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ABSTRACT 
Unsupervised feature selection (UFS) is a standard approach to reduce the dimensionality of 
hyperspectral  images  (HSIs).  The  main idea in UFS is to define a similarity metric, and select 
the features minimizing the metric to reduce the data redundancy. In this paper, we proposed 
a novel criterion for unsupervised dimensionality reduction based on the representation of 
spectral reflectance to capture dominant reflectance variations. Since capturing    all the spectral 
information from an entire hyperspectral dataset is    a time-consuming process, we proposed 
a heuristic algorithm  named Greedy Search for Spectral Representation (GSSR). This algo- 
rithm divides the spectrum into spectral regions with less spectral variations and merges them. 
GSSR, similar to feature selection techniques, preserves the original data from being distorted 
or compromised by a transformation. We compared the GSSR algorithm with well-known 
existing algorithms in different experiments using various datasets. Comparison with the best 
approximation to represent single spectra as well as entire hyperspectral scene revealed that 
spectral representation is almost the same. The difference between the best spectral 
representation and the ones provided by GSSR is less than 0.01%; while on average, GSSR  is  
about 660 times faster to represent single spectra and 37 times faster for a complete 
hyperspectral scene. Five well-known unsupervised dimensionality reduction methods were 
also implemented and used for comparison analysis. Based on the image classification accuracy 
over two hyperspectral datasets, the spectral features identified by the proposed criterion 
improved the classification accuracy as well. 

 
 

1. Introduction 
Hyperspectral imagers, also termed imaging spectrometers, capture reflected 

radiance in an image form, where every pixel in the image contains detailed spectral 
information in hundreds of adjacent narrow spectral channels. Unlike multispectral 
sensors, with three   to ten spectral bands, hyperspectral sensors offer better potential 
for recognizing particular spectral properties (Manolakis, Marden, and Shaw 2003; Shaw 
and Burke 2003), such as absorption bands in minerals (Ben-Dor et al. 2008) or the leaf 
pigment content in  vegetation types (Sims and Gamon 2002). On the other hand, the 
analysis of hyperspectral data may be very challenging because well-known image 
analysis  algorithms  are not easily extendable from the multispectral into the 
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hyperspectral data. Classification of hyperspectral images, for example, is often based on 
notions of distance in the feature space, as in ‘minimum distance,’ ‘minimum 
Mahalanobis distance,’ and ‘k-Nearest Neighbor’ classifiers or in variants of k-means 
clustering algorithms (Gorte 1998). Part of  the challenge is that large sets of parameters 
usually are needed to describe the high- dimensional statistical distributions of 
attributes. To have a reliable estimation of these parameters, a large number of training 
samples is indispensable (Hughes 1968). Furthermore, the interpretation of distance 
metrics in high dimensional spaces is not straightforward, but instead highly unintuitive 
(Jain and Waller 1978; Jimenez and Landgrebe 1998; Durrant and Kaban 2009; Jia, Kuo, 
and Crawford 2013). 

A solution to the problems raised by the hyper-dimensionality is to reduce the 
dimensionality while retaining the information required for various applications. In 
general, dimensionality reduction (DR) is the process of reducing the number of 
random variables under considerations. DR is categorized into two groups of feature 
extraction (FE) and feature selection (FS) methods. FE transforms the data into a 
new data space based on particular criteria (Kumar, Ghosh, and Crawford 2001; 
Jimenez-Rodriguez, Arzuaga-Cruz, and Velez-Reyes 2007). Principal Component 
Analysis (PCA), as a classical and well-known method, eliminates the linear 
dependency or correlation between the components (new features) in the new 
feature space (Kaewpijit, Le Moigne, and El- Ghazawi 2002). Zhang et al. (2018) 
adopted manifold learning and structure sparse learning algorithms to project the 
spectral and spatial feature into a lower-dimensional subspace (Zhang et al. 2018). 
Recently, the low-rank matrix factorization techniques showed good potential for FE 
as well (Zhang et al. 2019). 

The FE techniques might have better discriminating potential between the classes in        
a scene than the FS methods (Zaatour, Bouzidi, and Zagrouba 2017; Hira and Gillies 
2015), but the main issue with FE is the loss of some critical and crucial information. 
Since the original data are no longer represented in the new data space, the information 
might     have been compromised or distorted by the transformation. FS approaches, on 
the other hand, have the advantage of preserving the original information which is 
essential to analyse the spectral properties of observed materials (Chang and Wang 
2006; Martinez- Uso et al. 2007; Carmona et al. 2011; Jia et al. 2014). These techniques, 
also called band/ channel selection, select subsets from original channels and are usually 
preferable for analysing  hyperspectral data. 

DR can be applied using both supervised and unsupervised strategies. Having 
labelled information, i.e., a priori knowledge about land covers in a scene paves the 
way for supervised DR. In other words, by selecting image samples for each class, a 
supervised DR algorithm provides a class-specific feature set. An example is the 
selection of channels maximizing the discrimination between given classes in the 
feature space (Huang and He 2005; Yang et al. 2011; Hosseini Aria, Menenti, and 
Gorte 2017). Contrary to supervised algorithms, unsupervised DR or unsupervised 
feature selection (UFS) techniques do not require any a priori information. 
Consequently, all the pixels in an image are considered for analysis. These methods 
are usually preferable for hyperspectral images lacking the availability of labelled 
information (Du and Yang 2008; Cariou, Chehdi, and Le Moan 2011; Jia et al. 2012), which 
is the main objective of this study. 

Different criteria can be applied to obtain features from a given dataset. A 
frequently used criterion in UFS is to define a similarity metric between the spectral 



3  
channels and then select those channels with minimum similarity (Martinez-Uso et 
al. 2007; Du and Yang 2008; Cariou, Chehdi, and Le Moan 2011; Jia et al. 2012). The 
similarity is considered as the amount of the dependent information between 
features as well (Mitra and Pal 2002). The more similar the features, the more the 
dependent. Usually, in hyperspectral data, narrow adjacent spectral channels are 
highly correlated. As a result, the data suffer from redundancies. Therefore, by 
selecting less dependent spectral channels, the redundant information will be 
minimized, and consequently, the dimensionality reduces. 

In this paper, unlike classical approaches using similarity metrics, the 
identification of the spectral features, which accurately represent the spectral 
reflectance, was applied as an unsupervised dimensionality reduction criterion. It 
means we developed an algorithm to obtain the most dominant variations of spectral 
signals of a hyperspectral scene, which can be indicators to distinguish different land 
covers and targets in a scene. For this purpose, instead of selecting individual 
channels, the adjacent spectral channels were categorized based on their spectral 
variations and then averaged; since having wider spectral bands provide more 
accurate image classifications (Hosseini Aria, Menenti, and Gorte 2017). Hereafter, 
the spectral features from the original hyperspectral data are called ‘channels,’ and 
the ones made by averaging the neighbouring channels are named ‘bands.’ 

To achieve the objective, the spectral signal sampled by an imaging spectrometer is 
represented by a few spectral bands approximating the spectra with a required repre- 
sentation accuracy; i.e., the difference between an original spectrum and the approxi- 
mated one is low enough to recognize a specific target using its representation spectrum 
(Price 1994; Jensen and Solberg 2007). By doing this, the most relevant spectral 
properties of all pixels in an image, e.g., absorption features would be preserved for 
further analyses. When the spectral properties of pixels in an image are accurately 
identified, they could be classified correctly with a low number of features. Therefore, in 
this approach, a spectral band configuration is identified while minimizing the loss in 
accuracy of representation. One of the challenges here is to find a spectral configuration, 
i.e. the spectral locations of boundaries  between  spectral  bands  which  can  accurately  
represent  all  the  pixels  in    a scene. This process is mainly a very time-consuming 
process in unsupervised scenarios since all the image pixels have to be considered for 
analysis. Employing a greedy search algorithm (Bendall and Margot 2006; Cormen 2009) 
makes a locally optimal choice at each iteration and provides spectral representations in 
a faster and more efficient fashion. Therefore, we propose an algorithm called GSSR 
(Greedy Search for Spectral Representation) to represent the spectra and evaluated it 
by comparisons with  well-known existing algorithms for the same proposes in 
different experiments. 

The paper is organized as follows. Section 2 reviews the criteria frequently utilized in 
UFS, the methods applying them to hyperspectral images (HSIs), and the  algorithms  
applied for an accurate representation of spectral reflectance. Section 3 articulates the 
details of the proposed criterion and how it can be applied to a hyperspectral scene. The 
characteristics  of  the  hyperspectral  datasets  used  to  assess  the  proposed  method  
are given in Section 4. Section 5 describes the evaluation procedures followed by the 
results    of different experiments, including the accuracy of spectral representation and 
image classification. Section 6 is the conclusion. 
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2. Related works 

In this section, we first present the criteria and the methods frequently used in UFS of 
HSIs. Secondly, we review the algorithms for accurate spectral representation, since as 
mentioned, our proposed criterion for UFS is to identify the most dominant spectral 
features from the reflectance spectra of a hyperspectral scene by accurately representing 
the spectra. 

 

2.1. UFS criteria and methods 
This section reviews the criteria mostly used in UFS and the algorithms applying them 

to HSIs. These criteria are usually based on similarity (or dependency) between 
hyperspectral features. Accordingly, the least similar spectral features have to be 
selected as the ones carrying less  redundant information. A group of UFS criteria  are 
obtained by calculating  the similarity between just two spectral features and creating a 
matrix for all the features in a dataset. This matrix is symmetric. So, if 𝐑𝐑 is a hyperspectral 
image with 𝑛𝑛 spectral channels, 𝐑𝐑 = {𝑹𝑹1,𝑹𝑹2, … ,𝑹𝑹𝑛𝑛}, and every channel (𝑹𝑹𝑖𝑖) is a vector 
with 𝑚𝑚 pixels; 𝑹𝑹𝑖𝑖 = �𝑟𝑟𝑖𝑖,1, 𝑟𝑟𝑖𝑖,2, … , 𝑟𝑟𝑖𝑖,𝑚𝑚�, where r values are defined in space Ω, i.e. 𝑟𝑟 ∈ Ω; the 
similarity matrix is presented as follows: 

 

 𝚺𝚺 = �

𝑓𝑓1(𝑹𝑹1,  𝑹𝑹1) 𝑓𝑓1(𝑹𝑹1,  𝑹𝑹2)
𝑓𝑓1(𝑹𝑹2,𝑹𝑹1) 𝑓𝑓1(𝑹𝑹2,  𝑹𝑹2)

… 𝑓𝑓1(𝑹𝑹1,  𝑹𝑹𝑛𝑛)
… 𝑓𝑓1(𝑹𝑹2,  𝑹𝑹𝑛𝑛)

⋮ ⋮
𝑓𝑓1(𝑹𝑹𝑛𝑛 ,  𝑹𝑹1) 𝑓𝑓1(𝑹𝑹𝑛𝑛,  𝑹𝑹2)

⋱ ⋮
… 𝑓𝑓1(𝑹𝑹𝑛𝑛,  𝑹𝑹𝑛𝑛)

�, (1) 

where 𝚺𝚺 is the similarity or dependence matrix of R, and 𝑓𝑓1(𝑹𝑹𝑖𝑖,  𝑹𝑹𝑗𝑗) is the value of the 
dependence of the named variables.  

In this group, a specified search strategy is applied to the matrix and selects the 
channels with minimum similarity to the other channels in the dataset (Gu and Zhang 
2003; Martinez-Uso et al. 2007; Qian, Yao, and Jia 2009; Jihao, Yisong, and Zhanjie 2010; 
Cariou, Chehdi, and Le Moan 2011; Jia et al. 2012). 

The other group of UFS criteria can be calculated as a unique score without making          
a similarity matrix; i.e. the similarity or dependence score is not based on two features, 
but on more than two features. So, there is no need to make a similarity matrix. Given a 
set of features, the score can indicate the amount of dependent or independent 
information of a feature in a set. In both cases, a model taking into account multiple 
variables is applied to a hyperspectral  dataset  to  calculate  the  score. So, in a general 
way, the score of a channel in a  hyperspectral dataset can be obtained as follows: 

 

 𝐷𝐷𝑹𝑹𝑖𝑖 = 𝑓𝑓2(𝑹𝑹1,𝑹𝑹2, … ,𝑹𝑹𝑛𝑛), (2) 

where DRi is the score of the channel Ri which is calculated by the model f2 taking into 
account multiple channels. In the next subsections, a list of UFS criteria mostly used and  
the methods  of applying  them are  presented. 

2.1.1. Correlation coefficient 
The Pearson coefficient of correlation was utilized in (Gu and Zhang 2003; Jihao, 

Yisong,  and Zhanjie 2010) to automatically subspace hyperspectral data in an 
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unsupervised  manner. After constructing the correlation coefficient matrix, the authors 
used the local minimum of the correlation coefficient between adjacent channels of the 
datasets to partition  the  spectral channels. 

 
2.1.2. Mutual information 

Mutual information (I) is a quantitative measurement of the amount of shared 
information between two random variables. Despite the correlation coefficient, it 
takes into account both linear and non-linear dependencies (Dionisio, Menezes, and 
Mendes 2004). Less mutual information between two random variables indicates 
more of uncertainty. As    a result, zero, as the minimum value of the metric, means the 
variables are not dependent at all. It is a dimensionless quantity, generally, with units 
of bits (logarithms of base 2) (Cover and Thomas 2006): 

𝐼𝐼�𝑹𝑹𝑖𝑖 ,𝑹𝑹𝑗𝑗� = � � 𝑝𝑝(𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗)log
𝑝𝑝(𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗)
𝑝𝑝(𝑟𝑟𝑖𝑖)𝑝𝑝(𝑟𝑟𝑗𝑗)

𝒓𝒓𝑗𝑗∈𝛺𝛺𝒓𝒓𝑖𝑖∈𝛺𝛺

, (3) 

where 𝑝𝑝(𝑟𝑟𝑖𝑖, 𝑟𝑟𝑗𝑗) is the joint probability distribution function of 𝑹𝑹𝑖𝑖 and 𝑹𝑹𝑗𝑗, and 𝑝𝑝(𝑟𝑟𝑖𝑖) and 
𝑝𝑝(𝑟𝑟𝑗𝑗) are the marginal probability distribution function of them. 

The mutual information measure was utilized for UFS to cluster spectral channels 
with minimum-shared information by a recursive binary search algorithm (Cariou, 
Chehdi, and Le Moan 2011). Martínez-Uso et al. (2007) normalized the mutual 
information metric and converted it into a dissimilarity metric between two channels 
(Martinez-Uso et al. 2007). By  building  a  symmetric  dissimilarity  matrix  for  the  
entire  hyperspectral  dataset,  a hierarchical clustering process (Jain and Dubes 
1988) was applied, to form clusters of channels as similar as possible within each 
cluster. After obtaining k-desired clusters, a channel was selected by using a 
weighting method to provide the best representative channel predicting the 
information content of the other channels in each cluster. Eventually, it selects 
channels with minimum shared information. This algorithm used Ward’s linkage 
method (Ward 1963) in hierarchical clustering, so it is named WaLuMI (Ward’s 
Linkage strategy using Mutual Information). The advantage of this method is that it is 
not a ranking or incremental method that selects channels taking into account the 
previously selected channels, i.e., k selected channels in the clustering-based strategy 
are not equal to the k-1 selected channels plus another relevant channel. 

 
2.1.3. Kullback-Liebler divergence 

This metric is also based on the information theory, which was applied for UFS of 
hyperspectral images (Martinez-Uso et al. 2007; Qian, Yao, and Jia 2009). The metric 
was considered as a dissimilarity distance between two probability distributions and 
interpreted as the cost of using one of the distributions instead of the other one 
(Martinez-Uso et al. 2007). Martínez-Usó et al. (Martinez-Uso et al. 2007) applied an 
algorithm similar to WaLuMI by replacing the normalized mutual information metric 
with the Kullback-Liebler criterion, and they named it WaLuDi (Ward’s Linkage 
strategy using Divergence). 

 
2.1.4. Euclidean distance 
The negative Euclidean distance was used as a similarity measure in an affinity propaga- 
tion-based channel selection algorithm. It is used to indicate how well a spectral channel 
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represents other channels by constructing a similarity matrix. The channels are, then, 
clustered based on their similarities (Jia et al.   2012). 
 
2.1.5. Dependent  information metric 

Sotoca, Pla, and Sanchez (2007) defined a metric applicable to the dependent 
information of a set of random spectral channels. The set can have more than two 
variables, and therefore, there is no need to make a dependence matrix of pairs of 
variables (Sotoca, Pla, and Snchez 2007). The metric measures the dependent 
information of a set of channels by employing the joint entropy and the conditional 
entropy. Applying the metric in a greedy search algorithm, the authors selected 
channels having the minimum-shared information (Sotoca, Pla, and Snchez 2007). 

 
2.1.6. Linear prediction 

Du and Yang (2007) applied two similarity-based endmember extraction 
algorithms to select spectral channels in an unsupervised manner (Plaza et al. 2004; 
Du and Yang 2007, 2008). They searched the most distinctive channels based on 
linear unmixing methods. These methods model an HSI pixel as a linear mixture of a 
set of finite image endmembers and select the most distinctive channels in a 
sequential forward selection searching strategy (Du, Ren, and Chang 2003b). They 
can jointly evaluate the similarity between   a given channel and multiple channels. 

The first one, linear prediction (LP) criterion, makes a linear estimation of the selected 
channels and searches for the most dissimilar one. To find a channel that is the most 
dissimilar to channel R1 and R2, one can first estimate R0 as the linear prediction of the 
two channels by solving the following linear model using the least-squares solution: 

 

𝛼𝛼0 + 𝛼𝛼1𝑹𝑹1 + 𝛼𝛼2𝑹𝑹2 = 𝑹𝑹′, (4) 

where α0, α1, and α2 are the parameters that can minimize the LP error. Then they 
searched for a channel having the maximum dissimilarity with the estimated channel, i.e., 
having the maximum 𝑒𝑒 = ‖𝑹𝑹′ − 𝑹𝑹𝑖𝑖‖, where ‖∙‖ can be the Euclidean norm of the vector.  

2.1.7. Orthogonal  subspace projection 
Du and Yang (2007) used orthogonal subspace projection (OSP) as the second 

criterion to map a channel onto an orthogonal subspace (Du and Yang 2007). With this 
criterion, first, an orthogonal subspace based on the pre-selected channels is constructed. 
Then, each channel is projected into the orthogonal space. The channel yielding the 
maximum orthogonal component is considered as the most dissimilar one to the pre-
selected channels. 

 
2.1.8. Independent  component analysis 

Independent component analysis (ICA) is a method that extracts independent source  
signals by searching for a linear transformation that minimizes the statistical 
dependence between the components (Comon 1994). Unlike PCA, ICA imposes higher-
order dependence than the second-order one, so the components are not always 
orthogonal (Comon 1994; Hyvärinen and Oja 2000). ICA is used as a feature 
extraction technique in several approaches (Chiang, Chang, and Ginsberg 2000; 
Lennon et al. 2001; Robila and Varshney 2004; Liu et al. 2017), while Du et. al. 
(2003a) presented an ICA-based (ICAbs) method for feature selection as well to 
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reduce the dimensionality of HSIs (Du et al. 2003a). The authors weighed the spectral 
channels using the independent components and selected those having maximum 
information. 

The ICAbs model represents a hyperspectral image, R, as the multiplication of an 
unmixing matrix, U, and a number of independent components called ‘sources’, S: 

𝐑𝐑𝑛𝑛×𝑚𝑚 = 𝐔𝐔𝑛𝑛×𝑐𝑐 × 𝐒𝐒𝑐𝑐×𝑚𝑚, (5) 
where c is the number of source signals. Following this model, the ICA aims at 

deriving the best possible estimation of S by approximating the unmixing matrix U 
under some constraints. Based on the approximation of the unmixing matrix, Du et. 
al. (2003a) calculated a mean absolute weight per spectral channel as the indicator 
of the information content of each channel. These weights were then sorted, and the 
channels with the highest weights were selected as the most informative ones. 

 
2.2.  Spectral representation 

There are several methods for spectral approximation and representation (Price  
1975, 1990; Li et al. 1999; Wang et al. 2007; Huynh and Robles-Kelly 2008; Angelopoulou 
2000; Angelopoulou, Molana, and Daniilidis 2001), mostly used in colorimetric sciences. 
Their scope is to represent spectra accurately with a limited number of samples e.g. 
Discrete Fourier Transform (DFT) (Agrawal, Faloutsos, and Swami 1993), Singular Value 
Decomposition (SVD) (Keogh et al. 2001) or Discrete Wavelet Transform (DWT) 
(Kahveci  and Singh 2001). A common way for the approximation is the replacement of 
local variations in a spectrum with a constant value over a small range in wavelength.  
Chakrabarti et al. (2002) presented such a technique, named Adaptive  Piecewise 
Constant Approximation (APCA), and proved that this technique yields a better represen- 
tation than other existing methods such as DFT and  DWT  for approximating  signals  in 
time series analyses (Chakrabarti et al. 2002). The APCA algorithm degrades a curve into 
a constant segment-based approximation, where the user specifies the number of seg 
ments. It includes two main steps. At first, it converts the signal approximation issue into 
a wavelet compression problem, for which there are well-known optimal solutions; and 
next, it converts the solution back to the APCA representation and makes minor 
modifications. The term ‘segment’ is equivalent to ‘band’ in our approach. More details 
on  APCA can be found in (Chakrabarti et al. 2002). Approximating spectra by piecewise 
constant functions has also been used in other fields, taking into account the physical 
characteristics of the spectra to determine the location of the spectral  segments  
(Thomson, Lue,  and  Bannerman 2014; Zehentbauer and  Kiefer  2012). 

Konno and Kuno (1988) proposed a method that provides the best piecewise 
approx- imation (Konno and Kuno 1988). They used the maximum norm and the 
Euclidean norm to find the approximation of a function of a single variable with less 
than a predefined number of constant-value segments. Another study applied the 
Bayesian approach for piecewise smoothing of one-dimensional signals (Winkler and 
Liebscher 2002). Later, an extension of this method was used for multiple spectral 
curves to reduce the dimension- ality of hyperspectral scenes (Jensen and Solberg 
2007). The goal of the last approach was also to partition the spectra of a 
hyperspectral scene into a fixed number of contiguous intervals with fixed intensities 
using the piecewise constant function approximations (PCFA) algorithm. The 
intensity in a spectral band is the mean value of the signal in its constitutive channels 
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per pixel. Considering the number of bands, the algorithm examines all the possible 
spectral locations for the breakpoints and finds the best approximation having the 
lowest error of representation. 

 
3. Spectral representation criterion 

As reviewed, the criteria used in UFS algorithms applied to HSIs are based on 
defining   a similarity metric between spectral features and selecting the ones having 
minimum similarity with other features. Following this procedure, the redundant 
information is decreasing while the dimensionality of the original dataset is 
reducing. In this approach, we suggest a criterion for UFS with regards to capturing 
the most relevant spectral information concerning all the pixels in a hyperspectral 
image. It means all the spectral reflectance of an entire scene are approximated in a 
way that the approximated spectra represent the original ones accurately. 

For this  purpose,  we  partition  the  reflectance  signals  of  a  hyperspectral  scene  
into a predefined number of adjacent bands with fixed intensities. Figure 1 schematically 
illustrates the idea for a spectral signature with 195 channels, which is divided into six 
bands. In this figure, the blue line is the representation (approximation) of the original 
spectral signal (the red line). In fact, using this method, the channels are transformed into   
a new feature space but the transformation is in a way that the relations between the 
reflectance  spectra and  their wavelength are  retained, similar to  the FS  techniques. 

We use the square error between the original reflectance spectrum (r) and the 
approximated (a) one to identify the  error  of  representation.  Since  the  intensity is 

 

Figure 1. A sample spectral reflectance signature with 195 channels and its 
representation with six bands. 

 
a constant value in every spectral band of the representation; to minimize the error, 

the intensity of a spectral band should be the mean value of its constitutive channels. So, 
the root means square error (RMSE) is used to calculate the error of spectral 
representation. For a complete hyperspectral scene, the following procedure is 
performed. 

let the hyperspectral dataset defined in Section 2 be divided into b+1 bands where 𝑏𝑏 ≤
𝑛𝑛 and b is the number of breakpoints. The set of the spectral locations of breakpoint is 
S = {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑏𝑏, 𝑠𝑠𝑏𝑏+1}; where 𝑠𝑠0 = 0, 𝑠𝑠𝑏𝑏+1 = 𝑛𝑛, and 𝑠𝑠1, … , 𝑠𝑠𝑏𝑏 indicate the channel 
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numbers in an ascending order where the breakpoints are placed after them. Therefore, 
a new band set with m pixels in each band is 𝐀𝐀 = {𝑨𝑨1,𝑨𝑨2, … ,𝑨𝑨𝑏𝑏,𝑨𝑨𝑏𝑏+1} where  

 

𝑨𝑨𝑖𝑖 =
∑ 𝑹𝑹𝑡𝑡𝒔𝒔𝑖𝑖−1<𝑡𝑡≤𝒔𝒔𝑖𝑖

𝒔𝒔𝑖𝑖−𝒔𝒔𝑖𝑖−1
. (6) 

 
To compute the error of representations for the entire scene, first, the reduced 

spectral configuration is expanded at each pixel back into  the  original  channel  
configuration.  Then, the values of each band are duplicated in the adjacent channels 
covered by the   band. Next, the reconstructed and full spectra per pixel are compared by 
computing the RMSE between the two spectra. The difference between the expanded and 
the original spectra, then, can be calculated and averaged over all pixels to obtain the 
error (Erep) of   the representation for the entire  scene: 

 
where rij and aij are the ith signal value in the jth pixel of the original and the 

approximated spectra respectively. 
Having the representation error of different band configurations, we can select 

the optimal band set representing the signals with adequate accuracy. There is a 
huge number of combinations to select the location of the breakpoints and every 
band configuration gives different representation errors. Ideally, the best locations 
are the places where the error of representation (Erep) is minimum. It can be 
achieved by an exhaustive search (Nievergelt 2000), i.e. all band configurations with 
the given number of bands are considered and evaluated. In a practical situation, 
however, the computational cost for large datasets is prohibitive. This method can be 
used for a limited number of spectral signatures (Jensen and Solberg 2007). 

In our approach, we apply a greedy search strategy to determine the spectral location    
in a sequential manner. This strategy was used in the FS algorithms to apply different 
criteria for DR of hyperspectral images as well (Pudil, Novovicova, and Kittler 1994; 
Sotoca, Pla, and Snchez 2007; Le Moan et al. 2011; Yang et al. 2011; Han, Lee, and Bien 
2013; Hosseini Aria, Menenti, and Gorte 2017). Using the spectral representation as a 
criterion, we named the algorithm as Greedy Search for Spectral Representation (GSSR). 
In this procedure, the algorithm iteratively selects a spectral location of a breakpoint  that  
appears to be the best with regards to the representation error and the  previously  
selected subset of breakpoints. The method significantly reduces the complexity by 
progressively  ranking  the  evaluated subset.  

3.1. Greedy search for spectral representation (GSSR) 
Given a hyperspectral dataset, R, and the number of bands, b + 1, the algorithm scans 

all possible spectral locations by taking into account the previously selected breakpoints 
to determine a new breakpoint in each iteration. For every tentative breakpoint, it 
creates   the band set (A) (Equation (6)) based on the preselected breakpoints and the 
new one,    and then calculates the representation error (Erep). Therefore, all possible 
locations for a new breakpoint are examined, and the best approximation having the 
lowest error of representation is identified. Then, the determined breakpoint is added to 
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set S. This procedure terminates when the number of bands reaches the predefined value 
(b + 1). Figure 2 illustrates the flowchart of the procedure. 

The GSSR algorithm complexity for a single spectrum is of the order 𝑂𝑂(𝑏𝑏𝑛𝑛) where b is  
the number of breakpoints, and n is the number of channels in the original hyperspectral 
dataset. The complexity of the metric for spectra representation is of the order 𝑂𝑂(𝑚𝑚𝑛𝑛), 
where m is the number of pixels. Hence, the overall computation time of the GSSR 
algorithm is  𝑂𝑂(𝑏𝑏𝑚𝑚𝑛𝑛2). 

In the next section, the data sets used for the assessment of the proposed algorithm    
are presented. 

 

4. Hyperspectral  datasets 
The GSSR algorithm was evaluated by applying it to different hyperspectral 

datasets, including a spectral library. We have done the necessary pre-processing 
steps before using the datasets, including atmospheric correction and removal of the 
noisy channels 

 
 

Figure 2. The flowchart of the GSSR algorithm. 
 

for the scenes. The noisy channels are those that do not have any signal, located at 
water absorption spectral regions, and the ones having a low signal to noise ratio 
(SNR). The channels with low SNR were identified by estimating the SNR using the 
geostatistical method described in (Curran and Dungan 1989), and visual inspection. 
We used the following datasets for the experiments: 

 
● A spectral library: it comprised 1365 spectra from different materials and was 

devel- oped by researchers at the Spectroscopy Lab, USGS (United State Geological 
Survey),  in 2007. The library is divided into six chapters: 1. Minerals, 2. Mixtures, 
3. Coatings, 4. Volatiles, 5. Man-Made; and 6. Plants, Vegetation Communities, 
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Mixtures with Vegetation, and Microorganisms. There is more than one spectrum 
for many of materials since different factors have been considered for the collection 
of  the  spectra such as the type of the spectrometer, the spectral resolution, the 
purity of   the materials, the grain size, the presence of other elements in the sample, 
etc. The chapters contain 881, 138, 12, 24, 110, 200 spectra respectively. The library 
is used as a reference for material identification in remote sensing images. The 
database is over 6000 webpages. More details of the spectral library can be found 
at https://speclab. cr.usgs.gov/spectral-lib.html. We used the convolved version of 
the library corre- sponding to the AVIRIS (Airborne Visible InfraRed Imaging 
Spectrometer) channels. After analysing the spectral library, we found out that 
three pairs of the spectra are the same, and they cannot be distinguished from each 
other. These spectral pairs are from Mixtures and Plants chapters. The duplicated 
spectra were removed. Consequently, the final number of spectra in Chapter 2 and 
6 became 136 and 199 respectively. 

● Moffett Field: AVIRIS has acquired this dataset in California with 224 bands.   
The band set covers the spectrum from 365 nm to 2497 nm continuously with 
approximately 10 nm-wide channels. The channels located at 366 to 385, 135  
to 1433, 1811 to 1948, 2337 to 2497 nm wavelength were removed due to noise 
and water absorption. As a result, the final dataset has 177 channels (Figure 3). 

● Indian Pines: the scene consists of 145*145 pixels with a spatial  resolution  of  about 
20 m. Two-thirds  of  the  Indian  Pines  scene  is  covered  by  agriculture,  and one-
third by forest and other natural perennial vegetation (Figure 4). The ground  truth  
available  documents  sixteen  classes,  not  mutually  exclusive.   Since  three  classes  
in  the  scene  contain  less  than   50  samples,  we   do  not  use them for the 
experiments.  After  the  atmospheric  correction  and  the  removal of noisy 
channels, the number of channels was reduced to 178. We removed water 
absorption channels (104 to 108, 150 to 163, and  220),  noisy  bands (1 to 4, 103, 
109 to 111, 148 to 149, 164 to 166, and 217 to 219), and     seven channels that are 
spectrally overlapping  channels  (32,  33,  95,  96,  158,  191, and 192). The Indian 
Pines dataset is available free of charge via Purdue University website: 
https://engineering.purdue.edu/~biehl/MultiSpec/hyper spectral.html. 

● Salinas: This scene (Figure 5) is characterized by high spatial resolution (3.7 m). 
The area covered comprises 512 lines by 217 pixels. The dataset is available at 
http:// www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes       
only 

https://speclab.cr.usgs.gov/spectral-lib.html
https://speclab.cr.usgs.gov/spectral-lib.html
https://engineering.purdue.edu/%7Ebiehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/%7Ebiehl/MultiSpec/hyperspectral.html
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Figure 3. The true colour of the Moffett Field hyperspectral scene taken by AVIRIS in   
1997. 

 
 

Figure 4. The true colour image of the Indian Pines scene (a) taken in 1992 and the 
reference data of the classes used (b). 

 
as at-sensor radiance. So, it has been atmospherically corrected, and the noisy 
and duplicated channels have been removed. The final dataset has 190 
channels. The ground-truth is also available and documents 16 classes, 
including vegetables, bare soils, and vineyard fields, which we used in the 
experiments. 
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Figure 5. The true colour image of the Salinas scene (a) and the reference data of the 
classes   (b). 

 

5. Evaluation of the proposed method 

Two types of experiments were performed to evaluate the GSSR algorithm: a) single 
signal representation and b) unsupervised dimensionality reduction of 
hyperspectral scenes. In both types of experiments, the accuracy of representation 
and the running time were evaluated, while for the second type of experiment, the 
image classification accuracy was also considered. We performed the assessments by 
comparing the algorithm with well- known existing algorithms for the same 
purposes. 

 
5.1. Evaluation of the algorithm using single  spectra 

Two experiments were performed in order to assess the GSSR algorithm for representing     
a single spectrum. In the first experiment, the GSSR algorithm is compared with APCA 
and PCFA (Section 2.2) using various spectra. Both algorithms represent spectra with a 
set of constant signal value segments as GSSR (Figure 1). In this experiment, the three 
algo-  rithms  were  compared in terms  of  the spectral  representation and  the running 
time. 

In the second experiment, the reduced spectral configurations obtained by the algo- 
rithms were evaluated for material detection, i.e. different materials were detected 
by comparing the approximated spectra with the full spectra available in the spectral 
library. 

 
5.1.1. Experiment 1: single spectra  representation 

This evaluation was performed as a benchmark to identify the error of representation 
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of single spectra using the three methods: GSSR, PCFA, APCA. At first, three dominant 
reflectance spectra; soil, water, and vegetation, were compared, and the three    
algorithms were applied to represent the spectra with 5, 10, and 15 bands. These 
reflectance spectra were obtained from the pixels with the same land cover  in  the  
Moffett  Field  scene.  Figure 6 illustrates the results, and Table 1 gives the error of the 
estimate by different algorithms  for all  the spectral  configurations. 

As expected, the PCFA algorithm gave the smallest error of estimate in all cases, while 
APCA gave the largest error (Table 1). Interestingly, GSSR represented the spectra almost 
twice as accurately as APCA and with an accuracy comparable with the PCFA algorithm.    
For example, using ten bands to approximate the soil spectrum, the error of the estimate 
was 0.0230 with APCA, 0.0115 with GSSR, and 0.0096 with the PCFA algorithm. The 
difference in the error between GSSR and PCFA is less than 0.002, and it became lower 
when 15 bands were used, with the difference in RMSE being 0.0005 only. It is also 
observed that the locations of the breakpoints determined by the PCFA and GSSR 
algorithms  are almost  identical (Figure  6(b) and (c)). 

The GSSR and PCFA algorithm always divide the spectrum into the exact predefined 
number of bands, while APCA does not, as shown in this experiment. This situation 
occurred, for example, when seeking to approximate the water spectrum, with ten 
bands by the APCA algorithm. In this case, the reduced spectral configuration had 
one spectral band less than the prescribed number of bands, while the error of 
estimate would have been lower with one additional band. APCA is based on the 
Haar wavelet transform, so the number of samples in the original signal fed into the 
algorithm has   to be a power of two. In the case that the signal does not have enough 
samples, it is padded with zeros, and later truncated. This process sometimes may 
yield fewer bands than expected. 
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Figure 6. Spectral representation of three dominant land-cover spectra with maximum 
ten bands provided by APCA (a), GSSR (b) and PCFA (c). 
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Table 1. The representation error of three dominant types of spectra 
using a different number of spectral bands. 

Predefined 
number of bands 

 
Type of spectrum 

 
APCA 

Erro
r 

 

 
PCFA 

5 Water 0.010
 

0.007
 

0.0068 
 Soil 0.032

 
0.021

 
0.0211 

 Vegetation 0.067
 

0.040
 

0.0352 
10 Water 0.006

 
0.003

 
0.0038 

 Soil 0.023
 

0.011
 

0.0096 
 Vegetation 0.042

 
0.020

 
0.0194 

15 Water 0.004
 

0.003
 

0.0029 
 Soil 0.012

 
0.007

 
0.0073 

 Vegetation 0.025
 

0.013
 

0.0133 
 

We repeated the same experiment using more than 1000 pixels with different reflec- 
tance spectra derived from the Moffett Field AVIRIS image. The pixels were chosen to 
sample various land cover types, including different types of water, soil, vegetation, 
man- made features such as buildings, roads, etc. The reflectance spectra were 
represented separately for each pixel with a different number of bands starting from 5 
to 30, in steps  of Figure 7 shows the  results. 

The mean RMSEs decrease with an increasing number of bands. Similar to the previous 
results, the APCA error was the largest one, while the error for GSSR and PCFA 
algorithms were very similar and lower than when using APCA. The mean RMSE 
difference between PCFA and GSSR over all the spectra samples was about 0.0003 in the 
unit of the spectral reflectance, i.e. in [0,1], with the 5-band representation to 0.0001 with 
the 30-band one. 

 
 

Figure 7. The mean approximation error of various spectra obtained by three methods 
with respect to the maximum number of bands. 

 

The difference between GSSR and PCFA representation errors decreased with an 
increasing  number  of bands. 

We also considered the run time required to carry out the numerical experiment on the 
dataset with more than 1000 spectra (Table2). The time estimate is based on the 
implementation of the algorithms on a desktop computer that has the following 
characteristics: Operating system: Windows 7, Processor: Intel Core 2 and 16 GB RAM 
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(Random Access Memory). The algorithms were written in IDL (Interactive Data 
Language) programing, version 8.2. 

The APCA algorithm is fast. The running time was less than two seconds for all the 
spectral configurations, while it was increasing with the number of bands  for  GSSR:  
started at less than 14 seconds for the 5-band representations and reached more than    
two and half minutes for the 30-band ones. PCFA consumed much more time than the    
two other algorithms. In the worst case, i.e. the 30-band representation, the run time was 
more than two days to find the representations for the 1089 spectra, which was about  
1200 times slower than GSSR. On average, GSSR ran 660 times faster than PCFA. The 
main issue affecting the running time of the PCFA algorithm is that the algorithm 
recursively   calls itself with respect to the number of bands, and checks all the possible 
situations.  When the number of bands increases, the run time increases dramatically. 

 
Table 2. Runtime of the three representation algorithms applied 
to 1089 spectra. 

Predefined number  Runtime 
(s) 

 
of bands APCA GSSR PCFA 
5 1.418 13.318 694.304 
10 1.420 34.476 3711.606 
15 1.445 59.049 17,810.871 
20 1.449 85.471 37,822.459 
25 1.466 124.688 67,871.634

 30 1.486 161.561 187,344.13
  

5.1.2. Experiment 2: material detection using approximated spectral   signatures 

The previous experiment showed that the GSSR algorithm yields comparable 
spectral configurations to the best representation provided by PCFA with much 
shorter run time. In the second experiment, we evaluated the spectral configurations 
obtained by GSSR by applying them to material detection. 

This experiment reveals the number of bands needed to correctly identify a target 
spectral signature using the reduced spectral configurations derived by  the  algorithms 
GSSR and PCFA. The APCA algorithm was omitted since the spectral representations 
provided by this algorithm are not  as  accurate  as  of  the  representations  obtained  by 
the other algorithms. For this experiment, we used the spectral library that contains 
different  and  well–defined spectra. 

In this experiment, a spectrum from the library is selected as a ‘target spectrum.’ Then 
the GSSR and PCFA algorithms were applied to identify the breakpoints in such a way 
that is the reduced spectral configuration represents the full spectrum with 
increasing accu- racy. At each iteration, the reduced spectral signature of the target 
spectrum was compared with all the spectra in the spectral library to check whether 
the approximated spectrum could correctly be identified, i.e. the approximated target 
spectrum and the full detailed one has the least difference. The iterative procedure 
was ended when the reduced spectral configuration of the target signature had been 
correctly identified, or the  number  of  bands  was more  than 30.  We  used a  
distance-based  identifier and  a spectral angle based identifier to measure the 
difference between the known and unknown spectra (Kruse et al. 1993; Price 1994; 
Cochrane 2000). Finally, we calculated the percentage of spectra correctly identified 
vs. the number of bands (Figure 8). 
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In general, the accuracy of the distance-based identifier is higher than the angle-based 
one. For instance, the 10-, 15-, and 20-band spectral configurations achieved correct 
identification of materials in 97%, 99%, and 100% of cases with the distance-based 
identifier, while with the angle-based identifier, the correct identification reached to 
61%,79%, 86% respectively. The latter normalizes the spectra and removes the 
signal intensity dependence, i.e., reflectance in this experiment. 

Using either identifier, the reduced spectral configurations  obtained  with  PCFA  and   
GSSR   gave   a   comparable   accuracy   in   material   detection.   The        spectral 

 
 

Figure 8. The percentage of materials correctly identified by the angle-based (a) and    
distance-based (b) identifier using the reduced band configurations obtained by the 
PCFA and GSSR method. 

 

configurations obtained with PCFA gave slightly more identifications than the ones 
obtained with GSSR. The difference in performance between PCFA and GSSR was 
higher when the number of bands is small, and it decreased with  an  increasing  
number of bands. However, if the spectral configuration obtained with GSSR has just 
one band more than the PCFA configuration, the detection accuracy for GSSR  is  
higher. For example, using the angle–based identifier, the 16-band configurations 
obtained by GSSR were correctly identified in 80.7% of the cases, while the 15-band 
configuration obtained with PCFA was accurate in 80.6% of cases. It should be noted 
that the computational cost of the 15-band PCFA configuration is much higher than   
the one of the 16-band configuration obtained by GSSR. In the example mentioned, 
GSSR was more than 2000 times faster than PCFA. 

Both experiments (Section 5.1.1 and 5.1.2) revealed that the spectral representation of 
single spectra using GSSR is almost identical with the best spectral representation and 
has comparable accuracy with it in the representation and in detecting materials 
using the reduced band configurations. Meanwhile, GRRS provides the 
representations in a much faster way than obtaining the best representation. In the 
second type of experiment, we evaluated the algorithm applying to an entire 
hyperspectral scene. 

 

5.2. Evaluation of the algorithms using the entire  scene 

In the second type of experiment, the GSSR algorithm was evaluated  by  two  
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experiments using the entire hyperspectral scenes. In this case, the spectral locations of 
the breakpoints must be the same  for  all  pixels  to  reduce  the  dimensionality  of  the   
image. At first, it was again compared with PCFA to assess the error of representation      
and the  running  time,  since  PCFA  provides  the  best  spectral  approximations  for  all  
the spectral reflectance in a hyperspectral scene with the same situation as  GSSR.  It  
means that both algorithms take the average  of  adjacent  channels  to  form  wider  
spectral bands. Therefore, the band configurations, i.e., the spectral locations of 
breakpoints over the spectrum identified  by  the  algorithms,  exert  the  principal  
influence on the spectral  representations;  having  the  same  spectral  configurations  
would   provide   similar   spectral representations. 

The second experiment was a standard methodology to compare different feature sets 
obtained by various algorithms in an image classification procedure (Shaw  and  Burke  
2003; Martinez-Uso et al. 2007; Sotoca, Pla, and Snchez 2007; Cariou, Chehdi, and Le 
Moan 2011; Jia et al. 2012). A better image classification generally means that the 
process of assigning a label to a pixel using its spectral information is more accurate, 
which leads to better recognition of objects and land covers in the image. 

Therefore, to  validate  the  performance  of  the  proposed  method,  we  presented 
a comparison with five other unsupervised DR algorithms by evaluating the image 
classification accuracy. Four of them are in the FS category, and the last one is in the 
FE category. The FS algorithms are WaLuMI, LP, OSP, and ICAbs model. Similar to 
GRRS, they preserve the physical relationship between the selected features and 
their wavelength. The FE algorithm is the Principal Component Analysis (PCA). We 
compared the GSSR algorithm with PCA since GSSR, similar to PCA, transforms the 
data into a new feature space but without using a rotation. 

 

5.2.1. Experiment 1: HSI spectra  representation 

In this experiment, we applied the PCFA and GSSR algorithm to an entire Moffett 
Field dataset. The dataset contains various spectral reflectance with different 
variations in the spectrum. We computed the mean RMSE of the spectral 
configurations provided by the PCFA and GSSR algorithms with respect to the 
number of bands in the reduced spectral configuration. The error is the average of 
the spectral approximation error of all pixels in the scene (Equation (7)). 

It should be noted that PCFA was developed to minimize the sum of squared error 
(SSE) as a performance metric. However, minimizing SSE concerning the 
approximated spectrum with b predefined number of breakpoints is equivalent to 
minimizing RMSE with the same conditions. 

The running time of the algorithms is also computed. Figure 9 shows the results and 
Table 3 presents more details about six band sets. The error of spectral representation 
using the same configuration for an entire scene reveals an almost complete overlap 
between the two graphs showing the mean representation error obtained by the PCFA    
and GSSR algorithm. Table 3 indicates that the difference between the mean errors of the 
two methods is about 0.0001. On the other hand, the PCFA was about 37 times slower   
than GSSR, on average. The higher the number of bands, the slower the PCFA than GSSR,   
as clearly illustrated in Figure   9(a). 
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Figure 9. The execution time (a) and the mean approximation error (b) of the band 
configurations obtained by the two methods for the entire Moffett Field scene with 
respect to the number of bands. 

Table 3. Runtime and the representation error of the two algorithms 
applied to the entire Moffett Field scene spectra. 
 GSSR   PCF

 
 

Number of bands Error  Runtime 
 

Error  Runtime 
 5 0.016

 
 653.16 0.016

 
 16,258.20 

10 0.009
 

 1120.56 0.009
 

 40,804.68 
15 0.007

 
 1587.72 0.007

 
 65,752.92 

20 0.006
  2052.00 0.005

  80,703.60 
25 0.005

 
 2515.20 0.004

 
 95,084.16 

30 0.004
 

 2995.80 0.004
 

 124,891.6 

Jensen  and   Solberg   (2007)   applied   PCFA   to   a   set   of   sampled   spectra   of   
a hyperspectral scene derived from the classes in a scene and identified a single 
spectral configuration for the spectra to reduce the dimensionality  of  the  data  
(Jensen and Solberg 2007). The PCFA algorithm is applicable when the number of 
spectra is low; however, when the number increases, PCFA is slow. The complexity 
of the algorithm is O (kmn3)(Jensen and Solberg 2007), i.e. the order of the algorithm     
has a direct relation with the cube of the number of spectral  samples  multiplied  by 
the number of pixels. Therefore, if the number of pixels increases, the time con- 
sumption of the algorithm drastically goes up. As a consequence, the PCFA algorithm 
becomes a prohibitive method in an unsupervised DR situation, where applied to all  
pixels in a hyperspectral   scene. 

On the other hand, GSSR provides a spectral configuration for the entire scene as 
accurate as of the best spectral configuration supplied by the PCFA algorithm but in       
a much faster way. 
5.2.2. Experiment 2: image  classification 

The evaluation has been done by examining the number of features selected by the proposed 
and reference methods vs. the overall classification accuracy using  different  classifiers  to  
check the relevance of the features selected. We applied the five mentioned methods to 
compare the results with the band sets obtained by the GSSR method. These comparisons 
were performed using two datasets: the Indian Pines and Salinas scene. We used two types 
of classifiers:   maximum    likelihood    classifier   (MLC)    and   support    vector    machine    
(SVM), a parametric classifier, and a non-parametric classifier, respectively. Figure 10 shows 
the  results. 
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As observed, the proposed method gives better overall  accuracy  than  its  compe-  titors 
from the FS category. It means that the criterion used in our approach in an unsupervised 
manner, i.e., extraction the most relevance spectral features by spectral reflectance 
representation provides higher accuracy  of  classification  than  the  fre- quently used 
criteria based on the similarity between the spectral features in UFS  techniques. 

Comparison with PCA, an FE algorithm, shows that GSSR has better accuracy in 
classification when using MLC while using the SVM classifier, PCA provided higher  
accuracy. The reason is that the feature extraction techniques often have a  higher  
potential in distinguishing between different classes in a  scene,  leading  to  better  
accuracy in  image  classification.  However,  the  problem  of  the  FE  algorithms  is  that  
the critical information of the reflectance spectra can be distorted. One of the main 
objectives of this study is  to  keep  the  critical  information  of  the  reflectance  spectra  
like   the   FS   methods.   This   information,   e.g.   the   absorption   spectral   features   of   
a specific target, is  of  interest  to  a  wide  range  of  HSI  users.  The  GSSR  algorithm,  
while  retaining  the  key  spectral  information,  classified  more  accurately  than   PCA 
when using MLC. In addition, it  obtained  a  better  result  than  its  competitors  in  the  
UFS  category  as  well. 

Using SVM, WaLuMI sometimes provided channel sets with comparable 
classification accuracy to GSSR. The channel selection algorithms based on ICA and 
the linear unmixing methods (LP and OSP) mostly gave less accurate results than 
GSSR. 

 

 
 

Figure 10. The overall classification accuracy using the MLC ((a) and (c)) and SVM ((b) and 
(d)) classifier applied to the spectral features obtained by six unsupervised algorithms 
using the Indian Pines ((a) and (b)) and Salinas ((c) and (d)) datasets. 
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5. Conclusions 

This study showed the advantage of applying the representation of reflectance spectra 
of HSIs as the criterion to the unsupervised dimensionality reduction purpose. The 
typical rules applied in unsupervised feature selection techniques are based on finding 
the most dissimilar spectral channels, while the proposed criterion focuses on the 
extraction of the most spectral variations from the spectral reflectance. Since obtaining 
accurate spectral representations for all the pixels in a scene; i.e., in an unsupervised 
manner, is a time- consuming process, we applied the proposed criterion to a greedy 
algorithm, GSSR; to create spectral bands approximating the original reflectance. The 
final band configura-  tions obtained by GSSR are sets of continuous spectral bands 
covering  the  whole  spectrum, which preserves the physical meaning of the features like 
the FS techniques. Compared with the PCFA method providing  the  best  spectral  
configuration  minimizing the representation error, GSSR yields band configurations 
almost as accurate as PCFA, but  in a much faster way. Applying the algorithms to more 
than 1000 diverse spectra  to  provide spectral configurations with 5 to 30 bands, GSSR 
was 50 to 1200 times faster than PCFA, while the mean difference in RMSE was 0.0002 
on reflectance scale, i.e. in [0,1]. The difference was even less when both algorithms 
provided the same spectral configuration  for an entire hyperspectral scene, i.e. 0.0001. 
Using the reduced band configurations in a target detection experiment showed that 
the bands provided by GSSR are more correctly identified than by PCFA if the 
spectral configuration has one band more, while the former can be obtained 2000 
times faster. The overall classification accuracy over two hyperspectral datasets using 
two classifiers revealed that the proposed criterion provides a band configuration 
giving a higher classification accuracy than its FS competitors. 
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