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Executive summary

Introduction
The COVID-19 outbreak has affected various aspects of people’s daily lives. It has caused
people to adapt their overall behaviour including their travel moments. As a result, activ-
ity patterns have changed and a shift in travel behaviour can be perceived. Whether these
abrupt changes will have a continual effect on our travel behaviour is still uncertain. There-
fore the following research question was formulated:

What are the long-term impacts of COVID-19 on passenger mobility in the Netherlands as a result of
changing travel behaviour?

Exploratory modelling of the future mobility impacts presents a first look at the potential
magnitude and direction of the impacts of the pandemic in the long term. The objective is
to explore the mobility impacts in the near and distant future on a macroscopic level. Our
mobility system is a complex system which consists of feedback between our destination
choice, route choice and mode choice that influence our travel behaviour. System Dynamics
(SD) can provide an understanding of the dynamic complexity of such systems. Moreover,
system dynamics enables the exploration of this system’s behaviour under changing input
uncertainties. By means of this, the uncommon combination emerged of transport modelling
in a system dynamic environment.

Model
This research developed a system dynamics model to explore the mobility impacts of COVID.
The 4-step model is used as a guideline for the structure of the model. The four steps consist
of (i) trip generation, (ii) trip distribution, (iii) mode choice and (iv) route assignment. As
previous studies suggest potential effects within the mode attractiveness, the focus is on the
mode choice. Implementing a choice model in the system dynamics model enables the ex-
ploration of change in travellers’ choices and, thus, travel behaviour after the pandemic. The
other phases in the 4-step model are included to ensure the SD model’s complete transport
modelling structure. Trip generation provides an input of trips and is combined with the trip
distribution. The assignment is subsequently simplified because detailed route assignment
can be problematic in a system dynamics environment.

Furthermore, the model consists of sub-components that simulate (behavioural) changes
such as fewer trips due to COVID, different attitudes towards modes of transport, and re-
mote working. These factors were identified throughout prior COVID research and the liter-
ature. In the model, there is a distinction made in trip types to observe mobility impacts at a
detailed level. The implementation of different trip types is performed by the vectorisation
of variables for trip purposes, distance classes and area types. In other words, a copy of the
model structure is created to enable the exploration of detailed travel behaviour alongside

ii



iii

general nationwide travel behaviour. In this research, the model outcomes of interest are pri-
marily modal split and number of trips. Finally, the effect of remote working is implemented
by introducing a new alternative to the mode choice. The addition of a tele-activity alterna-
tive, in other words, an option to not travel at all, enhances the dynamic aspect of remote
working. It provides insight into the attractiveness of remote working under changing input
conditions.

Results
The COVID-19 pandemic undoubtedly has an impact on mobility in the Netherlands. The
impact of remote working is visible in all cases. The number of telecommuting trips in the
near future decreases from the maximum level during the pandemic and reaches a stable
state in the distant future. The stable state that the number of telecommuters reaches, re-
mains at an increased level compared to pre-pandemic telecommute behaviour. The increase
in people working remote leads to a decrease in the use of primarily public transportation
(PT). In a post-COVID-19 era, the pandemic has directed some public transport travellers
towards other alternatives; the car, telecommuting and cycling. With the design of extreme
scenarios, the attitude train travellers have regarding public transport was discovered as a
substantial effect in the forthcoming years. Substantiated by scenario discovery, the attitude
towards public transport needs to improve to reach pre-pandemic levels of PT attractiveness.
The development of travellers’ positive attitudes towards public transport strongly influences
the recovery time. If the improvement in positive attitude is not stimulated, recovery to the
initial pre-pandemic prognosis of public transport is significantly delayed. Furthermore, it
was shown that the attractiveness of working from home increases again in the future if the
variable cost of driving a private car continues to rise. This demonstrates the dynamic aspect
and the subsequent benefit of including working from home as an alternative.

Conclusion and discussion
The general attitude of travellers regarding public transport faced a setback, which is con-
cerning. The focus within mobility over the past years has been to establish a positive modal
shift to push travellers from private to public modes. The impacts of the COVID pandemic
resulted in a setback. In order to stimulate travellers, policy interventions such as lower ticket
prices and increased supply can be implemented to raise the attractiveness of public trans-
port. Nonetheless, to improve travellers’ willingness to use public transport, thus improving
their positive attitude, the general image of public transport services should be stimulated.
A combination of interventions is required to improve the general image of public transport
services. The implementation and simulation of policy in the developed model are outside
the scope of this thesis, nevertheless highly recommended for future research. In addition,
attention should be paid to the implementation of measures or guidance in the system to
prevent potential opposing effects. The results indicated that conflict emerges between stim-
ulating remote working and stimulating public transport. The inclusion of telecommuting
as a contending alternative in the mode choice of travellers illustrated telecommuting travel
behaviour over time. The novelty of modelling telecommuting as a new alternative results
in a simplification regarding travellers’ motives to work from home. Future research can
expand the knowledge of the motives for working from home.



iv

To conclude this thesis contributed to prior scientific work and society in two ways. First, the
research on the future effects of the COVID-19 pandemic was extended. This thesis identi-
fied new relations between COVID-19 mobility impacts (i) by emphasising the conflict that arises
between stimulating telecommuting and public transport. Furthermore, Specified the impact
of uncertainties in the system (ii) by addressing the importance of public transport attitude not
only during the pandemic but also in the forthcoming years. At last, delivered new insights by
providing additional explanations for known effects (iii), using the behaviour of telecommuting
throughout the years, in addition to the estimates in the literature.

Second, the approach chosen in this thesis differentiates itself from other transport mod-
elling approaches by studying mobility disruptions in an explorative way. The developed
SD model and its application to the case study of COVID illustrated that the behaviour of
mobility impacts over time could be observed with system dynamics modelling. This is not
achievable with traditional mobility models due to their microscopic focus and inability to
adjust input parameters quickly. The need for alternative approaches and methods towards
observing travel behaviour is required due to the changing demand for transportation in the
coming years. The consequences of COVID, the mobility transition and smart mobility are
examples of how our demand for transport and our mobility system will change.
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1
Introduction

1.1. Background & Research Context
COVID-19 has significantly impacted people’s lives, activities and travel behaviour. On aver-
age a person in the Netherlands makes 2,9 trips per day (MuConsult, 2021). In March 2020
the number of trips reduced with 55% (De Haas et al., 2020b). As a result, empty highways
and an unforeseen positive solution for the rising congestion problems were witnessed. In
public transportation, a decrease in travellers of 90% was seen, leading to a drop in transit
demand (Translink, 2022; CBS, 2021). At the time of writing (2022), the end of the 5th COVID
wave in the Netherlands is considered to mark the end of a COVID era (RIVM, 2022; Murray,
2022). In a post-COVID era, expectations towards the future impacts in transport and mo-
bility can be formed (MuConsult, 2021). The changes in our travel behaviour can result in
potential lasting effects (Van Wee and Witlox, 2021). A lot of travel preferences change back
to old travel patterns. Nonetheless, the mobility disruptions might have changed parts of
our travel behaviour. It is uncertain what the future impacts regarding, for example, the re-
covery of public transport (Tirachini and Cats, 2020) and the future effect of remote working
(Hamersma et al., 2021) will entail.

The changing circumstances result in an unexpected discontinuity of past travel trends and
mobility behaviour (Chatterjee et al., 2021). These trend breaks contribute to the already
increasing uncertainty in the future of travel demand (Marchau et al., 2010). COVID has
created a new layer of uncertainty on the current existing levels of uncertainty (Papakatsikas
et al., 2021). Moreover, it is unknown how long future disruptions and trend breaks will last.

Uncertainty in the transport sector is a phenomenon that has occurred to an increasing
extent over the past years (Chatterjee et al., 2021). COVID is not the only factor that caused
the increasing presence of uncertainty. The rise of changes in travel behaviour and activity
patterns is not entirely new. For instance, changes in the work environment pre-COVID, an
increase in flexible working and companies that switched to a permanent hybrid or remote
work environment (Andreev et al., 2010). Moreover, other substantial changes in oil and
gas prices have resulted in travel mode shifts (Van Cranenburgh et al., 2012). According
to Frondel and Vance (2008), the fuel-price elasticity of households and individuals ranged
between 35% and 41% during the oil crisis in 2008. As a result, the influence of COVID
and other developments contribute to our mobility system’s uncertainty and enhance the
system’s complexity.

1



1.1. Background & Research Context 2

Research problem
To prepare for the future, policymakers must know which changes in passenger mobility
could happen. If new developments or trends are observed too late, the effects could lead
to undesirable situations in the transport system. In the literature, various assumptions are
made about future COVID travel transitions and their subsequent effect on mobility. The
role of uncertainty is, therefore, vital. Data and predictions of pandemic mobility changes
are highly valuable as input for policy-making (Van der Drift et al., 2021).

The long-term impact on mobility and the general uncertainties compose a risk for the ex-
isting predictions and their accuracy. Current traditional transport models have difficulties
implementing uncertainties such as COVID-19 (MuConsult, 2021). These models lack the
exploratory nature to cope with quickly arising events and changes. A new approach is re-
quired to explore the long-term impacts of COVID-19, which is more suitable for quantifying
the potential effects of rapid emerging transitions in mobility. Moreover, the development of
the impacts over time is of interest. This enables the observation of the complete dynamics of
coherent mobility impacts in the complex system. For these reasons, this requires a research
method that can observe and simulate the mobility consequences of the pandemic and its
dynamics on a macroscopic level. Thus, a mathematical modelling method that uses causal
relations between variables to enable quantitative exploration of system behaviour.

The pandemic creates opportunities to steer travel behaviour in the desired direction. Sev-
eral future policy interventions use the impact of COVID to positive influence transitions
(De Winter et al., 2021). Specifically, the Dutch government is interested in taking this op-
portunity to direct travel behaviour, in specific mode choice, in the desired direction (Olde
Kalter, 2022). In addition, the pandemic can provide opportunities for a faster rise of sus-
tainable mobility (Kanda and Kivimaa, 2020; Griffiths et al., 2021). However, the future
impact of mobility should be explored to achieve all of the mentioned above. Producing
meaningful results implies using qualitative research to observe the direction of impacts. As
well as quantitative research to translate direction into measurable outcomes under various
uncertainties.

Research questions
To achieve the research objective and identify the mobility impact of COVID-19, the follow-
ing main research question is proposed:

What are the long-term impacts of COVID-19 on passenger mobility in the Netherlands
as a result of changing travel behaviour?

To support the main research question, the following sub-questions are designed. Likewise,
these sub-questions guide the further structure of this research.

To observe the future impact of COVID-19 within the mobility sector, exploring the current
knowledge regarding travel behaviour before and during COVID-19 is of added value. The
use of existing knowledge and research into the (future) effect of the pandemic on travellers’
behaviour and patterns supports the scientific strength of this research. Subsequently, it re-
duces the workload by focusing on the scoped set of mobility and COVID-19 elements. This
results in the first sub-question:
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1: What are the current known developments/trends in mobility resulting from COVID-19?

Translating the uncertainties of COVID-19 into measurable variables requires a quantitative
approach. An exploratory research approach is proposed, to explain the mobility impacts
and observe the behaviour that causes the impacts. To define why this is a suitable approach
and to elaborate on the best techniques within an exploratory approach, the following sub-
question is composed:

2: How can the mobility impact of COVID-19 be quantified and explained?

To determine the impact of the pandemic on mobility, the mobility system must be defined
and delimited first. By defining the scope of the mobility system and the scope of COVID-19,
a system representation can be represented in the form of a model. Qualitative modelling
results in the first outline of the impacts on the mobility system. Hence the following sub-
question is defined:

3: How can the uncertainties originating from the pandemic be implemented and modelled?

The qualitative conceptual model can be translated into a quantitative model. A simulation
model is developed by formulating the qualitative model, describing the system’s behaviour,
as defined in sub-question 3. Moreover, this presents a model that can determine the mobil-
ity impacts on specific key performance indicators (KPIs) under certain input values. The
sub-question below is composed to answer this.

4: What are the quantified mobility impacts of COVID-19?

Finally, due to the high degree of uncertainty, exploratory modelling analysis can be used to
observe and analyse the outcomes under various conditions and scenarios. The alteration of
input values creates multiple future post-pandemic scenarios, to explore alternative future
directions. This way, the research is substantiated more, and the main research objective can
be achieved. This leads to the last sub-question:

5: What is the role of uncertainty in the future impact of COVID-19 on mobility?

1.2. Theoretical framework and methodology
This section introduces a theoretical framework to establish a scientific perspective. Further-
more, the alternative research approach and methodology are described.

Uncertainty
In transport and mobility planning, the goal is to cope with the presence of uncertainty. To
produce accurate predictions regarding travel behaviour and transport planning, uncertainty
needs to be accounted for (Marchau et al., 2010). Because uncertainty is not merely the lack
of knowledge; uncertainty needs to be defined. The general definition of uncertainty by
Walker et al. (2003) is "Any deviation from the unachievable ideal of completely deterministic knowl-
edge of the relevant system." This can be either due to the absence of knowledge or variability
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inherent to the system under consideration. In the case of the COVID pandemic, a sub-
stantial change (Van Cranenburgh et al., 2012) is the cause for uncertainty and subsequent
change to the transport system as a consequence.

The transport policy-making process has several aspects where uncertainty can arise. Differ-
ent elements affect the policy-making process within the framework of model-based policy
analysis (Walker, 2000). Uncertainty can often arise through external factors or forces. Be-
sides the more evident external forces, such as changes in demography, economy and tech-
nology (Marchau et al., 2010), COVID can be seen as a new external force. According to
Papakatsikas et al. (2021), transportation planning in the short- and mid-term future must
cope with an added layer of uncertainty as a result of COVID.

Uncertainty is currently dealt with in various ways concerning predictions for the future of
passenger mobility. On an overall level, the use of Welvaart en Leefomgeving (WLO) scenarios
is a common future exploration tool which is used for high and low scenarios in mobility
forecast/ transport planning (Snellen et al., 2015). The general WLO scenarios are updated
once in 5 years. However, for the mobility scenarios, the WLO scenarios are updated annu-
ally due to their implementation in, among others, Cost-benefit analyses and the Landelijk
Model Systeem (LMS) (Renes and Romijn, 2015). This yearly update of the WLO scenarios
results in accurate predictions for the near future. The distant future remains difficult to
predict due to the unknown uncertainties.

Nevertheless, sudden changes cause additional uncertainty, which is not accounted for in
future exploration, such as WLO scenarios. Marchau et al. (2010) stated, for example, that
WLO scenarios for 2040 do not contain oil prices higher than the prices during the 2008 eco-
nomic crisis. The authors argued that possible abrupt external forces could lead to scenarios
that do not always reflect the actual situation accurately. In combination with the pandemic,
Ritsema van Eck et al. argued in 2020 if the current WLO scenarios for 2030 and 2050 are
sufficient to cope with the large-scale changes within the economy and living environment.
The authors mentioned, in particular, the effect of mobility behaviour and their added un-
certainty to the scenarios in place.

Current times are undeniably full of uncertainty and lack knowledge about the future of
mobility. Where COVID-19 could be accountable for a potential lasting significant shift
in passenger mobility. Together with the ongoing trends such as sustainable mobility and
increasing car costs, the current circumstances provide an optimal opportunity to direct
passenger mobility in the desired direction (De Graaf et al., 2020).

Alternative transport modelling approach
In transport modelling, there is often worked with the concept of predict and provide; pre-
dicting the future of transport based on extrapolating historical trends and providing the
necessary supply. Because following earlier trends is not always the desired future situation,
the concept of ’predict and provide’ is no longer sufficient if the deviation from historical
trends is the goal (Jones, 2016). With the current developments and transitions in mobility,
travel behavioural changes and policies are more relevant than ever. Therefore, decision-
making based on ’vision and validate’, introduced by Jones (2016), is more suitable for the
circumstances mentioned above. Where vision refers to outlining and planning what the fu-
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ture goal in mobility entails. Validate is putting that vision to the test, using exploration and
experimental forecasting techniques (Frisby, 2021). On top of that, the COVID pandemic and
associated travel disruption have abruptly ended several trends, which creates the opportu-
nity to steer travel behaviour in the desired direction, creating an opportunity for vision and
validate (Frisby, 2021).

Systems thinking connects with the process of vision and validate and the demand for an al-
ternative research approach as identified in the research problem. The transportation system
is a complex system according to Sussman et al. (2009) that, as indicated above, encounters
several layers of uncertainty. System Dynamics (SD) enables the observation of the devel-
opment of the impacts over time and the observation of complete dynamics of coherent
mobility impacts in the system. SD is a mathematical modelling method that uses causal
relations between variables to enable quantitative exploration of system behaviour. With
an SD approach, an alternative research approach is chosen, resulting in a better fit for the
research problem.

1.3. Thesis outline
The remainder of this thesis report is structured according to the research questions. Chap-
ter 2 analyses the current mobility developments throughout the pandemic. Thereafter,
Chapter 3 provides the reasoning for the applied methods. Chapter 4 is the model design
chapter, where the developed model is explained, and the application of the model to the
situation in the Netherlands is discussed. Subsequently, Chapter 5 presents the outcomes
of the mobility effects and the role of uncertainty. Chapter 6 discusses the results, implica-
tions and recommendations. Finally, the conclusions are drawn in Chapter 7. All produced
models, code and data can be found in the online repository on GitHub1.

1https://github.com/ThomasvTol/MSc-Thesis.git

https://github.com/ThomasvTol/MSc-Thesis.git


2
COVID-19 developments in mobility

This chapter presents an overview of the known developments and trends in mobility due
to the COVID pandemic. With the use of the literature, the scope is narrowed, and the
current developments are structured. The different aspects of travel behaviour affected by
the pandemic are outlined in Section 2.1. The effects are subsequently categorised in the
attractiveness of modes (Section 2.2) and activity patterns (Section 2.3). In addition to scien-
tific literature, this section is complemented with grey literature (technical reports by various
research institutions) meant to fill the gaps and extend the situation in the Netherlands.

2.1. Travel behaviour
It is a known fact that travel behaviour changed due to the COVID-19 pandemic. Short-
all et al. (2021) described various changes during the pandemic due to the lockdowns and
measures. Research carried out by De Haas et al. (2020b) indicated that changes in travel be-
haviour also applied to the intelligent lockdown which was in place in the Netherlands. The
fact that travel behaviour changes occurred during lockdowns is not surprising based on the
general limitation of movements. The changes during COVID were, however, unanticipated.

Predictions towards the future of travel behaviour are not based on abrupt changes. There-
fore, lasting changes in behaviour are more challenging and generally based on estimations.
Nonetheless, several studies (Van Wee and Witlox, 2021; MuConsult, 2021; Hamersma et al.,
2021) have indicated that the aspects of travel behaviour are subject to a degree of change.
The level of change is yet to be determined.

To gain a better understanding of the changes in travel behaviour, a subdivision of the
elements within travel behaviour is made. With this division, the effects are categorised, and
the scope of the research is defined around travel behaviour elements impacted by COVID.
The elements of travel behaviour taken into account in this research and hence subject to
sizeable change are the latter four presented in Figure 2.1. Among these factors, COVID-19
can impact all four. Within Change of departure time COVID impacts the time of departure
choice. With the introduction of remote working, the traditional 9-5 workweek is no longer
self-evident (Hamersma et al., 2021). Change of destination affected by COVID is, among
others, the choice to not travel at all. Due to COVID lockdowns or due to tele-activities (Taale
et al., 2021). Remote working is also part of the change of destination. Working from home

6
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causes commuters to not travel to their work destination. For Change of mode a primary
effect is the continuation of a potential mode shift trend caused by COVID (Van der Drift
et al., 2021; De Vos, 2020). Finally, Change of Route are short-term changes in our travel
behaviour that encounter little to no effect as a result of COVID.

Figure 2.1: Response time to changed circumstances within travel behaviour (adapted from Brederode (2015))

2.2. Attractiveness of mode of transportation
It is shown that COVID-19 has changed the attractiveness of specific modes of transportation.
They result in travellers choosing a different mode of transport to reach their destination. The
attractiveness of a mode of transport is a measurement widely used in transport engineering
and modelling. In the traditional 4-step model (Ortúzar and Willumsen, 1990; McNally,
2007) mode choice is the third step. The attractiveness of a specific mode is translated
and quantified into a utility function within disaggregated transport models. To determine
travellers’ utility and, subsequently, their choice of a mode of transport, (Discrete) choice
models (DCM) are used (Pel, 2018). The application of choice models can, under certain
conditions also be utilised in aggregated models. When the attractiveness of a mode of
transport changes, travellers’ attitudes and preferences towards a particular mode adjust
according and result in a mode shift (Olde Kalter, 2021). A mode shift is a phenomenon
which is often desired by (transport) policymakers to push travellers from one mode to
another (e.g. private car to public modes.)

2.2.1. Public transport decrease
A decrease in public transport is one of the main drivers causing a potential negative mode
shift; travellers choose the car or (e-)bike instead of public transport. First of all, overall move-
ments decreased as a result of COVID measures. Second, when travelling, people choose
more often for a private mode of transportation; this could be either bike, car or walking
(Van Wee, 2020; De Haas et al., 2020a). This shift was due to people limiting their moments
of contact; the effect was especially discernible during the first lockdowns. Public transport
ridership decreased significantly, leading to empty vehicles (Gkiotsalitis and Cats, 2020).
The change in modalities results in a model split where Bus/Tram/Metro (BTM) and train
are less represented. According to a study from the Dutch Kennisinstituut voor Mobiliteits-
beleid (KiM), travellers rate public transport more negative compared to the situation before
COVID-19 (De Haas et al., 2020a). This is an understandable effect during a pandemic where
people try limiting their contact moments. However, future exploration of CROW regarding
the long-term effects concluded that in some scenarios, the train, bus, tram and metro are
permanently less attractive for travellers. This is mainly due to sunk investment cost in other
alternatives, the changing of modes is perceived as positive or avoiding crowding (CROW,
2021a).
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According to Gkiotsalitis and Cats (2020), the future impacts are hard to estimate; the be-
havioural responses and adaptation of passengers is the main incentive in the recovery of
PT. In Shelat et al. (2021), the effect of crowdedness on train use is studied. Where a Value
of Crowdedness is determined to capture the degree of acceptable crowdedness for travellers
during and after COVID-19, this study is a working paper, hence the yet unknown outcome
on travel behaviour. In recent research, De Haas and Faber (2022) evaluated the relationship
between the attitude of PT users and their travel behaviour. De Haas and Faber (2022) mea-
sured the changes in attitude using survey data from Mobiliteitspanel Nederland (MPN). The
observation of attitudes before and during COVID-19 provides estimates for attitudes and
travel behaviour of PT travellers in a post-COVID era.

Currently, in 2022, a post-COVID era has started where the first lasting effects can be ob-
served. In February of 2022, the National Traveller Survey (Dutch: Landelijk Reizigersonderzoek)
demonstrated that PT ridership level is still around half of the passenger number in 2021,
compared to 2019 (Taale, 2022). One of the highlights is also the differences between re-
gional and national outcomes of the National Traveller Survey (MuConsult, 2022). Specific
outcomes are still limited; it is suggested that recovery of PT in highly urban areas is seen
faster.

Finally, besides public transport over land, the passenger aviation industry experienced a
massive trend disruption. During the pandemic, the number of travellers decreased to ex-
tremely low levels. Nonetheless, the aviation industry is on the rise again, and passenger
numbers are expected to be back at the pre-pandemic level around 2025 (Bakker and Moor-
man, 2021). However, aviation is outside the scope of this research due to the focus being on
mobility and trips within the Netherlands.

2.2.2. Increase of private modes

Car use and Car ownership
A direct cohesive cause of the decrease in public transport use is the increased use of other
modes. Travellers have switched from public modes of transport, mainly train, to private
modes such as the car. In particular, increased car ownership could be dangerous for future
public transport recovery (CROW, 2022c). Travellers who purchased a car during COVID
will likely use that mode of transport for at least a few years into the aftermath of the pan-
demic. Which results in more private car users. According to Dicke-Ogenia (2022) private
cars nowadays are almost similar to an investment. Cars currently have good value preser-
vation, and the supply of new vehicles is low. The rapid increase in car ownership during
and after COVID is endorsed by results from the national traveller survey, which stated that
especially the number of leases and company vehicles increased (MuConsult, 2022). This
effect could be due to attitude changes; employees choose the option of a lease car instead of
a public transit membership. A different cause for increased car users could occur through
travellers already possessing a private vehicle. The shift of these travellers can also lead to
long-term effects; for example, people rediscover the benefits of private transport and are
less likely to shift back to public transportation (De Haas and Faber, 2022).
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Individual shared modes
With fewer users on buses, trams, metro and trains, there is a share of PT users that shifts
to shared mobility. Mainly a change to individual shared mobility modes is present (De Vos,
2020). Individual shared modes of transportation are shared bicycles, e-mopeds, e-scooters,
and cars. The magnitude of these effects is relatively unknown and is currently not expected
to have a significant future impact. The Ministry of I & W endorses the rise of specific
shared e-mopeds in the Netherlands (MuConsult, 2022). In addition, it is argued that in-
creased shared mobility often comes at the expense of public transit ridership. However,
there is not yet accurate quantitative research to support this claim.

Active modes
Besides the car, cycling is seen as a serious alternative mode of transport for PT travel. A
Dutch study found with the use of data from Nederlands Verplaatsingspanel (NVP) an increase
in cycling both during peak and off-peak hours (Van der Drift et al., 2021). Besides more
leisure travel by (e-)bike, the (e-)bike is seen as a serious commuter mode of transport. The
increase in (e-)bike use is a development not only seen in a cycling country such as the
Netherlands. A study based on GPS data by Molloy et al. (2021) also mentioned the im-
portance of the rise of bicycle users in Switzerland and the potential lasting effect. The
attractiveness of walking also increased due to the pandemic, where recreational travel took
a lift De Vos, 2020. The phenomenon of going for a stroll (dutch: een blokje om gaan) as a
leisurely walk took a whole new turn during COVID-19.

2.3. Activity patterns
Second, activity patterns have changed immensely in general. Due to social distancing,
activity participation has reduced substantially (De Vos, 2020). Moreover, the intelligent
lockdown imposed by the Dutch government was mainly aimed at limiting the interactions,
hence reducing movements, in general (De Haas et al., 2020b). One of the major conse-
quences of the COVID-19 measures is the shift from onsite to online activities. This shift
has a significant impact, specifically on commuter and educational travel. According to a
study from Hamersma et al. (2021), commuter and educational travel could expect struc-
tural changes because of the lasting effect of working from home. These possible long-term
effects of teleworking are endorsed by Van Wee and Witlox (2021), who, among other things,
mention the importance of online tools and people becoming aware of those tools. Besides
tele-activities, multiple other effects cause changes in activity patterns and activity behaviour.
The degree of leisure travel increases, for example (De Vos, 2020). People spend more time
on leisure activities when other trips are reduced. Something which can be explained by
the concept of constant travel time budget (Mokhtarian and Chen, 2004; Mouratidis and Pe-
ters, 2022). However, this does not hold when all movements are restricted. The concept of
constant travel time budget is likely to contribute, among other things, to the fact that the
impact on future combined travel time is presumably limited (Van Wee and Witlox, 2021).
This section further elaborates on the substantial changes in activity patterns.

Fewer trips
During the lockdown period in the Netherlands, the total number of trips decreased uni-
versally. According to De Haas et al. (2020b), the intelligent lockdown in the Netherlands
caused a temporary decrease in outdoor activities for all trip purposes. The most consid-
erable decrease was seen in travel purposes; shopping, sport, visits of family and friends,
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volunteer work and other social and recreational activities (De Haas et al., 2020a). Govern-
ment policy related to corona was accordingly aimed at limiting individual interactions, also
known as social distancing (Ministerie van Volksgezondheid Welzijn en Sport, 2020). As a
result, the number of trips inevitably decreased. Around half of the working population
experienced a change in their work situation (Hamersma et al., 2021). This reduces half of
the trips with a business or work-related purpose.

Tele-activities
The term telecommuting originates from the late 1980s. With the introduction of personal
computers and telecommunication, the concept of remote working started (Haghani et al.,
2003). The definition of remote working is: Work that is performed remotely from the
employer or client using information and communication technology (ICT) (De Vries and
Weijers, 1998). The rapid successive developments in communication possibilities caused
telecommuting to be a hot topic in the 1990s (Van Reisen, 1997). Over the past 20 years, re-
mote working has become an option for commuters with desk jobs. However, people tend to
use the option not frequently. Before COVID, 65% of the working population never worked
from home, and 20% worked from home 1-2 days per week (Hamersma et al., 2021).

Figure 2.2: Development of telecommuting during COVID (Hamersma, 2022)

Figure 2.2 indicates that during the pandemic a maximum of 40% worked almost completely
from home. In the subsequent COVID waves the number of telecommuters decreased, nev-
ertheless the amount of telecommuters remains relatively high. 50-60 % of telecommuters
expect to work more from home after COVID, compared to before COVID, according to
survey results from Mobiliteitspanel Nederland (MPN) (Hamersma et al., 2021). Respondents
indicated the desired future level of working at home is between 1-3 days.

In addition to working from home, telecommuting also includes remote studying for stu-
dents. The majority of remote working for students occurs at higher education institutions.
The more practical-oriented courses and education were limited to studying from home
only during the pandemic. Their role in future remote working is negligible. A difference
between telecommuting for educational and work purposes is the fact that students often
lack the resources or study place to effectively work or study from home (Hamersma, 2022).
Shifting to more online activities also results in less use of the train. As stated by Hamersma
et al., 2021, the train as a mode of transport is significantly represented among commuting,
business and educational travellers. This impact is also present but less visible in other pub-
lic transport modes. If teleworking remains to a certain high degree, the impact on PT traffic
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is estimated to be higher than on car traffic. The higher decrease in PT trips compared to car
trips during COVID supports this claim. In the context of reducing trips, both on the main
road network and during the peak periods in PT, the Dutch government actively attempts
to inform employers about the opportunities of partially working from home (Olde Kalter,
2022).

Finally, a surprising result is that the willingness to telecommute in the future increased
over time during COVID (Hamersma, 2022). The annoyance of working from home has
made way for the advantages such as less travel time and an improved home office.

Other tele-activities
Besides working from home for educational and work purposes, tele-activities are also seen
in trips with a shopping purpose. Shopping behaviour has changed due to the pandemic.
The closing of shops results in more people shopping online. The lasting effects for the e-
commerce branch are hard to determine but could be expected to some degree (Mouratidis
and Peters, 2022). Behavioural changes in consumer behaviour are the main cause of this
effect.

Residential location
If people only travel to the office half of the time compared to pre-COVID, a shift in location
attractiveness could occur. A longer commuting distance is less inconvenient than before
COVID. Land use and the built environment might therefore be subject to changing travel
behaviour in the long term (Mouratidis and Peters, 2022). It is unlikely that COVID-19 will
result in less time spent travelling in the future. The concept of constant travel time bud-
get (Mokhtarian and Chen, 2004) is a possible cause for this (Van Wee, 2020). In the future
travellers accept for instance longer travel times if they only travel to work 3 out of 5 days.
This might lead to people choosing their residential location further apart from their work
location.

Changing a place of origin or residential location is a deeply embedded change in travel
behaviour. Such a change is initiated by the combination of COVID, telecommuting and
current difficulties in the housing market. When living in urban areas because of the short
commute distance, telecommuting 2 to 3 days a week could initiate a preference for a more
non-urban residential location. In addition, Mouratidis and Peters (2022) state that "Tele-
work and virtual meetings increased to a greater extent in denser neighbourhoods than in
lower-density neighbourhoods", meaning that a relocation shift from urban to non-urban ar-
eas is possible. The observation that telecommuting occurs more often in highly urban areas
is endorsed by KiM (Hamersma et al., 2021). A possible explanation is the larger presence
of office jobs in urban regions.
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2.4. Chapter conclusion

This chapter has presented the current knowledge regarding mobility impacts as a
result of the COVID-19 pandemic. The first sub-question can be answered.

What are the current known developments/trends in mobility resulting from COVID-19?

The knowledge gap that has presented itself in the literature is the difficulty of
estimating the level of change due to a high degree of uncertainty. The main takeaway
is that the direction in which travellers will adapt their travel behaviour is relatively
unambiguous; travellers are less inclined to use public modes of transportation, and
a rise in remote working is observed. However, the extent to which this will occur
is uncertain. There are several yet unknown factors that will determine the level
of change. Within telecommuting, for example, the expected number of people
who will work remotely, to what degree people will work from home and how fast
people return to on-site work. The fact that these travellers might or might not
travel significantly affects the number of trips, resulting in changes in the planning of
transport demand and supply. Furthermore, the valuation of modes of transportation
has changed with a potentially lasting effect. The mode appreciation of travellers can
be observed adequate in real-time. Nonetheless, the future valuation of travellers is
difficult to determine. The developments of mode attractiveness over the years are
currently a question.



3
Methodology

This chapter provides an answer to sub-question 2: How can the mobility impact of COVID-19
be quantified and explained? Therefore, the research method to explore the mobility impacts
is explained and argued. Section 3.1 provides a general introduction to the current demand
for alternative modelling approaches. Subsequently, the methodology of system dynamics is
elaborated on in Section 3.2 and its use in transport and mobility is discussed in Section 3.3.
Thereafter, Section 3.4 describes the use of transport modelling elements. Finally, Exploratory
Modelling and Analysis is introduced as an analysis method in Section 3.5.

3.1. Demand for alternative approach
In order to meet the research objective and observe the mobility impacts of COVID, the use
of exploratory modelling is proposed. This is, however, not the only approach which is able
to observe impacts on mobility. Nonetheless, an exploratory modelling approach is consid-
ered the best suitable option.

Since the start of COVID-19 in 2020 numerous studies regarding the future of passen-
ger mobility in the Netherlands were conducted (De Haas et al., 2020b; MuConsult, 2021;
Hamersma et al., 2021; and several more). With the majority having a qualitative research
approach. Due to the existence of qualitative research, another literature study towards the
mobility impacts of the pandemic does not make a significant contribution. Moreover, the
direction of change is often observable, but the degree of change often is not. Therefore, a
quantitative approach with a macroscopic level of detail is chosen. The advantage of this
research approach is the fact that it can support possible predictions or estimations which
were established throughout literature research. Furthermore, this approach enables the ob-
servation of the cohesive net effects.

Currently, there are some initial quantitative studies on the mobility impact of the pandemic.
However, these studies often suggest the possible implementation of scenarios in a quanti-
tative way. The actual quantification of the consequences of COVID-19 is often omitted and
postponed to future studies and research. First of all, in a recent study Van der Drift et al.
(2021) used survey data from the NVP (Nederlands Verplaatsingspanel) to evaluate primarily
the changing activity and mobility patterns during the pandemic. The authors briefly con-
sider the future impact, however not much is mentioned regarding the long-term impacts.

13
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Second, MuConsult (2021) in cooperation with CROW studied the possible implementation
of COVID-19 scenarios into the Landelijk Model System (LMS) commissioned by the Ministry
of I & W. The LMS is a traffic and transport model managed by Rijkswaterstaat on behalf of
the Ministry (Hofman, 2017). With the use of storylines created in an earlier study regarding
a future exploration by CROW/MuConsult (CROW, 2021c), a first quantitative translation
towards the future of passenger mobility in the Netherlands was made. The first exploration
of MuConsult (2021) resulted in a possible setup for future calculation in the LMS. One of
the drawbacks of this method is that the LMS is a rather large transport model which has
relatively high computing time and cost. Therefore, this is not a possibility in this research.
Furthermore, a traffic and transport model such as the LMS result in outcomes on a detail
level which is far beyond the desired detail level of this research.

To conclude, a quantitative exploratory approach is chosen. The advantage of this approach
is the fact that it can support possible predictions or estimations done throughout litera-
ture research. In combination with a high degree of uncertainty, an exploratory modelling
approach is a suitable method (Walker et al., 2013, Chap 9.3.4, p. 239).

3.2. System Dynamics
System Dynamics (SD) is chosen as the best method to achieve the research objective. First
of all, this research has a macroscopic scope and aims to model aggregated traffic instead
of individual travellers or vehicles. SD has a macroscopic approach where the centralised
system behaviour is the point of interest (Nieuwenhuijsen et al., 2018). Whereas, in a micro-
scopic approach, the decentralised individual behaviour takes centre stage (Borshchev and
Filippov, 2004). For that reason, the best way to explore the mobility impacts of COVID is
by studying the behaviour on a macroscopic level.

Second, the fact that system dynamics is a useful method when a high level of uncertainty
is present. The uncertainties in the future of passenger mobility are of a high magnitude.
Therefore modelling with a system dynamic approach is a useful tool to model and simulate
the current and future situation. The combination of system dynamics and uncertainty is not
a given, according to Pruyt (2010) surprisingly few system dynamics studies refer directly
to uncertainty. However, SD is often an exquisite method to handle uncertainty. Second,
the dynamic complexity of the mobility system fits the objective of an SD approach, which
is, among others to identify the dynamic complexity of a system (Sterman, 2000a). Further-
more, SD starts with the assumption that the behaviour of a system is largely caused by its
own structure (Pruyt, 2013). This underlines the importance of feedback within the system.
In the case of the long-term impacts on the mobility system, the behaviour is also partially
influenced by its own structure. Feedback between the choice to travel, choice of mode and
destination choice all influence each other and contributes to a complex mobility system.

System Dynamics was developed by Jay Forrester at the Massachusetts Institute of Technol-
ogy in the 1950s (Forrester, 1958). With SD, causal relations of variables can be identified,
which provides a better understanding of the relations between system elements and the be-
haviour of a system (Sterman, 2000b). Furthermore, the presence of feedback in a dynamic
system is an essential element. Dynamic complexity occurs when the system structure is
defined by closely coupled, non-linearly connected variables that form feedback loops (Ster-
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man, 2000b). The concept of feedback originates from the control engineering theory (Aup-
ing, 2021).

System dynamics modelling process
The system dynamics modelling approach exists of five steps according to Sterman (2000b).
The process can be divided into a qualitative modelling part and a quantitative modelling
part. After the problem definition is defined, the conceptual model can be visualised. This
can be accomplished through different types of diagrams (Pruyt, 2013). With the use of sup-
porting diagrams, the model description is translated into the model structure. Causal Loop
Diagrams (CLDs) are often used to visualise and communicate the feedback loops and direct
causal relations between variables. In addition to the CLDs, Sub-System Diagrams (SSDs)
are useful conceptual diagrams in the qualitative modelling stage. The system boundaries,
variables and relations are also defined in the model conceptualisation phase.

The quantitative modelling part consists of model formulation, model testing and policy design
and evaluation. First, in the model formulation, the conceptual model is translated into a sim-
ulation model. Before the model is operational, the relations between variables need to
be quantified. The SD model consists of a set of integral equations that are numerically
solved (Pruyt, 2013). The equations represent behaviour such as accumulation, feedback
and delays. Stock Flows Diagrams (SFD) are an important quantitative principle in System
Dynamics (Pfaffenbichler, 2011). With a stock-flow structure, these elements are modelled,
and subsequent dynamic behaviour occurs when flows accumulate into stocks (Abbas and
Bell, 1994). The concept of feedback is essential in this as it adds dynamic facets and pre-
vents elements based only on linear behaviour (Auping, 2021). Examples of feedback in the
model are found in the mode choice, the number of (car) trips, the impact of COVID on trips,
telecommuting behaviour and appreciation of public transportation. In addition, delays in
the system are for example witnessed between travellers’ adoption time in switching modes
of transport and the time it takes to create new travel behaviour habits. Finally, to operate
the model and perform experiments, the model needs to be verified and validated.

3.3. System Dynamics and mobility
Implementations and the use of System Dynamics in the field of transport research are not
common. Because the model-building phase starts from scratch, this section elaborates on
the previous use of SD in transport research. This supports the development of a robust
structure of the SD model.

System Dynamics in transportation
Transitions and developments within mobility are fast-evolving, with potentially significant
implications for the future of transportation behaviour (Papakatsikas et al., 2021). System
dynamics is an exploratory modelling methodology that can be applied in this case as ar-
gued in the section above. In the field of transportation and in particular personal mobility
the use of SD is not a common choice as a research methodology (Shepherd, 2014). With the
paper of Abbas and Bell (1994), the first link between transportation and SD modelling was
done. With the subsequent work of Shepherd (2014), the use of SD in current transportation
problems are evaluated. Which concluded that the use of SD was still not very common and
the potential is regularly overlooked.
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In 1994, Abbas and Bell first published their findings regarding the modelling approach of
SD, compared to traditional Transport modelling. This was one of the first insights into
the strengths and weaknesses of SD models applied for transportation. They highlighted
among the strengths; dealing with externalities, policy analysis and support in the decision-
making processes. Moreover, through SD simulation the short- and long-term behaviour of a
transport system is observed and traced. This was particularly useful for gaining insight into
the nature of transport problems. Around 20 years later Shepherd (2014) reviewed the use
of SD models in transportation once again. The application of SD models in transportation
was generally not used and traditional transport modelling is often the chosen alternative.
Although, Shepherd (2014) argued that SD models provide the best approach and outcome
under the above-mentioned conditions.

Land- use/transport interaction System Dynamics models
To make an SD model geographical specific, the model requires the implementation of zones
or areas. By combining Land- use/transport interaction (LUTI) models with urban dynamics
a geographical element is implemented. The original idea of Urban Dynamics by Forrester
(1969) was to split an SD model up into two zones, urban environment and outside of this
environment. In later additions, more spatial elements were added to the original urban
dynamics model (Sanders and Sanders, 2004). Which eventually resulted in the possibility
of implementing a complete zonal representation or an urban area (Swanson, 2003).

Partly due to the implementation of spatial elements, the use of SD in transport modelling
increased in recent years. Starting with the development of the model MARS (Metropoli-
tan Activity Relocation Simulator) by Pfaffenbichler et al. (2008). The MARS model is an
SD model to model urban mobility. This model was developed in 2008 and is still in use
today. The MARS model uses the feedback between mode attractiveness and simplified
assignment through increased travel times (i.e. congestion) adopted from the 4-step trans-
portation model. In urban mobility problems, the MARS model has proven its strengths and
is validated through the application of the model in more than 15 cities and metropolitan
areas worldwide (Pfaffenbichler, 2011). Nevertheless, the focus of the MARS model is pri-
marily on urban areas, resulting in somewhat opposing objectives compared to this research.

The attractiveness of location is of importance within LUTI models. The pandemic influ-
enced the way people perceive their ideal living situation (Bons, 2021). As a result, housing
preference is subject to change (Buitelaar et al., 2021). The modelling of the housing market
is an aspect researched a lot within SD modelling (Eskinasi, 2014). Therefore, the inclusion
of location attractiveness can be explored.

Mobility innovations
Since the development of the MARS model, the use of SD modelling in transportation has
increased. Studies where uncertainty plays a significant role, are in particular suited to apply
an exploratory modelling approach. Hence, the emerging use of SD regarding new innova-
tions, entries or trends in the mobility system. For example, the introduction and adoption of
autonomous vehicles (AV) is an innovation within the transportation system that is studied
with the use of SD. Gruel and Stanford (2016) studied the long-term effects of AVs based on
an adapted conceptual model of Sterman (2000b). Furthermore, Legêne (2018) analysed the
spatial impacts of the introduction of AVs by developing a geospatial disaggregated system
dynamics model. This model was applied to a case study in the Copenhagen metropolitan
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area. It was one of the first geographically specific SD models using extensive sub-scripting
to represent a network of zones.

Related to this, Puylaert (2016) assessed the mobility impacts of early forms of automated
driving in the Netherlands. The research of Puylaert provides an approach similar to the
approach in this study by developing an SD model to observe mobility impacts. Contrary
to the study of Legêne et al. (2020), Puylaert et al. (2018) used categorised area types as zones.

The work of Puylaert (2016) is closely related to one the first transport-implemented SD mod-
els in the Netherlands. Heyma et al. (1999) used system dynamics as an exploratory method
to predict the future of transport and mobility with their SD model: De ScenarioVerkenner.
The Scenario Explorer model was developed by TNO on behalf of the ministry and Rijk-
swaterstaat in 1999 to develop a tool for long-term travel demand forecasting in passenger
transport (Malone et al., 2001). The model from Puylaert adapted the use of travel demand
in the same way and uses the same categorisation of area types. The inclusion of travel
demand is also addressed in the model developed in this research. Hence, the model work
from Heyma et al. (1999) & Puylaert (2016) is useful in the subsequent development phase
of this research. Besides the introduction of autonomous vehicles, SD is also used in regard
to other mobility trends to observe system behaviour (Papakatsikas et al., 2021). The authors
of this paper likewise argued that SD could be a suitable method for further research on the
effects of COVID on mobility.

3.4. Transport modelling
The system dynamics approach will be used in a combination with aspects of transport mod-
elling. To answer the main research objective the SD model requires to include a form of
travel data and travel behaviour. To stay within the proven transport modelling techniques
the 4-step model (Ortúzar and Willumsen, 1990) is used as a guiding principle. Figure 3.1
illustrates briefly the 4 steps within this model. From the current developments of COVID,
the mode attractiveness and activity patterns emerged as points of interest. The mode attrac-
tiveness can be linked to the third step in the 4-step model: Mode choice. Whereas activity
patterns and change of those patterns can be linked to the first step: Trip generation and even
a step before that. By travellers deciding to make a certain trip.

By using the 4-step model as a guideline, the developed model contains a substantiated
transport modelling basis. In the continuation of this research, the focus is on the mode
choice. Nonetheless, the other phases in the 4 step model are included as well to ensure
a complete transport modelling structure in the SD model. Trip generation provides the
input of trips and is combined with trip distribution. The route assignment is subsequently
simplified because detailed route assignments can be problematic in a system dynamics
environment (Shepherd, 2014). Besides, detailed route assignment is not of high interest in
a macroscopic view. Therefore there is no dedicated route network and there is only one
assignment option.
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Figure 3.1: Point of interest in the 4-step model

3.5. Exploratory Modelling Analysis
For analysing the model outcomes and exploring the influences of uncertainty, Exploratory
Modelling and Analysis (EMA) is used. Bankes (1993) introduced the concept of EMA in
1993. With the use of computational support, it is possible to perform a high number of
experiments and analyse the uncertainties of a model (Kwakkel, 2017). The use of a high
number of experiments (N >1000) in combination with the possibility to vary the range of
input parameters enables the exploration of the model outcomes in a base ensemble instead
of a single base scenario. Within EMA it is possible to perform scenario discovery. With the
use of a scenario discovery algorithm, computer-assisted scenario development is possible
(Bryant and Lempert, 2010). Computational scenario discovery extends traditional scenario
design where at first a storyline is developed and afterwards simulation takes place.

The SD model is heavily dependent on COVID-related input, which is often based on esti-
mations and best guesses from the literature. Therefore, the use of exploratory modelling
and analysis allows analysing of model outcomes under different conditions, providing a
stronger perspective on the future mobility impacts. The combination of EMA and the SD
model is seen as valid as the goal is to observe the impacts on bandwidths to establish in-
sight into the behaviour over time. Furthermore, the use of EMA in system dynamics is
often used and validated (Kwakkel and Pruyt, 2015), therefore providing a strong analysis
method useful for the SD model. The EMA workbench is an open-source tool implemented
in Python that enables the implementation and analysis of the SD model (Kwakkel, 2017).
With the EMA workbench experiments and the subsequent visualisation of outcomes can be
performed.
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3.6. Chapter conclusion

This chapter started with an introduction to exploratory modelling and the use of
system dynamics in transport research. The second sub-question How can the mobility
impact of COVID-19 be quantified and explained? can be answered based on the findings
in this chapter.

To conclude, system dynamics is found to be a suitable method for this research due
to a high level of uncertainty, the complexity of the mobility system and the presence
of feedback and delays in this system. Therefore, a system dynamics model will be
developed, focusing on the mode choice component. With a quantified SD model, it
is possible to explore the behaviour of impacts over time to study the direction and
the degree of mobility impacts due to COVID.

With the combination of transport modelling and exploratory modelling, an uncom-
mon combination of methods is mixed. Therefore, it is essential to consider previous
SD modelling work during the development phase. Earlier SD models can provide
guidance in the development of a logical model structure. Nonetheless, the model-
building process starts from scratch due to the absence of a previously validated
model. Moreover, the design of the SD model will follow the structure of the 4-step
transportation model to establish a robust foundation for the model and make the
model applicable to cases other than COVID.



4
COVID-19 mobility model

This chapter presents the developed System Dynamics model. The model is structured by
answering sub-question 3: How can the uncertainties originating from the pandemic be imple-
mented and modelled? The first section (Section 4.1) provides the conceptual design and a
high-level overview of the model. After which Section 4.2 elaborates on the description of
the sub-models and the application of the model by defining the model components and in-
put. Thereafter, the experimental setup and the input parameters are discussed in Section 4.3.
Finally, Section 4.4 expands on the model usability in practice.

4.1. Conceptual model
The conceptual model description presents an overview of the model structure by means
of a Sub System Diagram. Furthermore, the mode choice and its inclusion in the system
dynamics model are outlined.

4.1.1. Model overview
The System Dynamics model captures changes in travel behaviour as a result of COVID. The
behaviour within the system is made insightful, and the model outcomes result in mobility
impacts under the fluctuation of input uncertainties. The model structure is primarily based
on the 4-step transport model by Ortúzar and Willumsen (1990) for the robust transport
modelling basis and the inclusion of mode choice. In addition, supported by SD model
work from Pfaffenbichler et al. (2008) regarding the implementation of trips in an (urban)
mobility model.

In short, the objective and the main components can be described as follows: In the model,
the trip generation originates from a base year and is influenced by population growth. The
focus is on the dynamic mode choice. By developing a choice model hypothetical observa-
tions of travellers can be observed. Thereafter, the influences of COVID change the traveller’s
choice with a delay during the pandemic. Which subsequently might or might not have an
impact on mobility in a post-COVID era. With the use of travel data, the model is imple-
mented, validated and applied to the Netherlands. By adding a feedback loop between the
number of car trips and the attractiveness of the car through a congestion component, the
model is further extended into a dynamic model. The Sub System Diagram (SSD) in Fig-
ure 4.1 illustrates the structure of the SD model.

20
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Figure 4.1: Sub System Diagram

The SD model structure can be summarised in the Sub System Diagram (SSD) in Figure 4.1.
The mode choice component operates as the main model component. The main impact
of COVID can be seen in the appreciation of public transport, remote working and trip
generation. The remainder of this chapter will discuss each submodel in more detail.

Key Performance Indicators
The goal of the model can be structured by the use of Key Performance Indicators (KPIs).
By defining the measurable outcomes the purpose of the model becomes more transparent.
Table 4.1 below presents the KPIs in this research. Important is to keep the macroscopic
exploratory approach in hindsight, meaning that the goal is not to observe specific precise
outcomes or predict explicit values. Therefore, the model outcomes consist of bandwidths
of the KPIs under the influence of uncertainties.

Modal split (trip based) Road intensity
Number of trips (Yearly & Monthly) Relative congestion levels
Number of remote workers
Number of public transit riders

Table 4.1: Key Performance Indicators

4.1.2. Trip categorisation
The change in the attractiveness of modes can be observed based on different trip characteris-
tics. By changing the input parameters, the result can be observed in the monthly number of
trips per mode and per trip purpose, distance class and degree of urbanisation. The various
elements within these categories that are taken into account are specified in Table 4.2. With
the distinction in trip types, the modal split and number of trips can be observed for each
of the 100 combinations of trip types. Therefore, observing the differences in, for example, a
commuting short trip originating in an urban area and a long educational trip originating in
a non-urban area.
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With the use of travel data from the travel survey Onderweg in Nederland (ODiN) trips in
the Netherlands are categorised (CBS, 2020). The trip purposes and the distance classes are
combined categories from data available in the travel survey. The categorisation of distance
classes is constructed around the average commuting distance in the Netherlands, which
is 19 kilometres. For travellers with a high education background, the average commuting
distance is even longer at 35 kilometres (Ritsema Van Eck et al., 2020). The average distance
travelled for trips with social-recreational and shopping purposes is lower. Combined, this
results in the categorisation of trip lengths into 4 distance classes (Table 4.2). The categorisa-
tion of trip purposes is based on the purposes with the highest potential of COVID impact
(De Haas et al., 2020a). Besides the different trip purposes and distance classes, the model
is extended with a geographical aspect. This addition results in outcomes specific to certain
areas of the Netherlands, on top of the general outcomes for the entire country. With the
use of ODiN data, it is possible to filter the data on arrival and departure municipalities
(see Appendix D). By assigning the departure municipalities to an area type based on the
degree of urbanisation, a geographical layer is added to the model. The current degree of
urbanisation is divided into 5 classes and based on the surrounding address density (CBS,
2019b).

Use of subscripts
In the SD model the distinction between trip purpose, distance and area type is done by the
vectorisation of variables, creating a copy of a set of variables or model structure. In SD the
vectorisation of variables is modelled with the use of subscripts. These subscripts essentially
create a copy of the model structure for each aspect, in this case; the trip purpose, distance
class and area type (Table 4.2). As a result, the KPIs regarding the modal split and the
number of monthly trips can be analysed in total or separately. However, this also poses a
risk. Because the categorisation is done for all modes of transport, this leads to 500 different
modal split and monthly trip KPIs. Therefore, only the relations that generate meaningful
results are explored.

Trip purpose Distance class Distance [km] Area type (origin)
Address density
[Addresses/ km^2]

Commuting Short <7.5 km Extremely urbanised >2500
Educational Middle short 7.5 - 15 km Strongly urbanised 1500 - 2000
Social recreational Middle long 15 - 40 km Moderately urbanised 1000 - 1500
Shopping & Personal care long >40 km Hardly urbanised 500 - 1000
Other motives Not urbanised <500

Table 4.2: Subscripted trip categories

4.1.3. Attractiveness of modes in conceptual form
The attractiveness of modes of transportation is the core of the model. From the literature
it was identified as an area of interest, thereafter it was linked to transport modelling in the
methodology chapter. The mode choice is calculated at every time step, which provides the
outcomes to the modal split KPIs.

Choice modelling
To cope with the choice between alternatives, choice modelling is proposed. Discrete choice
models are considered an important tool in the decision-making process of the traveller
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(Train, 2003). Especially within the choice of mode of transportation. The main theory
behind the use of choice models is the utility theory (McFadden, 1980). Choice models in
the field of transportation are usually based on utility maximisation. The decision-maker
chooses between alternatives, in which each alternative has a level of utility (Pel, 2018). The
decision-maker chooses the alternative that has the highest utility. The utility maximisation
theory originates from the economic theory, where Random Utility Maximisation (RUM)
is an assumption within consumer behaviour theory (Hess et al., 2018). The alternative a
decision-maker chooses can be determined with the use of a logit formulation for mode
choice (Ortuzar and Willumsen, 2011). The probability P of the decision-maker choosing
alternative i is calculated with Equation 4.1.

Pi =
eVi

∑n
r=1 eVr

(4.1)

Where:

Pi = Probability of choosing mode i;
Vi = Utility of mode i;
Vr = Utilities of all the modes r;
n = Number of modes in consideration;

The alternative specific utilities are calculated with Equation 4.2. This is the basic form of a
utility function and consists of mode-specific attributes such as travel time and travel cost.
The calculation can be extended with additional mode-specific attributes such as waiting
time, comfort or COVID-dependent variables, which enter the equation direct or through
the travel time or travel cost.

Vi = TTi · βTTi + TCi · βTCi + ASCi (4.2)

Where:

Vi = Utility of mode i;
TTi = Travel time of mode i;
βTTi = Sensitivity parameter of travel time of mode i
TCi = Travel cost of mode i;
βTCi = Sensitivity parameter of travel cost of mode i
ASCi = Alternative Specific Constant of mode i

Modal split
The utilities are influenced by exogenous variables which determine the attractiveness of
the mode. The variables or utility attributes are the input of the utility functions. Because
each mode is in essence a competitor, increased utility for mode X results in a decrease in
attractiveness for one or multiple of the other alternatives. By changing the attributes, the
distribution of modes is calculated and this leads to a modal split value. Utilities for the
alternative car are additionally changed endogenously by modelling congestion through a
feedback mechanism.
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In line with the theory from choice modelling, the mode choice on a conceptual level is il-
lustrated in Figure 4.2. The attractiveness of the alternatives consists at first of travel times
and travel costs. The conceptual models for the separate alternatives are presented in Ap-
pendix B.

Figure 4.2: Conceptual model of mode choice

Modes of transportation
There are numerous different modes of transportation, hence, a selection of the relevant al-
ternatives is made. The choice has been made to include five main modes of transport, being:
car, public transport, bike, walking and tele-activity. With these main modes, significant
changes resulting from COVID can be observed, because the predictions from the literature
pointed in the direction of the distribution between public and private modes of transport
(Gkiotsalitis and Cats, 2020). Furthermore, the potentially changing role of active modes,
such as cycling and walking, is stated by Van der Drift et al. (2021).

Tele-activities
Tele-activities have a substantial influence on the future system as indicated in the literature.
Therefore, tele-activities have been taken into account as an additional alternative in the
mode choice. This results in a decision-maker choosing a tele-activity trip, which in fact is
a choice to not travel. Instead, the choice is made to work or study from home for commut-
ing or educational trip purpose. Within tele-activities, the focus is on remote working and
remote studying. Other tele-activities are not taken into account and are outside the scope
of this research. Considering that working from home and studying from home are the two
main tele-activities expected to have a permanent effect (Hamersma et al., 2021).

The addition of tele-activities as a competitive alternative to the other modes of transport has
resulted in tele-activity being transformed into a dynamic component. The benefit of mod-
elling tele-activities in this way is that a utility can be observed corresponding to choosing
a tele trip. Hence, the attractiveness of tele-activities can be observed under changing input
uncertainties throughout the entire run time of the model. In the continuation of this thesis,
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tele-activities are referred to as telecommuting and include both educational trip purposes
and work-related trip purposes. Nonetheless, in the model, remote working and remote
studying feature their own parameters.

4.1.4. Model boundaries
The developed SD model has a robust verified basis by which the impacts of COVID and
other mobility disruptions can be seen in the modal split and number of trips. However, the
model has some simplifications due to the exploratory nature of the model; this is inevitable
and does not impact the goal of the model. The constructed model meets all of the require-
ments set and is, through calibration and verification, later tested for practical use.

Future expansion of the model can build on some of the current simplifications. First, with
the use of distance classes, a simplification is implemented in the model. By categorising
all trips into scaled distance classes, the trips within one distance class are generalised and
have an average trip length. The simplification of distance classes is due to the otherwise,
extensive size of the model for both subscripts and output variables. As a result, interchanges
between distance class is not yet possible. Second, the 5 modes of transport in the model can
be extended with additional alternatives. Currently, the 5 modes included are considered
to be most relevant to the outcomes. Furthermore, due to data availability, the number of
alternatives is constrained. In addition, the inclusion of shared mobility alternatives (bikes,
scooters and mopeds) could be beneficial to observe their increase or decrease as a result of
the pandemic. Third, besides the choice to not make a trip for educational and work-related
purposes, tele-activities for other trip purposes could be included. For instance, the rise
of e-commerce and online grocery delivery companies during the pandemic has impacted
shopping trips, the lasting effects could be studied with this model. The choice to include
only remote educational and remote work activities is due to their higher predicted impact
and societal relevance.

4.2. Model description
This section elaborates on the description of the model components and the application
of the model to the situation in the Netherlands. The sub-models and sub-components:
trip generation, mode choice, congestion, public transport, telecommuting and COVID are
discussed.

4.2.1. Trip generation
The 4-step transport model (Ortúzar and Willumsen, 1990) is, to a certain extent, used as a
guiding principle. The first and second step trip generation and trip distribution are simplified
and considered as a constant base year input. The trip generation is however dependent on
population growth.

With the use of CBS survey data from the Onderweg in Nederland (ODiN) survey in 2019 a
pre-pandemic base year is constructed (CBS, 2020). The base year travel data function as the
constant trip generation input of the model. The trips are distinguished by the defined trip
categories (trip purpose, distance class and area type). With the use of statistical software
SPSS, the data is cleaned and prepared for use. Appendix D elaborates on the process of
data collection and cleaning.
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To simulate travel demand, the number of trips in one year are generalised to the population
and used as the main input. In survey data, a distinction is made between households and
individuals. In this research, the focus is on the trips of an individual (CBS, 2020). The
consideration to work with individual travel behaviour is due to the fact that this method
is more appropriate for evaluating changes in travel behaviour. Although individual travel
data is used, travel behaviour is not studied on an individual level. Travel behaviour is anal-
ysed at the population level on account of the macroscopic scope of this research.

Besides population growth, the trip generation is influenced by a decrease in trips during the
pandemic, as shown in Figure 4.1. The decay of trips is subtracted from the number of trips
during the active period of COVID-19 for trip purposes with no option for tele-activities. In
the decay of trips, a distinction is made between the decay rate during the first wave and
later waves. Due to the difference in the decrease of trips between the initial first wave and
the COVID waves near the ’end’ of the pandemic (MuConsult, 2021).

The ODiN data set does not incorporate a form of remote working. To cope with the initial
number of telecommuting trips the initial degree of telecommuting before the pandemic is
calculated. The degree of remote working before COVID was averaged at 3.5 hours per week
(Jongen et al., 2021; Hamersma et al., 2021). This translates to an initial telecommute percent-
age of ≈ 11% for an average workweek of 32 hours (CBS, 2022c). There is no information
about the hours of home education in the Netherlands before COVID. Therefore, studying
from home for higher education is assumed to be similar or slightly higher compared to
remote working. The other forms of education are estimated to have a considerably lower
degree of remote activities. On average, this results in a slightly lower rate of home educa-
tional activities. The calculations of initial tele-activity trips per trip type can be found in
Appendix D.

4.2.2. Construction of the mode choice
To include the mode choice as a dynamic component in the SD model, a choice model is
constructed where a hypothetical decision-maker makes a choice between the 5 alternatives
(Car, PT, Bike, Walk and Tele). The attractiveness of a mode of transport is translated to
utility functions. Subsequently, the choice behaviour of travellers is calculated with choice
models. The underlying mathematical formulation is based on a logit function for mode
choice (Train, 2003).

The main formulation and the attributes to calculate the attractiveness of an alternative are
illustrated in Equation 4.2. The calculation of the utilities is based on the mode-specific travel
time and travel cost, including sensitivity parameters (β) and Alternative Specific Constants
(ASC). The exogenous input variables are often an indirect part of the travel time or travel
cost function or direct input in the utility function. Figure 4.3 illustrates the main attributes.
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Figure 4.3: Mode choice component

Travel time and travel cost
Each mode of transport has a corresponding initial travel time that depends on the distance
class and area type. For public transport the travel time is divided into in-vehicle time, wait-
ing time and access and egress time. Travel times are calculated in excel, thereafter, the initial
travel times are included in the SD model. Appendix C describes the calculation of travel
time and presents the input values for the SD model. The travel times have an initial value
and change exogenous over time. Car travel times additionally change endogenous through
the congestion submodel.

The travel cost are calculated likewise, consisting of variable and fixed travel costs. Travel
costs are present solely for the alternatives; car and public transport, for simplicity reason
the cost of owning and driving a bicycle have been reduced to zero in the mode choice.
Contrary to the travel time, the travel cost changes exogenous due to input parameters. The
variable car cost is influenced by the fuel price, other variable car costs and distribution of the
vehicle fleet (EV/ICE) over time. These parameters have base input values, however, they can
be regarded as uncertainty inputs, because the input is based on estimations. Appendix C
describes the calculations of travel cost and presents the initial values and their change in
time.

Sensitivity parameters
Sensitivity parameters in the constructed choice model for the SD model are based on pa-
rameters in estimated choice models of existing traffic models (Octavius and LMS). The
implementation and calculation of the parameters can be found in Appendix C.
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Travellers (decision-makers) are sensitive to attributes that determine the utility of a mode
of transportation. When travellers are more sensitive to a certain attribute (e.g. travel time),
that attribute should have a higher added value in the total utility (Chorus, 2020). Price
sensitivity and travel time valuation are derived from elasticity’s (Bakker, 2018; MuConsult,
2015). If for example, the sensitivity for travel time is relative low, a change in travel time
will not quickly lead to different choice behaviour.

The sensitivities are translated in weighted (β) parameters for the corresponding attributes.
These weights are estimated. The estimated parameters are relative to another alternative.
This results in sensitivity parameters for modes of transport in regard to the fixed mode. In
other words, weight is relative to the other mode of transport, because it is the difference in
utility that matters (Chorus, 2020).

Elasticity’s change due to COVID-19
It is important to question whether the elasticity of the period without COVID would present
accurate elasticities and weighted parameters for the period after the pandemic. Due to the
fact that elasticity and subsequently beta parameters based on new behaviour are not avail-
able, changing travel perceptions of travellers are dealt with in a different way.

There have been some studies towards changing travel time valuation due to COVID com-
missioned by, for example, the Kennisinstituut voor Mobiliteitsbeleid (Thoen and Kouwenhoven,
2021). However, the authors mentioned the exploratory nature of this new value of travel
time and elasticities. In addition, the use of these values in the model calculation is discour-
aged and could lead to biased results (Faber, 2021). In further research, when new travel
time valuation is in a further verified stage, new parameters could be added to the choice
model and implemented in the SD model alongside the existing elasticities and parameters.

In the SD model there is specific attention to the negative/positive attitude towards public
transport. By changing the level of trust and comfort travellers experience in public transport,
the sensitivities of travellers change.

Alternative Specific Constant
The utility function consists of observed factors, travel time and travel cost. In addition, there
are also unobserved factors, such as specific travel preferences. These factors are unobserved
and are captured in a constant (Chorus, 2020). The travel preferences consist of everything
not captured in the attributes in the utility function, such as the need to change trains and
car ownership. The Alternative Specific Constant (ASC) captures specific travel preferences
of travellers for a certain mode of transport under various circumstances (Train, 2003). For
example, the use of the bicycle for long trips for trip purpose commuting has a negative
preference by the majority of travellers. These travel preferences are captured in the ASC. It
is shown that a relatively large negative ASC results in a lower utility and thus attractiveness.
ASCs are estimated at the same time as the weight coefficients (beta). For the SD model, the
ASCs are similar to the weight coefficients obtained from existing estimated traffic models.
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4.2.3. Congestion feedback
The congestion model component provides the mode choice with its dynamic component.
The mode choice introduced the presence of a feedback mechanism between car attractive-
ness and mode choice. Through the use of a simplified capacity and intensity constraint,
the degree of congestion on the road can be determined. By comparing the congestion level
with the initial congestion level, the dynamic change of congestion can be established. There-
after, increasing or decreasing congestion influences the car travel time and thus the utility
function. The Congestion feedback is seen as a simplified form of route assignment, the last
step from the 4-step model. With the use of the congestion feedback mechanism car traffic is
assigned to the general main road network as a whole, in which the capacity and intensity
values are mirrored from the actual values in the Netherlands in the base year of 2019 (Rijk-
swaterstaat, 2019). The simplified form of assignment meets the current requirements in the
macroscopic approach.

4.2.4. Telecommuting
The use of telecommuting as an added component in SD mobility models is not completely
new. In an extension of The Scenario Explorer model in 2001 Malone et al. added telecommut-
ing as an exogenous scenario input variables. The authors were interested to see what the
possible effect on travel demand would be. In particular, the connection between telecom-
muting and trip generation was emphasised. In the model, telecommuting affected only the
number of trips that would be made. Telecommuting was not modelled as a dynamic compo-
nent of the model itself. It was rather difficult to observe the effect of telecommuting due to
a lack of information about remote working and studying at that time (Haghani et al., 2003).
Haghani et al. (2003) mentioned the upcoming phenomenon of telecommuting in the late
1980s and the implementation of telecommuting in their SD model for land use/transporta-
tion system performance modelling in 2003. Similar to the implementation of Malone et al.,
the effect of telecommuting was determined by subtracting the fraction of the workforce that
worked remotely from the trip generation. The model developed in this research differen-
tiates itself from the earlier models through the addition of tele-activities in the mode choice.

Besides including tele-activities as a new alternative, the degree of telecommuting is also
modelled dynamically. Telecommuting is defined by the decay rates of remote working in-
centives during and after the pandemic and the expected number of hours people will work
remotely in a post-pandemic era. The pre-pandemic degree of telecommuting is overall
around 11 % of the worked hours. The pre-pandemic level is divided into educational and
commuting and divided per distance class and area type in the model (Hamersma et al.,
2021, p.119/ p.122).

The expected future degree of telecommuting is according to a survey study (MPN) of KiM
around 1-3 days a week (Hamersma et al., 2021). This is endorsed by Jongen et al. (2021),
who on behalf of the Centraal Planbureau (CPB) expect a doubling of the number of remote
working hours. The expected days or hours that will be worked from home are uncertain and
currently based on rough estimations from the above-mentioned survey study. In addition,
the maximum number of people that can work from home has to be considered, as around
60% of the population in the Netherlands have jobs with no remote working possibilities
(CROW, 2022c).
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4.2.5. Public transport attitude
Overall, the popularity of public transportation has decreased since the start of the pandemic
(Tirachini and Cats, 2020). There are several different determinants for travel satisfaction
within public transport. Ingvardson (2017) suggests a strong link between travel satisfaction
and the role of attitude and social norms. The negative attitude of travellers towards the use
of the train or bus/metro/tram has increased. The positive or negative attitude influences
the mode attractiveness. The rate at which travellers gain back a more positive attitude
towards public transport is based on the Rate of gaining back a positive attitude. With this rate
the attitude levels are determined. A lower rate of gaining back trust implies a negative
attitude is longer present. The quantification of this value is accomplished with the use
of change in the valuation of PT during the different stages of the pandemic (De Haas
and Faber, 2022). This is supplemented with results from the OV-Klantenbarometer which
monitors the general satisfaction of PT travellers (CROW, 2022b). Based on the result of De
Haas and Faber (2022) and CROW (2022b), assumptions for input ranges of the rate travellers
gain back a positive attitude after COVID can be explored and defined. The recovery of a
positive attitude is slightly adjusted with an adoption curve (Rogers et al., 2008) due to
the high degree of uncertainty. Such an adoption curve provides guidance towards the
percentage of travellers early returning or late returning. The negative attitude is modelled
throughout the entire pandemic and there is no distinction between the various stage of
COVID.

4.2.6. COVID
The COVID submodel exists as a representation of the COVID waves during the pandemic.
This is initially constrained between March 2020 and the last (5th) COVID wave around
march 2022 (RIVM, 2022). COVID waves each have a duration and an interval between the
waves and are modelled in a sequence of 5 waves. The different waves feature different decay
rates in the number of trips, as the first wave for example showed a higher decrease in people
activity than the later waves (Van der Drift et al., 2021; De Haas et al., 2020b). The distinction
between trip purposes enables the representation of changed activity patterns specific per
trip purpose. The decay in the number of trips is higher for social recreational travel than
for (grocery) shopping for instance (De Haas et al., 2020a). The decrease in trips during the
COVID waves impacts trip generation for all trip purposes except commuting and education,
due to their implementation through the addition of the tele-activity alternative.

4.3. Uncertainty input & Experimental setup
Once the model is specified, the experimental setup can be described. Each of the sub-
components described in this chapter includes exogenous variables that are uncertain to
some extent. A higher degree of uncertainty contributes to a high degree of unpredictability
for what the future beholds. By discovering the uncertainties and explaining their ranges
and influences in the system, uncertainty can be coped with. This eventually leads to an
improved understanding of the model outcomes. The general and COVID uncertainties cur-
rently included in the model are presented in Table 4.4 & Table 4.3.

By changing input parameters the mobility impacts under different conditions are shown. It
is, however, important to not change input variables that change the initial utility. To prevent
misalignment between initial values and model calculated values, the choice model is cali-
brated on the input data. By changing values after the first time step, this problem is coped
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with. Not all of the model uncertainties are taken into account in the experimental phase of
this research. The uncertainties included in the experiments are stated at the beginning of
the results.

Telecommuting Public transport attitude COVID

Expected telecommute hours after COVID Rate of gaining positive attitude Decay rate of trips first wave
Percentage of the labour force able to work from home Decay rates of trips in 2nd, ... , N waves
Decay remote working incentive during the pandemic Last COVID wave
Natural decline rate of remote working Delay time COVID measures

Table 4.3: COVID uncertainties

Variable Car Cost Public transport Other

Development variable fuel cost Recovery time of public transport supply Estimated population growth
Increase of electricity/fuel cost for EV Development variable cost in PT
Development distribution ICE/EV
Development of other variable car costs

Table 4.4: General uncertainties

Experimental setup
For modelling with an SD approach, a time horizon should be determined to establish the
run period. The starting point is the year 2019 as a pre-COVID period and the final time
is set to 2040. Based on the response time of travel behaviour, approximately 20 years is an
adequate run time to observe near-future and distant-future model outcomes. The SD model
is developed with the system dynamics software package of Vensim (version: Vensim® 9.3.0
x64), which provides a user-friendly graphical modelling interface (Ventana Systems, 2022).
For the analysis of the model outcomes, as well as performing a high number of experi-
ments, the EMA workbench (version: 2.1) is used. The EMA workbench is implemented in
Python and features an integrated connector for the models in the Vensim package to be
implemented in the workbench (Kwakkel, 2017).

4.4. Calibration and Validation

4.4.1. Calibration
The construction of a choice model and the use of a logit model in the SD model results in
a combination of survey travel data (ODiN) and calculated attributes. Because the choice
model does not thoroughly match the initial travel data from ODiN, there is a slight mis-
match between the model input en model calculated output. This misalignment arises from
the fact that travel times and travel costs are determined separately based on average trip
length per distance class. In order to fix the misalignment, the utility functions are slightly
altered.

By re-estimating the Alternative Specific Constant (ASC) the utility functions are updated
to match the initial model input. Because the model is specified for different modes and
different trip types, there are 500 ASC values in total. These values need to be re-estimated
to correct the misalignment. The re-estimation step causes the SD model to be calibrated on
validated input data. In the calibration, one of the modes is fixed in order to estimate the
other 4 modes relative to the fixed mode.
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The calibration of the ASC is done with the use of an optimisation script in Python. The ini-
tial model-calculated utilities (n=500) are exported from the SD model in Vensim. The initial
trips per alternative divided per trip category obtained from the data set are appointed as
targets. Finally, the combined initial trips for the 5 alternatives are summed (n=100). By run-
ning the optimisation script, the SD model-based utilities are compared with the trip initials
resulting in the utility difference. Subsequently, new ASC values can be obtained by which
the SD model implemented ASCs can be increased or decreased.

The order of estimating the ASC is not in line with the accurate transport modelling and
discrete choice modelling order of estimating constants. The weighted coefficients (beta)
and the ASC are normally estimated at the same time. Nonetheless, this step was necessary.
By adding a ’new’ mode such as telecommuting, there is no predefined ASC value which can
be used. Therefore the ASC of telecommuting has to be estimated manually. Hensher (1981)
emphasises the importance of incorporating an ASC for new modes in logit models. Often
ASC values are left out in such cases. This impacts the usually sensitive mode share, resulting
in incorrect outcomes of a model. Due to the high number of ASC in the model, estimating
ASC for telecommuting by hand is impossible. Therefore, estimating the ASC values of
telecommuting is performed simultaneously with the calibration of the ASC values of the
other alternatives. Moreover, the method of adjusting constants afterwards can be accounted
for within the SD modelling cycle, in which, the model testing and validation part require
feedback between model use and testing.

4.4.2. Validation
In the validation, it is checked if the developed model represents the actual system ade-
quately. By comparing the model or by running tests, it is possible to build additional
confidence in the model. In this case, the similarity with COVID behaviour in the real world.
The pandemic started around March 2020, which means the behaviour of the real world can,
to a certain extent, be matched to the model-produced behaviour.

Because exploratory modelling is used, the goal is not to mimic the actual past trend of
COVID. Nonetheless, validating if the model somewhat represents the correct direction is
useful. A comparative analysis with observed data is performed. Survey data from Neder-
lands Verplaatsingspanel (NVP) (Goudappel, 2022) and Mobiliteitspanel Nederland (MPN) (De
Haas et al., 2020b) on the number of trips made between March 2020 and June 2022 is used
to compare model-calculated number of trips in the same time period.

(a) Public transport check-ins between March 2020 and June
2022 (Translink, 2022) (b) Public transport trips between March 2020 and June 2022

Figure 4.4: Public transport behaviour comparison
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With data of Translink (CBS, 2022a) the PT check-ins are monitored and can be compared to
model computed behaviour. There is a small misalignment between the model’s computed
number of trips and the PT check-in data. Further analysis showed that during COVID
times, for commuting and educational trip purposes, the mode of telecommuting removed
too much PT share in comparison to the other alternatives, based on observed levels during
2020-2022. At first sight, this is not really a severe problem due to the fact that the behaviour
is more important and not the actual values. Nonetheless, a COVID penalty variable is
added to the utility functions of the competitive modes to assign a small penalty during
the active COVID period. By adding this penalty, the number of trips and the modal split
represent a more accurate situation.

4.5. Chapter conclusion

To conclude the system dynamics model chapter sub-question 3 can be answered:
How can the uncertainties originating from the pandemic be implemented and modelled?

Modelling the uncertainties from COVID has resulted in a developed SD model
where the main effects of the pandemic are modelled through mode attractiveness.
Utility functions are used to determine the difference in utility of each alternative
and subsequently choice models to determine the attractiveness of modes. With
the inclusion of a tele-activity alternative, the model differs from existing models.
Modelling the choice to not travel and substituting a trip with telecommuting shows
the attractiveness of remote working over the forthcoming years.

With the distinction of trip types in trip purpose (i), distance class (ii) and area type
(iii), the results can be analysed on multiple levels. First, the nationwide total mobility
impacts can be assessed. Second, more detailed results on all combinations of trips
can be explored. This provides insight into the difference between, for example, a
traveller making a long trip from an urban area and a short trip from a non-urban
area and the subsequent incentive to substitute that trip with remote working.

Through validation and calibration, the model is adjusted for use in practice. The
inclusion of a new alternative in the choice model requires the estimation and calibra-
tion of the Alternative Specific Constant for telecommuting. It is shown that the model
can be used to simulate behaviour based on input uncertainties. By altering input pa-
rameters, the model outcomes are consistent with the expected model behaviour.



5
Results

This chapter presents the results of this research obtained through exploratory modelling
analysis. Subsequently, the outcomes of the analysis can answer sub-question 4: What are
the quantified mobility impacts of COVID-19? With the construction of a base ensemble, the
most likely future situations can be established (Section 5.1). Subsequently, the outcomes
can be endorsed, supported and made more robust by exploring the input uncertainties that
affect the mobility impacts under different conditions. With the use of scenario discovery
and increased uncertainty scenarios, more extreme situations are explored in Section 5.2.
This results in the answer to sub-question 5: What is the role of uncertainty in the future impact
of COVID-19 on mobility? Finally, this chapter concludes with an interpretation of the final
results in Section 5.3.

The results are structured by a two-part story-line: What is the situation we are likely to see
as a result of the pandemic and what happens outside the range of this prediction? The con-
sequences of both will subsequently be elaborated on in the discussion. Section 5.1 presents
the outcomes for the situation that is most likely. Based on literature and stated choice re-
search the ranges for input parameters/uncertainties are defined. Due to the complexity
and uncertainty in the system, it is beneficial to explore more extreme situations. Section 5.2,
therefore introduces the outcomes in the event that alternative scenarios become reality. To
prepare for the future and support the problem owner in their plan of action, the input pa-
rameters of high magnitude are explored. Once the significant uncertainties are identified
the decision to intervene in the system and design specific policy options is enabled. Sec-
tion 5.2 also introduces scenario discovery as a tool to identify these parameters of interest.
Presenting the options to intervene, if necessary, and support decision-makers in their plan
of action.

This research developed a model which is suitable to explore the future of mobility under
changes in the mobility system. In this research, the model is used to explore the mobility
impacts of COVID. The COVID-19 pandemic is therefore used as a case study. The model
is designed in such a way that it is suitable to explore the impacts of other disruptions in
mobility, with the addition of sub-components.

34
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5.1. COVID-19 base ensemble
A COVID-19 base situation is constructed where the input uncertainties related to COVID
are specified according to the literature. With the use 0f multiple computational experiments
(n=1000), the input parameters are varied. With the Key Performance Indicators, the mobil-
ity impacts can be observed. The model experiments performed varies each of the input
parameters within their range using a Latin Hypercube sampling (Kwakkel, 2017). This
statistical sampling method generates a near-random sample of the input parameters. The
experiments can be used to explore the range of possible outcomes (Bankes et al., 2013). As
not one case is highlighted as a base COVID scenario the base situation is regarded as a
base ensemble. In exploratory modelling, the use of a base ensemble, multiple runs under
a base input bandwidth, is more suitable than a single base scenario used in traditional
modelling (Auping, 2018). Therefore the outcomes are observed with a base ensemble. This
is consistent with the exploratory nature of SD, which implies that the goal is not to make
estimations about the specific results at a period in time. However, SD is very suitable for
exploring future scenarios where the outcomes are observed on a range or bandwidth. Not
all the KPIs in the modal are explored, a selection has been made that is beneficial in achiev-
ing the goal of this research.

The input uncertainties used in the experiments to construct the base ensemble are selected
from the 16 uncertainties in the model (Section 4.3) and are presented in Table 5.1. The
uncertainties are focussed on the COVID uncertainties and supplemented with general un-
certainties when required. For the base ensemble, this means the variable travel cost and the
development of the adoption rate of electric vehicles, due to its powerful impact on travel
cost. These parameters are already modelled with an exogenous growth prognosis. Nonethe-
less, they are subject to unpredictability, therefore included as uncertainties in the mobility
system.

The situation without COVID-19 is modelled alongside to determine the change between the
situation with and without COVID. To answer the main research question the approximate
delta between both situations need to be defined. In the following of this chapter, the sce-
nario without COVID is regarded as the initial trend-line or the no COVID ensemble; and
consists of the general prognosis of the mobility developments. In other words, the outcomes
of the model if COVID has no influence on the system.

The model input parameters, unrelated to the pandemic, that change over time are imple-
mented primarily based on estimations from WLO scenarios and additional prognoses from
Centraal Planbureau and Centraal Bureau voor de Statistiek (Snellen et al., 2015; Van Meerkerk
et al., 2021). The parameters are amongst others, population growth and mode-specific travel
cost development. As specified in the model description, the prognoses when obsolete are
updated. For example, the prognoses of variable car costs have been updated until 2022
(Appendix F). The parameters can be regarded as uncertainties from 2022 onwards, the in-
put uncertainties follow the predicted prognosis. Nonetheless, the prognosis line is changed
from a single scenario to an ensemble with the use of an upper and lower range for the
parameters applicable as defined in Table 5.1.
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Uncertainty Range Unit

The natural decline rate of remote working 0.05 ; 0.15 Dimensionless
Expected telecommuting 0.15 ; 0.25 Percentage of worked hours
Rate of gaining back a positive attitude towards public transport 0.12 ; 0.3 Dimensionless
Development variable fuel cost -0.05 ; 0.075 Euro / km
Development variable travel cost in PT -0.025 ; 0.025 Euro / km
Development distribution ICE/EV 0.05 ; 0.2 Dimensionless

Table 5.1: Base ensemble uncertainties

5.1.1. Total trips and modal split
The main impact is observed through the number of trips and the modal split. The attrac-
tiveness of modes in a post-pandemic era is expressed in both their share and presence. As
the trip-based modal split is used in the model these KPIs are closely related. With the use of
primary plots supplemented with other figures, the results are visualised. Of the five alter-
natives taken into account in this research, telecommuting is of particular importance. The
inclusion of tele-activities (i.e. option to not travel) as ’new’ mode of transportation, enables
the direct observation of working from home over the years. An important remark is that
the telecommuting description consists of both not travelling for commuting and educational
trip purposes.

Telecommuting
After the last active COVID period (5th COVID wave) in the Netherlands, the number of
telecommuting trips starts to drop. The number of telecommuting trips does not reduce
to pre-pandemic levels (Figure 5.1), indicating the first sign of a higher future number of
telecommuters than before the pandemic. This comes as no surprise, based on the existing
literature about future tele-activities. As stated in the literature the future extent of telecom-
muting is uncertain (Reiffer et al., 2022). In the predictions originating from survey data from
the Netherlands regarding remote working incentive, the future number of remote working
days were estimated at 1-3 days per week (Hamersma et al., 2021). Moreover, increases in
remote working hours were predicted to approximately double according to Jongen et al.
(2021). These rough estimations show the wide variety of future scenarios, and therefore the
high degree of uncertainty. With the use of the above-mentioned estimations the ranges of
the telecommuting input uncertainties; expected number of telecommuters and the decline rate of
remote working, were set. In addition, the rate of gaining back a positive attitude towards public
transport was also set as input uncertainty.

Figure 5.1 shows the future number of telecommute trips being made. Over the years this re-
sults in a wide range. The future telecommute trips per month increase with approximately
25% of trips per month near the end of the time horizon compared to initial pre-pandemic
levels. Around 2017, roughly five years after the ’end’ of the pandemic the number of
telecommuters are even higher. In addition, the range of outcomes is also larger, indicating
more uncertainty in the near future compared to the distant future.

Besides the COVID base ensemble, Figure 5.1 illustrates the situation if COVID never hap-
pened. As observed the COVID line is not a single scenario but also an ensemble of high
and low. Due to the inclusion of telecommuting in the mode choice, the attractiveness of
telecommuting is influenced when other attributes (i.e. travel time, travel cost) change. The
initial number or telecommuting trips before COVID are validated through the use of long-
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term travel surveys (Hamersma et al., 2021). It is shown that if the mobility disruption due
to COVID had not taken place the expected increase of people working or studying from
home would increase by approximately 13%.

Figure 5.1: Total monthly telecommuting trips

Decrease of traditional modes
The increase in telecommuting trips inherently leads to a decrease in trips in other modes
of transport. Figure 5.2 presents the monthly public transport trips, illustrating that public
transport lost a significant amount of travellers. Moreover, it is assumed that travellers will
start to come back around mid-2022, even though it is difficult to determine. The gradient
of the number of trips influences the recovery of PT. The outcomes that reach the original
no COVID situation show a relatively fast recovery compared to the outcomes at the bottom
illustrating situations where the result of COVID has a more severe impact.

In an optimistic scenario, public transport passenger numbers are expected to reach the
original expected pre-COVID trend lines between 2030 and 2040. However, in a pessimistic
scenario, passenger numbers recover more slowly, causing passenger numbers to not recover
to the original expectations within the time of the simulation. Nonetheless, the density curve
on the right illustrates that a full recovery of PT is plausible by 2040. It shows that most of
the outcomes are located above the initial trend line, supporting the statement of a full re-
covery. Essential to keep in mind is the fact that the attitude towards PT during and after
COVID is less straightforward than, for example, working from home attitude, as mentioned
in the model description. Therefore, the model outcomes for PT trips and, subsequently, the
recovery depends on a more significant degree of uncertainty. To cope whit this Section 5.2
explores the more extreme future scenarios.

The question arises if the decay of PT is almost in full relation to the increase of telecommut-
ing. With the comparison of the PT trips and telecommute trips, it becomes clear that not
only telecommuting extracts travellers from public transport. Figure 5.1 & Figure 5.2 suggest
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that there are additional factors that contribute to the degree to which public transport will
recover. Public transport lost a maximum of more than 30 million in absolute trips. It is
noticeable that the number of remote working trips increased with no more than 18 million
trips.

Figure 5.2: Total monthly public transport trips

Figure 5.3: Modal split 2019

Driving, cycling and walking
Besides the alternatives of remote working
and public transport, the attractiveness of
the remaining modes; the car, bicycle and
walking are likewise subject to change. To
compare the attractiveness of all modes of
transport, the modal split is studied more
closely. The modal split in the developed
SD model is modelled as a trip-based modal
split. The initial share of modes of trans-
portation in 2019 is shown in Figure 5.3, this
is the total modal split in the Netherlands at
the start of the run period. The new alternative telecommuting is added to the modal split
based on pre-COVID working from home travel behaviour (Hamersma et al., 2021; Jongen
et al., 2021). The share of telecommuting trips is around 3,13 % of all trips, the inclusion of
telecommuting resulted in the modal split values for the traditional modes as presented in
Figure 5.3.

The modal split between 2019 and 2030 is for respectively car, PT, bicycle, walking and
telecommuting shown in Figure 5.4a, Figure 5.4b, Figure 5.5a, Figure 5.5b and Figure 5.6.
The modal split value is presented until 2030 to explore the development of mode share over
the next ten years.
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Car
The attractiveness of the car decreases after the pandemic. Even though the absolute number
of car trips keeps rising (see Appendix E), the share of car decreases for two reasons. First of
all, the attributes of the car change in a negative direction under the current circumstances.
As a result, the utility of the car decreases compared to the utilities of other alternatives.
Second, the level of car traffic on the road increase or decreases the attractiveness of driv-
ing. When the congestion level rises, the car becomes less attractive through the feedback
mechanism in car traffic. Subsequently pushing travellers to other alternatives as a result of
increased travel times.

The COVID base ensemble in Figure 5.4a clearly shows that near 2030, the initial no COVID
trendlines are reached. The attractiveness of driving decreases with a high gradient for about
1 - 1.5 years, until they slowly decrease towards the original prognosis. Around the ’end’ of
COVID (mid-2022), the mode share of the car is about 0.75 percentage points higher than if
COVID would never have occurred.

Active modes
Furthermore, both active modes; cycling and walking acquire an increased share in the
modal split in the near future after COVID. Hence, increased attractiveness of the active
modes. Figure 5.5a & Figure 5.5b illustrated that the increase in mode share initiated during
the pandemic and continued in the year after.

Primarily the share of cycling increased compared to the no-COVID scenario. At the end of
the pandemic, cycling increased by 0.3 percentage points compared to only 0.05 for walking.
In the period after the pandemic, cycling attractiveness is clearly at a higher point. Never-
theless, the attractiveness of walking remains more stable than cycling. Derived from the
trip-specific results, cycling was seen as an alternative for several short and middle short
trips, whereas walking was not a feasible alternative for these trips.

(a) Modal split car (b) Modal split public transport

Figure 5.4: Modal split 2019 - 2030
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(a) Modal split bicycle (b) Modal split walking

Figure 5.5: Modal split 2019 - 2030

Figure 5.6: Modal split telecommuting 2019- 2030

5.1.2. Trip categorical results
Focusing on more detailed outcomes shows several interesting findings. The developed
model enables the exploration of the model outcomes on detailed levels. In fact, the devel-
oped model allows for exploring the mobility impacts of COVID in detail on every com-
bination of trip characteristics. With the use of the previously mentioned vectorisation of
variables, the SD model includes besides the total number of trips also data and parame-
ters of trips divided per type. Therefore, the results can be observed for each of the 5 trip
purposes, 4 distance classes and 5 area types. Furthermore, the combination of each trip
type can be explored, resulting in more than 100 unique combinations of trip output for
each of the 5 alternatives. In view of the most beneficial outcomes, the main focus has been
on trips and modal split on a low level of detail to comprehend the overall situation in the
Netherlands. As the main focus of the overall problem owner; the government focuses on
the nationwide problem and approach (Francke and Bakker, 2022).

Nevertheless, the exploration of results with a higher detail level are equally important to
be able to support policymakers in the approach to intervene if necessary. This section,
therefore, highlights several of the interesting results. The comparison between trips for
commuting, educational and recreational trip purposes and the effect of congestion on the
road for different trip lengths are discussed in more detail.
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Comparison between trip purpose
In this research, there are a total of 5 trip purposes, as explained in the model description.
Exploring the difference in modal split and the number of trips for various trip purposes
presents an extensive view of the mutual differences. Therefore, the trip purposes; commut-
ing, educational and social recreational are highlighted in this section. The figures illustrate
the modal split of the 5 alternatives specified for one trip purpose.

Telecommuting is used as a collective term for both working and studying from home in
this thesis. In the model, working and studying from home have separate parameters. There
are differences in the behaviour of travellers who do not make a trip for commuting trip
purposes and educational purposes. Figure 5.7 presents the course of the future attractive-
ness to work and study remote. In the future, remote working attractiveness will stabilise,
whereas remote studying attractiveness slightly decreases.

(a) Modal split telecommuting [Commuting] (b) Modal split telecommuting [Educational]

Figure 5.7: Modal split telecommuting [commuting and educational]

The differences between recreational and commuter travel are of interest for, among others
the planning of public transport. Figure 5.8 shows the differences in the mode share of PT for
commuting and recreational trips between 2019 and 2030. It is shown that the recovery for
both trip purposes is similar in the near future, towards the distant future the recreational
trips are seen to match the no COVID prognosis slightly earlier. Furthermore, the modal
split of recreational PT travel reaches the 2019 pre-COVID level much faster. Therefore,
recreational PT travel recovery tends to be faster compared to commuter travel. Neverthe-
less, the faster recovery is also explained by the fact that the no-COVID prognosis saw a
higher modal split for recreational travel relative to commuting. This causes the faster recov-
ery of recreational travel to be put in perspective.

(a) Modal split public transport [Commuting] (b) Modal split public transport [Recreational]

Figure 5.8: Modal split public transport [commuting and recreational]
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Road intensity and congestion level (distance class)
Road intensity is expressed with the variables of congestion level in vehicles per month. The
road intensity for trips up to 7.5 km (short trips) is seen to equal the no-COVID situation
within a few years after the end of the pandemic (Figure 5.9a). In contrast, the longer car
trips above 40 km see a persistent effect in the near future and are likely to be above the
initial no-COVID prognosis until 2027 (Figure 5.9b). This means that the car has become
more attractive for long trips during and after the pandemic. Considering the general low
attractiveness of PT for short trips and higher attractiveness for long trips confirms that the
car gained travellers at the expense of long PT trips. In the future, it becomes evident that
the use of the car for longer trips will remain for at least 3-5 years. Therefore the longer trips
experience a considerably longer impact from COVID. The fact that long car trips are more
uncertain can probably be explained due to the fact that longer trips are more attractive to
substitute with telecommute trips. This effect was already noticed in pre-pandemic telecom-
mute behaviour (Hamersma et al., 2021).

(a) Congestion level for short trips (<7.5 km) [vehicle/month] (b) Congestion level for long trips (>40km) [vehicle/month]

Figure 5.9: Road intensity differences

5.1.3. Conclusion COVID base ensemble

With the initial results Sub-question 4: What are the quantified mobility impacts of
COVID-19? can partly be answered. The main impacts can be summarised in a slow
recovery of PT, which will inevitably continue in the coming years. Nevertheless,
without any interventions, a full recovery until the prognosis without COVID is not
likely until the distant future (≈ 2040). Furthermore, telecommuting remains in de
modal split with a considerable share post-COVID. However, the extent of the impact
in the distant future is probably not to the same degree as predicted in the literature.
Furthermore, cycling increased in attractiveness for short trips at the expense of the
car, while the car gained attractiveness over the long distance, at the expense of
public transport. Differences within trip distance and area type showed the high
attractiveness for longer trips (in non-urban areas) to be substituted with remote
working.
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5.2. Scenario exploration
Following the previous results, this section explores the situation outside the base ensemble.
In other words, what are the outcomes if future travel behaviour and activity behaviour are
not within the expected ranges. This addresses sub-question 5: What is the role of uncertainty
in the future impact of COVID-19 on mobility? First of all, a scenario with increased uncertainty
is implemented, where the results are compared with the base ensemble. Thereafter, with the
use of four extreme scenarios, the impact on the modal split is further explored. Finally, with
the method of scenario discovery, analyses are performed in which the input parameters are
studied to a greater extent.

5.2.1. Increased uncertainty
The ranges within the COVID uncertainties are broadened/extended. By means of this,
the future mobility impacts are presented under a wider variable range by which alterna-
tive situations are explored. Table 5.2 presents the input parameters that are varied and to
which extent. On top of the uncertainties in the base ensemble, additional uncertainties are
taken into account. The ranges for the decay rate of trips during COVID are included as
uncertainty input due to their influence on after-pandemic travel behaviour. The decreasing
number of trips during COVID will have a minor continuous effect in the near future, espe-
cially in the recovery in the years after the pandemic. Moreover, the use of panel data is not
always sufficient to establish an actual decrease in trips during COVID or present a limited
view.

Uncertainty Range Unit
The natural decline rate of remote working 0.05 - 0.15 Dimensionless
Expected telecommuting 0.12 - 0.35 Percentage of worked hours
Percentage of labour force able to work from home 0.4 - 0.45 Percentage of working population
Rate of gaining back a positive attitude towards public transport 0.1 - 0.6 Dimensionless
Recovery time of Public transport supply 0.25 - 1.5 Years
Development variable fuel cost -0.05 ; 0.1 Euro / km
Decay rate of trips in 2nd, ... ,N COVID wave for recreational trip purposes 0.05 - 0.1 Dimensionless
Decay rate of trips in 2nd, ... ,N COVID wave for shopping trip purposes 0.05 - 0.07 Dimensionless
Decay rate of trips in 2nd, ... ,N COVID wave for other trip purposes 0.05 - 0.09 Dimensionless
Development distribution ICE/EV -0.02 ; 0.05 Dimensionless
Development variable travel cost in PT -0.025 ; 0.025 Euro / km

Table 5.2: Uncertainty input

In Figure 5.10 the recovery of public transport elapses with a different incline rate under an
increased range of uncertainty. Opportunities for a faster recovery of PT have increased. The
main reason for this is the wider range of gaining back a positive attitude in public transport
modes. Around 2025 the number of trips deviates only approximately 7 % from the number
of trips in 2019. Therefore, this scenario demonstrates the possibility of a faster recovery of
PT. Nevertheless, after 2025 it is shown that the gradient of inclination is flattening and most
of the outcomes almost equal the no-COVID scenario. On the other hand, telecommuting
is also subject to a wider range, which could have a potential reducing effect. Figure 5.11
shows for the telecommuting trips, an increase in the range of model outcomes is witnessed
compared to the base ensemble. Primarily the upper bound of telecommuters increased. The
effect is due to both a wider range of expected telecommuters in the future in combination
with increased variable car costs in 2022.
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Figure 5.10: The number of public transport trips under increased uncertainty between 2019-2040

Figure 5.11: The number of telecommuting trips under increased uncertainty between 2019-2040

5.2.2. Scenario design for extreme situations
As shown in the first part of the scenario exploration, the outcomes differ considerably un-
der changing input circumstances. With the use of the wider input ranges (Table 5.2) four
scenarios are constructed to observe the results in the near future as the model behaviour
towards the end of the time horizon (2040) is adequately described in the analysis so far.

The design of "extreme" scenarios presents a future look into the mode attractiveness for ap-
proximately five years after the pandemic. Establishing a norm for the end of the pandemic
is rather difficult. The end of the final COVID wave in the Netherlands is selected. This time-
line is supported by the general predictions about the duration of the pandemic (Murray,
2022). The scenarios specified below, therefore, contain a time period until mid-2027. Before-
hand a storyline is built for four possible scenarios in the near future in the Netherlands.

The attractiveness between 2019 and mid-2027 is presented with a stack area plot. Due to
the relatively large share of the alternatives, car and bicycle, only the area of interest has
been featured in the analysis. Figure 5.12 illustrates that the mode share of alternatives is
focused in the range of [0.5 - 0.7]. Furthermore, alternative walking has been removed from
the modal split in this analysis. Walking was found to have a limited effect on modal share
change, mostly because it is less able to substitute for PT, car and telecommuting. The modal
split is adjusted accordingly to visualise only the four selected alternatives.
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Figure 5.12: Base scenario focus point

The four scenarios specified below are based on more extreme situations than expected.
Nonetheless, they are not unlikely to occur. Because complexity and uncertainty are inter-
twined with the outcomes of the experiments, the possibility for these scenarios to become
a reality is imaginable.

Scenario 1: Public transport attractiveness increases combined with positive economic de-
velopment.
In this scenario, public transport experienced a positive post-COVID recovery phase with
a fast rebuild of the image of PT. The public image of PT services increased after the pan-
demic leading to travellers rediscovering the benefits of PT. With a positive appearance, the
number of PT trips recovers relative fast, leading to many travellers choosing the train or
bus/tram/metro to travel to their desired location. Alongside the positive image of PT, this
scenario features an average level of future working from home, where a positive economic
perspective has increased job opportunities. Nonetheless, due to PT’s positive image, many
travellers also choose to combine online and onsite work, resulting in a moderate degree of
future telecommuters.

Scenario 2: Promoted remote working scenario
In this scenario working from home is perceived as a positive change. Employers actively
support the possibility of working remote, and employees use this effectively. This results in
remote work being perceived as a positive development. Both by travellers and governmen-
tal parties, as it solves a lot of pre-COVID congestion issues. However, this development
results in travellers not returning to other alternatives.
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Scenario 3: Increase of travel cost as a result of challenging economic times for consumers
Due to challenging economic times, travel costs have increased across all alternatives. The
rise of travel costs for multiple modes, specifically the car, results in less attraction for the
more expensive modes.

Scenario 4: Public transport attractiveness remains low
In this scenario, the image of PT is contrary to scenario 1, perceived as negative. With less
demand and scaling down operations, PT operators struggle to provide the level of service
desired by travellers. With less supply and the effects of the pandemic that did not favour
PT, it is hard to rebuild the (positive) image PT had before the pandemic.

(a) Scenario 1: PT attractiveness increases combined with
positive economic development

(b) Scenario 2: Promoted remote working scenario

Figure 5.13: Scenario 1 & 2

Scenario design results
The four designed scenarios show the changing modal split between 2019 and mid-2027.
There are differences in our future modal split values in each of the "extreme" scenarios.
Small changes in modal split can lead to relatively significant changes in the use of partic-
ular alternatives. An important side note is that the scale of Figure 5.13 & Figure 5.14 is
compressed and therefore shows the modal split zoomed in on a small part of the actual
modal split as indicated in Figure 5.12. Furthermore, the interest is in identifying the near
future post-COVID situation, hence the focus on the results from 2022-2027.

As shown in scenario 1 (Figure 5.13a), the modal split of PT almost fully recovered by 2027,
indicating that the setback of PT as a result of COVID has disappeared. Compared to the
other scenarios, this is not the case. In scenario 3, the decrease in PT is limited due to the
considerable drop in car attractiveness.
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(a) Scenario 3: Increase of travel cost as a result of challenging
economic times for consumers

(b) Scenario 4: Public transport attractiveness remains low

Figure 5.14: Scenario 3 & 4

In addition, scenario 2 (Figure 5.13b) shows that telecommuting has gained a significant
share in the modal split, primarily gained at the expense of public transport. The increase in
the share of telecommuting comes as no surprise. However, this increase initiates a conflict
between the two alternatives as Figure 5.13b illustrates that the effect is almost solely at the
expense of PT attractiveness.

Cycling encounters an increase in attractiveness in almost all scenarios except the first. In
scenario 3, the increase is most distinguishable. The increase in cycling attractiveness shows
that an increase in travel costs rapidly sees a transition in more travellers opting for active
modes (Figure 5.14a). Besides active modes, working from home also encounters an increase
due to travel cost growth in scenario 3.

Finally, it becomes evident that the negative PT perspective of travellers has a severe impact
on the attractiveness of public transport. Scenario 4 (Figure 5.14b) shows the remaining low
level of attractiveness for public transport in the years after COVID. Based on a more in-
depth analysis of the scenario outcomes for different trip purposes as shown in Appendix E,
primarily commuting PT travel encounters a decrease in the modal split. Whereas recre-
ational PT travel in scenario 4 lost near 2027 less of its attractiveness compared to commuting
travel. The additional stack graphs also illustrated that when PT reputation is positive (i.e.
scenario 1), the modal split for recreational travel reaches pre-pandemic levels faster than
commuting travel.

Nevertheless, it has to be mentioned that the no-COVID prognosis of recreational PT at-
tractiveness is estimated to increase relatively more than the commuting PT attractiveness
prognosis. Therefore, putting the faster recovery of recreational PT into perspective. This is
in line with the trip-specific results (Section 5.1.2) where the same effect was uncovered.
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5.2.3. Scenario discovery
The four designed scenarios revealed and visualised the impact of uncertainty. To gain more
insight into the underlying uncertainties, the application of scenario discovery methodology
is useful. With the use of a scenario discovery algorithm, computer-assisted scenario devel-
opment is possible by selecting desired and undesired runs from the ensemble (Bryant and
Lempert, 2010). The scenario discovery is contrary to traditional scenario design not based
on storylines. As illustrated in Section 5.2.2 the design of scenarios can identify extremes,
nonetheless, the number of scenarios is limited.

With the use of the patient rule induction method (PRIM) algorithm, scenarios can be dis-
covered in the EMA workbench (Kwakkel, 2017). The use of PRIM is suitable for observing
the role of uncertainties under desired and non-desired outcomes of the KPIs. With PRIM
influential input variables can be discovered within the desired threshold level of a KPI. The
cases of the modal outcomes are therefore divided into desired and non-desired values. The
PRIM algorithm finds the most influential uncertainties with the use of scenarios. The exper-
iments are performed with the same input ranges as presented in Table 5.2. The number of
experiments is increased to 5000 as the cases are selected based on threshold level, with the
use of 5000 experiments the algorithm has enough experiments to eliminate the cases not
used.

The PRIM algorithm is a so-called bump hunting algorithm and was originally developed by
Friedman and Fisher (1999) as a form of data mining technique. The algorithm is used for
discovering regions of interest in high-dimensional data. In the case of scenario discovery,
PRIM is useful as it presents the user with the option to assess the quality of the scenario,
based on coverage, density and interpretability (Bryant and Lempert, 2010). A scenario can
be selected based on its high combination of coverage and density. A selected scenario with
a high coverage indicates that it can explain a high share of the outcomes. Subsequently,
with a high density, the confidence and certainty of a predicted scenario is shown. Therefore
a high combination of coverage and density improves the significance of the scenarios.

Derived from the initial results, the modal split of public transport and road intensity are
appointed as the KPIs of interest. Because the input uncertainties for the future mobility
impacts are based on sometimes rough estimations, the scenario discovery with PRIM con-
tributes to the explanation of the result. The results are observed in the timeframe until 2040,
similar to the increased uncertainty scenario.

Public transport modal split
The modal split for PT, in 2019 is 5,74% (0.0574), adjusted for the implementation of telecom-
muting (Figure 5.4b). The favourable outcome for PT is a modal split at least above 0.06,
this value is derived from the no COVID prognosis to establish a full recovery. Hence, the
threshold for desired outcomes is set at this level. The application of the PRIM algorithm
and the subsequent results indicate how to attract more travellers to public transport.

For the modal split of PT to reach the desired 0.06 in 2040 the outcomes are illustrated in
Figure 5.15. Where an increase of at least 0.01 euro/km of variable car cost on top of the
current situation (mid-2022) is necessary. In addition, the rate of gaining back trust should
be above 0.23 and the percentage of telecommuting hours of total work hours cannot exceed
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the 27% boundary. The results indicated that the extent to which travellers’ attitude requires
change is within the middle of the range. However, compared to the base ensemble and
associated input ranges Table 5.1 it is evident that 0.23 is near the upper bound, therefore
entails a notable minimum degree of improvement in PT attitude. Furthermore, the extent to
which travellers telecommute in the future is still able to reach a relatively high level (27%).
Indicating that besides telecommuters, public transport travellers with other trip purposes
are of impact, this substantiates the findings of the designed four scenarios.

The coverage in Figure 5.15 indicates that the chosen scenarios represent almost half of the
cases in which the desired modal split applies. With the density, it is illustrated that this
scenario can predict all the cases with that modal split value.

Figure 5.15: Scenario (box 23) for the modal split PT

Degree of congestion
Limitation of the degree of congestion, thus the intensities on the road, is a second model
outcome that is useful as a benchmark. The initial 2019 value for congestion level is 1.110.000
kilometre-minutes per month. The initial trend line is interrupted by setting the threshold
of desired outcomes to below 1.160.000 km-min per month. Hence, a more desired outcome
applies.

Figure 5.16 illustrates the variables that cause the desired decrease in the degree of conges-
tion compared to 2019. The variable cost should increase more than 0.05 euro/km, whereas
the rate of gaining back a positive attitude in PT only requires to be around 0.15. On the
other hand, the expected telecommuting requires at least above 22%. The results confirm the
relationship between car travel and remote working. Whereas, the degree of remote working
requires almost a quarter of our working hours to achieve the desired decrease in congestion
in the future. Hence, the positive impact remote working has on the road intensity on the
main road network. Figure 5.16 indicates that the chosen scenario represents 48% of the
cases. The density indicates that the selected scenario can predict all the cases.
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Figure 5.16: Scenario (box 33) for the congestion level

5.2.4. Conclusion scenario exploration

To conclude, the results of the scenario exploration contribute to a broader un-
derstanding of our travel behaviour in a post-COVID era. With the outcomes,
sub-question 5 can be answered: What is the role of uncertainty in the future impact of
COVID-19 on mobility?

First of all, the input parameters are generally based on literature and prior research,
which is associated with a high degree of uncertainty. Therefore, broadening the
ranges of input variables shows the magnitude of impacts on top of the base ensemble
outcomes that are considered to be likely.

Second, the designed storylines allowed the exploration of more extreme scenarios
in which input parameters follow low and high directions. In some scenarios, the
conflict between public transport and telecommuting became even more noticeable.
Both alternatives compete for the same travellers, resulting in a considerable decrease
in travellers in a scenario of a long-lasting dissatisfactory image of public transport.
On top of that, it is argued that the rise of social-recreational travellers should be
put in perspective regarding the no COVID prognosis. Social-recreational travel is
expected to reach the pre-pandemic level faster than commuting travel. However, the
time it takes to equal the prognosis of travellers without the disruption of COVID is
similar to commuting travel.

Third, following the recovery of public transport, the use of the Patient Rule Induction
Method (PRIM) algorithm in scenario discovery emphasized the role of a positive
attitude towards PT services to reach the desired level of PT attractiveness. Compared
to the base scenario ensemble, PT attitude increase is located near the upper boundary
of the range, meaning travellers’ attitude to PT services has to improve significantly
to reassure the return to the original trend prognosis of passenger numbers. In
addition, the scenario discovery revealed that telecommuting has a substantial role in
the future of road intensity. If the population that can work from home would work
slightly less than a quarter of their working hours from home, the level of congestion
can be reduced to the desired situation.

Finally, the role of uncertainty is considered substantial, as demonstrated in the ex-
treme scenario design and scenario discovery. It is conceivable that the future is more
comparable to one of the more extreme scenarios than the initial COVID-19 base en-
semble. Therefore, resulting in a different time or magnitude of the impacts. With the
exploration of the extremes and the uncertainties, it becomes possible to make a more
powerful statement about the impact.
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5.3. Final results
The chapter is divided into two main analyses. In the first part, the base COVID ensemble
was explored, resulting in likely outcomes regarding the situation in the near and distant fu-
ture in mobility (behaviour). The second part explored various scenarios, uncertainties and
alternative situations. Both analyses provide strong validated outcomes that can support
policymakers in deciding what to accomplish.

The base ensemble illustrated that it will take a long time for public transport to reach a
full recovery. The speed of recovery is mainly due to the future valuation of PT and the
degree of remote working. In addition, part of the valuation of PT is not only captured by
the positive/negative attitude from the traveller, but also by the fact that some modes of
transport experienced a permanent increase as a result of the previous measures in place.
As illustrated in the results, the attractiveness order rearranges, resulting in travellers pre-
ferring a certain alternative mode of transport after the pandemic. This substantiates the
contribution to the future slow recovery of PT. Furthermore, there is a relationship between
telecommuters and PT, where the number of future PT travellers is in addition dependable
on the number of telecommuters. Nonetheless, it was shown that a return of onsite work
does not equal the return of public transport use to the full extent. Since the attractiveness
of the car for long trips turned out to be a rediscovery for many travellers, PT encounter a
remaining loss of these travellers in the coming years. Besides the frequently argued relation-
ship between telecommuters and PT travellers, telecommuting and car travellers feature a
connection. If the remote working hours doubled compared to pre-COVID remote working
hours, the increase in congestion on the road stays within desired limits.

For public transport there is also a clearly visible difference in the recovery between the
expected scenario (COVID base ensemble) and the scenario exploration. It is evident that
the attitude toward PT should improve significantly to reach desired levels. The designed
scenarios show that in the near future (≈ 2027), attractiveness could be back at the old level
in a positive PT attitude scenario. With the attractiveness of public transport back, the share
of PT is back within five years after the pandemic. As a result, the modal split for car,
bike and telecommuting reduces. Nonetheless, the other scenarios show a more pessimistic
recovery of PT attractiveness. Supported by the PRIM analysis, the value for gain in a
positive attitude towards PT should appear within the upper half of the uncertainty range to
cause a modal split of the desired threshold value. In relation to the COVID base ensemble,
this indicates almost the maximum level of positive attitude increase. Therefore, it can be
concluded that public transport reaching its old level of attractiveness within a few years is
unlikely to happen without any intervention.



6
Discussion

This thesis explored the future mobility impacts of the COVID pandemic with an exploratory
modelling approach. This chapter presents the discussion. First, the results are interpreted
and the interesting findings are highlighted and related to the literature. Second, the implica-
tions of these results are identified and an action perspective can be proposed. Subsequently,
policy recommendations and their implementation in the system are discussed. Third, the
limitations of this research and the developed model are mentioned. Finally, the recommen-
dations for future model development and future research are discussed.

6.1. Discussing the results
This section provides an interpretation of the results, as well as the results in relation to
the literature and other research. Furthermore, the new contribution these results provide
and their role in scientific work is mentioned. Due to the development and use of a system
dynamic model, the novel model implementations are highlighted as well.

6.1.1. Interpretation of the results
The interpretation of the results is discussed for public transportation and telecommuting.
The relation between telecommuting and PT and the combined effects are additionally ad-
dressed.

PUBLIC TRANSPORT
From the results, it has become evident that without interventions the number of travellers
is not likely to reach the original passenger numbers anytime soon. The negative perspective
travellers have towards PT has a significant impact on the results. The effect is estimated to
be present for multiple years after the pandemic.

The impact of future negative attitude is contradictory to recent research of De Haas and
Faber (2022), where the authors estimate negative attitude to have little impact in the future.
As De Haas and Faber (2022) acknowledge the fact that the negative attitude is present, the
extent could be underestimated, as argued by the results of this thesis. The fact that the
negative PT attitude remains is, according to this thesis, also due to the lasting increase in
positive attitudes for other modes. Furthermore, there is a lack of research towards the fu-
ture of negative attitudes. The current literature focusses primarily on the attitude change
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during the pandemic (De Haas et al., 2020b; Ton et al., 2021). According to Ton et al. (2021),
it is also challenging to measure changes in attitude due to a lack of data on pre-pandemic
attitude.

In regard to estimations drafted in the literature, it is seen that a lot was still unknown for
the estimation of how long PT would endure the consequences of COVID. In recent research
by Francke and Bakker (2022) on behalf of the Ministry of Infrastructure and Watermanagement,
updated predictions of PT ridership numbers are presented for the near future (2022-2026).
According to this new prediction of Francke and Bakker (2022), the basic estimate shows
that in 2023 the level of 2019 can be reached again. It is however important that the quality
of PT services remains at a certain standard. In the alternative scenarios, it would take an
additional 4-5 years for PT to reach its pre-pandemic level of passenger numbers. These al-
ternative scenarios are designed in order to map the situation under negative circumstances
evolving from the conflict in Ukraine, and PT services that do not provide the same level of
service as they did before the pandemic (Francke and Bakker, 2022).

In relation to the result of this thesis, the outcomes contradict the length of the public trans-
port recovery in Francke and Bakker (2022). According to the authors, in a positive scenario,
the pre-pandemic level of PT attractiveness is reached around 2026. However, in a more
negative scenario, it takes significantly longer to equal pre-COVID numbers. In comparison
to the study of Francke and Bakker (2022), the results of this thesis show a more hesitant
road to recovery. Nonetheless, the statement of Francke and Bakker (2022) regarding the es-
sential role of travellers’ trust in public transport in alternative scenarios is endorsed by this
thesis. The fact that there are some differences in outcomes demonstrates the existence of
uncertainty in the overall determination of future mobility impacts. In the implications (see
Section 6.2), the future situation with regard to public transport is elaborated on, as well as
the potential recommendation for the course of action from the perspective of the problem
owner.

TELECOMMUTING
The results and analysis of telecommuting are discussed and compared to the literature.
Three interesting findings regarding telecommuting are highlighted in this section. First,
the fact that a conflict arises between public transport and telecommuting. Second, the dif-
ferences between remote studying relative to remote working. And finally the relationship
between telecommuting and the situation on the road.

Comparison with other research
The mobility impacts of telecommuting in this thesis provide a more detailed look at work-
ing from home and telecommuting behaviour over time. Therefore, this supplements other
telecommuting research in which primarily estimated results are presented at a certain mo-
ment in time (Hamersma et al., 2021; Mouratidis and Peters, 2022). It was found by Ton et al.
(2022) through the use of longitudinal data and Latent class cluster analysis that teleworkers
can be separated into several groups. Each with their own preferences towards working
from home. This thesis also contributes to the categorisation of telecommuters, however, not
on the basis of assigned latent classes, but through the use of trip types. Based on the results
of this thesis, it becomes possible to separate telecommuters based on their trip type. With
the possibility to gain insight into the differences between, for example, a traveller making
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a long trip from an urban area and a short trip from a nonurban area and the subsequent
incentive to substitute that trip with remote working.

Conflict between public transport and telecommuting
As shown in the analysis of the results there is a connection between tele-activities and the
use of public transport. Zooming in on the commuter and to a limited extent educational
travel, it is illustrated that public transport and telecommuting are competitors and seek
the same type of traveller. This has consequences for the future, as naturally, remote work-
ing keeps travellers out of PT. When both are stimulated through the use of either policy
or behavioural change, a conflict might arise. To prevent opposing interventions, potential
measures need to be aligned. It is not possible to design policy for one, without taking the
other into account. Interventions in the system should therefore primarily be aimed at im-
proving the distribution of travellers throughout the day. Instead of only stimulating people
to work several days from home to limit congestion and crowdedness, it is beneficial to focus
on improving the spread of travellers. The methodology of system dynamics is particularly
suitable for implementing policy interventions and determining the impact on the system. It
is therefore recommended to analyse the policy interventions in future research.

Differences between remote studying and remote working
Following the results, it was witnessed that between working from home and studying from
home differences occur. The differences were mainly visible in the future extent of tele-
activities. The first explanation is the fact that the lasting effects of remote studying are
primarily focused on higher education institutions. Due to the practical limitation of other
forms of education to be suitable for hybrid or full remote working. Therefore, post-COVID,
a lot of remote educational activities were switched back to onsite completely. This is par-
tially the explanation for why remote studying is present to a lesser extent than remote
working in the future.

Second, students generally have a lower ability to study remote than remote workers. In pre-
COVID times, Valenta et al. (2001) already emphasizes the factor of the ability to study from
home and identifies its significant contribution to students’ attitude towards tele-activities.
The results of this thesis showed that remote studying is still present, primarily, in the near
future. Current numbers of on-campus students verify the research results and confirm that
the number of students attending onsite education is less than before COVID (Last and Dop-
meijer, 2022). Students discovered studying from home and avoided the trip to campus more
often than if COVID would not have occurred.

The travel choice and mode choice of students are based on multiple factors according to
Versteijlen et al. (2021). The change of ’habit’ in choice behaviour is identified as an effect
that explains the slow return of people to onsite activities (Thomas et al., 2021). The factor
of habit is currently not implemented in the model, but it would be a useful addition to the
model.

Congestion and remote working
Telecommuting is not only responsible for a decrease in PT travel. The results showed that
remote working, and to a limited extent, remote studying also contributes to the decrease in
car traffic. It is shown that telecommuting will be used as an alternative mode of transport
in circumstances or scenarios where travel costs rise or congestion levels are high. In a
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pre-pandemic time, Van der Loop et al. (2019) described the combination of working from
home and congestion. The authors argued that between 2000 and 2016 travellers already
made the choice to work from home or travel to work after peak hours to avoid congestion.
They argued that if flexible or remote working would have not been present during that
time there would have been an increase of 2.6% in car kilometres. Related to the model
outcomes of this thesis; the scenarios with an increased degree of telecommuting caused the
level of congestion to drop. Due to the increased attractiveness of the car, on the other hand,
the decrease in congestion is suppressed. In addition, scenario discovery demonstrated that
the future extent of telecommuting contributed if congestion is intended to be kept under a
preferred maximum.

6.1.2. Relation to prior scientific work

Modelling technique
This thesis implements/models a new alternative in the mode choice component of the si-
multaneously designed SD model. Within earlier SD mobility models the use of working
from home had not been implemented in this way. Until now, telecommuting was included
as a percentage of trips not being made for simplicity reasons (Haghani et al., 2003; Mal-
one et al., 2001). Therefore, telecommuting was a static component which only affected the
input of a model. With the transformation of telecommuting into a dynamic component,
the attractiveness can be monitored when utility attributes change, similar to the traditional
modes of transport. Due to tele-activities becoming embedded in people’s daily life, mod-
elling telecommuting as an alternative in the mode choice outside of exploratory modelling
is a relevant element to study in travel behaviour research in general.

By means of modelling with an SD approach instead of the traditional traffic and transport
modelling technique, the behaviour of the system can be analysed. Moreover, the explo-
ration of future travel and behaviour is analysed in a different way compared to traditional
transport modelling. This shows the strength of exploratory modelling and enables the ap-
plication of vision and validate as mentioned in the theoretical framework (Section 1.2). With
relative small adjustments in the input variables, it was feasible to explore multiple scenarios
and potential future situations. Therefore, the designed model provides a tool to model end-
less potential future scenarios by changing the various input uncertainties in combination
with the presence of extensive trip types. In this thesis, the analysis of scenarios has been
limited to the scenarios of interest to answer the main research question.

Results
Over the course of this research, the literature regarding future mobility impacts of COVID
expanded significantly. The outcomes and subsequent analysis in this thesis contributed to
the existing research by providing new insights, as well as verification and additional inter-
pretation of estimates from other studies. Therefore, providing a complete view of the course
of travel behaviour over time (i.e. dynamic) in addition to estimated values (i.e. static) from
the literature.

In addition, the strength of this thesis lies in the coherence of the effects in particular. The
inclusion of multiple mobility impacts of the pandemic at the same time enables the ex-
ploration of a coherent future situation. Therefore, the results are seen as cohesive: effect
A influences the attractiveness of alternative X positive, while effect B for example leads
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to dampening results. Furthermore, it is proven that the role of uncertainty has a large im-
pact, as predicted by Papakatsikas et al. (2021) & Chatterjee et al. (2021). In the framework of
uncertainty in transport systems (Marchau et al., 2010) as introduced in the theoretical frame-
work, the disruption as a result of COVID complies with the requirements to be categorised
as an external force of influence.

6.2. Implications and policy recommendations
Similar to the interpretation of the results, the implications are discussed separately. When
applicable the relationship between telecommuting and public transport is noted.

6.2.1. Implications for public transport
The future situation of public transport as outlined in the results causes several implications
which are generally considered undesired. Providing accessible public transport is essential
to prevent transportation inequality (Gutiérrez et al., 2021). In the Netherlands, providing
access to public transport is the responsibility of the government. The main implications are
regarding transport poverty and sustainable mobility. The policy recommendation focus on
pricing and supply to potentially attract new travellers.

Transport poverty
A decrease in public transport use could jeopardise the current public transport supply. The
reduced frequencies and less dense networks could subsequently lead to social inequality
and transport poverty (dutch: vervoersarmoede). Transport poverty arises when travellers
have limited options to modes of transport (Snellen et al., 2021; Ranchordás, 2020). Scaling
down public transport as a result of fewer users enables transport poverty to increase, espe-
cially in non-urban areas where PT already demands more perseverance from the user with
long access/egress and waiting times. On top of that, public transport in the Netherlands is
planned to be scaled down in 2023 due to primarily staff shortage. The scaling down of PT
is contrary to the ambition of both operators and the government, as presented in their out-
lines of the future vision for 2040 (Ministerie van Infrastructuur en Waterstaat, 2019). This
raises the question if current developments increase the effect of a negative attitude towards
PT, and potentially stimulate once again the aversion to PT.

Sustainable mobility
Second, the objective of promoting sustainable transport over the past years and forcing a
positive modal shift by promoting PT over the car has to cope with an enormous setback.
Because the primary objective is currently getting travellers back in PT in general, the focus
on promoting sustainable mobility disappeared. Therefore leading to an undesired situation,
especially within the mobility transition (Griffiths et al., 2021). A sustainable mobility tran-
sition conflicts with the current and future events in mobility as drafted by the results from
this thesis.

This thesis showed the increase in attractiveness of relative unsustainable modes of transport
such as the car on some occasions, which implies that the general transition to sustainable
mobility will be affected in a negative way. In other words, an undesired situation arises.
To cope with the undesired situation from the perspective of the problem owner, solutions
can be designed. With the use of additional analysis of (trip-specific) results, future research
can establish where in the system specific interventions are required. In this case, SD can
support policymaking by determining the area of interest for interventions.
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Pricing
Because the recovery of PT occurs slowly, the use of certain policy interventions could be
proposed. Inherently, a decrease in ticket prices will lead to an increase in travellers. Pri-
marily an increase in recreational travellers due to their higher price elasticity compared to
educational and commuting travellers.

In Germany, the government decided to implement a temporary 9 euros per month ticket for
the duration of three months (Cantner et al., 2022). Researchers seized this opportunity to
observe the impact of a price modification on mode choice in a post-COVID era. With the use
of travel surveys, Loder et al. (2022) found that the price reduction led to increased demand
(approximately 15%) and positive signals of travellers choosing public transport over the car.
The temporary cheaper tickets led to a positive impact on the image of PT, which is likewise
favourable for the situation in the Netherlands, as shown in the results. However, Pladson
(2022) argued whether the image of PT actually increased due to the policy intervention. As
travellers point out that the level of service decreased rapidly Pladson (2022).

The experiment in Germany provides an ideal example for policymakers in the Netherlands.
As presented in the results, a scenario where a positive attitude increases rapidly causes PT
to be back at its previous level within 5 years after the pandemic. It is beneficial to explore
the potential of similar policy interventions in the Netherlands. Although to prevent similar
negative outcomes as the experiment in Germany, such measures should not be implemented
when operators are not able to handle the extreme increases in demand as seen in Germany.

Supply
Besides ticket prices, the supply of PT could be used as an intervention option. The pandemic
has resulted in a lower supply of PT in the near future as a result of the current and future
loss of demand. Increased supply of public transport services, therefore, higher frequencies
have a positive impact on the use of PT. Nonetheless, scenario discovery shows that altering
the length of the recovery of PT supply has little effect on the recovery of PT. Hence, the
effect of such an intervention is questioned.

New travellers
According to Van den Toorn (2022) and Van Vliet (2022) the pandemic has resulted in a
permanent loss of certain travellers in public transport that do not return. This raises the
question if the focus should be shifted towards finding ’new’ PT travellers for which PT
previously was not an attractive mode of transport. Besides the abovementioned measure
of pricing, it is complicated to attract new travellers. Durand et al. (2021) address the com-
plications in attracting new or infrequent travellers, among which digital difficulties and
sometimes inaccessibility play a role. Therefore, stimulation measures directly aimed at ir-
regular train travellers could potentially increase their attractiveness. However, a positive PT
image is essential.

6.2.2. Implication of telecommuting
As shown in the results, telecommuting reduces the amount of traffic on the main road net-
work and public transport network. It is debatable if the effect of more telecommuting is
always desired. From a financial perspective, Borggreven (2020) argues that social welfare
increases in general, due to more remote working. On the other hand, Last and Dopmei-
jer (2022) argue that working and studying from home also causes various negative effects.
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Therefore, stimulating remote working as a policy measure is questionable. Nonetheless, the
focus of this thesis is limited to telecommuting implications in mobility. Aside from conges-
tion, implications are additionally present in other aspects of mobility.

Telecommuting can be seen as a sustainable mode of transport, as more working from home
generally means less pollution due to a trip not being made (White et al., 2010). This effect
applies of course mainly to car trips that are being substituted. Beyond the mode of trans-
port, it is debatable if working from home is in fact the more sustainable option.

Furthermore, White et al. (2010) argues that the distance travelled and general traffic volume
does not decrease in line with the increase in the amount of remote worked hours. This is
in line with the expectation defined in the literature where the decrease in travel time and
travel distance is questioned as a result of, among others, the concept of a constant travel time
budget (Mouratidis and Peters, 2022). As a result, the pollution avoided by not making a trip
could be replaced by another trip. When this results in a commuting PT trip being replaced
by a recreational car trip, the opposite objective is achieved. Due to the trip generation not
being influenced by the change in telecommuting, the rise of replacement trips as a result of
more remote working cannot be studied and is therefore outside the scope.

Situation on the road
Because the car has become a more attractive mode of transport in the near future, the im-
plementation of policy interventions to redirect travellers from the car towards other modes
could be desired. The stimulation of remote working is often mentioned as a policy instru-
ment to reduce traffic on the main road network (Olde Kalter, 2022). The results of this thesis
endorse the positive effect remote working has on road congestion.

6.3. Limitations of the research
The research and the developed system dynamics model in this thesis are limited in some
ways. Hence, features some simplifications and aspects that are outside the scope. The main
limitations are highlighted below.

Transport modelling limitations
With the use of system thinking and the construction of a model to represent a system,
model limitations are inevitable. Within the developed SD model, the scope is aimed at the
mode choice part, resulting in other factors of the transport modelling cycle being simplified
in a few ways. In the methodology, it was proposed to use the 4-step model (Ortúzar and
Willumsen, 1990) as a guiding principle and apply focus on the mode choice. In hindsight,
the choice to focus on the mode choice caused some simplification in the constructed model.

First, the absence of dynamic trip generation results in the model outcomes not being able to
influence the number of total trips. Second, the simplification of the assignment step causes
the outcomes to be only visible at a nationwide level and the five geographical specified
area types. The inclusion of a detailed zonal network could extend the route assignment
part. The route assignment is closely related to the network of nodes and links used (see
Section 6.3). There was no need for an underlying synthetic network to be able to answer
the research question. Moreover, Shepherd (2014) also illustrated that SD modelling is not
the best application for detailed route assignment. For the purpose of overcomplexity, the
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mentioned limitation and simplification are implemented. In a new version of the model,
most of the simplifications and some of the limitations can be added.

General demand and supply issues in the Netherlands
It is beyond the scope of this research to address the general mobility problems surrounding
transport demand and supply in the Netherlands. The fact that in the future the mobility sys-
tem in the Netherlands encounters overload on several networks by reaching maximum ca-
pacities is a general problem wider than the implications addressed in this research (Bakker
and Moorman, 2021). Although, the current model could be applied to the broader trans-
port demand issue and provide insight, on a macroscopic level, into potential bottlenecks for
future demand and supply of transport.

Attractiveness of the telecommuting alternative
Modelling telecommuting as an alternative in an SD model integrated choice model requires
a utility function for telecommuting. The utility of telecommuting is included in a simpli-
fied form. In fact, there are multiple more attributes that influence the decision to work
from home or travel to work or an educational institution. More and more is known about
the motivation to work from home since the pandemic (Reiffer et al., 2022). Future research
regarding motivation to work from home could benefit the way the attractiveness of telecom-
muting is measured. This limitation is currently accepted, as the utilities of traditional
alternatives such as public transport, bike and car likewise consist of simplifications in this
model. It causes the Alternative Specific Constant of telecommuting to capture the unob-
served factors with the use of the calibration step. Besides the willingness and the ability to
work from home, the choice is influenced by, among others, the factors: communication with
peers and colleagues, household type, single mode and multimode commuters and several
other factors (Reiffer et al., 2022; Thomas et al., 2021).

Geographical limitation
A modelling trade-off occurs in the way the geographical element could be modelled. A
synthetic network can be modelled in SD with the use of vectorisation of variables. Where
either the zones (nodes) or the origin-destination relations (links) can be modelled. Recent SD
transport models with the inclusion of a geographical element saw differences in modelling
considerations. Puylaert et al. (2018) used the OD types between five specified area types as
the geographical element. The model study of Puylaert et al. (2018) was able to exclusively
explore a few of the OD types. The recommendation was made to extend the model with
the vectorisation of variables, which allows copying a set of variables and thus exploring
significant more combinations. The study of Legêne et al. (2020), used a different approach,
by modelling a large number of zones (n=860).

In this thesis, a mix of both methods is used. As the use of modelling geographical elements
with a relatively low level of detail is favoured over modelling municipalities in detail. Mod-
elling zones on the level of the municipality in combination with the already defined trip
types, results in even more KPIs than currently in the model, potentially causing enormous
runtimes and an overfit of the model. Moreover, the main interest lies in a distinction in the
area type detail level instead of the municipality level. Therefore the geographical elements
in this thesis consist of five area types that are modelled with the use of vectorisation of
area-type variables, as suggested by Puylaert et al. (2018)
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6.4. Recommendations for future research
The recommendations for future research are divided into practical model use, model exten-
sions and general future research. Whereas the model recommendations are largely derived
from the current simplification in the model, the recommendation for future research focuses
on the underexplored elements and future applications.

Model relevance
The model developed in this research is suitable for analysing the changes and impacts in
mobility related to COVID. Furthermore, the developed SD model can be used more widely.
The transport modelling basis of the SD model is suitable for future use and can answer
questions regarding the impact of other trends, innovations or disruptions in transportation.
With the developed SD model, the possibility of simulating designed scenarios in a fast
and exploratory way is achieved. Therefore, the model is a useful exploration tool that
is beneficial long after the end of the pandemic. As noted in the limitations, the model
could, on a macroscopic level, explore several future scenarios regarding broader issues
in transportation. Combined with the emergence of changing approaches regarding the
demand for transport, the developed model is helpful for the Ministry of Infrastructure and
Water management. In addition to the relevance of mobility disruptions of COVID for the
Ministery of I & W, the general question of what is desired in future mobility is relevant
from the broader perspective of society.

Model additions
In the limitations, several additions were identified as potentially beneficial for the strength
of this model. First of all, the current model structure only features a feedback mechanism
for road traffic. The alternatives are therefore only influenced by the feedback originating
from the mode choice and differences in utility. The implementation of a feedback mecha-
nism for the other modes is of significant added value. The crowdedness especially in public
transport is of interest. With the use of an occupancy rate in trains, this feedback loop can
be constructed. For cycling, the feedback loop is less relevant as capacity saturation of the
cycling network is not an issue that affects the mode choice highly. Nonetheless, more cy-
clists on the network could impact travel times (Yuan et al., 2019).

Second, in a future expansion of the model, location attractiveness can be added. As it is
assumed that the effect of tele-activities has an effect on accessibility and subsequently lo-
cation attractiveness (Mouratidis and Peters, 2022). The research of Bons (2021) identified
the attributes affecting housing preference due to COVID. The author also took the role of
telecommuting into account. Moreover, changed telecommute behaviour is specifically iden-
tified to stimulate potential relocations, with the use of extensive panel data over the course
of the entire duration of COVID, according to the study of Reiffer et al. (2022). With the use
of updated housing preferences and the already include area types, the future attractiveness
of relocation can be modelled.

Future (model) research
First of all, the policy recommendations made in this thesis can be implemented and simu-
lated in the model. Currently, the simulation of policy measures is outside the scope of this
research. Nonetheless, it is beneficial to study the effects of such interventions. The combi-
nation of measures, in particular, is of interest as the potential conflict between stimulating
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public transport and remote working was identified as a point of attention. The system
dynamics methodology is suitable for policy testing, as policies’ robustness and impact on
model behaviour can be explored. In addition, the trip types in the SD model enable the
exploration of where specific policies should be applied.

Second, further research is proposed with the developed model itself, by creating more pos-
sible scenarios to simulate future situations. The extensive number of trip types results in
potential model outcomes for 500 KPI’s. In this thesis, only the relations of interest have
been studied. In the unexplored combinations of trip types, there are undoubtedly more
interesting results to answer follow-up research questions.

Third, originating from the limitations, the model can be applied to a more specific area
than the classified area types in the Netherlands as a whole. Because area types are used,
these area types can be adjusted according to, for example, a province in the Netherlands.
By changing the input data from the entire country to a province and altering the location-
specific variables in the choice model, the results for a specific area in the Netherlands can
be made explicit.

Third, future research into the attributes defining the attractiveness of remote working ben-
efits the accurate determination of telecommuting utility. The utility part of telecommuting
can be extended with additional attributes. As mentioned in the limitations, the attractive-
ness of telecommuting is determined based on a limited set of parameters. The goal of this
thesis is aimed towards exploratory modelling of the mobility impacts of COVID. The op-
timization and estimation of choice models are therefore outside the scope of this research,
as the objective of this thesis is not aimed at the in-depth exploration of utility functions,
their attributes and parameters. However, the utility calculation of especially telecommuting
can be improved, as the literature around the incentives for working from home is quickly
expanding (Thomas et al., 2021). Most pre-pandemic telecommute research is based on
conceptual factors only and lacks the implementation in choice models (Mokhtarian and
Salomon, 1994). In addition, the pandemic changed travellers’ telecommuting behaviour,
making the current literature outdated.

Relevenace for commissioner
With this thesis, research towards developing new mobility models is enhanced. The fo-
cus in mobility models is shifting towards novel ways of exploring the future of mobility.
Therefore, traditional microscopic transport models are not always the preferred and desired
choice. The commissioner, Goudappel, is a mobility consultancy supporting and advising
their clients with expertise in the mobility and transportation sector. Goudappel is interested
in the development of new mobility models for two main reasons. First, Goudappel develops
and manages multiple transport models of their own and applies those for mobility-related
issues of their clients. From this point of view, Goudappel itself has a high interest in devel-
opments in the market of transport models.

Second, the topics in mobility issues more often ask for a new approach, where the need
to gain insight into the behaviour of outcomes over time is relevant. Such as the mobility
disruptions of COVID. With the use of system dynamics in mobility models, this angle is
being explored more, contributing to the development and the use of SD models in mobility
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issues. The innovative use of SD models is explored and, to a certain extent, adopted by
Goudappel.

Recommendation for commissioner
For future use of system dynamics, it is essential to demonstrate the possibilities of SD and
the deficiencies of SD in mobility models to its users. It should be emphasised that the goal
is not to replace other mobility models but to supplement them. The focus should be on
demonstrating the added value of exploring mobility with SD models to future users, such
as transport planners and policymakers.

In regard to the model, to increase the validation of the SD model, it is beneficial to estimate
its own sensitivity parameters for utility attributes in the choice model. The current com-
bination exists of adopting the majority of parameters from an estimated choice model in
Octavius combined with recalculated LMS parameters. This combination works rather well.
However, updating the choice models enables more validated model outcomes.



7
Conclusion

In this chapter, the conclusion is presented that can be drawn throughout this thesis. With
the use of the sub-questions, the main research question is answered: What are the long-term
impacts of COVID-19 on passenger mobility in the Netherlands as a result of changing travel be-
haviour?.

The main direction of future mobility impacts of COVID is primarily established through the
use of earlier qualitative research and survey data. The knowledge gap that has presented
itself in the literature is the difficulty of estimating the duration and extent of change due to
a high degree of uncertainty in a complex system. To enhance the future results of COVID
and gain a better understanding of the uncertainties affecting future mobility an, exploratory
modelling approach is used.

Developing a System Dynamics model enabled exploration of the relationship between the
attractiveness of modes as a result of COVID. The observations found in the analysis of the
literature are implemented in the construction of the SD model. Because travel behaviour
and attitudes of travellers change, the use of behavioural changes are included in the de-
velopment of the model. Sensitivities of travellers are not yet able to be translated into
accurately weighted coefficients, therefore the use of positive and negative attitudes towards
an alternative are used to model behavioural changes. With the combination of transport
modelling and exploratory modelling, an uncommon combination of methods is mixed.

The approach chosen in this thesis differentiates itself from other transport modelling ap-
proaches. With the developed model it is attempted to find a novel way of exploring the
future of transport. To prove the use and validity of this new method, the case study of
the mobility disruptions as a result of the COVID pandemic has been applied. This has
resulted in the endorsement of system dynamics modelling as a feasible method to explore
the impact of disruptions or trends in mobility. The system dynamics approach to modelling
transport is not a substitute for current traffic and transport models. On the contrary, it is a
supplemented method and tool used for preliminary explorations as a step ahead of larger
transport models. In addition, it provides a method to base policy measures on and assess
the influence of those policy measures in the system. By means of this, the model differenti-
ates itself from traditional transport models by being able to be used for the concept of vision
and validate. Additionally, the demand for transport nowadays is more and more focused
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on transitions in mobility instead of providing what is necessary based on extrapolating the
current growth. The demand for vision and thus the desired situation points in the direction
of a problem owner, who would benefit from the use of this modelling approach and subse-
quently the developed model. The use of the model in the future is therefore practical for the
Ministry of I & W. For whom not only the mobility disruptions of COVID are of relevance
but the general question of what is desired in future mobility from the wider perspective of
society.

Modelling the mode choice of travellers was found to be the suitable approach to observe
the COVID impacts of interest. First of all, remote working and therefore not travelling was
uncovered in the literature, as well as, the effect of the attractiveness of public transport
modes. To capture the impact of both these potential effects, the mode choice was extended
with an additional alternative. By including the choice not to travel in the mode choice, the
SD model differentiates itself from previous studies incorporating tele-activities in system
dynamics models. The inclusion of tele-activities as a new mode of transport also generated
complications. A novel alternative requires an associated utility function with attributes and
constants. In order to resemble the attractiveness of telecommuting in an accurate way, the
Alternative Specific Constant is estimated and calibrated based on validated pre-pandemic
telecommute travel behaviour, to capture the unobserved attributes of telecommuting.

The constructed model enables the visualisation of nationwide results as well as more spe-
cific results based on trip type. Consequently, more than 500 different combinations can be
explored. It was discovered that the general attitude of travellers regarding public transport
has encountered a setback, which is considered a non-desired situation. The goal over the
past years has been to establish a positive mode shift from private to public modes. Trav-
ellers’ shifting from public transport to remote working is witnessed a lot in the future, yet
presents no issue for a negative mode shift. The permanent increase of remote working
does however induce a slow recovery of public transport. The slow recovery is additionally
caused by travellers rediscovering other modes such as the bike and the car of which the
latter poses a risk of a negative mode shift. The exploration of possibilities to intervene in
the system and steer travel behaviour in the desired direction resulted in conflict between
stimulating public transport and working from home. It has been demonstrated that coor-
dination of policy measures is of high importance to prevent counter-effects between both
alternatives.

To conclude, this thesis has identified the noteworthy future impacts of the COVID pandemic.
With the use of a system dynamic model, the development of the impacts over the years is
established in the near and distant future, as well as potential post-pandemic scenarios that
the mobility sector could encounter in the upcoming years. At last, it is shown that a novel
method for exploring future disruptions and uncertainty in mobility is accomplished.
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A B S T R A C T
The COVID-19 pandemic has changed travel behaviour and mobility in the Netherlands. It is
questioned if the mobility system is subject to change in the near and distant future. To supplement
current research into COVID-19 mobility impacts, this study aims to observe the development of
mobility impacts over time with a quantitative approach. Current traditional transport models have
difficulties implementing uncertainties such as the mobility disruptions of COVID-19. These models
lack the exploratory nature to cope with quickly arising events and changes. Using system dynamics,
a model is developed to observe the mobility impacts of disruption and trends in transportation. The
developed model and alternative transport modelling approach are tested and validated by applying the
case of the COVID-19 mobility disruptions in the Netherlands. With the inclusion of a tele-activity
alternative in the mode choice component of our SD model. The option not to travel is specified
and modelled as a contender to the traditional modes of transport using choice models. Applying
the model to the COVID-19 situation provided insight into new relations and understandings of the
development of the mobility impacts over time in the near and distant future. It was found that the
future attractiveness of modes of transport changes as a result. Travellers’ preference for private modes
of transport will remain high in the forthcoming years, causing public transportation to recover slowly.
With the outcomes of this study, it can be concluded that the system dynamics modelling approach
is beneficial and has accomplished the construction of a model more widely applicable than the case
study of COVID.

1. Introduction
In December 2019, the COVID-19 outbreak started

a pandemic with far-reaching consequences (Zhu, Zhang,
Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan,
Ma, Wang, Xu, Wu, Gao and Tan, 2020). Within a few
months, the pandemic had caused implications worldwide.
With a focus on the limitation of people’s activity, the
disruption of the transportation system as a result of COVID-
19 was tremendous (De Haas, Faber and Hamersma, 2020).
During the ongoing pandemic research, it soon became
evident that the changes in travellers’ behaviour could affect
the transportation system well into the future (Van Wee
and Witlox, 2021). The question of how and to what extent
mobility will change causes uncertainty in the already uncer-
tain domain of transport and mobility planning (Chatterjee,
Burrieza Galán, Lyons and Isaksson, 2021).
Research gap

Half a year since the pandemic is considered to be con-
trolled in Europe (Murray, 2022), the effects are still visible
in the transport system. Where everyday life is considered
recovered, travel behaviour has not fully returned to the
pre-pandemic situations. Supported by literature and real-
time travel data, the effects of remote working (Hamersma,
Krabbenborg and Faber, 2021) and a change in mode choice
(Ton, De Bruyn, Van Hagen, Duives and Van Oort, 2021) are
present for an unknown extent and unknown period. To cope

∗Corresponding author: Tgvantol@gmail.com

with increased uncertainty in the mobility system and study
the extent to which the system is subject to change, this paper
proposes an exploratory modelling approach. Therefore, we
propose the following research question; What are the long-
term impacts of COVID-19 on passenger mobility in the
Netherlands as a result of changing travel behaviour?

Traditional transport models lack the exploratory nature
to cope with quickly arising events and changes. Qualitative
research lacks the ability to quantify the mobility impacts
and perform scenario explorations to analyse system be-
haviour. Therefore, the unusual/uncommon choice is made
to use exploratory modelling (Shepherd, 2014), which is
particularly suitable for observing the behaviour of complex
systems with a high degree of uncertainty. In this paper,
a system dynamics approach is proposed to observe the
future mobility impacts of COVID-19. With this method, it
is moreover attempted to provide a model which is not only
applicable to the mobility disruptions as a result of COVID,
but also to the wider disruptions and trends in mobility in
general.
Literature

Since the start of the pandemic, numerous studies have
been initiated and published. This paper attempts to con-
tribute to the broader aspect of research on COVID and
associated mobility disruptions in the Netherlands. Before
starting the modelling process, a preliminary exploration
is performed to establish the aspects of travel behaviour
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in specific that are potentially subject to change. To scope
the research, we used the currently available research to
establish several points of interest in the mobility system
in the Netherlands that might encounter substantial change.
Based on the available qualitative and quantitative research,
we were able to identify that especially the mode choice was
of interest.

The rise of remote working and the decrease in public
transport (PT) use can be seen as the two current COVID-
19 developments that are expected to impact the mobility
system in the future.

COVID-19 instigated the transition to work from home.
The forced nature of this transition caused employees and
employers to adapt to a fully online or partially online work
environment (Van Wee and Witlox, 2021). As of today, the
hybrid working mode, a combination of online and onsite
working, has made its appearance in a post-pandemic era
(Hamersma et al., 2021; Ton, Arendsen, de Bruyn, Sev-
erens, van Hagen, van Oort and Duives, 2022). According
to Thomas, Charlton, Lewis and Nandavar (2021), these
developments have impacted our commuting behaviour and
formed new habits. Reiffer, Magdolen, Ecke and Vortisch
(2022) addresses likewise the increased uncertainty that
originates from changes in our telework and commuter be-
haviour. Travellers are more likely to substitute a commuting
trip with working from home and thus not travel.

Furthermore, COVID-19 influenced travellers’ mode
choices directly, as travel preferences changed, and public
modes of transportation were avoided during the pandemic
(Gkiotsalitis and Cats, 2020; Shelat, Cats and van Cranen-
burgh, 2022). With post-pandemic travel data, it has become
apparent that not all travellers return to PT (Ton et al., 2021).

2. Methodology

2.1. (Mobility) System Dynamics
The methodology of System Dynamics (SD) makes use

of both qualitative and quantitative modelling approaches.
SD uses causal relations between elements of the system,
quantifying the relations of a system enables the exploration
of the behaviour of a system over time (Pruyt, 2013). Hence,
an SD model consists of a set of integral equations that are
numerically solved. The equations represent behaviour such
as accumulation, feedback and delays. With a stock-flow
structure, these elements are modelled, and subsequent dy-
namic behaviour occurs when flows accumulate into stocks
(Abbas and Bell, 1994). The concept of feedback is essential
in this as it adds dynamic facets and prevents elements
based only on linear behaviour (Auping, 2021). Examples
of feedback in our model structure are found in the modal
split, the number of (car) trips, the impact of COVID on
trips, telecommuting behaviour and appreciation of public
transportation.

SD is not an out-of-the-box option for the exploration
of the future of mobility. As this paper showed the lack

of exploratory nature in traditional transport models, we
deviate from the normal route of providing decision-makers
and transport planners model-based estimations. Using SD,
we can provide a more complete prospect, displaying the
dynamics of mobility impacts and the outcomes of changing
uncertainties. There is an absence of prior SD research in
this specific area which we can use as a basis for our model.
Nonetheless, in the field of (urban) mobility, there are some
examples of applications of SD as an exploratory transport
modelling method.

Pfaffenbichler, Emberger and Shepherd (2010) devel-
oped an urban mobility SD model, which has been used in
more than 15 cities and metropolitan areas to support future
transport planning processes. Legêne, Auping, Homem de
Almeida Correia and Van Arem (2020) used spatial system
dynamics to evaluate the introduction and adoption of auto-
mated vehicles in urban areas. In the Netherlands, the first
application was the development of the ScnerioVerkenner
by Heyma, Korver and Verroen (1999), by which the first
step towards a scenario planning tool was made. Neverthe-
less, the practical use of the ScenarioVerkenner is hardly
seen nowadays. First, due to its development in the 1990s,
meaning the model is currently outdated. Second, the fact
that it was often used as a method to predict future demand
and supply for infrastructure planning (Smits, van Maanen
and Borgman, 1995). However, the methodology of system
dynamics is more useful for observing model behaviour over
time, and to a lesser extent, for the specific predictions of the
future.
2.2. Transport modelling

To provide the developed model with a robust basis, the
4-step model, as presented in Figure 1, is used as a guideline
for the structure of the model. The 4 steps consist of (i)
trip generation, (ii) trip distribution, (iii) mode choice and
(iv) route assignment (Ortúzar and Willumsen, 1990). As
previous studies suggest potential effects within the mode
attractiveness, the focus is aimed at the mode choice. Im-
plementing a choice model in the system dynamics model
enables the exploration of change in travellers’ choices and
thus travel behaviour after the pandemic. Nonetheless, the
other phases in the 4 step model are included as well to
ensure a complete transport modelling structure in the SD
model. Trip generation is combined with trip distribution
and is influenced by population growth to provide the input
of trips. The assignment is subsequently simplified because
detailed route assignments can be problematic in a system
dynamics environment (Shepherd, 2014).
2.3. Exploratory modelling and analysis

For analysing the model outcomes and exploring the in-
fluences of uncertainty, Exploratory Modelling and Analysis
(EMA) is used. Bankes (1993) introduced the concept of
EMA in 1993. With the use of computational support, it is
possible to perform a high number of experiments and anal-
yse the uncertainties of a model (Kwakkel, 2017). The use
of a high number of experiments (N >1000) in combination
with the possibility to vary the range of input parameters

T.G. van Tol Page 2 of 8



Is Telecommuting Our New Mode of Transportation?

Figure 1: Point of interest in the 4-step model

enables the exploration of the model outcomes in a base
ensemble instead of a single base scenario. Within EMA it
is possible to perform scenario discovery. With the use of
a scenario discovery algorithm, computer-assisted scenario
development is possible (Bryant and Lempert, 2010). Com-
putational scenario discovery extends traditional scenario
design where at first a storyline is developed and afterwards
simulation takes place.

The SD model in this paper is heavily dependent on
COVID-related input, which is often based on estimations
and best guesses from the literature. Therefore, the use of
EMA allows analysing of model outcomes under different
conditions, providing a stronger perspective on the future
mobility impacts. The combination of EMA and our model
is seen as valid as our goal is to observe the impacts on
bandwidths to establish insight into the behaviour over time.
Furthermore, the use of EMA in System Dynamics is often
used and validated (Kwakkel and Pruyt, 2015), therefore
providing a strong analysis method useful for our model.

3. COVID-19 mobility model
We developed a model to observe the impacts of mo-

bility disruptions as a result of the COVID-19 pandemic.
To observe the mobility impacts of COVID, we study the
behaviour of the impacts over time in the near and distant
future and explore the uncertainties causing the impacts.
3.1. Conceptual overview

The structure of our model is based on the elements in
the 4-step model, emphasising the mode choice component.
Figure 2 illustrates the different submodels and components
in the model. The two Key Performance Indicators (KPIs)
we focus on in this paper are modal split and number of
trips. Both originate from the mode choice sub-model and
are considered most useful for the observation of the impacts
of COVID. The KPIs are influenced by input parameters and
uncertainties in each sub-model.

Figure 2: Overview of the system and sub-components

The five modes of transport

Because there are numerous modes of transportation, a
selection of the relevant alternatives is made. We include 5
main modes of transport, being: car, public transport, bike,
walking and tele-activity. Tele-activity is a new addition to
the mode choice and can be seen as the option to not travel for
commuting or educational purposes. Both are referred to as
telecommuting from now on as a collective term. With these
five modes, we can determine the most important changes in
mode attractiveness due to COVID.
Telecommuting

To cope with the adoption of telecommuting as part of
our mobility system, we propose a new method of modelling
working from home. The emphasis on telecommuting results
from the literature where the significance of telecommuting
in our future commute and travel behaviour is mentioned
several times (Ton et al., 2022; Reiffer et al., 2022).

In prior SD models, Haghani, Lee and Byun (2003)
& Malone, Verroen, Korver and Heyma (2001) included
telecommuting by subtracting part of the trips not being
made from the initial trip generation. The possibilities of
including the choice of not making a trip into the mode
choice are studied in this paper, resulting in a preference
to model telecommuting as a novel alternative in the mode
choice. In relation to previous SD mobility models, our
model enhances the dynamic element of telecommuting.
Without considerable changes to the model structure be-
cause the alternative is modelled similar as traditional modes
of transport.

Adding the alternative telecommuting to the modal split
enables the option to explore the attributes influencing the
choice to work on-site or remote. The choice to work from
home depends on numerous variables, most of which were
discovered during the COVID-19 pandemic. In the after-
math of the pandemic, we learn more about the variables
that influence the traveller’s decision (Reiffer et al., 2022).
Therefore, the inclusion of telecommuting as an alternative
in the mode choice causes an enhanced ability to explore the
behaviour of working from home.
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3.2. Choice modelling
To observe the (future) hypothetical mode choice of

travellers, we implemented the use of discrete choice models
in our system dynamics model. The inclusion of the choice
model enables the change in attractiveness over time to be
observed (Train, 2003). The alternative a decision-maker
chooses can be determined with the use of a logit formu-
lation (Ortuzar and Willumsen, 2011). The decision-maker
chooses the alternative that has the highest utility (McFad-
den, 1980), because of the utility maximisation theory we
adapt for our designed choice model. The probability P of
the decision-maker choosing alternative i is calculated with
Equation 1.

Each alternative has a corresponding utility function
which consists of attributes, such as travel cost, travel time
and comfort. The attributes differ per alternative. Where
applicable the utility or attributes are influenced by COVID
variables.

𝑃𝑖 =
𝑒𝑉𝑖

∑𝑛
𝑟=1 𝑒

𝑉𝑟
(1)

Where:

𝑃𝑖 = Probability of choosing mode i;
𝑉𝑖 = Utility of mode i;
𝑉𝑟 = Utilities of all the modes r;
𝑛 = Number of modes in consideration;

3.3. Validation of input data
In order to validate the choice model, we use travel

data from the pre-COVID situation to construct a solid
base year. The base year data is derived from travel data
originating from survey data in the annual study, Onderweg
in Nederland conducted by CBS (2020). The pre-pandemic
base year is used as a starting point for the trip generation.
Subsequently, the designed choice model is calibrated on the
base year input data, resulting in a validated choice model for
the SD model.
3.4. Distinction of trip types

Besides the nationwide impacts of COVID the more
specific impacts, in certain areas, for different trip purposes
and trip lengths, are of interest. The input data consist of
base year trips on a detailed level. The trips are divided
into trip types based on five trip purposes, five area types
and four distance classes shown in Table 1. The trip types
are modelled efficiently with the vectorisation of variables,
essentially creating a copy of a variable and model structure.

Each trip type has separate attribute parameters and
constants in their utility function. Subsequently, determining
the mode attractiveness and the future number of trips for
each combination (n=100) of trip types. This provides us
with insight into the difference between, for example, a
short commuting trip originating in an urban area and a
long commuting trip originating in a nonurban area and the
incentive to substitute that trip with a telecommute trip.

Table 1
Trip categories

Trip purpose Distance class Distance [km] Area type Address density
[Addresses/km^2]

Commuting Short <7.5 km Very highly urban >2500
Educational Middle short 7.5 - 15 km Highly urban 1500 - 2000
Social recreational Middle long 15 - 40 km Moderately urban 1000 - 1500
Shopping & Personal care long >40 km Little urban 500 - 1000
Other motives Non-urban <500

3.5. Experimental setup
The choice to model the input uncertainties under two

sets of ranges results in the exploration of two sets of model
ensemble outcomes. First, the COVID-19 base ensemble is
constructed based on input ranges derived from the literature
and travel behaviour (panel) data in the Netherlands. Second,
due to the high magnitude of uncertainty regarding the input,
the ranges are adapted and an additional ensemble is con-
structed for use in scenario exploration. With the exploration
of both ensembles, we are able to observe the outcomes
that are likely and on the other hand the more extreme/rare
situations. With the results of both outcomes, this paper can
relate to other mobility impact studies.

The SD model is designed with the system dynam-
ics software package of Vensim (version: Vensim® 9.3.0),
which provides a user-friendly graphical modelling interface
(Ventana Systems, 2022). For the analysis of the model
outcomes, and performing a high number of experiments,
the EMA workbench (version: 2.1) is used. The EMA work-
bench is implemented in Python and features an integrated
connector for the models in the Vensim package to be
implemented in the workbench (Kwakkel, 2017).

The model experiments performed varies each of the
input parameters within their range using a Latin Hypercube
sampling (Kwakkel, 2017). This statistical sampling method
generates a near-random sample of the input parameters.
For the COVID-19 base ensemble, 1000 experiments are
simulated, for the scenario exploration and wider ranges
the experiments are increased to 5000, in order to perform
scenario discovery.

4. Results
The attractiveness of modes of transport is expressed in

their mode share over time. Based on the trip-based modal
split, we study their increase or decrease in attractiveness
post-COVID. The prognosis without the interference of
COVID is additionally displayed, to observe the differ-
ences if the COVID pandemic never occurred. The results
discussed in this paper are focussed on the near future,
therefore, showcasing the model outcomes between 2019-
2030. For the impacts over a longer period of time, the reader
is referred to the complete study (Van Tol, 2022).

The initial modal split pre-COVID is shown in Table 2.
The modal split is adjusted for the inclusion of a telecommut-
ing alternative. Based on the studies from Hamersma et al.
(2021) and Jongen, Verstraten and Zimpelman (2021) we
were able to establish validated telecommuting input data.
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Table 2
Modal split 2019

Car 47.01 %
Public transport 5.74 %
Bicycle 28.23 %
Walking 15.88 %
Telecommuting 3.13 %

Figure 3 illustrates the modal split value of public
transport in the near future. It can be established that in
the presented time span the COVID-19 base ensemble
(displayed in blue) is not able to equal the original prognosis
(displayed in orange). Therefore, indicating that the future
attractiveness of public transport appears not to recover by
itself. Nevertheless, in an optimistic scenario, the 2019 pre-
COVID level (5.74%) of attractiveness will be matched. As
we observe a slightly higher density in model outcomes in
the upper part of the ensemble in Figure 3, it is shown that
the chances for recovery with such a gradient are higher.

First of all, one of the reasons is that telecommuting and
PT are competitors, as illustrated in Figure 4. This is not
surprising as commuters are a considerable share of public
transport passengers. The decay of PT is not in full relation
to the increase in telecommuting, indicating other factors
impact the decrease of attractiveness as well. We witness that
the mode share of telecommuting stabilises at various levels,
contrary to the PT mode share, indicating different behaviour
(Figure 3 & Figure 4). Furthermore, the absolute change in
percentage points in the modal split value is different.

Secondly, the valuation of public transport in the years
after COVID is still of considerable essence. Although
telecommuting is responsible for a significant loss in the
future number of public transport passengers, the increased
attractiveness of other alternatives, car and bicycle remain
(Figure 5 & Figure 6). Indicating travellers tend to use the
(re)discovered alternatives to substitute PT. The bicycle is
in the future mainly used as an alternative for short PT trips
and the car is used for longer distances as an alternative for
PT trips.

In order to determine the more in-depth causes of
why public transport recovery proceeds slow, the various
trip purposes were examined in more detail. It was found
that PT travel with social-recreational purposes encounters,
similar to commuter travel, a slow road to recovery. The
attractiveness of social-recreational travel is expected to
recover faster in the near future compared to commuting
trip purposes. However, the original no-COVID trend was
depicted to be higher, eventually showing similar progress of
recovery for both commuting and social-recreational travel.
This shows that, in addition to the lack of travellers who
work from home, public transport also lacks the essential
social-recreational travellers.

Figure 3: Public transport mode share

Figure 4: Telecommuting mode share

Figure 5: Car mode share

5. Conclusion & discussion

Comparison with other research

Our outcomes are in line with research from Francke
and Bakker (2022) regarding the slow recovery. However,
the authors predict a faster road to recovery than our results
suggest. The effect of travellers’ aversion towards the use
of public modes did not improve as quickly as estimated
by Francke and Bakker (2022). The attractiveness of other
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Figure 6: Bicycle mode share

Figure 7: Walking mode share

alternatives, telecommuting, car and bicycle and the effect
of negative attitudes remain influential factors.

The factor of telecommuting inevitable influences the
loss of public transport travellers. This is in line with
Hamersma et al. (2021), who suggested that mostly telecom-
muting is keeping travellers out of PT. In addition to Hamersma
et al. (2021), we extend the results by showing the outcomes
over time. We can conclude that the number of future
travellers substituting their trip with working from home is
slightly less than argued by Hamersma et al. (2021), for the
underlying reason that we study the coherence of effects.
Hence, we assume the shift in attractiveness to other modes
has a minor dampening effect on telecommuting.
Research question

In this paper, we proposed the following research ques-
tion: What are the long-term impacts of COVID-19 on
passenger mobility in the Netherlands as a result of changing
travel behaviour?

It can be concluded that our travel behaviour has changed
as a result of the COVID-19 pandemic. The primary effect
is the absence of travellers in public modes of transportation
due to, first of all, our preference for working more on a

remote basis and, secondly, travellers’ increased preference
to use the car or bicycle in the post-COVID era. This is
substantiated by the remaining negative attitude towards
public modes of transportation.
Unexpected findings

Public transport in the near future struggles to get back
on top. Because we analysed the cohesive impacts, it was
shown that besides the role of telecommuting, the attitude
towards different modes of transport is still of considerable
influence after the pandemic. In association with the neg-
ative PT attitude, the attractiveness of modes other than
PT remains high in the post-COVID era. In contrast to
other research, the role of travellers’ attitudes in the future
is undervalued (Francke and Bakker, 2022) or primarily
focussed on travellers’ attitudes during COVID (Ton et al.,
2021).

Nonetheless, the effects of telecommuting are substantial
for public transport. As shown in the analysis of the results,
there is a strong connection between tele-activities and the
use of public transport. Zooming in on the commuter and, to
a limited extent, educational travel, it is illustrated that public
transport and telecommuting are competitors and seek the
same type of traveller. This has consequences for the future,
as inherently, remote working keeps travellers out of PT.
Therefore, the possible promotion of public transport in the
future must be focused on attracting new travellers.

For telecommuting, it was already shown before the
pandemic (Van der Loop, Willigers and Haaijer, 2019) that
small amounts of telecommuting had a significant effect on
congestion reduction. As a result, there is a high incentive
to keep telecommuting at a certain minimum level. When
telecommuting and PT are stimulated through either policy
or behavioural change, conflict might arise. Potential mea-
sures need to be aligned to prevent opposing interventions. It
is impossible to design a policy for one without considering
the other.
Model considerations

It is found to be beneficial to explore telecommuting as
a new alternative. Since the pandemic, remote working is
embedded in our behaviour and has changed our concepts of
commuting. The choice to avoid travelling has become easier
for commuters and has impacted our mode and travel choice.
With the inclusion of telecommuting in the mode choice, we
could observe the dynamic progress of telecommuting over
the years.

Furthermore, the developed SD model was found to be
appropriate for the application to the case of COVID-19. Our
approach and model were tested and validated by comparing
our outcomes with mobility impacts found in the literature.
Therefore, providing the possibility of applying the model
to mobility disruptions wider than COVID. The objective
of SD is different to traditional transport models, where SD
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models thrive outcomes with a different level of accuracy.
It is, therefore, essential to notice that we do not desire to
pinpoint a value from the presented plots to estimate the
modal split or number of trips at a specific moment in time.
Rather, we desire to observe the behaviour and the course of
change of KPIs.
Future research

Finally, our model and research leave room for improve-
ment and future research. Due to several simplifications in
the current model, the future extensions focus on model
additions to improve the model’s explanatory power. Future
research points primarily in the direction of quantifying
the policy recommendations. The potential adjustment of
travel behaviour with the use of measures or interventions
is touched upon briefly in this paper. It would be beneficial
to implement control measures or policy interventions in
the SD model regarding the stimulation of PT, such as
pricing, increased supply or positive image, to determine the
subsequent effect on attractiveness.
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B
Conceptual models

This appendix provides additional conceptual models. These function as supplementary
conceptual models to the main model structure. The conceptual models of car and public
transport attractiveness are elaborated on, as well as the reasoning and conceptual model for
the congestion feedback mechanism.

B.1. Car & congestion mechanism
The attractiveness of driving was introduced by Sterman in his book Business Dynamics,
where he dedicated a section to the dynamic behaviour of traffic congestion (Sterman, 2000a,
p.182 ). The core principle of the feedback mechanism in traffic congestion is the effect of the
number of trips on the attractiveness of the car as a mode of transport. Figure B.1 illustrates
this feedback loop in aggregated form. This relation is simplified and exists of multiple
factors in between.

Figure B.1: Feedback mechanism private car (adapted from Malone et al. (2001))

The same feedback mechanism is found in the ScenarioVerkenner SD model (Malone et al.,
2001) and the MARS SD model (Pfaffenbichler et al., 2010). The Feedback is an equilibrium
where the relationship between intensity and capacity determines the congestion and travel
times. The feedback originates from transport modelling and the circle of Wegener and is
also seen in the 4-step model (McNally, 2007).
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The concept of road traffic congestion can be extended by adding the variables in between,
to the general feedback structure of Figure B.1. This results in the conceptual model in
Figure B.2.

Figure B.2: Conceptual model of the attractiveness of driving

• Load factors increase –> congestion increases
• Congestion increases –> speed decreases
• Speed decreases –> travel times increase
• Travel time increases –> attractiveness of driving decreases

• Attractiveness of driving decreases –> car use decreases and with a delay car ownership
decreases

• Car ownership decreases –> car use decrease
• Car use decreases –> traffic volume decreases

• Traffic volume decreases –> load factor decreases

A plus (+) symbol indicates a relationship in the same direction; a minus (-) symbol indicates
a relationship in an opposite direction. Adding the polarities together results in a balancing
feedback loop.

Congestion
As presented in the conceptual models and the Sub System Diagram (Figure 4.1) car traffic
is fed back to the system to incorporate the dynamic aspect of trips.

To include a working feedback cycle based on congestion in the Netherlands, the road situa-
tion in the Netherlands are imitated. With the use of a conversion factor, the road intensity
of the Dutch main road network is simulated. By incorporating the travelled kilometres in
the Netherlands in the base year (2019) and the congestion levels of the base year, the road
capacity of the network is shaped (Rijkswaterstaat, 2019).
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B.2. Public transport
Subsequently, the attractiveness of public transport can be visualised in Figure B.3. The con-
ceptual model is based on Causal Loop Diagrams from Suryani et al. (2021) and Tonini et al.
(2021). Where Tonini et al. (2021) focuses on the mode choice, in specific the attractiveness
of the two alternatives, public transport and private car transport (PC). With the use of sat-
isfaction and dissatisfaction of PT and PC use, modelled as stocks, the change in the use of
PT or PC can be observed. Due to the presence of more than 2 alternatives for the model
in this research the reasoning of Tonini et al. (2021) does not apply. However, the concept
of (dis)satisfaction of a mode of transport and therefore the effect on its use is useful for
modelling potential (dis)satisfaction of an alternative as a result of COVID-19.

Similar to Tonini et al. (2021), Suryani et al. (2021) introduces a SD framework for urban
mobility with a variable for mobility performance. Which is in essence mainly impacted by re-
liability for PT and congestion for PC (Suryani et al., 2020). The concept of accumulating all
variables into one performance variable is, however, short-sighted. Nonetheless, the idea of
introducing model components in SD to capture the performance or satisfaction of a mode
of transport is confirmed in the literature.

Attractiveness of PT
The attractiveness of PT is partially derived from the SD work of Tonini et al. (2021) and
Suryani et al. (2020). Together with elements that affect the attractiveness of public transport
by Ingvardson (2017) the CLD in Figure B.3is designed.

Figure B.3: Conceptual model of the attractiveness of public transport and feedback

• Reliability decreases –> travel times increases
• Public transport supply decreases –> travel times increases
• Travel times increase –> attractiveness of public transport decreases

• Public transport use increases –> crowding level increases
• Crowding level increases –> level of comfort decreases
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• Level of comfort decreases –> attractiveness of public transport decreases
• Attractiveness of public transport decreases –> public transport use decreases

Crowding levels are equal to the occupancy rate in the conceptualisation of public transport.
Figure B.4 illustrates the graphical representation of different levels of crowding.

Figure B.4: Crowding levels (Shelat et al., 2022)



C
Model components

This appendix provides the input of the trip generation and the mode choice component.
The input data for the attributes of the utility functions is calculated and presented.

C.1. Trip generation formulation
The trip generation is mostly defined by the travel data from the ODiN data set. The travel
date can be found in ??. In addition to the trip input from ODiN, the trip generation is also
influenced by population growth.

Population growth: The population is defined as all persons in the Netherlands above the
age of 6. This is the same population taken into account in ODiN (CBS, 2020). Population
growth and initial population are calculated based on CBS (2019a) numbers and added to the
model from an external data file.

C.2. Mode choice formulation
This section presents the utility functions for the alternatives. Furthermore, The attributes
for travel time and travel cost are calculated.

Distance classes/trip length: With the use of distance classes a simplification is implemented
in the model. By categorising all trips into scaled distance classes the trips within one dis-
tance class are generalised and have an average length. The average length is subsequently
used in the calculation of utility attributes.

C.2.1. Car utility
The utility of the car is calculated with Equation C.1.

Vcar = TTcar · βTTcar + TCcar · βTCcar + ASCcar (C.1)

Where:
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Vc = Utility of the car;
TTc = Travel time of the car;
βTTc = Sensitivity parameter of travel time of the car
TCc = Travel cost of mode i;
βTCc = Sensitivity parameter of travel cost of the car
ASCc = Alternative Specific Constant of the car

Travel time car
In Table C.1 the Travel times of the car are stated. With the average trip length and free-flow
speed, the travel time is calculated. This is done through a standard average velocity-distance
formula. The initial travel time is updated through the congestion feedback loop at every
time step. The free flow speed is assumed to be lower for trips originating from urban areas,
where drivers have to endure more traffic.

Urban degree Distance class Free flow speed [km/h] Free flow travel time [hour]
Sted 1: Extremely urbanised 1: Short (<7.5 km) 20 7.63

2: Middle short (7.5-15 km) 45 13.72
3: Middle long (15-40 km) 80 17.77
4: Long (40> km) 95 50.75

Sted 2: Strongly urbanised 1 20 7.63
2 50 12.35
3 80 17.77
4 95 50.75

Sted 3: Moderately urbanised 1 30 5.09
2 50 12.35
3 80 17.77
4 95 50.75

Sted 4: Hardly urbanised 1 30 5.09
2 50 12.35
3 80 17.77
4 95 50.75

Sted 5: Not urbanised 1 30 5.09
2 50 12.35
3 80 17.77
4 95 50.75

Table C.1: Initial travel time car

Travel cost car:
The travel cost in the utility function is calculated with the use of a natural logarithm, this is
done for all the travel costs of the alternatives.

The travel cost consists of the fixed car travel cost and variable car travel cost. The variable car
costs are determined by the fuel cost per kilometre and the Remaining variable car cost per kilo-
metre. Both variables have a growth curve based on the estimations from the WLO scenarios
(Van Meerkerk et al., 2021). The fuel cost are adapted on current prices (CBS, 2022b). For
electrical vehicles, the electricity cost development is determined according to WLO predic-
tions (Van Meerkerk et al., 2021). The development of other variable car costs also originates
from WLO scenarios and consists of maintenance, and deprecation. The fixed car cost is
calculated at 21.1 euro cent per km and is based on an estimation from NIBUD. The above-
mentioned variables car cost and their prognosis are sometimes altered due to insufficient
or outdated prognosis. The process of updating the costs is illustrated in Appendix F.
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Distribution EV/ICE
With the distribution between EV and ICE, a future prediction is made on the degree to
which both will be present in the future fleet of vehicles. The distribution is an uncertainty
input variable which can be changed. For the base situation the input is based on the current
vehicle fleet in the Netherlands and the prediction in the future (Berings and Kop, 2021; Van
Meerkerk et al., 2021).

C.2.2. Public transport utility
COVID-related factors such as public transport supply and public transport valuation are
modelled and incorporated in the utility function by multiplying them with the travel time
and not as separate attributes of their own. The option to provide them with separate at-
tributes caused incorrect outcomes. Therefore the COVID-related factors are multiplied in
the utility function with the travel time to cope with this deficiency. This results in accurate
changes in utility found through validation, by comparison with actual travel data. The fac-
tors are not displayed in the equation below.

Vpt = TTin−vehicle · βTTin−vehicle + TTaccess/egress · βTTaccess/egress

+ TTwaiting · βTTwaiting + TCpt · βTCpt + ASCpt

Travel time public transport
Travel time in PT can be divided into in-vehicle time, access/egress time and waiting time. The
in-vehicle travel time is calculated similar to car travel time, with the commercial speed of
rolling stock in public transport and the trip length (CROW, 2021b). The commercial or ex-
ploitation speed of PT is dependent on the distance class and the vehicle type. It is assumed
that for short trips the Bus/Tram/Metro is used, for the middle short trips, metro or sprinter
trains, for the middle long trips a combination of sprinter and intercity trains and for long
trips intercity trains. The waiting time and access and egress time differ based on distance
class and area type. All travel times; in-vehicle time, access/egress time and waiting time are
weighted according to their weight parameters (β).

In vehicle time
The in-vehicle time is calculated based on commercial speed and the average trip length.
The commercial speed of bus/tram/metro, sprinter and intercity trains vary substantially.
Therefore the average operating speed differs between distance class and area type.

Access and egress time and waiting time public transport
Based on the values of CROW, the access and egress times and waiting times are estimated
(CROW, 2022a). The average lost time due to access and egress depends on the distance and
area type. In non-urban areas, the PT network is less dense than in urban areas. The most
used mode of transport for access and egress are respectively walking and cycling. With the
use of trip planner applications, the total trip length and travel times are checked.
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Urban Degree Distance class Commercial speed [km/h] In -vehicle travel time [min] Access/egress time [min] Waiting time [min]
Sted 1: Extremely urbanised 1 20 7.63 4 2

2 46.25 13.35 5 2
3 60 23.69 7.5 4
4 77.5 62.21 10 7.5

Sted 2: Strongly urbanised 1 20 7.63 4 2
2 46.25 13.35 7 3
3 60 23.69 10 5
4 77.5 62.21 15 8

Sted 3: Moderately urbanised 1 22 6.94 5 2
2 46.25 13.35 8 3
3 60 23.69 11 6
4 77.5 62.21 15 10

Sted 4: Hardly urbanised 1 23.13 6.60 8 3
2 46.25 13.35 10 4
3 60 23.69 13 7
4 77.5 62.21 20 11

Sted 5: Not urbanised 1 25 6.11 10 4
2 46.25 13.35 12 5
3 60 23.69 17 8
4 77.5 62.21 25 12

Table C.2: Initial travel time PT

Travel cost public transport:

Fixed travel cost PT consists of a boarding fee which is the same for every operator and every
PT mode (Vervoerregio Amsterdam, 2019). Variable travel cost PT is often calculated by PT
operators in rate units instead of price per kilometre, the rate units also differ per operator.
The average rate units are calculated and translated to kilometre price for variable travel
costs (MRDH, 2020). The average kilometre price differs between BTM and train.

Variable travel cost [Euro/km] Fixed travel cost [Euro]
Short 0.15 0.98
Middle short 0.15 0.98
Middle long 0.2 0.98
Long 0.2 0.98

Table C.3: Travel cost public transport

C.2.3. Bicycle utility

Vbike = TTbike · βTTbike + ASCbike (C.2)

Travel times bicycle:

The average cycling speed is 15.8 km per hour according to the Fietsersbond. The cycling
speeds in cities are additionally lower than outside urban areas.

Speed [km/h] Travel time [Hour] Travel time [Min]
Short 14.6 0.17 10.45
Middle short 14.6 0.70 42.29
Middle long 15.8 1.50 89.97
Long 15.8 5.09 305.16

Table C.4: Travel time bicycle
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C.2.4. Walking utility
Vwalk = TTwalk · βTTwalk + ASCwalk (C.3)

Speed [km/h] Travel time [Hour] Travel time [Min]
Short 6 0.42 25.44
Middleshort 6 1.72 102.91
Middlelong 5 4.73 284.30
Long - - -

Table C.5: Travel time walking

C.2.5. Telecommuting utility
The inclusion of telecommuting as an alternative in the mode choice requires the inclusion
of a utility function for this alternative. The sub-model of telecommuting gives substance to
the degree of telecommuting through a stock-flow structure. The degree of telecommuting is
subsequently translated to the willingness to telecommute which together with a parameter
determines the utility of telecommuting. In other words the utility of not making a trip for
commuting or educational activities. Due to the validation of the initial telecommuting trips
by the literature, the model input for telecommuting trips is considered to be robust.

Vtele = Willingness to tele ∗ parametertele + TTtele · βTTtele + TCtele · βTCtele + ASCtele (C.4)

The willingness to telecommute consists currently of a degree of telecommuting which is
modelled through the use of stock flow structure in the SD model. The ability to telecom-
mute is in the simplified form taken into account due to the unknown factors of the ability to
telecommute. Similar to the degree of telecommuting, it is possible to implement the ability
to work from home as an element consisting of fluctuating behaviour. Where factors such as
the quality of the workplace and household situation are potential attributes. Furthermore,
the discussion (Chapter 6) elaborated on the potential further attributes that influence the
choice of tele.

C.2.6. Beta parameters
The weighted coefficients are based on estimated parameters originating primarily from
choice and traffic models.

Parameter estimation
The values obtained from the estimated choice models in Octavius are used as base values
for the sensitivity parameters for travel time and travel cost. Due to the lack of accurate
values for the mode of walking the parameters for walking are estimated with the use of
travel cost and travel time elasticity derived from the Landelijk Model Systeem (LMS) (Rijk-
swaterstaat, 2021a; Willigers and De Bok, 2012). The elasticity in the LMS originates from the
Groeimodel (Rijkswaterstaat, 2021b). This model presents elasticity and cross elasticity for
travel time and travel cost valuation among the main mode of transport (Haaijer et al., 2012).
With cross-elasticity values, the parameters for walking are estimated and implemented in
the SD model. The elasticity for telecommuting is assumed and estimated by hand. It re-
flects the perception of people have towards telecommuting as presented in the KiM report
regarding working from home estimates (Hamersma et al., 2021).



D
Data analysis process

This section provides an overview of data collection, cleaning and analysis of the travel data.
Each component in the model heavily relies on data input. To accurately represent the situ-
ation of the Netherlands, ODIN 2019 is used as the main source for data input (CBS, 2020).
With the use of CBS survey data from the ODiN survey in 2019 a base year is constructed.
The dataset from 2019 is used as a base year for travel demand due to the presence of COVID-
19 in 2020. It uses the number of trips for a trip generation input.

With the use of statistical software SPSS, the original ODiN 2019 dataset is cleaned, which
results in useful cases. Thereafter, the data is weighted with the appropriate weight variables
to generalise the number of trips from the sample to the population. In addition, SPSS is
also used to re-code and define new categories and classifications of transport modes, trip
purposes, distance classes and area types. To align the outcomes of the utility functions with
the ODiN input data, the utility function has to be re-estimated or calibrated.

D.1. Initial trips
Overview of the steps performed in SPSS. The dataset used is the stacked ODiN data 2018
& 2019.

1. Selecting the cases:

• Year = 2019 (Only 2019 data used)
• Verpl = 1 (Only new trips are used)

2. Weighting of the cases:

(a) Multiply with weight factor (FactorV) to generalise the sample to the population.
(b) With the use of custom tables re-code the alternatives, distance classes (n=15 n=4)

and trip purpose (n=13 n=5)
(c) With the use of custom tables scripts selects the cases which are required for the

input.

3. Custom tables:

(a) Divide per mode of transport
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(b) Divide per trip purpose
(c) Divide per trip length (i.e. distance class)
(d) Divide per trip origin based on urban degree

i. Categorise all municipalities in the Netherlands (n=355 as of 2019) in 5 area
types based on address density.

D.2. Initial Remote working trips
Hamersma et al. (2021) provides estimations of distributions of remote working trips before
COVID to calculate the number of initial trips. Table D.1 shows the subsequent calculated
trips per year. With the distribution of remote working trips in 2019 the trips are subse-
quently calculated for every distance class and area type combination (Table D.2).

Distance class Trip purpose Base year trips

Short Commuting 35444381
Educational 13796249

Middleshort Commuting 70888762
Educational 27592498

Middlelong Commuting 106333143
Educational 41388747

Long Commuting 141777524
Educational 55184996

Table D.1: Initial remote working trips (trips/year)

Area type Distribution

Extremely urbanised 0.233
Strongly urbanised 0.212
Moderately urbanised 0.209
Hardly urbanised 0.182
Not urbanised 0.164

Table D.2: Distribution of initial remote working trips per area type

D.3. Average trip length based on ODiN trips
For the calculation of travel times and travel costs, the average trip length of each distance
class is used. The average trip length is derived from the ODiN data set with the use SPSS.

1. Compute new variable

(a) New variable is the trip distance in km
(b) Next new variable is weighted distance = factorV * distance trips in km

2. Summation of all new variables per distance class.

(a) Performed in excel
(b) Average trip length = SUM weighted distance/ SUM factorV
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D.4. Area types
The area types are defined by the degree of urbanization. The density of addresses cate-
gorises every municipality in the Netherlands into one of five area types. Figure D.1 illus-
trated on an aggregated level the distribution of municipalities and their corresponding area
type.

Figure D.1: Degree of urbanisation per municipality



E
Support plots EMA

E.1. Total number of monthly trips

Figure E.1: Total trips for car and cycling

E.2. Stack area plots
The following stack area charts are used for additional analysis between the various trip
purposes in the four designed scenarios in Section 5.2.2. The trip purposes of scenarios 1:
increased public transport attractiveness and scenario 4: remainign low public transport attractive-
ness are compared in Figure E.2, Figure E.3, Figure E.4, Figure E.5 & Figure E.6.
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Figure E.2: Scenario 1 & 4 [commuting]

Figure E.3: Scenario 1 & 4 [educational]
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Figure E.4: Scenario 1 & 4 [social recreational]

Figure E.5: Scenario 1 & 4 [shopping and personal care]
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Figure E.6: Scenario 1 & 4 [other trip purpose]

E.3. Modal split per trip purpose
From the additional analysis of different trip purposes, it was found that between the com-
muting trips and educational trips recovery periods elapse differently. Therefore, it can be
assessed that the recreational PT trips in Figure E.8 recover in the distant future to a greater
extent than for example commuter or educational trips. Nevertheless, the recreational trips
feature a similar elapse in the near future, resulting in a recovery that will not be seen before
2026

Figure E.7: Modal split public transport [commuting]

Figure E.8: Modal split public transport [social-recreational]



E.4. Scenario discovery (PRIM) 103

E.4. Scenario discovery (PRIM)

Figure E.9: Peeling and pasting trajectories modal split PT

Figure E.10: Peeling and pasting trajectories congestion



F
Updated prognoses variable car cost

Due to the uncertainty of fuel prices and their future development, the prognoses from the
literature are insufficient. The 2018 estimated prognosis is updated with current details. This
results in a new prognosis for the development of variable car costs as of 2022. With the ac-
tualisation, the variable car cost in the model represents the current situation better. The
variable car cost remains to be an input uncertainty. However, for the base scenario, the
updated car cost are of impact. With the use of designed index variables, the estimation of
fuel cost for fossil and electricity for respectively ICE and EV are calculated.

Disclaimer: The values are updated until the first of June 2022.

Figure F.1: Development fuel cost 2019 - June 2022

• Figure F.1 illustrates the development of the fuel prices between the start of the time
horizon (1 January 2019) and the last update of the model (1 June 2022). The values
originated from CBS (2022b) and are in euro per litre.
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• Figure F.2 presents the prognosis of fuel cost which originates from 2018 (Snellen et al.,
2015; Van Meerkerk et al., 2021). The prognosis from WLO is manually updated with
the prices of 2022, as shown in Figure F.2.

• To include the changing fuel consumption of engines. The development of more sus-
tainable ICE (and EV) throughout the current and future years is included in the calcu-
lation.

• Figure F.3 presents the updates prognoses from 2018 with the incorporation of updated
fuel prices until first of June from Figure F.1. Due to the high degree of uncertainty
about how much more the fuel prices will increase as of the first of June, the range
of variables car cost can additionally be adjusted in the model through the use of an
uncertainty input variable.

Figure F.2: Forecast development fuel prices 2018

Figure F.3: Update development fuel prices 2022
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A B S T R A C T
The COVID-19 pandemic has changed travel behaviour and mobility in the Netherlands. It is
questioned if the mobility system is subject to change in the near and distant future. To supplement
current research into COVID-19 mobility impacts, this study aims to observe the development of
mobility impacts over time with a quantitative approach. Current traditional transport models have
difficulties implementing uncertainties such as the mobility disruptions of COVID-19. These models
lack the exploratory nature to cope with quickly arising events and changes. Using system dynamics,
a model is developed to observe the mobility impacts of disruption and trends in transportation. The
developed model and alternative transport modelling approach are tested and validated by applying the
case of the COVID-19 mobility disruptions in the Netherlands. With the inclusion of a tele-activity
alternative in the mode choice component of our SD model. The option not to travel is specified
and modelled as a contender to the traditional modes of transport using choice models. Applying
the model to the COVID-19 situation provided insight into new relations and understandings of the
development of the mobility impacts over time in the near and distant future. It was found that the
future attractiveness of modes of transport changes as a result. Travellers’ preference for private modes
of transport will remain high in the forthcoming years, causing public transportation to recover slowly.
With the outcomes of this study, it can be concluded that the system dynamics modelling approach
is beneficial and has accomplished the construction of a model more widely applicable than the case
study of COVID.

1. Introduction
In December 2019, the COVID-19 outbreak started

a pandemic with far-reaching consequences (Zhu, Zhang,
Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan,
Ma, Wang, Xu, Wu, Gao and Tan, 2020). Within a few
months, the pandemic had caused implications worldwide.
With a focus on the limitation of people’s activity, the
disruption of the transportation system as a result of COVID-
19 was tremendous (De Haas, Faber and Hamersma, 2020).
During the ongoing pandemic research, it soon became
evident that the changes in travellers’ behaviour could affect
the transportation system well into the future (Van Wee
and Witlox, 2021). The question of how and to what extent
mobility will change causes uncertainty in the already uncer-
tain domain of transport and mobility planning (Chatterjee,
Burrieza Galán, Lyons and Isaksson, 2021).
Research gap

Half a year since the pandemic is considered to be con-
trolled in Europe (Murray, 2022), the effects are still visible
in the transport system. Where everyday life is considered
recovered, travel behaviour has not fully returned to the
pre-pandemic situations. Supported by literature and real-
time travel data, the effects of remote working (Hamersma,
Krabbenborg and Faber, 2021) and a change in mode choice
(Ton, De Bruyn, Van Hagen, Duives and Van Oort, 2021) are
present for an unknown extent and unknown period. To cope

with increased uncertainty in the mobility system and study
the extent to which the system is subject to change, this paper
proposes an exploratory modelling approach. Therefore, we
propose the following research question; What are the long-
term impacts of COVID-19 on passenger mobility in the
Netherlands as a result of changing travel behaviour?

Traditional transport models lack the exploratory nature
to cope with quickly arising events and changes. Qualitative
research lacks the ability to quantify the mobility impacts
and perform scenario explorations to analyse system be-
haviour. Therefore, the unusual/uncommon choice is made
to use exploratory modelling (Shepherd, 2014), which is
particularly suitable for observing the behaviour of complex
systems with a high degree of uncertainty. In this paper,
a system dynamics approach is proposed to observe the
future mobility impacts of COVID-19. With this method, it
is moreover attempted to provide a model which is not only
applicable to the mobility disruptions as a result of COVID,
but also to the wider disruptions and trends in mobility in
general.
Literature

Since the start of the pandemic, numerous studies have
been initiated and published. This paper attempts to con-
tribute to the broader aspect of research on COVID and
associated mobility disruptions in the Netherlands. Before
starting the modelling process, a preliminary exploration
is performed to establish the aspects of travel behaviour
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in specific that are potentially subject to change. To scope
the research, we used the currently available research to
establish several points of interest in the mobility system
in the Netherlands that might encounter substantial change.
Based on the available qualitative and quantitative research,
we were able to identify that especially the mode choice was
of interest.

The rise of remote working and the decrease in public
transport (PT) use can be seen as the two current COVID-
19 developments that are expected to impact the mobility
system in the future.

COVID-19 instigated the transition to work from home.
The forced nature of this transition caused employees and
employers to adapt to a fully online or partially online work
environment (Van Wee and Witlox, 2021). As of today, the
hybrid working mode, a combination of online and onsite
working, has made its appearance in a post-pandemic era
(Hamersma et al., 2021; Ton, Arendsen, de Bruyn, Sev-
erens, van Hagen, van Oort and Duives, 2022). According
to Thomas, Charlton, Lewis and Nandavar (2021), these
developments have impacted our commuting behaviour and
formed new habits. Reiffer, Magdolen, Ecke and Vortisch
(2022) addresses likewise the increased uncertainty that
originates from changes in our telework and commuter be-
haviour. Travellers are more likely to substitute a commuting
trip with working from home and thus not travel.

Furthermore, COVID-19 influenced travellers’ mode
choices directly, as travel preferences changed, and public
modes of transportation were avoided during the pandemic
(Gkiotsalitis and Cats, 2020; Shelat, Cats and van Cranen-
burgh, 2022). With post-pandemic travel data, it has become
apparent that not all travellers return to PT (Ton et al., 2021).

2. Methodology

2.1. (Mobility) System Dynamics
The methodology of System Dynamics (SD) makes use

of both qualitative and quantitative modelling approaches.
SD uses causal relations between elements of the system,
quantifying the relations of a system enables the exploration
of the behaviour of a system over time (Pruyt, 2013). Hence,
an SD model consists of a set of integral equations that are
numerically solved. The equations represent behaviour such
as accumulation, feedback and delays. With a stock-flow
structure, these elements are modelled, and subsequent dy-
namic behaviour occurs when flows accumulate into stocks
(Abbas and Bell, 1994). The concept of feedback is essential
in this as it adds dynamic facets and prevents elements
based only on linear behaviour (Auping, 2021). Examples
of feedback in our model structure are found in the modal
split, the number of (car) trips, the impact of COVID on
trips, telecommuting behaviour and appreciation of public
transportation.

SD is not an out-of-the-box option for the exploration
of the future of mobility. As this paper showed the lack

of exploratory nature in traditional transport models, we
deviate from the normal route of providing decision-makers
and transport planners model-based estimations. Using SD,
we can provide a more complete prospect, displaying the
dynamics of mobility impacts and the outcomes of changing
uncertainties. There is an absence of prior SD research in
this specific area which we can use as a basis for our model.
Nonetheless, in the field of (urban) mobility, there are some
examples of applications of SD as an exploratory transport
modelling method.

Pfaffenbichler, Emberger and Shepherd (2010) devel-
oped an urban mobility SD model, which has been used in
more than 15 cities and metropolitan areas to support future
transport planning processes. Legêne, Auping, Homem de
Almeida Correia and Van Arem (2020) used spatial system
dynamics to evaluate the introduction and adoption of auto-
mated vehicles in urban areas. In the Netherlands, the first
application was the development of the ScnerioVerkenner
by Heyma, Korver and Verroen (1999), by which the first
step towards a scenario planning tool was made. Neverthe-
less, the practical use of the ScenarioVerkenner is hardly
seen nowadays. First, due to its development in the 1990s,
meaning the model is currently outdated. Second, the fact
that it was often used as a method to predict future demand
and supply for infrastructure planning (Smits, van Maanen
and Borgman, 1995). However, the methodology of system
dynamics is more useful for observing model behaviour over
time, and to a lesser extent, for the specific predictions of the
future.
2.2. Transport modelling

To provide the developed model with a robust basis, the
4-step model, as presented in Figure 1, is used as a guideline
for the structure of the model. The 4 steps consist of (i)
trip generation, (ii) trip distribution, (iii) mode choice and
(iv) route assignment (Ortúzar and Willumsen, 1990). As
previous studies suggest potential effects within the mode
attractiveness, the focus is aimed at the mode choice. Im-
plementing a choice model in the system dynamics model
enables the exploration of change in travellers’ choices and
thus travel behaviour after the pandemic. Nonetheless, the
other phases in the 4 step model are included as well to
ensure a complete transport modelling structure in the SD
model. Trip generation is combined with trip distribution
and is influenced by population growth to provide the input
of trips. The assignment is subsequently simplified because
detailed route assignments can be problematic in a system
dynamics environment (Shepherd, 2014).
2.3. Exploratory modelling and analysis

For analysing the model outcomes and exploring the in-
fluences of uncertainty, Exploratory Modelling and Analysis
(EMA) is used. Bankes (1993) introduced the concept of
EMA in 1993. With the use of computational support, it is
possible to perform a high number of experiments and anal-
yse the uncertainties of a model (Kwakkel, 2017). The use
of a high number of experiments (N >1000) in combination
with the possibility to vary the range of input parameters
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Figure 1: Point of interest in the 4-step model

enables the exploration of the model outcomes in a base
ensemble instead of a single base scenario. Within EMA it
is possible to perform scenario discovery. With the use of
a scenario discovery algorithm, computer-assisted scenario
development is possible (Bryant and Lempert, 2010). Com-
putational scenario discovery extends traditional scenario
design where at first a storyline is developed and afterwards
simulation takes place.

The SD model in this paper is heavily dependent on
COVID-related input, which is often based on estimations
and best guesses from the literature. Therefore, the use of
EMA allows analysing of model outcomes under different
conditions, providing a stronger perspective on the future
mobility impacts. The combination of EMA and our model
is seen as valid as our goal is to observe the impacts on
bandwidths to establish insight into the behaviour over time.
Furthermore, the use of EMA in System Dynamics is often
used and validated (Kwakkel and Pruyt, 2015), therefore
providing a strong analysis method useful for our model.

3. COVID-19 mobility model
We developed a model to observe the impacts of mo-

bility disruptions as a result of the COVID-19 pandemic.
To observe the mobility impacts of COVID, we study the
behaviour of the impacts over time in the near and distant
future and explore the uncertainties causing the impacts.
3.1. Conceptual overview

The structure of our model is based on the elements in
the 4-step model, emphasising the mode choice component.
Figure 2 illustrates the different submodels and components
in the model. The two Key Performance Indicators (KPIs)
we focus on in this paper are modal split and number of
trips. Both originate from the mode choice sub-model and
are considered most useful for the observation of the impacts
of COVID. The KPIs are influenced by input parameters and
uncertainties in each sub-model.

Figure 2: Overview of the system and sub-components

The five modes of transport

Because there are numerous modes of transportation, a
selection of the relevant alternatives is made. We include 5
main modes of transport, being: car, public transport, bike,
walking and tele-activity. Tele-activity is a new addition to
the mode choice and can be seen as the option to not travel for
commuting or educational purposes. Both are referred to as
telecommuting from now on as a collective term. With these
five modes, we can determine the most important changes in
mode attractiveness due to COVID.
Telecommuting

To cope with the adoption of telecommuting as part of
our mobility system, we propose a new method of modelling
working from home. The emphasis on telecommuting results
from the literature where the significance of telecommuting
in our future commute and travel behaviour is mentioned
several times (Ton et al., 2022; Reiffer et al., 2022).

In prior SD models, Haghani, Lee and Byun (2003)
& Malone, Verroen, Korver and Heyma (2001) included
telecommuting by subtracting part of the trips not being
made from the initial trip generation. The possibilities of
including the choice of not making a trip into the mode
choice are studied in this paper, resulting in a preference
to model telecommuting as a novel alternative in the mode
choice. In relation to previous SD mobility models, our
model enhances the dynamic element of telecommuting.
Without considerable changes to the model structure be-
cause the alternative is modelled similar as traditional modes
of transport.

Adding the alternative telecommuting to the modal split
enables the option to explore the attributes influencing the
choice to work on-site or remote. The choice to work from
home depends on numerous variables, most of which were
discovered during the COVID-19 pandemic. In the after-
math of the pandemic, we learn more about the variables
that influence the traveller’s decision (Reiffer et al., 2022).
Therefore, the inclusion of telecommuting as an alternative
in the mode choice causes an enhanced ability to explore the
behaviour of working from home.
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3.2. Choice modelling
To observe the (future) hypothetical mode choice of

travellers, we implemented the use of discrete choice models
in our system dynamics model. The inclusion of the choice
model enables the change in attractiveness over time to be
observed (Train, 2003). The alternative a decision-maker
chooses can be determined with the use of a logit formu-
lation (Ortuzar and Willumsen, 2011). The decision-maker
chooses the alternative that has the highest utility (McFad-
den, 1980), because of the utility maximisation theory we
adapt for our designed choice model. The probability P of
the decision-maker choosing alternative i is calculated with
Equation 1.

Each alternative has a corresponding utility function
which consists of attributes, such as travel cost, travel time
and comfort. The attributes differ per alternative. Where
applicable the utility or attributes are influenced by COVID
variables.

𝑃𝑖 =
𝑒𝑉𝑖

∑𝑛
𝑟=1 𝑒

𝑉𝑟
(1)

Where:

𝑃𝑖 = Probability of choosing mode i;
𝑉𝑖 = Utility of mode i;
𝑉𝑟 = Utilities of all the modes r;
𝑛 = Number of modes in consideration;

3.3. Validation of input data
In order to validate the choice model, we use travel

data from the pre-COVID situation to construct a solid
base year. The base year data is derived from travel data
originating from survey data in the annual study, Onderweg
in Nederland conducted by CBS (2020). The pre-pandemic
base year is used as a starting point for the trip generation.
Subsequently, the designed choice model is calibrated on the
base year input data, resulting in a validated choice model for
the SD model.
3.4. Distinction of trip types

Besides the nationwide impacts of COVID the more
specific impacts, in certain areas, for different trip purposes
and trip lengths, are of interest. The input data consist of
base year trips on a detailed level. The trips are divided
into trip types based on five trip purposes, five area types
and four distance classes shown in Table 1. The trip types
are modelled efficiently with the vectorisation of variables,
essentially creating a copy of a variable and model structure.

Each trip type has separate attribute parameters and
constants in their utility function. Subsequently, determining
the mode attractiveness and the future number of trips for
each combination (n=100) of trip types. This provides us
with insight into the difference between, for example, a
short commuting trip originating in an urban area and a
long commuting trip originating in a nonurban area and the
incentive to substitute that trip with a telecommute trip.

Table 1
Trip categories

Trip purpose Distance class Distance [km] Area type Address density
[Addresses/km^2]

Commuting Short <7.5 km Very highly urban >2500
Educational Middle short 7.5 - 15 km Highly urban 1500 - 2000
Social recreational Middle long 15 - 40 km Moderately urban 1000 - 1500
Shopping & Personal care long >40 km Little urban 500 - 1000
Other motives Non-urban <500

3.5. Experimental setup
The choice to model the input uncertainties under two

sets of ranges results in the exploration of two sets of model
ensemble outcomes. First, the COVID-19 base ensemble is
constructed based on input ranges derived from the literature
and travel behaviour (panel) data in the Netherlands. Second,
due to the high magnitude of uncertainty regarding the input,
the ranges are adapted and an additional ensemble is con-
structed for use in scenario exploration. With the exploration
of both ensembles, we are able to observe the outcomes
that are likely and on the other hand the more extreme/rare
situations. With the results of both outcomes, this paper can
relate to other mobility impact studies.

The SD model is designed with the system dynam-
ics software package of Vensim (version: Vensim® 9.3.0),
which provides a user-friendly graphical modelling interface
(Ventana Systems, 2022). For the analysis of the model
outcomes, and performing a high number of experiments,
the EMA workbench (version: 2.1) is used. The EMA work-
bench is implemented in Python and features an integrated
connector for the models in the Vensim package to be
implemented in the workbench (Kwakkel, 2017).

The model experiments performed varies each of the
input parameters within their range using a Latin Hypercube
sampling (Kwakkel, 2017). This statistical sampling method
generates a near-random sample of the input parameters.
For the COVID-19 base ensemble, 1000 experiments are
simulated, for the scenario exploration and wider ranges
the experiments are increased to 5000, in order to perform
scenario discovery.

4. Results
The attractiveness of modes of transport is expressed in

their mode share over time. Based on the trip-based modal
split, we study their increase or decrease in attractiveness
post-COVID. The prognosis without the interference of
COVID is additionally displayed, to observe the differ-
ences if the COVID pandemic never occurred. The results
discussed in this paper are focussed on the near future,
therefore, showcasing the model outcomes between 2019-
2030. For the impacts over a longer period of time, the reader
is referred to the complete study (Van Tol, 2022).

The initial modal split pre-COVID is shown in Table 2.
The modal split is adjusted for the inclusion of a telecommut-
ing alternative. Based on the studies from Hamersma et al.
(2021) and Jongen, Verstraten and Zimpelman (2021) we
were able to establish validated telecommuting input data.
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Table 2
Modal split 2019

Car 47.01 %
Public transport 5.74 %
Bicycle 28.23 %
Walking 15.88 %
Telecommuting 3.13 %

Figure 3 illustrates the modal split value of public
transport in the near future. It can be established that in
the presented time span the COVID-19 base ensemble
(displayed in blue) is not able to equal the original prognosis
(displayed in orange). Therefore, indicating that the future
attractiveness of public transport appears not to recover by
itself. Nevertheless, in an optimistic scenario, the 2019 pre-
COVID level (5.74%) of attractiveness will be matched. As
we observe a slightly higher density in model outcomes in
the upper part of the ensemble in Figure 3, it is shown that
the chances for recovery with such a gradient are higher.

First of all, one of the reasons is that telecommuting and
PT are competitors, as illustrated in Figure 4. This is not
surprising as commuters are a considerable share of public
transport passengers. The decay of PT is not in full relation
to the increase in telecommuting, indicating other factors
impact the decrease of attractiveness as well. We witness that
the mode share of telecommuting stabilises at various levels,
contrary to the PT mode share, indicating different behaviour
(Figure 3 & Figure 4). Furthermore, the absolute change in
percentage points in the modal split value is different.

Secondly, the valuation of public transport in the years
after COVID is still of considerable essence. Although
telecommuting is responsible for a significant loss in the
future number of public transport passengers, the increased
attractiveness of other alternatives, car and bicycle remain
(Figure 5 & Figure 6). Indicating travellers tend to use the
(re)discovered alternatives to substitute PT. The bicycle is
in the future mainly used as an alternative for short PT trips
and the car is used for longer distances as an alternative for
PT trips.

In order to determine the more in-depth causes of
why public transport recovery proceeds slow, the various
trip purposes were examined in more detail. It was found
that PT travel with social-recreational purposes encounters,
similar to commuter travel, a slow road to recovery. The
attractiveness of social-recreational travel is expected to
recover faster in the near future compared to commuting
trip purposes. However, the original no-COVID trend was
depicted to be higher, eventually showing similar progress of
recovery for both commuting and social-recreational travel.
This shows that, in addition to the lack of travellers who
work from home, public transport also lacks the essential
social-recreational travellers.

Figure 3: Public transport mode share

Figure 4: Telecommuting mode share

Figure 5: Car mode share

5. Conclusion & discussion

Comparison with other research

Our outcomes are in line with research from Francke
and Bakker (2022) regarding the slow recovery. However,
the authors predict a faster road to recovery than our results
suggest. The effect of travellers’ aversion towards the use
of public modes did not improve as quickly as estimated
by Francke and Bakker (2022). The attractiveness of other
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Figure 6: Bicycle mode share

Figure 7: Walking mode share

alternatives, telecommuting, car and bicycle and the effect
of negative attitudes remain influential factors.

The factor of telecommuting inevitable influences the
loss of public transport travellers. This is in line with
Hamersma et al. (2021), who suggested that mostly telecom-
muting is keeping travellers out of PT. In addition to Hamersma
et al. (2021), we extend the results by showing the outcomes
over time. We can conclude that the number of future
travellers substituting their trip with working from home is
slightly less than argued by Hamersma et al. (2021), for the
underlying reason that we study the coherence of effects.
Hence, we assume the shift in attractiveness to other modes
has a minor dampening effect on telecommuting.
Research question

In this paper, we proposed the following research ques-
tion: What are the long-term impacts of COVID-19 on
passenger mobility in the Netherlands as a result of changing
travel behaviour?

It can be concluded that our travel behaviour has changed
as a result of the COVID-19 pandemic. The primary effect
is the absence of travellers in public modes of transportation
due to, first of all, our preference for working more on a

remote basis and, secondly, travellers’ increased preference
to use the car or bicycle in the post-COVID era. This is
substantiated by the remaining negative attitude towards
public modes of transportation.
Unexpected findings

Public transport in the near future struggles to get back
on top. Because we analysed the cohesive impacts, it was
shown that besides the role of telecommuting, the attitude
towards different modes of transport is still of considerable
influence after the pandemic. In association with the neg-
ative PT attitude, the attractiveness of modes other than
PT remains high in the post-COVID era. In contrast to
other research, the role of travellers’ attitudes in the future
is undervalued (Francke and Bakker, 2022) or primarily
focussed on travellers’ attitudes during COVID (Ton et al.,
2021).

Nonetheless, the effects of telecommuting are substantial
for public transport. As shown in the analysis of the results,
there is a strong connection between tele-activities and the
use of public transport. Zooming in on the commuter and, to
a limited extent, educational travel, it is illustrated that public
transport and telecommuting are competitors and seek the
same type of traveller. This has consequences for the future,
as inherently, remote working keeps travellers out of PT.
Therefore, the possible promotion of public transport in the
future must be focused on attracting new travellers.

For telecommuting, it was already shown before the
pandemic (Van der Loop, Willigers and Haaijer, 2019) that
small amounts of telecommuting had a significant effect on
congestion reduction. As a result, there is a high incentive
to keep telecommuting at a certain minimum level. When
telecommuting and PT are stimulated through either policy
or behavioural change, conflict might arise. Potential mea-
sures need to be aligned to prevent opposing interventions. It
is impossible to design a policy for one without considering
the other.
Model considerations

It is found to be beneficial to explore telecommuting as
a new alternative. Since the pandemic, remote working is
embedded in our behaviour and has changed our concepts of
commuting. The choice to avoid travelling has become easier
for commuters and has impacted our mode and travel choice.
With the inclusion of telecommuting in the mode choice, we
could observe the dynamic progress of telecommuting over
the years.

Furthermore, the developed SD model was found to be
appropriate for the application to the case of COVID-19. Our
approach and model were tested and validated by comparing
our outcomes with mobility impacts found in the literature.
Therefore, providing the possibility of applying the model
to mobility disruptions wider than COVID. The objective
of SD is different to traditional transport models, where SD
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models thrive outcomes with a different level of accuracy.
It is, therefore, essential to notice that we do not desire to
pinpoint a value from the presented plots to estimate the
modal split or number of trips at a specific moment in time.
Rather, we desire to observe the behaviour and the course of
change of KPIs.
Future research

Finally, our model and research leave room for improve-
ment and future research. Due to several simplifications in
the current model, the future extensions focus on model
additions to improve the model’s explanatory power. Future
research points primarily in the direction of quantifying
the policy recommendations. The potential adjustment of
travel behaviour with the use of measures or interventions
is touched upon briefly in this paper. It would be beneficial
to implement control measures or policy interventions in
the SD model regarding the stimulation of PT, such as
pricing, increased supply or positive image, to determine the
subsequent effect on attractiveness.
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