFEM) was proposed to avoid remeshing by decou-
pling the representation of cracks and the background mesh [13]. Early works of X/GFEM on dynamic crack
propagation were from Belytschko et al. [14] and Duarte et al [15]. Later, Belytschko et al. [16] proposed a
framework for dynamic crack propagation in which stress intensity factors (SIFs) were taken as additional
degrees of freedom (DOFs) and evaluated directly by the discrete momentum equation. Then Song et al. [17]
proposed a phantom node method where the crack is described by superimposed elements and phantom
nodes. However, the expression of interaction integral, which is widely applied in quasi-static crack prob-
lems to evaluate SIFs [13], still remained unknown for dynamic crack. Therefore, based on work of Attigui [18],
Réthoré et al. [19] proposed a path-independent dynamic interaction integral to compute SIFs. As the func-
tions that span the finite element space change as crack advances, in the same paper they also proposed a
mapping scheme in order to relate DOFs before and after the instance of crack propagation. Nevertheless, dy-
namic SIFs obtained by X/GFEM shows oscillations no matter the crack is stationary or propagating [19–21].
Many attempts were made to understand and solve this issue [22–24] but none of them completely removed
the oscillations. Moreover, X/GFEM has intrinsic drawbacks due to its formulation. The non-cut elements
that share enriched DOFs, namely blending elements, lose their accuracy [25]. Also as the enriched nodes are
added to the background mesh nodes, the original DOFs lose their physical meanings, and the imposition of
Dirichlet boundary conditions is not as straightforward as Std. FEM.

The Discontinuity-enriched finite element method (DE-FEM) was proposed to tackle the intrinsic draw-
backs of X/GFEM while preserving the advantage of X/GFEM on decoupling representation of cracks and the
background mesh [26–28]. The enriched nodes are created at intersections between cracks and the back-
ground element edges, and the corresponding enrichment functions are established with Lagrange shape
functions of integration elements. The enrichment functions decrease to zero at background element nodes
by construction, and consequently there is no issue of blending elements as in X/GFEM. Furthermore, DOFs
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associated to these nodes retain their physical meanings. By virtue of this property, Dirichlet boundary con-
dition can be imposed in a strong form.

As DE-FEM has the aforementioned intrinsic advantages, this thesis is going to apply it to solve dynamic
crack propagation problems and study its behavior and functionality. We show that propagating cracks in the
framework of DE-FEM is straightforward by simply adding the enriched nodes along the propagated crack
segments. Also the transition of crack tip node to crack segment node is straightforward due to the enrich-
ment strategy. All the results are shown by popular benchmark examples of stationary crack with dynamic
loading as well as dynamic crack propagation. By DE-FEM, analytical and/or experimental results are re-
produced. Furthermore, both Bathe’s time integration method and Newmark constant average acceleration
method are implemented compared, and the first method shows its capability on removing oscillations of
SIFs for stationary crack with dynamic loading problems.



2
A Discontinuity-enriched Finite Element

Method for Dynamic Fracture in Brittle
Materials

2.1. Problem Description
In this chapter we look at dynamic fracture mechanical problems in a time interval Γ= [0,T ]. Let us consider
a continuous bodyΩ with a crack, which is illustrated in Figure 2.1. The domain is enclosed by its boundary
∂Ω composed of the sets ∂ΩD , ∂ΩN , Γ+, andΓ−, such that ∂Ω= ∂ΩD∪∂ΩN ∪Γ+∪Γ−. Prescribed displacement
ū(x , t ) is imposed on ∂ΩD and prescribed traction t̄ (x , t ) is imposed on ∂ΩN . Two crack surfaces Γ+, Γ− are
assumed to be traction free. The structure is assigned with an isotropic and homogeneous brittle material,
with Young’s modulus E , Poisson’s ratio ν, and density ρ. Let u(x , t ) :Ω×Γ→ R2 be displacement field. The
dynamic equilibrium equation of this continuous problem is

∇∇∇···σ+b = ρü, (2.1)

whereσ(x , t ) :Ω×Γ→R2×R2, b(x , t ) :Ω×Γ→R2 and ü(x , t ) = ∂2u
∂t 2 :Ω×Γ→R2 are Cauchy stress tensor, body

force, and acceleration, respectively. Boundary conditions are expressed as

u = ū, on ∂ΩD ,

σ ·n = t̄ , on ∂ΩN ,

σ ·n = 0, on Γ+ and Γ−,

(2.2)

where n is vector normal to the domain boundary ∂Ω. The third equation of Equation (2.1) reflects the trac-
tion free condition on crack surfaces. As we are solving an initial-boundary value problem, the initial condi-
tion is defined as

u(x ,0) = u0(x),

u̇(x ,0) = u̇0(x),
(2.3)

where u̇(x , t ) = ∂u
∂t is velocity. In this study, we consider problem with small deformation so linearized strain

tensor is written as ε = 1
2 (∇u +∇T u). Similarly, we also assume a linear constitutive relation (Hook’s law)

σ=Cε, where C is fourth-order constitutive tensor.
Equation (2.1) to Equation (2.3) are also called strong form of equilibrium. They describe equilibrium of

system pointwise for all (x , t ) ∈ Ω×Γ. With these equations, the problem is well defined. Let ω ∈ W be an
arbitrary weight function from functional space W which satisfies

W = {
ω :ω(x , t ) ∈R2∀(x , t ) ∈Ω×Γ,ω|∂ΩD = 0

}
. (2.4)

The weak form is: find u(x , t ) ∈U such that ∀w ∈W∫
Ω
ρω : üdΩ+

∫
Ω
∇ω :σdΩ=

∫
Ω
ω ·bdΩ+

∫
∂ΩN

ω · t̄ d∂Ω, (2.5)
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∂Ω

Ω

Γ-

Γ+

∂ΩN

∂ΩD

Figure 2.1: Continuous domainΩwith a crack. Crack surfaces Γ+ and Γ− are traction-free. Prescribed displacements and tractions are
applied on ∂ΩD and ∂ΩN , respectively.

where space U is

U = {
u : u(x , t ) ∈R2∀(x , t ) ∈Ω×Γ,u(x , t )|∂ΩD = ū,ui ∈ H 1(Ω), i = 1,2

}
. (2.6)

2.2. Discrete Formulation with the Discontinuity-enriched Finite Element
Method

In order to find a suitable solution to the aforementioned problem by FEM, the Galerkin projection is applied
to the weak form of equilibrium (2.5). This method requires finite dimensional function spaces to approx-
imate displacement field u and weight function ω. The approximated displacement is denoted as uh to be
distinguished with real displacement u, similarly forωh .

The discontinuity-enriched finite element method (DE-FEM) was proposed by Aragón et al. [26] to model
problems with weak and strong discontinuities, which means problems with solutions that are C 0- and C 1-
continuous, respectively. The displacement field of DE-FEM takes the form

uh = ∑
i∈ιh

Ni (x)Ui (t )︸ ︷︷ ︸
std. FEM

+ ∑
i∈ιw

ψi (x)αi (t )︸ ︷︷ ︸
weak

+ ∑
i∈ιs

χi (x)βi (t )︸ ︷︷ ︸
strong

. (2.7)

Equation (2.7) consists of three terms with different functions. The first term is the same as in the standard
finite element method. Therefore, the standard FEM space is enriched. ιh is the set containing all standard
nodes. Ni (x) and Ui (t ) are standard shape functions and degrees of freedom (DOFs), respectively. The second
term enables DE-FEM to model weak discontinuities, in which ιw is the node set of weak discontinuity and
αi is the corresponding enriched DOFs. The weak enrichment ψi (x) is constructed by Soghrati et al. [29] in
the context of Interface-enriched Generalized Finite Element Method (IGFEM). The last term is for modeling
strong discontinuities. Similar to the weak term, the enrichment functionχi (x) reproduces the kinematics of
a strong discontinuity. Set ιs is the node set for all strong nodes and βi is strong DOFs. Both strong and weak
enrichments decrease to zero at element nodes.

DE-FEM was originally proposed for fracture mechanics problems. The crack tip is enriched with only a
weak node because at the tip location there is no displacement jump (strong discontinuity). The rest of the
crack is endowed with both strong and weak nodes, as introduced in Equation (2.7).

Starting from the weak form (2.5) and following Galerkin procedure, we can reach the discrete governing
equation of the problem in Section 2.1

Mü +K u = F , (2.8)

where M ,K and F are the mass matrix, the stiffness matrix, and the force vector. Let φ be the matrix that
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contains all non -zero standard shape functions and enrichment functions on a specific element e

φ=
[

N1 0 ... ψ1 0 ... χ1 0 ...
0 N1 ... 0 ψ1 ... 0 χ1 ...

]
, (2.9)

and B be the matrix of derivatives of these shape and enrichment functions with respect to Cartesien coordi-
nates x and y

B =


∂N1
∂x 0 ... ∂ψ1

∂x 0 ... ∂χ1
∂x 0 ...

0 ∂N1
∂y ... 0 ∂ψ1

∂y ... 0 ∂χ1
∂y ...

∂N1
∂y

∂N1
∂x ... ∂ψ1

∂y
∂ψ1
∂x ... ∂χ1

∂y
∂χ1
∂x ...

 . (2.10)

Therefore, the mass matrix me , stiffness matrix ke , and force vector fe of this element is constructed by

me =
∫

e
ρφᵀφde, ke =

∫
e

BᵀDBde, fe =
∫

e
φᵀbde +

∫
∂e
φᵀ t̄ d∂e, (2.11)

in which matrix D represents material constitutive relationship and ρ is density. The assembly process is the
same as in standard FEM, except that weak and strong enrichments are incorporated

M =A
e

me , K =A
e

ke , F =A
e

fe . (2.12)

2.3. Dynamic Integration Schemes
The Discontinuity-enriched Finite Element Method introduced in Section 2.2 spatially discretizes the govern-
ing equation. However, time is also evolving in our problem so a method to properly discretize time is also
needed. In this study, the time integration schemes used are Newmark type methods and Bathe’s method.

2.3.1. Newmark Method
Newmark [30] is a family of methods, where the concrete procedure depends on the choice of parameters β
and γ. The two key formulas of Newmark method to update displacement u and velocity u̇ are

u̇ t+∆t = u̇ t + [(
1−γ)

ü t +γü t+∆t ]∆t , (2.13)

u t+∆t = u t + u̇ t∆t +
[(

1

2
−β

)
ü t +βü t+∆t

]
∆t 2. (2.14)

With Equation (2.8), (2.13) and Equation (2.14), we can compute the discrete fields at time t +∆t . Parameters
β and γ determine the stability and accuracy of this method. Newmark methods are unconditionally stable if
the following condition is satisfied,

γ≥ 1

2
, β≥ 1

4

(
γ+ 1

2

)2

. (2.15)

Commonly used implicit Newmark procedure is the constant average acceleration method (trapezoidal rule)
with β = 1/4 and γ = 1/2. From condition (2.15), trapezoidal rule is unconditionally stable. This property
provides convenience because convergence of this time integration scheme is independent of the time step
we choose. Hughes suggested to use trapezoidal rule with consistent mass matrix in order to mitigate period
errors [31]. Furthermore, some values of γ can provide numerical dissipation. γ = 1

2 leads to no numerical
dissipation, whereas values of γ> 1

2 create numerical dissipation [31].
In practice, Newmark method is implemented in the form of predictor-multi corrector scheme. In this

form, at each time step t , a predictor of the next step (t +∆t ) is defined as

ũ t+∆t = u t +∆t u̇ t + ∆t 2

2

(
1−2β

)
ü t , (2.16)

˙̃u
t+∆t = u̇ t +∆t

(
1−γ)

ü t . (2.17)

The predictor provides a guess of the fields at the next time step, which serves as an initial value to the multi-
corrector phase, where a loop is achieved to converge to the fields at t = t +∆t . Let i be the counter of this
iteration step, the multi-corrector phase of displacement form (d-form) is listed as followed [32],
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• Initialization of predictor
u t+∆t

(0) = ũ t+∆t ,

u̇ t+∆t
(0) = ˙̃u

t+∆t
,

ü t+∆t
(0) = 0.

(2.18)

• At iteration i , assemble residual force vector ∆F and effective stiffness matrix K ∗, and form the equa-
tion to solve. Note that in our problem there is no damping matrix.

∆F = F t+∆t −Mü t+∆t
(i ) −K u t+∆t

(i ) ,

K ∗ = 1

β∆t 2 M +K ,

K ∗∆u =∆F .

(2.19)

• An iterative process to find field values of the next iteration step i +1.

u t+∆t
(i+1) = u t+∆t

(i ) +∆u,

ü t+∆t
(i+1) =

(
u t+∆t

(i+1) − ũ t+∆t
)

/
(
∆t 2β

)
,

u̇ t+∆t
(i+1) = ˙̃u

t+∆t +∆tγü t+∆t
(i+1).

(2.20)

• If the process does not converge, we return to Equation (2.19). Otherwise the convergence loop is ended
and the displacement, velocity and acceleration fields at time step t = t+∆t are u t+∆t

(i+1), u̇ t+∆t
(i+1), and ü t+∆t

(i+1),
respectively.

2.3.2. Bathe’s Method
Sometimes Newmark method may fail to provide accurate results for velocity and acceleration [33]. In these
cases, alternative could be to use the Bathe’s method. It is a composite time integration scheme that subdi-
vides a complete time step t into two substeps. For the first substep, the trapezoidal rule is used and for the
second substep, three-point Euler backward method is applied, which results in the following approximation
equations [33]

u̇ t+∆t/2 = u̇ t + ∆t

4

(
ü t + ü t+∆t/2) ,

u t+∆t/2 = u t + ∆t

4

(
u̇ t + u̇ t+∆t/2) ,

u̇ t+∆t = 1

∆t
u t − 4

∆t
u t+∆t/2 + 3

∆t
u t+∆t ,

ü t+∆t = 1

∆t
u̇ t − 4

∆t
u̇ t+∆t/2 + 3

∆t
u̇ t+∆t .

(2.21)

Using Equation (2.21) and considering we are only dealing with linear problems, the governing equation of
dynamics becomes

K1u t+∆t/2 = F1,

K2u t+∆t = F2,
(2.22)

from which displacements at time t+∆t and t+ 1
2∆t can be obtained. Then substitute them to Equation (2.21)

and we can obtain displacement, velocity and acceleration fields at time t +∆t . The details for matrices K1

and K2 and vectors F1 and F2 are expressed as followed [33],

K1 = 16

∆t 2 M +K ,

K2 = 9

∆t 2 M +K ,
(2.23)

F1 = F t+1/2∆t +M
(

16

∆t 2 u t + 8

∆t
u̇ t + ü t

)
,

F2 = F t+∆t +M
(

12

∆t 2 u̇ t+∆t/2 − 3

∆t 2 u t + 4

∆t
u̇ t+∆t/2 − 1

∆t
u̇ t

)
.

(2.24)

Stability and accuracy of Bathe’s method are addressed in [33, 34]. Implementing this method for linear prob-
lems is straightforward and it is a suitable candidate for time integration of linear problems.
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2.4. Evaluation of Dynamic Stress Intensity Factors
Stress intensity factors are key parameters in fracture that define the strength of crack tip fields and also gives
a criterion for crack propagation. In linear elastodynamic fracture mechanics, the stress intensity factors of
modes I and II in polar coordinates r and θ originated at the crack tip are defined as [8]

K dyn
1 = lim

r→0

p
2πrσy y at θ = 0, (2.25)

K dyn
2 = lim

r→0

p
2πrσx y at θ = 0, (2.26)

where σy y and σx y are stress components defined in the Cartesien coordinates at crack tip with x axis along

the crack and y axis perpendicular to the crack. K dyn
1 and K dyn

2 are dynamic SIFs for modes I and II, respec-
tively. From these equations, it can be seen that the values of the dynamic stress intensity factors are diffi-

cult to evaluate. Therefore, similar to what has been done in quasi-static case, K dyn
1 and K dyn

2 are evaluated
through a dynamic interaction integral, which was proposed by Attigui [18] and Réthoré [19]. The dynamic
interaction integral I int is domain-independent and takes the form

I i nt =−
∫

A

{(
σaux : ∇u −ρu̇u̇aux)(∇∇∇···q

)− [
σaux :

(∇u∇q
)+σ :

(∇uaux∇q
)]}

dS

+
∫

A

[(∇∇∇···σaux)∇u
(
q

)+ρü∇uaux (
q

)+ρu̇aux∇u̇
(
q

)+ρu̇∇u̇aux (
q

)]
dS

(2.27)

where A is the integration domain chosen to evaluate the dynamic interaction integral and its boundary ∂A
should enclose the crack tip. The superscript aux denotes the auxiliary field, which can be chosen to be any
dynamic crack tip field. In this study, single mode dynamic tip fields from Nishioka [35] and Freund [8] are
used. q is a vector field called virtual crack extension field. q is supposed to be tangent to crack surface
everywhere in the integration domain. The properties this vector field should satisfy are

• Magnitude of q equals one at the crack tip,

• Magnitude of q equals zero on the boundary of integration domain ∂A,

• q is tangent to the crack surfaces everywhere.

It can be noticed that the shape of crack segments in integration domain A could be complicated, which
makes an analytical expression of virtual crack extension field q difficult to find. Therefore, in this study, we
are going to construct this field numerically. The process of constructing q is as follows:

1. Compute magnitude of q : the magnitude is constructed the same way as constructing weight function
of quasi-static interaction integral [26]. Draw a circle centered at the crack tip with radius r denoting
the radius of the integration domain. Magnitude of q is exactly 1 in elements completely enclosed by
the circle. Elements cut by the circle are called intersected elements. Magnitude of q linearly decreases
to 0 at nodes that are outside the circle in the intersected elements.

2. Compute direction of q : for any point in the integration domain, find the closest point on the crack.
The direction is the same as the tangent to this point on the crack.

3. Evaluate divergence and gradient of q : for any point P , two points P1 and P2 that are extremely close
to it along x and y directions are found. Spatial derivatives of q at P are computed in combination with
P1 and P2 by finite differences.

Virtual crack extension field constructed by the above method is shown in Figures 2.2 and 2.3. The red
line is the crack and the blue arrows show both direction and magnitude of q . It can be seen that the virtual
crack extension fields constructed by the aforementioned method satisfy the conditions.

The interaction integral can also be related to dynamic stress intensity factors. Starting from the expres-
sion of energy release rate [8] and following the same procedure as in the quasi-static case [13], we achieve
the expression of dynamic interaction integral in terms of dynamic stress intensity factors [19, 20]:

I int = 2
(
1−ν2

)
E

(
f1(ȧ)K dyn

1 K aux
1 + f2(ȧ)K dyn

2 K aux
2

)
, (2.28)
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Figure 2.2: Virtual crack extension field near a straight crack.
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Figure 2.3: Virtual crack extension field near a curved crack.

in which E is Young’s modulus, ν is Poisson’s ratio, and ȧ is propagation speed. Here, f1(ȧ) and f2(ȧ) are two
universal functions that are solely dependent on ȧ and independent of crack topology. The expressions of the
universal functions are

f1(ȧ) = 4α1
(
1−α2

2

)
(κ+1)D(ȧ)

, f2(ȧ) = 4α2
(
1−α2

2

)
(κ+1)D(ȧ)

, (2.29)

where κ is Kolosov’s coefficient and α1 and α2 are speed parameters given by

α1 =
√

1− ȧ2

c2
1

, α2 =
√

1− ȧ2

c2
2

. (2.30)

c1 and c2 are the dilatational and shear wave speeds, respectively. Parameter D(ȧ) in Equation (2.29) is given
by

D(ȧ) = 4α1α2 −
(
1+α2

2

)2
. (2.31)

Equation D(ȧ) = 0 is called Rayleigh equation and it has two roots, one is ȧ = 0 and the other is Rayleigh wave
speed ȧ = cr , which is the maximum speed a crack can attain during propagation in a homogeneous body.

Equation (2.28) in combination with Equation (2.27) can be used to evaluate dynamic stress intensity

factors numerically by properly choosing the auxiliary field. If we are evaluating K dyn
1 , the auxiliary field is

chosen to be pure mode I dynamic crack tip field with K aux
1 = 1 and K aux

2 = 0. Similarly, for evaluating K dyn
2 ,

K aux
1 = 0 and K aux

2 = 1 are chosen. Details of dynamic crack tip fields are elaborated in Appendix B. It is worth
to mention that in order to calculate the dynamic interaction integral in Equation (2.27), a large number of
Gauss points is required because the dynamic crack tip fields contain trigonometric functions.

2.5. Crack Propagation Method
In order to propagate cracks with DE-FEM, there are three questions to be answered in this section. Firstly,
what is the condition for a crack to propagate? Secondly, what is the propagation length and angle for each
propagation step? Thirdly, how to map the DOFs at current propagation step to the next when new DOFs are
appended due to crack advance?

2.5.1. Determination of Propagation Angle and Speed
The crack propagation criterion was proposed by Griffith [36] and Irwin [37], which says that crack propa-
gates when the stress intensity factor K is large enough that it attains fracture toughness Kc . Kc is a material
property and is independent of the problem we are dealing with. In this study, we use the maximum hoop
stress criterion to determine propagation direction, which states the crack propagates along the direction of
maximum hoop stress σθθ if the equivalent stress intensity factor along this direction K equ

θθ
attains Kc . The
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direction of maximum hoop stress is evaluated by dynamic stress intensity factors [20, 22]

θh = 2arctan

1

4

K dyn
1

K dyn
2

− si g n
(
K dyn

2

)√√√√√8+
(

K dyn
1

K dyn
2

)2

. (2.32)

Then the equivalent stress intensity factor at this direction, which physically describes the equivalent loading
strength at the tip for a mixed mode crack, can be expressed as [20, 22]

K equ
θθ

= cos3
(
θh

2

)
K dyn

1 − 3

2
cos

(
θh

2

)
sin(θh)K dyn

2 . (2.33)

The crack speed is determined by

ȧ =


0 when K equ

θθ
< Kc ,(

1− Kc

K equ
θθ

)
cr when K equ

θθ
≥ Kc .

(2.34)

Equation (2.32), (2.33) and (2.34) are key for determining dynamic crack propagation and they are widely
used [20–23, 38, 39]. Once the propagation speed is determined, the propagation length l at this time step
can be computed by l = ȧ ×∆t .

2.5.2. An Energy-conserving Scheme for Dynamic Crack Propagation with DE-FEM
In the previous subsection, the length and angle of propagation is set. Following the procedure discussed
above, the finite element mesh of DE-FEM changes during propagation because the structure changes as the
crack advances. The description of the crack by DE-FEM is updated in this process. Therefore, the enrichment
functions that span the finite element space of DE-FEM also vary through propagation. The third question
mentioned at the beginning of this section is how to find an appropriate mapping of DOFs for each step of
crack propagation in order to make fields properly transfered between time steps.

The idea follows Réthoré’s work in which an energy conserving scheme for updating degrees’s of freedom
in X/GFEM was proposed [19]. In the framework of DE-FEM, updating procedure from step t to step t +∆t is
summarized as follows:

1. Store displacement, velocity and acceleration fields at current time step u t , u̇ t and ü t ,

2. At the end of step t , propagate the crack and find new enriched nodes on the background mesh edges.
In the mean time, add enrichment functions, which are corresponding to the newly added nodes, to
the finite element function space,

3. Initialize displacement, velocity and acceleration associated with new nodes to 0 and append them to
u t , u̇ t and ü t . The appended fields are denoted by u t

n , u̇ t
n and ü t

n ,

u t
n = [u t ,0]ᵀ,

u̇ t
n = [u̇ t ,0]ᵀ,

ü t
n = [ü t ,0]ᵀ,

(2.35)

4. At step t+∆t , solve the problem using the updated FE space. Fields u t
n , u̇ t

n and ü t
n are used as input val-

ues of displacement, velocity, and acceleration, respectively, from previous time step n. Then continue
with step 1 for the next time step.

The above procedure is illustrated in Figure 2.4. At the instance of crack propagation, a new strong node is
added on top of the original crack tip, where a weak node already exists. The original crack tip is transformed
to a DE-FEM crack segment node. The other nodes along the newly added crack segment are created the
same way as indicated in Section 2.2, namely a weak node is created at the new crack tip, and both a strong
and a weak node at the intersections between new crack segment and the background element edges.
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This procedure can be proven to be energy-conserving because it properly transfers kinetic and potential
energy between end of step t and start of step t+∆t , in which different finite element base functions are used.
The kinetic energy at the end of step t with the new crack segment, denoted by T t

n , is

T t
n = 1

2
u̇ t

n
ᵀM t+∆t u̇ t

n = 1

2

[
u̇ t 0

][
Mpp Mpq

Mqp Mqq

][
u̇ t

0

]
= 1

2
u̇ t ᵀMpp u̇ t = 1

2
u̇ t ᵀM t u̇ t = T t

. (2.36)

Similarly, the potential energy W t
n at the end of step t with new crack segment is

W t
n = 1

2
u t

n
ᵀK t+∆t u t

n = 1

2

[
u t 0

][
Kpp Kpq

Kqp Kqq

][
u t

0

]
= 1

2
u t ᵀKpp u t = 1

2
u t ᵀK t u t =W t

. (2.37)

The subscript p denotes entries corresponding to DOFs before propagating and q means entries correspond-
ing to DOFs after propagation. It can be concluded from Equation (2.36) and (2.37) that the kinetic and po-
tential energies do not change while new DOFs are appended to the mesh and new enrichment functions are
added to the space during propagation. This property enables DE-FEM to properly propagate a crack.

Figure 2.4: Illustration of DOFs mapping procedure by DE-FEM. Four triangle elements are taken as background mesh. Red and blue
lines are old crack and propagated segment, respectively. Red and blue circles are old and new weak nodes. Red and blue squares are

old and new strong nodes.

DE-FEM has advantages over X/GFEM regarding crack propagation. In X/GFEM, crack tip is enriched
with four enrichment functions at each enriched node. Under this energy-conserving scheme, while adding
new enriched nodes, a lot of new DOFs are added to the system increasing computational cost. In contrast,
DE-FEM only adds a limited number of nodes, associated with only one enrichment function for each node,
which reduces the computational cost compared to X/GFEM. Moreover, in DE-FEM, transforming the old
crack tip node into the crack segment node is smoother because crack tip enrichment is incorporated in
crack segment enrichment. However, in X/GFEM, the crack tip node is transformed to surface node by adding
Heaviside enrichment on top of tip enrichment, resulting in a segment node containing tip enrichment that
is not supposed to belong to it.

2.6. Numerical Examples
In this section, two kinds of numerical examples are shown. Examples of stationary crack with dynamic
loading show evaluations of dynamic stress intensity factors by DE-FEM, and examples of dynamic crack
propagation present capability of DE-FEM on simulating dynamic crack growth. In all these examples, three-
node triangle elements are used.

2.6.1. Mode I Stationary Crack with Dynamic Loading
In this example, a pure mode I crack subjected to dynamic loading is studied. The problem is a rectangle plane
containing a crack, as depicted in Figure 2.5. The rectangle has length L = 10m and width 2H = 4m. Length of
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crack is a = 5m. Bottom edge is fixed, and left and right edges are fixed in horizontal direction. An uniformly
distributed tensile stress is applied on top edge of the structure with magnitude of σ0 = 500kPa. The crack is
kept stationary over time. The structure is assigned with material of Young’s modulus E = 210GPa, Poisson’s
ratio ν= 0.3 and density ρ = 8000kg /m3. The analytical solution of mode I stress intensity factor is provided
by Freund[8] with cd being dilatational wave speed

K dyn
1 =

 0 if t ≤ tc

2σ0
1−ν

√
cd (t−tc )(1−2ν)

π if tc < t ≤ tmax

. (2.38)

L

2H

σ0

a

Figure 2.5: Geometry of mode I crack example.

The value of K dyn
1 is 0 before tc = H/cd because the dilatational wave does not reach the crack until tc .

As Equation (2.38) does not consider reflected stress waves by top and bottom edges, it holds only before the
reflected stress waves enter the integration domain of dynamic interaction integral (2.27) at tmax . Therefore,

tmax = 3H − r

cd
, (2.39)

where r is radius of integration domain and in this example is chosen as r = 0.6m. Figure 2.6 shows the results

of mode I stress intensity factor K dyn
1 in time with a structured mesh of 115×65, where K dyn

1 is normalized by

σo
p

H and time t is normalized by tc .

It can be observed in Figure 2.6 that K dyn
1 has some oscillations near the analytical solution. This can be

explained by the intrinsic noise of Newmark constant average acceleration method. This method fails to pro-
vide converged results of velocity and acceleration fields in this example. Therefore, Bathe’s method is used

to mitigate oscillations of these fields, and the oscillations in K dyn
1 can be removed as shown in Figure 2.7.

Moreover, the stress field obtained by this method is smoother than that by Newmark constant average ac-
celeration method. Figure 2.9 shows the stress distribution obtained by Bathe’s method, in which the stress
does not show the unrealistic wave patterns as obtained by Newmark in Figure 2.8. Due to the advantage of
Bathe’s method, it is used for time integration in the following examples.

2.6.2. Mixed Mode Stationary Crack with Dynamic Loading
Stress intensity factors of a mixed mode stationary crack with constant velocity impact is studied. This is a
popular example to show evaluation of dynamic stress intensity factors [19, 22, 40]. The model is shown in
Figure 2.10. The structure has geometry of L = 4m and H = 6m. The crack length is a = 1m located at middle
of left edge. A constant velocity V0 = 16.5m/s is applied at left edge. The material properties are Young’s
modulus E = 200GPa, Poisson’s ratio ν = 0.25 and density ρ = 7833kg /m3. The structure is fixed at the top
and right edges, and the bottom edge is only allowed to move along horizontal direction. The analytical
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Figure 2.6: Evolution of K
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1 in time with 115×65 by Newmark

constant average acceleration method.
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Figure 2.7: Evolution of K
dyn
1 in time with 115×65 by Bathe’s
method.
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Figure 2.8: σy y field obtained by Newmark constant average acceleration method at the last time step.
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Figure 2.9: σy y field obtained by Bathe’s method at the last time step.

solution is provided by Lee and Freund [41]. Again, the analytical solution does not consider reflected stress
waves by edges of structure so it is only valid before tmax = 3a/cd = 542µs when reflected wave reaches crack
tip.

Figure 2.11 plots the simulation results of this problem with 135× 135 structured mesh. The time step
of simulation is ∆t = tmax /60 = 9.033µs. The values of stress intensity factors are normalized by a constant
factor −EV0

p
a/(2cd (1−ν2)

p
π) and the time is normalized by tc = a/cd . Figure 2.11 shows the numerical

result and it is able to reproduce the analytical solution. Therefore, we can conclude that the discontinuity-
enriched finite element method is capable of evaluating the stress intensity factors of a mixed mode crack.
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Figure 2.10: Geometry of the mixed mode stationary crack example.
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Figure 2.11: Results of evaluation of dynamic stress intensity factors of a mixed mode stationary crack.

2.6.3. First Glance at Dynamic Crack Propagation
Now we move to dynamic crack propagation problems. In this example, the same structure is used as in
Section 2.6.1 illustrated in Figure 2.5. However, in this example, we allow the crack to propagate after time
t = 1.5tc with the prescribed horizontal direction and the prescribed speed ȧ = 1500m/s. This example is
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widely studied in order to have first understanding of dynamic crack propagation[19, 21–23]. According to
Freund [8], relationship of stress intensity factors of a stationary crack and a propagating crack is

K dyn
1 (ȧ, t ) = k(ȧ)K dyn

1 (0, t ), (2.40)

where k(ȧ) is a universal function that is only dependent on the propagation speed. Here, it is approximated
by [19, 22]

k(ȧ) = 1− ˙̇a
cr

1− ȧ
2cr

. (2.41)

From Equation (2.38) and (2.41), we have the analytical solution for this propagation problem

K dyn
1 =



0 if t ≤ tc

2σ0
1−ν

√
cd (t−tc )(1−2ν)

π if tc < t ≤ 1.5tc

2σ0
1−ν

1− ˙̇a
cr

1− ȧ
2cr

√
cd (t−tc )(1−2ν)

π if 1.5tc < t ≤ tmax

. (2.42)

In order to model this example properly, a total time of 900µs and 100 time steps are used to avoid influence
of reflected stress waves as discussed in Section 2.6.1. A structured mesh of 115×65 is used and the result is
shown in Figure 2.12.
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Figure 2.12: Result of stress intensity factor of mode I propagating crack.

It can be seen from Figure 2.12 that after t = 1.5tc , the mode I stress intensity factor shows oscillations. As
in this simulation, Bathe’s method is used so spurious oscillations of Newmark constant average acceleration
method does not exist. Therefore, this kind of oscillations are due to dynamic crack propagation. It is worth
to mention that refining mesh cannot reduce level of oscillations. Similar results were also observed by nu-
merical results from Réthoré [19], Wen [22] and Menouillard[21, 23] by X/GFEM. All literature is concluding
the oscillations are inevitable. During propagation process, the crack is advanced discontinuously whereas
in reality it propagates continuously in time. At each step of crack advance, new crack surface is released
suddenly and this discontinuity of the stiffness in time introduces a high-frequency response to the struc-
ture near crack tip [19]. The stiffness discontinuity is the reason of oscillations. Menouillard [23] proposed a
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smoothed nodal force scheme which enables smoother release of crack surface in order to mitigate disconti-
nuity of stiffness, but due to the intrinsic discontinuity of time integration scheme the oscillations cannot be
completely removed. Other attempts like using meshfree method [42] and spectral element method [24] etc.
cannot tackle this problem properly either. Therefore, we can conclude that dynamic crack propagation will
introduce numerical oscillations near crack tip.

2.6.4. Kalthoff Test of Dynamic Crack Propagation
This section discusses dynamic crack propagation of a plate under impact loading. The corresponding exper-
iment was conducted by Kalthoff et al. [43] This example has been extensively used in literature to benchmark
crack path prediction [14, 17, 19, 20, 44]. In Kalthoff’s experiment, two horizontal edge cracks lie on a plate
symmetrically. In order to simplify simulation, only half plate including a single crack is considered [20] and
the geometry of the structure is shown in Figure 2.13.

L

L

l1

l2

aV0

Figure 2.13: Geometry of Kalthoff test used to benchmark crack path prediction.

The geometry parameters of Kalthoff test are given as follows: length L = 0.1m and initial crack lies hor-
izontally at the left edge of the plate with length a = 0.05m. l1 and l2 are 0.075m and 0.05m, respectively.
Impact loading is modeled by a constant velocity applied on the bottom of the left edge as shown in Fig-
ure 2.13. Material of the square plate is 18Ni1900 maraging type steel with Young’s modulus E = 190GPa,
Poinsson’s ratio ν = 0.3 and density ρ = 8000kg /m3. Fracture toughness is Kc = 68MPa

p
m. At low impact

velocity, Kalthoff observed brittle fracture [43]. The crack is supposed to propagate northeasternly with an
overall angle of 60 to 70 degrees [20, 22]. However, at high impact velocity, the problem changes intrinsically
and brittle fracture is no long there. In this example, we are studying crack propagation in brittle material so
impact velocity is chosen to be V0 = 20m/s [20, 22]. The model is assumed to be plane strain with top edge
fixed and bottom edge fixed in vertical direction. The total time of simulation is t = 100µs and the time step
is ∆t = 0.5µs.

Figure 2.14 shows the result of crack path and distribution of the horizontal displacement with mesh of
165×165. The overall angle of crack path with respect to horizon is around 60 degrees, which is in the range of
60 to 70 degrees so it can be concluded that the model can predict crack path. Song also got similar result [17]
and the result of angle is better than that obtained by Belytschko [14].

The process of crack propagation and horizontal stress distribution σxx at instances of 30µs, 50µs, 70µs,
and 90µs are illustrated in Figure 2.15. The singular stress field near crack tip is clearly shown in the simula-
tion, which is in accordance with the linear elastic fracture mechanics [8]. Initially, the crack is propagating
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Figure 2.14: Propagation path of Kalthoff test and distribution of x displacement.

with an inclination angle of around 66 degrees, as shown in Figure 2.15b. Then the angle decreases (Fig-
ure 2.15c) and this can be explained by the influence of the reflected stress waves from the left edge of the
structure. This phenomenon was also observed in the simulation of Réthoré by X/GFEM [19].

If we zoom in to the details of crack surface in Figure 2.16, small zigzags can be observed. Zigzags are
produced by oscillations of SIFs discussed in Section 2.6.3. As shown in Figure 2.17, during the time steps

that crack propagates, modes I and II SIFs K d yn
1 and K d yn

2 are both oscillating. K d yn
2 oscillates between pos-

itive and negative values. Because the direction of crack growth is dependent on the sign of K d yn
2 in Equa-

tion (2.32), the oscillation induces alternation in the propagation direction and thus causes zigzags on crack

surfaces. The positive/negative pairs of K d yn
2 correspond with the zig/zag patterns of crack surface. However,

from a global view, the level of zigzags is relatively small so generally we still have a smooth crack path. The
oscillations make simulation of dynamic crack propagation a challenging topic and it is not as accurate as
modeling of quasi-static cracks [22].

2.7. Conclusions
Simulation of dynamic crack propagation has long been a challenging topic in engineering. In this thesis, the
novel Discontinuity-enriched Finite Element Method was applied to solve dynamic fractures in brittle mate-
rials. Two kinds of problems were analyzed. In the stationary crack with dynamic loading problems, DE-FEM
was able to reproduce the analytical SIFs history. In the Kalthoff experiment of dynamic crack propagation
example, DE-FEM was capable of predicting the crack path. Therefore, it can be concluded that DE-FEM is a
suitable candidate to simulate dynamic fracture problems.

Moreover, the computer implementation of DE-FEM is straightforward when modeling dynamic crack
propagation. The crack tip node is associated with a weak node, whereas the crack segment node is endowed
with both a strong and a weak node. Therefore, in the computer program, a crack tip node could be trans-
formed to a crack segment node by simply adding a strong node on top of it. This provides simplicity on
advancing cracks.

The stress intensity factors were evaluated by a domain-independent dynamic interaction integral. The
virtual crack extension field is a key parameter of the dynamic interaction integral. It is a vector field and is
constructed numerically by finite difference. Its magnitude is computed exactly the same way as constructing
the weight function for quasi-static crack interaction integral [26], providing direct extension of static crack
to dynamic crack propagation.

Oscillations of SIFs have been an issue for numerical simulations of dynamic fracture. In this thesis, the
oscillations of stationary crack with dynamic loading problems were completely removed. The oscillation
issue of this kind of problem was due to the time integration scheme. Newmark constant average acceler-
ation method might fail to provide a converged velocity and acceleration fields [33], and this failure caused
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(d) Crack propagation at t = 90µs.

Figure 2.15: Crack propagation process at four different time instance (magnified by 2 times). The contour here is the horizontal
component of stress σxx .

Figure 2.16: A zoomed in view of crack surface.
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Figure 2.17: Mode I and mode II stress intensity factors until 40µs
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oscillations in SIFs. In order to solve it, the Bathe’s method was implemented. This is a novel time integration
method with better convergence property and can be an alternative when Newmark fails. Therefore, smooth
evaluations of SIFs without oscillations were achieved and the stress field did not show the unrealistic wave
patterns.

However, for dynamically propagating cracks, the oscillations in SIFs are inevitable. The issue arises not
only in DE-FEM, but also in other numerical tools like X/GFEM. This is due to the discontinuity of stiffness in
time near crack tip during propagation steps. Better time discretization methods could be preferred in order
to release the crack tip more smoothly, and thus get smaller level of oscillations.



3
Reflection

3.1. Chioce of Research Topic
When choosing thesis project in the first year of my master’s study, I was intrigued by this interdisciplinary
project of crack propagation using discontinuity-enriched finite element method. Fracture problems exist
not only in mechanical engineering, but also in civil engineering, aerospace and nuclear etc. This property
makes the topic versatile and the method developed can be applied to many different fields.

The literature research took me around two months. During this period I read books of foundamentals of
fracture mechanics and understood basic definitions and formulas of linear elastic fracture mechanics. I also
looked at some stuffs of cracks in plastic materials. Furthermore, I read papers including recent developments
in crack propagation. In these papers I found the dynamic crack propagation interesting. Dynamic crack
propagation is also a challenging topic as there are still a lot of difficulties like computational cost, spurious
oscillations as well as branching and coalescence etc.

3.2. Process of Porject
My work started with implementing Newmark method. It was very challenging for me to code with Hybrida
at the beginning because it was my first time to code in object-oriented software. I spent weeks learning
object-oriented programming and basic structures of Hybrida. After equipped with required programming
knowledges, I started coding dynamic analysis class and Newmark class. The verification of these codes took
me too much time because I spent some time learning beam and shell theory. Also the corona virus pandemic
forced me to work from home and it had large negative influence on my productivity. After understanding
basics of Euler-bernoulli beam and Timoshenko beam theory, I was able to verify my implementation of
dynamic class and Newmark class by free and forced vibrations of a cantilever beam. During this process, I
also fixed bugs of vectorized assembly of mass matrix of triangle and quadrilateral elements with the help of
my PhD senior.

The next task was to compute dynamic interaction integral in order to evaluate SIFs. This task was more
challenging than the previous task. The virtual crack extension field took me some time because initially I
was trying to find a way to construct it analytically but after some failures did I realize it was much smarter
to construct it numerically. With all these ingredients, I was able to compute dynamic stress intensity factors
properly.

The third task was to find a way to propagate crack. The class for crack propagation was implemented in
Hybrida by visitor design pattern which could extend functionality of Dynamic codes without changing much
of its implementation. Inspired by the energy-conserving scheme, I soon noticed DE-FEM would benefit from
it because advancing cracks by this method is straightforward by construction. Therefore, this scheme was
adopted to DE-FEM and coded in Hybrida. However, the first try of crack propagation was terrible because
I re-created crack for each propagation step and the mapping of degrees of freedom from one step to the
next was a mess. In order to solve it, I wrote a crack propagation function in Hybrida geometric engine to
append new crack segment to the old crack. By this function, the old DOFs were preserved and I only needed
to append new DOFs at end of displacement, velocity and acceleration vectors. Then the crack path was
more reasonable but it still had zigzags on its surface. It tool me long time to understand this phenomenon
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for doing literature survey and some numerical tests. It turned out that Newmark constant average accelera-
tion method does not have enough accuracy on velocity and acceleration. Thus Bathe’s method was applied
to tackle this problem. Although according to literature the zigzags could not be completely removed, this
method did help a lot in reducing the level of zigzags in propagation.

During the process of the aforementioned three tasks, my supervisor Alejandro guided me and gave me
valuable suggestions. Also my peers and my PhD seniors helped me with coding. I would like to give my
sincere gratitude to them.

3.3. Personal Improvement During Thesis Work
The period of working on my thesis project is precious for me because I improved myself during this period,
especially my time management skill. Now I understand the importance of finishing tasks as early as possible.
In the early phase of my project, I was always thinking time was enough and I still had several months to
finish my project. Then it turned out that research was difficult to ’go as planed’ because there were always
unexpected difficulties and challenges. These difficulties and challenges took me so much unexpected time
to deal with. This taught me a good lesson that always reserve enough time when doing anything so that any
’unexpected issue’ would not influence the plan.

I also gained a lot of precious skills in scientific research like problem shooting, literature research as well
as how to find method to solve my problems etc. These skills will benefit me not only for my future research
but also for my life.

3.4. Future Work Orientation
My thesis topic has potential to be studied further. In my work, I managed to propagate a single crack dy-
namically but the interaction of multiple dynamic cracks remains a challenge in elastodynamic fracture me-
chanics. Also the branching and coalescence behaviors are typical phenomena that happen only when crack
propagation is modeled dynamically. Moreover, in addition to Bathe’s method, some other tools to further
mitigate zigzag issue of crack surface may also be developed in the framework of DE-FEM. Someone may
continue my work to further investigate the above problems.
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A
Fracture Mechanics and Its Numerical

Implementations

A.1. Crack Modes
For a three-dimensional crack, under different loading condition, it has three cracking modes [45], as illus-
trated in Figure A.1.

Figure A.1: Three modes of crack. [45]

• Mode I: crack opening mode. This mode corresponds to the scenario that normal pressure is applied
to crack surfaces. The upper and lower part of solids are moving perpendicularly to crack surfaces in
opposite directions,

• Mode II: in-plane shear mode. In this mode, shear stress is applied parallel to crack surfaces but per-
pendicular to crack front. Upper and lower part of solids are moving along crack orientation but in
opposite directions,

• Mode III: anti-plane shear mode. In this case, shear stress is applied parallel to crack surfaces and crack
front. The upper and lower part of solids are moving out-of-plane in opposite directions, tending to
tear the structure.

A.2. Quasi-static Crack
When time evolution is not considered for cracked body, for example in case of low loading rate or slow
propagation speed, the crack can be considered as quasi-static. Under this condition, governing equation is
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static equilibrium and expressed by stress σ and external load f

di v(σ)+ρ f = 0. (A.1)

In linear elastic fracture mechanics, crack tip stress field is solely characterized by stress intensity factor (SIF)
Kst a

σ= Kst ap
2πr

f (θ), (A.2)

where r and θ are polar coordinates and f (θ) represents angular variation of crack tip stress. f (θ) is an uni-
versal function and is dependent only on polar coordinate θ. Kst a dictates strength of crack tip field. As can
be seen from Equation (A.2), crack tip stress field is singular and it goes to infinite at crack tip. Figure A.2
shows σy y near mode I crack tip and other components of stress tensor σ behaves similarly. This is a key
character in linear elastic fracture mechanics. Stress fields of different modes are determined by each stress
intensity factor, denoted by K I , K I I and K I I I respectively and they are uncoupled from each other.

Figure A.2: Integration domain of J integral. [46]

When the crack is propagating, extension of crack surface leads to energy dissipation, which is energy
release rate G [36, 37]

G =−dΠ

d A
, (A.3)

in which A is crack surface area and Π is overall potential energy including internal potential (strain energy)
Πi and external potential (load potential)Πe

Π=Πi +Πe . (A.4)

Physically, Equation (A.3) means rate of change in potential energy with crack surface area. Since G is deriva-
tive of potential, which has dimension of force, G is also called crack extension force or crack driving force [45].
Energy release rate allows us to consider crack propagation criterion from energy view. During propagation
process, potential energy should be large enough to overcome surface energy of material, i.e. energy dis-
sipated to create unit crack surface. Based on this understanding, Griffith [36] gives a criterion for crack
propagation: when energy release rate reaches a specific value, denoted by Gc , crack propagates

G ≥Gc . (A.5)

Gc is called fracture toughness and it is a material property. In linear elastic fracture mechanics, J-integral
was proposed by Rice [47] to evaluate energy release rate G

G = J . (A.6)

J-integral is easier to evaluate than Equation (A.3). It is a domain-independent integral evaluated along ∂A,
which is boundary of domain A

J =
∫
∂A

(W δ1 j −σi j
∂ui

∂x1
)n j d s, (A.7)

with W denotes strain energy expressed as Equation (A.8). σi j and ui are stress and displacement respectively.
Vector n is directional vector at boundary and towards out of the integration domain.

W = 1

2
σi jεi j (A.8)
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The domain is illustrated in Figure A.3. Its boundary ∂A does not cross crack surface so some part of ∂A is
along crack surface, denoted by Γ(+) and Γ(−)

∂A = Γ+Γ(+) +Γ(−). (A.9)

Within regime of linear elastic fracture mechanics, energy release rate can be directly rewritten in terms of
stress intensity factors

G = K I

E∗ + K I I

E∗ , (A.10)

in which,

E∗ =


E for plane stress condition

E

1−ν2 for plane strain condition
, (A.11)

ν is Poisson’s ratio. Equation A.10 provides a practically friendly way to evaluate energy release rate. There-
fore, propagation criterion A.5 can also be written in terms of stress intensity factors

K ∗ ≥ Kc . (A.12)

Kc is critical stress intensity factor and K ∗ is equivalent stress intensity factor. K ∗ can be evaluated by dif-
ferent ways: the maximum hoop stress criterion [48], the maximum principal stress criterion [49] etc. The
criterion stated in Equation (A.12) is widely used: if equivalent stress intensity factor is larger than critical
stress intensity factor, the crack propagates.

Figure A.3: Integration domain of J integral. [50]

A.3. Dynamic Crack
In practice, all cracks are dynamic and modeling crack as dynamic is better to reflect fracture physics than
quasi-static case. Lawn provides two cases in which a crack system may become dynamic [9]

• When a crack reaches a point of instability in its length (crack walls separating rapidly),

• When the applied loading is subject to a rapid time variation, as in impact loading.

Analysis of dynamic crack becomes more complicated compared with quasi-static case. Due to inertia effect,
kinetic energy is incorporated in governing equation and energy expression. Also, effect of external load is not
applied to each point of structure instantaneously but by means of stress wave. In dynamic case, governing
equation of problem is

di v(σ)+ρ f = ρü. (A.13)

Compared with quasi-static case A.1, inertia term ü is added to represent kinetic energy.
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A.3.1. Stress Waves
Stress waves only show up in dynamic case but not in quasi-static case. If the momentum equation, i.e.
governing Equation (A.13), is written in terms of displacement u, then we have Navier’s equation of motion [8]

(λ+µ)∇(∇·u)+µ∇2u +ρ f = ρü. (A.14)

According to classic field theory, there is following relationship of curl and divergence

∇× (∇×u) =∇(∇·u)−∇2u, (A.15)

Plug Equation (A.15) into Equation (A.14) and we have

c2
d∇(∇·u)− c2

s ∇× (∇×u)+ f = ü, (A.16)

where cd and cs are written in terms of Lamé constants

cd =
√
λ+2µ

ρ
, cs =

√
µ

ρ
. (A.17)

Let the body force f equals zero for time being. If divergence operator ∇· and curl operator ∇× are operated
on each term of Equation (A.16) respectively, two elementary wave equations are obtained

c2
d∇2(∇·u) = (∇·u),t t , (A.18)

c2
s ∇2(∇×u) = (∇×u),t t . (A.19)

It can be seen from Equation (A.18) and Equation (A.19) that volume change and rotational deformation
of points are propagating in structure with speed cd and cs respectively. Therefore, cd is called dilatational
wave speed and cs is called shear wave speed. For dilatational wave, oscillation of particle is along wave
propagation direction. If oscillation of a particle is perpendicular to wave direction then it is called shear
wave. These two waves are both body waves. Stress waves could also be observed in a lot of disciplines but
terminology could be different. For example, in seismology, dilational wave and shear wave are also called P
wave and S wave respectively.

Another important wave parameter in dynamic crack is Rayleigh wave speed, denoted by cr . Rayleigh
wave is a type of surface wave that travels along surface of a solid. Its amplitude decreases exponentially as
distance from surface increases [51]. Rayleigh wave speed is related to the maximum propagation speed a
crack can attain in solids.

A.3.2. Stress Intensity Factor and Energy Release Rate
For dynamic crack, definition of stress intensity factor is the similar as it in quasi-static case

σ= Kd ynp
2πr

g (θ, v), (A.20)

except here Kd yn represents dynamic stress intensity factor and angular variation function g (θ, v) is different
from its quasi-static counterpart f (θ). The angular function g (θ, v) is dependent on crack propagation speed
v and it satisfies [8]

lim
v→0

g (θ, v) = f (θ), (A.21)

which shows physical consistency of quasi-static and dynamic crack. If propagation velocity of a dynamic
crack is 0, then it falls into regime of quasi-static crack and they have the same crack tip stress field. In this
case, the numerator Kd yn in Equation (A.20) becomes static stress intensity factor Kst a .

When crack of length a is propagating with speed v , dynamic stress intensity factor is related to static
stress intensity factor by

Kd yn(v , a) = k(v)K (0, a) = k(v)Kst a . (A.22)

Here, k(v) is an universal function. For a cracked body with given geometry, it is only dependent on propa-
gation speed v . If v is close to 0, then k(v) → 1.
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Similar to quasi-static crack, energy release rate is also defined in dynamic crack scenario. The dynamic
energy release rate is defined as the rate of mechanical energy flow out of the body and into the crack tip per
unit crack advance [8]. Therefore, the dynamic energy release rate is denoted by Gd yn and it is defined as

Gd yn = lim
∂A→0

F (∂A)δt

vδt
= lim
∂A→0

F (∂A)

v
, (A.23)

where ∂A is curve near crack tip and enclosing crack tip, as depicted by Figure A.3. vδt represents unit crack
advance and F (∂A)δt is mechanical energy influx. F (∂A) is the instantaneous rate of energy flow through ∂A
toward the crack tip [8], expressed as

F (∂A) =
∫
∂A

[σ j i n j
∂ui

∂t
+ (U +T )vn1]d s, (A.24)

in which U and T are potential and kinetic energy density respectively.
The dynamic energy release rate in Equation (A.23) can also be related to dynamic stress intensity factors

in A.20 [8]

Gd yn = 1−ν2

E
[AI (v)K 2

I + AI I (v)K 2
I I ]. (A.25)

Equation A.25 holds only for plane strain condition. For plane stress problem, coefficient 1−ν2

E should be
replaced by 1

E . E and ν are Young’s modulus and Poisson’s ratio respectively. An important difference of
Equation (A.25) from Equation (A.10) is that two universal functions, AI and AI I , are incorporated in order to
account for dynamic effect and they are solely functions of propagation speed v

AI (v) = v2αd

(1−ν)c2
s D

, AI I (v) = v2αs

(1−ν)c2
s D

, (A.26)

where αd and αs are speed parameters,

αd =
√√√√1− v2

c2
d

, αs =
√

1− v2

c2
s

. (A.27)

And D = 4αdαs − (1+α2
s )2. D = 0 is called Rayleigh equation and solutions to it are v = 0 and v = cr , where cr

is the Rayleigh wave speed. AI and AI I are monotonically decreasing when crack speed is increasing. If crack
speed v → 0 then these two universal functions are equal to one [8]

lim
v→0

AI (v) = 1 , lim
v→0

AI I (v) = 1. (A.28)

Equation A.28 shows dynamic energy release rate returns to quasi-static case A.10 if crack speed is zero. The-
oretical research has shown that crack can never travel faster than Rayleigh wave speed [52]. However, in
practice, when crack speed is close to cr , instability may happen to the system.

A.3.3. Crack Instability
Crack instability is a feature only exists in dynamic crack but not in quasi-static crack. Instability occurs when
crack propagation speed is very high. Chen [53] shows that when crack speed attains around 0.92 of shear
wave speed (0.92cs ), crack tip will start to oscillate. This oscillation is induced by nonlinear elastic regime
near crack tip. Fortunately, this thesis is dealing with linear elastic fracture mechanics so this physical crack
tip oscillation will not show in this study.

Crack branching is widely observed in nature and this is also an effect of crack instability. When crack
is propagating fast, energy influx into crack tip is so large that crack cannot release it by creating just single
crack surface. Therefore, crack branches to have more crack surfaces to release the inflowing energy in order
to attain energy conservation at crack tip [54]. A sufficient model to calculate branching speed and angle
for mixed mode crack of any material is a complicated research topic in fracture mechanics. Based on rela-
tionship before and after branching, Adda-Bedia proposed a model to evaluate branching angle and critical
speed [55]. However, his model is only applicable for single mode crack and extensions to mixed mode frac-
ture is still not clear. Yoffe noticed that for crack speed less than 60 percent of shear wave speed (0.6cs ), the
maximum hoop stress has a maximum value along θ = 0, i.e. along propagation direction. However, for crack
speeds greater than 0.6cs , the maximum hoop stress is measured at about 60◦ to propagation direction. Yoffe
suggested this could be an indication of crack branching [56].
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A.4. Numerical Methods for Fracture Problems
There are lots of numerical algorithms to model problems with crack and among them Finite Element Method
(FEM) is widely used. Also cohesive element can be used in combination with FEM to model cohesive force
of detaching crack surfaces.

A.4.1. Standard Finite Element Method
In early years, people are using standard finite element method to simulate fracture problems. In stan-
dard FEM, displacement fields are interpolated by displacement at nodes multiplied by some base functions,
namely shape functions, as expressed in Equation (A.29), where ue , Nstd are nodal displacement and shape
functions respectively, and e is the set that contains all standard finite elements.

u =∑
e

ue Nstd (A.29)

Each finite element node is associated with a space-dependent shape function N and it satisfies Kro-
necker delta property, which means N equals to one at corresponding node and varies linearly to zero at
other node in its element patch. Note that if higher order element or higher order interpolation scheme (p-
fem) is used, N does not have to vary linearly but Kronecker delta property still holds.

It can be seen that in Equation (A.29), ue are scalers and Nstd are spatially continuous functions so dis-
placement field inside an FEM element is continuous. Therefore, standard FEM cannot represent disconti-
nuity inside an element. The only way to model crack in standard FEM scheme is to put it along element
edges [12], as shown in Figure A.4. During propagation process, the study domain is remeshed after each
advance of crack, in order to keep crack consistent with element edges [12, 57].

Figure A.4: Mesh of standard FEM with strong discontinuity (crack). [12]

However, standard finite element method has some drawbacks while simulating crack propagation

1. Lack of physics because it does not incorporate cohesion of surface detachment during crack opening
process,

2. As remeshing is needed for each propagation step, computational cost will increase dramatically.

A.4.2. Cohesive Zone Model
In order to solve the first problem listed above, cohesive zone model (CZM) was introduced. It adds a fracture
process zone between two crack surfaces near crack tip to model cohesive force induced by generation of new
crack surfaces, as shown in Figure A.5. The cohesive force is dependent of crack opening displacement for-
mulated by a traction-displacement relationship shown in Figure A.6. Note that the relationship can be expo-
nential as well. When crack opening displacement is larger than a critical value, denoted by δu , cohesive force
is released and crack is fully opened. The area under traction-displacement curve reflects energy required to
form new crack surfaces, namely fracture toughness. This property gives more physical representation to
cohesive zone model. Cohesive zone model is widely used in a lot of disciplines like biomechanics [58], civil
structures [59] and composite materials [60]. However, CZM still cannot solve problem of mesh dependency.
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Figure A.5: Cohesive zone near crack tip. [61] Figure A.6: Traction-displacement relationship of cohesive zone
model. [58]

A.4.3. eXtended/Generalized Finite Element Method
The eXtended/Generalized Finite Element Method (X/GFEM) was proposed to tackle problem of remeshing
by decoupling crack representation and background mesh [13]. This is achieved by appending additional
degrees of freedom to finite element nodes, as shown in Figure A.7, where square and circle nodes represent
finite element nodes with additional degrees of freedom. Associated with each degree of freedom, a dis-
continuous base function is added to finite element functional space. Therefore, instead of Equation (A.29),
displacement interpolation formula becomes

u =∑
e

ue Nstd +∑
e

Nstd

∑
en
Φuen . (A.30)

Compared with Equation (A.29), the second term in Equation (A.30) is incorporated in order to represent
discontinuity by discontinuous enrichment functionsΦ. Hence, X/GFEM is able to model discontinuity inside
an element. From Figure A.7, it can be observed that for a mesh of cracked domain, finite elements have three
status.

1. The element is intact and does not contain any crack segments,
2. The element is fully cut by crack,
3. The element partially cut by crack and contains crack tip.

The first case is exactly the same as standard FEM so continuous shape functions are applied as in Equa-
tion (A.29). For the second case, there is a displacement jump around crack. In order to model this jump
wisely, Heaviside function is defined in the local crack coordinates as enrichment function

H =
{

1 at one side of crack

−1 at the other side of crack
. (A.31)

The third kind of element is tackled with a little bit more complicated expressions. According to theory of lin-
ear elastic fracture mechanics, the crack tip asymptotic field is expressed in terms of trigonometric functions
so the enrichment strategy is

F (r ,θ) =
{p

r sin

(
θ

2

)
,
p

r cos

(
θ

2

)
,
p

r sin

(
θ

2

)
sin(θ),

p
r cos

(
θ

2

)
sin(θ)

}
. (A.32)

In Figure A.7, circle nodes represent nodes with Heaviside enrichment and squared nodes are enriched with
Equation (A.32). If we express X/GFEM formulation in terms of enrichment strategy discussed above, Equa-
tion (A.30) becomes [13]

u = ∑
i∈I

ui Ni +
∑
j∈J

b j N j H(x)+ ∑
k∈K

Nk (
4∑

l=1
ck F (r ,θ)), (A.33)

where I , J and K are three sets corresponding to the three scenarios discussed above. ui , b j and ck are degrees
of freedom corresponding to I , J and K respectively.

With all aforementioned ingredients, crack can be completely decoupled from background mesh. This
characteristic provides tremendous advantages because remeshing is not required during each propagation
step. Instead, only additional degrees of freedom need to be appended to nodes corresponding to elements
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cut by crack advance [13]. In other problems like topology optimization, where discontinuity representation
is peculiar for each optimization step, mesh can be kept consistent through the whole process by X/GFEM.
The convenience of X/GFEM in modeling crack propagation makes it a popular method in fracture mechan-
ics, even available in famous commercial softwares like Abaqus.

X/GFEM is gaining a lot of research interest and still remains popular nowadays. People continued to
propose modified versions of X/GFEM such as improved XFEM(iXFEM) [62], Corrected XFEM [25] and Stable
Generalized Finite Element Method(SGFEM) [63] etc.

However, X/GFEM also suffers from some issues. Firstly, it has problem of blending element. Blending
element is mixture of standard element and enriched element, where some nodes are enriched but the rest
are not. Blending elements are always adjacent to cracked elements. As shown in Figure A.8, enrichment
functions are nonzero in blending elements but these elements have no discontinuity. This unnecessary dis-
continuous enrichment could decrease convergence rate. Secondly, degrees of freedom at enriched nodes
loss their physical meaning due to extra degrees of freedom appended at enriched nodes. Therefore, pre-
scribing Dirichlet boundary condition is not as straightforward as standard FEM.

Figure A.7: X/GFEM mesh with additional degrees of freedom
at finite element nodes. [13]

Figure A.8: N∗ in this picture means Nstd associated with en-
riched degrees of freedom in Equation (A.30). It is nonzero also
in blending elements. [25]

A.4.4. The Discontinuity-enriched Finite Element Method
The Discontinuity-enriched Finite Element Method (DE-FEM) solves the aforementioned drawbacks of X/GFEM
very well [26, 29]. The key difference between DE-FEM and X/GFEM is that the extra degrees of freedom are
added inside element along discontinuity rather than at mesh nodes, as shown in Figure A.9 where red nodes
denote enriched nodes and black nodes are standard nodes. The displacement interpolation is

u =∑
e

ue Nstd +∑
w

uwψ+∑
s

usχ. (A.34)

In Equation (A.34), two terms are added compared with standard FEM formulation A.29 and they are used
to model weak and strong discontinuities respectively [26, 29] with enrichment functions ψ and χ that are
constructed through standard finite element shape functions. Considering that standard FE shape functions
are nonzero inside an element but zero outside this element, DE-FEM shape functions are only effective in
elements that contain discontinuity, as indicated in Figure A.10, which shows a χ in one dimensional case
as an example. It can be seen that χ incorporates a strong discontinuity and decreases linearly to zero at
element nodes. ψ is similar except it replaces strong discontinuity with weak discontinuity and details can
be found from work of Soghrati [29].

In fracture mechanics, at crack tip node, only weak enrichment is endowed with it whereas for other nodes
along crack, they are endowed with both strong and weak enrichments. This is because for crack tip, there
is no strong discontinuity (no displacement jump) and weak enrichment solely is enough to represent fields
near tip.

The Discontinuity-enriched Finite Element Method preserves advantages of X/GFEM and also solves its
drawbacks. Issues of blending element is fully solved by DE-FEM because enrichmentsψ andχ become zero
outside cutting elements (elements cut by crack). Degrees of freedom associated with mesh nodes retain their
physical meaning because ψ and χ are zero at mesh nodes. Benefited from this characteristic, prescribing
Dirichlet boundary condition is as straightforward as standard FEM. With these advantages, DE-FEM proves
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Figure A.9: DEFEM mesh with additional degrees of freedom
along discontinuity. [26]

Figure A.10: DE-FEM shape function in one dimensional
case. [26]

its versatility in other finite element problems like three dimensional discontinuous problems [27] and isoge-
ometric analysis [28] etc.





B
Dynamic Crack Tip Fields

The analytical solutions of mode I and mode II crack tip fields are served as auxiliary fields of dynamic inter-
action integral (2.27). The detailed expressions and explanations of dynamic crack tip fields were provided
following Freund [8] and Nishioka [35] in polar coordinates r and θ. For mode I crack, the displacement
distribution is

ux = K d yn
1

µD
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The stress field is

σxx = K d yn
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The spatial derivatives of displacement field are

∂ux
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For mode II crack, the displacement near crack tip is

ux = K d yn
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The stress field for mode II dynamic crack tip is

σxx = K d yn
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The spatial derivatives of displacement field for mode II crack tip are
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In the aforementioned formulas, the field parameters are all defined by polar coordinates r , θ and dilatational
and shear wave speeds c1, c2 as well as crack propagation speed v .
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The rest of coordinate parameters are
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θ1 and θ2 are in the same quadrant as θ satisfying

tan(θ1) =α1 tan(θ), tan(θ2) =α2 tan(θ). (B.9)

Other parameters are
D(v) = 4α1α2 − (1+α2

2)2, (B.10)

B1 =
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D
, B2 = 2α2

D
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C
Newmark Method and Bathe’s Method

In this appendix, more details of Newmark and Bathe’s method are elaborated. Also, a comparison between
them will be made by a benchmark example.

C.1. Other forms of Newmark implementation
Besides d-form, Newmark type methods can also be implemented in velocity form (v-form) and acceleration
form (a-form) [32].

v-form
The governing equation is

∆F = F ext
n+1 −Müi

n+1 −K ui
n+1

C∗ = 1

∆tγ
M + ∆tβ

γ
K
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And the iterative process is
u̇i+1

n+1 = u̇i
n+1 +∆u̇
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n+1 = ũn+1 +∆t 2βüi+1
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a-form
The governing equation is

∆F = F ext
n+1 −Müi

n+1 −K ui
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(C.3)

And the iterative process is
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(C.4)

C.2. A Comparison between Newmark and Bathe’s Method
The functionalities of Newmark constant acceleration method and Bathe’s method are compared by a can-
tilever beam free vibration problem in this section. The advantages of Bathe method over Newmark is ad-
dressed.

Consider a cantilever beam as shown in Figure C.1 with left end fixed and the rest of boundary free. The
initial condition is given to its neutral line such that it vibrates freely with its first eigenmode. The analytical
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Figure C.1: Illustration of a cantilever beam.

solution of displacement , velocity and acceleration of right end point on neutral line is

d = dm

(
cosh(λx)−cos(λx)− cosh(λL)+cos(λL)

sinh(λL)+ sin(λL)
(sinh(λL)− sin(λL))

)
cos(ωt ) (C.5)

v = vm

(
cosh(λx)−cos(λx)− cosh(λL)+cos(λL)

sinh(λL)+ sin(λL)
(sinh(λL)− sin(λL))

)
(−ωsin(ωt )) (C.6)

a = am

(
cosh(λx)−cos(λx)− cosh(λL)+cos(λL)

sinh(λL)+ sin(λL)
(sinh(λL)− sin(λL))

)(−ω2 cos(ωt )
)

(C.7)

where dm , vm and am are parameters defined by vibration amplitude. L is length of the cantilever beam and
ω is its first eigenfrequency. x is Cartesian coordinate. λ in this case is 1.8571/L.
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Figure C.2: Displacement computed by trapezoidal rule.
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Figure C.3: Displacement computed by Bathe’s method.

Figure C.2 to C.7 compare displacement, velocity and acceleration of point at free end along neutral line.
It can be seen that both Newmark trapezoidal rule and Bathe’s method predict displacement and velocity
very well. However, when it comes to acceleration, Newmark trapezoidal rule fails to converge and oscillates
with large amplitude. Bathe’s method still converges except the first few steps. This result is the same as what
Bathe got in their paper [33].

From Figure C.3 and Figure C.5, it can be observed Bathe’s method provides slightly larger frequency
than Newmark trapezoidal rule and thus will cause phase shift after long simulation time. In this thesis,
this slight increase of frequency will not influence result because we are more interested in crack path than
propagation at each time instance. Therefore, from all these results, we can conclude that Bathe’s method is
a good alternative to get better simulation results when Newmark type methods fail.
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Figure C.4: Velocity computed by trapezoidal rule.
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Figure C.5: Velocity computed by Bathe’s method.
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Figure C.6: Acceleration computed by trapezoidal rule.
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Figure C.7: Acceleration computed by Bathe’s method.





D
Working with Hybrida Geometric Engine

Hybrida is our in-house finite element library and it has a very powerful geometric engine which deals with
interaction of mesh and discontinuity, including parent and integration elements. A tricky question for crack
propagation is how to get new mesh topology after each step of advance. This is achieved by Hybrida geomet-
ric engine which already has functions to create crack segments. In order to make best use of these functions,
the new crack segment is firstly modeled as another crack and then merged with original crack as propagated
segment. The algorithm is summarized as Figure D.1 and follows.

1. The crack before propagation is shown in Figure D.1a. Coordinates of new crack tip after propagation
is computed by equation (2.32) to equation (2.34), as shown in Figure D.1b.

2. Then a point near old tip along propagation direction is picked. Take this point and the new crack
tip together to form a new crack segment. This process can be done directly by existing functions in
Hybrida geometric engine, as shown in Figure D.1c. At this phase, all parent elements are partitioned
into integration elements.

3. Merge the point close to old crack tip with old crack tip and re-partition the parent element correspond-
ing to these nodes, as shown in Figure D.1d. By this phase a propagated segment is created.

(a) Crack before propagation. (b) The point of new crack tip.

(c) Create new crack segment. (d) Merge the new crack segment with old crack tip.

Figure D.1: Process of propagating a crack with Hybrida geometric engine.
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E
Some Additional Simulation Results

In this appendix, some additional simulation results of numerical examples in Section 2.6 are shown.

E.1. Mode I stationary Crack with Dynamic Loading
In this section, stress distributions of example in Section 2.6.1 by Newmark constant acceleration method
and Bathe’s method are compared. Figure E.1 and Figure E.2 show vertical stress distributions σy y at time
t = 0.00027s, t = 0.00054s and t = 0.00081s. Compared Figure E.1 with Figure E.2, it can be seen that both
Newmark constant acceleration method and Bathe’s method result in similar stress distribution. In Figure E.2,
stress wave is smooth rather than showing unrealistic ’wave pattern’ as shown in Figure E.1. This is because
Bathe’s method has better capability for removing spurious oscillations.

Process of stress waves propagation can be summarized as follows

• When time t > 0, a vertical distributed load is applied on top edge of structure, which generates a di-
latational wave. This dilatational wave propagates through upper half of structure vertically as shown
in Figure E.2a, until time t = 0.000324s it reaches the crack.

• At t = 0.000324s right half of stress wave propagates through its original vertical direction whereas the
left half is reflected by crack surface. The crack surface reflects a dilatational stress wave and the crack
tip reflects both dilatational and shear stress wave [8]. Shear stress wave propagates slower than dilata-
tional wave.

• The two halves of stress wave propagates upward and downward as shown in Figure E.2b until they
reach top and bottom edge, respectively, at time t = 0.000666s then they are reflected by boundary and
reverse their directions.

• Finally the simulations end at time t = 0.0009s at which the stress waves are traveling downwards (left
half) and upwards (right half), respectively.

E.2. A First Glance into Dynamic Crack Propagation
In Section 2.6.3, a 115× 65 mesh was used. However, it could be further proved that increasing number of
elements will not mitigate this kind of oscillations. The result with mesh 165× 85 is shown in Figure E.3.
Compared it with Figure 2.12, it can be seen that level of oscillations is similar so increasing number of ele-
ments does not result in better accuracy. Therefore, the oscillations are mesh independent.
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(a) At time t = 0.00027s.

(b) At time t = 0.00054s.

(c) At time t = 0.00081s.

Figure E.1: σy y distribution by Newmark trapezoidal rule.
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(a) At time t = 0.00027s.

(b) At time t = 0.00054s.

(c) At time t = 0.00081s.

Figure E.2: σy y distribution by Bathe’s method.
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Figure E.3: Numerical result for example 2.6.3 with fine mesh of 165×85.
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