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Abstract
Designing engineering structures relies on accurate numerical simulations to predict the behaviour of a
structure before its realization. In the design process, many variables influence the final structure. There
is an incentive for optimizing the design based on the desire for cheaper structures and less material
usage. Although a wide variety of optimization techniques exist, in practice many structures are not fully
optimized and could fulfill their purpose with less material usage. This partly results from optimization
techniques generally requiring many simulations for problems with a high number of variables. In creat-
ing increasingly complex models, simulating its performance can take up to days or weeks to compute,
incentivizing the development of optimization methods that use as little simulations as possible.

The goal of this thesis is to provide a method of optimization which significantly reduces the required
number of simulations to be performed, aiming to overcome the issue of required computational effort.
The optimization problem used in this thesis is the geometric optimization of a fiber reinforced polymer
(FRP) microstructure. Each evaluation requires a Finite Element analysis, and many parameters are
required to describe the geometry. The goal is to find the maximum stress at perfect plasticity dur-
ing uniaxial tension, interpreted as a measure of strength. While generally only fibers with a circular
cross-section are used, here a morphing parameter is introduced that changes this shape between be-
ing circular and square. Furthermore, fibers are allowed to overlap, effectively creating a single fiber
with a complex shape. This geometry optimization provides a challenging problem for which different
optimization techniques can be compared.

The approach taken in attempting to minimize the number of function evaluations is a combination of
several machine learning methods. Based on a limited number of initial samples, Bayesian optimization
(BO) is applied. In BO a prediction model in the form of a Bayesian Neural Network (BNN) is created
and used to inform further sampling. This prediction model provides a mean and a standard deviation in
its prediction, both of which are used to find the best point to sample next. The number of initial samples
required to create an accurate prediction model increases exponentially with the number of parameters.
It is therefore opted to first use a variational autoencoder (VAE) to reduce the number of parameters in
which BO is performed, by encoding the parameters in a lower dimensional representation. The varia-
tional autoencoder does this without requiring any function evaluation.

Results show that when encoding the original parameters using the VAE, the encoded representation
is unable to recreate all possible configurations of the original parameters. Furthermore, by transforming
to a lower dimensional representation, within this representation the complexity of a function increases
compared to the original function, generally leading to many local optima. This complexity proves dif-
ficult for the BNN to accurately predict based on a limited number of samples. As a result, BO does
optimize the result, but does not reliably find the global optimum of the reduced parameter space. No
clear conclusion can be made on the overall performance of the method compared to alternative opti-
mization methods. Recommendations are made for what additional studies could be performed. Further
recommendations are given for solving issues limiting the current performance as well as possible ad-
ditions to the framework.

The fiber geometry optimization serves as a good case to compare different optimization methods.
It is shown that the geometry has a significant influence on the mechanical performance of a FRP mi-
crostructure, and optimization is therefore beneficial. The load case considered is however too specific
for the optimized result to have direct practical use. Still, it does demonstrate that the results of an
optimization study can be generalized. As the optimization framework is data driven, the optimization
objective could easily be extended to study more realistic problems.
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1 Introduction
A main responsibility of an engineer is to ensure the safety of a structure to be built. While testing scale
models can give insight into the behaviour of a structure, this is seldom done anymore and instead
numerical models are created which are based on material tests. In order to create these models,
assumptions and simplifications have to be made. With finer and more complex models the number of
assumptions and simplifications can be reduced, leading to more accurate representations. However,
as models become more complex, the computational effort usually also drastically increases to the point
where running a model can take up to days or weeks to compute. In trying to optimize a design, many trial
iterations are needed before an optimum is reached. With a significant computation time per iteration this
optimization procedure quickly becomes infeasible. This optimization is made even more challenging
when problems consist out of a significant number of parameters. With each additional parameter the
number of possible configurations increases exponentially. This thesis concerns itself with accelerating
these optimization problems.

1.1. Optimization techniques
Structural design optimization consists in first defining a number of structural parameters to tweak (de-
sign variables). These 𝑛 design variables are then iteratively changed until one or more performance
indicators (objective function) are either minimized or maximized. In other words, optimization seeks to
find an optimum in a 𝑛 dimensional space, where each axis belongs to one design variable. This is the
parameter space, with 𝑛 being the dimensionality of the optimization problem. The type of optimization
problems considered are those where the constraints of each parameter are independent of the values
of other parameters. Several optimization techniques exist, the main branches considered in this the-
sis are presented in Figure 1.1 and explained below. An example of a 2-dimensional design space is
presented in Figure 1.2a.

Gradient-based algorithms, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [1],
can be very efficient in finding the optimal solution in convex problems. They however decrease in
performance when the problem is high dimensional. At first, this high dimensionality does not appear
to be a problem for gradient-based optimization. In practice, if local minima exist, there is a sampling-
like procedure involved in gradient methods, since many starting points should be used, significantly
increasing their required computational effort. To make matters worse, the number of local minima often
increases for an increasing number of variables. In Figure 1.2b an example of a gradient-based method
is presented.

In order to circumvent the issue with local minima, metaheuristic based methods can be used to
optimize the global design space. Metaheuristic based methods are commonly used in solving high-
dimensional non-convex optimization problems [2]. These methods include genetic algorithms [3] and
particle swarm optimization [4]. These algorithms explore the complete design space by having iterative
batches of samples, and are thus less influenced by local minima. These methods still require a signif-
icant number of function evaluations, making them inefficient for computationally expensive problems.
An example of one of these batches for a GA is presented in Figure 1.2c.

In order to alleviate computational effort while still performing global optimization, Bayesian optimiza-
tion can be used. Bayesian optimization is an optimization technique that creates a prediction model
based on a limited number of samples. The prediction is used to determine the next point to efficiently
optimize the design space. An example of this is presented in Figure 1.2d. The required data to form an
accurate prediction scales with the number of dimensions, and therefore this method too requires many
function evaluations, although significantly less compared to a GA.

The combination of the high-dimensionality of the optimization problem with the computationally ex-
pensive evaluations provides difficulties for all these existing techniques. In this thesis it is attempted
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to split these two problems. The high-dimensionality is adressed using computationally cheap evalu-
ations, and the expensive evaluations are only required in a low-dimensional space. This is done by
reducing the input space using a variational autoencoder (VAE). In this reduced design space, Bayesian
optimization is used to find its optimum. The core idea behind this split is that training the VAE does not
require the objective function to be computed, and is therefore essentially free in computational time. Of
course, the downside is that the feature space created by the VAE has no information of which regions
in the original space are the most interesting for optimization. Therefore, this split naturally involves a
tradeoff between efficiency and accuracy of the optimization procedure.

This is visualized in Figure 1.2e.

Figure 1.1: Main branches of optimization techniques considered in this thesis. Applying Bayesian optimization in a reduced
design space is the novelty explored in this thesis.

All methods are implemented and applied to the practical scenario of finding the optimal geometry of
fibers in a fiber reinforced polymer microstructure. The aim of this thesis is to compare these methods
in their ability to find the optima with a small number of function evaluations. In complex problems
it is unlikely that all methods converge to the global optimum, therefore they are also compared on
their reliability of finding the optimum, or in other words the quality of their optimum. Furthermore all
optimization techniques rely on some user defined parameters, or hyperparameters. Ideally, settings for
these hyperparameters are used which provide similar results for all problems, and the outcome is not
sensitive to small changes in them.

Research question
To guide the research a main research question is formulated, supported by several sub-questions.

How does Bayesian optimization on a reduced design space compare to conventional
optimization methods in the quality of the optima and the required computational effort?

Sub questions:

1. Do geometric properties of fibers in a fiber reinforced polymer microstructure influence mechanical
properties?

2. Can the optimal solution be used to inform future engineering design decisions?

3. What are the costs and benefits of reducing the dimensionality of a design space for finding an
optimal solution?

4. To which extent does Bayesian optimization reduce the computational effort in finding the optima
within the reduced space?

5. Can a Bayesian neural network be effectively used for Bayesian optimization?

6. How do the hyperparameters and randomness in the initialization of methods influence the result-
ing optimum?
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(a) Full 2-dimensional design
space, with the two parameters

representing the x and y axis, and
the color representing the

objective function. Brute-force
computing all configurations in
this way is very computationally

expensive.

(b) Gradient based method. The
gradients, plotted by arrows,

display the direction to move in to
maximize the objective. This

demonstrates that for different
initial starting points, different
local optima can be obtained.

(c) Metaheuristic method,
presented here is a genetic

algorithm. Based on some initial
sampling for which the objective is

computed, a new batch of
samples is created focussing on

regions with high objective
samples.

(d) Bayesian optimization on the
full design space, based on a
limited number of samples, a
surrogate prediction model is

trained. This prediction model is
used to predict the optimum.

(e) Bayesian optimization in a
reduced design space. The top

figure represents the full 2D
design space and the ’path’ of the
reduced 1D design space. In this
1D design space BO is applied,

shown in the bottom figure.
Figure 1.2: Examples of different optimization techniques. The objective function is the Shubert 3 [5] function for 2 parameters.

The objective is plotted as a color, with blue and red representing a low and high objective value respectively.

1.2. Research Methodology
The reduction of the dimensionality is implemented using a variational autoencoder (VAE), creating a
non-linear transformation to a lower dimensional space. Bayesian optimization is used in this reduced
space, where a different machine learning technique, namely a Bayesian Neural Network (BNN), creates
a computationally cheap surrogate model. With the reduction from the VAE, training this prediction model
should require significantly less initial samples compared to optimizing in the full space. Furthermore,
due to the curse of dimensionality, it is a priori assumed that exploring this lower dimensional space
will require significantly less objective function evaluations. This model is used to predict regions with
significant potential of containing the optimum, allowing efficient sampling in those regions while ignoring
low potential regions. Other studies with similar methods for optimization [6, 7] have studied cases where
only a small subset of the original high-dimensional design space gives a valid solution. In contrast, here
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the full design space is feasible.
The objective function, to be introduced in Chapter 2, is computed using the Jem/Jive C++ library [8].

An extension is developed in Python to allow optimization and control over the parameters. The varia-
tional autoencoder is implemented in Python, making use of the TensorFlow library [9]. The Bayesian
neural network is developed using the Jem/Jive C++ library based on an existing neural network imple-
mentation [10]. Both for the use of maximizing the acquisition function in Bayesian optimization and as
an alternative optimization method, a genetic algorithm is implemented in the Jem/Jive C++ library.

1.3. Thesis Outline
In this thesis various existing methods are combined to create a single optimization framework. Each
method is introduced in a separate chapter, and when relevant includes a study of the literature. When
applicable a parameter study is performed, the results of which are included at the end of each chapter
to assist the reader in understanding the methods. The general outline of the thesis is provided in
Figure 1.3. In Chapter 2, the optimization problem to be solved, namely a micromechanical structure,
is introduced. Chapter 3 serves as an introduction to neural networks. This technique is the basis used
in two methods, first in dimensionality reduction using a variational autoencoder in Chapter 4, followed
by a Bayesian neural network in Chapter 5. In Chapter 6 the Bayesian optimization is detailed. A
genetic algorithm is presented in Chapter 7, serving as an alternative optimization method. Chapter
8 combines all previous chapters for the full optimization of the problem and presents the results on
optimizing the micromechanical structure. Finally, Chapter 9 summarizes the conclusions regarding the
research questions and discusses recommendations for further research.

Figure 1.3: Outline of the thesis.
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2 Optimization problem
Due to their high stiffness to weight ratio, composites are becoming increasingly popular in Civil Engi-
neering (from strengthening existing structures to new bridges), are widely used in modern aircraft and
are the current standard material for wind turbine blades. In these applications having accurate models
and being able to optimize designs is essential. These numerical models for composites are chosen as
the problem to be optimized in this thesis.

2.1. Fiber reinforced polymer optimization
Fiber reinforced polymers (FRP) are man-made materials that generally consist out of two main con-
stituents. One constituent is the reinforcing phase, namely the fibers, which are embedded in the matrix
phase. Both constituents come in different variations with various material properties which influence
the complete behaviour. While many natural fibers exist, glass and carbon fibers with diameter of around
4-17 μm are widely used due to their good mechanical properties [11]. A common way of creating FRP
structures is using laminates, as depicted in Figure 2.1.

Figure 2.1: Layout of a standard laminated composite over several scales. Source: [12]

There are several properties of composites which depend on the microstructure and are of interest
for optimization. These properties range from acoustics [13] and thermal [14] to mechanical proper-
ties [4, 14–18]. These properties directly influence the costs of the material, which can be included in
the optimization [4, 19]. For these properties the material type [17], volume fraction [19], microscopic
geometry [13, 18] and macroscopic shape [4] can be varied. Additive manufacturing [18, 20, 21] and
automated fiber placement [20] are relatively new manufacturing methods with an increase of control of
the geometry and shape of the material. These methods increasingly allow structures designed using for
example topology optimization [14, 15, 22] to be manufactured. It was found that using the mechanical
performance as objective provided sufficient complexity for the optimization function.

2.2. Geometry optimization
Requiring more material for a structure, or using materials with higher performance, generally increases
the cost of a structure. Changing the microscopic geometry or macroscopic shape from a given set of
material does not have this cost, apart from the cost of precision manufacturing. Optimizing the geometry
and shape is therefore beneficial. Mechanical properties can be determined using a Finite Element
Analysis (FEA) [23]. Where commonly homogenization techniques are used to derive a constitutive
relation between stresses and strains in a FRP structure, research has been done, and still is, on creating
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more advanced models where this relation is derived from an embedded microscopic model [24]. This
embedded model should represent the behavior of a material point of a larger-scale model. This model is
therefore known as a representative volume element (RVE). It is often created with a random distribution
of fibers and forms a repeating pattern if one stacks multiple models next to each other.

In Figure 2.2 & 2.3 two microscopic fiber configurations are given with the only difference being
their geometrical fiber positions. When subjected to a vertical load a FEA results in stress-strain curves
as displayed in Figure 2.4. There is a 13.8% difference in the maximum obtained stress in this mi-
crostructure based solely on the positioning of the fibers. This suggests that even minor changes in the
microscopic geometry can lead to improved macroscopic performance. This observation motivates the
use of optimization techniques in order to further exploit this trend.

Figure 2.2: Example 1 of a mesh with 8 fibers. Figure 2.3: Example 2 of a mesh with 8 fibers.

Figure 2.4: Stress strain curves of 2 geometrically different meshes with identical material properties and volume fraction.

A popular method of optimizing geometries is topology optimization (TO). In TO a FEA is used to
evaluate a structure and to iteratively remove material in low-stress regions, and generally only optimizes
the topology. To serve as RVE, the microstructure is generally periodic and continuous. The FRP
microstructure also consists out of both the reinforcing and the matrix phase, providing further difficulties
for topology optimization. Optimizing an RVE for any possible objective based on any number of design
variables therefore requires significant extensions to TO. In this thesis an alternative approach is taken.
The general optimization problem for maximizing mechanical performance, here represented by the
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transverse stress 𝜎 at a strain of 0.1, can be defined as:

max 𝜎 = 𝐹𝐸𝐴(𝑥 , 𝑥 , ..., 𝑥 ) (2.1a)
subject to 𝑥 ∈ 𝑋 , (2.1b)

𝑥 ∈ 𝑋 , (2.1c)
. . . . . . . , (2.1d)
𝑥 ∈ 𝑋 , (2.1e)

Here 𝐹𝐸𝐴(⋅) is a Finite Element analysis (which does not provide derivative information) and 𝑋 is
the feasible space of the variable 𝑥 . Examples of possible variables for 𝑥 are the 𝑥 & 𝑦 coordinates of
a fiber, the radius of a fiber (or all fibers) or fiber material properties. In this way the meshes assessed
in Figures 2.2 & 2.3 would have 16 dimensions. If one discretizes each continuous variable into 100
possible values, this results in 100 possible configurations.

To find the optimal geometry of the microstructure, one would ideally include all possible geometrical
configurations of the microstructure. To allow this, the assumption of a circular cross section of the
fibers can be relaxed. In this work, aside from the fiber positions, a parameter is introduced as the
’morphing’ parameter, which transforms the shape of a fiber between being circular and square. Next
to this, fibers are also allowed to ’overlap’, creating a single fiber with a complex shape by combining
these overlapping fibers. These two adaptations allow a wide variety of geometries when enough fibers
are included. As a side effect of allowing the fibers to overlap, the boundaries of the fiber coordinates
become independent. Current manufacturing techniques do not allow these complex fiber shapes. If
an optimization technique finds a geometry that gives a significant gain in desired properties, it might
stimulate the development of methods that do allow it. The performance indicator used is the stress at a
fixed strain of 0.1which is generally a point of perfect plasticity, interpreted as a measure of strength. This
proved sufficient in demonstrating the optimization approach taken in this work. Maximizing this stress
for a single load case is not particularly realistic from an engineering perspective, as generally multiple
load cases apply. An extension could easily be made to optimize it to for example maximize the area
of a failure envelope. Nevertheless, it should be investigated to which extent microscopic optimization
transfers to macroscopic performance in real structures. For convenience when discussing the goal of
maximizing the stress at a strain of 0.1, simply maximizing 𝜎 will be used, the indices of which are
explained below.

2.3. Microscopic model
The micromechanical problem is evaluated by embedding the RVE in a single quadrilateral finite ele-
ment. On this element a strain is incrementally applied using displacement control. In the coordinate
system used the ’1’ direction is defined as being out of plane along the fibers, the ’2’ and ’3’ direction
as the ’horizontal’ and ’vertical’ in plane directions respectively. ’33’ then refers to a plane in the ’3’
direction, with a load also in the ’3’ direction. As the load is applied to the top, the bottom is fixed in the
’3’ direction. The ’2’ direction is fixed in one side, the other side is left free such as not to induce stresses
related to the poisson effect. In order to prevent rigid-body motions, all shear components are fixed.

The plasticity model by Melro et al. [25] is used with the plane strain assumption. the SkyLineLU
non-linear solver is applied with numerical precision of 1𝑒 . The load is by default applied using strain
increments of 0.005[−], up to a norm of 0.1[−]. The fiber has a Young’s modulus of 74000[𝑁/𝑚𝑚 ].
The matrix has a stiffness of 3760[𝑁/𝑚𝑚 ], and a poisson ratio of 0.39[−].

A custom meshing script has been created in Python to translate geometrical properties into a mesh
using gmsh [26] and its ”OpenCASCADE” kernel. This kernel allowed the implementation of overlapping
fibers. In Appendix A a more detailed overview of this implementation is given, followed by a short guide
on how the script interacts with the OpenCASCADE functions.
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3 Neural networks
Artificial neural networks (NN, or network) form the basis behind many types of machine learning al-
rogithms. Here a general introduction is presented, before going into their specific use cases for the
optimization problem. In Chapter 4 the first use case is presented, a variational autoencoder, creating
a non-linear transformation from the high-dimensional design space to a lower dimensional subspace.
This can be done purely based on the range of input possibilities without any FE simulation, this is known
as unsupervised learning. This is followed by supervised learning in Chapter 5 where a Bayesian neural
network makes predictions in this subspace based on a limited number of samples from a FE simu-
lation. The applications used in this thesis are thus dimensionality reduction and a prediction model
(regression). Other applications not used in this thesis, such as classification, are possible with a similar
underlying structure.

3.1. Background
Artificial Intelligence is the concept of machines being able to carry out tasks in a way we consider
to be intelligent. One subfield of AI is machine learning, which is based on the concept of giving the
machine access to data and to let it learn patterns for itself. Within machine learning, using a NN is a
way of applying this. A NN is a computational model which consists out of an interconnected group of
nodes, with similarities to neurons in a brain, to create highly nonlinear relations and serve as universal
approximators [27]. NNs were first developed in the mid twentieth century and with an increase in
computing power have become powerful tools with extensive research being done to improve them.
These networks are increasingly becoming a part of our daily lives; they power self driving cars, are
used in predicting stock markets, steer NASA’s rockets, recommend videos, enhance search engine
recommendations, perform medical diagnosis and the reader has probably helped train them by filling
in Captcha’s online.

3.2. Network Architecture
Depending on the application, several types of network exist. Here the most basic type, a feed-forward
NN, is considered. Such a network consists out of several layers, the input layer, multiple hidden layers
and an output layer. Each node in a layer is connected to all nodes of the previous layer via network
weights, as visualized in Figure 3.1.

For each node, a summation of the products between each incoming weight and its corresponding
nodal value from the previous layer is computed, and an extra term, known as the bias term is added.
This is visualized in Figure 3.2 and can be written as:

𝑧( ) = ∑𝑤( )𝑎( ) + 𝑏( ) (3.1)

This result is transformed through an activation function to form the output of that node.

𝑎( ) = 𝑓(𝑧( )) (3.2)

Activation functions are visualized in Figure 3.3. The output layer usually has linear activation functions
for regression problems. Examples of activation functions are formulated as:

• Rectified linear unit (ReLU): 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)
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Figure 3.1: Example of a NN with 2 hidden layers.

Figure 3.2: Factors influencing the input value of any
node. is the value of a node, , and are the
weight factor and bias factor respectively, both ad-
justed during training.

Figure 3.3: Plots of the hyperbolic tangent (tanh), rectified linear unit
(ReLU), sigmoid and linear activation functions.

• Sigmoid: 𝑓(𝑥) = 𝑒
𝑒 + 1

• Hyperbolic tangent (Tanh): 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) = 𝑒 − 𝑒
𝑒 + 𝑒

• Linear: 𝑓(𝑥) = 𝑥
Equations 3.1 & 3.2 are performed for each node of a layer 𝑙 before continuing this process in the

subsequent layer 𝑙 + 1 up to the output layer 𝐿. For clarity the bias terms are from now on included in
w. The full equation for the output of a neural network with a single hidden layer is then

𝑦 (x,w) = 𝑓( ) (∑ 𝑤( )𝑓( ) (∑𝑤( )𝑥 )) (3.3)

where 𝑓( ) is the activation function of the hidden layer and 𝑓( ) the activation function of the output layer.
The number of iterations in the sums, i.e. 𝐼 + 1 is related to the 𝐼 nodes in the layer and one additional
for including the bias term 𝑥 = 1.0.

3.2.1. Normalization
The input terms 𝑎( ) and output terms 𝑎( ) can be normalized, that is scaled between 0 and 1 or between
-1 and 1 to allow for better training [28]. Several schemes for normalization exist, such as normalizing
to a uniform or a sigmoid distribution. Output terms can also be normalized, depending on the type of
problem. In this work the inputs are normalized between 0 and 1, the output is not.
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3.2.2. Weight initialization
The weights in a network are generally continuous numbers and are represented by𝑤( ). For the network
presented in Figure 3.1 there are 36 weights and 10 bias terms. In this work only dense layers are
considered, where every node connects via weights to all nodes in the previous layer. Different ways of
initializing the weights exist, an incomplete list of possibilities is:

• Starting all weights at 0.

• Start all weights at small values (e.g. -0.01 to +0.01)

• Choosing random values.

• Choosing random values between -1 and 1.

• Initializing weights by drawing samples from a distribution with mean 0 and a variance based on the
number of incoming and outgoing connections from that layer. This strategy is found to outperform
random initialization for Deep Neural Networks. [29]

Initialization of the weights plays an important role in Deep Neural Networks (containing many hidden
layers), and is still an active research area. Special techniques are possible and are dependent on the
chosen activation functions. For networks considered in this work the initialization is of less importance.

3.2.3. Hyperparameters
The user defined parameters that decide how the network is created are known as the hyperparameters
and include the amount of hidden layers, the amount of nodes per hidden layer, the type of activation
function, the initial configuration. Many of these are case dependent and have no general ’best option’
but require trial and error.

3.3. Training the network
Starting from a dataset D of independent and identically distributed observations 𝑥 , ..., 𝑥 with corre-
sponding targets 𝑡 , ..., 𝑡 , a neural network with output 𝑦(x,w) is trained in order to approximate these
targets. Performing equation 3.2 iteratively for each layer (known as ’forward propagating’ the input vari-
ables through the network) the outputs are computed. The target 𝑡 and output 𝑦 are generally vectors,
however for clarity the formulation is presented here for a single output. For instance, x could be a set
of fiber coordinates, 𝑦 the predicted value of 𝜎 and 𝑡 the value of 𝜎 observed from FE simulations.
In the following sections a theoretical description of the training process is provided. In Appendix B a
numerical example is presented.

3.3.1. Deriving the loss function
In many introductions to NNs the loss function, that is the function to be minimized, is simply defined as
the mean squared error between the network output 𝑦 and the desired targets 𝑡. Here this same loss
function is properly derived using a probabilistic view of the network which will help better introduce the
applications used in this thesis.

It is assumed that the target variable 𝑡 is described by the neural network 𝑦(x,w)with added Gaussian
noise giving

𝑡 = 𝑦(x,w) + 𝜖 (3.4)

where 𝜖 is a zero mean Gaussian random variable and w the weights of a neural network that outputs
𝑦. The precision (inverse variance) of this Gaussian is defined as 𝛽 such that:

𝑝(𝑡|x,w, 𝛽) = 𝒩(𝑡|𝑦(x,w), 𝛽 ) (3.5)

What this means is that the network output gives the mean of the function and 𝛽 captures the variance
of 𝑦 around 𝑡. For all 𝑁 observations the likelihood function is:

𝑝(𝑡|x,w, 𝛽) =∏𝒩(𝑡 |𝑦(x ,w), 𝛽 ) (3.6)
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Training the network comes down to maximizing this likelihood function. It is convenient to do so by
maximizing the log likelihood instead:

ln𝑝(t|w, 𝛽) = ∑𝒩(𝑡 |𝑦(x ,w), 𝛽 ) (3.7)

ln𝑝(t|w, 𝛽) = 𝑁
2 ln(𝛽) −

𝑁
2 ln(2𝜋) − 𝛽𝐸(x,w) (3.8)

Here the first two terms are constant and 𝐸(x,w) is a sum-of-squares error function:

𝐸(x,w) = 1
2 ∑(𝑡 − 𝑦(x ,w)) (3.9)

Minimizing this sum-of-squares error is the training of the network. The error is minimized by updating
the weights using the negative gradient of the error function. The gradients are computed via a back-
propagation procedure. Finding the weights is thus itself a high-dimensional optimization problem. Due
to the nonlinearity of a NN the error function is (generally) non-convex, by using a gradient based method
a local minima based on the initial configuration is found. It is possible to train several networks with
different initial configurations to find separate local solutions.

3.3.2. Backpropagation
The backpropagation algorithm calculates how much the error function is affected by each weight in w.
This is done by applying the chain rule of derivatives to go from the error function to the specific weights.
The intermediate quantity 𝛿( ) is introduced as the error in the 𝑗th neuron in the 𝑙th layer.

𝛿( ) = 𝜕𝐸
𝜕𝑧( )

= 𝜕𝐸
𝜕𝑎( )

𝜕𝑎( )

𝜕𝑧( )
(3.10)

The derivative of 𝐸 with respect to a weight is then:

𝜕𝐸
𝜕𝑤( )

= 𝜕𝐸
𝜕𝑎( )

𝜕𝑎( )

𝜕𝑧( )
𝜕𝑧( )

𝜕𝑤( )
= 𝛿( )

𝜕𝑧( )

𝜕𝑤( )
(3.11)

These values are easily computed. For output layer L and the error function as in equation 3.9 it
results in:

𝜕𝐸
𝜕𝑎( )

= (𝑦 − 𝑡 ) (3.12)

The error in the nodes 𝛿( ) is computed from the error 𝛿( ) (hence the name backpropagation), the
weights w( ) between them, and the influence of the activation function:

𝛿( ) = ((𝑤( )) 𝛿( ))𝜕𝑎
( )

𝜕𝑧( ) (3.13)

Knowing the gradient of each weight to the error, we can make a step in the direction of −∇𝐸(w).
Doing this iteratively using numerical methods allows us to reach a local minimum where the gradient is
close to zero. This is known as gradient descent and is presented for two parameters in Figure 3.4.

3.3.3. Gradient descent methods
Minimizing the error function as presented in equation 3.9 needs to be done for the complete dataset.
Updating the weights on all samples of a dataset is considered one epoch and often many epochs are
required to find a local minimum. Different methods exist for how to order these samples within one
epoch.

In Batch gradient descent (also known as vanilla gradient descent [30]) the complete training batch is
used, where the error is averaged over all samples to determine the gradient. This is shown to produce a
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Figure 3.4: Visualization of stochastic gradient descent for 2 parameters [31].

stable learning path. In stochastic gradient descent at every step only a single random sample is used to
update the gradient. This deals with a redundancy in Batch gradient descent when the dataset contains
similar samples, often making the procedure much faster. Stochastic gradient descent has been shown
to have the same convergence behaviour as batch gradient descent, and has the potential to jump to
new and potentially better local optima [30].

Combining the previous methods, mini-batch stochastic gradient descent uses a random subset of
all the samples to compute the gradient. This generally results in a more stable result than for individual
samples, and more computationally efficient than for the full batch.

3.3.4. Overfitting
Minimizing the loss function as defined in Eq. 3.9 can lead to a phenomena knows as overfitting. As the
required number of weights in the network is not known beforehand, a network often contains more than
the minimum number of weights, which are all used in minimizing the loss function. When a network
is underfit, it does not perform well due to not having trained enough or the network being too small.
When overfit, it performs well on training data, but fails to generalize to new data, and can be caused
by having too many parameters. In Figure 3.5 the network for M=1 is underfit and for M=10 is overfit.

Figure 3.5: Examples of a neural network with M hidden units trained on a sinusoidal dataset. (Source: Bishop [32])

3.3.5. Penalized least squares
A common way to avoid overfitting is by applying a penalized least squares error function to control the
complexity of the network. An additional weight decay regularization term is added to the error function.
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This error function punishes overly complex networks. Equation 3.9 is than transformed into:

𝐸(w) = 1
2 ∑ ||𝑦(𝑥 ,w) − 𝑡 || + 𝜆2w w (3.14)

where 𝜆 is a hyperparameter. This allows networks with many weights to be trained on limited datasets
without severely over-fitting. In Section 5.4 this loss function is derived in a probabilistic framework
by assuming a Gaussian prior over the weights. The network complexity is now determined by the
regularization coefficient 𝜆 which transforms the problem of finding the optimal network size into finding
a suitable value of 𝜆. The general flow of a Neural network with the penalized least squares error function
is shown in Figure 3.6.

Figure 3.6: General scheme of a neural network training with a penalized least square error function.

3.4. Model selection
Models have a number of hyperparameters. In the case of a neural network these are the network size,
activation functions, regularization 𝜆, weight initialization, gradient descent method, number of training
samples and convergence criteria. These hyperparameters are not trained for, as for example training 𝜆
based on a loss function would always lead to 𝜆 = 0 and an overfit network. As the hyperparameters can
have a significant influence on the result a different way of obtaining them is required. Model selection
is the process of defining these hyperparameters.

3.4.1. Validation set
To measure how well the network performs, part of the dataset is not used in training and instead in
validating the network. Each training cycle, or epoch, the error for both the training and validation data
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is computed. Where the training data loss generally constantly decreases, the validation data loss will
initially decrease, reducing underfitting. After a certain point however, the validation loss will start to
increase and overfitting is occurring. Next to the regularization technique using 𝜆 in preventing overfit-
ting, a dropout layer [33] could be used. Neural networks with a high number of neurons are prone to
overfitting, whereas using too little neurons can lead to the network always being underfit.

3.4.2. K-fold cross validation
K-fold cross validation (CV) is a way of applying cross validation based on a number of validation sets.
From a fixed dataset, a subset is taken as the training data and a subset as the validation data in such
a way to allow comparisons of networks with different hyperparameters. K-fold CV divides the data into
k folds, or subsets, each fold serving once as the validation data, and k-1 times as part of the training
data. This means per configuration of parameters, a network is trained k times. If k is chosen to be
the same number as there are datapoints it is referred to as the ’leave-one-out’ technique, and can be
opted for when data is particularly scarce. Figure 3.7 visualizes training and validation data in a 5-fold
CV model selection. The data should be shuffled before being split. By running each configuration of
hyperparameters k times and taking the average, a more objective comparison is gained between the
different configurations compared to running each configuration a single time. The required number of
folds per configuration depends on the dataset and the variance between runs, common values are 5
and 10. [34]

Figure 3.7: Example of the training and validation data in 5-fold CV.
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4 Variational autoencoder
As presented in the introduction, the focus of this thesis is on high-dimensional optimization problems
with expensive function evaluations. A neural network can be trained to predict the function as presented
in Figure 4.1 but requires many computationally expensive samples to do so. The aim of this thesis,
using a variational autoencoder, is to separate the dimensionality from the expensive evaluations, as
visualized in Figure 4.2. Only considering possible input data, that is without any evaluation of the
problem to be optimized, the design space is transformed to a lower dimensionality. This process is
detailed in this Chapter, followed by the method of finding the optimum in this reduced design space
(with actual function evaluations) in the Chapters that follow. The shape on the cover of this thesis
shows a result of an autoencoder, where a 3-dimensional design space, originally a cube, is encoded
in a 2-dimensional latent space. The colors that represent the objective function in that image are thus
unknown to the variational autoencoder.

Figure 4.1: Example of a neural network architec-
ture for predicting a function.

Figure 4.2: Example of a combination of a variational autoencoder and a
neural network. The networks from x → z and z → (x) are trained sepa-
rately.

4.1. Introduction
The goal of reducing the dimensionality is to create a lower dimensional design space z called the
latent space that is representative of the full design space x. Dimensionality reduction occurs when
the dimensionality M of z is less than the dimensionality N of x. Several methods exist for achieving
this goal, one commonly used is principal component analysis (PCA), also termed as proper orthogonal
decomposition (POD). The autoencoder (AE) used here is in essence a non-linear form of PCA.

Ideally, any point in x corresponds to a specific point in z. This requires some transformation x → z,
here called the encoder 𝑒(⋅). From the latent space z, a transformation back to x is required for the
reduction to have any practical use. This transformation z → x occurs using a decoder 𝑑(⋅). In the
process of storing information in less dimensions, a loss of information can occur. This loss of information
should be minimized. The general overview of the AE transformations are presented in Figure 4.3.

4.2. Encoding and decoding
To minimize the loss of information, non-linear transformations are required. For general problems no
analytical encoders and decoders can be derived, and instead approximation methods are used in the
form of a neural network (NN). In general, neural networks cannot be inverted, and separate encoder
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Figure 4.3: Schematic of an AE mapping, this example being a 3-dimensional space R being encoded into a 2-dimensional
subspace S. and can be of any positive integer, when the dimensionality is reduced.

and decoder network parameters are required:

z = 𝑒 (x, 𝜽) (4.1)

x̃ = 𝑑 (z, 𝝓) (4.2)
Where 𝜽 and 𝝓 are the weights of the encoder and decoder networks respectively. An example of a
NN based on a 6 → 2 dimensionality reduction is presented in Figure 4.4. The encoder and decoder
network are required to be trained based on a dataset, where the aim of training is to find the network
parameters to minimize the information loss:

𝐿𝑜𝑠𝑠 = 1
2 ∑ ||x − x̃ || (4.3)

Where N is the number of samples in the dataset D. For D to represent the complete original design
space, the required number of samples scales exponentially with its dimensionality. While creating
these samples is extremely computationally cheap when only considering possible input data, storing
them and considering all of them during training also scales exponentially and becomes infeasible for
very high dimensions. As a result, the dataset is generally a subset of the full space. To still consider
the broader design space, the AE is required to be generative. This means that when considering a new
point in the latent space which is not represented by the original dataset, the AE should interpolate from
data nearby in the latent space. With the current loss function in eq. 4.3 the latent space is ill-suited
for this, and decoding any point could lead to results that don’t make sense based on the training data,
similar to overfitting of a standard neural network. An extension is made to solve this issue in the form
of a variational autoencoder.

The introduction provided here is specific for the case of dimensionality reduction for optimization.
A more common application of a VAE is in generating images, such as images of faces. There the
possible configurations of pixels leading to an image of a face is a very small fraction of all possible pixel
configurations. In such applications the training data is significantly more difficult to obtain, leading to a
similar limited dataset based on a different reason.

4.3. Variational autoencoder architecture
In a variational autoencoder, the latent space z is modified such that it can generate new data similar to
the training data. This is done by regularizing z such that it follows a specific distribution, here a standard
Gaussian. In this way, all training data should have a distinct point in z but still be close together such
that an interpolation in z resembles an interpolation in x.

𝑝(z) = 𝒩(z|0, I) (4.4)
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Figure 4.4: Example architecture of the neural network serving as an AE mapping from six to two dimensions. For simplicity a
single hidden layer of 4 nodes is presented, in practice significantly larger hidden layers are required.

The encoder notation is changed to 𝑞𝝓(z|x) which approximates the posterior distribution of the latent
space 𝑝(z|x). The goal is to optimize its parameters 𝝓, the networks weights, such that:

𝑞𝝓(z|x) ≈ 𝑝(z|x) (4.5)

Simultaneously a generative model learns a joint distribution as

𝑝𝜽(x,z) = 𝑝(z)𝑝𝜽(x|z) (4.6)

with 𝑝(x|z) the stochastic decoder approximating the transformation back to the original space. The
parameter 𝜽 represents the decoder network weights. This is visualized in Figure 4.5. The need for ap-
proximations in this derivation (Eq. 4.5) is due to the intractability of computing the posterior distribution.
The complete posterior distribution 𝑝(z|x) follows from Bayes theorem [35]:

𝑝(z|x) = 𝑝(z)𝑝 (x|z)
𝑝(x) (4.7)

which requires the marginal likelihood (or model evidence) by marginalizing over z:

𝑝(x) = ∫𝑝 (x,z)𝑑z (4.8)

This integral is in general intractable for neural networks. For a more complete understanding of this
intractibility the reader is referred to [36]. The result of this intractibility is that optimization techniques
are used to find the best approximations for the encoder and decoder network weights 𝝓 and 𝜽 during
training.

4.3.1. Optimization objective
As in many other variational methods, finding 𝝓 and 𝜽 is done by optimizing the evidence lower bound
(ELBO), which is a lower bound on the log-likelihood of the data. It can be derived that this ELBO is [36]:

𝐸𝐿𝐵𝑂(𝝓,𝜽) = 𝑙𝑜𝑔 (𝑝(x)) − 𝐷 (𝑞𝝓(z|x)||𝑝(z|x)) (4.9)

Where 𝑝(x) is the marginal likelihood, and 𝐷 (𝑞𝝓(z|x)||𝑝(z|x)) the KL (Kullback-Leibler) divergence.
By maximizing the ELBO the generative model will lead to a closer reconstruction of the original data.
The KL divergence measures the similarity between two probability distributions, in this case between
the approximation 𝑞𝝓(z|x) (assumed a standard Gaussian) and the true posterior 𝑝(z|x). Minimizing
the KL divergence therefore means that the approximating distribution becomes more accurate, making
the latent space better represent the original space.
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Figure 4.5: Schematic of the VAE mapping, based on: [36]. The re-
construction loss represents the distance between the original (blue)
and the transformed (green) datapoint. The KL-loss represents how
the distribution of z (based on the training data) differs from the prior
distribution.

Figure 4.6: Reparameterization trick to allow
backpropagating with a random variable when
using a standard Gaussian as prior distribution.

4.3.2. Backpropagation
Optimizing the ELBO can be done using stochastic gradient descent as for a standard neural network
with a custom loss function. The resulting layer of the encoder, also called the code layer of the au-
toencoder, consists out of nodes corresponding to the mean and variance of the latent space random
variable. A difficulty arises in backpropagation, since drawing random samples from this to form the
inputs of the decoder does not allow backpropagation. For a one dimensional latent space, this original
form when using a standard Gaussian is:

𝑧 ∼ 𝒩(𝜇, 𝜎 ) (4.10)

Instead what is used is the so-called reparametrization trick, where instead of sampling the Gaussian
distribution directly using the mean 𝜇 and variance 𝜎 result from the encoder, a separate random variable
is computed in the form:

𝜉 ∼ 𝒩(0, 𝐼) (4.11)

𝑧 = 𝜎x𝜉 + 𝜇x (4.12)

The comparison between the original form and this reparameterized form is visualized in Figure 4.6.

4.3.3. Differences in type of dimensionality reduction
There is an important difference to be recognized in the common application of a VAE and the application
used in this thesis. In most cases of a VAE, the original design space has many regions which are
uninteresting. Uninteresting being that the outcome does not make sense or will never be desired. An
example is when generating human faces where the inputs and outputs of the VAE represent a grid of
𝑚×𝑚 pixels. There is only a very small subset of possible configurations of pixels that will represent a
human face. The dataset consists out of these specific configurations where it does represent a face,
and this small subset can therefore be mapped to a lower dimensional parameter space.

In the case explored in this thesis for optimization, the complete original design space is of interest,
and any possible configuration could be the desired outcome. Instead of mapping a subset of a higher
dimensional space into a lower dimensional space, it is attempted to map the full set of possibilities in a
higher dimensional space into a lower dimensional space. The difference here is that the dataset does
not represent a small subset of the original space but the complete original space. Before applying it in
the full optimization scheme, first a study is performed solely using the VAE.
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4.3.4. Implementation
A VAE is implemented using the Python libraries Tensorflow and Keras. The loss function from equation
4.9 is transformed into a loss function for regression, assuming a standard Gaussian distribution and
adding a regularization parameter 𝜆. For a full derivation the reader is referred to [37].

𝐿𝑜𝑠𝑠 = 1
2 ∑(||x − 𝑑 (𝑒 (x , 𝝓) , 𝜽) || − 𝜆2 (1 + 𝑙𝑜𝑔 (𝜎 ) − 𝜇 − 𝜎 )) (4.13)

The first term in the sum of this equation is the reconstruction loss and the second term the KL loss
multiplied with regularization parameter 𝜆. This is known as 𝛽-VAE [38], in this thesis 𝜆 is used instead
of 𝛽. This function is an extension on Eq. 4.3 and acts similar to the penalized least squares error
function in Eq. 3.14. In the second term dependencies on the input and model parameters are omitted.
The training and generation processes are presented in Algorithms 1 & 2.

Algorithm 1 Variational autoencoder training
Input: Dataset D of 𝑁 samples, each with input and target x

Regularization parameter 𝜆
Encoder & decoder size and activation functions
Number of epochs 𝐸

Output: Decoder parameters 𝜽
1: Initialization
2: Create the sampling layer
3: Create the encoder and decoder with random initialization of 𝝓 & 𝜽
4: Optionally: split D into a training D and validation D set
5: Training
6: for 𝐸 epochs do

7: Compute 𝐿𝑜𝑠𝑠 = 1
2 ∑ (||x − 𝑑 (𝑒 (x , 𝝓) , 𝜽) || − 𝜆2 (1 + 𝑙𝑜𝑔 (𝜎 ) − 𝜇 − 𝜎 ))

8: Compute the gradients of ℒ
9: Update network parameters 𝝓 & 𝜽 using stochastic gradient descent

10: end for
11: Save the decoder parameters 𝜽

Algorithm 2 Variational autoencoder generating new data
Input: Decoder size and activation functions

Decoder parameters 𝜽
Input z

Output: new data point x̃
1: Load the decoder network parameters 𝜽
2: Propagate z through the decoder to get x̃
3: Output x̃

4.4. VAE results
Due to the novelty of the application of the VAE for dimensionality reduction in optimization, an important
part of this thesis is dedicated to understanding the consequences of different parameters in the VAE.
The main features explored are:

• The capability to reconstruct the original space from the lower dimensional latent space.

• The regularity of the latent space.

• The disentanglement of the latent space.
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The disentanglement is related to the independence of the latent variables, such that each independent
latent variable controls different parameters in the full space. The features are studied by altering a
number of relevant parameters in the model. These parameters are the regularization 𝜆, the number of
latent dimensions and the activation function in hidden nodes of the encoder and decoder network.

Certain parameters have had some initial exploration but are not extensively studied, such as the
number of hidden layers and the amount of nodes in this hidden layer. Unless mentioned otherwise
both the encoder and the decoder have a single hidden layer of 300 nodes which allowed for sufficient
parametric freedom. Furthermore, the number of epochs in training has been set at 60000.

4.4.1. Test scenario
To study different features, a scenario is created that represents the final optimization goal as presented
in Chapter 2, while allowing comparisons for different configurations. A square representative volume
element (RVE) is populated in the transversal direction with a random distribution of seven square fibers,
as presented in Figure 4.7. The design variables are the center 𝑥 and 𝑦 coordinates of an additional
fiber moving throughout this space containing fixed fibers, here the morphing parameter is fixed to keep
all fibers squares.

max 𝜎 = 𝐹𝐸𝐴(𝑥, 𝑦) (4.14a)
subject to 𝑥 ∈ [0.0, 1.0], (4.14b)

𝑦 ∈ [0.0, 1.0], (4.14c)

In a sense this can be seen as a 2-dimensional slice from a 24-dimensional optimization problem. An
example of the mesh for (𝑥,𝑦) = (0.0, 0.0) is plotted in Figure 4.8. Due to the assumption of periodicity, a
quarter of this new fiber is in each corner. It is possible to transform any number of input parameters to
any number of latent variables. The higher the reduction in parameters, the greater the loss in coverage
of the original design space and/or the smoothness of the objective function can be expected. In this
preliminary test case the original space is kept at 2 dimensions allowing the full design space to be
computed using brute force in reasonable computation time.

Figure 4.7: Mesh of the 7 static ’background’ fibers. The matrix
is plotted in black, the fibers in orange.

Figure 4.8: Mesh of an example of the 8 fiber scenario, with
7 static fibers. Current fiber center = (0.0, 0.0). The matrix is
plotted in black, the fibers in orange.

4.4.2. Reconstruction capability
To study the reconstruction capability, the 2 parameters of the moving fiber are being transformed into
a 1-dimensional latent space. The reconstruction capability of the VAE can be visualized but also mea-
sured using the reconstruction loss of Eq. 4.13. The dataset is a 256 × 2 matrix consisting out of values
between [0, 1] to form a grid from 256 𝑥 & 𝑦 coordinates.

5-fold cross validation
A 5-fold cross validation study is performed using the k-fold technique which is introduced in Section
3.4.2. An example of the training and validation set of a single run are given in Figure 4.9. Running this
5 times for one particular configuration gives results as in Figure 4.10.
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Figure 4.9: Example of the training and validation data in one
run of k-fold CV. The dataset contains 256 points, k=5.

Figure 4.10: Example of the loss functions of 5-fold CV for a
single configuration.

Based on the validation loss no longer decreasing (no longer underfit), it can empirically be argued
that around 60000 epochs seems to be sufficient for minimizing the validation loss. The validation loss
not increasing demonstrates that it is not overfitting either. Taking the mean of the last 100 datapoints of
each run, and running this for configurations with varying regularization and activation function results
in Figure 4.11.

Here the loss function from Eq. 4.13 (and Eq. 4.9) is distinguished into

𝐿𝑜𝑠𝑠 = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 + 𝜆 × 𝐾𝐿 𝑙𝑜𝑠𝑠 (4.15)

where both the reconstruction and the KL loss sum over the samples. The KL loss includes the −12
term. In the top plots for the reconstruction loss the first observation is that for a high values of 𝜆, it is
significantly higher than for lower values of 𝜆. Plotting the decoded latent space results in a constant
fiber coordinate of (0.5, 0.5) for 𝜆 ≥ 1𝑒 . From around 𝜆 ≤ 7𝑒 there is no constant decrease of
reconstruction loss observed. This is a result of the second term in Eq. 4.15 being negligible for low
values of 𝜆. Furthermore, what can be observed is that for different activation functions there is no
significant difference in reconstruction loss.

The first obvious observation about the KL loss is that it increases as the regularization 𝜆 decreases.
This is expected, since for a high 𝜆minimizing the KL loss has a significant influence on the total loss. For
decreasing 𝜆, the gain of having the latent space deviate (from the standard Gaussian the KL divergence
is enforcing it to be) for a lower reconstruction loss outweighs the increase of KL loss. In the region
𝜆 ≥ 1𝑒−4 the KL loss shows to still be effective. Apart from the two outliers of the Tanh activation
function, there is no significant difference between the activation functions.

Visualizing results
Next to the numerical values presented previously, results are visualized for different configurations.
These visualizations can aid in understanding the results, and give insight into the influence of the
parameters on the results. First the full case scenario is presented, followed by results of the VAE in
reducing the dimensionality of this space. For the full case scenario the objective function is computed
in the 2-dimensional original design space, plotted in Figure 4.12. The function shows to have some
clear peaks and valleys, and the possible gain is significant. To be clear, this brute force approach is
generally too computationally expensive. It is made tractable here because there are only two design
variables, the coordinates of a single fiber.

Transforming this 2-dimensional original space into the 1-dimensional latent space is visualized for
nine different VAE configurations in Figures 4.13 & 4.14. The middle plot in each Figure shows the grid of
training data being transformed through the autoencoder in red. This is the path the fiber follows through
the design space, and the top plot shows the objective function values along this path. Included is the
regularization of the VAE by plotting the training data as it is transformed to the latent space, which will
be discussed in the next section. For the sigmoid activation function the training loss is included, while
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Figure 4.11: Results using 5-fold CV of the reconstruction and KL loss plotted for sigmoid, relu and tanh activation functions with
various values of . The figures on the right are close-ups of the plots on the left. Each point value is the average of the final 100
epochs for the 5 different runs.
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Figure 4.12: (at perfect plasticity) in the original 2-dimensional design space.

for the other activation functions this looks very similar and is therefore not included. These training
losses are from a single run, not a k-fold CV study.

For all configurations in Figures 4.13 & 4.14 the plots in the center visualize the position of the fiber
for the original and the reconstructed training data, here called the path of the fiber. A clear observation
is made that for decreasing 𝜆 the path becomes more complex. The top plot can be seen as the path
from the middle plot through the top view of Figure 4.12. For this case, the absolute maximum is only
included in the reduced space if the path of the fiber goes through this point in the complete space. The
VAE, which has no information about the objective function, can only increase this probability by creating
a more complex path (decreasing the reconstruction loss). The 3rd plot from the top shows the training
data representation in the latent space. The boundaries are included in the description of each figure.
For a perfectly regularized VAE this follows a𝒩(0, 1) distribution and it is observed that as the regularity
decreases the distributions deviate increasingly from this (increasing the KL loss).
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(a) 𝜆 = 5𝑒 | Sigmoid activation (b) 𝜆 = 1𝑒 | Sigmoid activation (c) 𝜆 = 1𝑒 | Sigmoid activation

𝑧 [-2.84, 3.48] 𝑧 [-4.43, 3.94] 𝑧 [-4.26, 9.60]

Figure 4.13: From top to bottom: the objective function for the latent space sampled between the boundaries of the reconstructed
training data, the corresponding path of the fiber in the design space, the spread of the reconstructed training data in latent space
and the loss values of the VAE during training, for different regularization ( ) and with sigmoid activation. The network contains
one hidden layer of 300 nodes.
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(a) 𝜆 = 5𝑒 | ReLU activation (b) 𝜆 = 1𝑒 | ReLU activation (c) 𝜆 = 1𝑒 | ReLU activation

𝑧 [-3.40, 2.20] 𝑧 [-2.27, 2.03] 𝑧 [-0.83, 2.86]

(d) 𝜆 = 5𝑒 | Tanh activation (e) 𝜆 = 1𝑒 | Tanh activation (f) 𝜆 = 1𝑒 | Tanh activation

𝑧 [-2.45, 2.35] 𝑧 [-2.59, 2.69] 𝑧 [-8.22, 5.36]

Figure 4.14: From top to bottom: the objective function for the latent space sampled between the boundaries of the reconstructed
training data, the corresponding path of the fiber in the design space and the spread of the reconstructed training data in latent
space for different regularization ( ) and activation functions. The network contains one hidden layer of 300 nodes.
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4.4.3. Regularity of the latent space
The range of the latent space is related to its regularity. The latent space is enforced to follow a Gaussian
prior distribution by the KL divergence in the loss function. For a well regularized latent space 95% of the
data is expected to be between -2 and 2. As expected, and is demonstrated in the plots of the separate
losses for the sigmoid activation function in Figure 4.13, the influence of the regularized KL divergence
vastly diminishes as we decrease 𝜆. The sigmoid and hyperbolic tangent both show an increase in the
bounds of the latent space for decreasing 𝜆, whereas for the ReLU activation this is less obvious in
Figure 4.14. As a result of a decrease in 𝜆, the objective functions also seem to become less regular,
most noticeably for the ReLU and Tanh activation functions.

4.4.4. Disentanglement between latent features
Independence of the latent variables is studied using a case with 2 latent dimensions mapping from an
original 3-dimensional space. The 3 original parameters are all the parameters for a single fiber, that
is the 𝑥 & 𝑦 coordinates and the morphing parameter 𝑚. The results are compared for three different
settings of 𝜆, with the ReLU activation function being used for all tests. The results are split into 2
different outcomes. Namely the capability of reconstructing the coordinates 𝑥 & 𝑦, and the variation in
𝑚 throughout the latent space. Both are visualized in Figure 4.15. The reconstructed training data in
the latent space is included. While the regularization and the reconstruction of the 𝑥 & 𝑦 coordinates
are relatively similar for various runs, the result of the morphing parameter can vary wildly for each
configuration.

The model with 𝜆 = 5𝑒 does not seem to be capable of reconstructing the original space, and shows
a very regular, although not disentangled, pattern. Models with 𝜆 = 1𝑒 & 𝜆 = 1𝑒 do reconstruct the
original space well but also show no clear disentangled pattern.

4.4.5. Latent dimensions
The purpose of the VAE is to create a mapping to a lower dimensional space. So far the studies have
had a fixed level of original and latent dimensions. Here this is varied to study the influence of differ-
ences in dimensionality. An original 8-parameter design space is reduced to a variable number of latent
dimensions. The dataset consists of 256 samples of 4 square fibers (m is fixed to 1.0) with random x &
y coordinates. 5-fold CV is used to eliminate dependency on initial conditions and it also averages over
the uncertainty coming from the limited size of the dataset. The results are presented in Figure 4.16 &
4.17 for the reconstruction loss and the KL loss, respectively.

When the number of latent dimensions is equal to the original design space, the VAE is capable
of almost perfectly reconstructing this space. A general trend is observed that as the difference in
dimensionality increases, the reconstruction loss increases exponentially. A clear exception here is for
a single latent variable, which outperforms the 2-dimensional latent space. The reason this occurs is not
clear and requires further studying. For the KL divergence the training and validation losses are very
similar. The significant difference in the reconstruction loss between the validation and training data
suggests that the number of samples does not represent the complete space and the network might
be overfitting. It is suspected that this difference decreases for a larger dataset, but this is not further
studied in this thesis.
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(a) 𝜆 = 5𝑒 (b) 𝜆 = 1𝑒 (c) 𝜆 = 1𝑒

Figure 4.15: Reconstruction of the coordinates and morphing parameter throughout latent space for different values of . Colors in
the top plot depend on the original location of the training data. In the middle plot, fibers are grayed when the morphing parameter
is either < 0.0 or > 1.0, and have been rounded to 0.0 and 1.0 respectively. This is generally due to being outside of the regularized
space, as can be verified using the bottom plot.
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Figure 4.16: The reconstruction loss in 5-fold CV of different
levels of dimensionality reduction. Both the encoder and de-
coder consist of a single hidden layer of 300 nodes. The regu-
larization . An increase in reconstruction loss corre-
sponds to an increase of ’information’ loss, that is a loss in the
design space.

Figure 4.17: The KL divergence loss in 5-fold CV of different
levels of dimensionality reduction. Both the encoder and de-
coder consist of a single hidden layer of 300 nodes. The reg-
ularization . An increase in KL-loss corresponds to a
loss of regularity in the latent space, leading to predictions that
lie further away from the training data.

4.4.6. Preliminary conclusions
Based on the tests performed on the VAE, some preliminary conclusions can be made. There are
many different factors that play a role in the capability of the VAE to reduce the dimensionality of a
problem. By encoding the result in a lower dimensional design space, part of the original design space
can no longer be generated back. This means that the optimum value of the reduced space is not
guaranteed to correspond to the optimum of the original design space. The probability that these optima
do correspond increases as the reconstruction loss decreases. There is an important trade off between
the reconstruction capability and the regularity of the objective function. While several parameters have
been presented here, none have a clear optimal value in all cases. Furthermore, it cannot be assumed
that the tests performed here scale to problems with many more original design parameters.

Latent dimensions: The number of latent dimensions shows the trend that the larger the dimen-
sionality reduction, the larger the incurred loss. The more computationally expensive the problem, the
higher the dimensionality reduction one tends to favour. When requiring a high probability of finding the
global optimum, one should however limit this reduction. This results in a careful trade-off to be made
between the loss in design space and the number of dimensions, and will depend on the nature of the
problem.

Regularization 𝜆: The regularization 𝜆 has a significant influence on the result. A large regularization
leads to an underfit model, and a low regularization leads to a very irregular objective function which
provides difficulties for finding the optimum of the reduced space. 𝜆 values of 1𝑒 ≤ 𝜆 ≤ 3𝑒 show
good performance, and a value of 𝜆 = 1𝑒 seems sensible.

Activation function: The activation functions allow the VAE to create non-linear transformations.
The shapes of the functions clearly show to influence the reconstructed design space visually. In numer-
ical comparisons of their reconstruction capabilities, none of the activation functions is distinguishably
the best. When comparing different levels of dimensionality reduction, the ReLU activation function
performed better overall.
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5 Bayesian Neural Network
The latent space of the VAE serves as a lower dimensional space representative of the full design space.
When functions are expensive to evaluate, brute force computing in this latent space can still be com-
putationally expensive. A Bayesian optimization (BO) scheme is introduced to maximize this reduced
space with very few function evaluations, by predicting the best places to sample. BO requires a surro-
gate model that can make predictions based on a limited number of samples, and provide information
regarding its uncertainty in that prediction. In this thesis a Bayesian neural network is chosen as surro-
gate model. Apart from providing information on the uncertainty of its predictions, the BNN used also
allows automatic model selection to prevent overfitting.

5.1. Background
The main idea behind using a Bayesian Neural Network (BNN) is to replace the deterministic weights
used in conventional neural networks with a probability density function (PDF), commonly a Gaussian
distribution. By doing this the outcome also becomes a PDF, instead of a single point value, allowing the
mean 𝜇 and variance 𝜎 to be computed. The mean serves as the point value prediction that a standard
NN would provide, and the variance can be used as a measure of how confident the network is in
that value (the parameter uncertainty [39]). This is visualized in Figure 5.1. Since BNNs are based on a
consistent Bayesian formalism, having a separate validation set becomes unnecessary and the marginal
likelihood of the dataset can be used for model selection. Using this Bayesian method does increase
the computational effort relative to a standard NN, which will become evident in the next sections.

Figure 5.1: Example of the result of a BNN trained on noisy data with a single parameter from a sinusoidal function. The network is
confident around the training data as shown by the narrow confidence interval estimating the noise in the data, and less confident
away from the training data.

The interest of applying a Bayesian framework to neural networks has grown significantly since works
that introduce a practical Bayesian framework for networks based on backpropagation [40] [41]. The
Bayesian framework has also been used in convolutional NNs [42] and in recurrent NNs [43].

5.2. Approximating the posterior
In training the BNN, the posterior distribution needs to be evaluated. There is some distribution of
weights that has the highest probability of matching the network outputs to the target values for the

31



dataset. Evaluating the posterior therefore requires using Bayes’ Theorem to compute the product of a
prior and likelihood function (which generally is a nonlinear function itself), which is intractable for neural
networks. Instead, approximation methods need to be used.

5.3. Approximation methods
Markov Chain Monte Carlo MCMC is a sampling technique and used to be the standard for finding
an unknown distribution. By sampling using a markov chain the resulting distribution will converge to
an accurate result. The problem is that for a large dataset many samples are required, making MCMC
computationally expensive. MCMC is suited for small datasets where precise samples are required [44].

Variational Inference (VI) is an alternative approach to MCMC for doing Bayesian inference that uses
optimization instead of sampling. A specific shape of the posterior is assumed and approximated using
distributions which we can solve for. The accuracy and complexity depends to a large extent on the
assumed distribution. VI is known to generally underestimate the variance of the posterior distribution
[44]. VI is applied in the variational autoencoder for finding the posterior by optimizing the evidence
lower bound.

A third method is the Laplace approximation. It can be termed as a type of variational inference
[44], which approximates the posterior with a Gaussian distribution around a local maximum of the
posterior. As it is based on a distribution at a specific value it assumes unimodality. Based on the
central limit theorem, when observing numerous data points the posterior approximation is expected to
be increasingly well approximated by a Gaussian [32], making the Laplace approximation more accurate.
An advantage of using a single Gaussian is that the mean and variance are directly available.

5.4. Bayesian loss function
The derivation of the loss function from Section 3.3.1 is extended in order to accommodate an uncertainty
over the network weights w. The observation model is still the same as in eq. 3.6 and is

𝑝(𝑡|𝑥,w, 𝛽) =∏𝒩(𝑡 |𝑦(𝑥 ,w), 𝛽 ) (5.1)

where the target value is assumed to be Gaussian distributed with the network output 𝑦(𝑥,w) as mean
and 𝛽 as precision. Introduced here is a second assumption, namely that the weights w are themselves
also Gaussian distributed:

𝑝(w|𝛼) = 𝒩(0, 𝛼 I) (5.2)

Here 𝛼 is the precision (inverse variance) parameter of the weights.
In a fully Bayesian approach prior distributions over the hyperparameters 𝛼 and 𝛽 would be intro-

duced, and predictions would marginalize over both the weights and these hyperparameters. Here, 𝛼
and 𝛽 are set to specific values that are learned directly from the data (Empirical Bayes). For a general
Neural Network this still leads to an intractable integral due to the non linearity in the likelihood. There-
fore the posterior distribution is approximated by a single Gaussian around a (local) maximum of the true
posterior, known as the Laplace method. A second assumption is made that the posterior distribution
has small variance compared to the characteristic scales of w, which allows retaining only the linear
terms of a Taylor expension of the network around the (local) maximum.

Rewriting Bayes Theorem with the definitions from equations 5.2 and 5.1:

𝑝(w|𝑡, 𝛼, 𝛽) = 𝑝(𝑡|w, 𝛽)𝑝(w|𝛼)
𝑝(𝑡|𝛼, 𝛽) (5.3)

The resulting posterior following from this is:

𝑝(w|𝑡, 𝛼, 𝛽) ∝ 𝑝(w|𝛼)𝑝(𝑡|w, 𝛽) (5.4)

𝑝(w|𝑡, 𝛼, 𝛽) ∝ 𝒩(0, 𝛼 I)∏𝒩(𝑡|𝑦(𝑥,w), 𝛽 ) (5.5)
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Substituting the general form of a Gaussian distribution gives:

𝑝(w|𝑡, 𝛼, 𝛽) ∝ 1
(2𝜋𝛼 ) / 𝑒

w w
2𝛼 ∏ 1

(2𝜋𝛽 ) / 𝑒
(𝑡 − 𝑦(𝑥 ;w))

2𝛽 (5.6)

To find a maximum of this posterior it is convenient to instead maximize the logarithm of the posterior:

𝑙𝑛(𝑝(w|𝑡, 𝛼, 𝛽)) ∝ 𝑙𝑛(√ 𝛼
2𝜋) −

𝛼
2w w+∑ 𝑙𝑛(√ 𝛽

2𝜋) −∑
𝛽
2(𝑡 − 𝑦(𝑥 ;w)) (5.7)

Rewriting and dropping constant terms leads to:

𝑙𝑛(𝑝(w|𝑡, 𝛼, 𝛽)) ∝ −𝛼2w w− 𝛽2 ∑(𝑡 − 𝑦(𝑥 ;w)) (5.8)

This is equivalent to the penalized least squares error function 3.14 where
𝛼
𝛽 = 𝜆. Therefore it can be

optimized similarly using for example stochastic gradient descent to find the weights corresponding to a
(local) maximum of the posterior, namely w . These resulting weights still depend on the chosen 𝛼
& 𝛽 and the initial configuration of w.

5.5. Evidence framework
In the previous section 𝛼 and 𝛽 are assumed to be fixed values. The evidence framework is implemented
to iteratively approximate better values for these hyperparameters. This is a type of model selection,
where a model with a higher evidence is considered to more naturally explain the data, as the evidence
represents the probability of producing the dataset.

5.5.1. Computing the evidence
As discussed previously, marginalizing over 𝛼, 𝛽 and w is intractable, and the Laplace approximation is
applied. This results in:

ln(𝑝(t|𝛼, 𝛽)) ≈ −𝛼2w w− 𝛽2 ∑(𝑡 − 𝑦(𝑥 ;w)) − 12 ln |A| +
𝑊
2 ln𝛼 + 𝑁2 ln𝛽 +

𝑁
2 ln(2 ∗ 𝜋) (5.9)

where t is the complete set of target values, and 𝑊 the total number of parameters in w. As a result
of the approximation using a single Gaussian around a local mode, this equation is only valid at w .
The evidence is based on the dataset, and the approximation of the BNN will be increasingly accurate
and can therefore be used as a convergence criteria for the complete BNN.

Computing 5.9 is not straightforward. The computation of the determinant |A| requires computing
its eigenvalues. When A is not positive-definite, negative eigenvalues can occur. Therefore accurately
findingw is crucial. However even when at w the Hessian matrix is very sensitive to small eigen-
values which can be difficult to determine accurately. An eigenvalue smaller than zero corresponds to
a posterior weight uncertainty exceeding the prior uncertainty, which does not make sense. Eigenval-
ues below a certain threshold are therefore omitted from the computation of |A|. Other studies found a
similar behaviour and have similarly put a threshold or neglected any negative eigenvalues [45, 46]. In
Appendix C.3 a more detailed study is performed on the eigenvalues. A threshold on the eigenvalues
is set to omit any eigenvalues below 1𝑒 .

5.5.2. Updating the hyperparameters
Based on the evidence framework the hyperparameters can be updated, for the full derivation the reader
is referred to [32]. The error function is defined as:

𝐸(x,w, 𝛼, 𝛽) = −𝛼2w w− 𝛽2 ∑(𝑡 − 𝑦(𝑥 ;w)) − 12 ln |A| +
𝑊
2 ln𝛼 + 𝑁2 ln𝛽 +

𝑁
2 ln(2 ∗ 𝜋) (5.10)
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The aim is maximizing Eq. 5.9 with respect to 𝛼, and to do so the second order derivatives of the error
function are required, this is the Hessian H. The eigenvalue equation is defined:

𝛽Hu = 𝜆 u (5.11)

Based on the eigenvalues, the effective number of parameters 𝛾 is computed:

𝛾 =∑ 𝜆
𝛼 + 𝜆 (5.12)

where 𝑊 is the number of network parameters, equal to the rows or columns in H. Again, eigenvalues
below 1𝑒 are omitted from 𝛾 (equivalent to setting 𝜆 = 0). This is then used to update 𝛼 & 𝛽.

𝛼 = 𝛾
w w

(5.13)

𝛽 = 𝑁 − 𝛾
∑ (𝑡 − 𝑦(𝑥 ;w ))

(5.14)

After updating 𝛼 & 𝛽 the posterior has changed, and a new w has to be found.
In a standard neural network it is common to run a predefined number of epochs to find w . Here

after updating 𝛼 & 𝛽 the weights are likely to already be closer to the next w and therefore a con-
vergence criterium is used instead based on the gradients of w. For these gradients to be comparable,
batch gradient descent is used as explained in Section 3.3.3. As is evident from eq. 5.12 & 5.14 the
number of samples𝑁 needs to be greater than the network size𝑊 to ensure𝑁−𝛾 > 0. This is analogous
to having more equations than unknowns when solving a system of linear equations. This effectively
couples the sizes of the network and dataset, with practical consequences for when sampling is per-
formed sequentially as in BO. After updating the hyperparameters, the gradient descent algorithm for
updating the weights should be reset.

5.6. Predicting new outputs
Once several iterations have been ran and 𝛼 & 𝛽 have converged the network is considered to be
trained and can be used to obtain a normal distribution for any output. The mean is the network output,
𝑦(𝑥 ;w ). The variance is computed via the following steps:

First the matrix A consisting of second order derivatives of the posterior (eq. 5.8) is computed. A
does not depend on 𝑥 and can therefore be computed once at the end of training.

A = −∇∇ ln𝑝(w|𝑡, 𝛼, 𝛽) = 𝛼I+ 𝛽H (5.15)

Where I is the Identity matrix of equal size as H. For each 𝑥 the gradient to the output with respect
to the weights is computed:

g = −∇w𝑦(𝑥 ,w)|w w (5.16)

This gradient is computed for each output y separately, and used to compute the variance.

𝜎 (𝑥) = 𝛽 + g A g (5.17)

Using this variance a 95% confidence interval can be determined as 𝜇±2𝜎. The general scheme of the
Bayesian Neural Network using the Laplace approximation is presented in Figure 5.2. An example of a
trained network is given in Figure 5.1. The network can have any number of input and output parameters.
The convergence criteria for finding w is w , , and the convergence criteria for the hyperparameters
𝐸𝑣 is based on the evidence, both are defined in Appendix C.1.

5.7. Implementation
The BNN is implemented using the Jem/Jive C++ library [8] and an existing NN framework [10]. Three
different methods of computing the Hessian have been implemented, the outer product approximation,
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Figure 5.2: General scheme of a Bayesian neural network using the Laplace approximation. The ’find w scheme’ is equivalent
to training a standard neural network as presented in Figure 3.6.

the finite differences approximation and an exact computation. The exact computation of the Hessian
is used. A comparison between the methods is provided in Appendix C.2. The influence of different
values of 𝛼 & 𝛽 is studied in the following section.

Different weight initialization schemes are presented in Paragraph 3.2.2, here they are initialized with
mean 𝜇 and a variance based on the number of incoming and outgoing connections from that layer [29].
Iteratively adjusting the weights to find 𝑤 happens using Batch gradient descent. The framework
used is the ADAM scheme, an algorithm for first-order gradient-based optimization of stochastic objective
functions. The initial values for this algorithm are as recommended by Kingma and Ba [47].

5.8. Output uncertainties
Hyperparameter 𝛼, as defined in eq. 5.2 represents the precision of the weights. It functions similar to
𝜆 for a penalized least squares error function, to prevent the network from overfitting. Hyperparameter
𝛽, as defined in eq. 5.1 represents the precision (or certainty) of the outcome. The uncertainty (𝛽 ) in
the output represents two possible causes. The first is the network not being fully trained, and there-
fore giving uncertainty in prediction values. The second possibility arises from the intrinsic noise in the
dataset. For a fully trained network of sufficient size the 𝛽 term will more closely resemble the noise in
the original dataset. The second term in eq. 5.17 represents the uncertainty of the network away from
training data.

The different terms are visualized in a test case with a dataset containing a number of peaks. The
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training data contains 83 points, and is predicted using a BNN with a single hidden layer of 27 nodes,
resulting in 81 network parameters. The initial 𝛼 value is selected at 1𝑒 , w , = 2𝑒 , and 𝐸𝑣 =
1𝑒 . The training is presented in Figure 5.3. At several points before updating the hyperparameters
the prediction of the network at its current state is presented in Figure 5.4, where the plots correspond
to the points from Figure5.3.

Figure 5.3: The hyperparameters and evidence during training of a BNN. A, B and C represent different converged points, and
correspond to the plots in Figure 5.4.

This demonstrates that due to the low initial value of 𝛼, the network is allowed high complexity. During
further training it reduces this complexity as it increases the evidence. Furthermore, the second term,
g A g, clearly shows to increase away from training data. Around 𝑧[0] = 1.2 there are no training
points, but due to the significant difference in training data around it this second term still gives low
values.

5.9. BNN Results
There are several factors the training of a BNN can be impacted by. The ADAM parameters used for
updating the weights are kept at their recommended values. Other parameters are the initial hyperpa-
rameters 𝛼 & 𝛽, the convergence criteria w , & 𝐸𝑣 and the network size and activation function.

The initialization of the hyperparameters is mostly about finding the ratio between them. It is chosen
to keep the initial 𝛽 constant at 𝛽 = 0.5, and study the effect of different initial 𝛼 values. A low initial 𝛼
allows the model to find a ’good’ fit before being ’punished’ on complexity. The convergence criteria both
influence the results significantly and are studied further. The network size is constrained by 𝑊 ≤ 𝑁
(discussed in 5.5.2), where the number of network weights for a single output is𝑊 = (𝑁𝑜𝑑𝑒𝑠 +2) ∗
𝑁𝑜𝑑𝑒𝑠 +1. For a given problem 𝑁𝑜𝑑𝑒𝑠 is fixed and when the number of samples 𝑁 is limited,
𝑁𝑜𝑑𝑒𝑠 is maximized while satisfying the constraint. No significant difference between sigmoid
and the hyperbolic tangent activation function was found. Due to different initialization of weights, each
configuration can still vary in outcome.

The performance of the configurations is measured with three quantities, namely the resulting evi-
dence, the final 𝛽 value and the computation time. From a data oriented point of view, only the evidence
should be considered. For the case of optimization, this cannot be done as is illustrated by a model with
a high evidence in Figure 5.5.

For this reason, the final 𝛽 value is included in the results, and a low value suggests an underfit
network. Finally, the computation time is measured. The values are compared on four different datasets.
All datasets are subsets of a single dataset obtained using brute force computation on a micromechanical
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(a) Result at training point A

(b) Result at training point B

(c) Result at training point C

Figure 5.4: BNN output at different points during training corresponding to Figure 5.3. The terms in equation 5.17 are separately
plotted. As increases, the complexity of the network decreases to find the simplest model. As increases, the overall uncertainty
decreases.
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Figure 5.5: BNN surrogate model with a high evidence, but of no interest for optimization due to a final . . While a low
itself is not necessarily a problem, it is linked to an underfit model and an almost constant variance. The used parameters are:

, w , , .

model reduced to 1 dimension using a VAE, from Section 4.4. These subsets are:

• Full: The full dataset, 𝑁 = 573.
• 1_10: every 10th sample of the full dataset, 𝑁 = 57.
• 1_5: every 5th sample of the full dataset, 𝑁 = 114.
• Expl: The full dataset manually modified to cluster data, 𝑁 = 83.

First 𝛼 & w , are altered with a fixed 𝐸𝑣 on several datasets and the results are presented
in Figures 5.6 - 5.12. The datasets are presented with a fitted BNN next to them in Figures 5.7 - 5.13.

Figure 5.6: Parameter study for the Full dataset with varying configurations. The network
contains 60 hidden nodes ( ). . For models whose points are missing
from the plots, w was not found in epochs and the training was stopped. Result
w , has a computation time 9292 seconds and is cut-off for visability.

Figure 5.7: Resulting network pre-
diction for the Full dataset:

, w , &
. Final . .

Before studying the results it should be noted that the numerical values cannot be compared between
the different datasets. The computation time per epoch scales with both the number of samples and the
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Figure 5.8: Parameter study for dataset 1_10 with varying configurations. The network
contains 18 hidden nodes ( ). . For models whose points are missing
from the plots, w was not found in epochs and the training was stopped.

Figure 5.9: Resulting network pre-
diction for dataset 1_10:

, w , &
. Final . .

Figure 5.10: Parameter study for dataset 1_5 with varying configurations. The network
contains 37 hidden nodes ( ). . For models whose points are missing
from the plots, w was not found in epochs and the training was stopped.

Figure 5.11: Resulting network pre-
diction for dataset 1_5:

, w , &
. Final . .
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Figure 5.12: Parameter study for the Expl dataset with varying configurations. The network
contains 27 hidden nodes ( ). . For models whose points are missing
from the plots, w was not found in epochs and the training was stopped.

Figure 5.13: Resulting network pre-
diction for the Expl dataset:

, w , &
. Final . .

size of the network, leading to significant differences. For dataset 1_10, 𝑁 is relatively small leading to𝑊
being severely constrained and many results are not able to capture the non-linearity in the data, leading
to a low final 𝛽. If samples are added to obtain the 1_5 dataset, the network is less constrained without
the dataset showing more non-linearity and a higher 𝛽, but to capture this significant computational
effort is required. For the Full dataset, even when𝑊 < 𝑁 the BNN fully captures the behaviour, showing
redundancy in the dataset and the network size is no longer an active constraint.

After around a value of 1𝑒 , decreasing 𝛼 has no significant influence on model selection apart
from leading to a higher 𝛽 in the Expl dataset. For all datasets, 𝛼 = 1𝑒 gives the highest evidence,
however this comes at the cost of either a decrease of 𝛽 or a significant increase in computation time,
analogous to Figure 5.5. The evidence tolerance 𝐸𝑣 is altered for fixed 𝛼 & w , on the 1_5
dataset, and the result shown in Figure 5.14. The difference in evidence is not significant compared to
changes in 𝛼 , as long as it is not chosen too low to prevent long computation times. Not included in
the graph is that for a low 𝐸𝑣 the hyperparameters can start oscillating at every update.

The formulas for re-estimating the hyperparameters are equivalent to equations derived by Expec-
tation Maximization (EM) [32]. For EM it is proven that after every update the evidence must increase,
which is not always observed during training of the BNN in this thesis. This discrepancy might be caused
by the eigenvalue computation, or not being close enough to w , and puts doubt on the exact value
of the evidence.

The results on the datasets are shown above in the Figures 5.7,5.9,5.11 & 5.13, and show that
the network is able to accurately represent different datasets. When a network cannot attain sufficient
complexity (i.e. when a model mostly explained by noise is obtained), its number of nodes should
be increased up to the limit 𝑊 = 𝑁. Further sampling therefore allows the network to increase in
complexity. In this thesis the number of samples is kept at a minimum, therefore the result of 1_5 is the
most important. Based on the parameter studies, for the rest of this thesis the parameters are selected
as 𝛼 = 1𝑒 , w , = 5𝑒 and 𝐸𝑣 = 1𝑒 .
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Figure 5.14: Parameter study for the 1_5 dataset for varying . The used parameters are: , w , .
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6 Bayesian optimization
The variational autoencoder reduces the dimensionality to a lower dimensional space. Finding the op-
timum within this reduced space requires an optimization method that ideally finds its global optimum
with as little function evaluations as possible. A gradient-based method is likely to find a local optima
in the reduced space, and a heuristics based method would require many function evaluations. Instead
Bayesian optimization (BO) is used, where based on a limited number of initial samples a Bayesian
neural network is trained. The prediction mean and variance can be combined to ignore regions where
the network is sure the optimum isn’t. Instead it can iteratively add informed samples in regions with
high potential of containing the optimum.

6.1. Overview
Bayesian optimization (BO) is an approach to optimize problems with objective functions that are deemed
too expensive to compute extensively. BO is designed for black-box derivative-free global optimization
[48]. BO algorithms typically involve two primary components. The first is a method for statistical infer-
ence, generally a Gaussian process. In this case the Bayesian neural network presented in Chapter 5 is
used. In theory Bayesian neural networks scale linearly with the number of data points instead of cubic
for Gaussian processes. The result of this statistical inference is a prediction model with a mean and a
variance. The second component, the focus of this chapter, is the acquisition function.

Based on the posterior distribution of a statistical inference model an acquisition function is created.
When maximized, this acquisition function gives the next point in the design space to evaluate and add
to the samples. It expresses a trade-off between exploring regions with high uncertainty, and exploiting
regions with high mean values (even in high-certainty regions). Typical Bayesian optimization thus is
summarized by iteratively adding points by computing the posterior distribution and then maximizing the
acquisition function to add a new data point. This general overview is presented in Algorithm 3.

Algorithm 3 Bayesian optimization overview
Input: n initial samples of function 𝑓 to be optimized

Exploration parameter
Output: Global optimum of 𝑓

1: while i < budget do
2: Determine the posterior distribution based on current samples of 𝑓
3: Maximize the acquisition function to find new point 𝑥
4: Evaluate 𝑓(𝑥 ) and add to current samples
5: end while
6: Return 𝑥 for the maximum 𝑓(𝑥 )

6.2. Expected improvement
There are many types of acquisition functions, some created for specific applications and some more
generally applicable. A non-exhaustive list includes expected improvement, probability of improvement,
entropy search, predictive entropy search, knowledge-gradient and upper confidence bound [48]. Here
one of the more common types, namely the expected improvement (EI) acquisition function, is consid-
ered.

𝐸𝐼(𝑥) = 𝔼𝑚𝑎𝑥 (𝑓(𝑥∗) − 𝑓(𝑥 ), 0) (6.1)
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where 𝑥∗ are the proposal parameters, each one corresponding to a different EI value. 𝑓(𝑥 ) is the
current known best function evaluation, and therefore stays constant during a BO iteration. The expected
improvement can be analytically derived using integration by parts resulting in [49]:

𝐸𝐼(𝑥) = 𝛿Φ(𝑍) + 𝜎(𝑥∗)𝜙(𝑍) (6.2)

where
𝛿 = 𝜇(𝑥∗) − 𝑓(𝑥 ) (6.3)

𝑍 = {
𝛿

𝜎(𝑥∗) if 𝜎(𝑥∗) > 0
0 if 𝜎(𝑥∗) = 0

(6.4)

and Φ and 𝜙 are the cumulative distribution function and probability distribution function of a unit Gaus-
sian distribution, respectively.

Figure 6.1 shows a contour plot of EI based on different values of 𝜎 and 𝛿. The value of 𝛿, as in
Equation 6.3, is the expected difference in quality between the proposed point and the best previously
evaluated point. The EI increases both for a better optima and for a higher uncertainty.

Figure 6.1: Exploration characteristics of ( ). Light blue corresponds to low EI values, purple to high EI. For increasing values
of (uncertainty) and (quality of improvement) the EI increases.

6.3. Exploration versus Exploitation
A typical resulting acquisition function based on a trained surrogate model is presented in Figure 6.2.
In regions with few samples, a high uncertainty is observed in the prediction model. Regions of high-
uncertainty and regions of high-mean both lead to peaks in the EI acquisition function. To get more
control over the focus of either exploring regions of high-uncertainty, or focussing on regions with a
lower uncertainty but a higher mean value, an additional parameter can be added to Eq. 6.3:

𝛿 = 𝜇(𝑥∗) − 𝑓(𝑥 ) − 𝜉 (6.5)

The parameter 𝜉 determines the exploration versus exploitation trade-off. For higher values of 𝜉,
regions of high-uncertainty get prioritized in the EI acquisition function.

In Figure 6.3a the EI is presented for 𝜉 = 0.5, which is still relatively similar to the original result of 𝜉 =
0.0. When 𝜉 is further increased to 10.0 however, as visualized in Figure 6.3b, only the high-uncertainty
region gives a peak. Jasrasaria and Pyzer-Knapp [50] provide an insightful discussion on including 𝜉 as
a hyperparameter, and introduce a model dependent formulation based on the mean variance. Between
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(a) The BNN network prediction. The highest obtained sample is at
𝑥 = −0.77, the predicted peak at this optimum is close to the predicted
peak at 𝑥 = 1.16. Around 𝑥 = 2.0 there is no available data resulting
in a large uncertainty of the prediction.

(b) The Expected Improvement acquisition function. Three main
peaks are observed, two near values of high-mean prediction, and
one in a high-uncertainty region.

Figure 6.2: The result of a statistical inference model, and the EI acquisition function derived from it.

these plots the numerical values of the EI change significantly, however the magnitudes in these plots
should not be compared with each other and the only goal is to find the optimal 𝑥 value for its own
specific 𝜉.

For the same prediction model, many acquisition functions have been computed with varying lev-
els of 𝜉, and are plotted together in Figure 6.4 with the function color representing the EI value. This
demonstrates how the EI function changes from exploitation to exploration with an increase of 𝜉.

In Bayesian optimization, generally several iterations are performed of creating a prediction model,
maximizing the acquisition function, evaluating the real function, and retraining the prediction model
as presented in Algorithm 3. The exploration parameter 𝜉 can be varied during these iterations. For
example it can be opted to initially start with high 𝜉 values to explore the uncertain regions, before
moving to lower 𝜉 values that focus on exploiting the function to obtain its maximum.

Depending on the function and the initial sampling, the number of iterations one should focus on
exploring before moving to exploiting can be unclear. Therefore a cyclic scheme can be adopted, where
each cycle consists of several exploration iterations with high 𝜉 followed by several exploitation iterations
with low 𝜉. Many of these cycles can be performed, and the BO scheme can be considered converged
when the optimum has not improved after a number of cycles.

In order to plot the functions as is done in this section, the EI improvement function is computed for
a large number of points along the x-axis. As each computation is relatively cheap, this is still feasible.
However when the optimization function consists of multiple dimensions, brute-force computing the EI
for every point becomes infeasible, and maximizing the EI function requires an optimization strategy. It
can for example be opted to use a genetic algorithm for this purpose, which will be introduced in Chapter
7. Furthermore the EI acquisition function only provides useful predictions when the prediction model
performs well.
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(a) The Expected Improvement acquisition function for 𝜉 = 0.5. The
optimum is the same as in plot 6.2b, but the peaks in areas of high
uncertainty have increased relatively.

(b) The Expected Improvement acquisition function for 𝜉 = 10.0. With
a high exploration parameter the focus of the BO is fully on exploring
regions of uncertainty.

Figure 6.3: The EI results for different values of . With an increasing value, the importance of improvements to the mean
decreases relative to the importance of potential improvements in regions of high-uncertainty, represented by large values.

Figure 6.4: The resulting EI curves for varying values of for the same statistical inference model presented in Figure 6.2. The
EI is represented by the color, and the maximum for each parameter is presented. The values are normalized for each individual
value of . Note that the y-axis is not to scale.

6.4. Example result
An example result with several iterations of BO is presented in Figure 6.5. A cyclic 𝜉 parameter is
used, varying between 50.0, 10.0, and 0.001. The values for each iteration are included in the figure
title. 4 initial points are used, each figure shows the data points obtained up to the current iteration,
the prediction, the EI curve, and the actual computed function point. Between iterations the prediction
model, the Bayesian neural network, is retrained.
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Figure 6.5: Several iterations of Bayesian optimization. The current available data points are included, as well as the network
prediction and the (normalized) Expected Improvement at the bottom of each plot. The green vertical line represents the found
optimum where the sample is added.
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7 Genetic algorithms
A genetic algorithm (GA) is a metaheuristic optimization method. Where the neural networks presented
earlier are inspired by the brain, genetic algorithms are also inspired by nature with the process of natural
selection. It simulates a population over several generations with the aim of maximizing the fitness by
selecting the fittest individuals.

Genetic algorithms do not require gradient information, optimize the global design space, and perform
well in areas where a single function evaluation is relatively cheap as generally many evaluations are
required. This is not the case for the optimization problem considered in this thesis. However, this
makes them well suited for maximizing the acquisition function in Bayesian optimization, which is cheap
to evaluate. The original design space is thus first encoded in a lower dimensional space. A prediction
model is trained to create a computationally cheap surrogate model in this reduced space, and the GA
presented here is used to optimize this surrogate model.

7.1. Algorithm overview
A genetic algorithm (GA) is a type of evolutionary algorithm introduced in the 1970s [3]. It is a heuristic
search method, usually applied to optimize nonlinear functions, inspired by the process of natural selec-
tion. GA’s are generally relatively easy to implement and have been used in a wide range of optimization
problems. Since its first use, many variations and different types of GA’s have been developed. Here a
basic GA is introduced and implemented.

The goal of the numerical optimization is to find the parameters x inside the design space that max-
imizes a function 𝑓(⋅).

𝑦 = 𝑓(x) (7.1)

Initially a number of points in the design space are generated within defined boundaries, either randomly
or in some other way spread throughout the design space. Each point x is considered an individual,
and is evaluated to compute the actual function value 𝑦. Based on the function value, the fitness of each
individual is computed. What follows is a process of selection where individuals with a high fitness are
selected to create offspring. The offspring is created via a process of crossover, where the chromosomes
of individuals are combined to form the individuals of the next generation. The idea behind this process
is to search the design space in promising (high-fitness) areas. This process is repeated throughout
multiple generations to iteratively find better solutions. This process is described in algorithm 4. A GA
does not use derivative information about the function and is generally applied for nonlinear functions that
are relatively cheap to evaluate. Several random processes occur within a GA, and it is not guaranteed
to converge to a global optimum. On the other hand, it is less sensitive to local optima and provides a
set of candidate solutions with a single run.

Algorithm 4 Overview of a simple genetic algorithm
1: Create an initial population of individuals
2: Evaluate the fitness of each individual
3: while not converged do
4: Select the fittest individuals
5: Create offspring using crossover to form a new population
6: Evaluate the fitness of each individual in the new population

Some common terminology of GA’s is introduced to assist the upcoming section on the implemen-
tation of a GA:
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• Individuals: An individual represents one ’entity’, it corresponds to a point 𝑥 in the design space
associated with a value for the objective function 𝑓(𝑥 ) used to compute its fitness relative to the
rest of the population. It is generally given an encoded representation referred to as chromosome.

• Fitness: The fitness of an individual is computed based on its associated value of the objective
function 𝑓(⋅), such that higher function values correspond to a higher fitness. The fitness deter-
mines the probability of being selected for crossover, the equivalent of creating offspring.

• Chromosome: A chromosome is an encoding of an individuals input value that allows for multiple
individuals to be ’combined’ to form offspring. A range of different types of chromosomes is possi-
ble, examples being binary values, continuous values or letters. A common simple representation
is as a binary value.

• Population: The population is the set of individuals that make up the current generation.

• Generation: Generations are analogous to iterations of the whole population. To iteratively find
better individuals, multiple generations are performed where each population is created as off-
spring from (high-fitness) individuals of the previous generation.

• Selection: Selection is the process with which the fittest individuals of a population are selected to
create offspring. Different types of selection are possible such as fitness proportionate selection,
rank selection, tournament selection and elitism selection.

• Crossover: Crossover is the method used to combine chromosomes of selected individuals to
form chromosomes for individuals of the next generation. Many types of crossover exist, largely
depending on the type of chromosome used. For chromosomes using binary values, commonly
used types of crossover are (N-)point crossover and uniform crossover [51].

7.2. GA implementation
A GA is implemented with the aim of finding the point in a multi parameter design space that maximizes
a function evaluation. The design space consists out of continuous values, and is encoded in a binary
chromosome. In this encoding the space is discretized based on the number of bits in the chromosome.

7.2.1. Encoding
Converting a numerical design space value between 𝑥 and 𝑥 into a chromosome of length 𝑙 discretizes
the design space into 2 points. Any chromosome of bits can be converted into its binary value 𝑏 with

range 0 to 2 −1. This is then normalized between the boundaries: 𝑥 = 𝑥 +(𝑥 −𝑥 ) 𝑏
2 − 1 . From this

numerical value in the design space the function can be evaluated using equation 7.1. Depending on
the range of this function the outputs should again be normalized to form the fitness of the individual. For
multi-dimension design spaces this is done separately for each dimension, followed by a concatenation
of the binary representations. This process is visualized in figure 7.1

Figure 7.1: Example of 2 parameters being concatenated into a single chromosome for an individual.

7.2.2. Fitness proportionate selection
Fitness proportionate selection, also known as roulette wheel selection, is implemented to select indi-
viduals. All individuals get a probability of being selected (𝑝 ) based on the proportion of their fitness
(𝑓 ).

𝑝 = 𝑓
∑ 𝑓

(7.2)
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The selected individuals (parents) are randomly combined to form offspring. The number of selected
parents depends on the type of crossover used. For certain schemes two parents are ’interchanged’
to create two new individuals, whereas in others two parents create only one new individual. In certain
situations combining chromosomes of more than two parents can be advantageous [52].

7.2.3. Uniform crossover
A uniform crossover scheme is implemented where two parents are selected to create offspring for the
next generation. It follows from this that for 𝑃 new individuals, 2 ∗ 𝑃 individuals of the current population
should be selected. In uniform crossover, every 𝑘−𝑡ℎ bit is randomly selected from the 𝑘−𝑡ℎ bit of one
of the parents. Uniform crossover does not guarantee the binary value of offspring to be in-between that
of its parents, as can easily be imagined with two parents 100 and 010 producing offspring 110 or 000.

7.2.4. Mutation
After crossover is performed, a small probability of a random flip of bit is introduced, termed a mutation.
In the case that the 𝑘 − 𝑡ℎ bit in both parents is the same, a mutation at this point could mean that the
offspring still has the opposite bit here. This is analogous to a mutation in biological DNA.
Where crossover promotes new individuals to explore high-fitness areas, mutation can be used for
exploring unexplored regions. There is no consensus on the ideal mutation rate. Where some suggest

a rate of mutation of
1
𝐿 , with 𝐿 being the length of the chromosome [53], often times this rate should be

tuned together with other hyperparameters.

Figure 7.2: Example of two selected individuals undergoing uniform crossover to generate an individual in the next generation.
Followed by a mutation in the new individual.

In this thesis, optimization problems with different levels of dimensions and different lengths of chro-
mosomes will be used, leading to very different mutation rates. In an attempt to make the mutation rate
between problems more comparable, an effective mutation rate is computed based on the length of the
chromosome:

𝑚 = 𝑚 × 𝐿 = 𝑚 × 𝐷 × 𝐿 (7.3)

where 𝑚 is the mutation rate and 𝐿 is the total length of the chromosome computed by multiplying
the dimensionality 𝐷 with the length per dimension 𝐿 . The effective mutation rate now provides the
probability of a mutation in an individual, rather than per bit. It is not claimed here that two different
lengths of chromosomes with the same effective mutation rate behave the same, this has not been
studied. Instead the purpose of defining it this way is to provide a ballpark figure on the number of
mutations when comparing two different optimization problems
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7.2.5. Elitism
To prevent loss of the fittest individuals (elites), some of the fittest individuals can automatically be
selected into the next generation without applying a mutation. This process is known as elitism. Elite
individuals should still be included in crossover to allow for exploring the surrounding region it.

7.3. GA Results
To illustrate how a GA works in practice and to be able to compare different parameters, an analytical
function is created wich is optimized using a GA.

𝑦 = sin(4𝜋𝑥+3)+𝑐𝑜𝑠(2𝜋𝑥)+13(2−𝑥 )+1.5 (ℋ(𝑥 + 0.7) −ℋ(𝑥 + 0.5))+2.3 (ℋ(𝑥 − 1.4) −ℋ(𝑥 − 1.5))
(7.4)

Where ℋ represents the Heaviside function. This function is highly non-linear and has multiple local
maxima. The global optimum is at 𝑥 = 1.4.

The fitness 𝑓 of an individual 𝑖 is computed without prior knowledge of this function by normalizing
the function values based on all values in the current population:

𝑓 = 𝑦 − 𝑦
𝑦 − 𝑦 (7.5)

where 𝑦 and 𝑦 are the lowest and highest y value of the current population respectively. This way the
least-fit individual has 0 probability of being selected. Optionally an additional term can be introduced
for an exploration focussed fitness 𝑓 :

𝑓 , = 𝑓(1 − 𝑓)𝜁 (7.6)

where 𝜁 is an exploration parameter between 0 and 1. The least-fit individual now has a 𝜁 probability of
being selected compared to the fittest individual. Unless mentioned, 𝜁 is 0.

The performance of a GA with a population size of 20 individuals, 2 elites and a mutation rate of 0.01
is given in Figure 7.3. In this case the initial population has an individual two individuals very close to
this optimum, however one has a much higher fitness than the other. If the right-most individual would
not have been there, there is a significant probability that a different local optimum would have been
found.

7.3.1. Model selection
To compare the influence of different hyperparameters, many GA’s have been trained to optimize the
function in Eq. (7.4). With a chromosome length of 12, a mutation rate of 0.0833 would give an effective
mutation rate equal to 1. Each GA is created such that a total of 160 function evaluations would be
required (ignoring elitism). In a full optimization a convergence criteria could be applied to stop the GA
after the optimum did not increase for a number of generations. As a baseline comparison, the result
of creating random samples is presented in Figure 7.4. GA’s with different configurations of population
size, number of generations, elites, and mutation rate are evaluated 10 times. An example result for
a single configuration is plotted in Figure 7.5. From the maxima of these different runs the mean and
standard deviation are taken, and the results for each configuration are presented in Figure 7.6.

A much more extensive parameter study could be performed here including many different functions,
but that is not the main goal of this study. The main trends observed are expected to carry over to all
functions. In all cases, some form of elitism results in increased performance. With elitism, having
some mutation rate increases the performance. A high mutation rate with some elitism is almost equal
to generating random samples and the result is similar to that of Figure 7.4. The average population
fitness decreases significantly as the mutation rate increases, further supporting this. A small population
for many generations leads to less optimal results unless a high mutation rate is selected, giving similar
results to random. No significant difference is observed between 𝜁 = 0.0 and 𝜁 = 0.2.

From this result it can be concluded that some mutation and elitism is beneficial for optimization. The
mutation rate should be kept relatively small to prevent the population from being near random, and the
average population fitness can serve as an indication for this.
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(a) Generation 0 (b) Generation 1 (c) Generation 2

(d) Generation 3 (e) Generation 4 (f) Generation 5

(g) Generation 6 (h) Generation 7 (i) Generation 8

Figure 7.3: Example of the result of the GA, starting from a random population for 8 generations. The population contains 20
individuals with a chromosome length of 12. A mutation rate of 0.01 is applied and 2 elites are selected each generation.
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Figure 7.4: Generating 160 random
samples and plotting the best gives a
single dot. This is done 100 times and
the mean and standard deviation
are given.

Figure 7.5: The maximum and average of 10 runs of a GA all with the same param-
eters, for different random initial populations. The GA properties are 10 generations
with a population size of 16, 2 elites and a mutation rate of 0.10. The average shows
a clear increase and all runs get close to the maxima, leading to a small variance in
obtained optimum.

Figure 7.6: Results of GA performance for varying parameters, each configuration performed 10 times to get a mean and standard
deviation. Both the maximum (continuous) and average (dashed) are plotted. Parameters altered are the number of generations,
population size, mutation rate, number of elites, and . The effective mutation rates are: . , . , . , . , . , . .
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8 Framework results and
discussion

In this chapter all individual techniques introduced in the previous chapters are combined into a single
framework. This framework is used in optimizing the arrangement of fibers in a microstructure to maxi-
mize mechanical performance. This is a problem with many variables and where for each evaluation a
Finite Element simulation is required.

The framework uses Bayesian optimization (BO) in the latent space of a variational autoencoder
(VAE). BO consists of a Bayesian neural network (BNN) and the expected improvement (EI) acquisition
function. This acquisition function is maximized using either a grid search for a one-dimensional latent
space or a genetic algorithm (GA) for a higher-dimensional latent space. This complete scheme is
presented in Figure 8.1.

Figure 8.1: Full scheme of the optimization framework. The full design space x with dimensionality is encoded in a -
dimensional latent space z where using the variational autoencoder. A prediction model, here a BNN, estimates z,
and is transferred to an acquisition function . This function (dimensionality ) can be optimized using a genetic algorithm,
further encoding the z space into a binary representation. When the objective function is computed, the VAE decoder network is
used.

After an explanation of how the experiments are run, the results of the framework are presented.
The results are compared to a number of alternative optimization techniques.

55



The methods are first compared on an analytical function where the overall performance is measured.
Following this, they are applied in optimizing the fiber geometries.

8.1. Design of experiments
The aim of the experiments is to demonstrate the performance of the various optimization methods. Both
high and low dimensional problems are considered. The optimization techniques used as comparisons
are a gradient based method, namely the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, a GA
and applying BO in the full space.

8.1.1. Optimization problems
Aiming to demonstrate the capabilities of the various techniques, multiple optimization problems have
been defined. To study the overall performance of the methods, two analytical problems are used for
which function evaluations are computationally cheap, the gradients are easily evaluated, and the opti-
mal solution is known. Both of these have a two-dimensional full space, but they have varying levels of
complexity. Following the analytical functions, the mechanical problem introduced in Chapter 2 is opti-
mized. First a 2-fiber case without morphing (a 4-dimensional problem) is studied. Here the influence
of randomness and hyperparameters in the framework is studied. This is followed by a 5-fiber case with
morphing, resulting in 15 dimensions, with an additional focus on the mechanical properties.

8.1.2. L-BFGS-B
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [1] is an efficient gradient based non-linear
optimization algorithm. Here a limited memory (L-BFGS) version is used that can also handle box (L-
BFGS-B) constraints. An implementation from SciPy, an open source Python library for scientific com-
putation, is used.

The L-BFGS-B implementation is used to optimize in the full design space. When the design space
has many local optima, the initial starting point of L-BFGS-B has a significant influence on its result,
making a comparison to global optimization techniques difficult. It is therefore opted to consider an en-
semble of L-BFGS-B optimizations as a single optimization run, starting from a Latin hypercube (briefly
explained in Appendix D). The L-BFGS-B method requires the gradients to be computed at every eval-
uated point. For the mechanical problem, the gradients can not be derived analytically. Approximating
the gradients using a finite difference scheme proved inconsistent even for small step sizes, it is sus-
pected that this is due to small changes in geometry causing discrete changes in the meshing but not
further studied. For this reason the L-BFGS-B method is not applied on the mechanical problems. For
the analytical functions the gradients are derived up to machine precision using automatic differentiation
implemented using the TensorFlow Python library.

8.1.3. Genetic algorithm
For the GA a single run provides multiple candidate optima within the global design space. The hyperpa-
rameters are based on findings of the GA parameter study from Chapter 7, and are presented together
with the results. The initial population is created randomly. The number of samples should increase
exponentially to maintain equivalent density for an increase in dimensions. This however is infeasible,
resulting in the populations of higher-dimensional optimization problems having a severly lower den-
sity compared to low-dimensional optimization problems. The GA is considered converged when the
optimum has not improved in 10 consecutive populations.

8.1.4. Bayesian optimization in full space
Bayesian optimization (BO) in the full space creates a surrogate model using the Bayesian neural net-
work (BNN) based on an initial dataset. The expected improvement acquisition function based on this
prediction is maximized using a GA. Both BO and the GA require exponential scaling of their initial
samples when the dimensionality increases to maintain equal density, but this is infeasible. For higher
dimensional problems this could lead to sub-optimal prediction models, and the GA not finding the global
EI optimum. Recall that this manifestation of the curse of dimensionality is what motivated the hybrid
VAE-BO framework in the first place. As a compromise, the initial samples of the BNN are instead se-
lected in a Latin hypercube manner. BO is performed in cycles, where each cycle a number of iterations
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are performed in the order of the following exploration 𝜁 values: [50.0, 50.0, 10.0, 10.0, 0.5, 0.001,
0.001], the effect of different values is studied in Section 6.3. When the optimal point has not changed
in three consecutive cycles the BO scheme is considered converged.

During training it was observed that often the prediction model with the highest evidence had a very
low complexity, associated to a low 𝛽 value. As it is known that the considered functions do not have
any noise, this 𝛽 is bounded to a minimum of 0.1. This results in allowing a higher network complexity,
even if it leads to models with lower evidence. This is a pragmatic choice made in order to enable the
optimization procedure. A different problem observed during the results was the BNN update getting
stuck and failing to converge tow . Although a more thorough investigation is required, it is suspected
that this is a consequence of some weights being very small. Dividing the gradients by these low weights
therefore results in too high values to reach convergence. This problem is remedied by consideringw
to be reached if the number of epochs reached 3𝑒 more than that of the previous w convergence.

When a datapoint is added using BO, the BNN can update its prediction by retraining, that is finding
w again starting from w of the previous iteration. Retraining generally requires less computa-
tional effort compared to starting with a random weight initialization. However, as discussed in the results
of the BNN, the number of parameters in the BNN should be as close as possible to its bound, which is
the number of samples. As samples get added, the BNN network size is therefore increased by adding
nodes to its hidden layer. This requires the BNN training to be reset. For networks with small initial
sizes (i.e. 1-4 initial hidden nodes based on 4-16 initial samples) the network size is increased as soon
as possible. For larger initial networks (i.e. ≥ 20 initial hidden nodes based on ≥ 100 initial samples),
this restarting is delayed to when 3 hidden nodes can be added simultaneously, reducing computational
effort.

8.1.5. Bayesian optimization in reduced space

BO in a design space reduced by a variational autoencoder (VAE) aims to reduce the issues of the
scaling of the initial BO samples and the difficulty in finding the optimum of the EI. In a single dimension,
the EI is simply maximized using exhaustive grid search as it is computationally cheap to do for a single
dimension. For more than one dimension, it is maximized using a GA similar to BO in full space. The
rest of the arguments and settings presented in the previous section on BO in the full space also hold
for the reduced space.

8.1.6. Initial sampling

If a 1-dimensional design space is sampled at 4 points, a 15-dimensional design space requires 4 =
1073741824 samples for equal density. This is the problem that has motivated the work in this thesis,
but still provides difficulties in using consistent comparisons to the alternative optimization methods.
The variational autoencoder is also still susceptible to this exponential growth in number of samples.
There are several possible ways of addressing this issue. One option is to use a budget, that is a fixed
number of iterations, where each optimization technique is stopped when this budget is reached. In
high-dimensional optimization problems for the optimization techniques that scale with dimensionality,
this could result in all samples being required in the initial sampling, and no real optimization taking place.
Alternatively, one can opt to allow the techniques that scale with dimensionality to use more samples,
ideally in a consistent way relative to the lowest sampled method. Given the exponential nature this can
in practice result in the sampling still being significantly less then required for equal density compared to
the lowest dimension. Still, using more samples likely increases the performance of those techniques,
and the results can than be used to assess the differences in obtained optimum as well as the differences
in required evaluations. It is opted to use this second method. In high-dimensional problems where the
ideal case cannot be realised, the number of samples is taken as large as possible while being feasible
for computation in this thesis.
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8.2. Analytical function
The optimization methods are compared on an analytical benchmark function. It is opted to use Shubert
3 [5], a continuous non-linear non-convex function:

𝑓(x) = 𝑓(𝑥 , ..., 𝑥 ) =∑∑𝑗𝑠𝑖𝑛((𝑗 + 1)𝑥 + 𝑗) (8.1)

Where n can be any number of dimensions. This function is chosen due to its many local minima.
The function is also continuous, allowing the gradients to be evaluated straightforwardly. By using this
benchmark function many evaluations can be performed with cheap computational effort. The variables
in this function are independent. A common boundary for which to optimize this function is [−10.0, 10.0],
as is visualized for two dimensions in Figure 8.2. Within this boundary it has 3 global optima, the
number of local optima also scales exponentially with a higher base value. To compare the various
optimization techniques on different complexities of optimization functions, the function is optimized in
two domains. Here considered to be the complex case is between [−10.0, 10.0], and a simpler case by
limiting the boundary to [−1.5, 0.0] for every variable. This simpler case has a single global optimum
and is presented in Figure 8.3. Both functions are optimized for two dimensions. For 2 variables, the
minimum of this function is: −29.6733337. For consistency with the results of maximizing the mechanical
performance later in this chapter, the results for this analytical case are presented as maximizing the
negative objective function.

Figure 8.2: Two dimensional design space for the Shubert 3
function to be minimized, bounded between [ . , . ], blue
and red correspond to a low and high function value respec-
tively. The function has 9 equal global optima.

Figure 8.3: Two dimensional design space for the Shubert 3
function to be minimized, limited to [ . , . ], blue and red
correspond to a low and high function value respectively. The
optima is at . for both variables.

8.2.1. Simple case
The simple case has four local optima, and a single global optimum. The results using all discussed
optimization methods are presented in Figure 8.4. Starting at Figure 8.4a, the result using the gradient
based method L-BFGS-B is given, where each curve represents the best result of the maximum of
an ensemble of 10 runs starting at different initial points. With 𝑥 curves on the plot, the problem was
therefore optimized 10𝑥 times, from 𝑥 Latin hypercube configurations. Based on the objective function
in Figure 8.3, it can understood that any parameter starting in the area between around [−1.5, 0.5] finds
the minimum. The probability of both variables starting in this space is significant, and with 10 initial
starting points always reached. The average required function evaluations for the combined 10 runs is
67.1. The GA, presented in Figure 8.4b, also reliably finds the optimum in the 100 runs performed. As

58



the GA starts with more initial samples, the optima in the first generation are already relatively high. It
requires a significant amount of evaluations, on average 491, to converge to its optimum. BO in the
full space also reliably finds the optimum, with on average 106.1 function evaluations. The additional
training time of the BNN is on average 307.4 seconds. It finds the optimum with relatively few iterations,
but requires several more iterations to converge.

When applying BO in the reduced space of a VAE less initial samples are used, as the dimensionality
is also lower. All runs use a separate VAE trained on 512 samples, the average training time of which
is 335 seconds. The BNN training time is on average 2702 seconds. The latent space for every VAE is
optimized within 𝑧 = [−2.5, 2.5]. It is observed that the optimum is not reliably found, which can result
from the VAE not capturing the optimum of the full space, the BO not capturing the optimum of the
reduced space, or a combination of both.

(a) Result of 100 BFGS ensembles, where each consists
of 10 individual BFGS runs.

(b) Result of 100 GA runs, for clarity only 10 are plotted.
The mean improving indicates that it is not simply sam-
pling many random points. The number of evaluations is
initially 16, with 14 added every generation.

(c) Results of BO applied in the full space. 16 initial start-
ing points are used, every iteration adds a sample.

(d) Result of BO applied in a reduced space from 2 to 1
dimensions using a VAE. 4 initial starting points are used,
every iteration adds a sample.

Figure 8.4: Results of the different optimization methods on optimizing the Shubert 3 function for two variables within the domain
of [ . , . ]. The optimum is considered found, and added to the reliability, when a run finds a position within . of the known
optimum.

In this case the BFGS reliably finds the optimum with the minimum function evaluations. The GA
takes a considerable amount of generations to converge, leading to a high number of evaluations. The
BO predicts the optimum relatively quick as well. The combination of BO and a VAE does find a much
better solution compared to its starting point, but does not reliably capture the optimum.
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8.2.2. Complex case
While the dimensionality of any optimization problem plays a significant role in the ability of optimization
schemes to find the optimum, a different important factor is the complexity of the design space. The
Shubert 3 function between bounds [−10.0, 10.0] has the same optimal value as the simple case, but
has many more local optima. Similar settings for the optimization techniques are used as for the simple
case. In addition, the techniques using BO have an extra case where their number of initial samples is
matched. The level of complexity of a function to be optimized is generally unknown beforehand.

The results of the optimization methods are presented in Figure 8.5. Compared to the simple ana-
lytical function the performance of all methods decreases significantly. The result of BFGS, in Figure
8.5a, indicates that the ensemble of 10 runs is no longer sufficient to reliably find the global optimum.
Furthermore, there are more evaluations required before convergence. The GA performance is the most
reliable of all the optimization techniques as presented in Figure 8.5b. In 69 out of 100 evaluations it
finds the optimum. The number of evaluations has decreased compared to the simple function. BO in
the full space performs significantly worse compared to the simple case. This likely is due to the BNN
not able to make accurate predictions based on the sampling. Any prediction can therefore lead to a
near random sample being added. With less samples the results even seem to be better, but this is
likely do to randomness and would vanish when more runs are performed. Drastically increasing the
number of initial samples is expected to allow the BNN to create more accurate predictions. However
this would require a prior knowledge of the complexity of the function, and this is not studied here.

Similar to the other methods, the result when adding a VAE is also significantly worse compared to
the simple case. Increasing the number of initial samples to match that of the GA and BO does not
provide a significant difference. Similar to the BO, it is expected that if the number of samples were to
be increased drastically there would be a noticeable difference.
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(a) Result of 100 BFGS ensembles, where each consists
of 10 individual BFGS runs with initial points determined
using a Latin hypercube.

(b) Result of 100 GA runs, for clarity only 10 are plotted.

(c) Results of BO applied in the full space based on 5
initial starting points, to be comparable to the sampling
of the 1D VAE case.

(d) Results of BO applied in the full space based on 16
initial starting points.

(e) Result of BO applied in a reduced space from 2 to 1
dimensions using a VAE based on 4 initial points.

(f) Result of BO applied in a reduced space from 2 to
1 dimensions using a VAE based on 16 initial points to
compare to the 2D BO case. The improvement during
training is minimal.

Figure 8.5: Results of the different optimization methods on optimizing the Shubert 3 function for two variables within the domain
of [ . , . ]. The optimum is considered found, and added to the reliability, when a run finds a position within . of the known
optimum.
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8.3. Mechanical 2 fiber optimization
An arrangement of two circular fibers is described using their coordinates, leading to a 4-dimensional
design space. This is still a relatively low number of dimensions, and serves as an introduction to a more
complex fiber geometry. This section aims to study the influences of randomness in different parts of
the optimization technique. As discussed earlier, the BFGS method is not applied due to the inability to
accurately compute gradients.

8.3.1. Genetic algorithm
A genetic algorithm is used to optimize the 2-fiber mechanical problem. This is done six times for a
single set of GA settings. The parameters used are presented together with the results in Figure 8.6.
The GA converges to nearly the same optimum for all iterations, and shows a significant improvement
compared to the average in the initial population. This further demonstrates that there is something to
be gained from optimizing the mechanical performance.

Figure 8.6: The result of six different GA optimization studies. While there
is a significant difference between optima in the initial population, all GA’s
converge to nearly the same optimum. The increase of the mean of the
population indicates that it is not simply trying random configurations.

Figure 8.7: Resulting fiber arrangement for each
GA run before processing. Having 2 fibers side by
side with equal spacing is apparently the optimal
geometry. As a consequence of this, there are
many local optima .

Based on all GA’s having converged to nearly the same optimum, and the similarity of optimal fiber
geometries in Figure 8.7, it is likely that the global optimal solution is having two fibers horizontally aligned
with maximum space in between. This solution can be achieved with many possible combinations in the
full space, and the reliability of the GA in finding it is 6/6. The reliability of finding the optimum, and the
increase of the mean of the population of each run indicate relatively well defined GA settings.

8.3.2. Full Bayesian optimization
In determining the number of initial samples when applying full BO, the same logic is applied as for the
analytical case resulting in 4 = 256 samples. Six runs are performed, with the only difference between
the runs being the initialization of the samples. The performance of all runs is presented in Figure 8.8. It
is not as reliable as the GA in finding the optimum. Furthermore the training time of the BNN is significant,
making BO only valid for problems where the functions themselves are expensive as well.

8.3.3. Bayesian optimization with a variational autoencoder
To explore the randomness in the various parts of the proposed framework, several combinations of runs
are performed as presented in Table 8.1. Configuration A serves as the base case, and in configurations
B to E individual parts of the framework are altered to show the difference. Based on the observed
results of these configurations, two additional properties have been found of interest which are studied
in configurations F and G.
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Figure 8.8: The result of six different Bayesian optimization runs in a 4-dimensional design space. With the number of initial
samples being large, the maximum of the initial samples is relatively high. It is not reliable in finding the optimum.

Configuration Latent dimensions VAE training data BO initial sampling BNN initialization
𝐴 1 VAE 1 𝒟 w
𝐵 1 VAE 1 𝒟 w
𝐶 1 VAE 1 𝒟 w
𝐷 1 VAE 2 𝒟 w
𝐸 2 VAE 3 𝒟 w
𝐹 1 VAE 1 𝒟 w
𝐺 1 VAE 1 𝒟 w

Table 8.1: The variations of VAE+BO configurations used for optimizing the 2-fiber optimization problem. The initial samples 𝒟
are created using a Latin hypercube. The BNN initialization w represents all network parameters.

VAE-1
Several combinations use the same variational autoencoder, VAE-1. It is trained using using the param-
eters given in Table 8.2. The result of the possible fiber positions in the full space is visualized in Figure
8.9 which demonstrates a loss in the design space. The performance during training is presented in
Figure 8.10. The latent space is bound to [−2.4, 1.95] based on its distribution. The training is stopped
after a fixed number of epochs, there is no validation set used. The samples are created in a Latin
hypercube manner.

Parameter Value
Samples 512
Latent dimensions 1
Hidden layer nodes 300
Hidden layer activation ReLU
Training epochs 60000
Regularization 𝜆 1𝑒
Computation time 290.7 [sec]

Table 8.2: VAE-1 properties. The samples are created using a LHC.
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Figure 8.9: The result when the training data is transformed
through VAE-1. Each point represents the center of a fiber.

Figure 8.10: The reconstruction, KL and total loss during train-
ing of VAE-1. The curve no longer improving towards the end
is an indication that the VAE is sufficiently trained.

Configuration A
The first configuration of the 2-fiber mechanical problems optimizes in a design space reduced from 4
to 1 dimensions using VAE-1. 4 initial samples are used, resulting in a single hidden node. The initial
sampling and the result of the final BO iteration are presented in Figure 8.11. The hyperparameter 𝛽 and
the evidence during training are provided in Figure 8.12. The obtained optimum is significantly lower
compared to that of the GA. It is clear that the final BNN prediction does not capture the full complexity of
the dataset, and much is considered noise. With a near constant variance, the expected improvement
acquisition function is very similar to the mean prediction, favouring samples around the current best
peak. Because of this, it is likely that the VAE-1 does include a better result, but this is not captured
during BO.

Figure 8.11: The result of configuration A. In the top figure the initial data is shown, followed by the final result of BO in the bottom.
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Figure 8.12: and the evidence during training. The green lines correspond to samples being added. While the BNN aims
to maximize the evidence for each model, the model changes as the dataset changes with every point added. The evidence
decreasing is therefore not necessarily a sign of bad training. This figure also demonstrates the difference in computational effort
between training and retraining the BNN.

Configuration B
Configuration B has the same settings as A with the only difference being the initial samples used in BO.
As a result a different prediction model is trained. The initial sampling and the final results are presented
in Figure 8.13. While in total more iterations are required, the resulting optimum is nearly the same as
in configuration A. Around 𝑧 = 0.0 there is a single sample with a relatively high function value, but this
is not further sampled by the BO due to the BNN considering it to be noise.

Figure 8.13: The result of configuration B. In the top figure the initial data is shown, followed by the final result of BO in the bottom.
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Configuration C
Configuration C has the same settings as A with the only difference being the weight initialization in the
BNN. As a result a different prediction model is trained. The result of BO is presented in Figure 8.14.
Even though the prediction model is very similar, a different optimum is found with a higher objective
value. The result is still significantly lower than the result obtained using a GA.

Figure 8.14: The result of configuration C. In the top figure the initial data is shown, followed by the final result of BO in the bottom.

Configuration D
The same parameters are used for the BO scheme in configuration D as for A, but now the latent space of
VAE-2 is used. For VAE-2 all parameters from table 8.2 apply with the exception of the computation time,
which is 281.88 seconds. The difference is the 512 LHC samples are created with different randomness.
The result of the training is presented in Figures 8.15 & 8.16.

With a different latent space, the latent space objective function changes completely. The same
values are selected for the initial sampling and the prediction model, but with a different function the
result in Figure 8.17 changes significantly. The initial samples contain one sample significantly higher
than the others. Still, the rest of the space is still explored during BO. The optimum here is comparable
to that using a GA. This demonstrates that randomness in the VAE has a significant influence on the
final result.
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Figure 8.15: The result when the training data is transformed
through VAE-2. Each point represents the center of a fiber.

Figure 8.16: The reconstruction, KL and total loss during train-
ing of VAE-2. The curve no longer improving towards the end
is an indication that VAE-2 is sufficiently trained.

Figure 8.17: The result of configuration D. In the top figure the initial data is shown, followed by the final result of BO in the bottom.

Configuration E
In configuration E, a different VAE latent space with 2-dimensions is used. The training data for this
VAE-3 is exactly the same as for VAE-1. The resulting reconstructed space and the training loss are
presented in Figures 8.18 & 8.19.

By moving to a 2D latent space, 16 initial samples are used. The result at the start and the end of
BO is presented in Figure 8.20. The maximum has improved significantly, but the BNN prediction still
does not seem capable of accurately representing the data and it considers much of the data as noise.
Furthermore the points around the optimum are not extensively sampled, making it probable that the
optimum was found based on randomness more than by an accurate prediction.
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Figure 8.18: The result when the training data is transformed
through VAE-3. The fibers are presented with the different
colours.

Figure 8.19: The reconstruction, KL and total loss during train-
ing of VAE-3. The curve no longer improving towards the end
is an indication that the VAE is sufficiently trained.

Figure 8.20: The result of configuration E. In the top figure the initial data is shown and the BNN prediction, followed by the final
result of BO in the bottom. The color scales change between the plots.
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Configuration F
In the results of configurations A to E, it is argued several times that the BNN failed to capture the
full complexity of the design space, leading to poor predictions. Here the number of initial samples is
increased to 50, allowing a more complex BNN network by reducing the limitation of the data being
larger than the number of parameters. The results are presented in Figure 8.21. It is clear that the
complexity of the prediction has increased, and several potential peaks are sampled. The probability
of having found the optimum of the reduced space has increased significantly. This also demonstrates
that configuration A, B and C, which use the same VAE, fail to find the optimum.

Figure 8.21: The result of configuration F. In the top figure the initial data is shown, followed by the final result of BO in the bottom.

Configuration G
Based on the previous results, the difficulty of the optimization framework seems to come from the BNN
prediction model requiring a large number of samples. Apart from there simply being more data, this
also allows the BNN to use more parameters, as explained in Section 5.5.2. Here this constraint on the
number of parameters in the BNN is violated. The practical limitation of allowing the number of BNN
parameters to be larger than the number of samples comes from 𝛽 possibly becoming negative. As
explained at the start of this chapter, for all previous results 𝛽 is already bounded at a minimum of 0.1,
making this no longer a practical issue. Whether doing this is theoretically sound is a legitimate question
but not studied in this thesis.

VAE-1 is used again with 4 initial samples. The number of hidden nodes is fixed at 50, giving 151
BNN parameters. The result in Figure 8.22 shows no significant difference compared to the earlier
results. Although no definitive conclusions should be made from this, it indicates that the limited BNN
size is not the reason it fails to capture the optimum.

Overall
As every considered case has different settings, most cannot be compared directly. To present the
results similar to that of the full BO and the GA, all configurations are combined in a single plot in
Figure 8.23. The results show that even with few samples the optimum is improved. In cases A to
E, the maximum objective after initial sampling is on average 114.4. With 51 additional BO samples
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Figure 8.22: The result of configuration D. In the top figure the initial data is shown, followed by the final result of BO in the bottom.

Figure 8.23: The result of all configurations with respect to the number of function evaluations.
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this is increased to 122.5. The region with the highest function value in the initial sampling is generally
the region BO found the final optimum. This results from the data being complex, leading to many
predictions giving a near random result. Cases D and E show that there is potential for the framework
to find a good optimum with very few function evaluations, but the reliability is very poor. Where the
computation time of a GA itself is redundent, the computation time of the methods using a VAE and
BO are not, as presented in Table 8.3. This training time is independent of the computational effort of
a function evaluation. It also shows that significantly less samples are used compared to BO in the full
space and the GA. The fiber geometries are not provided but for the results with a high objective value
are similar to those of the GA.

Configuration Total number of samples VAE training time [sec] BNN training time [sec]
𝐴 45 291 52.39
𝐵 79 291 571
𝐶 52 291 85
𝐷 53 282 147
𝐸 58 284 160
𝐹 127 291 29160
𝐺 39 291 1981

Table 8.3: The computation time for the different configurations. The significant increase in computation time of configuration F
results from the poor w convergence criteria, and instead relies on the additional epoch criteria. The training time of
configuration G results from having many more network parameters.

8.4. Mechanical 5 fiber optimization
A scenario is created with 5 morphing fibers, leading to a 15-dimensional optimization problem. Similar
to the two fiber case, the gradients could not be computed and therefore no gradient based method
is used. A genetic algorithm, Bayesian optimization in the full space, and Bayesian optimization in a
reduced 1-dimensional space are used. The fiber radius is decreased compared to the two fiber case
as more fibers are used.

8.4.1. Genetic algorithm
6 runs using a genetic algorithm are performed. The chromosome length per dimension is reduced
from 12 to 8 bits. While this reduces the resolution of the GA, the discretization step size is 2 =
1
256 = .003906, the performance increases by having 2/3 of the parameters, and therefore requires
less function evaluations. The result is provided in Figure 8.24. The GA requires a significant amount
of generations before converging. Furthermore, a significant increase in maximum obtained stress is
observed compared to the 4-dimensional case. The fiber geometry presented in Figure 8.25 makes the
reason for this evident. The fibers are arranged such that a continuous feature is created from the top
to the bottom of the RVE. This is similar to shifting from a series of springs to having parallel springs,
drastically changing the stiffness of the model. The stress strain curve for this configuration is given in
Figure 8.26, showing an almost linear relationship. While this is likely the optimum for the optimization
problem as it is defined, it is unlikely that this geometry will perform good in practice, but this is outside
the scope of this thesis. It is suspected that the function is not continuous between a geometry with a
small gap and one with such a continuous geometrical feature.

8.4.2. Bayesian optimization
Applying Bayesian optimization in this 15-dimensional design space is not straightforward. Where in
4-dimensional case 4 = 256 samples are used, an equivalent sampling here leads to 1073741824
samples. As this is not feasible and probably also not required as BO itself samples regions of uncer-
tainty, the number of samples provided to the full BO scheme is 512 based on the available computation
time within this thesis. Apart from the BO sampling, also the GA for maximizing the EI is affected. It is
set to a population size of 200, 6 elites, and an effective mutation rate of 0.9, performing significantly
more evaluations than the GA used in the example above. The results are presented in Figure 8.27.
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Figure 8.24: Results of a genetic algorithm on the 5-fiber case. A significant number
of generations are required before convergence.

Figure 8.25: The mesh of the fiber geome-
try with the highest function value found by
a GA.

Figure 8.26: The stress strain relationship for the geometry presented in Figure 8.25, which indicates that an almost linear relation
is found. This also indicates that the result of this particular optimization study is dependent on the strain level.

Since no optimization is happening, it is likely that the BNN fails to make accurate predictions. The initial
sampling includes fiber arrangements in which the top and bottom of the RVE are connected, as without
this the objective would definitely not reach above 200 [N/mm ]. Imagining most of the samples having
an objective value of around 130, with one or a couple of outliers around 2000 makes it easy to imagine
that the prediction model considers much of the samples as noise.

8.4.3. Bayesian optimization with a variational autoencoder
The number of samples for training the VAE is kept at 512, making it the same number of samples as
the BO is trained on. Based on the results of previous sections, it can be expected that when reducing
the dimensionality from 15 to a single dimension the complexity of this latent space becomes immense.
The results are presented in Figure 8.28. Noticably, 4 out of the 6 runs find a configuration where a
continuous fiber is created from the top to the bottom of the RVE. As only a single dimensional space
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Figure 8.27: Results of Bayesian optimization on the 5-fiber
case in the full 15-dimensional design space. It is initialized with
512 samples. No improvement is made during training, indicat-
ing that the BO is unable to make sensible predictions.

Figure 8.28: Results of Bayesian optimization in a reduced de-
sign space from 15 to a single dimension. Each run has a sep-
arately trained variational autoencoder, and are initialized with
4 BO samples. Note that a different y-scale is used compared
to Figure 8.27.

is optimized, the effect of such a significant difference between different samples on the BNN prediction
can be visualized and is shown in Figure 8.29. It shows that in order for the BNN prediction to capture
the high function value, the prediction in other regions becomes worse. The space around the optimum
also does not seem continuous.

The values of the optima are significantly lower compared to those captured by the GA and BO in
the full space, even if that last one is only the result of random sampling. The network prediction plots
indicate that the high-function samples are not predicted, but instead randomly found. When such a
region is found however, the BNN attempts to sample around it and in several cases finds a similar
geometry with an even higher value. The number of samples used is less than 2 generations of a GA.

Figure 8.29: The training data and BNN prediction for a zoomed in region of the latent space. Both figures display the same
moment during training, the difference being the y-axis scaling.
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8.5. Discussion
The result of the the simple analytical function showed that the method presented does not reliably
find the global optimum as a result of the VAE not having any function information. Still, based on less
initial samples it is able to optimize the results quite a bit. With having the gradients available directly, the
BFGS method performs significantly better, having both less function evaluations and reliably finding the
optimum. When the dimensionality stays the same, but the complexity of the design space increases, all
methods perform worse. BO in the full space is no longer able to reliably create an accurate prediction,
neither is BO in a reduced design space. This demonstrates that the complexity of a function matters.

Based on the optimal results for the 2-fiber configuration, the objective function is believed to contain
many parameter combinations with an equivalent global optimum. This optimum is believed to be found
for all 𝑥 and 𝑦 where 𝑦 = 𝑦 and |𝑥 − 𝑥 | = 0.5. This means the problem solved is actually a 2-
dimensional problem, as an optimum can be found with 1 fiber being fixed.

In any framework, ideally the same global optimum is found regardless of random initialization. It is
however shown to be dependent on the training of the VAE, the initialization of the BO and the initial-
ization of the weights. The area around the best initial sample in latent space is exploited further and
the BO does explore other regions as well, however this exploring is generally not enough to find all
potential regions. This results from the BNN considering much of the difference between samples as
model noise, resulting in a near constant variance. When more initial samples are used to the extent
where much of the shape is already defined, the BO scheme is able to explore several peaks. The
performance based on a single run is better than that of the average when applying BO in the full space.
This should be studied further to see if there is an advantage in reducing the dimensionality and using
less samples, but without reducing the number of samples with the same order as the design space.

One factor that makes it difficult to draw conclusions from the results is the settings of the various
methods. If the hybrid VAE BO is set to require much more cycles before being considered converged,
it would automatically lead to a more densely sampled space and a therefore likely a better result. A
similar criteria is the number of generations and the population size in a GA, which by default set the
GA up to use more samples compared to the other methods considered.

The 5-fiber case exploited the defined optimization problem by finding a solution with little practical
value, but that otherwise makes sense mechanically. It provides interesting insight on the microme-
chanical problem being solved, as the continuous fiber arrangement effectively blocks the formation of
a plastic localization band. The GA was still relatively reliable here. BO in the full space however was
unable to perform any optimization. The combination of a VAE and BO was able to find better results
during training, although this probability is also higher due to having sampled less. Its optima were still
lower than those in the random initialization of the full BO, but at the same time much less evaluations
are performed. The BO methods required a significant amount of additional training time which scales
with the number of samples used, favouring problems with very expensive function evaluations.

Based on all results it is shown that reducing the dimensionality using a VAE increases the complexity
of the latent space to the point where reducing the number of samples with the same dimensionality does
not provide good results. However it can not be concluded that reducing the dimensionality is worse
in all cases. More studies are required to set up experiments specifically aimed at the density of the
sampling in the reduced space.
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9 Conclusion and
recommendations

9.1. Conclusions
This thesis investigated the performance of a combination of a variational autoencoder (VAE) and Bayesian
optimization (BO) in optimizing high dimensional problems, with the aim of separating the high-dimensionality
from the expensive function evaluations. The framework of methods was demonstrated by optimizing
analytical functions and by optimizing the geometry of fibers in a microstructure to maximize mechan-
ical performance. The problem has been generalized by releasing constraints on the geometry of the
fibers using a custom meshing procedure. Starting from the basics of a neural network, a variational
autoencoder and Bayesian neural network have been introduced. The Bayesian neural network using
the evidence approximation was extended to Bayesian optimization, and a genetic algorithm has been
implemented. The methods used in the framework have beed studied individually on the influence of
user defined parameters (hyperparameters) on their performance. Based on these studies informed
choices are made for the settings when all methods are combined. The results have been compared to
a gradient based method (BFGS), a genetic algorithm (GA), and BO in the full design space. The per-
formance of the complete framework is discussed in the first research question, followed by the answers
to the sub-questions.

How does Bayesian optimization on a reduced design space compare to conventional
optimization methods in the quality of the optima and the required computational effort?

To summarize, the drawback of this method in optimizing a high-dimensional design space where
every configuration is valid is that it is unlikely to find the global optimum. However, with some addi-
tional problem independent computational cost, optimization is possible with significantly less function
evaluations than other methods. Results are promising, but whether this gain makes it a favourable
optimization method are inconclusive. The result depends on many factors which are discussed further.

In reducing the dimensions of the design space using the variational autoencoder, part of the design
space is lost. This loss increases as the factor between the original and reduced dimensions increases.
Although the training of the variational autoencoder does not require expensive function evaluations,
its training time does still scale with the number of samples and therefore does not fully get rid of the
problem of high-dimensionality.

Applying Bayesian optimization in the reduced space provided poor results when the number of initial
samples was very low and the full design space already contained many local optima. In such cases,
the Bayesian neural network (BNN) predicts most of the local optima as noise in the data. This partly
results from the BNN being optimized to maximize the evidence, favouring simple models that explain
the data. It is also affected by the level of regularization of the variational autoencoder, more investigation
is required in studying this relation.

The region around the point of the initial sample with the highest function value was generally ex-
plored more and lead to some optimization with little function evaluations, but other regions were not
sufficiently explored given the difference between datapoints. For a 2-fiber example, the maximum ob-
jective after on average 6 initial samples was 114.4 [N/mm ], which improved to 122.5 [N/mm ] using 51
BO iterations. Using more samples, but still significantly less compared to the amount in the full space
showed promise, but is not studied enough to draw conclusions. Initializations in both the VAE and in
BO influenced the results significantly. The influence of the VAE is directly related to the loss in design
space. The BO influence is expected to decrease with a better prediction model. For larger datasets, the
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training time of the BNN increased significantly, adding a computational cost to the optimization scheme
independent of the function computation time. The framework used therefore becomes increasingly
attractive as the computational effort per function evaluation increases. The obtained results are en-
couraging, but still inconclusive.

The type of problem used in this thesis is one where every parameter is always relevent for the result.
Other types of problems exist with large amounts of data and a vast number of parameters that describe
much less underlying features. These features could be captured in the latent space of the VAE, making
optimization feasible. For these problems the proposed framework could provide better results.

Do geometric properties of fibers in a fiber reinforced polymer microstructure influence
mechanical properties?

In running random configurations of fiber geometries, a significant influence on the maximum stress at a
strain of 0.1 in uniaxial tension is already observed. The optimization study further confirmed this, and by
comparing the difference in the average and optimized result it is shown that there is a significant possible
gain from optimization of microstructure mechanical properties. In a 2 fiber study, this maximum stress
is on average 108[𝑁/𝑚𝑚 ], while an optimum fibre arrangement gives 136[𝑁/𝑚𝑚 ], a 26% increase.

For a 5-fiber arrangement, the optimum was found by creating a continuous fiber connection between
the top and bottom of the representative volume elment, exploiting the definition of the optimization
problem. In practice, such a microstructure is unlikely to perform well, as more failure mechanisms and
load cases considered.

Can the optimal solution be used to inform future engineering design decisions?

Based on the observed result, the 2-fiber arrangement should be placed tangential to the load direction
in uniaxial tension to maximize the strength of a FRP microstructure. The extent to which this micro-
scopic optimization transfers to macroscopic structures requires further investigation. Furthermore, as
generally multiple load cases apply, this feature is unlikely to be as relevant in actual structures. Nev-
ertheless, there is no intrinsic limitation in the present framework, which would be equally applicable
for more complex loading. For the 5-fiber arrangement, a very good result is observed but which does
not translate into practice. So while this case is unlikely to be used, it does however demonstrate the
possibility for solutions that provide surprisingly good results and are easily generalizable.

What are the costs and benefits of reducing the dimensionality of a design space for finding an
optimal solution?

A reduced parameter space has significant advantages for optimization, and the variational autoencoder
has been used to create it. As the number of possible configurations increases exponentially with the
number of dimensions, dimensionality reduction leads to a significant reduction in possible configura-
tions and therefore computational effort. There are several drawbacks to this. The first disadvantage
is that part of the original design space is lost, and with that a probability of not including the global
optimum. Secondly, the reduced space has an increased complexity, making optimizing that dimen-
sion more difficult and likely requiring more sampling, reducing the initial gain. A further drawback is
the training of the variational autoencoder, adding computational effort. The training of the VAE is still
susceptible to the problem of high-dimensionality, as the required number of samples still grows expo-
nentially. This results in the training data potentially missing features of the original design space. In
problems where only a small subset of the full design space leads to valid outcomes, the usage of the
VAE is closer to its more common application of generating images and its performance could increase.

To which extent does Bayesian optimization reduce the computational effort in finding the
optima within the reduced space?

With the reduced space containing many local optima, a significant number of evaluations will be re-
quired with any method. This depends on the complexity of the original design space and the variational
autoencoder. While Bayesian optimization uses very little function evaluations, in the results it does not
reliably find the optima of the reduced space, making any comparison difficult. The performance of other
methods in finding the optimum of the reduced space requires further investigation.
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Can a Bayesian neural network be effectively used for Bayesian optimization?

The results of a simple analytical case show that the BNN is able to create accurate predictions and an
uncertainty in its predictions to effectively perform BO. When having a more complex function, the BNN
prefers simple models, often leading to predictions with little change in its mean, and having a constant
high uncertainty. As a result of this the variance of the network was not sufficient for BO to explore the
appropriate regions, resulting in the final optimum found being near the optimum found during the initial
sampling.

How do the hyperparameters and randomness in the initialization of methods influence the
resulting optimum?

It has been demonstrated using parameter studies for each individual component of the framework
that some of the hyperparameters have a significant influence on its performance. For the VAE the
regularization 𝜆 determines the extent to which the reduced space covers the original design space. In
the BNN, the convergence criteria pose a trade-off between an accurate model and computation time.
For BO, the exploration parameter is changed iteratively. For the GA, using elitism and a mutation rate
increased performance, but optimum values are problem dependent.

Randomness is a part of every method used in the framework. In the VAE it is in the initial data
set and network parameters. In the BO scheme it similarly is in the initial samples and the network
parameters of the BNN. The randomness in the VAE results in a very different possible optimum for
each configuration. The randomness in the BO scheme should in theory not influence the optimum of
the reduced space, but does as a consequence of the BO performing sub-optimally.

9.2. Recommendations
Based on the work in this thesis, several recommendations are presented for further work on the topic
of high dimensional optimization. The recommendations are split into solving issues with the current
methodology and extending the framework to increase reliability or reduce computational effort. Fur-
thermore a recommendation considering the optimization of microstructures is made, and several types
of optimization problems are discussed where using a variational autoencoder is promising.

9.2.1. Increasing current performance
Several recommendations are made with regards to increasing the performance of the framework as it
is provided in this thesis.

Alternative prediction methods
A serious limitation of the framework proved to be the capability of the network to distinguish complexity
in a function from noise. An alternative prediction method could be used. There exist many methods for
making predictions based on observations, from different types of Bayesian neural networks to Gaussian
processes and sampling techniques such as the ensemble Kalman filter. Investigating these and other
models on whether they make better predictions could improve the framework.

Minimizing complexity in the variational autoencoder latent space
Currently the VAE is trained to minimize the loss in its reconstruction capabilities. Minimizing this loss is
related to increasing the complexity of the design space. Simultaneously the latent space is regularized
to follow a specific distribution. While this regularization also influences the complexity of the design
space, it is not its main purpose. It could be studied if an additional term in the loss function could
specifically reduce the complexity of the design space.

Bayesian optimization settings
In the cases demonstrated in this thesis with dimensionality reduction, the initial samples in the BO
scheme were generally less than required to make accurate predictions. While the ideal number of
initial samples depends on the complexity of the function, which is unknown, a study could be performed
where the scaling in the number of samples is varied based on the level of dimensionality reduction.

Related to this issue, the influence of different convergence criteria of the BO scheme should be
studied. For example a criteria could be included related to the level of predicted noise.
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Thorough parametric study
The parametric study of the VAE on the impact of different levels of dimension reduction is not as exten-
sive as it should have been. For example no guideline is presented on the optimal number of latent di-
mensions, even though this has a significant influence on the result. Furthermore, each parameterstudy
is performed separately. Ideally the parameters of each method are studied based on the performance
of the complete framework. In such a study several different benchmark functions should be used.

9.2.2. Extending the framework
Here possible additions to the framework are introduced that could increase its reliability and decrease
computational effort.

Bayesian optimization in a reduced design space followed by a gradient based step
Assuming that Bayesian optimization finds the optimum of the reduced space, it is unlikely to be at a
local optima of the full design space. At the same time, the BFGS result is highly dependent on the initial
starting point. This can be combined, by the VAE+BO scheme quickly finding a relatively good solution,
followed by a gradient based step to find the exact (local) optima. This is a relatively easy extension that
would increase the probability of finding the global optimum.

Batch Bayesian optimization
A significant amount of time is spent training the BNN and updating it for each new sample. This could
be adapted such that based on a trained BNN, the acquisition function is maximized for multiple values
of 𝜁 to both explore and exploit at the same time. This batch of samples is evaluated and added together,
before retraining the BNN. This would significantly reduce the BNN training time.

Informed VAE training
The current VAE is trained based on possible input data with no information of the objective values. Some
initial function evaluations could be performed to inform the training of the VAE such as to prioritize high
optimization regions to begin with. When doing this the advantage compared to applying BO in the full
space becomes unclear, but perhaps there is still a possible gain.

9.2.3. Microstructure customization
This thesis has shown that geometric properties of the micro scale can have a significant influence on
its performance. The extent to which the optimum found translates into different macroscopic behaviour
should be investigated. If it is the case that a similar gain is achievable, it could inspire further research
into manufacturing techniques that allow this level of control. It is recommended to use a much more
general mechanical property for optimization, such as the area of a yield surface. Furthermore, many
structures are currently homogenized materials. Assuming full control of the micro structure, a beam
could for example be split into different parts separately optimized. This could result in the geometry of
fibers in the top optimized for compression while the geometry in the bottom is optimized for tension,
and near the supports for shear.

9.2.4. Problems with a lot of promise
The underlying methods of the framework makes it suitable for certain optimization problems, while
for other problems different optimization techniques should be preferred. Here some situations are
presented where using a variational autoencoder can be promising, and it is recommended to study this
further.

Non-parametrizable geometries
Performing a full-order optimization is impossible in certain non-parametrizable geometries. An example
of this is a complex microstructure based on images. A convolutional variational autoencoder could be
used, similar to many existing applications of image generation, to automatically extract features from
these images into the lower dimensional design space.

Strong underlying lower dimensionality
For certain problems it is known a priori that there is an underlying lower dimensionality. The example
of images in the previous recommendation is such a case, where only the recognized features are
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relevant. In such a case neighboring pixels are highly correlated. Different examples include optimizing
performance based on a vast amount of measured temperature or wind data, or based on data from
digital image correlation. This is linked to problems for which automatic relevance determination is
used, a method which quantifies the relevance of input features.

Complex geometric constraints
Certain problems have complex geometric constraints which depend on the specific settings of other
variables. An example would be if the fiber arrangements considered in this thesis could not contain
overlapping fibers. With a dataset that only contains valid configurations, the latent space can become
unconstrained. Due to its generative ability, with the current VAE settings it cannot be guarenteed that
the latent space becomes unconstrained, and further studies are required.

Prior knowledge of high-potential regions
In problems where certain prior knowledge of high-potential regions is known, a smarter VAE dataset
could be created that increases the likely hood of the optimum being found. Many other optimization
techniques also benefit from such prior knowledge.
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A Meshing fiber
geometries

Generally scrips for creating meshes can be created relatively easily. When it is desired to allow fibers to
overlap and become one fiber, as is the case here, this becomes more complex. This appendix provides
a script for such a complex case, and some comments on what parts of the script does.

A.1. General
Running a finite element analysis requires dividing a continuous geometric space into a subdivision of
discrete cells, each with a simple geometry. Each cell has a stiffness property, used to assemble the
stiffness matrix. These stiffness properties vary for different materials. Many algorithms exist to create
a mesh from a geometric input. Here the program gmsh [26] is used. Apart from creating a mesh by
inputting from a user interface, a mesh can also be created ’automatically’ by creating a geometric script;
a specific script with a ’.geo’ extension. In this thesis this results in a Python script that automatically
writes the .geo script used to create the mesh. The mesh used in this example is given in Figure A.1.

Figure A.1: Visual representation of the mesh created. Individual clusters of fibers are coloured separately.

A.2. Implementation
A requirement for the implementation presented here is using the OpenCASCADE geometry kernel
instead of the default gmsh kernel. The advantage is that it allows boolean operations, allowing complex
operations to be performed when running the .geo file based on knowledge not available at the moment
of writing the .geo file. The resulting geo script is provided in Figure A.2, this is generated using a
separate Python script. In the first three lines the kernal and the mesh element size is set. This size
depends on the size of the RVE, here a box of 1x1 as seen in line 5. After defining the size, all fibers
are added as Rectangles with the following properties:
Rectangle(id) = Bottom left x, Bottom left y, Bottom left z, Width, Height, Corner radius;
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As can be observed, fibers that overlap the edge are duplicated with an offset of + or - 1.0 such that
they also overlap on the other side. When all these are added, the result is shown in Figure A.3. Next
in line 18 the BooleanIntersection operation is used, where all parts of the fibers and the 1x1 boundary
that overlap are stored in the ”Fibers[]” array. The results for when these parts are meshed is visualized
in Figure A.4. The opposite is done to create the matrix, using the BooleanDifference operation. The
”Delete;” tags here make sure the original fiber and box (id’s 1 to 12) are deleted. At this stage the
geometry is completed. Lines 23 to 28 make sure that the correct Ids correspond to the correct Physical
surface used to provide the material properties to the elements.

In line 30 the mesh is created, and line 31 is required to remove any duplicate nodes from where the
matrix and fibers share nodes. Finally some lines are added in post-processing to visualize the results.

Figure A.2: Example script used to mesh overlapping fibers.
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Figure A.3: Geometry after adding all fibers, related to Figure
0 in the code.

Figure A.4: Geometry after applying the BooleanIntersection
operation and meshing, related to Figure 1 in the code.
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B Neural network example

Network layout
This appendix serves as a numerical example of a simple neural network (NN). The network used con-
sists out of a single input node, a single hidden node, and a single output node as presented in Figure
B.1.

Figure B.1: Simple neural network with a single input node, a single hidden node with a sigmoid activation, and a single output
node. The output node has a linear activation function. The neurons with value 1 are the bias terms, depicted as being a part of
the weights. The in and outputs have index i, here specified as the index of the training sample.

This network is trained based on a dataset:

D = {x , t } (B.1)

In general these inputs and outputs are vectors. As in the simple example here they are both scalar
values, their boldness is dropped. The dataset is:

D = {𝑥 = 0.5, 𝑡 = 1.2}
D = {𝑥 = 2.0, 𝑡 = 0.3} (B.2)

The dataset is in this example not normalized. The weights are randomly initialized:

w = [𝑤 = 0.2, 𝑤 = 0.5, 𝑤 = −0.2, 𝑤 = 0.1] (B.3)

The equations for computing the values in hidden nodes and the output nodes are as follows:

𝑧 = ∑𝑤 𝑎 (B.4)

where the bias terms are included. This result is transformed through an activation function to form the
output of that node.

𝑎 = 𝑓(𝑧 ) (B.5)

Forward propagation
Based on the initial weights, the input can be propagated through the network using Equations B.4 &
B.5.

𝑧 = 𝑥 𝑤 + 𝑤 = 0.5 × 0.2 + 0.5 = 0.6 (B.6)

The sigmoid activation function leads to:

𝑎 = 𝑒 .

𝑒 . + 1 = 0.6457 (B.7)
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Propagating to the output node:

𝑧 = 𝑎 𝑤 + 𝑤 = 0.6457 × −0.2 + 0.1 = −0.0291 (B.8)

And as a result of having a linear activation function the output is the same:

𝑦 = 𝑎 = 𝑧 = −0.0291 (B.9)

For the second sample in the dataset the result can similarly be computed to obtain:

𝑦 = −0.0422 (B.10)

These predictions are far from their known target values, the resulting mean squared error for both is:

𝐸(x,w) = 1
2 ∑(𝑡 − 𝑦 ) = 1

2 ((1.2 − −0.0291) + (0.3 − −0.0422) ) = 1.6279 (B.11)

The goal is to minimize this mean squared error by adjusting the weights w. In stochastic gradient
descent, the error is computed and the weights adjusted per sample. In batch gradient descent this
computation is combined in a batch. How much each weight should be adjusted follows from the chain
rule of differentiation, here in the form of backpropagation.

Backward propagation
In backpropagation, the error is propagated from the output node back to the input node to compute the
gradients of each weight with respect to this output error. The quantity 𝛿 is introduced as the quantity
of the error in node 𝑗 in layer 𝑙.

𝛿 = 𝜕𝐸
𝜕𝑧 = 𝜕𝐸

𝜕𝑎
𝜕𝑎
𝜕𝑧 (B.12)

For the mean squared error function and a linear activation function this is easily computed, for the first
sample it is:

𝛿 = (𝑦 − 𝑡 ) × 1 = (−0.0291 − 1.2) = −1.2291 (B.13)

The derivative with respect to the weights in the second layer are now easily evaluated. The derivative
is:

𝜕𝐸
𝜕𝑤 = 𝜕𝐸

𝜕𝑎
𝜕𝑎
𝜕𝑧

𝜕𝑧
𝜕𝑤 = 𝛿

𝜕𝑧
𝜕𝑤 (B.14)

and recalling how 𝑧 depends on 𝑤 from Eq. B.4 gives:

𝛿( )
𝜕𝑧( )

𝜕𝑤( )
= −1.2291 ∗ 𝑎 (B.15)

𝜕𝐸
𝜕𝑤 = −1.2291 ∗ 𝑎 = −1.2291 ∗ 0.6457 = −0.7936 (B.16)

Similarly for the weight representing the bias term:

𝜕𝐸
𝜕𝑤 = −1.2291 ∗ 𝑎 = −1.2291 ∗ 1 = −1.2291 (B.17)

With the gradients with respect to the second layer known, the error is propagated back to the hidden
layer node:

𝛿 = (𝑤 𝛿 )𝜕𝑎𝜕𝑧 (B.18)

As the sigmoid activation function 𝜎(𝑥) is used, its derivative is:

𝜕𝑎
𝜕𝑧 = 𝜎 (𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥)) (B.19)

92



Resulting in:
𝛿 = (−0.2 × −1.2291) × 0.6457(1 − 0.6457) = −0.05624 (B.20)

The gradients in the first weight layer are then:

𝜕𝐸
𝜕𝑤 = −0.05624 ∗ 0.5 = −0.02812 (B.21)

𝜕𝐸
𝜕𝑤 = −0.05624 ∗ 1.0 = −0.05624 (B.22)

Giving the gradients g:
g = [−0.02812,−0.05624,−0.7936,−1.2291] (B.23)

Updating the weights happens by adding the negative gradient multiplied with a learning factor. There
are many techniques for selecting this learning factor, in this thesis the ADAM scheme is used [47]. For
a learning factor of 0.1 this results in:

w = [𝑤 = 0.2028,𝑤 = 0.5056,𝑤 = −0.2794,𝑤 = 0.2229] (B.24)

As a single sample is considered here, this would be repeated for all samples resulting in a single epoch.
For the case where only this single sample is considered, the prediction (Eq. B.9) with the new weights
would improve from −0.0291 to 0.0421 for the target of 1.2.
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C BNN details

C.1. Convergence criteria
C.1.1. w convergence criteria
Ideally, one uses second order computations to evaluate the convergence of weights. To prevent these
computations, the relative size of the gradients with respect to its corresponding weights is used instead.
This is computed as:

𝑔 = 𝑔
𝑤 ≤ w , ∣ for all i in W (C.1)

where W is the number of weights. The derivative of the posterior distribution (eq. 5.8) w.r.t. w scales
with 𝛽, and an additional term 𝛼w . It was found that scaling w , with the change in beta whenever
the hyperparameters were updated resulted in more consistent behaviour:

w , , = w , ,
𝛽
𝛽 (C.2)

The initial value of w , has a significant influence on the training, and is studied in Paragraph 5.9.

C.1.2. Evidence convergence criteria
The hyperparameters 𝛼 and 𝛽 get updated every time w has been found. In doing so, the Hessian
is computed. This is used to compute the evidence 𝐸𝑣, or marginal likelihood, of the network. This
evidence can be seen as the fitness of the network, and converges after a number of iterations. The
convergence criteria for the evidence is:

𝐸𝑣 − 𝐸𝑣
𝐸𝑣 ≤ 𝐸𝑣 (C.3)

The 𝐸𝑣 criteria influences the training of the BNN, and is studied in Paragraph 5.9.

C.2. Hessian computation
Evaluation of the posterior distribution is intractable, and is instead approximated using a Gaussian
centered at a (local) maximum of that distribution. This requires second derivatives of the log posterior,
for which we compute the Hessian of the sum-of-squares error function

𝐸 = 1
2 ∑(𝑦 − 𝑡 ) (C.4)

for which the Hessian is:
𝜕 𝐸

𝜕𝑤 𝜕𝑤 (C.5)

Different techniques of computing this Hessian are explored here. Two of these methods approxi-
mate the Hessian, namely the outer product and finite differences method. After, the exact Hessian is
presented. These methods are compared on accuracy and computation time.
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C.2.1. Finite differences
The finite differences (FD) method can easily be implemented to approximate the Hessian at any stage
during training. By making small perturbations to any weight and computing the error, gradients can be
found. The general forward differences gradient formula is:

𝑓 (𝑥) = 𝑙𝑖𝑚 →
𝑓(𝑥 + 𝜖) − 𝑓(𝑥)

𝜖 (C.6)

For a neural network, this can be extended to compute the Hessian by applying central differences to
the first derivatives of the error function, which are themselves calculated during backpropagation [32]:

𝜕 𝐸
𝜕𝑤 𝜕𝑤 = 1

2𝜖 {
𝜕𝐸
𝜕𝑤 (𝑤 + 𝜖) − 𝜕𝐸

𝜕𝑤 (𝑤 − 𝜖)} + 𝑂(𝜖 ) (C.7)

Using a small 𝜖 generally results in a very accurate Hessian. Ranging from 𝜖 = 1𝑒 to 𝜖 = 1𝑒 gave
little difference in results, and 𝜖 = 1𝑒 is used. Smaller values give problems related to the machine
precision. The network scales with 𝑂(𝑊 ) operations (𝑊 being the number of parameters in w), and
requires propagating and backpropagating twice for each element.

C.2.2. Outer product
For a single sample the Hessian written as

𝐻 = ∇∇𝐸 = ∑∇𝑦 ∇𝑦 +∑(𝑦 − 𝑡 )∇∇𝑦 (C.8)

The outer product (OP) approximation exploits the fact that the Hessian only needs to be computed
when a local optima of the posterior distribution is reached. As a consequence of this the second term
in this equation is already minimal, and is therefore ignored in this computation leading to:

𝐻 ≈ ∑𝑦 𝑦 (C.9)

For every training sample the gradients are computed and the resulting outer product is summed over all
training samples. Using this approximation does increase the importance of finding a good local mode.

C.2.3. Exact calculation
Using the values computed during backpropagation the Hessian can be evaluated exactly. The formulas
for a neural network with a single hidden layer, and therefore two weight layers, can be separated in three
blocks. Indices 𝑘, 𝑙 and 𝑚 represent the input, hidden and output layer respectively. The formulation is
then as follows: [54]

Both weights in the first layer:

𝜕 𝐸
𝜕𝑤 𝜕𝑤 = 𝑧 𝑧 (𝑓 (𝑎 )𝛿 ∑𝑤 𝜎 + 𝑓 (𝑎 )𝑓 (𝑎 )∑𝑤 𝑤 𝐻 ) (C.10)

Both weights in the second layer:

𝜕 𝐸
𝜕𝑤 𝜕𝑤 = 𝑧 𝑧 𝛿 𝐻 (C.11)

One weight in each layer:

𝜕 𝐸
𝜕𝑤 𝜕𝑤 = 𝑧 𝑓 (𝑎 ) (𝜎 𝛿 + 𝑧 𝑤 𝐻 ) (C.12)

where:
𝑎 is the value of node 𝑖.
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Figure C.1: The computation time for an exact evaluation, the
outer product approximation and the finite differences approx-
imation ( ).

Figure C.2: The average error per Hessian term for the outer
product approximation and the finite differences approximation
( ) compared to the exact evaluation.

𝑧 is the activation output of node 𝑖 (set to 1.0 when the node is a bias)
𝑓 (𝑎 ) is the first derivative of 𝑎 depending on the activation function of that node.
𝑓 (𝑎 ) is the second derivative of 𝑎 depending on the activation function of that node.
𝛿 is the kronecker-delta symbol, i.e. 1.0 when 𝑖 = 𝑖 , and 0.0 otherwise.

𝐻 ≡ 𝜕 𝐸
𝜕𝑎 = 𝑓 (𝑎 ) 𝜕𝐸𝜕𝑧 + (𝑓 (𝑎 )) 𝜕 𝐸𝜕𝑧

C.2.4. Comparison
The difference in accuracy and computation time is evaluated for the aforementioned methods. All
methods rely on computing the Hessian for each individual training sample, and then summing to get the
complete Hessian, therefore scaling linearly with respect to the samples 𝑁. A more significant difference
comes from the number of parameters 𝑊 in the network, directly influencing the 𝑊 ×𝑊 Hessian size.
A case is created with a single input node, a variable number of hidden nodes 𝐿, and a single output
nodes. The number of parameters for this network is 𝑊 = 3𝐿 + 1.

In Figure C.1 the computation time for various numbers of hidden units is presented. The OP approx-
imation requires the least computational effort. The FD method requires about an order of magnitude
more computation time. Next to the computation time, also the accuracy of the approximation methods
is studied. The absolute difference between the approximation methods and the exact calculation is
evaluated and averaged over all 𝑊 ×𝑊 elements, plotted in Figure C.2. It is clear that the FD method
provides a much more accurate approximation. During training the OP approximation becomes increas-
ingly accurate as the neglected terms decrease.

Both the OP and FD approximations are easy to implement. The OP can serve a purpose when a
quick rough approximation is required. For a more precise approximation the FD can be used at the cost
of an increase of computation time. Evaluating the exact Hessian requires more work to implement, but
once implemented there is no reason to use either of the approximation methods. It is not constrained
by requiring a local maximum to be found and does not depend on any external parameters (such as
𝜖 for FD). Updating the hyperparameters requires the eigenvalues of the Hessian. These eigenvalues
have shown to be very sensitive to the Hessian, therefore even a small error from the FD method can
lead to significant differences.

C.3. Eigenvalue computation
The Bayesian neural network requires the effective number of parameters 𝛾 as presented in 5.12 and
repeated here for clarity of the following section.

𝛾 =∑ 𝜆
𝛼 + 𝜆 (C.13)
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Here 𝛼 is the hyperparameter, a constant value here. 𝑊 is the number of rows or columns in 𝐻, equal
to the number of weights. The eigenvalues 𝜆 are computed from the Hessian:

𝛽Hu = 𝜆 u (C.14)

In the theory for this framework the Hessian is expected to be positive definite [32], meaning by
definition that all eigenvalues are positive. In the application for a neural network, this can be problematic,
since second order terms are expected to be positive only when a (local) optima has been found. In the
Laplace framework the Hessian does only need to be evaluated when a local minimum has been found.
Still, it can occur that the Hessian is not positive definite. Computing the eigenvalues exactly based
on the Hessian still results in a number of negative eigenvalues. For a typical training of a network,
the Hessian and its eigenvalues are computed once every 10 epochs, and the result plotted in Figure
C.3. The resulting prediction and the corresponding eigenvalues are presented in Figures C.4 and C.5
respectively. The network consists of 27 hidden nodes, resulting in 81 network parameters. The dataset
contains 83 samples. For this training, the hyperparameters are computed with all eigenvalues below a
threshold of 1𝑒 not considered. From eq. C.13 one can observe that this is equivalent to setting the
eigenvalue to 0.0. The end result seems sensible, and the evidence increases as expected.

The eigenvalues at the end of training are:

[−0.0007918,−0.0005479,−0.0003553,−0.0003539,−0.0003385,−0.0003285,−0.0003261,−0.0002838,−2.26𝑒 , −5.376𝑒 , −5.883𝑒 , −3.277𝑒 , −2.363𝑒 , −1.282𝑒 , −2.616𝑒 , −3.179𝑒 , 1.131𝑒 , 9.836𝑒 , 4.719𝑒 , 9.572𝑒 , 1.518𝑒 , 2.363𝑒 , 9.518𝑒 , 3.277𝑒 , 5.883𝑒 , 4.246𝑒 , 4.711𝑒 , 5.596𝑒 , 6.364𝑒 , 6.504𝑒 , 0.0001309, 0.0002112, 0.0002443, 0.0002645, 0.00055, 0.0005668, 0.0006097, 0.0006264, 0.0006606, 0.000735, 0.00076, 0.0009104, 0.001009, 0.001018, 0.001022, 0.001086, 0.001165, 0.001269, 0.001396, 0.002006, 0.002969, 0.004002, 0.005002, 0.005874, 0.007556, 0.01132, 0.01484, 0.01584, 0.02192, 0.0257, 0.03212, 0.07995, 0.08572, 0.09057, 0.09336, 0.1419, 0.4029, 0.7465, 11.35, 30.54, 34.21, 72.76, 98.19, 187.4, 191.5, 210.1, 242.3, 525.9, 938.1, 1408.0, 1948.0, 2276.0]
(C.15)

Next to the hyperparameters, the eigenvalues are also required for computing the evidence. In
particular the determinant, the product of the eigenvalues, is required. In network with redundant weights
the Hessian can be near-singular. Eigenvalues of a near-singular matrix can be in the order of machine
precision, resulting in an unreliable determinant. One option is to reconstruct the Hessian using only
those eigenvalues above a certain threshold [45].

Figure C.3: In the top plot the number of . . For all . the bottom plot gives the absolute average. The number of
negative eigenvalues decreases, and the absolute average value of negative eigenvalues also decreases to insignificant values
during training.
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Figure C.4: Network prediction at the end of training. Network with 27 hidden nodes, the dataset contains 83 samples.

Figure C.5: Hyperparameters and and the log evidence during training.
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D Latin hypercube
sampling

Latin hypercube sampling was proposed in 1979 by McKay et al. as an alternative random sampling
in computer experiments [55]. It generates near-random samples from a multidimensional distribution.
It can be imagined easily for 2 dimensions, where for N samples a 𝑁 × 𝑁 grid is created. Now the N
samples are spread in this grid such that there is only one sample in each row and column, as visualized
in Figure D.1. It is implemented here such that within the boundaries of each grid, the sample takes a
random point.

An additional step can be taken to get Orthogonal sampling, of which LHC is a subset. In Orthogonal
sampling all points are chosen simultaneously resulting in a LHC sample such that each subspace is
sampled with the same density. This is not applied in this thesis.

LHC defines a boundary for each sample with its grid, and it is implemented here such that within
those boundaries the samples are randomly chosen.

Figure D.1: Example of Latin hypercube sampling for 1 and 2 dimensions. As the dimensionality increases, the samples does not
have to increase. The example on the right shows that dimensions can have different scales.
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