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Abstract

Many techniques for array processing assume either that the system has a calibrated
array or that the noise covariance matrix is known. If the noise covariance matrix is
unknown, training or other calibration techniques are used to find it.

In this thesis another approach to the problem of unknown noise covariance is
presented. The factor analysis (FA) model is used to model the data. In order to
make the theory applicable in telecommunication and radio astronomy, the model is
extended to the case of complex numbers.

The necessary mathematical tools for estimation, detection and performance anal-
ysis are derived. The maximum likelihood estimator for the FA model in the case of
proper complex Gaussian distributed noise and signals is given. Two different iterative
algorithms for finding the MLE of the model parameters are presented. The necessary
iteration steps for an alternating least squares algorithm are also presented.

The Cramér–Rao bound for the FA model is found and the convergence of the
estimated parameters to this bound are illustrated using simulations. The improved
performance of some popular algorithms like ESPRIT and spatial filtering have been
demonstrated using computer simulations.

A general likelihood ratio test is presented as a tool to test the correctness of the
estimated parameters. An especial case of this test is presented as a constant false
alarm detector.

This thesis is an initial attempt for developing the factor analysis as a tool for signal
processing. The multivariate nature of the theory makes it a good candidate for solving
many problems in telecommunication and radio astronomy.
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Introduction 1
The electromagnetic spectrum is one of the biggest sources of information for most of the
remote-sensing and modern telecommunication problems. Be it radar, radio astronomy,
cellular communication or TV-broadcasting, the signal as received at the receiving
elements needs to be processed to fulfill some desired function. Signal processing is
the area of applied mathematics that deals with operations on or analysis of signals
in order to do useful tasks [1]. In this thesis the theory of factor analysis is studied
in relation with signal processing. This chapter addresses the motivation for the work
done and outlines the main contributions.

1.1 Motivation

Detection and estimation form the core of many signal processing problems. In many
cases the desired signal is not observed directly and must be extracted from the mea-
sured signals. In many algorithms for array processing, the array is either assumed
calibrated or the full knowledge of noise statistics is available. If the noise statistics are
not know or the array is not calibrated a more comprehensive model is needed. In mul-
tivariate analysis a signal that is not observed directly is called the latent variable and
the observed signal is called the manifest variable. The statistical model that deals with
the manifest and latent variables is called the latent variable model. Table ?? shows the
classification given by Bartholomew [2, p.11] for latent variable models. Bartholomew
uses the term metric for variables that are from the set of real numbers and categorical
for those variables that are elements of a set of categories. Throughout this thesis
metric variables are from the set of complex numbers.

Factor analysis is the class of latent variable models that deals with the metric vari-
ables. In [3] a very good overview of possible applications of factor analysis in various
fields of natural sciences is given. This model will be used here in array processing
for the telecommunication or radio-astronomy. Given the wireless nature of modern
telecommunication and radio-astronomy the desired signal is always corrupted by noise
and interference and seldom observed directly. Using the tools available from the the-
ory of multivariate analysis is therefore very popular in these fields. It is common

Table 1.1: Latent Variable Models

Manifest Variable

Metric Categorical

Latent Variable
Metric Factor analysis Latent trait analysis

Categorical Latent profile analysis Latent class analysis
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to represent the measured electromagnetic field from a receiving element (usually an
antenna) by complex numbers. As a result the variables have metric nature.

In radio-astronomy the signal power that are emitted from stars in different fre-
quency bands are studied and if a frequency band is contaminated with interfering
signal produced by man made devices, it is useless for the astronomers. Filtering the
unwanted signal using subspaces has proven to be a very powerful and widely used
method. Eigenvalue decomposition can be used on a data-set to find the so called
signal and noise spaces. In multivariate analysis subspace techniques fall under the
principal component analysis. The true principal component analysis does not have an
error term and does not deal with the noise, in fact the principal component analysis
does not pose any model on the data [3]. In practice, with the use of a-priori knowl-
edge, training and calibration techniques noise contribution is mitigated. For example
matched subspace detection, coherence detection, adaptive MSD, etc. can be used to
detect the subspace even if it is contaminated with interference and noise, using train-
ing sets [4][5]. The factor analysis model that will be presented in the next chapter
proposes an underlying structure for the measured data.

1.2 Contributions

As will be shown in Chapter 2 the factor analysis model is commonly used in the signal
processing problems. However the mathematical tools needed for this model are not
well-known in this field. One of the goals of this thesis is to give an overview of the
theory in the concept of signal processing and develop it as signal processing tool.

In the literature on factor analysis the case of the complex numbers is not well
studied. One of the main contribution of this paper is to extend much of the known
theory to the complex numbers.

Fisher Scoring, alternating least squares and KullbackLeibler divergence (KLD)
minimization algorithm are proposed and discussed as possible tools to estimate the
model parameters.

In order to evaluate the performance of the algorithms, the Cramér-Rao Bound for
the factor analysis model is derived.

1.3 Outline

In the following chapters the factor analysis will be extended to the case of complex-
valued data and some new results are presented. In Chapter 2 the model is presented
and its properties are discussed. In Chapter 3 the Cramér-Rao Bound for the factor
analysis model is derived as a tool for performance evaluation. In Chapter 4 some
algorithms for the estimation of the model parameters are developed. Chapter 5 deals
with the detection of signals and correctness of the model. Chapter 6 summarizes the
main results and discusses the possibilities for further research.

2



Model 2
The factor analysis (FA) model was first introduced in 1904 by Spearman to analyze
human intelligence based on a series of tests [6]. Given test results on p subjects (e.g.
English, French, Math, etc) Spearman was looking for a common factor f that would
explain the performance of an individual. The contribution of this factor to each test
is called factor loading, λ, and the random deviation from this contribution is the error
in each test. The model for the results,

r = Λf + e+ µ (2.1)

is the ”true” factor analysis model. Where r is a vector of p × 1 which contains the
results of subjects, f is the common factor, the matrix Λ is a p× 1 factor loading, e is
a vector of p× 1 error terms and µ is the expected value of the results.

This model can easily be extended to m < p common factors that might influence
the results by replacing f with a m× 1 vector of common factors, f . Then Λ becomes
a p×m matrix. [7][8][3]

In the following section the signal processing model commonly used for array pro-
cessing is presented and it is shown that the two models are the same. In the subsequent
sections the main problem is defined and the model will be examined more closely.

p elements

x=As+n

s1

s
m

Figure 2.1: Schematic representation of the receiving elements
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2.1 Signal Processing Model

The model used here is a simplified model commonly used in literature[9, p.58]. Con-
sider a system with p receiving elements that are exposed to m sources, Figure 2.1.
Stacking the p received signals into one vector called x and assuming m independent
sources stacked into the vector s̃ with a CN (0,Σs̃) distribution, the following model is
assumed for x

x = Ãxs̃+w (2.2)

where Ãx is a p×m array response and w is the noise term with a CN (0,Σw) distri-
bution.

From (2.2) it follows that x has a CN (0,Σx) distribution with

Σx = ÃxΣs̃Ã
H
x +Σw (2.3)

where ÃH
x is the Hermitian transpose of Ãx.

It is clear that the linear model ”explaining” x is the same model that ”explains”
the test results in the previous section. The main differences are that all the parameters
in (2.1) are real but the parameters in (2.2) could also be complex numbers and the
fact that the expectation µ is zero. Now that the equivalency of the two models is
argued, some properties and issues with this model will be disscussed in the following
sections.

2.2 Uniqueness

Keeping in mind that the problem at hand is a latent variable problem, one could ask
if the relation between the latent and manifest variables (measured and desired signals)
is unique? The answer as will be shown here is negative.

Given any invertible matrix M, x can be rewritten as

x = ÃxMM−1s̃+w.

Let Ax = ÃxM and s = M−1s̃ then the factor analysis model (FA) for array
processing becomes

x = Axs+w. (2.4)

The covariance matrix of x, Σx, is positive semi-definite so that the matrix M can
always be chosen in such a way to make Cov(s)=I. It is then straightforward to show
that the covariance matrix of x can be written as

Σx = AxA
H
x +Σw. (2.5)

Given any unitary matrix Q, let B = AxQ, then Σx = BBH +Σw is also a valid
model. This shows once more that the relationship between the measured signal and
desired one is not unique. In fact the matrix Ax can be seen as a basis for the signal
space and as such the choice of a different basis is always available.

4



One way to choose a ”unique” Ax is to rotate it in sucha way that its columns are
orthogonal with respect to some weighting. One such a weighting that leads to easier
mathematical results and is suggested in the literature [7][8] is

AH
x Σw

−1Ax = Γ (2.6)

where Γ is real and diagonal. It should be noted that Γis not chosen, but Ax is rotated
till a diagonal matrix in formed.

The problem addressed here is a many-to-one problem that is similar with taking
the square root. The choice of the weighting is a convention and not a real constraint
on the results.

2.3 Scale Invariance

The original idea behind factor analysis as presented in the previous sections was to
find a common factor that ”explains” the results of different tests. The scaling for
each of these exams can be different and also re-scaling them should not change the
underlying factors.

Let G be any diagonal matrix, and let y = Gx. The factor analysis model still
holds for y with the factor loading matrix A = GAx and noise vector n = Gw

y = As+ n (2.7)

and the covariance matrix of y becomes

Σ = AAH +D (2.8)

where D = GΣwG
H . The noise is assumed to be spatially uncorrelated and as a

result its covariance matrix is diagonal. Scaling the FA model with a diagonal matrix
does not change this property.

An especial case for the scaling of the FA model is to choose G = diag(Σx), this
will force the diagonal elements of Σ to unity. In array processing this is sometimes
called gain compensation.

As shown above the FA model is unaffected by the scaling of the variables. (this
does not hold for principal component analysis.[7])

2.4 Conclusion

In section 2.1 the equivalency of the signal model for array processing and the FA model
is shown. The model suffers from many-to-one ambiguity and as a result the relation
between the received signals and the desired ones is not unique. In 2.2 a method is
suggested to choose one of the many possible solutions.

Another aspect of the FA model is its tolerance toward scaling of the variables. The
model represented in section 2.3 is the most complete version of the FA model and is
used for the rest of this thesis as the factor analysis model.

Thus the problem that is discussed in the following sections is:

5



Given N samples from y as defined by (2.7) with a CN (0,Σ) distribution, where Σ
is given by (2.8) and

AHD−1A = Γ (2.9)

Where Γ is real and diagonal, how could the model parameters A and D be esti-
mated? Also, given an estimation of these parameters, could the validity of the model
be tested?

Some algorithms to estimate the model parameters are discussed in Chapter 4. In
Chapter 5 the validity of the model will be presented in the concept of a detection
problem.
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Cramér-Rao Bound 3
For an unbiased estimator the Cramér-Rao bound (CRB) is the lower bound on the
covariance matrix, C, of the estimated parameters, θ.

C(θ) ≥ F−1 (3.1)

where F is the Fisher information matrix. In this section the CRB for the FA model
will be derived.

Also as will be shown in Chapter 4, the Fisher information matrix could be used to
numerically approximate the maximum likelihood estimates of the model parameters
with the so-called scoring algorithm [10, p.180,187].

3.1 Partial Derivatives

In this section the partial derivatives needed to find the CRB are derived for the case
of complex parameters, for the case of real parameters the second order derivatives
can be found for example in [11]. [11] also gives the diagonal sub-matrices of the
Fisher information matrix, but it does not mention the CRB. In order to simplify the
derivation, the following relationships are going to be used.

Definition: Φi
ζ is a (complex) matrix with all its columns equal zero, except for its

ith column which equals ζ.

Φi
ζ = ζeTi (3.2)

where ei is a unit vector with entry i equal to 1.
Let Φi

ζ be a matrix as defined above and A be any complex matrix, then the
following can easly be shown:

1. AΦi
ζ = Φi

Aζ,

2. A(Φi
ζ)

H = aiζ
H , where ai = (A)i is the ith column of matrix A,

3. Aδ(i, j) = Φj
ai
, where δ(i, j) is a matrix with all its entries equal to zero except

for the element on ith row and jth column,

4. δ(i, j)A = (Φi
(AH)j

)H ,

5. Φi
ζΦ

j
θ = Φj

θiζ
,

6.

Φi
ζ(Φ

j
θ)

H =

{
0 i ̸= j
ζθH i = j

,

7



7. Φi
ζ

H
Φj

θ = ζHθδ(i, j),

8. tr
{
Φi

ζ

}
= ζi,

9. tr
{
Φi

ζ

H
}
= ζ̄i.

[12, p.165] shows that for any proper multivariate Gaussian variable y ∼
CN p(0,Σ(θ)), the Fisher information matrix with complex parameters is given by:

fij = Ntr

{
Σ−1∂Σ

∂θi
Σ−1

(
∂Σ

∂θj

)H
}

= f ji (3.3)

where the partial derivatives are Wirtinger derivatives.

If the parameter vector θ is partitioned into sub-vectors
[
θT
1 ,θ

T
2 , · · ·

]T
then the

Fisher information matrix can also be partitioned as

F =

Fθ1θ1 Fθ1θ2 · · ·
Fθ2θ1 Fθ2θ2 · · ·

...
...

. . .

 (3.4)

Using (2.8), (3.3) and (3.4), the Fisher information matrix for each sub-matrix is going
to be derived.

The parameters that need to be estimated are the columns of A = [a1 · · · am] and
diagonal entries of D.

Let d = vecdiag(D), then the parameter vector θ =
[
aT
1 , · · · , aT

m,d
T
]T

and the
Fisher information matrix becomes

F =


Fa1a1 · · · Fa1am Fa1d

Fa2a1 · · · Fa2am Fa2d
... · · · . . .

...
Fda1 · · · Fdam Fdd

 .

Each of these sub-matrices needs to be found. First the matrices with the form
Fakan , with n, k = 1 · · ·m, are derived. For the FA model

∂Σ

∂aik
=

∂
(
AAH +D

)
∂aik

=
∂AAH

∂aik

=


∂(AAH)11

∂aik
· · · ∂(AAH)1p

∂aik
...

. . .
...

∂(AAH)p1
∂aik

· · · ∂(AAH)pp
∂aik


where (YZ)ij is the element of the matrix YZ at ith row and jth column.
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Let H = AAH then

∂hsr

∂aik
=

∂
∑

l asla
H
lr

∂aik

=
∑
l

∂aslarl
∂aik

=

{
ark s = i
0 otherwise

∂H

∂aik
=

 0
a1k · · · apk

0

 .

Thus
∂Σ

∂aik
= (Φi

ak
)H . (3.5)

Using (3.5) and (3.3) then the Fisher information matrix is

fakanji
= Ntr

{
Σ−1Φi

ak
Σ−1Φj

an

H
}

= Ntr
{
Φj

an

H
Σ−1Φi

ak
Σ−1

}
= Ntr

{
aH
n Σ

−1akδ(j, i)Σ
−1
}

= NaH
n Σ

−1aktr
{
δ(j, i)Σ−1

}
= NaH

n Σ
−1aktr

{
Φj

(Σ−H)i

H
}

= NaH
n Σ

−1aktr
{
Φj

Σ−1
i

H
}

= NaH
n Σ

−1akΣ
−1
ji

= NaH
n Σ

−1akΣ
−1
ij

(3.6)

where the properties 1,7,4 and 9 were used.
This relation can be extended for the whole matrix in a straightforward manner.

Fakan = NaH
n Σ

−1akΣ
−1 (3.7)

The remaining sub-matrices are Fakd and Fdd. To derive these first ∂Σ
∂di

is needed.

∂Σ

∂di
=

∂
(
AAH +D

)
∂di

=
∂D

∂di
= δ(i, i)

(3.8)

9



With this result and (3.3) the entries of Fakd can be derived.

fakdji
= Ntr

{
Σ−1Φi

ak
Σ−1δ(j, j)

}
= Ntr

{
Φi

Σ−1ak
Φj

Σ−1
j

}
= Ntr

{
Φj

Σ−1
ij Σ−1ak

}
= NΣ−1

ij (Σ
−1
j )Hak

(3.9)

in the matrix form it becomes

Fakd = NΣ−1diag(Σ−1ak) (3.10)

where diag(x) is a diagonal matrix with its entries equal the entries of the vector
argument.

The last sub-matrix is Fdd

fddij
= Ntr

{
Σ−1δ(i, i)Σ−1δ(j, j)

}
= Ntr

{
Φi

Σ−1
i
Φj

Σ−1
j

}
= Ntr

{
Φj

Σ−1
ij Σ−1

i

}
= NΣ−1

ij Σ
−1
ji

= NΣ−1
ij Σ

−1
ij

(3.11)

or equivalently

Fdd = N(Σ−1 ⊙Σ−1) (3.12)

where ⊙ is the Hadamard or element-wise product of two matrices.
The Σ−1 for the FA model can efficiently be calculated using Woodbury identity.

Σ−1 = (D+AAH)−1 = D−1 −D−1A(I+AHD−1A)−1AHD−1

Using (2.9) calculating Σ−1 needs only the inversion of two diagonal matrices.

3.2 Conclusion

All the sub-matrices that are needed to construct the Fisher information matrix are
derived and the CRB can be calculated at true values of A and D.

It may happen that the Fisher information becomes singular. In such a situation
(2.9) could be used to find the CRB for constrained estimations. For more details take
a look at [13].

10



Estimation 4
In this chapter various techniques to estimate the model parameters as introduced in
Chapter 2 will be discussed.

Given a series of measurements from y as defined by (2.7) with sample covariance
matrix

S =
1

N

N−1∑
i=0

y[i]y[i]H (4.1)

where N is the number of samples, the model parameters as defined by (2.7) and (2.8)
will be estimated.

First the maximum likelihood estimator will be derived in section 4.1. The Alter-
nating least squares (ALS) and the KLD minimization algorithms are then presented
in Section 4.2 and Section 4.1.3.

4.1 Maximum Likelihood Estimator

In [9, p.50] a very interesting quantum physical reasoning is provided for the assumption
of i.i.d. Gaussian distribution of celestial sources. Also in [7],[8] and [3] the common
factors and the error terms have a Gaussian distribution. Therefor the aim is to find
A and D that maximize the log-likelihood function

l(A,D,S) = −N log|πp|+N log|Σ−1| −Ntr(Σ−1S) (4.2)

where
Σ = AAH +D

as shown in (2.8).

4.1.1 Fisher Score

Finding the MLE is the same as setting the Fisher score equal to zero. The Fisher
score for proper Gaussian distributed signal is given by [12, p.165]

tθi = −Ntr

[
Σ−1∂Σ

∂θ̄i

]
+Ntr

[
Σ−1∂Σ

∂θ̄i
Σ−1S

]
= −Ntr

[
Σ−1

(
∂Σ

∂θi

)H
]
+Ntr

[
Σ−1

(
∂Σ

∂θi

)H

Σ−1S

]
. (4.3)

Using the results of Chapter 3 the Fisher score for the FA model is derived here:
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taik = −Ntr

[
Σ−1

(
∂Σ

∂aik

)H
]
+Ntr

[
Σ−1

(
∂Σ

∂aik

)H

Σ−1S

]
= −Ntr

[
Σ−1Φi

ak

]
+Ntr

[
Σ−1Φi

ak
Σ−1S

]
= −Ntr

[
Σ−1Φi

ak

]
+Ntr

[
Σ−1SΣ−1Φi

ak

]
= −Ntr

[
Φi

Σ−1ak

]
+Ntr

[
Φi

Σ−1SΣ−1ak

]
= −N(Σ−1)Hi ak +N(Σ−1SΣ−1)Hi ak

In the Matrix form:
TA = −NΣ−1A+NΣ−1SΣ−1A. (4.4)

Following the same procedure, TD is found to be :

TD = −Ndiag(Σ−1 +Σ−1SΣ−1). (4.5)

Thus the Fisher score vector for the FA model is then

tθ = [vect(TA)
T , vect(TD)

T ]T (4.6)

where vect(.) is the vectorization function that transforms a matrix to a column vector
by stacking its columns under each other. Solving for MLE directly from t or (4.4) and
(4.5) is not possible. In the next section the scoring algorithm is used to find the MLE
numerically.

4.1.2 Scoring Algorithm

Scoring algorithm is a variant of Newton-Raphson algorithm with slight modification.
If the gradient and the Hessian in the Newton-Raphson are replaced by the Fisher score
and the inverse of the Fisher information matrix respectively, the result of the iterative
method is called the method of scoring [10, p.180].

The flowing relation summarizes the method:

θ̂k+1 = θ̂k + F(θ̂k)
−1tθ(θ̂k) (4.7)

where F is the Fisher information matrix derived in Chapter 3 and tθ is the Fisher score
given by (4.6). To avoid inversion Kay [10, p.180] suggests to rewrite the equation as

F(θ̂k)θ̂k+1 = F(θ̂k)θ̂k + tθ(θ̂k) (4.8)

and solve the linear equations.
The Newton-Raphson suffers from the following difficulties [10, p.179]:

• There is no guarantee that the iterations will converge.

• There is no guarantee that in the case of convergence the global maximum is
found.
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• This method is very sensitive to the initial guess.

Using the Fisher information matrix instead of the Hessian adds some stability
to this method but it still inherits the mentioned difficulties. To cope with these
difficulties the following iteration is proposed. Solving the linear equations could be
seen as multiplying (4.8) from left with the pseudo-inverse of F.

θ̂k+1 = θ̂k + µF(θ̂k)
†tθ(θ̂k) (4.9)

whereM† is the pseudo-inverse of the matrixM and µ is a small constant. The constant
µ will help the convergence, if the Fisher information matrix becomes very small. One
good motivation for the use of the scoring method despite its difficulties is that the FA
model has inherent limitation on the search domain of the parameters. This helps the
convergence of the method. One of this limitation is that D > 0. At maximum (4.5)
becomes

diag(Σ−1) = diag(Σ−1SΣ−1)

diag(I) = diag(SΣ−1)

diag(Σ) = diag(S)

diag(AAH +D) = diag(S). (4.10)

Considering that diag(AAH) ≥ 0, then 0 < D ≤ diag(S). This limitation helps the
convergence of the scoring method.

As mentioned earlier the choice of the starting point is very important. Reyment
and Jöreskog [3, p.102] give the best possible lower bound on D to be

D0 = diag(S−1)−1. (4.11)

For the evaluation of MLE this value is proved to be a good starting point for all
the iterative methods discussed in this thesis. However this only provides an initial
guess for D. The following theorem can be used to find an initial guess for A.

Theorem 1. Let the eigenvalue decomposition of S̃ = D− 1
2SD− 1

2 be

QΘQH .

The MLE of A, is given by the columns of D
1
2 Ã that are given by ãi = ciqi, where

ci = [max(θii − 1, 0)]
1
2 for i = 1...m.

Using (4.4) and (4.5) the prove given in [8] for real numbers can easily be extended
to the case of complex numbers. [7] gives an alternating prove for this theorem that
could be extended to complex numbers using (5.1) .

4.1.3 KLD Minimization

Another method to find the MLE is by the use of information geometric methods like
KLD. Seghouane [14] uses this method to find the MLE of the FA model in the case of
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Figure 4.1: CRB for the Scoring and KLD algorithm

real numbers. Here this methods is extended for the case of proper complex Gaussian
distribution.

Using the properties of complex Gaussian PDF as given by [10, p.582]. It is straight-
forward to follow the steps in [14]. The final iteration routine is given by

Âj+1 = SΣ̂
−1

j ÂjΦ
−1
j (4.12)

D̂j+1 = diag(S− Âj+1Â
H
j Σ̂

−1

j S) (4.13)

where
Φ = I−AHΣ−1A+AHΣ−1SΣ−1A;

This algorithm is a variation of EM algorithm for finding MLE. As such it shares
the same convergence properties of the EM algorithm. This means that the algorithm
will at least converge to a local maximum and that the convergence is guaranteed [10,
p187][14].

4.1.4 Summery

The equations that are needed in order to find the MLE for the complex FA have been
derived and two algorithms have been suggested to find a numerical approximation of
MLE.

Both KLD and MLE need a reasonable initial guess to help them converge to global
maximum. An initial guess based on the sample covariance matrix has been suggested.
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The asymptotic distribution of the MLE under some ”regularity” conditions, is given
by [10, p.582]. Given the weak celestial sources, the assumption of large amount of
data samples in concept of radio-astronomy is usually true. As a result the asymptotic
covariance matrix of the parameter vectors as given in Chapter 3 is the corresponding
sub-matrix in the inverse of the Fisher information matrix. Figure 4.1 illustrates the
convergance of the MLE algorithm to the CRB.

4.2 Alternating Least Squares

In the previous section the MLE for the FA model was derived. The log-likelihood
function was maximized with respect to the unknown parameters. In this section
another function of the unknown parameters is considered.

For a given sample covariance matrix S∥∥S−AAH −D
∥∥2

F
(4.14)

is the Frobenius norm that is minimized with respect to model parameters A and D.
This problem is approached as a two stage minimization problem. First for a given

A, (4.14) is minimized with respect to D and in the next stage, D is held constant and
a new A is found.

The iteration steps are as follow

D̂k+1 = diag(S− ÂkÂ
H
k ) (4.15)

Âk+1 = UmL
1
2
m (4.16)

where Lm and Um are m largest eigenvalues and the corresponding eigenvectors of the
matrix S− D̂k+1 respectively

(S− D̂k+1) = ULU−1. (4.17)

This method will monotonically approach a local minimum. Its rate of convergence
is slower than that of MLE.

4.3 Simulation Results

In this section, simulation results for some possible applications of the FA model will
be presented. Two well-known subjects, direction of arrival estimation using ESPRIT
and spatial filtering of interfering signals for radio astronomy will be illustrated using
these simulations.

In Section 4.3.1 the FA model is used as a calibration step or pre-processing for
ESPRIT algorithm. Section 4.3.2 illustrates the possibility of filtering interfering signals
on an uncalibrated array.
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4.3.1 DOA Estimation with ESPRIT

One of the widely used subspace algorithms for the direction of arrival (DOA) and time
delay estimation is ESPRIT. The noise model usually used for this algorithm assumes
independent and identically distributed (i.i.d) noise sources for the receiving elements.
In this section the performance of the ESPRIT algorithm is evaluated both with and
without pre-processing by FA in the case that noise sources on each channel are no
longer identically distributed. The evaluation is done by the means of simulations that
are programmed using MATLAB.

One of the requirements for the use of ESPRIT is that the array is linear and
uniform. This guarantees the shift-invariant structure in A.

Σ = AAH +D (4.18)

For a uniform and linear array A can be written as:

A =


1

e−j2π∆sin(θ)

...
e−j2π(p−1)∆sin(θ)

 (4.19)

where j =
√
−1, ∆ is the distance between the elements per wavelength and θ is

the angle from broadside.
If D in (4.18) is equal to σ2I then an identical performance is expected for both

ESPRIT with and without pre-processing by FA. In order to make the difference in
performance visible D must deviate from σ2I. In these simulation the DOA of different
sources is estimated. the parameters that are changed are number of samples that are
used for the estimation and the deviation from I. Power of both sources is chosen to
be 0dB in this way the different variances for the noises can easily be seen as different
signal-to-noise ratios (SNR) for each receiving element.

The deviation from I is realized by choosing a minimum and a maximum SNR in dB
for two of the receiving elements and then calculating the SNR for the other elements
by linearly interpolating between these two extremes.

For this series of simulations there are two sources at −20 and 30 degrees. For the
first simulation all the receiving elements have a SNR of 0dB. For the other simulations
deviations of 5,10 and 15dB around 0dB are used (e.g. SNRmin = −20dB and SNRmax =
20dB).

The results that are presented in Figure 4.2 show the standard deviation , σθ̂, of
the estimated angles in logarithmic scale. Also the CRB for the angles is shown.

As expected the performance in the case of D = I is almost identical. However as
the deviation increases, the FA model gives a lesser standard deviation than without
it.

4.3.2 Spatial Filtering

To illustrate the advantage of the FA model in subspace estimation, and provide a
good example for radio astronomy, spatial filtering of interfering signals is chosen. The
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Figure 4.2: Standard Deviation of θ̂ with and without FA

algorithm that is presented here is the extension of the one used in [15] to the case that
the covariance matrix of the noise can no longer be modeled as σ2I and is unknown.

The data model give in [15] is

x(t) = v(t) +As(t) + n(t) (4.20)

where v is the vector of sky sources, s is the vector of intefereing sources with a spatial
signiture equlal to A and n is the noise vector. However power of the sky sources
(about -20dB) is much smaller than the noise and interference power. This could be
exploited to filter the interfering signals. For a short enough integration time (1-100ms
[9, 15]) power of the sky sources could be neglected. Given L = NM samples from
x the aim is to filter the interfering signals and retrieve Rv. The short term sample
covariance matrices are given by

R̂k =
1

N

(k+1)N−1∑
n=kN

x[n]x[n]H , k = 0, . . . ,M − 1. (4.21)

With the assumption that the spatial signature of the interfering signal is stationary
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during the short-term integration and not stationary between them, an estimate of
R0 = Rv +Σn could be found from the following procedure.

The short-term projection matrix

Pk = I−Ak(A
H
k Ak)

−1AH
k (4.22)

is used to filter any signal lying in the subspace of the interfering signal. The filtered
short-term sample covariance becomes

R̃k = PkR̂kPk. (4.23)

Thus the long-term estimate of covariance matrix after filtering can be written as

R̃ =
1

M

M−1∑
k=0

R̃k =
1

M

M−1∑
k=0

PkR̂kPk. (4.24)

[15] shows that an unbiased estimate of R0 is given by

vec(R̂) = C−1vec(R̃) (4.25)

where C = 1
M

∑(M−1)
k=0 (PT

k ⊗Pk) and ⊗ is the Kronecker product. However in order to
calculate this estimate first the subspace of the interfering signals needs to be estimated.
For the case that Σn = σ2I with known σ the eigenvalue decomposition could be used
to find the needed subspace.

If the Σn is an unknown diagonal matrix, the short-term covariance could be mod-
eled as

R̂k ≈ AkR̂skA
H
k +D (4.26)

where Σn = D is a real diagonal matrix.

A simulation is programmed in MATLAB to illustrate the use of the FA model for
spatial filtering. It is assumed that the system has 5 receiving elements and there are
2 interfering signals. Figure ?? shows the results of the simulations. The Frobenius
norm is used to calculate the mean square error between the estimated covariance
matrix R̃ and the true covariance matrix R0. The MSE is calculated as a function of
interference-to-noise-ratio (INR). For these simulations a deviation of 5 dB from I has
been chosen.

The constant false alarm test that will be introduced in Chapter 5 is used to see if
it is necessary to estimate the model parameters. Also the true spatial signature of the
interfering signals is used as a reference. To show the improvement made by using the
FA model, the eigenvalue method is also used.

In [15] using a standard likelihood test (white-noise test with known σ) the number
of interfering signals and their subspace is detected. This technique needs the full
knowledge of noise covariance matrix. The FA model gives similar performance without
needing this knowledge.
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4.4 Conclusions

It is shown that the model parameters for the complex valued data could indeed be
estimated. Two different algorithms have been suggested to find the MLE for unknown
parameters.

The Fisher score is derived and used to find the iterations needed for scoring method.
Also the KLD algorithm was extended to the case of complex numbers. The convergence
of the estimator to CRB is shown with the help of a simulation.

The alternating least squares for the FA model was also presented. This method il-
lustrates the close relationship between the FA model PCA. This method gives constant
estimates but is (asymptoticly) not efficient [8].

All of the discussion in this chapter assumes proper complex Gaussian distribution.
Generalization to other distributions for both real and complex case of FA model is still
an open question. Also the number of sources is assumed to be known in advanced. In
Chapter 5 a GLRT is proposed to see if the chosen value for m is acceptable.
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Detection 5
One of the parameters that needs to be found for the FA model is the number of
underlying common factors. In the concept of array-processing it is the same as the
number of sources that the array is exposed to.

In this section a general likelihood ratio test (GLRT) is used to decide whether the
FA model fits a given sample covariance matrix. If the model fits, it can be seen as
detecting m sources.

Because the noise is not identically distributed, using the spreading of eigenvalues
for detecting the number of sources will be very difficult. Figure 5.1 illustrates two
examples and also shows the improvement made by using FA model. In Figure 5.1b m̂
is the the dimension for which the FA model has been calculated.
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Figure 5.1: Eigenvalue distribution

5.1 General Likelihood Ratio Test

Given (2.7) two hypotheses are tested against each other. H0 assumes that there is an
FA model underlying the data, while H1 assumes no structure. Consider the following
test

λ =
L∗

1

L∗
0

> γ

where L∗
1 is the maximum value of the likelihood when H1 is true, and L∗

0 is maximum
value of the likelihood for a FA model.

log(L∗
0) = l∗0 = −N log |πp|+N log |Σ−1| −Ntr(Σ−1S)
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log(L∗
1) = l∗1 = −N log |πp| −N log |S| −Np

putting these back in for λ

log(λ) = NF(Σ) = Ntr(Σ−1S)−N log |Σ−1S| −Np

N is the number of samples. For a given S, maximizing the likelihood for the FA model
is the same as minimizing F.

F(A,D;S) = tr(Σ−1S)− log |Σ−1S| − p (5.1)

2log(λ) = 2NF(A,D;S)

The statistic 2log(λ) has an asymptotic χ2
s distribution under H0 where s is the error

degree of freedom [7, p.267][8, p.281]. For the complex case, the degree of freedom
is slightly different than for the real case. The total number of parameters that are
needed to be fixed are the parameters of Σ covariance matrix. Σ is Hermitian so these
are p elements on its diagonal, and p(p − 1) off-diagonal elements. The number of
free parameters in the FA model are 2mp for the elements of A matrix and p for the
elements of D. However (2.9) imposes m2 constraints on the FA model. So the free
parameters in Σ that are not fixed by FA model are

s = p+ p(p− 1)− [2pm+ p−m2]

= (p−m)2 − p > 0. (5.2)

This number of free parameters gives a constraint on the number of sources that the
FA model can separate for a given number of receiving elementis.

Bartlett has suggested [7, p.267][8, p.281] a modified version of this test to improve
its χ2 statistics by replacing N with

N∗ = N − 2p+ 11

6
− 2

3
m

Figure 5.2 illustrates the results of Monte-Carlo simulations and its statistics. As it
is shown in these figures the results follow the χ2-distribution very closely.

5.2 Constant False Alarm Detector

In the special case that m̂ = 0 this test becomes a constant false alarm detector. Fig-
ure 5.3 shows the results of Monte-Carlo simulations for various false alarm probabili-
ties. The results match the predicted theoretical values closely and show the correctness
of the thresholds based on χ2-distribution. This detector could be extended to detect
the number of signals by increasing m̂ each time the χ2-test fails.
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Figure 5.2: GLRT statistics for FA model
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5.3 Conclusions

It is shown that for a given number of sources the validity of the model can be test
using a GLRT. If the test fails then either the estimated number of sources is wrong or
the FA model is not appropriate for the given data collection. In the case that the test
passes it can be concluded that m ≤ m̂.

With the help of simulations it is shown that the test has a asymptotic χ2 distri-
bution. Also the number of free parameters that are found for the complex FA model
are correct. The calculated number of free parameters puts a limit on the number of
sources that could be separated for a given number of receiving elements.
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Conclusions and Suggestions
for Further Research 6
In this chapter the main conclusions and results are presented. Also some recommen-
dations for further study are given.

6.1 Conclusions

It has been shown that the complex factor analysis model is the same model which is
commonly used in literature for narrow-band array processing. The CRB and the
Fisher score for the case of proper complex Gaussian distribution are found using
Wirtinger derivatives. Most of the techniques used in factor analysis for real numbers
are extended to the case of the complex numbers. With the help of simulations it has
been demonstrated that the factor analysis can be used to improve the performance
of current algorithms when the array is not calibrated. DOA estimation and spatial
filtering of the interfering signals for radio astronomy has been studied.

Various estimation techniques have been presented. The Fisher scoring and KLD
algorithm has been given as iterative methods to find MLE of complex parameters.
The alternating LS algorithm is discussed. The asymptotic convergence of the MLE
techniques to the CRB has been shown using MC simulations.

The validity of the estimated parameters for a given number of sources is tested
with the help of a GLRT. An especial case of this test is presented as a constant false
alarm ratio detector. A threshold based on χ2 test is proposed. The maximum number
of sources that can be detected for a given number of receiving elements is given.

6.2 Future Work

There are some aspects and applications of the FA that remain unexplored.

• The computational complexity of the algorithm needs to be evaluated thoroughly
and more efficient algorithms are needed. This is especially important when the
number of receiving elements becomes very large.

• Fisher scoring and MLE rely heavily on the proper Gaussian distribution. The
performance of these algorithms needs to be evaluated if the underlying signal has
a different distribution.

• The false alarm detector that is introduced in Chapter 5 only differentiates be-
tween the case of no signal and an unknown number of signals. New techniques
to detect the number of signals could be studied. Threshold for sequential test
for FA is an open question.
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• Sample noise covariance matrix is almost never completely diagonal. By forcing
the estimate of this covariance matrix to a perfectly diagonal matrix, the error in
the estimated subspace becomes larger. How much imperfection could one allow
in the estimate of the noise covariance matrix, and how much improvement this
could have on the estimated subspaces needs to be answered.
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