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Abstract
This thesis delves into glacier dynamics using the 2D Shallow Ice Approximation enriched by
satellite remote sensing data on glacier surface velocities and ice thickness, aiming to refine
empirical laws for better predicting glacier movements. The integration of such data has been
pivotal, markedly enhancing model calibration despite challenges like steady-state assumptions
necessitated by data scarcity. This underscores the critical role of high-quality, temporally re-
solved data in modeling glacier dynamics accurately. A significant advancement was the im-
plementation of spatial stratification, which notably improved model performance—reducing
Root Mean Square Error (RMSE) by up to 30% and elevating the coefficient of determination
(R²) by 0.2 to 0.4 across different regions. This highlights the potential of fully distributed
inversions to capture the complex variability of glaciers. Employing Julia for its computational
efficiency proved effective for large-scale modeling tasks, setting a promising foundation for
future research aimed at understanding and predicting glacier responses to climate change. It is
recommended to utilize geostatistical interpolation methods for inverting glacier characteristics
from sparse data, in order to acquire these characteristics across the entire glacier area.
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1 Introduction
Glaciers serve as critical reservoirs of freshwater for human populations living in the contigu-
ous plains of the world’s largest mountain ranges, and exert a significant influence on global
sea levels and ecosystems [1] [2]. Despite their importance, our understanding of glacier dy-
namics at large spatial and regional scales remains constrained [3]. This limitation arises from
the intricate interactions between glaciers and both climatic and topographical factors, which
are often not adequately captured in existing large scale glacier models [4]. Current studies fre-
quently focus on individual glaciers with a high amount of observations, or conversely, lack the
fine-grained analysis required for a comprehensive understanding of global glacier dynamics
[5]. Such gaps in knowledge directly impact our ability to make accurate predictions concern-
ing glacier ice volume changes, sea-level rise, and freshwater availability. These predictive
shortcomings could, in turn, hamper policy decisions aimed at mitigating climate change and
managing water resources sustainably [6].

The primary objective of this research is to enhance our understanding of glacier dynamics
through the application of data driven, physics-based models. Specifically, this study utilises
newly available datasets of glacier surface velocities and glacier ice thickness, obtained via
large-scale remote sensing from satellites. By doing so, the research aims to discover new
semi-empirical laws that can better represent various physical processes in regional to global
glacier models, such as glacier ice rheology and the sliding of glaciers at their bedrock interface.

The driving research question for this study is: "How can the integration of newly available
remote sensing data enhance the calibration of physics-based models for a better understanding
of global glacier dynamics?" To answer this question, the research unfolds in calibrating glacier
evolution models using available datasets, while employing inversion techniques.

The remainder of this thesis is structured as follows: Chapter 2 offers an exhaustive review of
the theory used, Chapter 3 details the research methodology, Chapter 4 present the results and
their analysis, and Chapter 5 concludes the study with recommendations for future research.
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2 Theory

2.1 Basics of Glacier Dynamics
Glaciers are dynamic systems, their behavior is shaped by a complex interplay of physical pro-
cesses and environmental conditions. This intricate foundation is crucial for predictive model-
ing, particularly in understanding how climate change impacts global sea levels. The dynamics
of glaciers emerge from multiple interrelated factors, each contributing in its own way.

Accumulation and Ablation
Accumulation and ablation are fundamental processes that dictate the mass balance of a glacier.
These indicate the mass gained by the glacier via processes of accummulation, and the mass re-
moved from the glacier via processes of ablation. Accumulation predominantly occurs through
snowfall, while ablation includes processes like melting, evaporation, and calving (breaking of
ice chunks at the edges). The mass balance, calculated as the difference between accumulation
and ablation, serves as a vital indicator of glacier health and stability [7].

Creep
Internal deformation or creep, is akin to the flow observed in viscous fluids. This internal defor-
mation is crucial for understanding glacier movements, as it mirrors the behavior of such fluids
under varying pressures and temperatures. To accurately describe and predict this phenomenon,
scientists rely on fluid dynamics equations, notably the Navier-Stokes equations (see chapter
2.2). These equations adeptly illustrate the complex, non-linear interplay between stress and
strain rates within glaciers, providing a comprehensive framework for analyzing glacier flow
mechanisms [8].

Basal Sliding
In addition to internal deformation, basal sliding occurs due to water flow or softer sediment
at the glacier bed. Both reduce basal friction and allows faster ice flow. This phenomenon can
significantly contribute to the overall movement of glaciers and needs to be accounted for in
any comprehensive glacier model. [9].

Surface and Bed Topography
The topographical characteristics of a glacier’s surface significantly influence ice flow patterns.
It’s the surface topography (top of the glacier) or gradient that primarily drives ice flow, rather
than the basal topography (bottom of the glacier). Accurate topographical data are indispens-
able for realistic glacier modeling. [10].

Feedback Mechanisms
Glaciers are sensitive indicators of climate change, with dynamics closely linked to atmospheric
conditions. Temperature and precipitation fluctuations affect accumulation and ablation rates,
impacting the glacier’s mass balance [11]. Feedback mechanisms, such as changes in albedo,
amplify these effects. Melting decreases surface albedo, leading to increased absorption of
solar radiation and further melting [12]. Glacier dynamics are intricately tied to elevation
and glacier geometry. Elevation affects how glaciers experience climate, with those at higher
elevations exposed to different conditions than lower ones, influencing their mass balance over
time. Glacier geometry, including shape and size, dictates response to climatic changes, crucial
for accurate future projections [13].
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2.2 Governing Equations for Ice Flow

2.2.1 Navier-Stokes Equations

In glacier dynamics, understanding the flow behavior of ice is crucial. Glacier ice behaves as
a viscous, incompressible fluid over longer timescales and larger spatial scales. The Navier
Stokes equations, which are a set of governing equations, describe the flow of such substances.
They are derived from the fundamental principles of conservation of momentum and mass for
a continuum medium [14] [15]. The momentum balance equation, representing the balance
between the driving forces and resistive stresses, is:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + ρg (1)

Meanwhile, the continuity equation is:

∂ρ

∂t
+∇ · (ρu) = 0 (2)

In these equations:

• τ [Pa] is the deviatoric stress tensor , which quantifies the differential stresses within the
ice.

• u [m/s] is the velocity vector, representing how fast and in which direction the ice is
flowing.

• ρ [kg/m3] is the ice density, a measure of how much mass of ice is present in a given
volume.

• g [m/s2] is the acceleration due to gravity, which acts as a primary driving force for
glacier flow, especially in steep terrains.

• p [Pa] is the pressure in the ice, influencing the direction and rate of its flow. It prompts
movement from areas of high to low pressure.

Two key assumptions for ice flow are:

• Incompressibility: Glacier ice is nearly incompressible, implying a consistent density in
time and space. Ice’s near incompressibility arises from its hexagonal crystalline lattice,
formed by water molecules interconnected by strong hydrogen bonds. This structure
resists substantial volume changes under pressure [16]. Notice that at the top of a glacier
this is not necessarily true due to for example snowfall.

• Slow ice flow: The glacier’s slow movement allows the neglect of inertial terms [17].
This is evident from the dimensionless Reynolds number, which characterizes the flow
regime in fluids by indicating the ratio between inertial and viscous forces [18].

Re =
ρUL

µ
(3)
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With:

• ρ: The density of the ice.

• U : The characteristic velocity, representing the typical speed at which the glacier ice
flows.

• L: The characteristic length scale, often representing the thickness or another relevant
dimension of the glacier.

• µ: The dynamic viscosity, indicating the resistance of the glacier ice to deformation and
flow.

With L ≈ 100 m, U ≈ 10−6 m/s, ρ ≈ 103 kg/m3, and µ ≈ 1012 Pa · s, Re is roughly 10−13

[17] [19]. Re « 1, which means that inertial forces are very small compared to the gravitational
and viscous forces, leading to a flow governed by gravity, pressure gradients, and viscosity.

Using the two above assumptions, equations 1 and 2 reduce to:

0 = −∇p+∇ · τ + ρg (4)

∇ · u = 0 (5)

2.2.2 Boundary Conditions

In glacier physics, boundary conditions are important to accurately solving the Navier-Stokes
equations. It’s crucial to distinguish between two main types of boundaries: prescribed and
free. The glacier bed is typically a prescribed boundary, while the upper surface is a free
boundary, due to negligible friction between ice and air. For floating ice shelves, both the lower
and upper surfaces, including the calving front, are free boundaries [20].

At prescribed boundaries, conditions on the velocity components are imposed. In contrast, free
boundaries require the imposition of both kinematic and dynamic conditions. These conditions
are essential to determine the location or movement of the boundaries.

The No-Slip Condition and the Sliding Law:

For viscous fluids at a rigid boundary, the usual condition is the no-slip condition. This implies
that the fluid moves congruently with the boundary’s prescribed velocity. Mathematically, this
is represented as:

u · n = un (6)

u− (u · n)n = ub (7)

where n is the upward-pointing unit normal to the bed, un is the normal velocity at the bound-
ary, and ub is the tangential velocity vector [21].
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When the bed reaches the melting point, a thin water layer can result in slip. This can generally
be described by a sliding law, which links the tangential velocity (velocity due to sliding) of
the ice to the local shear stress:

ub =
F (τb)τb

τb
(8)

Here, ub denotes the vector of the tangential velocity and τb is the vector of the basal shear
stress, while τb represents its magnitude [20]. Note that the function F (τb) in the sliding law
equation is not explicitly defined, accommodating different models like Weertman’s law which
relates sliding velocity to the basal shear stress raised to a power (F (τb) = Cτmb ) [22].

Furthermore, if melting occurs at the bed, the no-penetration condition should account for
potential mass loss at the bed:

u · n = −mb (9)

where mb is the basal melt rate.

Dynamic Boundary Conditions:

At a free surface, the stress on the boundary, τ · n, matches the stress from the surrounding
material. Typically, this is either air or ocean (water) [20]. This is given by:

τ · n = −pbn (10)

On a glacier’s upper surface, pb equals the atmospheric pressure pa. In the ocean, it’s defined
by the equation:

pb = pa − ρwgz (11)

where z is the vertical coordinate relative to sea level and ρw is the ocean water density.

Kinematic Boundary Conditions:

For free boundaries comprising the same fluid parcels consistently, the kinematic condition
demand that the fluid on the boundary moves synchronously with the boundary’s velocity. This
is in fact the same as the no-slip condition described in equations 6 and 7 [21].

In the glaciological context, the free boundary is often denoted as:

z = s(x, y, t) (12)

where s is the upper surface of the glacier. The following condition is obtained, when differen-
tiating both sides of the above equation with respect to time:

uz =
∂s

∂t
+ ux

∂s

∂x
+ uy

∂s

∂y
(13)
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When mass is either added to or removed from a boundary over time, the kinematic condition
becomes:

un = u · n+ an (14)

Here, an represents the normal rate of mass addition or subtraction. In situations where the
fluid is stationary, the boundary moves at this rate. Conversely, when fluid transport away from
the boundary matches the rate an, the boundary remains stationary.

Transforming the above relation, the following is obtained:

∂s

∂t
+ ux

∂s

∂x
+ uy

∂s

∂y
= uz + a (15)

In this context, a is the vertical accumulation rate, which is a function of an and the inclination
of the boundary. Specifically:

a =
an√

1 +
(
∂s
∂x

)2
+
(

∂s
∂y

)2
(16)

Given the typical near-vertical orientation of glacier boundaries, the difference between a and
an is usually minor [21].

2.2.3 Temperature and Energy Conservation

Conservation of energy in ice flow is constructed analogously to momentum conservation. Con-
sidering a specified volume V of a glacier, both its internal energy e and kinetic energy are
accounted for. The kinetic energy component is very small compared to the internal energy due
to the slow movement characteristic of glaciers and ice sheets and can be omitted [15] [20],
however it is retained for consistency.

Energy variations within the volume V result from mass advection and its associated energy
in and out of V , heat conduction as dictated by Fourier’s law with conductivity k, and work
exerted by external forces [20].

Mathematically, energy conservation takes the form:

d

dt

∫
V

ρ

(
e+

1

2
|u|2

)
dV = −

∫
∂V

ρ

(
e+

1

2
|u|2

)
u · ndS

+

∫
∂V

k∇T · ndS

+

∫
V

ρu · gdV

+

∫
∂V

u · (τ · n)dS.

(17)
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In the above equation, the term on the left side denotes the rate of change of total energy
within V , encompassing the sum of internal and kinetic energies. On the right side the first
term represents energy outflow from V due to advection. The second term quantifies the total
heat conducted across the boundary of V due to Fourier’s law. The third term aggregates the
gravitational work over the entire volume V , and the last term signifies the work by the stress
tensor on fluid elements crossing the boundary ∂V .

By using Reynolds transport theorem [23], Divergence theorem [24], the momentum equation
(equation 1), the continuity equation (equation 2) and the thermodynamic relation De

Dt
= cp

DT
Dt

(where cp represents the specific heat capacity and D
Dt

being the material derivative) [25], the
following equation can be derived:

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) + τij ϵ̇ij. (18)

The full derivation of the above equation can be found in Appendix A.

Boundary Conditions

For the energy equation, boundary conditions vary based on the situation. In instances where
the upper and basal glacier surfaces remain below the melting point throughout the year, the
upper surface temperature aligns with the mean annual air temperature Ta, and the temperature
gradient at the base is offset by the geothermal heat flux G. When the glacier’s surface, base, or
internal temperature meets the melting point Tm, the condition becomes T = Tm. If the internal
temperature of the ice reaches Tm, the energy equation accommodates latent heat effects due to
potential internal melting [20].

2.3 Glen’s Flow Law and Non-Newtonian Behavior of Ice
Glacier ice exhibits non-linear viscous behavior, distinguishing it from the linear behavior ob-
served in Newtonian fluids such as air or water. This non-linearity in ice deformation is em-
pirically described by Glen’s flow law, which was developed based on experiments where ice
samples were subjected to varying stress conditions, and the resulting strain rates were mea-
sured [26].

For a Newtonian fluid, the relationship between stress and strain rate is linear and is given by:

τij = 2µϵ̇ij (19)

Where µ is a constant viscosity. The strain rate tensor ϵ̇ is defined as:

ϵ̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(20)

However, in the case of glacier ice, the strain rate ϵ̇ is not directly proportional to the applied
deviatoric stress τ . Instead, it relates through Glen’s power-law:
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ϵ̇ij = Aτn−1τij, τ =

√
1

2
τijτij (21)

Where τ is the second invariant of the stress tensor, indicating the effective stress; A is a flow
parameter influenced by factors such as temperature, grain size, and impurities; and n is the
stress exponent. Empirical observations have typically found n ≈ 3, although this can vary
under specific conditions [27].

Given the non-linear behavior of ice, the concept of an effective viscosity µeff is introduced.
This effective viscosity, unlike the constant viscosity of Newtonian fluids, is dependent on the
applied stress or strain rate. Derived from equations 19 and 21, the effective viscosity is given
by:

µeff =
1

2Aτn−1
(22)

Thus, Glen’s flow law for ice can be seen as a modification of the Newtonian relationship, using
an effective viscosity that varies with the effective strain rate:

τij = A− 1
n ϵ̇

1−n
n ϵ̇ij, ϵ̇ =

√
1

2
ϵ̇ij ϵ̇ij (23)

,

The flow-law rate constant A(T ) has a temperature dependency, thus coupling the solution to
the Stokes equations (equations 1 and 2) for ice velocity with the energy equation (equation
18). However, for simplification, the temperature dependence of A is often neglected [28].

2.4 Shallow Ice Approximation
The Shallow Ice Approximation (SIA) is a fundamental approach for simulating ice flow, es-
pecially when considering that the aspect ratio of the flow is large. This means that variations
in the horizontal coordinate are much smaller than those in the vertical, making SIA a suitable
model especially for grounded ice that does not slide too rapidly. However, it is worth noting
that ice shelves and rapidly moving ice streams are not properly described by this model [29]
[30].

At the heart of the SIA lies its capacity to simplify the full Stokes equations governing glacier
flows. This is achieved by focusing on the most influential terms and neglecting others of lesser
impact. Specifically, the SIA concentrates on the vertical shear stress components τxz and τyz
while ignoring other components of the deviatoric stress tensor [29] [31].

Under these conditions, the momentum equations and surface boundary conditions can be ap-
proximated as:
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−∂p

∂x
+

∂τxz
∂z

= 0,

−∂p

∂y
+

∂τyz
∂z

= 0,

−∂p

∂z
− ρg = 0,

p = τxz = τyz = 0 at z = s(x, y, t).

(24)

Leading to:

p = ρg(s− z),(
τxz
τyz

)
= −ρg(s− z)∇s.

(25)

where ∇ is the two-dimensional gradient.

Using the found relations for τxz and τyz and Glen’s flow law as described in equation 21, the
deformation can be described as:

[
∂ux

∂z
∂uy

∂z

]
= −2A(ρg)n(s− z)n|∇s|n−1∇s (26)

Integrating the above relationship from the bed b to a point z below the surface gives:

ud = −2A(ρg)n

n+ 1

[
hn+1 − (s− z)n+1

]
|∇s|n−1∇s (27)

where ud describes the contribution to the velocity due to deformation and h = s− b is the ice
thickness.

Since the basal shear stress is in the same direction as ∇s, the sliding law (equation 8), can be
expressed as:

ub = F (τb)|∇s|−1∇s (28)

where τb = |ρgh∇s| is the basal shear stress.

The total horizontal velocity (in the x and y directions) is then the sum of the velocities due to
sliding and deformation:

u = ub + ud (29)

Combining equation 27 and 28 results in:

9



u = −F (τb)|∇s|−1∇s− 2A(ρg)n

n+ 1

[
hn+1 − (s− z)n+1

]
|∇s|n−1∇s (30)

The depth-integrated ice flux, q, is then given by:

q =

∫ s

b

udz = −F (τb)h|∇s|−1∇s− 2A(ρg)n

n+ 2
hn+2|∇s|n−1∇s (31)

This represents the combination of ice flux due to sliding and the shearing velocity profile in
the ice [29].

The rate of change of the ice mass ∂M
∂t

is influenced by the net flow of ice into or out of the
element, represented by the divergence of the ice flux ∇ · q, and the local accumulation or
ablation rate ȧ.

Using the above considerations and M = ρAh, the mass conservation for the glacier is ex-
pressed as:

∂h

∂t
= ȧ+∇ ·

(
F (τb)h|∇s|−1∇s+

2A(ρg)n

n+ 2
hn+2|∇s|n−1∇s

)
(32)

This equation captures the balance of processes affecting ice thickness in a glacier.
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3 Methods

3.1 ODINN.jl
Within the ambition of enhancing glacier modeling techniques, this research contributes to the
ODINN.jl project, a framework that integrates the Open Global Glacier Model (OGGM) with
Universal Differential Equations [32] [33]. This collaboration aims to refine the understanding
of glacier processes through a combination of mechanistic modeling and machine learning.
Through this contribution, the research not only aims to advance the understanding of glacier
dynamics but also contributes to a potential of combining traditional modeling techniques with
the latest advancements in machine learning.

The project utilizes OGGM [34] to gather topographical and climatic data, establishing the ini-
tial conditions for glacier simulations. By invoking Python libraries within Julia, ODINN.jl
benefits from integration of the comprehensive data collection capabilities of OGGM and the
advanced computational efficiency of Julia. This approach enables high-performance simu-
lations that are crucial for modeling the intricate interactions between glaciers and climate
change.

3.2 Scientific Computing using Julia
For this research Julia was selected as programming language. Julia stands out due to its unique
combination of features tailored for scientific computing. It combines the speed of languages
like C and Fortran with a user-friendly coding environment [35]. A key advantage of Julia is its
automatic differentiation (AD) feature, which is essential for modern scientific modeling. AD
is applied within this research (see chapter 3.7.2) ,because it facilitates the accurate and efficient
computation of gradients, crucial for model optimization and solving inverse problems [36].

The Julia ecosystem is enriched with a vast array of packages covering various scientific do-
mains, such as DifferentialEquations.jl, Optimization.jl, and Makie.jl
(data visualization)[37] [38] [39].

Interoperability is another significant aspect of Julia, enabling easy integration with other pro-
gramming languages and thereby expanding its application scope. For example it is possible
to access Python language and packages within the Julia environment (e.g. OGGM). The Julia
community plays a pivotal role in the language’s success, providing extensive documentation
and support.
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3.3 Inversion Method
Inversion techniques play an important role in determining unknown parameters of a model
by minimizing the difference between model predictions and observed data. In the context of
glaciers, observed surface velocities and ice thickness often serve as data to inform glacier ice
flow model parameters.

Inversion’s main benefit is its ability to incorporate actual field observations of glacier behavior
directly into model refinement, avoiding reliance on laboratory measurements or assumptions.
It begins with data collection, followed by constructing a predictive model, quantifying discrep-
ancies through an objective function, optimizing parameters to minimize these discrepancies,
and validating the improved model against independent datasets. See the following list for an
overview of the elements in an inversion process:

1. Data Collection: Gather observational data, such as surface velocities or ice thickness of
the glacier, through methods like satellite remote sensing or ground-based measurements.

2. Forward Model: Construct a forward model predicting glacier behavior based on initial
conditions and parameters.

3. Objective Function: Formulate an objective function that quantifies discrepancies be-
tween the forward model’s predictions and observational data. A prevalent choice is the
mean squared error between observed and predicted quantities.

4. Optimization: Apply optimization algorithms to minimize the objective function by
adjusting model parameters. This iterative cycle persists until the parameters converge to
values that are consistent with both model predictions and observational data. Gradients
are critical for optimization because they guide the algorithms toward the minimum of
the objective function by indicating the direction in which parameters should be adjusted
to reduce discrepancies between model predictions and observational data.

5. Validation: Apply derived parameters to predict glacier behaviors in various scenarios
or regions and compare these predictions to independent datasets.

3.4 Observational Data Sources
For a comprehensive understanding of glacier dynamics, this study employs datasets from the
following sources:

Millan et al. (2022): Global glacier ice surface velocities of glaciers from this study
are determined by processing data from optical sensors (e.g., Sentinel-2, Landsat 7/8,
Pléiades) using an automated workflow that includes feature tracking and calibration
techniques to produce precise, time-averaged velocity maps [40]. Available through the
OGGM Python Library.

GlaThiDa Consortium (2020): GlaThiDa (Glacier Thickness Database) is a compre-
hensive repository of glacier thickness measurements gathered from various global lo-
cations. Compiled by different research groups using diverse techniques, this database
serves as a valuable resource for glacier research [41].
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Various sources (2000-2018): Digital Elevation Maps (DEMs) provide foundational
data for modeling glacier and ice dynamics. Available from a variety of sources (e.g.
SRTM [42] & DEM3 [43]) through OGGM, these maps offer insights into terrain eleva-
tions essential for accurate simulations of glacier behavior and changes over time.

Farinotti et al. (2019): Offers inverted ice thicknesses of about 215,000 global glaciers,
excluding Greenland and Antarctic sheets, by integrating up to five models using DEMs
and ice flow dynamics. [44]. The resulting data are accessible through the OGGM Python
Library.

The OGGM framework additionally offers access to a diverse array of glacier-related informa-
tion, including, among others, distance to borders, longitude and latitude coordinates, slope,
and actual pixel width.

3.5 Forward Model
The forward model employed in this research is based on modifying the SIA equation for the
ice thickness (see equation 32) [32]. The modeling of basal sliding, F (τb), in this research is
done using zeroth order Weertman’s law [22], F (τb) = C, which leads to:

∂h

∂t
= ȧ+∇ ·

(
Ch|∇s|−1∇s+

2A

n+ 2
(ρg)nhn+2∥∇s∥n−1∇s

)
(33)

In the equation above:

• ȧ is the surface mass balance

• C denotes the basal sliding coefficient.

• ∇s represents the surface gradient.

• A is the flow rate factor, which accounts for ice rheology and temperature dependencies.

• ρ stands for ice density.

• g is the gravitational acceleration.

• n is the Glen’s flow law exponent.

• h represents the ice thickness.

The surface ice velocity can be determined via the ice thickness h using equation 30 (s− z = 0
at surface), which leads to:

u = −C|∇s|−1∇s− 2A(ρg)n

n+ 1
hn+1|∇s|n−1∇s (34)

The equation for calculating ice thickness based on ice surface velocity, is then as follows:

h =

(
|u|+ C

Γ∗|∇s|n

) 1
n+1

,Γ∗ =
2A(ρg)n

n+ 1
(35)
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3.6 Cost Function in Glacier Modeling
The cost function, remains foundational in inversion methodologies. It quantifies discrepancies
between model predictions and observational data. The Mean Squared Error (MSE) serves as
a method to structure this cost function:

MSE =
1

N

N∑
i=1

(xobsi − xpredi)
2 (36)

In this equation, xobs denotes observed quantity of interest and xpred signifies predicted quantity
of interest from the model. The quantity of interest could be either ice thickness or surface
velocity in this context.

Within the context of glacier modeling, the squared term of the MSE ensures that large devia-
tions between observed and predicted velocities contribute disproportionately to the total error.
This penalization of larger errors is consistent with the desire to have a model that doesn’t just
get the "average" behavior right, but also accurately predicts the more extreme or outlier behav-
iors of glaciers. Additionally, its differentiability makes it particularly suitable for optimization
methods [45].

However, MSE is not without its challenges. It may disproportionately respond to outliers,
such as abnormal ice thickness measurements or velocity spikes, which can mislead the eval-
uation of model performance in capturing glacier dynamics. Despite these drawback, MSE’s
straightforwardness, ease of interpretation, and compatibility with optimization algorithms still
make it a popular metric for regression tasks in glaciological studies [46].

3.7 Optimization Technique

3.7.1 BFGS optimization

BFGS is an optimization algorithm useful for minimizing cost functions. It is a quasi-Newton
method that approximates the Hessian matrix to find a function’s minimum, improving upon
gradient descent by utilizing second-order derivative information. This results in faster con-
vergence, making it efficient for complex problems where first-order methods are less effective
[47].

The update formula is:
xn+1 = xn − γH−1

n ∇F (xn), (37)

where xn is the parameter vector at iteration n, γ the step size, H−1
n the inverse Hessian ap-

proximation, and ∇F (xn) the gradient of F at xn.

For glacier inversion, BFGS is particularly useful because it can efficiently navigate complex
cost landscapes, typical in modeling glacier dynamics. The algorithm’s ability to quickly con-
verge with fewer iterations than gradient descent methods reduces computational time and re-
sources, essential for handling the large datasets often encountered in glacier studies [48].
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3.7.2 Derivative Calculation

Optimizing model parameters is crucial for glacier inversion methodologies, requiring accu-
rate gradient computation to direct parameter adjustments and minimize model error. Auto-
matic Differentiation (AD), efficiently computes these gradients by exploiting the computa-
tional graph of functions and the chain rule. Forward Mode AD is optimal for cases with fewer
parameters, applying the chain rule across elementary functions. For situations with many pa-
rameters, like distributed optimizations or neural networks, Reverse Mode Differentiation is
preferred due to its efficiency in differentiating with respect to a large number of parameters
[49] [50]. Both modes are available in ODINN.jl, however in this research only Forward
Mode AD is used.

Dual Numbers

Dual numbers offers an extension to conventional numerical variables by incorporating deriva-
tive information with respect to a certain parameter. A dual number consists of a value coor-
dinate x1 and a derivative coordinate x2, where x2 represents the derivative of x1 with respect
to the parameter θ. This can be formally expressed as xϵ = x1 + ϵx2, where ϵ is a element
satisfying ϵ2 = 0 but ϵ ̸= 0.

The arithmetic of dual numbers, including addition and multiplication, is extended from real
numbers by leveraging the property ϵ2 = 0. For instance, given two dual numbers xϵ = x1+ϵx2

and yϵ = y1 + ϵy2, their sum and product are given by:

xϵ + yϵ = (x1 + y1) + ϵ(x2 + y2) (38)

xϵ · yϵ = x1y1 + ϵ(x1y2 + x2y1) (39)

Dual numbers are instrumental in implementing forward mode automatic differentiation, as
they efficiently compute first-order derivatives by simulating infinitesimal perturbations in the
Taylor series expansion of functions.

Computational Graphs

The computational graph serves as a foundational concept in automatic differentiation, pro-
viding a visual representation of the function evaluation process. This graph delineates each
computational step as a node, with edges illustrating the flow of data from inputs through inter-
mediate calculations to the final output. Such a structure not only clarifies the function evalua-
tion sequence but also lays the groundwork for integrating derivative computations seamlessly
into the process [51].

Consider a function f(x) = sin(7x), the evaluation follows a sequence of multiplying an input
x1 with 7 and then applying the sine function, culminating in the function’s value at that point.
The computational graph for this function depicts each evaluation stage, from input through
intermediate operations to the final output. An accompanying graph for the derivative can be
drawn as well, which helps to visualize how the derivatives are carried through. These graphs
can be visualized as in Figure 1.
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Figure 1: Computational and accompanying derivative graph of f(x) = sin(7x).

In Figure 1 the top portion of the graph outlines the forward pass. Simultaneously, the bottom
portion of the graph traces the backward pass for the derivative. It starts with the derivative,
which is then scaled by 7 (the derivative of v1 with respect to x1) to get v′1. The chain rule is
applied next, where the cosine of v1 (the derivative of the sine function) is multiplied by v′1 to
determine v′2. This results in the derivative of the final output F ′. demonstrating how gradients
are propagated through the graph.

Computational graphs can be extended to multiple variables. Consider v1, v2, . . . , vp as the
input variables; let vp+1, . . . , vm−1 represent the intermediate variables, and vm symbolize the
final output. This arrangement is strictly ordered such that each variable vi is the result of a
function dependent solely on preceding variables vj where j < i.

Upon establishing the computational graph, the derivative of each node, can be computed uti-
lizing the Bauer formula [52]:

∂vj
∂vi

=
∑

paths w0→w1→...→wK
with w0=vi,wK=vj

K−1∏
k=0

∂wk+1

∂wk

, (40)

The summation extends over all directed paths connecting an input to a target node within the
graph. To streamline computations, one can progressively calculate j = p+1, . . . ,m using the
recursive relationship:

∂vj
∂vi

=
∑
w→vj

∂vj
∂w

∂w

∂vi
, (41)

Here, each variable node w leading to vj represents an edge in the computational graph and
possesses an index smaller than j. This recursive process can be iterated synchronously with
the program’s execution to determine both the function’s value and its gradient. The feasibility
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of this method in forward mode arises from the fact that the term ∂w
∂vi

is already computed in
a preceding iteration, while ∂vj

∂w
is computed concurrently as the node vj is evaluated, using

only the values from its parent nodes. Differentiation thus hinges on the ability to calculate the
derivative of each edge and to coalesce these via the given recursion.

3.7.3 Spatial Stratification Optimization

Initially, a simplified approach by inverting a single parameter across the entire glacier was
attempted. However, this method failed to capture the complex spatial variability, leading to
inadequate model performance. Recognizing the limitations of the initial approach and con-
strained by the current capabilities of the modeling architecture, a fully distributed inversion
that would assign a unique parameter value to each grid pixel using Forward Mode AD, could
not be implemented.

Ideally, one would want to perform an inversion with a value for each glacier grid cell. How-
ever, optimizing such a large number of parameters would require using reverse differentiation.
Since this type of differentiation is still being implemented in the ODINN.jl architecture, we
had to be creative and find a workaround compatible with forward differentiation, which is
limited to a reduced number of parameters. The proposed solution was to cluster pixels into
zones based on shared characteristics, such as altitude and proximity to the glacier’s edge. This
method allowed us to approximate the spatial variability of the glacier more effectively than
a uniform parameter approach could. The glacier were divided into zones by altitude, further
subdividing each altitude zone based on distance from the glacier border. This solution strikes
a balance between the capabilities of Forward Mode AD and the spatial distribution needed for
the inversion. However ultimately the inversion should be done in a fully distributed manner
using Reverse Mode AD.

To demonstrate how the proposed solution works, consider dividing the glacier into regions
based on altitude (n = 2) and distance to the border (m = 2). Let H(x, y) denote the altitude
of a pixel at coordinates (x, y) and Dborder(x, y) denote the distance of the pixel from the
glacier’s border. The glacier can then be segmented into the following regions:

• Region 1: Pixels where H(x, y) < 0.5Hmax, further subdivided into:

– Region 1.1: Pixels with Dborder(x, y) < 0.5Dborder,max.

– Region 1.2: Pixels with Dborder(x, y) ≥ 0.5Dborder,max.

• Region 2: Pixels where H(x, y) ≥ 0.5Hmax, similarly subdivided into:

– Region 2.1: Pixels with Dborder(x, y) < 0.5Dborder,max.

– Region 2.2: Pixels with Dborder(x, y) ≥ 0.5Dborder,max.

This scheme assigns each pixel (x, y) to a specific region based on its altitude and distance to
the border, effectively capturing the spatial variability of the glacier. Notice when optimizing k
different parameters (e.g. A, n,C), the total amount of parameters that need to be optimized is
k × n ×m. To reduce the amount of parameters for this stratification method, it was decided
to only optimize the basal sliding C. Note that C can only be inverted on those pixels that
have observed ice thickness data available. This results in a sparse distribution of C across the
glacier area.
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3.8 Complete Glacier Reconstruction

3.8.1 Nearest Neighbour Interpolation

To construct an ice thickness that covers the whole glacier region, the full basal sliding profile
C needs to be determined first. Therefore to obtain C for each pixel, nearest neighbour interpo-
lation is utilized. This carries several hypothesis, and it will introduce additional uncertainties
to interpolated grid cells. Nonetheless, it was the simplest and most robust solution that could
be found within the time frame of this thesis.

Nearest neighbor interpolation in a 2D image involves filling in a missing pixel value by di-
rectly copying the value of the nearest pixel. This process begins by identifying the pixel
location where the value is missing. Then, the algorithm searches the surrounding pixels to
find the closest one with a known value. The value from this nearest pixel is used to fill in the
missing value in the image. This method is straightforward and does not involve any complex
calculations, making it a quick and simple way to handle missing data in images. The inter-
polation can introduce step-like artifacts where the data changes abruptly from one pixel to its
neighbor.

3.8.2 Gaussian Smoothing

Glaciers are inherently smooth and continuous entities. The basal sliding rates across a glacier’s
base are not likely to change abruptly in very short distances under natural conditions. There-
fore to counter the artifacts introduced by interpolation, a Gaussian kernel is applied, which
smoothens the solution. Gaussian kernel filtering averages data points by weighting neighbor-
ing points according to their distance, using a Gaussian function [53]. Mathematically this
is:

G(x, y) =
1

2πσ2
e
−
(

x2+y2

2σ2

)
(42)

In this research a 5x5 kernel, with σxy = 1.0, was used. Benchmarking the kernel specifics was
not done, due to time constraints. The smoothing process applies a uniform filter across the
data, potentially oversimplifying the complex, heterogeneous nature of the glacier bed. This
oversimplification can lead to inaccurate representations of basal sliding mechanisms.
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4 Results & Discussion
Throughout this section a specific glacier, cataloged as RGI60-11.01791 in the Central Europe
region, is used to illustrate the nature of the data involved and the subsequent modeling out-
comes. However this process was done for many glaciers, which will be discussed later on
when showcasing aggregated results.

4.1 Available Observational Data
The used observed data encompasses the surface topography (S), ice thickness (H), and surface
velocity (V ), as is shown in the following figure for the example glacier:

Figure 2: Observational data for the example glacier RGI60-11.01791. The top-left panel
displays the surface topography, which depicts the glacier morphology. The top-right panel
illustrates ice thickness data derived from the GlaThiDa database showing the glacier’s spatial
thickness distribution. The bottom-left panel presents remote sensing ice surface velocity mea-
surements. The bottom-right panel shows the distance to the border of the glacier, essentially
outlining the glacier shape. The glacier’s geographical context is provided by the latitudinal
and longitudinal coordinates.
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The robustness and completeness of the available data are critical for guiding the inversion pro-
cess towards an accurate estimation of parameters. In the original methodology, it was intended
to dynamically propagate ice thickness over time using a forward model. This approach aimed
to calculate glacier velocity from time-evolving ice thickness predictions, enabling a direct
comparison with observed surface velocities. However, the limited availability and temporal
resolution of ice thickness data from the GlaThiDa database necessitated a strategic pivot.

Due to these constraints, a steady-state assumption was adopted for the analysis, where it was
assumed that the ice thickness remained nearly constant (dh

dt
≈ 0) between the measurements

of observed surface velocity and ice thickness. This assumption can be justified due to the slow
and relatively stable nature of glacier dynamics over short to intermediate time scales, and also
to the small contribution of surface mass balance to changing the ice thickness with respect
to the total ice thickness of the glacier [54]. This adaptation made it possible to estimate ice
thickness based on observed surface velocities, using Equation 35. This approach introduces
several adjustable parameters related to glacier rheology, such as A, n, and C, which can be
optimized. The optimized parameters can then be used to obtain an ice thickness that can be
compared with the available sparse ice thickness measurements, providing a basis for model
validation.

4.2 Single Glacier Model Performance

Single Glacier Performance

The analysis starts with looking at how single glaciers perform. For modeling, simple settings
were used to match common temperate glacier conditions: A = 7.57382 × 10−17, and n = 3
[15]. The focus was on adjusting the basal sliding value C. The subject glacier was partitioned
into 6x6 regions, delineating 36 distinct sectors based on elevation and distance to border. This
resulted in the optimization of 36 unique parameters. The outcomes of this optimization are
encapsulated in the Figures 3 & 4, illustrating the difference between observed and predicted
ice thickness, as well as the spatial distribution of the basal sliding coefficient C.
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Figure 3: Top panels show the comparison of observed (left) and predicted (right) ice thickness
across the glacier’s surface, with flow model parameters A = 7.57382 × 10−17 s−1Pa−3 and
n = 3.0. The bottom left panel illustrates the ice thickness differences between observed and
predicted values, and the bottom right panel depicts the optimized basal sliding coefficient C.
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Figure 4: Scatter plot of predicted vs. observed ice thickness, with statistical metrics indicating
the model’s accuracy and bias.

There is a broad agreement between the observed and predicted ice thicknesses as is revealed
in Figure 3. However, the difference map shows some sectors where the model diverges sig-
nificantly from observed measurements, possibly pointing to areas with more intricate basal
topography or areas where thermal regimes critically impact ice deformation rates. The uni-
form application of A and n across the glacier might oversimplify these behaviors, suggesting
that the optimization of the basal sliding coefficient C on itself is not enough. On the other hand
advancing to a fully distributed inversion of the basal sliding coefficient C, rather than optimiz-
ing clustered area’s, could better constrain many areas with specific behaviour. The scatter plot
depicted in Figure 4 demonstrates a moderate level of predictive skill within the model, evi-
denced by a coefficient of determination (R2) of 0.76. Despite this, the root mean square error
(RMSE) of 13.29 m and the positive bias of 2.56 m highlight a systematic underestimation in
the ice thickness predictions.

Glacier Reconstruction

To reconstruct the ice thickness, the basal sliding is reconstructed first using nearest neighbour
interpolation and Gaussian smoothing. From this obtained distribution, the full ice thickness
is inverted from the velocity data using the interpolated and smoothed C values, allowing for
a complete reconstruction of the glacier’s thickness profile. All three elements are shown in
Figure 5.
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Figure 5: The left top panel displays the optimized basal sliding coefficient C (left) that is inter-
polated based on observed surface velocity and slope, coupled with Gaussian kernel smoothing.
The corresponding predicted ice thickness is shown in the top right panel. The bottom panel
shows the observed ice surface velocity from which the inversion was done.

In Figure 5, the top left panel shows a basal sliding distribution that is unexpectedly even,
but with some scattered values. Basal sliding should not be uniformly distributed across the
glacier area. Instead, it should show variability that is influenced by a combination of factors
like the temperature of the area, the slope of the glacier, the bed roughness, and the amount
of meltwater from the glacier [15]. The non variability is probably caused by the fact that
the method to retrieve the basal sliding, was not fully distributed. This leaves less space for
imposing variability by interpolation methods. On the other hand basal sliding is expected to
be more smooth and not vary to much within short distances. However abrupt changes can
be seen. Therefore the used Gaussian kernel seems not sufficient here to impose the expected
smoothness.

To further investigate the reconstructed ice thickness, a comparison is made with the inverted
ice thickness from Farinotti et al. (2019) [44]. In Figure 6 the predicted ice thickness lacks
the expected variations from the accumulation to ablation glacier regions, while this clearly
can be seen in Figure 6. The reference image also shows more detail in the ice thickness
variability, especially in the mid-section where there are distinct regions of thicker ice. The
predicted thickness seems more uniform, which indicates that the natural variability of the
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glacier’s internal dynamics is not captured well. Furthermore the reference has a clear gradient
of thickness, with a smoother transition from thick to thin ice. While the predicted ice thickness
is to abrupt in places, not showing the gradual thinning that’s expected from the central flow
line to the margins. From this it is evident that nearest neighbour interpolation in combination
with Gaussian smoothing, is not sufficient to retrieve a physically correct basal sliding and ice
thickness for the whole glacier area.

Figure 6: Comparison of predicted ice thickness vs inverted ice thickness from Farinotti et al.
(2019).
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4.3 Regional Glacier Model Performance
The analysis advances by evaluating the model’s effectiveness across defined glacier regions.
Within each region, optimization processes are performed for multiple glaciers, and the result-
ing metrics are aggregated. This allows for a comprehensive assessment of model performance
at the regional level. The same specifications as in single glacier performance (see section 4.2),
was used for each individual glacier. The investigated regions are:

• Arctic Canada North

• Arctic Canada South

• Svalbard

• Central Europe

The selection of glaciers for each region was based on the availability of surface velocity mea-
surements (Millan et al. (2022) [40]) and ice thickness data (GlaThiDa Consortium (2020)
[41]). The full list of RGI60-IDs per region can be found in Appendix B.

Following the establishment of the selection criteria and regional categorization, a visual com-
parative analysis that illustrates the model’s regional behavior is presented. In the forthcoming
figures, not only the performance among the various regions are shown, but also the impact
of spatial stratification on the predictive accuracy. For each region there are two aggregated
scatter plots, corresponding to both stratified and non-stratified scenarios. In the non-stratified
approach, a single set of parameters is optimized for an entire glacier; in this context, only
the basal sliding coefficient C is adjusted. Conversely, the stratified approach involves the opti-
mization of 36 distinct C parameters, each corresponding to different sectors within the glacier.
This side-by-side presentation allows to gauge the stratification’s efficacy and its role in model
refinement.
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(a) No spatial stratification. Metrics: RMSE = 219.35, R2 = -0.08, Bias = 67.13.

(b) With spatial stratification. Metrics: RMSE = 156.41, R2 = 0.45, Bias = 50.73.

Figure 7: Comparison of aggregated scatter plots for the Arctic Canada North region, showing
the relationship between observed and predicted ice thickness both without (upper) and with
(lower) spatial stratification. The provided metrics illustrate the model’s performance under
each condition.
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(a) No spatial stratification. Metrics: RMSE = 119.76, R2 = 0.49, Bias = 25.9.

(b) With spatial stratification. Metrics: RMSE = 84.75, R2 = 0.74, Bias = 21.13.

Figure 8: Comparison of aggregated scatter plots for the Arctic Canada South region, showing
the relationship between observed and predicted ice thickness both without (upper) and with
(lower) spatial stratification. The provided metrics illustrate the model’s performance under
each condition.
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(a) No spatial stratification. Metrics: RMSE = 159.57, R2 = -0.31, Bias = 73.35.

(b) With spatial stratification. Metrics: RMSE = 111.58, R2 = 0.36, Bias = 36.74.

Figure 9: Comparison of aggregated scatter plots for the Svalbard, showing the relationship
between observed and predicted ice thickness both without (upper) and with (lower) spatial
stratification. The provided metrics illustrate the model’s performance under each condition.
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(a) No spatial stratification. RMSE = 26.48, R2 = 0.66, Bias = 2.72.

(b) With spatial stratification. Metrics: RMSE = 15.49, R2 = 0.88, Bias = 2.08.

Figure 10: Comparison of aggregated scatter plots for the Central Europe region, showing
the relationship between observed and predicted ice thickness both without (upper) and with
(lower) spatial stratification. The provided metrics illustrate the model’s performance under
each condition.
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(a) Aggregated data without spatial stratification. Metrics: RMSE = 168.3, R2 =
0.16, Bias = 58.35.

(b) Aggregated data with spatial stratification. Metrics: RMSE = 118.93, R2 = 0.58,
Bias = 35.52.

Figure 11: Comparison of aggregated scatter plots for all regions combined, showing the rela-
tionship between observed and predicted ice thickness both without (upper) and with (lower)
spatial stratification. The provided metrics illustrate the model’s performance under each con-
dition.
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The scatter plots for the Arctic Canada North region (Figure 7) reveal a improvement in model
performance with the introduction of spatial stratification. The negative R-squared value, ini-
tially indicating a lack of fit, is substantially improved to 0.45. Additionally, the reduction in
RMSE from 219.35 to 156.41 and Bias from 67.13 to 50.73 indicates enhanced accuracy.

In the Arctic Canada South region (Figure 8), spatial stratification leads to a decrease in RMSE
from 119.76 to 84.75 and an increase in R-squared from 0.49 to 0.74, confirming the method’s
effectiveness. A slight reduction in Bias further supports this observation.

For Svalbard (Figure 9), spatial stratification is transformative, turning a negative R-squared
value into a positive one, up to 0.36. The RMSE is significantly lowered, and Bias shows an
improvement, underlining the impact of considering spatial diversity in modeling efforts.

The Central Europe region (Figure 10) displays the most profound improvement with spatial
stratification. The RMSE is substantially reduced, while the R-squared value reaches an im-
pressive 0.88, indicating a very strong fit. The minimal decrease in Bias suggests that the
predictions were reasonably accurate even before stratification.

The assumption of a temperate glacier regime (A = 7.57382× 10−17), while mostly valid for
the Central Europe, may not extend to the other regions. Because many glaciers are not nec-
essarily temperate. This represents an additional uncertainty factor and could possibly explain
why the performance in Central Europe is better, compared to the other regions.

The aggregation of scatter plot data from all regions (Figure 11) presents a holistic perspec-
tive on the model’s performance, emphasizing the impact of spatial stratification on a larger
scale. The combined data without spatial stratification shows a higher RMSE of 168.3 and a
low R-squared value of 0.16, which indicates a relatively poor fit across the board. Upon apply-
ing spatial stratification, there is a noticeable improvement in the model’s performance, with
RMSE decreasing to 118.93 and R-squared increasing to 0.58, indicating a moderately strong
correlation between observed and predicted values.

These insights underscore the crucial role of spatial stratification in regional glacier modeling,
not only enhancing prediction accuracy, but also highlighting the importance of incorporating
the spatial distribution of glacier rheology. Capturing the variability in rheological properties is
essential for an accurate representation of observed glacier ice thickness and velocities. While
spatial stratification appears to improve the model’s fit, this method is not without its caveats.
The slight reductions in Bias suggest that while the stratification fine-tunes the model to cur-
rent observations, it may not account for the underlying processes driving glacier dynamics.
Moreover, the R-squared values after stratification, although improved, do not reach a level of
confidence that justifies the method.
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4.4 Computational Efficiency and Julia’s Role
The glacier inversion modeling conducted in this study leveraged the Julia programming lan-
guage for its noted computational efficiency and extensive suite of scientific computing pack-
ages. Julia’s prowess in handling complex numerical computations is essential for glacier dy-
namics modeling. For the inversion of all regions combined, a dataset involving 64 glaciers,
the optimization procedure without spatial stratification took only 18 seconds for 64 parame-
ters. When spatial stratification was introduced, the number of parameters increased to 2304
(64×36) , which is a 36-fold increase. Despite this significant increase in the complexity of the
problem, the completion time for the optimization only rose to 101 seconds. This corresponds
to a time increase by a factor of approximately 5.6, markedly lower than the parameter increase.

The efficiency of Julia’s automatic differentiation, along with its multiprocessing capabilities, is
reflected in the disproportionate fractional increase between computational time and the num-
ber of parameters. This demonstrates Julia’s ability to manage large-scale optimizations with
higher efficiency. Moreover, the interoperability of Julia with other languages ensures that it
can be seamlessly integrated into existing workflows, further enhancing the productivity of
glaciological research.

4.5 Methodological Reflections and Future Directions
The results shows the role of comprehensive data in securing the integrity of glacier models.
Relying on steady-state assumptions and remote sensing glacier ice surface velocities was a cru-
cial methodological decision. However, this decision also highlighted the inherent limitations
of the available data. Such as the sparse measurements of ice thickness and lack of temporal
diversity within both ice surface velocity and ice thickness. Spatial stratification has improved
model performance and highlights the importance of incorporating the spatial distribution of
glacier rheology, however it also brings to the forefront the need to balance computational cost
with accuracy gains.

While the model has potential, the attempts at full glacier thickness reconstruction have not
been entirely successful, because the predicted thickness did not show the typical variability
that was expected. Therefore this area needs further investigation, for example by explor-
ing geostatistical interpolation methods like Kriging Interpolation [55] and Inverse Distance
Weighting (IDW) [56]. Kriging is a method that predicts unknown values by considering the
spatial correlation of measurements, whereas IDW estimates values based on the weighted
average of nearby data points, with closer points having more influence. Both methods are
accessible within Julia using GeoStats.jl [57].

Future research must prioritize the exploration of more datasets and extend the database of ice
velocities and ice thickness data. Advancing the models to account for the transient behaviors
of glaciers will be crucial for capturing their true dynamics. Incorporating high-resolution
temporal data, such as the surface velocity measurements by Nanni et al. (2023) [58], could
be essential to enhance model accuracy, capture transient behaviour and enhance the reliability
of its predictions. Future research should also aim for transitioning from Forward Mode AD to
Reverse Mode AD to enhance computational efficiency, especially when integrating with a fully
distributed inversion and temporal data. This combination is promising to create a model that
fully comprehends the glacier rheology, while being as computationally efficient as possible.
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5 Conclusion
The aim of this research was to deepenen our understanding of glacier dynamics through
physics-based modeling, leveraging datasets of glacier surface velocities and ice thickness from
satellite remote sensing. The study’s core was to create a methodology to refine empirical laws
for the two dimensional Shallow Ice Approximation, focusing on aspects like ice rheology and
basal sliding, crucial for predicting glacier movements.

The integration of remote sensing data into glacier models has proven instrumental, allowing
for more accurate calibration of these models. Despite challenges, such as the limitations posed
by steady-state assumptions due to data scarcity, the study highlighted the critical role of high-
quality, temporally resolved data in modeling glacier dynamics accurately.

Notably, the introduction of spatial stratification into the modeling process has marked a sig-
nificant advancement, enhancing model performance with a notable reduction in Root Mean
Square Error (RMSE) by up to 30% in certain regions and improving the coefficient of deter-
mination (R²) values by as much as 0.2 to 0.4, depending on the region studied. Specifically,
the need for models to capture the complex variability of glaciers more accurately was evident,
pointing to the potential for fully distributed inversions.

This research underlines the importance of developing a model that deeply understands glacier
rheology, using fully distributed inversions and temporal data. Where evolving from Forward
to Reverse Mode Automatic Differentiation (AD) is crucial for computational efficiency. When
inverting glacier characteristics (e.g. basal sliding) on sparse data, it is recommended to explore
geostatistical interpolation methods to obtain these characteristics for the entire glacier area.
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Appendix A: Derivation of the Advection-Diffusion Equation
Given the energy conservation equation:

d

dt

∫
V

ρ

(
e+

1

2
|u|2

)
dV = −

∫
∂V

ρ

(
e+

1

2
|u|2

)
u · ndS

+

∫
∂V

k∇T · ndS

+

∫
V

ρu · gdV

+

∫
∂V

u · (τ · n)dS.

Start by omitting the kinetic energy terms |u|2 as they are very small compared to the internal
energy term e [15] [20].

Using the Reynolds transport theorem:

d

dt

∫
V

ρedV =

∫
V

ρ
De

Dt
dV +

∫
V

e
Dρ

Dt
dV

Transforming the surface integrals to volume integrals using the divergence theorem:

∫
∂V

ρeu · ndS =

∫
V

∇ · (ρeu)dV

∫
∂V

k∇T · ndS =

∫
V

∇ · (k∇T )dV

∫
∂V

u · (τ · n)dS =

∫
V

∇ · (u · τ )dV

Equating all the volume integrals:

∫
V

ρ
De

Dt
dV +

∫
V

e
Dρ

Dt
dV =

∫
V

∇·(ρe)udV +

∫
V

∇·(k∇T )dV +

∫
V

ρu·gdV +

∫
V

∇·(u·τ )dV

Given the thermodynamic relation:

De

Dt
= cp

DT

Dt
=⇒

∫
V

ρ
De

Dt
dV =

∫
V

ρcp
DT

Dt
dV
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Using the continuity equation:

∂ρ

∂t
= −∇ · (ρu)

the material derivative of the density can be expressed as:

Dρ

Dt
=

∂ρ

∂t
+ u · ∇ρ

Substituting in the given continuity equation gives:

Dρ

Dt
= u · ∇ρ−∇ · (ρu)

Now, substituting these relations into the energy conservation equation:∫
V

ρcp
DT

Dt
dV +

∫
V

e (u · ∇ρ−∇ · (ρu)) dV

=

∫
V

∇ · (ρeu)dV +

∫
V

∇ · (k∇T )dV +

∫
V

ρu · gdV

+

∫
V

∇ · (u · τ )dV

By equating the integrands, the differential form of the energy conservation equation is:

ρcp
DT

Dt
+ e (u · ∇ρ−∇ · (ρu)) = ∇ · (ρeu) +∇ · (k∇T ) + ρu · g +∇ · (u · τ )

In the case of incompressible flow, ∇ρ, ∂ρ
∂t

= 0 =⇒ ∇·u = 0 and ∇e = 0 (negligible spatial
variation of internal energy), which leads to:

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) + ρu · g + τij ϵ̇ij

Note that u · g = uzg. This term is very small as the vertical velocity is smaller than the hor-
izontal velocity for ice flow (total velocity is already very slow). Thus the advection-diffusion
equation for the temperature is acquired:

ρcp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) + τij ϵ̇ij.
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Appendix B : RGI60-IDs of glaciers per region

Region 03: Arctic Canada North
RGI60-03.00389, RGI60-03.01641, RGI60-03.00419, RGI60-03.01644,
RGI60-03.01742, RGI60-03.02429, RGI60-03.01687, RGI60-03.04538,
RGI60-03.00093, RGI60-03.02442, RGI60-03.00085, RGI60-03.01744,
RGI60-03.02468, RGI60-03.00109, RGI60-03.00108

Region 04: Arctic Canada South
RGI60-04.06852, RGI60-04.05370, RGI60-04.05553, RGI60-04.05755,
RGI60-04.05746, RGI60-04.05776, RGI60-04.05372, RGI60-04.05765,
RGI60-04.05745, RGI60-04.05639, RGI60-04.05514

Region 07: Svalbard
RGI60-07.01482, RGI60-07.00428, RGI60-07.01065, RGI60-07.01466,
RGI60-07.00608, RGI60-07.00028, RGI60-07.00551, RGI60-07.00681,
RGI60-07.01499, RGI60-07.00727, RGI60-07.01474, RGI60-07.00552,
RGI60-07.01449, RGI60-07.01470, RGI60-07.00423, RGI60-07.00425,
RGI60-07.00728, RGI60-07.00296, RGI60-07.00607, RGI60-07.00424,
RGI60-07.01477, RGI60-07.01472, RGI60-07.00301

Region 11: Central Europe
RGI60-11.01450, RGI60-11.00638, RGI60-11.03247, RGI60-11.03248,
RGI60-11.01376, RGI60-11.02600, RGI60-11.01813, RGI60-11.00590,
RGI60-11.01791, RGI60-11.00950, RGI60-11.00695, RGI60-11.01790,
RGI60-11.01473, RGI60-11.01024, RGI60-11.00846, RGI60-11.00996
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