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Abstract

Micro robotic airships offer significant advantages in terms of safety, mobility, and extended flight times.
However, their highly restrictive weight constraints pose a major challenge regarding the available com-
putational power to perform the required control tasks. Thus, spiking neural networks (SNNs) are a
promising research direction. By mimicking the biological process for transferring information between
neurons using spikes or impulses, they allow for low power consumption and asynchronous event-
driven processing. In this work, we propose an evolved altitude controller based on a SNN for an
airship which relies solely on the sensory feedback provided by an airborne radar sensor. Starting
from the design of a a lightweight, low-cost, open-source airship, we also present a low-control-effort
SNN architecture, an evolutionary framework for training the network in a simulated environment, and
a control scheme for ameliorating the performance of the system in real-world scenarios. The system’s
performance is evaluated through real-world experiments, demonstrating the advantages of our ap-
proach by comparing it with an artificial neural network (ANN) and a linear controller (PID). The results
show an accurate tracking of the altitude command while ensuring efficient management of the control
effort. The main contributions of this work are presented in the scientific paper, corresponding to Part
| of the document. Besides the research on altitude control based on SNNs and their comparison with
an ANN and a PID, this thesis includes an in-depth review of the relevant literate on the main top-
ics covered, in Part Il. Finally, a detailed explanation of the methodologies used, the conclusions and
recommendations for future work are proposed in Part Ill.
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Introduction to the research

Even though the golden era of giant cargo airships has faded, the advantages offered by lighter-than-
air crafts prevail. Their extended flight times, excellent ease of assembly, low acoustic footprint, low
power consumption, and, consequently, reduced costs also pose complementary advantages to those
that rotorcrafts have to offer [102]. This is why blimps are, slowly but surely, attracting increasing
interest in the realm of unmanned aerial vehicles.

Robotic airships present endless possibilities in terms of their design, shape, and materials. For
example, a three-propeller, low-cost platform equipped with a camera and a compact gondola built
around the electronic components is presented in [66]. The authors also study the lift capabilities of
different envelope materials over time, being Microfoil the one which provides the best results. An alter-
native design is proposed in [49], where a simpler gondola together with a novel actuation mechanism
based solely on two propellers mounted on a rotating shaft, oriented using a servomotor, is introduced.
Other examples of higher complexity include: a blimp made or four partial envelopes and four pro-
pellers [171], a configuration consisting on three light-weight servomotors and six propellers [121], or
an omnidirectional spherical airship with four actuation units and a high-resolution camera [29].

Although these design alternatives have proven successful for their specific applications, they lack
the versatility that can be achieved by leaving room for incorporating additional sensors and/or ac-
tuators. Besides, only [66] is open-source and lightweight enough to be mounted on commercially
available Microfoil blimps. In this paper, we develop a versatile, 3D-printable, and open-source blimp
platform.

The airship’s inherent nonlinear dynamics and slow response time make it challenging to control.
Moreover, its restrictive weight constraints inevitably lead to the need for controllers with low compu-
tational power requirements. In this regard, Spiking neural networks (SNNs) is a promising research
direction, as they enable computing with highly parallel architectures made of simple integrate-and-
fire neurons interconnected by weighted synapses. These architectures have demonstrated extremely
low-power performance and are ideal for robotics applications [38][150]. Thus, on the one hand, they
can be used for complex control tasks, since numerical simulations support their universal function
approximation capabilities [55]. On the other hand, they provide low-power and energy efficiency traits
[101]. Implementations of spiking flight neurocontrollers include a SNN for robust control of a simu-
lated quadrotor in challenging wind conditions [78]. Although these SNN-based controllers for micro
air vehicles (MAVs) have excelled in simulated environments, their main limitation is that they have not
been evaluated in real-world experiments.

The scope of works that have implemented SNN controllers for MAVs in real scenarios is much more
limited. The first work that integrates a SNN in the closed-loop control of a real-world flying robot is very
recent [69]. There, the authors present a SNN for controlling the landing of a quadrotor by exploiting the
optical flow divergence from a downward-looking camera. To address the learning problem of SNNs
[167], they adopt an evolutionary training strategy. In [46], this SNN-based control system is further
enhanced by using hardware specifically designed for neuromorphic applications.

The main contributions of this work are then twofold. First, we propose the design of an open-source,
low-cost, lightweight blimp platform, which can be 3D printed, and allows for the inclusion of custom
sensors and actuators. Second, we present an evolved altitude controller for our blimp platform based
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2 1. Introduction to the research

on a SNN, which relies solely on the sensory feedback provided by an airborne radar. This pushes
forward the state-of-the-art on SNN controllers for real-world MAVs, taking as a basis the framework
proposed in [69], by successfully demonstrating the performance of our radar-based neuromorphic
controller on-board the blimp in real-world experiments, quantitatively comparing the results with those
of an ANN and a proportional-integral-derivative (PID) controller.

1.1. Research question(s)
The central research question of this thesis is:

“To what extent does an altitude controller strategy for a blimp based on learning
inspired spiking neural networks (SNNs) outperform a classical PID and an artificial
neural network (ANN) controller, using only a short-range FMCW radar sensor?”

The previous research question can be divided into smaller subquestions. Each of these lower level
questions provides an answer to part of the higher level one. All of them have been tackled throughout
the project: either in the scientific paper (Part ), literature study (Part II) and/or methodologies report
(Part 111).

+ What advantages and disadvantages does a controller based on learning inspired SNNs offer in
contrast to a PID/ANN controller?

— How much does the accuracy of a SNN based altitude controller for a blimp increase or
decrease with respect to a PID/ANN controller?

— How high is the control effort of the SNN controller strategy in contrast to the PID/ANN
alternative?

— What are the fundamental theoretical differences between an ANN and a SNN?

» What advantages does the use of a short-range FMCW radar sensor offer in comparison to vision-
based sensors when used as inputs for the SNN controller?

— How can the signals from the radar, as a frame-based sensor, be converted into spikes to
be fed to the SNN in an efficient manner?

o What type of data is produced by the sensor?
o What are the most efficient algorithms to process these data?
o Which activation functions should be chosen for each layer of the network and why?
— Which type of decoding mechanisms exist to convert the spikes back into a real number
(corresponding to the motor command for the blimp)?

* What advantages does an evolutionary training strategy for the ANN/SNN offer in contrast to
other methods?

— What is the theory behind the existing training methods for neural networks and how to they
compare?

— What are the learning challenges inherent to SNN learning and how to tackle them?

— What alternatives exist to model the airship for the ANN/SNN training in simulation and which
one fits best the purpose of this work?

* How much, qualitatively and quantitatively, does the reality gap impact the results and how to
address it?

— What state-of-the-art techniques have been used in the literature to minimize the effect of
the reality gap?

— Which techniques can be applied for the same purpose in this work and why?

* What improvements and future developments can be recommended?
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1.2. Research objective
The main objective of this thesis is:

”To develop an evolved neuromorphic altitude controller for a micro airship,

by proposing an efficient platform design together with a suitable control algorithm
based on learning inspired spiking neural networks,

using only on-board processing, a short-range FMCW radar sensor,

and quantitatively contrasting it with other classical control strategies.”

In order to achieve this objective, several sub-goals can be formulated such that, the completion of
each of these smaller objectives, will ultimately lead to the success of the final project. Concretely, in
this case, three sub-goals are proposed:

The first sub-goal is to propose an efficient indoor blimp configuration by choosing appropriate
lightweight, low-cost and computationally appropriate electronic components; combining them with an
open-source, 3D-printable gondola design. The next sub-objective would be to develop an altitude
control algorithm for the blimp by evolving the SNN controller in a simulated environment. Finally, the
last sub-goal would be to evolve a classical ANN and PID controller, and quantitatively compare them
with the previously developed SNN in a real-world environment.

1.3. Structure of this work

The main contributions of this master’s thesis are presented in the scientific paper in Part |, which
can be read as a standalone document. This article primarily consists of, first, an introduction to the
main concepts, relevant state-of-the-art, and main contributions; second, a description of the followed
methodology, comprising the platform design, the chosen sensor, the proposed SNN and ANN ar-
chitectures, neuron model, and evolutionary learning environment; third, a discussion of the obtained
results; and finally, the corresponding concluding remarks based on these results. The remainder of
this thesis provides support material for this paper. Therefore, readers unfamiliar with the topics of
micro airships design and modelling, signal processing of radars, neural network evolution, and neu-
romorphic computing are encouraged to read this documentation beforehand.

Part Il presents an in-depth review of the relevant literature on the topics of blimp design and mod-
elling, remote sensing in UAVs with radars, blimp control strategies, neuromorphic computing and its
learning strategies. Concretely, Chapter 2 introduces some of the state-of-the-art blimp design strate-
gies, together with the airship’s dynamic model formulation and the existing airship simulations on the
Gazebo framework. Next, Chapter 3 introduces the remote sensing strategies in UAVs, with special
focus on the ones that are radar-based. It then delineates the main signal processing algorithm used
to extract the range, velocity and radar information from the radar. Then, the main control strategies
that have been implemented on blimps are explained in Chapter 4. Chapter 5 reviews the the field of
neuromorphic computing by describing the main aspects of spiking and artificial neural networks, and
contrasting them.

Finally, Part lll documents an in-depth review of the followed methodology and some of the most
relevant aspects that have been taken into account for the development of the final controllers proposed
in this thesis. In Chapter 6 an introduction to the research methodology is presented. Then, a detailed
description of the design process and the electronics involving the 3D gondola design, two assembly
schematics, the selected electronic components and their integration, and the radar’s signal processing
is presented in Chapter 7. The simulation framework utilized to evolve the controllers and the airship
model used for the same purpose are explained in Chapter 8. Finally, Chapter 10 closes with the
conclusions and some recommendations for future research.
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Evolved neuromorphic radar-based altitude controller
for an autonomous open-source blimp

Marina Gonzélez-Alvarez!, Julien Dupeyrouxl, Federico CorradiZ, and Guido C.H.E. de Croon!

Abstract— Robotic airships offer significant advantages in
terms of safety, mobility, and extended flight times. However,
their highly restrictive weight constraints pose a major chal-
lenge regarding the available computational power to perform
the required control tasks. Spiking neural networks (SNNs) are
a promising research direction for addressing this problem. By
mimicking the biological process for transferring information
between neurons using spikes or impulses, they allow for low
power consumption and asynchronous event-driven processing.
In this paper, we propose an evolved altitude controller based
on a SNN for a robotic airship which relies solely on the
sensory feedback provided by an airborne radar. Starting from
the design of a lightweight, low-cost, open-source airship, we
also present a SNN-based controller architecture, an evolu-
tionary framework for training the network in a simulated
environment, and a control scheme for ameliorating the gap
with reality. The system’s performance is evaluated through
real-world experiments, demonstrating the advantages of our
approach by comparing it with an artificial neural network and
a linear controller. The results show an accurate tracking of
the altitude command with an efficient control effort.

I. INTRODUCTION

The biological intelligence of living beings has long at-
tracted us to explore their innate ability to learn complex
tasks. For instance, despite their limitations in terms of
cognitive capabilities and energy resources, flying insects
can outperform some of the most advanced aerial robots
nowadays on navigating autonomously through complex
environments with fast and agile maneuvers [1]. In recent
years, this inspiration has led to the development of con-
trollers for unmanned aerial vehicles (UAVs) that mimic the
structural and functional principles of the brain [2]. Neu-
romorphic control systems, as opposed to classical model-
based approaches, can adapt to unknown scenarios (e.g.
unmodelled dynamics or disturbances) due to their learning
nature [3,4]. Artificial neural networks (ANNs) [5] have
proven successful for controlling different flying robots such
as a hexacopter [6], a helicopter [7], or a quadrotor [8].
However, when it comes to light-weight micro air vehicles
(MAV5s), conventional ANNs present several disadvantages
regarding energy consumption and response latency [9].

I Micro Air Vehicle Laboratory, Faculty of Aerospace Engineer-
ing, Delft University of Technology, Delft, The Netherlands. Contact:
j.Jj.g.dupeyroux@tudelft.nl

2 Ultra Low Power Systems for IoT, Stichting IMEC Nederland, Eind-
hoven, The Netherlands.

This work has received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No. 826610. The JU receives support from
the European Union’s Horizon 2020 research and innovation program and
Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands.
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Fig. 1. Proposed autonomous altitude control system for an indoor airship.
Evolution of the blimp altitude for two different setpoints (k, and h;) for
several timestamps (fg,...,%4).

Spiking neural networks (SNNs), are a promising research
direction in this regard. By processing information using just
a small population of spikes with a precise relative timing,
they allow for a more efficient learning and control [10, 11].

Among the main advantages of SNNs for aerial robotic
applications, we can highlight that they enable computing
with highly parallel architectures and provide low-power and
energy efficiency traits [12, 13]. Additionally, they are uni-
versal value function approximators [14], which theoretically
makes them suitable for addressing complex control tasks.
However, they have not yet become a common method for
designing controllers. This is mainly due to the discrete
spiking nature of SNNs, which prevents the use of gradient-
based optimization algorithms, such as the widely used back-
propagation strategy for conventional ANNSs. This makes the
training process challenging. To tackle these issues, in this
paper we present a SNN-based altitude controller for a low-
cost micro airship with an open-source design, equipped with
an airborne radar (Figure 1). The choice of the problem of
tracking an altitude command is motivated by its relevance in
key MAV applications such as autonomous package delivery
[15,16], or landing [17,18], among others. On the other
hand, the selection of a lighter-than-air craft as a test platform
instead of a rotorcraft, is driven by the complementary advan-
tages it poses, such as extended flight times, excellent ease
of assembly, low acoustic footprint, low power consumption,
and a simpler design [19]. By incorporating an airborne
radar, the sensory feedback required for the control loop is
robust to variant illumination and visibility conditions, while
keeping the payload and computational requirements within
reasonable limits.



The main contributions of this paper are then twofold.
First, we present an evolved altitude controller for a micro
air vehicle based on a SNN, which relies solely on the
sensory feedback provided by an airborne radar. We suc-
cessfully demonstrate the performance of the radar-based
neurocontroller onboard the aerial platform in real-world
experiments, quantitatively comparing the results with those
of an ANN and a proportional-integral-derivative (PID) con-
trollers. Second, we propose the design of an open-source,
low-cost, lightweight blimp platform with a 3D printable
gondola, that allows for the inclusion of custom sensors and
actuators. This facilitates its replication and customization
for different applications. The remainder of the paper is
organized as follows: Section II provides an overview of
the state-of-the-art in micro-airship design and spiking flight
neurocontrollers. Afterwards, in Section III, we present the
proposed MAYV design, introduce the altitude control scheme
based on the airborne radar, the structure of the SNN
controller, the evolutionary strategy for training the network,
and a blimp computational model to perform the training in a
simulated environment. Then, in Section IV, we describe the
real-world experimental setup as well as discuss the obtained
results. Finally, Section V concludes the work and delineates
future research directions.

II. RELATED WORK
A. Micro-airship Design

Even though the golden era of giant cargo airships has
faded, the advantages offered by lighter-than-air crafts pre-
vail. Blimps are, slowly but surely, attracting increasing
interest in the realm of unmanned aerial vehicles [20,21].
They present endless possibilities in terms of their design.
For example in [22], a three-propeller, low-cost platform is
presented that is equipped with a camera and a compact,
but closed-configuration gondola. An alternative design is
proposed in [23], where the authors introduce a novel ac-
tuation mechanism based on two propellers mounted on a
rotating shaft, which is oriented using a servomotor. Other
examples of higher complexity include [24-26]. Although
these alternatives have proven successful for their specific
applications, they lack the versatility that can be achieved
by leaving room for incorporating additional sensors and/or
actuators. Besides, only [22] is open-source and lightweight
enough to be mounted on commercially available blimp
balloons. For the purpose of clear comparison, the main
contributions of the state-of-the-art and our approach are
summarized in Table 1.

TABLE I
COMPARISON BETWEEN THE DIFFERENT BLIMP DESIGNS

Property [22] [23] [24] [25] [26] Ours
Easily customizable gondola - v - - - v
Low-cost design 4 v v v - 4
Open-source availability v - - - - v
Lightweight Microfoil blimp v v
Number of propellers 3 2 4 6 4 2
Number of servomotors - 1 3 - 1

B. Spiking Neural Network-based MAV Control

The inherent nonlinear dynamics of most MAVs makes
them challenging to control. Moreover, their restrictive
weight constraints inevitably limit the computational power
of the controller. SNNs enable computing with highly par-
allel architectures made of simple integrate-and-fire neurons
interconnected by weighted synapses.

Implementations of spiking flight neurocontrollers include
[27], where the authors propose a SNN for robust control
of a simulated quadrotor in challenging wind conditions.
They achieve a better performance in waypoint holding
experiments compared with a hand-tuned PID and a multi-
layer perceptron network. Another example is presented in
[28], where a SNN controller that adapts online to control
the position and orientation of a flapping drone is proposed.
SNNs have also been applied to obstacle avoidance tasks, as
direct flight [14] or decision-making [29] controllers. In both
cases they use reward-modulated learning rules for training
the SNN. Although these MAV controllers have excelled in
simulated environments, their main limitation is that they
have not been evaluated in real-world experiments.

The scope of works that have implemented SNN con-
trollers for MAVs in real scenarios is much more limited.
The first work that integrates a SNN in the closed-loop
control of a real-world flying robot is very recent [30]. There,
the authors present a SNN for controlling the landing of a
quadrotor by exploiting the optical flow divergence from a
downward-looking camera and the readings of an inertial
measurement unit (IMU). To address the learning problem
of SNNs [31], they adopt an evolutionary training strategy.
In [32], this controller is enhanced by using hardware specif-
ically designed for neuromorphic applications. Although not
tested in free flight experiments, the potential advantages
of SNN controllers implemented in these devices are also
demonstrated in [33].

Our work aims to extend the framework proposed in
[30], by (1) controlling the altitude instead of landing; (2)
considering an open-source micro blimp, which has less
control authority and harder to model dynamics than a
quadrotor; and (3) exploiting solely the range measurements
provided by a radar, reducing the number of required sensors
on-board (i.e., no IMU).

ITII. METHODOLOGY
A. Open-source Micro-airship

The proposed design for the micro autonomous airship is
illustrated in Figure 2. The reader interested in replicating the
platform can find further details, links to re-sellers, prices,
and parts for 3D printing at: https://github.com/
tudelft/blimp_snn. The airship’s gondola can be 3D
printed and assembled in a modular fashion, with a total
frame weight of just 9g. Due to its open configuration,
the components mounted on the gondola can be easily
interchanged, leaving room for versatility on the selection
of sensors and actuators. In addition, we include a rotary
shaft with a case for accommodating the propellers on both



Fig. 2. Scheme of the proposed airship design. (A) Raspberry Pi W Zero;
(B) 24 GHz Infineon Radar Position2Go; (C) Sub-micro Servo SG51R; (D)
8520 Coreless Motor; (E) PowerBoost 500 Basic; (F) 550mA 3.8V Li-Po
Battery.

ends for controlling the altitude. Finally, we incorporate
four hitches on top of the gondola, where we tape Velcro
strips for attaching the envelope. Regarding the electronic
components, we use a Raspberry Pi W Zero as the central
communication and control unit, running the Raspbian Lite
operating system. The robot’s steering is achieved through
the micro servomotor mounted on the gondola and the two
core-less direct current (DC) motors attached at each end of
the shaft. Specifically, the servo is responsible for the rotation
of the shaft, up to 180°, and the DC motors allow for an
independent control of the thrust on each side. Additional
peripheral components include a step-up voltage regulator, a
500 mAh Li-Po battery and a motor driver. Finally, a fast
chirp frequency-modulated continuous wave (FMCW) radar
module from Infineon with a resolution of +20 cm is used as
a ranging sensor for the closed-loop control. Concerning the
airship’s envelope, the material chosen is Microfoil due to its
excellent gas retention capabilities [22]. We select a model
that provides the largest achievable payload among the com-
mercially available miniature blimps (150g) while keeping a
relatively low price. For our application, we use helium as
the lifting gas. Considering all the aforementioned elements,
the proposed platform weights a total of 147g. To integrate
the different components and perform the computations on-
board we adopt the Robot Operating System (ROS) [34]
framework. In addition, a tele-operation package to manually
control the airship from a ground computer keyboard via
a secure shell (SSH) connection is also provided in the
repository included at the beginning of this section.

B. Altitude Controllers

In order to control the autonomous airship’s altitude,
the commands are provided in terms of motor voltages,
U € [—Umax,Umax] [V], With upge = 3.3 [V]. The larger the
absolute value of u, the more thrust the propellers provide,
and therefore, the greater the acceleration of the blimp will
be. The sign of the voltage does not represent the polarity
of the electric signal, but the direction in which the airship
is moving. Thus, when u > 0, the robot moves upwards and,
when u < 0, the robot moves downwards, with the shaft
rotated 180°.
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Fig. 3. Scheme of the SNN controller architecture. The (evolved) network
parameters are highlighted in violet, being w the synaptic weights, 6
the spiking threshold, o,/ the scaling constant for the increase of the
voltage/trace by a single spike, and 7, /; the decay for the voltage/trace.

To determine the required control actions for tracking an
arbitrary reference altitude, h,,s, we process the readings from
the Infineon Position2Go airborne radar to get an estimate of
the current height of the blimp, A, [35]. Specifically, the
range-Doppler algorithm [36] is used for the processing.

Afterward, a median filter and a moving average filter
are used to decrease the signal noise and remove possi-
ble outliers. Then, to effectively track an arbitrary altitude
command, we design a controller that provides a mapping
between the altitude error, /,f — heyrr, and the motor voltages,
u, such that the former is minimized. We consider three
distinct approaches for benchmarking purposes: a linear PID,
an artificial neural network, and a spiking neural network.

1) Proportional-integral derivative controller: A conven-
tional PID is one of the most simple, yet widespread methods
for addressing control problems. In discrete form, the map-
ping between the error signal eg = hyef(k) — heyrr(k) and the
motor command u; is given by [37]:

K
Mk=Kp€k+7d(ek—ek—1)+KiT(€k+€k—1) )]

where K,, K; and K; refer to the proportional, integral
and derivative gains, respectively, and T to the sampling
period. These are tuned empirically using the proposed MAV
platform until we achieve the desired behavior.

2) Artificial neural network controller: For the ANN case,
the tracking error Ao — heyrr is directly fed into the network
in the form of a continuous signal. The proposed neuron
architecture, from the input to the output layer, follows a
1 —3—2—1 scheme. The input and the two hidden layers
operate with a tanh() activation function. At the output layer,
a linear neuron provides the value of the motor command u,
clamped to the interval *umax [V].

3) Spiking neural network controller: The proposed SNN
architecture is illustrated in Figure 3. The network consists
of three fully connected layers of sizes 10, 5 and 1 neuron,
from the input to the output. The input layer acts as a position
placeholder that encodes the altitude error signal into spikes.
More specifically, the input values of Aor— heyyr are divided
into 10 intervals, with each of them assigned to a different



neuron. The range of the first and last intervals corresponds
to |—oo, —0.4[ and ]0.4, o[, respectively, while the remainder
8 are uniformly distributed between [—0.4, 0.4]. Each time
the altitude error falls within one of these “gaps”, the
corresponding neuron fires a single spike. The hidden layer
consists of five leaky integrate-and-fire (LIF) neurons, where
the membrane potential of the i-th neuron, v;(¢), is governed
by the following equation:

v,-(t):TV,»v,'(t—At)—i—Otwui(t) i=1,...,5 2)

referring 7,, € [0, 1] to the decay factor per time-step At, o,
to a scaling constant, and u;(¢) to the synaptic input current:

10
wi(t) =Y wijsi (). 3)
j=1

that is, multiplying the incoming spikes from the j-th input
neuron s;(¢), by the synaptic weights w;;. Whenever the
membrane potential v;(z), reaches a certain threshold 6;, a
postsynaptic spike is triggered and v;(¢) resets back to 0.
The output layer decodes the spikes back into a real value.
It consists of a single non-spiking neuron with a scaled tanh()
activation function. The neuron conducts a weighted sum of
the so-called spike traces, X;(z), which is computed as:

Xi(t) = 7, - Xi(t — At) + 04;5(2), “4)

being the definition of 7; and @y, analogous to 7,, and o,.
The resulting value is scaled within the control limits, £umax.
Following this, the motor command, u, is given by:

5
u(t) = umax - tanh (Z w,~X,~(t)> 5)

i=1
C. Evolutionary Framework

For training the neural network controllers we adopt an
evolutionary strategy. Each evolution begins with a ran-
domly initialized population of N individuals. As in [30],
a mutation-only procedure is then followed. The offspring is
obtained by performing a randomized tournament selection
of M individuals i.e. randomly selecting M aspirants from the
population and keeping the one with the best fitness. This is
repeated N times, so that the population size is invariant. The
n-th individual is mutated with a probability of p\"), = 0.4,
and its m-th parameter with p%), =0.6. These mutations take
place according to uniform probability distributions % {, },
whose range is shown in Table II and III for the SNN and
ANN, respectively. For the latter, the open parameters are
the biases, b;, and analogously to SNNs, the weights, w;;.

TABLE I
SNN PARAMETERS MUTATED DURING EVOLUTION

Parameter Domain Mutation
Wij [-5,...,5] % {-2.5,25}
0; 0,...,1]  {-0.5,0.5}
(o o,...,2] « {-1.0,1.0}
Ty, /iy 0,...,1] % {-0.5,0.5}

TABLE III
ANN PARAMETERS MUTATED DURING EVOLUTION

Parameter Domain Mutation
wij [-5,....5] % {-25.25}
bi [-5....,5]  #{-2525}

The mutated offspring is then evaluated in a model-
based simulation environment (see Section III-D), where
a source of random Gaussian noise is added to the radar
signal. Since this randomization stimulates the persistence
of controllers that are independent of such disturbances, it
helps minimizing the reality gap [38]. During the evaluation,
a set of 10 different reference altitudes h,.r € [0, 3] is provided
along a total simulated duration of 7 = 15 seconds each. The
fitness of each individual is then quantified as the root mean
squared altitude error (RMSAE):

T
RMSAE = \/ ! Y (hreg(k) = heun(K)) ©)
T k=0

During the evolution process, a hall of fame which holds
the 5 best performing individuals across all generations,
is maintained. This prevents discarding those who have
achieved a good performance. After Ng., generations, the
individuals are also reevaluated on five more random sets
of altitudes to increase the robustness. The best-performing
ones are selected for further real-world experiments.

D. Model-based Simulation Environment

The altitude controllers evolve in a simulated environment
since it would be infeasible to perform all the required
evaluations in the real world. For that, we develop a dynam-
ical model of the blimp. Essentially, the idea is to obtain
a mapping between the motor commands provided by the
controller and the evolution of the blimp’s altitude over time.
We assume that the acceleration at the k-th time step hk, is
proportional to the voltage applied to the motors, u, i.e.

he = ayug—y + arug—» (7N

where a; is the proportionality constant for the motor com-
mand at time instant k —i. However, since the acceleration
cannot be directly measured with the radar sensor, we can
instead express this relation in terms of the measured altitude,
h by taking Euler’s discretization of the derivative

hye =2y + h o = ajug 1 + a2 (3

Applying the Z-transform, we obtain the following transfer
function, which maps the commands i, to the altitude /;, and
allows us to easily simulate the blimp’s dynamic behavior

a7 +axz?

==y
1—27 147 2F
To determine the unknown parameters @;, we collected a

dataset by tele-operating the blimp and measuring its altitude
over time. After subtracting the mean, we infer the model

I €))
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Fig. 4. System overview. After processing the feedback provided by the radar sensor, an estimate of the range is sent to the Raspberry Pi Zero W control
unit. Only data recording and real-time plotting operations are conducted on the ground computer, which communicates with the Pi via an SSH connection.
The OptiTrack is used during the post-processing stage just for validation purposes.
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Fig. 5. Validation of the blimp model. Bottom: Motor commands. Top:
The ground truth evolution of the altitude, /.4, compared with the evolution
predicted by the model, 4,4, The error is represented by the blue area.

parameters by minimizing the normalized root mean squared
altitude error (NRMSAE):

NRMSAE = (10)

which can be interpreted as a measure of how well the
expected response h; matches the observed data /.

IV. RESULTS

A. Experimental Setup

1) Simulation: To train the neural controllers, we evolved
five randomly initialized populations of 100 individuals
through 300 generations, following the procedure described
in Section III-C. The implementation of the evolutionary
optimization is based on the Distributed Evolutionary Al-
gorithms in Python (DEAP) [39] framework, while the
simulation of the networks is performed by means of the
PySNN library [40].

2) Real-World: An overview of the setup is shown in
Figure 4. The on-board control unit is a 1GHz single-core
processor Raspberry Pi Zero W with 512MB RAM. The
Infineon Position2Go radar provides altitude measurements.
The control loop runs at a rate of 5 Hz.

Fig. 6. Proposed control scheme for closing the reality gap of the neural
network-based controllers trained in simulation.

B. Blimp Model

Following the procedure explained in Section III-D, we
infer the parameters of a blimp model of the form (9), based
on experimental data gathered using the real hardware. The
resulting model is given by:

—0.969z7" +1.019z2

Umotor (11)
1—-1.9927140.99z2
where we have also considered the denominator’s parameters
as open, yielding almost identical values to the theoretical
ones. In Figure 5 we show a comparison between the
evolution of the altitude predicted by the model and the
ground truth when applying identical motor commands. We
can see that we are able to reproduce the blimp’s behavior
using the proposed data-driven model, with a RMSAE of
0.27m over the 300 seconds run.

1073.

hmodel =

C. Controller Evaluation

We evaluate the performance of three different altitude
controllers based on a linear PID, an ANN, and a SNN. The
tracking precision is tested on a sequence of five different
waypoints hy = {3,2,1,2.5,1.5}m, maintained during 60s.
Additionally, due to the existing mismatch between the linear
simulated model and the real robot, directly taking the output
of the evolved networks as the rotor commands would lead to
deficient performance. To reduce the reality gap, we propose
the control scheme shown in Figure 6. Essentially, we tune
a parallel PD controller in the real-world setup to account
for the contribution of disturbances and neglected dynamics.
The chosen gains are small so that the PD addition is kept
at a maximum of 16% with respect to the magnitude of the
motor command.
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Fig. 7. Experimental evaluation of the considered controllers. For all three
sub-figures, at the bottom we have the motor commands, and on top, the
evolution of the blimp’s altitude /., compared with the reference /. (a)
PID: u refers to the motor command, and i,y is obtained after smoothing
it with a moving average. (b) ANN: usny stands for the output of the
evolved controller, upp to the contribution of the PD parallel controller, and
Uroral = UANN +Upp. (¢) SNN: Analogous to the ANN controller.

1) PID controller: The experimental results are depicted
in Figure 7(a), using the gains K,,, K; and K indicated in Ta-
ble IV. We can see that we can track the altitude commands
effectively. Quantitatively, we obtain a RMSAE of 0.29m,
which indicates a satisfactory performance, considering that
the uncertainty of the radar sensor is of +0.2m.

2) ANN controller: The obtained results are shown in
Figure 7(b), after reducing the reality gap with the PD gains
specified in Table IV. We can see that the blimp effectively
converges to the altitude set-point but presents an oscillatory
behavior. This is mainly because of two reasons: the minor
contribution of the diminished discrepancies between the
model and the vehicle’s inherent dynamics; and the slow
responsiveness of the system, especially when the motor
commands are not too abrupt, as it is the case. However,
it can be noted that the trajectory is smoother than with a
PID. The RMSAE now corresponds to 0.27m.

3) SNN controller: The experimental results for this case
are displayed in Figure 7(c), using the PD gains from Table

TABLE IV
GAINS COMPARISON BETWEEN THE DIFFERENT CONTROLLERS

Strate;
_ & | PID ANN SNN
Gain
K, 6.0 1.3 1.4
Ki 04 - ;
Ky 0.9 0.4 0.3
< 100 & 100
2 84.7 84.1 -1
3 80 5 8o
= 5 -
S 60 5 60 6.0 =% upp
S 5 89 | mm % umw
2 40 o 404 % uswy
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Fig. 8. Comparison between the PID, ANN and SNN controllers. Left:
Motor command contribution of the neurocontrollers against the parallel
PD. Right: Relative control effort, computed according to Equation (12).

IV. We can observe that the behavior and performance are
similar to the previous case, but with faster oscillations,
due to the output’s binary nature caused by the presence
or absence of the spike. The RMSAE is also of 0.27m.

4) Comparison: Figure 8 shows a comparison between
the control commands provided by each controller. On the
left, we observe that the contribution of the parallel PD is
similar for both neuromorphic controllers, remaining below
16%. On the right, we perform the analysis in terms of the
magnitude of the control effort, relative to that of the PID,

Yi |uannysun (k)|
Y lupip (k)|

which gives an estimate of how energy efficient the con-
trollers are. We can see that, even though the three control
strategies present a similar RMSAE, the neurocontrollers,
and especially our SNN design, exhibit less control effort,
which saves energy.

JoUANN/SNN = -100% (12)

V. CONCLUSION

Despite the recent advancements, it is still challenging for
micro air vehicles (MAVs) to carry on-board the complex
controllers required to fly autonomously. In this paper, we
push the state-of-the-art in MAV control by presenting a
novel altitude controller based on a spiking neural network
(SNN). Our SNN architecture is evolved within a model-
based simulation. The results obtained in real-world exper-
iments successfully demonstrate the system’s performance.
By comparing it with a standard PID and an artificial neural
network, we corroborate the advantages offered by SNNs in
terms of adaptability and low control effort. Although there
is still room for improvement in terms of performance and
network complexity, future research will involve the use of
specific neuromorphic hardware to better reflect the promises
of neuromorphic computing in MAV control.
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Blimp design and modelling overview

Even though the golden era of giant cargo airships has faded, the advantages offered by lighter-than-
air (LTA) crafts prevail. Their high mobility and less restrictive path planning constraints make them a
better alternative than ground robots in terms of indoor navigation and exploration. Furthermore, their
great autonomy, ease of assembly, low acoustic footprint, low power consumption and, consequently,
general low costs, also pose complementary advantages to those that rotorcraft have to offer, allowing
them to compete face-to-face with the latter in terms of small UAVs navigation.

In order to continue with the successive chapters, it is first necessary to build a clear understanding
of the existing platforms, developed in recent years, and their mechanical properties and design. This
review can be found in Section 7. Of course, this analysis would be empty without the proper mathe-
matical formulation supporting the choice for a certain geometric configuration and delineating the way
airships move in our surroundings. Therefore, this is presented in Section 2.2.

2.1. Autonomous blimp design strategies

Table 2.1 features an overview of the different types of autonomous airship platforms available in the
literature that are most interesting for this study based on their size, number of actuators and geomet-
rical configuration. First, a small comment will be made on the most relevant features of each of the
non-highlighted proposals. Second, the two configurations highlighted in bold will be analysed in more
detail and compared, because of their compelling particular properties and suitability for the present
work.

Contributors | # motors
[49], [135] 2DC + 1 servo

[66], [3] 3DC
[29], [171] 4DC
[121] 6 servo

Table 2.1: An overview of the various types of autonomous blimp designs in the literature

On the other hand, the design of a long oval-shaped outdoor airship with a rotational stereo camera
and laser range-finder aimed at gathering information after large-scale disasters to facilitate rescue
missions is proposed in [135]. In [171], a new body configuration consisting on four partial envelopes
centering on a gondola and four propellers is presented. A novel scheme consisting of three pairs
of light-weight servomotors located on each of the x-y-z axis, so that each pair can control both the
translation in the corresponding direction and also the pitch, yaw and roll rotations is suggested in
[121]. Air Shark, in [1], is a fish-shaped blimp in which the center of gravity can be displaced forward
or backward to control the pitch and the tail movement makes the airship move through the air. Figure
2.1 graphically shows the distinct examples presented up to this point.
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(a)[3] (b) [29]

GPS antenna
\

IMU and computer unit
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Z
(d) [138] (e)[171] M1

Figure 2.1: Visual representation of several blimp model examples in Table 2.1.

As mentioned at the beginning of this section, special focus will be put on the works by Ul Ferdous
[49] and Gorjup [66], which correspond to the highlighted publications in Table 2.1:

1. First, the design of a three-propeller low-cost and open-source indoor airship equipped with a
camera for education and research (see Figure 2.2a) is presented in [66]. All a list with each of
the utilized electronic components and their vendors, the developed ROS interface to control the
speed of the motors and the gondola computational designs in SolidWorks (see Figure 2.2b) are
accessible online’ to everyone to be directly 3D printed. Moreover, a study analysing the helium
permeability and mechanical properties of several envelopes material was conducted. Finally, two
different gondola positions were considered in two proof-of-concept flight stability experiments. It
is worth to highlight the comprehensiveness and accessibility inherent to this proposal.

(a) General configuration. (b) Assembly concept design.

Figure 2.2: Indoor airship model as proposed in [66].

2. Second, Ul Ferdous et al. [49] introduce a novel actuation mechanism based on only one servo-
motor and two DC motors to increase the blimp’s operating flight time by reducing the weight of
its components and choosing a simpler, more light-weight gondola design. The notable weight

"http://www.newdexterity.org/openairship
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restrictions that small indoor airships pose, together with the promising results achieved by this
arrangement make it a very appealing option that may serve as a basis for the current work. Fig-
ure 2.3 exhibits this platform’s assembly configuration. The shaft is able to rotate from 0° up to
180° by means of two 3D printed gears connected to the servomotor, also allowing the blimp to
perform complex maneuvres.

Figure 2.3: Assembly concept in [49].

2.2. Blimp dynamic model formulation
To be able to perform simulations of the blimp, optimize its design, test different control strategies and,
ultimately, study its behavior, a proper mathematical model is needed. Therefore, in this section, the
underlying mathematical formulation of the dynamic model of blimp is presented, based on [39] and
[178]. A very detailed literature review on the matter can also be found in [102].

The dynamic model of the blimp describes its full nonlinear six degrees of freedom (DoFs) motion.
Therefore, it relates the moments and forces acting on the platform as well as its acceleration, in six
DoFs. Before diving into the actual equations, a few assumptions have to be made [39]:

1. Aerolastic effects can be ignored, as the platform is assumed to form a rigid body.

2. The center of volume and gravity, C, and Cg, both lie in the plane of symmetry, since the blimp is
assumed to be symmetric about the v, and v, plane.

3. The fact that the gondola, attached right under the hull, contains most of the equipment for power,
actuation and sensing, allows to make the assumption that the center of gravity C lies right below
the center of buoyancy C,. This implies that the airship is stabilized about the pitch and roll axes.

With this assumptions in mind, the dynamic model is expressed as:
Mv=F.+Fg+Fq,+F, (2.1)

where M accounts for the mass and inertia matrix, F,. corresponds to the force vector resulting from the
Coriolis effect, F; comprises the gravitational and buoyancy induced forces and moments, F, accounts
for the aerodynamic forces and moments and, finally, F,, is the vector of propulsion forces and moments
that arise from the propeller thrust. In the upcoming subsections, the different elements of Equation
2.1 are analyzed in more detail.

Mass and inertia

The total mass and inertia matrix arises from adding the the rigid-body inertia matrix and the added-
mass effects matrix, which accounts for the resistance generated by the large amount of particles that
are displaced when the blimp moves:

m, 0 0 0 0 0
0 m, 0 0 0 0
0 0 my 0 0 O
M=MRB+MA= 0 0 OZ I_,IC 0 ol (22)
0O 0 0 0 I 0
0 0 0 0 0 I

where Mgy = diag(m,m,m, I, I,,1,) and My = diag(mAx,mAy,mAz,IAx,IAy,IAZ). For more details
on how the added mass terms are calculated, please refer to [39].
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Coriolis effect

Whenever a fictitious force is exerted on a moving body when the reference frame is not inertial, the
Coriolis effect appears. Concretely, this effect occurs whenever a motion can be expressed as w X v;
this is, when it is composed of linear and rotational velocities. The Coriolis force tends to preserve the
initial direction of motion regardless of the body rotation.

_ _ 03x3 S(M11v + M)
Fe=CWwv,  CO)= oy, v+ Mypw) SM,1v+ Mypo) (2.3)

This first expression in Equation represents the Coriolis force, where C(v) is known as the Coriolis
matrix. This matrix can be directly obtained from the inertia matrix [134]. In the previous expression,
M;; (i,j = 1,2) represent the 3 x 3 submatrices of the total inertia matrix, M, and S corresponds to the
skew-symmetric matrix operator.

Gravity and buoyancy forces

The principle of Archimedes describes the buoyancy or aerostatic lift force, which corresponds to the
total weight of air displaced by the platform. Since the gravity force and the buoyancy point in opposite
directions —downward and upward, respectively— they keep the blimp upright. The amplitude of these
forces is expressed as:

2
Fy=mg, F,=pVg, withV = gnabz, (2.4)

where m is the mass of the blimp, g the gravitational acceleration of the Earth, p the air density and
V the volume of the platform. The vector containing the buoyancy and gravitational induced forces and
moments corresponds to:

—(Fg - Fb)SQ
(Fyg — Fy)cOs¢
_ |-, — R)eoce
97| —byF,chs¢
_bZFbSH
0

F (2.5)

with b, denotes the distance between C, and Cj,.

Aerodynamic damping

Aerodynamic damping, also referred to as air friction, mainly depends on the speed of the blimp. The
first expression in Equation 2.6 corresponds to the aerodynamic damping vector, where D(v) is the
damping matrix. According to [178], this matrix contains linear and quadratic damping coefficients to
account for both the friction due to the laminar boundary layers (linear) and that caused by the turbulent
boundary layers (quadratic).

[ Dy, + D2 V]
Dy, + Dyz [vy]
Dy, + Dy§ v |
Dy, + Da),% |y
Dwy + Dwfz |wy|
_Dwz + D@% |wz|_

F,=Dw)vy D)= —diag (2.6)

Even though this model is an approximation, it is sufficiently accurate for the present case; this is, a
highly symmetrical ellipsoid hull and a low operation velocity [57].

Propulsion

Equation 2.7 illustrates the propulsion vector F,, corresponding to a blimp with four thrusters, as shown
in Figure 2.4. This mathematical expression can easily be adapted to a blimp with a fewer number of
thrusters, as long as they are static, just by eliminating the corresponding forces from the equation.
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Figure 2.4: Diagram showing the location of the blimp’s thrusters. Image from [39].

Fes+ F

x,p

, (2.7)

o oS +

Fyry + (Fes — Fep)Tx

where 1, is the distance between C, and thruster F, along the x-axis and r, the distance between
the lateral thruster F, ;, Fy, and C, along the y-axis.

2.2.1. Full dynamic model equations
Finally, the full mathematical model of the blimp based on the previously analyzed models is given by:

X = cPcOv, + (sce + cPpsOsd)vy, + (sPs¢ — cpsOcp)v,
Yy = =spclvy + (cPcp — sPsOsd)v, + (csep + sypsOcp)v,

Z = s0vy — cOspv, + cOcov,

¢ = wyx + sPptbwy + coptbw,

0= chpw, — spw,

Y =s¢p/cOw, +cd/cOw,

1
1.Jx = W(_m’zvzwy + mgzvywz - (Fg - Fb)SH - (Dvx + Dy}c |vx|)vx + (Fx,s + Fs,p))

X

; L / (2.8)
v, = m_,y(mzvzwx — MV, + (Fy = Fp)cb5¢ — (Dy, + Dz |vy[Jvy + F)

. 1
v, = W(—m;vywx + mivewy, + (Fy — Fy)cOcd — (Dy,, + Dyz v, v, + F)

z
. 1 ! ! ! !
Wy = I_/((my - mz)vyvz + (Iy - z)wywz - szbC95¢ - (Dwx + Dw}c |wx|)wx)
x
. 1 ! ! ! !
Wy = I—,(—(mx —my)v, v, — (I — I;)w,w, — b, F,s0 — (Dwy + D%% |wy|)wy)
y
. 1 ! ! ! !
Wy = I_,((mx - my)vxvy + (Ix - Iy)wxwy - (sz + D(p% |wz|)wz + (Fyry + (Fx,s - Fx,p)rx))
z

where s¢ = sin(¢) and c¢ = cos(¢).

2.3. Simulation on the ROS/Gazebo framework

Since robotic airships are just starting to gain popularity again, not many open-source Gazebo blimp
simulators are available online. Therefore, the most common approach that is taken when doing any
kind of project that involves a blimp robot is to build the actual platform and perform the tests in a real-
world environment. There are, however, two main works that should be highlighted regarding simulator
environments for blimps.
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First, in [151], a methodology to simulate both the control and dynamics of an airship by means of the
virtual platforms ROS and Gazebo is thoroughly delineated. Concretely, the motion control algorithm
is developed in ROS and the dynamics of the blimp are implemented in Gazebo. Moreover, velocity
hold, altitude hold and pitch regulation of the airship are simulated using PID control. Nevertheless,
even if the whole process to generate the simulation is described in a very detailed way, this project is
not open-source, so that all the coding to replicate similar results should be carried out from scratch.

Figure 2.5: Blimp robot simulated in Gazebo?. Image from [2].

On the other hand, a completely open-source and very interesting radio-controlled (RC) blimp simu-
lator developed at the Max Planck Institute for Intelligent Systems is presented in [2]. All the necessary
files, packages and plugins to properly simulate the dynamics of the blimp in Gazebo are provided and
accompanied by detailed instructions on how to use each of the files, configure the dependencies and
perform the required installations. Figure 2.5 illustrates the design of the RC blimp modelled within this
framework.

2https://github.com/ootang2018/blimp_simulator



Remote sensing in UAVs: radars

The most widespread remote sensing strategy that has been used in recent years to capture UAVs
close vicinity mainly involves vision-based sensors. Nevertheless, a notable increase of radar-based
navigation has been lately taking place, due to the great potential that radars have to offer when it comes
to overcoming the limitations posed by monocular and stereo vision cameras. This chapter provides
an overview of the existing and most widely used remote sensing methodologies in the realm of UAVs
navigation in Section 3.1, also analyzing the pros and cons of each alternative. In Section 3.2, the
fundamentals of FMCW radar-based sensing are presented, which correspond to the sensory strategy
employed in this work. Therefore, its working principle, together with the mathematical background and
related signal processing algorithms are explained.

3.1. Remote sensing strategies in UAVs

The good maneuverability, hovering and stable flight properties that are inherent to contemporary con-
sumer and industrial unmanned aerial vehicles make them great easy-to-use flying sensor platforms
[83]. In this way, two main objectives can be differentiated when it comes to remote sensing in UAVs:
stabilization and localization, or direct environment sensing. In the former case, sensors such as iner-
tial measurement units (IMUs), barometric sensors and the Global Navigation Satellite System (GNSS)
are utilized. However, when it comes to fully automated flight, object detection or collision avoidance,
this is, the latter case, additional sensory strategies must be used.

3.1.1. Vision-based sensors applications

Very common applications of vision-based sensors such as visible-light and thermal cameras are en-
countered within industrial environments, where UAVs are employed to perform structures, wind tur-
bines or power lines inspections [90]. These kinds of sensors are also widely used in forestry, to
estimate species diversity [176] or tree canopy heights [98]. Applications can also be found within agri-
cultural industry, which corresponds to the largest commercial market for UAVs at a global scale [124].
For example, UAVs can take images of vasts amounts of terrain at a higher resolution than satellites,
even under cloudy conditions [83], and are able to monitor plant health and field conditions. Despite
of their multiple properties and wide usage, vision-based sensors also have their limitations. For ex-
ample, their performance strongly relies on the lightning conditions, the reflectivity of the material and
they struggle with regular surface patterns.

3.1.2. Radar sensors advantages and applications

Radars, on the other hand, are not influenced by variations in illumination and are able to detect obsta-
cles for collision avoidance even with backlight present and under severe low-contrast circumstances
[83]. Their ability to directly sense both speed and range is also one of their most advantageous fea-
tures. Angular information also be extracted with the help of a multichannel radar, which is the case
of this project. Furthermore, the rising use of radar in the automotive industry and its promising results
[70][164] has led to a noteworthy decrease in its costs. Thanks to the production of single package
radar front ends, also including antennas, in the medical, industrial and scientific bands for industrial

23
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applications [68][11][76], the wonder of lightweight radar sensors valid for UAV applications has come
to be true.

These interesting features have significantly produced a remarkable increase in the usage of radar-
based sensors within UAVs navigation in recent years. For example, in [82] a detailed analysis of a
77-GHz radar-based altimeter is presented. In [143], a platform using a 24-GHz frequency-modulated
continuous wave (FMCW) radar for full interferometric SAR imaging and processing is evaluated. Since
both velocity and distance can be measured with a FMCW radar, a 24-GHz FMCW radar with 1-GHz
bandwidth for potential intruder and ground target detection was also studied in [137]. In this case,
however, the device was not mounted on the actual UAV but on a ground station. An additional 24-GHz
FMCW radar and its blend with accelerometer data were tested indoors by means of a motion-capture
system made of 24 cameras, in [104].

Table 3.1 shows a summary of the strengths and weaknesses of each of the type of sensors ana-
lyzed so far in this chapter.

Weather Light Processing Power

Sensor Accuracy Dependancy Sensitivity Range Required  Needed
Radar u High None No Long Low High
Radar mm High Low No Long Low Medium
Radar K High Medium No Medium Low Low
Ultrasonic Medium Medium No Short Low Medium
Thermal/IR | Medium High No Medium High Low

Camera Medium High Yes Short High Low

Table 3.1: Sensor attribute comparison. Table modified from [175].

3.2. FMCW radar and its signal processing

The high integration potential inherent to FMCW radars have made them shine in recent years. Even
though the automotive industry is the main driver in developing these small imprint solutions, a gradual
consolidation into other arenas is becoming evident. In this section, the working principle of FMCW
radars and some of the most relevant algorithms to measure distance, velocity and azimuth are pre-
sented.

3.2.1. Working principle
The basics of radars

Before diving into discussing the details of a FMCW radar, the basic working principal of any radar
configuration in general must be understood. In his book Introduction to Radar Systems [147], Skolnik
writes:

Radar is an electromagnetic system for the detection and location of reflecting objects such
as aircraft, ships, spacecraft, vehicles, people and the natural environment. It operates
by radiating energy into space and detecting the echo signal reflected from an object or
target. The reflected energy that is returned to the radar not only indicates the presence of
a target, but by comparing the received echo signal with the signal that was transmitted,
its location can be determined along with other target-related information.

Concretely, two main types of remote sensing radars can be distinguished:

1. The pulsed radar, which transmits short signals, and then listens for the echoes during the time
intervals between the transmit pulses. The pulse repetition frequency (PRF) f,, and length ¢ are
selected so that the desired return signal can be received without interference from the signal
that is being transmitted.
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Figure 3.1: Basic principle of operation of the FMCW radar system. Image from [4].

2. The continuous wave (CW) radar, which corresponds to the simplest existing type of radar. As
its name already suggests, it transmits a continuous wave signal which reflects or scatters off
the target to the receive antenna. A CW radar, however, has no range- or timing-discrimination
capability [160]. This occurs because its time resolution is equivalent to an infinitely long pulse
length. By applying a proper frequency modulation (FM) strategy to the transmit signal, this issue
can get solved.

The fundamental signal of the FMCW radar
In FMCW radars the signal is continuously transmitted and received, but its frequency is modified as a
function of time, as it can be seen in Figure 3.1. The term that is most commonly used to denote these
kind of signals is chirp and sometimes, although less often, sweep. Therefore, a chirp refers to any
sinusoid whose frequency increases (up-chirp) or decreases (down-chirp) over time.

Concretely, Figure 3.1 exemplifies a linear chirp, since the instantaneous frequency f has a linear
dependency with time ¢, as follows:

B
f(t):f0+T_C(t_to):fo+5(f_to) ) (3.1)

where f, corresponds to the starting frequency at time t = t,, B is the chirp bandwidth, T, the chirp
time, also referred to as the modulation time and S denotes the rate of frequency change (frequency
slope) or chirpyness. The time-domain function for the phase, ¢, can simply be obtained by integrating
the angular frequency, w(t) = 2rf(t):

¢ B
6O = o+ 20 [ FOd= o+ 20|~ 1) + 7@ - ) (32)

The corresponding time domain function for a linear chirp is, according to [116], the sine of the quadratic-
phase signal in radians:

Ve (t) = vrx(t) = A, sin <¢0 + 2mfyt + nTE(t - mTC)2> , (3.3)

where A, represents the chirp’s amplitude, m corresponds to the m" sweep and t, = 0 by taking the
assumption that chirps take place continuously.

Finally, the modulation bandwidth and starting frequency, B and f,, give rise to one more important
parameter: the carrier frequency, f.. This parameter which is defined as f, = f;, + B/2, represents the
central frequency for the spectrum band that is being covered. In this work it corresponds to 24 GHz.
Common bandwidth spans are normally in the order of up to several GHz, while sweep modulation
times typically belong to the range of dozens of microseconds up to a millisecond.
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The FMCW radar operating principle

The procedure from which these type of signals (see Figure 3.1) are generated is illustrated in Fig-
ure 3.2, which represents a simplified block diagram of a FMCW radar. First, a FMCW synthesizer
generates an appropriate chirp signal. Then, the power amplifier (PA) amplifies the generated sweep,
which is later transmitted by the transmit antenna. The receive antenna captures chirps that are re-
flected back from objects or obstacles and the received signal is passed through the low-noise amplifier
(LNA). Finally, a down-conversion frequency mixer conflates the RX and TX signals and their inputs to
generate an intermediate frequency (IF) signal at its output. The shape of all the RX, TX and IF signals
can be observed in Figure 3.1. The latter is also referred to as the beat frequency and contains useful
information about the irradiated targets. The beat signal is then low-passed filtered and sampled by an
analog to digital converter (ADC).

f A synthesizer ‘ >>
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Figure 3.2: Block diagram of a typical homodyne FMCW radar by [116].
It is noteworthy to highlight that the RX signal is just a time-delayed replica of TX. The IF signal will
have a constant frequency proportional to the reflected signal round-trip delay, which can be identified
by spectral analysis (e.g. FFT):

DsP| ADC

2r 2B

fir =/ = ?5 = ET ) (3.4)

where r corresponds to the distance between the radar and the object, ¢ is the speed of light and S
represents the proportionality coefficient.
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Figure 3.3: Static multitarget detection with an FMCW radar by [116].

When multiple targets located at different distances are part of a scene, a single transmitted chirp
will generate multiple received chirps, each with a different time delay depending on the distance to
each particular obstacle. Thus, as explained by [116], the produced IF signal will be composed of
several frequency tones, each of which is directly proportional to the range of each of the objects. This
phenomenon is illustrated in Figure 3.3.

3.2.2. Extracting range and velocity: the Range-Doppler algorithm

Range and velocity estimation can be easily computed by means of a two dimensional fast Fourier
transform (2D FFT) in what is known as the Range-Doppler algorithm, which is graphically represented
in Figure 3.4. In this section, the underlying details of this algorithm will be discussed. Concretely,
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special focus will be put on the specific set of steps that the sensor Infineon Position2Go", which
corresponds to the one employed in this work, takes in order to obtain the range and velocity of the
detected targets.
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Figure 3.4: 2D FFT processing of an FMCW frame containing M chirps and that N samples are taken out of each chirp. Modified
from [116].

First of all, a multi-chirp signal is transmitted for every frame (see Figure 3.5), reflected by the objects
present in the surroundings and received, following the procedure previously explained (see Figure
3.2). For each of these chirps present in the multi-chirp transmitted signal, an IF signal is generated
and digitally sampled by an ADC, giving rise to a two-dimensional raw data matrix, corresponding to
the first step shown in Figure 3.4. The dimensions of this matrix are M x N, with M, the denoting the
number of sweeps and N the number of samples taken out of each of the chirps.

F(6Hz) Multi-chirp Frame

—»
t (ps)

(16 Chirps) Inter-Frame Delay (16 Chirps)

Figure 3.5: Position2Go generated FMCW multi-chirp signal.

Range processing

After the pre-processed raw data for every receiver is available, the processing over the fast time
samples is carried out to extract information about the range of the targets. First, a Blackman window
is applied across the range dimension, in order to enhance the signal SNR and supress the side lobes.
Then, zero padding is used to improve the received signal characteristic. Finally, a FFT is carried out
over the range dimension, resulting in an FFT image, corresponding to the second step shown in Figure
3.4. In order to detect target ranges, a peak search is carried out over this range FFT [4]. Moreover,
the range is obtained by isolating r from Equation 3.4, as follows:

_cfy T,
=55 =35 fo (3.5)

Doppler processing

In the case of nonstationary objects and/or radar, all range measurements through round-trip delay are
going to be affected by what is commonly known as the Doppler effect: this is, signal elongation or
compression, depending on whether the object is moving towards or away from the radar. Concretely,
small displacements of an object, Ad, have a clear effect on the IF’s phase:

Ap = 2ot = 2mfy 20 AT g ALE Ve Ko 3.6
¢ = 2nfo —”foc =% V—47TTC ¢, (3.6)
where 1, = ¢/f, accounts for the wavelength of the transmitted RF signal and At represents the round-
trip delay change caused by the object’s range displacement.

"https://www.infineon.com/cms/media/PMM_3dmodels/position2go.html
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As explained in [116], the key for measuring the speed of a target with a FMCW radar relies on
transmitting two consecutive sweeps of duration T.. A FFT is applied then to each of these two sweeps
to obtain the distance to the object. This range-FFT shows a peak at the same position but with a
different value of phase. Therefore, the phase difference between two peaks, this is, measured across
two consecutive chirps, can be used to estimate the speed of an obstacle surrounding the radar.

This method, however, would not work for the case of multiple moving objects, with different speeds,
that are all equidistantly disposed from the radar. The details of why this happens can be found in [116].
To solve this, a series of more than two consecutive equally spaced chirps should be transmitted; this is,
a multi-chirp signal, as shown in Figure 3.5. Computing a second FFT, e.g. the Doppler-FFT, across the
discrete sequence of equispaced chirps (or frame) would yield peaks corresponding to the normalized
angular frequencies, w, of each target speed. By substituting w = A¢, Equation 3.6 can be utilized to
calculate the object velocities. It is worth to underscore that the Doppler-FFT can only be performed
after all the range-FFT data points have been calculated. The last step in Figure 3.4 presents the
two-dimensional grid obtained after computing the second FFT or Doppler-FFT.

Summary of the range-Doppler algorithm
The procedure for calculating the range and velocity of targets through the range-Doppler algorithm
can be summarized as follows [72]:

1. First, the received signal at frame n;, s;z(t; ny), from consecutive chirps are arranged in the form
of a 2D raw dara matrix: s;r(ns, ns;ny), where ng and ny denote the slow and fast time index,
respectively.

2. The range-Doppler image (RDI) is generated for each channel by applying a window function,
zero padding and then a 1D FFT along fast time to obtain the range transformation.

3. Followed by applying another window function, zero-padding and a 1D FFT but, this time, along
the slow time index to also obtain the velocity transformation.

4. In the end, the two 1D FFTs, transform the signal s;z(ng, nf; n,) along fast and slow time, into the
range-Doppler domain:

ZNe [ZnTs
Sp,q,n) = Z z Wf(nf)slp(ns,nf;nk)e_ﬂ"p"f/z”” - wg(ng)e /2mans/Zn. | (3.7)
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with NTS and Zy 1 being the number of transmitted samples defined by the DAC sampling points
over the chirp duration and zero padding along fast-time, respectively. N, and Z_ being the num-
ber of chirps in a frame and zero padding along the slow-time, respectively. ws(n;) and wg(ny)
denote the window function along fast and slow-time, respectively. In the case of the Infineon
Position2Go radar, which is the one related to this work, ws(ny) corresponds to a Blackman win-
dow and w,(n,) to a Chebyshev window. Finally, p and g represent the index over range and
Doppler, respectively.

5. The peaks in the RD domain, using saw-tooth FMCW with fast ramps (see Figure 3.5), occur at:

2B 2V, f,
Pk = (C_Trk> y qrk = % (3.8)

Additional important parameters

Four relevant parameters that have to be taken into account when measuring with a FMCW radar are
range and velocity resolution and maximum measurable speeds and distances. Mathematically, two
or more nonidentical IF signal tones can be resolved as long as Af > 1/T,.. With this and Equation 3.4
in mind, the expression for the radar’s range resolution yields [160]:

c
25T, _ 2B (3.9)

Ar >
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Moreover, the maximum range that a FMCW radar can detect is corresponds to:

_cfs cTfs cN
Tmax = 36 T g T 4p (3.10)

where f; is the maximum ADC’s sampling rate according to Figure 3.2 and N the number of ADC
samples per chirp. In the case of the velocity, two different normalized angular frequencies can be
differentiated provided that Aw > 2m/M. Accounting for this and Equation 3.6 the speed resolution can
be found:

Ao Ao

Av > =22,
Y7 mMT, T 21;

(3.11)

where M is the number of observed samples, T, the separation between consecutive sweeps and
Ty = MT,, the fram duration. Besides, the phase measurement is unambiguous only in cases in which
|A¢ < m| and the maximum unambiguous measurable speed corresponds to:

Ao
Vmax = T, (3.12)
3.2.3. Angle measurements
Resolving the angular dimension of objects can be achieved by measuring the IF signal’s phase change
over multiple antennas separated in space. Concretely, in the case of the Infineon Position2Go radar,
which comprises 1 TX and 2 RX antennas and is the one used in this work, a phase monopulse angle
estimation method is used to estimate the Angle of Arrival (AoA) of targets from the range-Doppler map.
Therefore, instead of calculating the phase difference between consecutive frames (see Equation 3.6),
as it is done to obtain the velocity, the phase difference over the antennas RX; and RX,, separated
in space, is computed to finally obtain the target angle. The required process to calculate the AoA is
illustrated in Figure 3.6.
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Figure 3.6: Monopulse angle estimation method flow.

Therefore, the first step is to compute the phase difference between R; and R,, which correspond
to the value of the range-Doppler map at the target range highlighted in blue for RX1 and RX2, respec-
tively. Then, with this phase difference, ¢, the target angle can be calculated by means of the following
expression:

- 2
6 = sin 1(% : E) , (3.13)

where 1 denotes the wavelength of the incident signal and d corresponds to the antenna spacing: in
this case, the spacing between RX1 and RX2.






Blimp control strategies

By using blimp robots as experiment platforms to study robot control, navigation algorithms and in-
formation acquisition, researchers have put increasing attention on developing control-based applica-
tions for autonomous indoor airships over the last few years. Most of these applications, however, are
based on classical control approaches such as PID controllers, which offer less flexibility than their
knowledge-based counterparts when it comes to vision-based navigation, signal processing, fault tol-
erant or adaptive control strategies among many others. In this section, some of the most common
classical control strategies applied to blimps are briefly analyzed to then put special focus on some
interesting and innovative knowledge-based control works.

Methodology Task Reference
Classical approaches
PID Trajectory control [165]
PID Altitude and heading control [66]
PID Altitude and heading control [33]
PID Altitude and heading control [162]
Predictor-based Altitude control [170]
Predictor-based Altitude control [169]
Knowledge-based approaches
GP and RL Yaw control [97]
RL Altitude control [132]
Fuzzy logic and PID Altitude control [63]
Artificial evolution Trajectory control [178]

Neuromorphic controller  Altitude, drift, obstacle avoidance [14], [126]

Table 4.1: Brief summary of different indoor blimp control strategies found in literature.

4.1. Classical control

First of all, the design, modeling, linearization and control law development of a solar-powered blimp
is proposed in [165]. Concretely, a PID attitude and position controller is developed in simulation and
tested in an indoor environment verifying that the blimp is able to gather energy and maintain its stability
while controlling its flight. In [66], as already analyzed in Section 2, an open-source, low-cost, robotic
airship with a 3D-printable gondola for education and research is developed and tested for proof-of-
concept purposes in a basic altitude PID control and path following task, proving its efficiency. On a
similar note, the GT-MAB, one of the smallest indoor robotic airships that have been developed [33],
is tested on both a way-point and altitude control task. In the former case, a common PID controller
is implemented and, to maintain the desired height, a PID controller with two different sets of gains
combined with a scheduling algorithm that decides which of them to use is developed. In the work
by Van der Zwaan [162], a PID control law is proposed for the lateral and longitudinal motion on a
vision based station keeping and docking for an aerial blimp. In the works by Wang [170][169], the
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dynamics of the utilized robotic blimp are derived, together with its parameter identification and an
accurate altitude controller based on a high-order sliding mode (HOSM) differentiator as an observer to
assess the vertical velocity and a predictor-based controller for height stabilization. The performance
of the controller is verified both on a simulated environment by means of Simulink and also on the real
airship with the help of an OptiTrack capturing system.

4.2. Knowledge-based control

Since most of the developed control approaches employed with blimps belong to the realm of classical
control, the works presented in the previous subsection are just some interesting related examples from
the many that exist. In the case of knowledge-based strategies concerning robotic airships, however,
not many works have been published. In this section, some of the most relevant ones, to the best of
the author’s knowledge, are reviewed, following Table 4.1.

4.2.1. Reinforcement learning applied to yaw and altitude control

As opposed to classical system modeling techniques in which the system is represented as an ordinary
differential equation (ODE) based on Newtonian laws, a GP-enhanced identification model that provides
an estimate of uncertainty in addition to offering improved state predictions than those of either ODE
or GP alone is proposed in [97]. Moreover, reinforcement learning and optimal control are used in
combination with this GP-enhanced model in order to steer the blimp from any yaw 1 and yaw rate 1 to
a goal yaw y* with zero yaw rate. Along the same lines, a model-free reinforcement learning strategy
is applied to the problem of learning height control policies for aerial blimps in [132]. Concretely, in this
work the blimp is able to learn the policy online —directly on the platform—, within a few minutes, without
a predefined physical model of the dynamics, and is able to deal with the continuous state-action space
provided by the current estimate for the altitude and the vertical speed.

4.2.2. Fuzzy logic for altitude control and navigation tasks

In [63], a fuzzy controller with two inputs: the height error and the estimated current vertical velocity, is
proposed to control the altitude of the blimp. This approach is characterized by a set of linguistic vari-
ables and fuzzy if-then rules which provide the necessary knowledge to the fuzzy controller. Following
the same strategy, a collision avoidance controller is also implemented and both of them are compared
with the classical PID approach.
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Figure 4.1: Neuromorphic approach by [178]. Blimp sensors and actuators (left) and NN architecture (right).

4.2.3. Neuromorphic strategies for trajectory and height control

In [178], a simple neuromorphic controller, based on [120], is first evolved in simulation to map visual
inputs to motor commands to steer the blimp and avoid obstacles in a vision-based navigation task.
Then, the best individuals are transferred to the physical blimp so that the approach can also be tested
in a real-world environment. Regarding the architecture of the NN, which is illustrated in Figure 4.1, it
has four input neurons that receive visual information, one input unit connected to the rate gyro, one
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bias unit, two hidden neurons and two output neurons with recurrent and lateral connections driving
the yaw and frontal thrusters. Finally, in [14], a simple neuronal control system for a blimp-based UAV
that offers course stabilization, drift and altitude control and collision avoidance trying to imitate the
effectiveness of insects’ visual system is proposed.






Neuromorphic computing for
radar-based navigation

Once the proper mathematical processing required to obtain the Range-Doppler Image (RDI), as ex-
plained in Section 3, is clear, some kind of control strategy should be used to develop an accurate
altitude controller based on the available data, as proposed in Section 4. In this work, a neuromor-
phic approach based on spiking neural networks (SNN) is used for this purpose, given the favorable
properties that this strategy offers in terms of low power consumption, online learning, fast inference,
massive parallelism and event-driven processing. However, the many breakthroughs that robotics
control based on learning-inspired SNN has accomplished in recent years, has only been possible be-
cause they stand on the shoulders of its giant predecessors, ANN, which are still the main protagonists
in the field of robotics control. Therefore, diving into the world of SNN inherently means addressing the
previous generation of neural networks, ANN.

Following a chronological order, this chapter starts by introducing the underlying theory behind
artificial neural networks, together with some of the most common architectures and their application
to the field of robotics control. Afterwards, the equivalent areas are analyzed for the case of the newer
spiking neural networks.

5.1. Artificial Neural Networks

Artificial neural networks (ANNs) constitute computing systems that are vaguely inspired by the bi-
ological neural networks present in animal brains. Concretely, each ANN is built upon a collection
of connected units referred to as neurons, which very loosely model the neurons in a biological brain.
Each of these connections can transmit a signal to other nodes, mimicking the synapses that take place
in realistic brains. Since error backpropagation was proposed as an efficient learning algorithm [133],
this computational framework has been used in an infinite range of applications ranging from medicine
or economics to engineering. Due to the extensive literature available on artificial neural networks,
this section puts special attention on the relevant aspects, common architectures and strategies for
flight control and deep learning applications for UAVs. For more general information on artificial neural
networks, please refer to [42], [64].

5.1.1. Theoretical background and basic components

The computation performed by artificial neurons can be divided in two main steps: the weighted sum of
their inputs and a non-linear operation from which a neuron generates an output in case that the inputs
surpass a certain threshold. Based on Figure 5.1, the activation of the output neuron is given by:

p
yi=f Zwi,,--xi ) (5.1)
i=1

where p represents the number of presynaptic neurons, w; ; the synaptic efficacies and x; the activation
values. The synapses can be categorized as excitatory or inhibitory depending on the sign of w; ;. In or-
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der to introduce non-linearities into the network, the activation function f (-) is applied after the weighted
sum. The sigmoid, hyperbolic tangent or Rectified Linear Unit (ReLU) [119] are some examples of com-
monly used activation functions. Figure 5.1 illustrates the structure of one of the most common artificial
neural network architectures: the Multilayer Perceptron (MLP). In this scheme, a very simple network
with only three layers is presented, each of them represented with a different color. First, in red, the
input values that must be processed for the generation of the desired output are passed onto the input
layer. Next, these values are propagated to the next stage of neurons, known as the hidden layer.
Finally, the outermost layer or output layer performs the last processing steps and eventually presents
the results to the user.

Fully-Connected Sparsely-Connected

Input layer
Hidden layer

Output layer

Figure 5.1: Diagram of a simple ANN. Image from [122].

Apart from the the number of neurons and layers, the different types of connections that are defined
between the neurons in the network also have a huge impact on the type of computation performed
by the model and its complexity. Figure 5.1 also shows the three different existing neural connections.
From left to right, it can be seen that in a fully-connected layer all presynaptic neurons have synapses
with all the postsynaptic cells. This is not the case for the sparsely-connected version, where only some
synapses are present, but not all pre and postsynaptic neurons are directly connected. These two types
of connections also belong to a greater category known as feed-forward connections, where the outputs
are always derived from a sequence of operations on the activations of neurons from previous layers.
Then, in the case of the recurrent layer, the network is able to exhibit temporal behavior, since the
output activation from a certain neuron is reused as an input to that same cell exactly one timestep
later. Therefore, as a final note, recurrent networks normally work with sequential input data, while the
feed-forward version assumes that this information is uncorrelated.

For the introduction to the basics of artificial networks, this work has referred to the theoretical
knowledge collected by [105], [152] and [122].

5.1.2. Deep learning architectures

Neural architectures as the one illustrated in Figure 5.1, this is, with very few hidden layers, are com-
monly denoted as shallow networks. Although successfully trained with supervised learning rules like
error backprogagation, the low complexity of the input-output mapping approximations that can be ob-
tained with these kind of networks is very limited. This is why the study of learning methods that could
be applied to neural architectures with higher complexity has been a hot research topic since [133].
This line of work is referred to as Deep Learning (DL) and the architectures used within it are known
as Deep Neural Networks (DNN). Moreover, the recent success of DL techniques in machine learn-
ing or pattern recognition has highly been due to the availability of increasing computational capacity,
open-source networks and vasts amounts of information [141]. In this section, the fundamentals of the
most widely used deep learning technologies currently available in supervised, unsupervised, and re-
inforcement learning are covered. For more detailed information regarding the different deep learning
architectures, please refer to [105].
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Supervised learning

Given a training a proper training set with examples, supervised learning (SL) algorithms learn to asso-
ciate a given input with some output with a certain probability. Some of the most well-known algorithms
in SL include feedforward neural networks, convolutional neural networks (CNN), recurrent neural net-
works (RNN) and long short-term memory models (LSTM). This subsection analyses the basic concepts
of each of these architectures:

1. Feedforward neural networks or MLPs: given a sample vector x with n features a trained algorithm
is expected to compute an output value y that is consistent with the input-output mapping provided
in the training set. The layers of these networks consist of nheurons whose activation, given a
certain input x € R", is given by ag(x) = g (GTx), where g represents the chosen activation
function and 6 a vector of n weights. During the learning process these weights are updated
through backpropagation.

2. Convolutional neural networks (CNNs): these models take their name from the mathematical
linear operation of convolution, which is always present in one or more layers of the network.
They accept two-dimensional input data, like time data or images. Computer vision is one of the
most relevant applications of CNNs.

3. Recurrent neural networks (RNNs): as already seen in Figure 5.1, the outputs of these networks
are a function of the current inputs but also of the previous outputs. The learning algorithm most
commonly used in RNNs is an extension of backpropagation, known as backpropagation through
time (BPTT), which takes into account temporality when computing the gradients.

4. Long-shortterm memory (LSTM): these models are a type of RNN architecture which successfully
handles the issue of vanishing gradients and allows for continuous learning over a larger number
of time steps. Speech recognition is one of the most successful applications of LSTM.

Unsupervised learning

In contrast to the previous section, the purpose of unsupervised learning consists in developing models
that are capable of extracting meaningful representations from high-dimensional sensory unlabeled
data [159]. The visual cortex, which only requires a very small amount of labeled data, has served as
an inspiration to this learning process. Concretely, models such as the deep belief networks (DBNs)
[75] [12] allow the unsupervised learning of several layers of nonlinear features. To train these type
of models, the learning usually takes place by applying a contrastive divergence algorithm [74]; the
details of which follow out of the scope of this literature study. DNN can also be used for dimensionality
reduction of the input data.

5.1.3. Deep learning applications for UAVs

The vast amount of deep learning applications in the field of robotics and, concretely, within the UAVs
arena is unfathomable. Moreover, analyzing them in detail falls beyond the scope of this work, as the
focus in this study will mainly be putin the latest generation of NNs, spiking neural networks, due to their
more favorable properties in terms of event-driven processing, online learning, low power consumption
and massive parallelism. Nevertheless, some very interesting reviews that summarize most of the
applications that combine DL and UAVs are provided in this section, for the interest of the reader.
First, in [67], a detailed survey of UAV model-based flight control strategies with ANNs is presented.
The type of ANN architecture, together with the efficiency, training and control approach or the kind
of UAV (fixed-wing, helicopter or quadrotor) used in the different works published in recent years are
analyzed. Then, an interesting review of different DL methods and applications for UAVs is proposed in
[159]. Concretely, DL techniques for feature extraction, planning and situational awareness, and motion
control are studied. Finally, a review on loT DL UAV systems for autonomous obstacle detection and
collision avoidance is presented in [58].
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5.2. Spiking Neural Networks

Spiking neural networks (SNNs) are simulations of the functions and structure of the biological nervous
system and its spike-based communication protocol. Widely referred to as the third generation of neu-
ral networks [107], they constitute the existing computational model with the highest level of realism
and have the potential to become the most efficient and fast neural computational framework, thanks
to the way they encode and process information. Neurons from biological neural systems exchange
information by receiving and sending spikes —short electrical pulses— whose amplitude remains almost
unchanged during propagation. Since all pulses have a very similar appearance, information encoding
actually takes place through the precise timing at which these spikes are generated. This phenomenon
is, according to several studies [50][107][156], what makes biological neurons and SNNs, their com-
putational counterpart, so powerful in terms of high-speed computations. This is why spiking neurons
belonging to SNNs are commonly referred to as asynchronous event-based processing units with tem-
poral dynamics. This section dives deeper into the fascinating world of spiking neural networks, their
biological background, existing models, training strategies, encoding mechanisms and more.

5.2.1. Biological background

For the explanation of the biological background behind spiking neural networks, this work refers to
the theoretical knowledge gathered by [61] and [140]. As illustrated in Figure 5.2, three functionally
different parts can be distinguished in a biological neuron: the dendrites, the soma and the axon. The
former are specialized for receiving spikes from other neuron cells that are connected to them.
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Figure 5.2: Biological neuron and synapse, from [80].

Then comes the soma, which is characterized by a state variable known as the membrane potential
and acts as the processing unit of the neuron. Hence, if the excitation caused by the input spikes is
strong enough so that the membrane potential reaches a certain threshold, the soma is in charge of
triggering a spike. This short electrical pulse is propagated to other neurons via the axon. Finally, the
actual information exchange between two neuron cells takes place at a synapse, which is a specialized
structure that links two neurons together.

A synaptic transmission between the pre and postsynaptic neurons can be either excitatory or in-
hibitory depending on the kind of transmitting synapse. Concretely, when a train of incoming spikes
from the presynaptic neurons causes a positive variation of the membrane potential, u(t), of the post-
synaptic cell, the synapse is considered excitatory. This type of synaptic transmission increases the
likelihood of the postsynaptic neuron triggering an action potential after the stimulation. On the other
hand, when the change is negative, it is said to be inhibitory, producing the opposite effect. The effi-
cacy of a synapse —the strength of the postsynaptic response— is not fixed. The decrease or increase
of the efficacy of a synapse is referred to as the synaptic plasticity and it enables the brain to mem-
orize and learn. After its variation, u(t) decays back to the resting potential u,.¢.. Finally, after the
emission of a spike, the neuron enters in a short refractory period —typically, of some milliseconds— in
which the membrane potential remains almost unchanged due to new incoming spikes. This ensures
the event-based representation of the spikes as pulses that are clearly distributed over time.

5.2.2. Models of spiking neurons

Numerous mathematical abstractions of biological neurons have been inspired by the extraordinary
information processing capabilities of the brain (see Figure 5.3). As already mentioned, spiking neurons
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account for the concepts of time, neural and synaptic state explicitly into the model [107].

Input spike
trains

Synaptic
weights

Figure 5.3: Diagram of the mathematical neuronal model. The efficacy of a synapse is modeled in the form of synaptic weights.
Modified from [140].

Two distinct levels of abstraction can be considered within neural modeling:

1. The microscopic level, in which the neuron is modeled by describing the flow of ions through the
channel of the membrane. The Hodgin-Huxley Model [77] is the most relevant example belonging
to this category. This model proposes a set of differential equations capable of delineating the
dynamics of a neuron and proposes, for the first time ever, that this dynamics can be modeled
by means of electric circuits made of capacitors and resistors. The complexity inherent to this
model, however, complicates its usage in large simulations of spiking neurons.

2. The macroscopic or integrate-and-fire models, which treat the neuron as a homogeneous unit that
receives and emits spikes based on some defined internal dynamics. In the upcoming sections,
special focus will be put on these type of models due to their relevance for the present work.

Leaky Integrate-and-Fire model (LIF)

The leaky integrate-and-fire model may be the most well-known model for simulating SNNs efficiently.
Long before the actual mechanisms of action potential generation were understood, the model was
first proposed by Lapicque in 1907 [100]. However, the first person who actually introduced the term
integrate-and-fire was Knight, in [96]. He referred to these models as forgetful, although the term leaky
quickly gained more popularity. Additional discussions on this work can be found in [5] and [26].
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Figure 5.4: (a) Evolution of the potential u for a constant input current I, using the LIF model. As soon as I, vanishes, u = U qg¢-
(b) Dynamics of the LIF model due to a train of presynaptic input spikes. Note that the synapse may be either inhibitory or
excitatory, depending on the sign of the synaptic weights, w;;. Modified from [140].

The LIF model, similarly to the Hogkin-Huxley model, is built upon the idea of an electrical circuit
with a constant capacitor, C, and resistor, R, placed in parallel. This model assumes that the input
channels to the neuron are static and that the shape of the presynaptic train can be neglected, so that
only the firing times are considered relevant. The standard form of the model is shown in Equation 5.2.

de—:f = —u(t) + RI(L), (5.2)

where t,, = RC denotes the membrane time constant. Whenever the membrane potential, u, reaches
a certain threshold, 9, the neuron triggers a spike and u is reset to a resting potential, u,..¢; (see Figure
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5.4). When a LIF neuron is part of a neural network, it is normally stimulated by the activity of its
presynaptic neurons, which results in the synaptic input current illustrated in Equation 5.3.

1(0) = loyn, () = ) wyy Y a(t =) (5.3)
J f

Therefore, the input current of a neuron i corresponds to the weighted sum of over all spikes triggered
by the presynaptic neurons j with firing times t](.f). The efficacy of the synapse from j to i is reflected
on the weights w;;. Finally, the time course of the postsynaptic current, a(-) can be defined in many
different ways: the simplest corresponding to a Dirac pulse, §(x). Additional very interesting information
concerning the LIF model can be found in [61], [28] and [27].

Izhikevich Model

This model, proposed by Izhikevich [85], claims to offer the computational simplicity of the LIF models
while showing the biological feasibility inherent to the Hodgin-Huxley alternative. It reproduces different
spiking behaviors of cortical neurons, by means of the dynamical expressions in Equation 5.4.

dv_ )
a_o.ow +5v+140—u+1 vec

if v=30mV = 5.4
e N S o

dt ’
where v denotes the membrane potential and u corresponds to a membrane recovery variable. a, b, ¢
and d are the model parameters and allow to simulate a myriad of neural characteristics. Concretely,
a is the decay rate of the membrane potential, b the sensitivity of the membrane recovery, c resets v

and d resets u. More information on this model can be found in [87], [86] and [88].

Spike Response Model (SRM)

The SRM [61], which corresponds to a generalization of the LIF model, describes the state of the
membrane potential as an integral over the presynaptic spikes received in the past, without using
differential equations (see Figure 5.5a). Concretely, the state of a neuron is characterized by a single
variable u.

a) u( b) spikes

Spike at / =77.9 T
19 u(r)
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e e
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Figure 5.5: (a) Dynamics of the spike response model (SRM). (b) Evolution of the postsynaptic potential (PSP) of the Thorpe
model. Modified from [140].

The impact of the presynaptic spikes, the shape of the actual postsynaptic spike and its after-
potential, and the external simulation u are described by means of several kernel functions. Specifically,
a spike is fired whenever the state u reaches a certain threshold from below: this is, u(t) = 9 and
% > 0. In this case, however, 9 may vary with respect to the last firing time ; of neuron i; so it does
not necessarily have to be constant. For example, to avoid firing another spiking right after one has
been triggered (in what is known as the refractory period), 9 may be increased. The evolution of u;(t)

can be expressed as

wi(t) = n(t — ) + Z wyj Z eij(t — &t -ty + JO (t = £, ) Loy (¢ — 5)ds, (5.5)
7T
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where u;(t) corresponds to the state variable that describes neuron i at time ¢, £; denotes the last
time when the neuron triggered a spike, w;; represents the synaptic efficacy between neuron j and i
(weights), t](-f) are the firing times of presynaptic neurons j and, finally, n, € and k represent the response
kernel functions. The reset kernel, n, delineates the dynamics of an action potential and becomes non-
null each time a neuron fires. Then, € determines the time evolution of a post-synaptic potential when
the neuron receives an incoming spike. Finally, k defines the linear response of the membrane to an
input current I,,,. Further information about the SRM can be found in [61] and [108].

Thorpe Model

The Thorpe Model [154] is a simplified version of the LIF model which is characterized by lacking
the post-synaptic potential leakage (see Figure 5.5b). Therefore, a neuron’s spike response is only
dependent on the arrival time of the presynaptic spikes. Additionally, the relevance of early spikes
is enhanced, so that these have a higher impact on the postsynaptic potential than later spikes. This
information processing mechanism makes possible that few spikes per neuron are biologically sufficient
to solve a complex task in real time and, therefore, also simulations of large networks. Multiple works
have investigated the applications of the Thorpe Model, for example, in the field of image, speech and
face recognition [40][157][163][41].

5.2.3. Computational cost comparison between different spiking neurons

Since more than a decade ago, several studies on the accuracy and computational cost of different
spiking neuron implementations have been published [87][146], leading to notably different results. This
controversy points out that there is no clear consensus about the implementation capacities of distinct
neuron models and reveals the need for more accurate methodologies to understand such capacities.
In this way, the recently proposed work by Valadez-Godinez [161] attempts to shed some light on the
matter, by performing a very detailed comparative study based on multiobjective optimization theory.
The results obtained by each of these three comparative works are presented on this section both
from a qualitative and quantitative perspective, in order to facilitate the task of choosing one or another
model.

Izhikevich [87]

Skocik [146] \ Valadez-Godinez [161]

1) The model by Hodgin and
Huxley (HH) is prohibitive com-
putationally

2) lzhikevich (1ZH) model is

1) HHT model (HH with tables)
is not prohibitive

2) IZH is not efficient

1) HH model is the most effi-
cient, computationally inexpen-
sive and accurate

2) IZH is the most expensive

as efficient as Leaky-Integrate- and inneficient
and-Fire (LIF)

3) IZH is more efficientthan HH | 3) 1ZH and HHT are similar
regarding their computational

cost

3) I1ZH is not comparable in
computational cost to HHT

4) LIF and HHT are the most in-
nacurate

5) HH is more accurate and in-
expensive than HHT

Table 5.1: Conclusions drawn by the studies [87], [146] and [161] on the qualitative comparison of the efficiency, accuracy and
computational cost of the different neuron models.

First, Table 5.1 presents the qualitative conclusions drawn by each of the aforementioned studies.
From the first line of the table, the notable discrepancies existing among the different comparison
works are tangible. These discrepancies are mainly due to the different methodologies used in order
to perform the comparative study for each case, which are summarized here:

* In [87] only the Forward Euler (FE) numerical method (NM) was used and no metric was defined
to assess the accuracy. Moreover, the time steps to solve the neuron models were arbitrarily
assigned. Finally, the computational cost was only evaluated through floating point operations
per second (FLOPS).
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* In the case of [146], a voltage and frequency error was also included. Additionally, several NMs
and well-defined time steps were compared.

» In [161] an extensive analysis where several firing frequencies, NMs, time steps and metrics were
compared was conducted. Concretely, these were considered:

— Spike Coincidence Factor (SPC): this metric allows to determine whether the spike-timing
in a testing simulation is better against that in a reference simulation. It corresponds to the
number of coincident pulses minus the number of related correspondences divided by the
total spikes in both simulations.

Voltage Coincidence Factor (VCF): this parameter indicates whether the voltage in a testing
simulation is better against that in a reference one.

Computational Cost Factor (CCF): this metric compares the normalized level of computa-
tional cost between a testing and a benchmark simulation.

Global Performance Factor (GPF): this parameter corresponds to the simplest objective
function in the theory of multiobjective optimization. Its mathematical expression corre-

sponds to GPF = %CCF + %SCF + %VCF.

Numerical Methods (NM): the considered NM are Forward Euler (FE), Fourth-order Runge-
Kutta (RK4) and Exponential Euler (EE).

— Time steps (ms): 0.0001, 0.001, 0.01, 0.1 and 1.

5.2.4. Neural encoding

One of the fundamental unknowns in neuroscience is the problem of neuronal coding. This is, given
that the central nervous system is composed of around one trillion (10'?) neurons organized in very
intricate networks [50], how do all these cells communicate between each other? Concretely, it would
be interesting to know what the information contained in the spatio-temporal spike patterns is, how
neurons encode and decode this information and, finally, how we, as observers, can understand these
neural codes to decipher the message hidden in the neuronal activity pattern. Currently, even though
there is no absolute response to all these questions, several useful strategies exist that can help to
answer them partially. In this section, the three most important tools to decrypt the neural language will
be analyzed: rate codes, pulse codes and rank order population encoding.
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Figure 5.6: The spatio-temporal pulse patterns of 30 different neurons (A1 - E6), by [99].

Rate codes

Traditionally, it was assumed that the mean firing rate of a neuron is what carries most of the informa-
tion of a transmission. There is, however, no universal definition for the concept of mean firing rate.
Specifically, three different averaging procedures are considered:

1. Rate as a spike count: the first case corresponds to an average over time. The mean firing
rate, v, is defined as the ratio of the average number of spikes, n,, observed over a predefined
time interval T, so that v = ng,/T. This approach has, however, several shortcomings. Firstly, it
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neglects all the information that is possibly contained in the exact timing of spikes. Secondly, the
processing time would be too high when, in reality, the brain is able to react to external stimulus
in just a couple milliseconds. Hence, this practice could work well in cases where the stimulus
varies slowly and does not require very fast reaction times.

2. Rate as a spike density: this alternative refers to an spiking average of a particular neuron over
several runs of the same experiment. This approach is very useful when there is a large population
of N neurons, so that it is not necessary to measure the outputs of every single unit, but just
those of one unit over N runs of an experiment. However, it is not a realistic approach since, the
decisions of any neural biological system always have to be based on a single run, as it is not
possible to go back in time after a stimulus has occured.

3. Rate as a population activity: finally, the average over several neurons can be computed. In this
case, an idealized network in which each neuron in population n receives inputs from all neurons
in population m is considered. Also, all the neurons belonging to a certain population are assumed
to have identical properties. As stated in [61], the relevant quantity for each receiving neuron in
n is the proportion of active presynaptic neurons in population m. Most of the times, however,
populations are inhomogeneous so that the assumptions made are not valid. If this is the case,
a weighted average over the population should be calculated instead.

Pulse codes

As opposed to rate codes, pulse codes do assume the precise spike time as the information carrier
among neurons. The most popular pulse code strategy is called time-to-first-spike. As its name sug-
gests, this idealized approach assumes that, for each neuron, the timing of the first spike after the
reference signal contains all the information about the new stimulus. Therefore, only one spike per
neuron would suffice to transmit information according to this scheme, so that the number of spikes
would be irrelevant. Even though the time-to-first-spike seems to be an idealization, some studies have
argued that the brain does not have enough time to process more than one spike per neuron on each
step [155].

Rank order coding

A different alternative is to just pay attention to the order in which the neurons fire, rather than the
precise timing of spikes [154]. The main advantage of rank order coding is its high simplicity and lower
computation time when dealing with large networks. An example of this coding mechanism is illustrated
in Figure 5.7a, where the neurons could be thought as transmitting the order ¢ > B > D > A > E. This
corresponds to just one of the 5! orders that can be obtained with 5 neurons.

Rank order population encoding

First proposed by Bohte in [20], the rank order population encoding strategy allows to map vectors of
real-valued elements into a sequence of spikes. This is something very useful when an event-based
sensor is not available to take measurements, which is the case of this work: the radar sensor used
corresponds to a frame-based sensor. It could be thought that this encoding mechanism has some
elements from both pulse and rank order codes. Concretely, [20] states:

[...] we employed an encoding based on arrays of receptive fields. This enables the repre-
sentation of continuously valued input variables by a population of neurons with graded
and overlapping sensitivity profiles, such as Gaussian activation functions (the receptive
fields, RFs). To encode values into a temporal pattern, it is sufficient to associate highly
stimulated neurons with early firing times and less stimulated neurons with later (or no)
firing times, and then the extension to temporal coding is straightforward.

Figure 5.7b illustrates the working principle behind this encoding strategy. For more information on
the mathematical details of this approach, please refer to [20]. Additional interesting information about
rank order population encoding can be found in [41], [125], [156] and [106].
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Figure 5.7: (a) Diagram representing the working principle of rank order coding. Modified from [156]. (b) Diagram illustrating the
logic behind rank order population encoding. Modified from [140].

5.2.5. Learning strategies: synaptic plasticity

According to [10], synaptic plasticity corresponds to “the basic mechanism underlying learning and
memory in biological neural networks”. In the realm of neuromorphic computing, it could be understood
as the increase or decrease of the synaptic connections strength of a neural architecture. This synaptic
strength, also referred to as the efficacy of a synapse, can be represented by the weights w;; already
seen in the Spike Response Model (see Equation 5.5).

Similarly to traditional neural networks, three different learning criterion can be discriminated when
it comes to SNN: unsupervised and supervised learning, and reinforcement learning. Nevertheless, in
the case of SNN, their inherent time dependency, asynchronous information processing and commonly
used recurrent network topologies impair the development of straightforward learning procedures, such
as backpropagation for MLP. This poses a great additional challenge that is still being investigated.

Unsupervised learning
All the existing unsupervised learning methodologies, based on inducing changes in the efficacies of
the synapse, are based on the following postulate, by [45]:

When an axon of cell A is near enough to excite cell B or repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.
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Figure 5.8: (a) Plasticity window characteristic of the STDP rule. (b) lllustration of the remote supervised method (ReSuMe).
Images from [140].

This postulate, known as Hebb’s Law, was first published in Hebb’s famous book The Organization
of Behaviour, and is the main reason why unsupervised learning in the context of SNN is widely referred
to as Hebbian learning.
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Spiking-Timing Dependent Plasticity (STDP) [111] is undoubtedly the most famous Hebbian learning
strategy. Its working principle its based on the correlation that exists between the synaptic efficacy and
the timing of the pre and postactivity of a neuron [16]. Concretely, whenever the presynaptic pulse
arrives to the postsynaptic neuron before it triggers a spike (At = t,,, — tpos: > 0), the connection
is strengthened. Otherwise, it is weakened. The STDP window function, W (At) = W (tpre — tpost),
describes the exact fractional change of the synaptic efficacy or synaptic weight. This is reflected in
Equation 5.6: e ¢
A+ exp pre post

w (tpre - tpost) = T+_

) if tpre < tpost'
t t
pre post .

A_exp _r—> if tyre > tposes

(5.6)

where parameters 7, delineate the temporal range of the pre and postsynaptical time interval, re-
spectively, while A, determine the maximum fractions of synaptic weight modification. All these pa-
rameters must be adjusted depending on the neuron that is to be modeled. Additional information on
STDP learning can be found in [15], [92], [60] and [95].

Supervised learning

To the best of the author’s knowledge, the work by Wang et al. [167] comprises, by far, the most
recent and comprehensive review of the state-of-the-art supervised learning algorithms that have been
applied to SNN learning to this day. According to this work, the supervised learning algorithms for SNNs
developed in recent years, can be divided into different categories:

single layer

network architecture < multilayer feed-forward

recurrent
online learning
offline learning
single-spike learning
spike train learning
learning in fixed SNN structures
learning in evolving SNN structures

running mode{
supervised learning

X
algorithms for SNNs | information encoding {

structural dynamics [

non-knowledge-based learning
learning for knowledge representation

knowledge representation {

Figure 5.9: SNNs supervised learning algorithms classification. Image from [167].

Given the large number of existing supervised learning algorithms for SNN learning depending
on the desired approach (see Figure 5.9), it would be impossible to treat them all. Therefore, this
work focuses on some of the most relevant ones: spike-prop, liquid state machine (LSM) and remote
supervised learning (ReSuMe).

First, a back-propagation algorithm named spike-prop, which is derived from the SRM already dis-
cussed, is suggested in [21] and [20]. Its objective is to learn a collection of desired firing times, t¢, of all
output neurons j for a certain input pattern presented to the network. Equation 5.7 shows the definition
of the error function that is to be minimized (left) with respect to the weights Wikj of each synpatic input

(right):
1 2 dE
E = E Z (tj‘?ut - t;i) , AWij = —T]m, (5.7)
i Y

where t]‘-’”f corresponds to all the obtained network firing times and 7 is the learning rate of the updated
step. The spike-prop algorithm only allows each neuron to fire one spike and is only compatible with
a time-to-first-spike encoding scheme. Several interesting modifications have been introduced in [89],
[142] and [158].
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A notably different algorithm named the liquid state machine (LSM) was introduced in [109]. This
mechanism builds a recurrent SNN where all the network parameters are randomly selected and kept
constant during the simulation, in what is known as the liquid. Then, a supervised learning algorithm
is applied to a set of training samples (x(t),v(t)) in order to train a readout function, f, such that
f(x(t)) are as close as possible to v(t). The most compelling feature of this strategy is its inherent
simplicity, since the readout function corresponds to a single layer of weights only, so that a linear
training mechanism suffices.

The remote supervised method (ReSuMe) proposed in [127], whose goal is to impose a desired
input-output spike pattern on a SNN, corresponds to a particular implementation of the aforementioned
readout function. Its aim is to generate target spike trains as a reaction to some input stimulus. This
methodology is based on the learning window function of the STDP already explained, and its working
principle can be observed in Figure 5.8b. In this case, apart from the presynaptic neuron (input n}c"(i))
and the postsynaptic one (learner nﬁ), an additional neuron, the teacher n‘(i), that is not explicitly
connected to the network but remotely supervises the evolution on the weights wy;, is defined for each
synapse. Concretely, the synaptic weight, wy;, increases whenever the input neuron spikes before than
the teacher does. When the input neuron fires before the learner is activated, wy; decreases. Finally,
functions W4(s%) and W'(s') define the amplitude of the synaptic change. Additional information on
ReSuMe can be found in [127], [128] and [91].

5.2.6. Learning strategies: evolution
The inherent nonlinear and discontinuous mechanisms of SNNs, highly complicate the formulation of
efficient learning algorithms [167]. To address this problem, neuroevolution strategies inspired by the
Darwinian evolutionary laws pose an auspicious alternative for SNN learning [53].

Evolution starts with a population of organisms/agents, and some way of representing their genome.
A way to represent their genome is needed, as the evolution process requires variation; this is, creating
offspring that have a chance of being different from their parents. The way the offspring is variated is by
applying variation operators to their parents’ genomes. For example, by first cloning the parent genome
and then mutating that cloned genome. Another important element that is required is the process
of selection. In biological evolution, the fittest organisms are those who create the most offspring.
Therefore, the ability to create offspring is that which defines the organism’s fitness [144]. The two
main operators used to generate the offspring are mutation and crossover, as showcased in Figure
5.10.

Agent: A

Offspring of B, Agent: D
created through created by
crossover rutating a clone
between agent A of B. Pi mutated

and B,

MNew leaf
x added

New leaf
& added

Figure 5.10: Offspring generation through mutation and crossover. Image from [144].

Some interesting applications of evolutionary training strategies in the real of UAV control include:
a spiking thrust controller which successfully conducts the landing of a MAV by means of the optical
flow divergence from a down-ward looking camera [69]. This constitutes one of the two existing works
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that integrate the SNN controller in a real flying platform, as far as we know. In [46], the previous work
is extended and tested on a neuromorphic processor. Some other evolved SNN controllers have been
applied to MAVs [78][79], but only in simulation.

5.2.7. SNN and their vision- and control-based applications

Learning real-world robot control can be characterized as the optimization of some kind of behavioral
function in an uncertain, complex environment. Reinforcement learning (RL) in combination with ANN
has been one of the most widely used approaches when it comes to solving this type of problems [81].
However, despite the many advantages that, as already discussed, ANN offer, they also pose several
disadvantages. For example, their training is very time consuming and can even take up to several
days for state-of-the-art techniques. Performing calculations with large networks can also become
computationally expensive. Therefore, they require powerful hardware that is incompatible with small
flying robots such as MAVs or blimps, which is the case of this work. The same applies when it comes to
object detection or tracking, image classification and image segmentation tasks. Thus, in this section,
some interesting applications of SNN both in the field of vision and robot control are analyzed, together
with the potential they offer.

Applications of SNN in the realm of vision

Before diving into the details of the multiple applications that SNN have recently shown in the field of
artificial vision perception, the two most important types of existing vision sensors must be analysed:

Frames

t[s]

Events

t[s]

Figure 5.11: Contrast between the output of a frame- and event-based sensor under the stimulus of a black bar moving upwards
over a white background, by [123].

+ First, there is the category of frame-based sensors, which comprise the working principle of most
of the cameras utilized for visual perception. In this case, data is gathered by measuring the
brightness levels of a pixel array at fixed time intervals. Also, the frame rate is uncorrelated from
the dynamics of the visual scene.

* In the case of event-based sensors (e.g. [103]), each of the pixels in the array reacts to brightness
changes in an asynchronous manner in its corresponding receptive field by generating events.
The great precision of these sensors and their low power consumption make them ideal candi-
dates for visual perception tasks. Figure 5.11 illustrates the working principle of the each of these
two categories.

Due to the synchronous nature inherent to ANNs and asynchronous discrete spiking communication
protocol linked to SNN, ANNs have been widely used in conjunction with frame-based strategies and
SNNSs have shown their great potential with event-based sensors. However, none of these two neural
network approaches are restricted to a particular type of sensor.
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Objective Neuron Learning Encoding Work
Learning visual features IF STDP Time-to-first-spike  [112]
Digit recognition LIF STDP Poisson spike train  [44]
Object recognition IF STDP DoG (latency) [94]
Object recognition LIF STDP - [153]

Table 5.2: Examples of image classification based on the STDP learning algorithm.

The dominant learning algorithm in the realm of spike-based image classification is the Spike-Timing
Dependent Plasticity [95] already presented. This algorithm has been successfully utilized for relatively
easy image classification tasks in [112], [44], [94], [153] or [145]. Further details about these implemen-
tation can be found in Table 5.2. SNN-based strategies have also been successfully implemented in
several image segmentation tasks. Some examples include: edge detection [173], color segmentation
[174], corner detection [93], visual attention [172], all built upon a similar conductance based IF neurons
architecture. A different architecture based on the SRM neuron model and Gaussian receptive fields
to convert real values into spikes was used for edge detection and color segmentation in [114].

Robotics control based on learning-inspired SNN

Even though reinforcement learning has successfully been applied in combination with ANN to a myriad
of robot control tasks, it is still an immature strategy when it comes to SNN, as it has only been applied to
a few number of cases. RL inspired approaches to SNN learning are commonly referred to as reward
modulated as the training strategy conflates models of STDP and a global reward signal [54]. The
synaptic weight w changes with the reward R in the R-STDP rule. The elegibility trace of a synapse is
defined as,

. c
¢(T) = _T_ + w(At)6(t — Spre/postcl) (5.8)
c

where c represents the elegibility trace, sy, p0s¢ the time of pre or postsynaptic spikes, C; a constant
coefficient, 7, a time constant of the elegibility trace and §() the Diract delta function. Moreover, Ww(t) =
R(t) x c(t), with R(t) the reward signal. A large variety of algorithms that use this basic learning
structure for learning have been published in the literature. Even though the underlying mechanism is
the same for all of them, the reward can be constructed in several ways: reward specific events [48],
control error minimization (optimization task to minimize an objective function) [35], indirect control error
minimization [55], metric minimization [32] and reinforcement associations [34]. Some of the works that
have recently opted for a combination of RL and SNN include: an extremely simplified version of an
obstacle avoidance task on a real-world MAV [177], a vision-based neuromorphic lane-keeping control
of a two-wheeled small robot [19] and a simulated robot insect simplified control task [35]. A more
detailed list is presented in Table 5.3.

Another extensively used approach lies on the field of neuroevolution. However, most of the suc-
cessful evolved SNN controllers for MAVs have only been achieved in simulated environments [78][79]
or simplistic versions of real-world ground robots [17], except for [69], which manages to integrate the
evolving SNNs in the control loop of a real-world flying robot.

Classical conditioning learning procedures have also been applied to SNN. This kind of learning
pairs a biologically potent stimulus such as food (unconditioned stimulus, US) with a previously neutral
stimulus like a bell (conditioned stimulus, CS). In the end, the neutral stimulus will be able to elicit a
response such as salivation which was previously elicited only by the potent stimulus. Using classical
conditioning for robot control implies building an external controller that provides US for every relevant
state input; something that may not always be feasible.

Some of the most important strategies of robotics control based on learning-inspired spiking neural
networks developed in recent years are illustrated in Table 5.3.
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Table 5.3: Different SNN learning rules applications. Modified from [17].

5.2.8. Simulators and hardware implementations

For the development of novel control strategies based on complex multi-layer SNN, fast processing sim-

ulation environments of these networks, that can handle different types of learning rules and models,
are of great importance. Luckily, the notable growth of SNN applications in neuroscience and engi-

neering have also given rise to many interesting simulation frameworks in recent years. First, to design

and simulate empirically-based models of biological neurons the NEURON' [73] and GENESIS? [24]

framework exist. These environments, however, are not very suitable for large network simulations
where the focus is put on the actual interaction between neurons and not the model itself. For this

purpose, NEST? [62], Brian* [65] or DAMNED [117] are available. Several libraries that have been re-

"https://neuron.yale.edu/neuron/

2http://www.genesis-sim.org/ GENESIS/

3https://www.nest-simulator.org/
“4https://briansimulator.org/
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cently developed also include: SpykeTorch® [118], a PyTorch-based simulator of convolutional spiking
neural networks, in which the neurons emit at most one spike per stimulus; BindsNET® [71], a package
used for simulating SNN on CPUs or GPUs using PyTorch Tensor functionality; or PySNN’, a low-level
framework written on top of PyTorch for efficient simulation of SNNs both on CPU and GPU. Additional
information about tools and strategies for the simulation of SNN can by found in [25].

To accelerate the computation of SNN, several new hardware platforms (neuromorphic ASICs and
ASIPs) have been lately developed simultaneously to the discussed simulation frameworks counter-
parts. The most relevant ones comprise TrueNorth from IBM [115], SpiNNaker from the University
of Manchester [59], ROLLS from INI Zurich [130], Neurogrid from Stanford University [13], Loihi from
Intel [37] and BrainScaleS from European Consortium [138]. More information about state-of-the-art
hardware implementation of SNN can be found in the comprehensive survey [23]. It is worthwhile to
specially highlight Imec’s recent creation: the first recurrent spiking neural network-based chip for radar
signal processing [84].

5.3. Comparison between ANNs and SNNs

Finally, a comparison between the newer spiking neural networks (SNNs) and the traditional artificial
neural networks (ANNSs) is presented in Table 5.4. Concretely, the type of information encoding and
representation, together with the kind computational unit and network simulation, the synaptic plasticity
and learning and the parallel and hardware implementation are contrasted.

Characteristics SNN Traditional ANN
Encoding scheme Temporal encoding Rate encoding
Information representation Spike trains Scalars

Dealing with (spatio)temporal data Excellent Moderate
Neuron model Spiking neuron Artificial neuron
Computation mode Differential equations Activation function
Network simulation Clock- and event-driven  Step-by-step
Plasticity mechanism STDP rule Hebb rule
Designing SL algorithms Various mentalities Loss f. derivative
Parallel computation Massive Moderate
Hardware support Neuromorphic VLSI VLSI

Table 5.4: Comparison between SNN and traditional ANN, from [167].

5https://github.com/miladmozafari/SpykeTorch
Shttps://github.com/BindsNET/bindsnet
"https://github.com/BasBuller/PySNN
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Introduction to the methodology

The methodology and scope of the project can be divided into seven main parts: the review of the ex-
isting literature, the design of the physical blimp platform, the selection and integration of the actuators
and embedded systems into this platform, the signal processing and integration of the radar sensor,
the training of the controllers in simulation the transfer of these controllers to the actual blimp robot and
their evaluation in a real-world environment and, finally, the validation of these results. As the project
progresses, each of these steps will be analyzed and improved in an iterative process. In this way, the
methodology and chronology of the project is summarized as follows:

1. Literature review of the state-of-the-art

First, most of the state-of-the-art works concerning the five main parts of the project are reviewed.
This step allows us to then select the most appropriate methods and computational tools available
for our work. Moreover, it provides us with a clear idea of what already exists and the opportuni-
ties for new contributions. From this literature review we see that, even though most SNN-based
controllers for flying robots have excelled in simulated environments, they have not been evalu-
ated in a real-world setup. Furthermore, to the best of the author’s knowledge, no works have
quantitatively evaluated and compared the performance of an SNN-based controller with other
more traditional approaches, such as an ANN or a PID, again, in reality. Finally, few works involv-
ing airships have worked with gondolas that are versatile and light-weight enough to be mounted
on commercially available envelopes and, therefore, the total cost of the platform remains notably
high.

2. Airship design

The robot for the project has been designed from scratch. This involves everything from the
selection of the envelope, all the electronic components, the design of an appropriate gondola
frame, the low-level programming of every single pin and component to achieve an appropriate
software integration, the development of a teleoperation package that would allow for an easy
and intuitive manual control of the blimp, and the appropriate mechanical integration such that the
airship would move around as desired, based on the software packages generated. Concretely,
the design of the gondola follows an iterative process, until its versatility and weight reaches the
desired value, without compromising its durability and strength, to allow for an appropriate control
of the plant. Therefore, an initial gondola is developed taking inspiration in some additional works.
Then, this designed is progressively improved until a satisfying final prototype is created. This is
then 3D printed and attached to the envelope for further testing.

3. Components and actuators selection, and their integration
The selection of the appropriate actuators for the project has mainly been done by taking inspi-
ration in [49] and [66]. Moreover, the main focus has been to minimize the weight and size of
the components as much as possible, while keeping the price low, and still allowing for a de-
cently accurate control of the platform. Once all the components were selected, their integration
has been performed within the Robot Operating System (ROS) [131] framework. Concretely, the
WiringPi library is used to control the speed of the DC motors by means of a hardware PWM
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signal using C++, and the pigpio library is used for the control of the servomotor angle via a
software PWM signal, in Python.

. Radar sensor

The short-range Infineron Position2Go radar sensor is the only sensor that is mounted on the
airship. At the time of starting the project, a range-Doppler algorithm that provides measurements
of the range, speed and angle of detected targets is already fully functional. This algorithm,
however, is implemented in OpenFrameworks and needs to be transferred to ROS. Moreover, an
adequate filtering of the received signal is performed. For this, a Median Filter that takes care
of removing possible outliers is implemented, together with several moving average (MA) filters
that smooth the received signal. The performance of the latter alternative is evaluated on several
sets of measurements to choose the option that best suits the requirements of our work.

. Training in a simulated environment

The training of the controllers takes place in simulation. Moreover, given the inherent time depen-
dency and asynchronous information processing that is inherent to SNNs, no standard training
algorithms such as the equivalent of backpropagation for ANNs have been yet developed. To
solve this learning problem, we select an evolutionary training strategy to train the neurocon-
trollers offline. This approach applies the Darwinian evolutionary principles of mutation. There-
fore, a random population of neurocontrollers (individuals) is generated, and their performance
(fitness) evaluated on a certain set of altitudes. Then the parameters of a certain percentage of
individuals are mutated over a number of generations and their performance is reassesed. The
idea is that only the strongest individuals, this is, those with the best fitness, will survive over
the generations. In this case, the fitness is quantified as the root mean squared error (RMSE)
between the desired altitude that we wish to attain and the current altitude of the blimp. Further-
more, to perform these computations in simulation, a model of the airship is generated and added
to the loop.

. Transfer to reality

Once the neurocontrollers have been evolved in simulation and we have selected the best per-
forming individuals for both cases -ANN, and SNN-, these are transferred to the actual airship.
Inevitably, every time that we migrate a controller from a simulated environment to the actual plat-
form, a reality gap will exist, due to the mismatch between the working conditions in simulation
and reality. For example, (1) the model of the airship is an approximation of the true blimp, which
cannot perfectly account for its (nonlinear) dynamics; (2) the noise generated by the radar cannot
be perfectly modeled computationally; (3) the temperature and amount of helium in the airship
moderately vary over time, slightly affecting the amount of lift generated; (4) or the wind distur-
bances present in the testing arena, which are not accounted for in simulation. This implies that
the results obtained in simulation will defer from those that are observed when testing the setup in
the real-world environment. Therefore, we first perform the transfer crudely, to assess how large
this difference is, without any additional tools that can help reduce this mismatch. At this point,
we evaluate whether the airship can still follow the altitude setpoints marked. In this case, we
observe that the blimp is able do this, but with the presence of some undesired oscillations. To
minimize this effect, we propose a procedure to dampen the oscillations observed with the neuro-
controllers, by adding a parallel PD controller tuned in reality which does not have a contribution
larger than a certain value that we set. This parallel PD can partially take care of the reality gap
thanks to the fact that it is directly tuned on-site, complementing the main neurocontroller which
has been fully developed computationally.

. Validation of the results

To validate the results, a quantitative comparison among the SNN, ANN and PID controller is
conducted. Mainly, the accuracy and control effort are contrasted. This is, how precisely the
blimp can follow the altitude waypoints, together with how energy efficient each of the controllers
are, in terms of the absolute magnitude of the motor command generated over time. To assess
this, multiple test flights are performed in the CyberZoo flight arena of the MAVLab, at TU Delft.
The desired and measured altitude (both with the OptiTrack motion capture system and the radar),
together with the motor commands send to the airship are recorded and analyzed.
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This chapter provided a overview of the project methodology, by briefly discussing each part of the
work separately. In the upcoming chapters of Part lll, a more detailed description of each of these parts
is provided, to gain further insight into the followed methodology. Therefore, the reader that seeks for
more in-depth explanations to those given in the present introduction or the scientific paper enclosed
in Part I, is encouraged to move to the part of interest for further details.

Finally, a Gantt chart providing a view of the tasks to be completed scheduled over time is illustrated
in Figure 1, in the Appendix.






Airship design and assembly

The development of a low-cost airship capable of operating autonomously in indoor environments is
a fundamental piece of the puzzle for the present work. With the proposed design, we push forward
the state-of-the-art by designing a 3D-printable, low-cost, versatile, light-weight and open-source blimp
platform with a reduced number of actuators. The developed platform can be easily reproduced and
adapted for different project applications by adding and/or modifying the on board sensors. Moreover,
its ease of use and generalization properties make it ideal for robotics research.

Therefore, a detailed explanation of the blimp’s design process is delineated in the present chapter.
First, Section 7.1 describes the electronics used, together with their cost, the different parts of the
gondola and their design, the total weight of the airship and the schematics of the final assembly.
Then, Section 7.2 explains and contrasts the evolution between the first and final gondola prototypes.
Finally, Section 7.3 focuses on the altitude ranging sensor specifically, by presenting its specifications
and the signal processing algorithms utilized.

7.1. Blimp envelope and electronic components selection

7.1.1. Specifications and costs

The gondola can be 3D printed and is assembled in a modular fashion. Its open configuration makes it
notably versatile, leaving room for the selection of custom actuators and sensors, which can be easily
interchanged. Moreover, it merely uses one low-power micro servomotor and two coreless DC motors
to achieve the three main motion primitives: forward, upward/downward, and yaw motion. The DC
motors are accommodated on both ends of the rotary shaft, which is controlled by the servo. The
rotation starts at 0°(upward movement) and can go up to 180°(downward movement). The thrust of
each of the propellers can be controlled independently, to achieve the desired yaw. Finally, we attach
the gondola to the airship by means of Velcro strips places on the top four hitches. Figures 7.1a and
7.1b present the gondola and its different components, and a simple scheme showcasing the effect of
the shaft rotation on the global configuration, for better visualization, respectively.
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(b) Skeleton view of the gondola, showcasing the rotary shaft mechanism.

Figure 7.1: Scheme of the proposed gondola design.

Table 7.1 presents the different components used and their cost. Adding up this prices and including
that of the envelope, which is if ~ $20, makes a total of ~ $70 to build the entire flying robot. The
radar is not taken into account in this calculation, as it can be easily replaced by some other more
affordable sensors, depending on the application. Moreover, concerning the envelope’s material we
select Microfoil due to its high helium retention properties [66]. The model selected is the one that
provides the largest achievable payload (~ 150g) among the commercially available micro blimps, to
the best of our knowledge, while maintaining a low price. Figure 7.2 shows the final airship configuration
with the chosen envelope and the 3D printed gondola attached to it via three Velcro strips.

Reference Name Quantity | Price [$]

A Raspberry Pi W Zero 1 10.00
B Infineon Radar Position2Go 1 -

— DRV8833 Motor Driver 1 4.95
C Sub-micro Servo SG51R 1 5.95
D 8520 Coreless Motor 2 8.00
E PowerBoost 500 Basic 1 9.95
F 550mA 3.8V Li-Po Battery 1 7.95

Table 7.1: Airship components (Figure 7.1)

Figure 7.2: Blimp’s Microfoil envelope with the gondola attached.

To perform the computations on board and integrate the different components, the Robot Operating
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System (ROS) [131] framework is used. The Raspberry Pi Zero W, running the Raspbian Lite operating
system, acts as the central control and communication unit. The blimp can be manually controlled from
the ground computer through the provided teleoperation package. The total weight of the different parts
of the platform is presented in Table 7.2.

Frame [g] Components [g] Envelope [g] Helium [g] | Total [g]
9 64 54 20 147

Table 7.2: Weights of the different airship’s parts.
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7.1.2. Assembly schematics

The sensor and electronic components shown in Table 7.1 are chosen to provide complete functionality
while requiring low currents. The Li-Po battery is selected to be lightweight (~ 10g), with a capacity of
500 mAh, which allows for a total of 20—30 min of operating flight time. The Infineon Radar Position2Go
is chosen as the one and only sensor carried on-board, providing the altitude measurements (see
Section 7.3 for more details).
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(a) Abstracted electronic component’s assembly schematics.
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(b) Realistic scheme showing the connections among the different components.

Figure 7.3: Proposed assembly schematics.

Figure 7.3 shows the complete assembly schematics with all the different components and the way
in which they are interconnected. Concretely, Figure 7.3a presents the connections and pin names
in a detailed way, while Figure 7.3b displays the same scheme in a more realistic fashion, for better
visualization. Following these pictures, we can see that the 500 mAh battery supplies current to the
PowerBoost 500 Basic step-up voltage regulator. The latter feeds the Raspberry Pi Zero W at 5V and
the DRV 8833 motor driver, which allows for the control of the DC motors’ turning velocity. Specifically,
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the speed of these motors is regulated by means of the two hardware PWM pins GPI019 [PWMO0] and
GPI012 [PWM1]. Thus, the larger the duty cycle of the hardware PWM signal, the faster the motors
will spin. Then, the servomotor is directly connected to the RPi through the GPIO17 and controlled
through a software PWM signal via the pigpio Python library.

7.2. Gondola 3D design

The design of the gondola frame and configuration followed an iterative process. First, an initial proto-
type was built by taking inspiration in two interesting works from the literature [66][49]. This first concept,
nevertheless, turned out to be too heavy, large and non versatile. Therefore, this initial structure was
iteratively optimized by minimizing its weight while keeping its sturdiness, and maximizing its versatility.
The versatility property refers to the ease with which the gondola can be adapted to different applica-
tions by adding or modifying its components. These characteristics, as it will be seen in the upcoming
section, make the proposed airship design ideal for robotics research.

7.2.1. Preliminary design: first prototype

Figure 7.5 presents a detailed 3D view of the first prototype’s gondola frame, together with a top,
side and bottom perspectives of the complete structure and its components. To obtain this concept,
inspiration on the design was mainly taken from [49]. This configuration has a total span of 30cm and
weight of 162g with all cables and electronics. Given that the maximum lift that the balloon can provide
is of 150g, reducing some weight became fundamental, to obtain an equilibrium of forces in the vertical
direction of the airship.

13 cm

30 cm

Figure 7.4: First prototype gondola configuration and different views.



62 7. Airship design and assembly

7.2.2. Definitive gondola

Figure 7.5 shows the final configuration of the gondola, also via a 3D perspective of the frame, and the
three main views of the global structure: top, side and bottom. The span of the new design is of 25cm
and its total weight of 147g. Therefore, we managed to recover a total of 17g by optimizing the main
frame, the top attachment and the diameter of the shaft.

10 cm

K u |
-

25 cm

Figure 7.5: Final prototype gondola configuration and different views.

A clear contrast between the initial and final gondola frames is showcased in Figure 7.6. From this
image, the diminution in both length and width becomes obvious but, more importantly, the notable
reduction in the amount of material used (PLA).

Figure 7.6: Size comparison between the first and definitive gondola frame designs.

From the definitive design, we see that the Raspberry Pi Zero W is placed at the front of the frame.
Then comes the microservo which, as it was already explained at the beginning of the section, makes
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the shaft rotate (from 0°to 180°) thanks to a two-gear mechanism, which is also 3D printed. At the end
of the rotary shaft, two cases hold the DC motors, to which the two propellers are attached. At the
rear end, the step-up voltage regulator and the Li-Po battery that act as the power supply for the rest
of components are located. The DRV8833 that controls the motors is not shown in the scheme. At
the top, four hinges that allow to attach the gondola to the blimp’s envelope by means for Velcro strips
provide closure to the structure. Only the radar sensor is placed at the bottom, leaving enough space,
so that the frame itself does not add noise to the altitude signal measurements. The radar, however,
can also just be directly attached to the airship, also via a Velcro strip. As it can be observed, the
different parts are mounted like a puzzle, in a convenient modular configuration.

(a) Front view. (b) Rear view.

Figure 7.7: Definitive gondola mounted in reality.

Figure 7.7 displays the real gondola, once it is already mounted, with all electronic components
and the cables soldered. Thus, we propose a light-weight and compact, modular, and simple gondola
design, very convenient for the present application; but versatile enough so that it can easily be gen-
eralized for other projects with different sensors and/or actuators. Moreover, the proposed design is
open-source https://github.com/tudelft/blimp snn, and ideal for robotics research.

7.3. Airborne radar

7.3.1. Sensor specifications

The Position2Go - XENSIV 24GHz fast chirp FMCW radar module from Infineon for ranging, movement
and target position estimation is used in this work. This platform has one transmitter (TX) and two
receiver antennas (RX). Figure 7.8 illustrates the Position2Go platform and its main components. Table
7.3 summarizes some of the most important system specifications. Concretely, the board is capable of
generating a 2D range-Doppler map to estimate the distance and velocity of targets. Moreover, the fact
that it has two receiving antennas allows it to determine the angle of arrival (AoA) thanks to a phase
monopulse comparison technique, as already explained in 3.2.3.
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Speed [km/h] | Distance [m] Range [cm]
Min.  Max. Min. Max. | Accuracy Resolution | Field of View [°]
0 36 | 06 15 | 20 90 \ 19x76

Table 7.3: Position2Go module performance specifications.
The values in Table 7.3 have been taken from the Infineon Position2Go specifications sheet.2

7.3.2. Signal processing and filtering

To process the measurements from the radar, a median filter (MF) is applied to remove possible outliers,
and a moving average (MA) filter is used to smooth out the signal. The first option considered is that
shown in Figure 7.9a where, first, a MF is applied over a first window -of size 13 points, in this example-
. Basically, each of the measurement samples belonging to that window are first sorted out from the
smallest to the largest obtained value, and that corresponding to the median is selected. Therefore,
by choosing an appropriate size, the outliers will stay at the window extremes and not be considered.
Then, a linear MA filter of size 2 is applied. From this figure, however, we can see that applying each
of the filters sequentially does not seem to be the best option, as it increments the amount of delay
present in the filtered signal.

Median Filter (MF) -> Moving Average (MA) Median Filter (MF) + Moving Average (MA)
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(a) MF followed by MA filters, sequentially. (b) MF and MA filters, applied simultaneously.

Figure 7.9: Exemplification of the radar’s signal processing filters.

Therefore, to diminish the delay that is inherently generated when filtering the signal, a second and
preferred option is to use the procedure showcased in Figure 7.9b. This is, to apply the MF and MA
filters simultaneously. Therefore, in this example case, a first window of size 13 samples (Wyr = 13)
is sorted and, from this set of points, a MA is performed over the points in the central part, such that
the outliers are, again, not selected (the subwindow size is now 7, Wy, = 7). Figure 7.9 is just shown,
however, as an example. The window size chosen for our particular case is: Wy = 15 and Wy, = 9,
after showing these values the best results.

Regarding the specific type of MA filter, two alternatives have been considered: applying a lin-
ear moving average (LMA) or an exponential moving average (EMA) filter. Equation 7.1 shows the
mathematical expression for the LMA:

1 n
hrieln] = ~ Z h[n — k], (7.1)
k=0

with n, the total number of samples in the filtering window.
Then, the difference equation of an EMA filter corresponds to:

hrie[n] = ah[n] + (1 = @hsye[n - 1] (7.2)

thtps://www.infineon.com/cms/en/product/evaluationfboards/demofpositionZgo/
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In Equation 7.2, hg;;¢[n] is the current output, hg;[n — 1] is the previous output, and h[n] is the
current input (the current non-filtered altitude measurement); « is a number between 0 and 1. If @ = 1,
the output is just equal to the input, and no filtering takes place. Moreover, the filter is called expo-
nential, because the weighting factor of previous inputs decreases exponentially. This can be easily
demonstrated by substituting the previous outputs, as shown in Equation 7.3:

hgiie[n] = ah[n] + (1 — a)hgye[n — 1]
ah[n] + (1 — a)(ah[n — 1]+ (1 — a)hsy[n — 2])
ahn]+ (1 —a)(ah[n—1]+ (1 —a)(ah[n—2] + (1 — a)hfilt[n -3D)

(7.3)

aZ(l—a)"h [n— k]

k=0

Some results of the final filtered signal obtained after applying the MF together with the LMA and
EMA filters are shown in Figure 7.10. In example #1 we observe how the MF takes care of removing
the outliers that appear between the 90 and 100 seconds. From 82 to 88 there is a mismatch between

the ground truth signal and that measured by the radar, but this is due to the resolution of the sensor,
which is of 20 cm.
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Figure 7.10: Results of the filtered signal for both the LMA and EMA cases on two real test flights.
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measured via OptiTrack.

To select the final filter used in this work, a boxplot of the absolute errors obtained for each of the
alternatives is generated, as shown in Figure 7.11. Here we see that the simultaneous application of a
MF and an EMA filters is best and, therefore, this is the final option selected.






Altitude controller

The training of the neural networks (both the spiking, SNN, and non-spipking, ANN) takes place in a
simulated environment. Moreover, a model of the airship is generated to evaluate the performance of
the controllers in simulation. The next two sections explain these parts of the project in further detail,
to complement the discussions already provided in the scientific paper of Part I.

8.1. Simulation framework

As explained in Chapter 6, an evolutionary strategy is selected to train the neurocontrollers in simula-
tion. This is done by means of the Distributed Evolutionary Algorithms in Python (DEAP) [56] frame-
work. The PyTorch and PySNN [30] libraries are used to define the architectures of the ANN and SNN,
respectively. Moreover, Algorithm 1 shows the step-by-step procedure that is followed to train the
networks.

Algorithm 1 Evolutionary algorithm

Require: initialize(population)
Ensure: size(population) ==
evaluate(offspring)
for g in range(ngen) do
offspring = select(population, size(population))
offspring = mutate(offspring, pihyue, Povut)
evaluate(offspring)
population = offspring
end for

The first step is to randomly initialize a population of neurocontrollers of size N. Then, a first eval-
uation of this set of individuals is performed. Later, for each generation in a total set number of ngen
generations: 1) the offspring -with the same size as the population, N- is first generated following a ran-
domized tournament selection (more details later, in Algorithm 2); 2) each of the offspring individuals
mutates with a probability p,(,ﬁzt and, each of the parameters of the mutated individuals, mutates with a
probability p,(n";)t; 3) a fitness is assigned to each offspring individual by evaluating its performance in a
simulated altitude following task (see Algorithm 3); finally, this offspring becomes the new population.

Algorithm 2 Random selection tournament

while i <N do
aspirants = selectRandom(population, M)
chosen «—append: max(aspirants, fitness)
i+=1

end while
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The procedure for generating the new offspring each generation, by selecting individuals from the
population is presented in Algorithm 2. Therefore, for a total amount of N times, which corresponds
to the size of the population (this is, so that size(offspring)=size(population) at all times): 1) a total
of M individuals are randomly selected from the population; 2) then, the best of this M individuals, or
aspirants, is kept by choosing the one with the maximum fitness; 3) as said before, this is done for a
total of N times. Finally, the evaluation procedure to compute the performance or fitness is showcased

Algorithm 3 Fitness evaluation function

heyrr = H
for h,.f in hy;s do
while t < T do
err = hTef - hcurr
u = controller(err)
heyrr = model(u)
heurr+ = random.uniform(noise)
e Tarray < append: err
end while
end for
RMSE = rmse_calculation(erry,rqy)
fitness = RMSE

in Algorithm 3. The first step is to set an initial altitude, H, at which the simulation will start. Then, for
every desired altitude h,.. in the total list of altitudes we want to evaluate and while the simulation time,
t, is smaller than the maximum, T: 1) compute the error, which takes into account the sign, depending
on whether we would like to go up, err > 0, or down, err < 0; 2) feed this error to the controller (ANN
or SNN, in this case) to obtain the motor command, u; 3) compute the new altitude of the blimp, h.yr
using the developed model of the plant (see Section 8.2 for more details); 4) add some noise to the
altitude signal to increase the robustness; 5) save the current error in an error array and repeat for all
timestamps and altitudes; 6) finally, compute the RMSE of this array of errors. The fitness corresponds
to the RMSE.

8.2. Model of the plant

To train the neurocontrollers in simulation, a data-driven model of the blimp was generated.
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Figure 8.1: Contrast between the real and simulated altitude of the blimp, by taking as input identical motor commands,
corresponding to the airship’s manual teleoperation from a ground computer.
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The scientific article in Part | already dives into some detailed explanations regarding the generation
on the model. In this section, however, we provide some more visual examples on its performance.
Figure 8.1 shows four test flight examples that contrast the ground truth altitude recorded in the Cyber-
Zoo flight arena through manual teleoperation of the platform, and the simulated heights obtained via
the developed model.

The procedure followed to determine the mathematical shape of the model’s transfer function is
showcased next. The objective is to obtain a mapping between the motor commands provided by the
controller and the blimp’s altitude over time. For that, we assume that the blimp’s acceleration at the
k-th time step, hy, is proportional to the voltage applied to the motors, u, as:

hy = Z AiUp—i (8.1)
l
where gq; is the proportionality constant for the motor command at time instant k — i. Nevertheless,
the relation between h and u cannot be directly inferred, given that the radar sensor cannot directly
measure accelerations. By taking Euler’s discretization of the derivative we can, however, express
this relation in terms of the measured altitude and, finally, obtain the transfer function of the model by
applying some simple mathematical operations, as seen in Equation 8.3.

Hk = hk - hk—l = Z AjUp—i

i

(hk — hk—l) - (hk—l - hk—z) = Z AjUg—; (82)
i
h(1-2z1+22%)= ) az7lu
2

izt
h= 1—2z1+22%
The expression that is explicitly used in the evaluation function, during the simulated evolution, can
be obtained after slightly manipulating the previous equations. Moreover, experimentally, we end up
obtaining a model of order two. Following all this, we get:

(8.3)

(hx = hg—1) — (hg—1 — hy—2) = aug_q + by, - (8.4)
hk = th_1 - hk—Z + auy_q + buk_z (85)
hk = hk—l + ]:lk—l + aAug_1 + buk_z (86)

Therefore, Equation 8.6 is the one used to compute the new values of the current altitude, h_,, or
h;, and evaluate the performance of the individuals. This equation, requires some initial conditions (for
k = 0), which are set to: h_; = H, with H any initial desired altitude decide; h_, = 0, no initial velocity,
u_, = u_, = 0, initial motor commands with a value of zero.






Discussion of experiments

The present chapter delineates the ROS architecture designed for the autonomous operation of the
blimp with all of the proposed controllers, together with providing some further insight into the results
presented in Part |, and the considered methodologies to ameliorate the reality gap.

9.1. Experimental setup with ROS

To perform the experiments, a suitable ROS architecture in which the all the different electronics -
comprising the sensor, microcontroller, actuators, voltage regulator, driver, and battery- are appropri-
ately integrated is proposed. A summary of this architecture explaining how the different parts are
interconnected is showcased in the scheme of Figure 9.1.

g&. Radar Driver Keyboard input
Radar Desired
Measurements Altitude

-

——— DC motors @

Y Radar Filter o £)
ﬁﬁt}\-t
v ol

——® Servomotor

Filtered Signal ——» Controller —® Motor
Commands
OptiTrack —— Ground Truth p 2 » ROSRecord

Figure 9.1: ROS architecture. Color orange represents the radar sensor; blue, the ground computer; green, the Raspberry Pi
Zero W; yellow, the OptiTrack Motion Capture system.

First, the Radar Driver node, corresponds to the short-range 24 GHz FMCW radar sensor. From
the Raspberry Pi Zero W, we launch this radar node, which publishes the raw and unfiltered range
measurements in the Radar Measurements topic. Then, the median and moving average filters ex-
plained in Subsection 7.3.2 are launched within the Radar Filter node which, therefore, takes care of
the altitude signal processing part. The filtered values of the altitude are then published into the Filtered
Signal topic. Next, the controller -which, in this case, can correspond to a PID, ANN or SNN- gets the
reference or desired altitude that we would like to achieve from the Desired Altitude topic, and the cur-
rent height from the Filtered Signal topic. The desired altitude is set directly from a ground computer’s
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72 9. Discussion of experiments

keyboard, which is connected to the Raspberry Pi via a Secure Shell (SHH) connection. The Keyboard
Input node takes care of this. Finally, the controller publishes the motor commands in the shape of
voltages, into the Motor Commands topic, which is read by the DC motors and Servomotor nodes,
that move the actuators. In parallel, the true range measurements from the OptiTrack Moption Capture
system are published to the Ground Truth topic. As we can see, this part is not directly connected to
any other node/topic in the main pipeline, since it is only used in the post-processing, for validation of
the results. Lastly, all the messages or information published to the topics just discussed are recorded
from a Rosbag Record node launched and saved directly to the ground computer. This is also used
later for further analysis and/or post-processing.

9.2. Results and comparison

When transferring the controllers from the simulated environment to the actual airship, we will observe
a mismatch commonly referred to as the [139][69][46]. How large or small this mismatch is depends
mainly on how well we can replicate the real-world conditions in simulation. In our case, this gap causes
the blimp to show an oscillatory behavior around the desired altitude. A good approach to ameliorate
this undesired behavior, based on its success on previous works [139], would be that presented in
Figure 9.2.

href + [ T + u
SNN PI Plant

o= _
curr Ameasured

Figure 9.2: Strategy #1 for reducing the reality gap: sequential PI.

Y

According to this scheme, the output of the neurocontroller would directly correspond to the thrust,
T [m/s?], that must be applied to the blimp so that it follows the altitude setpoints. Then, with the
acceleration measurements carried on-board the airship, a Pl controller would eliminate the existing
mismatch between the applied thrust and the actual detected acceleration, to finally send the appro-
priate motor command, u, to the robot. This solution, however, is not feasible in our work. The reason
for this is that we are not carrying an accelerometer on-board and, therefore, the output of the neuro-
controller cannot directly correspond to the thrust, T. Based on this, a second alternative is proposed
in Figure 9.3.
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Figure 9.3: Strategy #2 for reducing the reality gap: scaling constant, c.

This case assumes that the oscillatory behavior of the blimp is caused by the motor commands
given by the neurocontroller being either too large or too small. Therefore, a scaling constant |¢| < 1 or
|c] > 1, respectively, is proposed to counteract this effect. After testing it in reality, however, the reality
gap increases. The reason for this is that u is not necessarily always too large or small, but it does not
adapt perfectly well when the blimp gets very close to the desired height, because of certain phenomena
occurring in reality that is not accounted for in simulation: the delay inherent to the actuators, the
nonlinearities not accounted for in the linear model, the behavior of the radar signal not being perfectly
modelled, the slight wind disturbances present in the flight arena, etc. Based on the insight gained by
considering these two options, one final alternative to reduce the reality gap is proposed, as shown in
Figure 9.4.
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Figure 9.4: Strategy #3 for reducing the reality gap: parallel PD.

In this case, a PD controller directly tuned with in reality is added in parallel to the neurocontroller.
The fact that its gains are tuned in reality, allows this block to improve the behavior of the airship when
it approaches the altitude waypoints by accounting for the aforementioned reality phenomena that was
not simulated when evolving the neurocontrollers. The PD gains, however, are chosen to be small
such that its contribution to the total motor command can assure that the ANN/SNN is still the main
contributor by far. In our case, the total PD contribution to the motor command, u, is of 16%. The
difference between the results obtained without and with the parallel PID for the case of a SNN and an
ANN controller, are showcased in Figure 9.5. This approach allows for an improvement that goes from
a RMSE of 38 cm and 36 cm for the case of the SNN and ANN, respectively, to 27 cm for both cases.
This is, even though the oscillations are still present, a total error reduction of a 29% for the SNN and
25% for the ANN is achieved.
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Figure 9.5: Contrast between the results with, h4, and without, hg, the reality gap reduction strategy.
Moreover, the results obtained for both the ANN and SNN for several runs on a different set of

altitudes to those thoroughly analyzed in the scientific paper of Part | are presented in Figure 9.6,
proving the robustness of the control method.
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Figure 9.6: Results of the neurocontrollers on the altitude setpoints [1, 3,2] m.
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An example of what the filtered radar signal, following the procedure delineated in Section 7.3.2
looks like is presented in Figure 9.7. Concretely, on the left we see the results for the altitude control
with the SNN controller and its motor commands and, on the right, we show the contrast between
the measured heights with the radar, on which the SNN relies, and the true altitude measured via the
OptiTrack Motion Capture system. We can see how, after applying the median and exponential moving
average filters, the measured signal accurately follows the ground truth altitude most of the time. Also,
because of the radar resolution being of around ~ 20 cm, sometimes the measurements jump slightly
more, showing some differences with OptiTrack; although there are no major outliers or remarkable
contrasts between the two.
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(a) SNN ground truth altitude and motor commands, u. (b) Contrast between the ground truth and measured h.

Figure 9.7: SNN results for h = [3,2,1]m zoomed in.

As explained in Part I, the decoding of the network is performed by means of a non-spiking neuron
endowed with a tanh (hyperbolic tangent) activation function, whose weights are also evolved during
simulation. Before this strategy would work, a different one based on a population decoding type of
scheme was implemented, that would convert the spikes back to a real number, corresponding to the
motor command, u
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(a) Example run #1 with u = [-2,0,2]V. (b) Example run #2 with u = [-2.5,0, 2.5]V.

Figure 9.8: SNN control via a population decoding strategy.

Figure 9.8 show the experimental results for two SNN evolved in simulation with 3 output neurons.
Each of these neurons outputs a discrete value of the motor command voltage, u, every time they fire.
For example, on the left, when the first neuron fires it provides 2V to the DC motors and, when the
middle or last one do, they output 0 and -2V, respectively.

From this image, we can see that the results obtained via the population decoding strategy are poor
and do not allow for a reality gap reduction. This is what we would expect, since the mismatch between
simulation and reality comes from other sources in the control loop (for example, the linear model, the
delay inherent to the actuators, and more, as already explained before). Moreover, allowing only for a
certain amount of discrete values of u, makes the control more inflexible and abrupt as we approach
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the reference altitudes. Some other population decoding schemes with more output neurons were
tested allowing, thus, for additional discrete values. However, the performance of these controllers still
stands far away to the one proposed in the scientific article (the ANN tanh neuron at the end) due to
the non-continuous nature of the output. Moreover, the more neurons we add at the end, the more
parameters will have to evolve and, therefore, the more complex the network will be.

Finally, the complete set of results for both simulation and reality, for the three considered types of
controllers -SNN, ANN and PID- are showcased in Figure 9.9.
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Figure 9.9: Experimental evaluation of the considered controllers. For all three subfigures, at the bottom we have the motor
commands, and on top, the evolution of the blimp’s ground altitude h,.4 and simulated altitude hg;,,, compared with the reference
h.ef. (@) u refers to the motor command, and ugme0 is Obtained after smoothing it with a moving average. (b) uany stands for
the output of the evolved controller, upp to the contribution of the PD parallel controller, and u;y¢q; = Uann + Upp- (€) Analogous
to the ANN controller.
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Conclusions

Despite the recent advancements, micro air vehicles (MAVSs) still face the challenge of carrying on-
board the complex controllers required to achieve autonomous flight operation. Spiking neural networks
(SNNs) are arising as a promising paradigm, allowing for an efficient control while keeping the learning
capabilities of classical networks. This work proposes an evolved altitude controller based on a SNN
for a micro-robotic airship and its comparison with a non-spiking artificial neural network and a linear
PID. The main contributions of this work are presented in the scientific article in Part I. This first part
proves the advantages offered by the SNN controller in terms of the invested control effort. Then, in
Part Il we conduct a literature study of the relevant state-of-the-art, to provide the necessary theoretical
background and contextualize our work. Finally, in Part Il a detailed review of the methodology used to
develop our work and accomplish the results presented is performed. More concretely, in this work we
start by presenting an open-source design of a lightweight airship that easily customizes its on-board
components. Then, we develop a SNN controller trained through an evolutionary strategy on a model-
based simulation environment, which relies solely on the sensory feedback provided by an airborne
radar sensor. Finally, we evaluate the system’s performance in real-world experiments, comparing it
with a standard PID and an artificial neural network. The results show that our novel SNN controller
achieves a satisfactory performance with a low control effort. Our strategy can therefore be used to
efficiently control the altitude of an airship equipped solely with a ranging sensor, and performing all
the computations on-board.

10.1. Recommendations for future research

Following the methodology described in this report, the main thesis objective is successfully accom-
plished. However, the restricted timeline of the project, allows to tackle mainly the critical elements
of the research objective. Therefore, certain parts offer room for further research that would allow for
more accurate results and general improvements. This section provides some recommendations and
guidelines for future research.

First and foremost, the area of the project that deserves more attention has to do with the reduction
of the reality gap (RG), which appears when transferring the evolved controllers to the actual platform.
This is because, as we can infer from the results, the behavior of the blimp continues to show some
oscillations, even after applying the RG reduction procedure proposed in Chapter 9. Some recommen-
dations for further research with the aim of palliating this RG are:

1. Modify the selected RG reduction strategy: parallel PD

To alleviate the effects of the RG, the current strategy consists in adding a parallel PD controller
to the ANN or SNN blocks such that the total motor command obtained corresponds to u [V] =
uyy + Upp, as explained in Section 9.2. This solution, however, is not ideal as, preferably, the
linear controller should be added sequentially, as also proposed in the aforenamed section. As
already analyzed, we currently are unable to do this, as we do not carry a sensor that allows us
to directly measure the acceleration on-board. Therefore, to implement this sequential control
scheme, we propose:
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— Adding an Inertial Measurement Unit (IMU) sensor on-board

Currently, the only sensor is an on-board 24 GHz FMCW short-range radar for measuring
the altitude. This implies that there is no way to measure the acceleration, other than differ-
entiating twice the ground truth altitude received from the OptiTrack Motion Capture system.
According to the thesis objective, however, all the relevant measurements and computa-
tions should be carried on-board the airship; so that this would not be a valid procedure.
Moreover, conducting a double differentiation on the range measurement obtained from the
radar would not provide valid acceleration measurements either, given that its resolution is
of ~20 cm. This can easily be solved by adding an IMU sensor on-board to have accurate
acceleration measurements available directly on the platform.

— Directly getting the thrust, u = T, as the output from the ANN/SNN
Again, as we currently do not carry an IMU on-board, the motor command, u, obtained as
the output from the neurocontrollers corresponds to the voltage that has to be applied to
the motors such that they spin faster or slower. When adding the IMU, however, we would
recommend to directly evolve the networks such that they provide the thrust, T [N]. Thanks
to this, a Pl controller could directly be added sequentially to ameliorate the RG, as shown
in Section 9.2.

2. Airship dynamics

Even though the implementation of the previous point would be the one which would make the
largest difference in easing the small oscillations we still observe around the desired altitudes, a
more realistic model of the airship would also contribute positively to our goal.

— Adding more complexity to the model
Currently, we are working with a linear model of the airship that has been developed by
gathering data in the flight arena and finding the transfer function that best fits the data (see
Part | for further details). Working with a linear model is already a simplification, as we are
not accounting for any nonlinearities inherent to the robot. One option would therefore be to
develop a nonlinear model of the airship.

— Working with an abstracted model

Another research direction that could be considered would be to directly develop an ab-
stracted mathematical model, which is not data-driven. Accurately representing all the mass
and inertias, gravity and buoyancy forces, aerodynamic damping and propulsion in this
model would imply measuring a great number of coefficients, which could turn to be slightly
impractical and require too much time (see Section 2.2). One could also use a simple ab-
stracted model, but then we would go back to a similar situation to the one we currently have,
which is a data-driven model of the airship, with some simplifications.

. Selection of the actuators and sensors

Building an airship with low cost components and materials (except for the sensor) easily available
commercially, to facilitate the reproducibility of the platform was also among our objectives. This
implies, however, that the quality of the actuators is not the highest. Moreover, they only spin
in one direction. Therefore, selecting a different set of high-quality reversible DC motors could
improve the delay inherent to the model and the control accuracy. A ranging sensor with a better
resolution could be considered as well (the current one has ~20 cm).

. Simulated environment

Adding further randomization in simulation and/or further studying the noise/shape of the radar
signal for a more accurate replication could also positively contribute to the RG reduction.

. Neuromorphic hardware

Currently, the Raspberry Pi Zero W on-board the airship is in charge of performing all the relevant
calculations for the three controllers considered (PID, ANN and SNN). No specific hardware is
included, however, to perform the computations of the SNN. The emergence of neuromorphic pro-
cessors such as the Loihi [38] or the uBrain [150] yield new promises for the application of SNNs
in robotics [46], by allowing to fully exploit their asynchronous properties and energy efficiency.
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Therefore, an important step for future research would be to test our current implementation by
also adding appropriate neuromorphic hardware in the loop.
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Figure 1: Gantt chart summarizing the structure, scope and timeline of the project.
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