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Abstract 

In this thesis a Hybrid Genetic Algorithm has been proposed for the restoration of power in a 

power grid after a blackout has occurred. The algorithm uses a weighting factor to give 

importance to the objective functions used in modelling the problem. Minimisation of the 

out-of-service area of the grid, minimisation of the number of switches (switching 

operations), and minimisation of the amount of losses were the three main objective functions 

considered in this project. The hybridisation of conventional GA was done by using a local 

search algorithm. The algorithm was tested on single-fault and multi-fault blackout systems. 

Based on the simulation results, the performance of the hybrid GA has been found to be 

better than the conventional GA when restoring power to a radial power grid. The results 

were validated for three different IEEE networks namely IEEE14, IEEE30, and remodelled 

IEEE118, which are benchmark networks used in the power restoration field. 
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Chapter 1  

Introduction 

The goal of this project is to use a hybrid genetic algorithm to restore power to a power grid 

after a blackout by minimising the lost load and number of switches within a reasonable 

amount of time for power operators as well as the amount of losses. Electricity has become 

an indispensable commodity of this twenty-first century, especially in the developed world. 

Consumers in sectors such as health and welfare, finance, supplies of food and water, 

electronics and commercial enterprise require electricity. Electricity is needed when cooling a 

house during the hot summer weather or when warming a house during the winter periods. 

Gadgets that are produced for households and factories all rely on electricity to operate. Even 

though new gadgets are being produced constantly, the power system has remained the same 

and has been operating dependably for many decades thanks to careful management of the 

resource. The careful management and control of the electrical power grid in developed 

countries has significantly lowered the incidence of power failure, but power blackouts still 

occur in the power network. Even though blackouts are rare, there have been cases reported 

in the literature of the United State experiencing over 400 blackouts within 1984 and 1999 

[1]. Brazil experienced a five-hour blackout in 2009 as reported in [1]. When a major portion 

or all of the electrical power grid fails, it is called a blackout. This can be due to the closed 

breakers linking the grid system malfunctioning or even due to a natural disaster like a 

tornado breaking part of the grid. In the Third World, in countries such as Ghana, blackout is 

a common phenomenon. There is consistent load shedding to help save the ageing power 

grid. But for the majority of the First World, even short power failures are rare; but if a 

blackout should occur and last for hours or days, it would significantly impact the activities 

and economics of daily life. Because of the impact a blackout can have on the economy, this 

thesis proposes a hybrid algorithm that will help in restoring power to the grid in a reasonable 

amount of time as well as at a reduced cost. 

1.1 Electricity Grid Background 

Electrical voltages in the range of approximately 12,000 to 30,000 volts are produced in 

generators which are powered by fuel sources such as nuclear, coal, etc. [2]. Only a few 

public electric utility companies sometimes own such generators. Electricity from these 

generators must be raised to higher voltage levels, helping to transport the power over 



8 

 

standard transmission lines. As stated in [2], transmission lines are operated at voltages in the 

level of “230,000 to 765,000 volts” in order to limit electricity loss due to conductor heating. 

This permits power to be moved economically over lengthy distances. The lines are 

connected at switching stations and substations in order to form a network which is known as 

a power grid. From the generators, electrical flows pass along the network of lines using the 

path of least resistance. According to [2], the physical laws for electrical flow are usually 

compared to the manner of water flowing through a network of canals. Once the electrical 

flow nears a load centre, the voltage level is stepped down so that it can be distributed to 

customers. The system which handles bulk power transfer is largely an alternating current 

(AC) system, rather than a direct current (DC) system. AC systems are easier and more 

economical in converting voltages from one level of the grid to another level. Some 

customers, such as larger commercial and industrial users, accept intermediate voltage level 

service from 12,000 to 115,000 volts, but residential customers typically accept 120 to 240 

volt electrical service.  

 

Figure 1.1: Structure of electrical power generation (by Energy.gov [2]).   

1.2 Motivation for the Research 

Several major power failures have been experienced around the globe during the past few 

decades. A major Italian blackout was reported on 28 September 2003 and Libya experienced 

a blackout on 8 November of the same year. Also in 2003, 14 August, there was a major US-

Canadian blackout [3]. As power systems become more complex, they are more exposed to 

blackouts. They are also more likely to be operating close to their security boundaries 

because the number of people dependent on electric power is increasing while the grid 

structure is still the same. The major causes of blackouts include human error; natural 
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disasters like earthquakes, heavy rainfalls, and strong winds; the lack of evolving regulatory 

rules; power system deregulation; and reduced investment in the power system industry.  

When a significant portion or the entire power system fails it causes a small or major 

blackout. Usually, a major failure of the system is created when a series of cascading failures 

[4] cause the system to trip a transmission line or generation units. Such failures are labelled 

“contingencies”. A typical pattern of a single-fault blackout begins with a strong contingency 

which will create a variation in the flow of power and “bus-bar” voltage. This voltage 

variation may cause generation units or transmission lines to fail. This event causes a gap 

between the demand for power and the generation of the power [5]. As the spread of 

problems grows, it can cause a major blackout. Developing a reliable algorithm which 

restores power [6] as well as tools such as MATCASC that can analyse cascading line 

overloads [7] is crucial. 

The current methods used in restoring power following a failure of the system require many 

professional experiences and these methods are dependent on specific power plants. The time 

which is necessary to restore power can vary between convenient and unfavourable based on 

where the blackout has occurred. With the existing situation, this thesis proposes a hybrid 

genetic algorithm (GA) model that tries to provide a solution to the problem. The hybrid GA 

that has been proposed in this thesis is aimed to help operators in a real scenario of power 

blackout restoration. Furthermore it is up to date with the current power system models that 

are found in the literature review. The result of using the proposed GA is that there is 

minimum impact for the customers involved or the community as a whole. 

The proposed hybrid algorithm in this thesis was implemented using the MATPOWER tool 

[8] with the standard IEEE14 bus system [9] as one of the main testing benchmarks. It was 

also run on IEEE30 and remodelled IEEE118 and the results show how resilient the 

algorithm is. Larger grids beyond IEEE118 were not tested due to the time constraint of the 

project and the amount of time required to perform extensive tests on them. The results were 

then compared to conventional GAs by using the same parameter settings and type of system. 

Some of the limitations of a conventional GA for power restoration in a power grid motivate 

the need to have a robust hybrid genetic algorithm that can adapt to several power grids by 

consistently producing accurate results.  
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1.3 Research Question 

The complexity of restoring a power grid following a single-fault or multi-fault blackout 

makes it a time-consuming and delicate task. It is considered to be an NP-hard problem by 

the scientific community because methods that can be used in finding efficient solutions 

seldom exist [10]. In other words it can be hard to solve in polynomial time. 

When there is a power blackout, a significant portion of the system loses voltage due to the 

fault. Voltage can also be lost due to the cascading failure of the grid [11]. In order to recover 

from such a failure, there must be accurate coordination between the start-up and regulation 

of the generators and the connection of power lines and electrical loads so that the risk of 

another blackout is eliminated.  

The main research question of this thesis is  

How can power be efficiently restored in a power grid after a power blackout by minimising 

the number of switching operations, minimising the out-of-service area, minimising the 

losses, and restoring a high percentage of the load, thereby leading to a reduction of cost? 

To effectively answer this question, the following sub-research questions were posed. 

What is the current state of the existing power grid? 

What is a power blackout and what are its causes? 

What are the steps that need to be taken in order to restore power to customers when there is 

a blackout on the power grid? 

How can a hybrid genetic algorithm approach be used to restore power in a power grid? 

1.4 Objective of the Project 

The research aims to achieve the following objectives: 

a) To design a flexible hybrid GA model for optimum power restoration which can be 

used in practical power systems. 

b) To reduce overall cost of the restoration in a power grid by  

 minimising switching operation costs by determining the optimal 

configuration of the switches during the restoration period 

 reducing the losses in the distribution grid 

 minimising the out-of-service area 
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1.5 Scope of This Project 

In this thesis, the hybrid GA was extensively tested on IEEE14 bus systems [9] which can be 

seen in the results section. The IEEE test system was modelled so that the main generator is 

always turned ON for the power grid to operate. The system was run using AC power flow 

analysis in MATPOWER. MATPOWER is considered one of the most efficient and robust 

tools used in simulating and finding solutions for power flow models. Its other uses are in 

optimal power flow situations. 

The constraints considered are 

1. Voltage constraint: Voltage on each bus should be between Vmin and Vmax for a 

given bus. 

2. Line overload constraint 

While taking the constraint into considering, during some run, strings that violate the 

constraints are discarded. In some other cases, a penalty of increasing the cost when 

constraint is violated is imposed instead. Each of the case helped to fine tune the experiment. 

1.6 Outline of This Thesis 

Chapter 2 presents the literature review of the thesis. This chapter presents existing methods 

that have been used over the years to restore power to a system. 

An overview of genetic algorithms and power system modelling is presented in Chapter 3. A 

closer look at how a genetic algorithm is applied to power restoration is discussed. 

Chapter 4 presents the power flow analysis used in the work. 

Chapter 5 discusses the power system modelling during power restoration. 

Chapter 6 discusses the hybridisation of the GA. The hybridisation was done by introducing 

local search in the search phase as well as a novel radiality check algorithm. 

Chapter 7 presents the results obtained from the simulation in MATPOWER. It also shows 

the performance, scalability, and quality of the solutions. 

Chapter 8 presents the limitations of this work. 

Chapter 9 gives the conclusion and future work for this project. 



12 

 

Chapter 2  

Introduction 

This chapter presents a detailed overview of how power restoration is done in a power grid. 

First, the power restoration as a search problem is explained. Second, a detailed overview of 

the operating state of a typical power grid is presented. Any disturbance to the normal 

operation of the grid is communicated to the grid operators. These are sent as alert signals. 

Third, an overview of power blackout as well as its consequences as stated in the literature 

review is presented. Some companies like Ford [5] had to rebuild a furnace which stopped 

working due to a power blackout. Lastly, different restoration procedures and approaches are 

presented to help better understand the restoration process. 

2.1 Power Restoration 

The power restoration problem is considered a search problem and is sometimes called a 

solution for many problems. It can be explained by finding a series of actions that can be 

applied to the power grid in order to get a desirable goal. One of the goals can be to restore 

power to priority customers in the network. Each action that is performed on the power grid 

changes the state of it. For example, when we change the state of one switch from ON to 

OFF, it changes that particular section of the grid. The same happens when a switch is turned 

ON. When the correct restoration action is not taken, it can cause enormous damage to the 

power grid. Furthermore, as the grid is composed of several components and each component 

affects its state, the main aim in restoration is to find a sequence of actions to restore the grid 

from its blackout state to its normal working condition.  

A well-defined search problem should have the following characteristics according to the 

following [12]. 

 Starting or initial state: This state in a power restoration problem is when a blackout 

has occurred, as this is when restoration needs to be done. When the grid is 

functioning properly there is no need to do blackout restoration. 

 Operator function: The set of states reachable from the initial or main component 

(usually the main generator) to the other buses or small generating units. 

 State space: All states reachable from the initial one by any sequence of actions. This 

can be the turning of switches from ON to OFF or OFF to ON. When there is a 
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connection between, for example, bus 1 and bus 2, then bus 2 has a switch and the 

switch is off. To be able to reach bus 2, the switch needs to be turned ON.  

 Path to take: This is the path taken from one bus through lines to a switch and from 

the switch to the next line, then to the next bus. 

 Cost of taking a certain path: This is where the cost is assigned as switching 

operations incur a cost. In the end, the total cost will be the sum of the individual cost 

along the path which leads to the blackout restoration of the grid. 

 Testing whether the goal has been reached: At each step, a test is made to determine 

whether the goal has been reached, that is, whether the restoration steps that were 

taken have restored enough load to the grid during a partial restoration and whether 

full restoration happened, meaning that all the isolated buses have been powered. 

In Chapter 1, a simple diagram of the power grid was shown. Furthermore, based on what 

was stated above it is known that the grid consists of several components. Whenever there is 

a problem, there is the need to search for the problem area and also to find the faulty 

components or the cause of the problem. The emergency state of the grid can be caused by a 

faulty switch, a faulty generator, a line that has been cut, or a faulty bus. Locating this area 

requires that a search be done either manually by the operators or by an implemented 

algorithm. In the power grid we consider the source as the generators of the network which 

send power to the various buses through the lines that are connecting them. Once the faulty 

area has been located, a series of steps are taken to restore the lost load or power to the 

blackout area. One of the main goals in the restoration process is to have a state of the grid 

where the minimum requirements are satisfied, such as supplying power to high-priority 

customers and taking into consideration that a good percentage of the load that is lost has 

been recovered. Numerous papers to date have suggested blackout restoration algorithms. In 

this work, the focus is on heuristics-based search methods and more specifically on a genetic 

algorithm for power restoration.  

2.2 Power System Operating State 

As the power grid is a structured system, it has certain operating conditions. These operating 

conditions can be classified as five different states: normal, alert, emergency, in extremis, and 

restorative [13].  
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Figure 2.1: Operating conditions of a power grid by Zima [13]. 

The normal operational condition means that “each of the variables in the system” [14] lie 

within the normal range. No overloading of the equipment is present. The system is able to 

handle a contingency without loss of security. Constraints of both inequality and equality are 

met. The alert state of operation occurs when “the security of the system” is lowered while 

constraints of inequality and equality are still in place. The system can continue to operate 

within the range of acceptable limits, but a contingency could cause a state of emergency or 

even an in extremis condition. When the system goes to an emergency state, inequality 

constraints are violated if the operation of the system occurs at a reduced frequency with 

voltages outside of the normal range. Alternatively a portion of the equipment may be 

overloaded. When the system has reached an emergency state due to a severe disturbance, it 

may be brought back to the alert state by applying emergency actions. Without successful 

application of emergency control measures, the system may go into an in extremis state, 

which causes both the equality and inequality constraints to be violated. Cascading outages 

could cause a single-fault blackout or a complete failure of the system [14]. 

2.3 Overview of Blackout  

Bulk power supply systems of today are a proven source for electrical power. A combination 

of circumstances can result in the remote likelihood of an outage which is system-wide.  
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Figure 2.3: Causes of power blackout by Bruch et al. [5]. 

Figure 2.3 shows some of the causes of power blackout. The figure contains a list of natural 

disasters that causes blackout and the increase in demand of consumers during peak periods 

which leads to overloading of the power lines. Usually power failures are not created by just 

one event but rather by a combination of multiple power deficiencies. In the literature most 

researchers have stated that there are rarely situations in which a power grid will totally 

collapse as a result of one single problem or cause. In most cases it is a combination of 

several different or similar causes. Here are a few of the conditions which increase the risk of 

a power blackout occurring. 

• High demand for power which causes the grid to be excessively used. 

Electrical utility companies are not building new lines to take care of the increased demand 

for electricity by consumers [15]. As a result, many lines are reaching their physical limits, 

especially when cold weather adds demands on the system. When the temperatures are 

outside the moderate ranges, either hot or cold, it leads to an increase in demand for electrical 

power. When the power demands are high, it pushes the grid to work near or over its limit. 

When the demand exceeds the ability of the lines to carry the load, a switch must be closed so 

that the line is protected from additional damage, causing a blackout. Such bottlenecks in the 

lines make the entire grid less responsive to the additional demand or to the excess capacity 

in other regions. It becomes more difficult for one area to help out another area [16]. 

• Switching off part of the grid to shed loads or for the purpose of maintenance.  
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Because the power system is ageing, some parts must undergo regular maintenance so that 

the entire grid remains in top working conditions. When this occurs, it becomes necessary for 

some parts of the power grid to be taken out of operation or completely switched off [17] 

[18].  

• Defects caused by the ageing of material used in the grid construction. 

Much of the infrastructure which serves First World countries like the United Kingdom and 

US is ageing. For example, the average age of power plants is over three decades. Most of the 

facilities have a life expectancy of forty years [18]. The components of distribution and 

transmission grids are also ageing. Power transformers average more than four decades in 

age. Seventy percent of lines today are more than a quarter-century old. As the components 

of the systems reach retirement age, they are replaced with newer components. These 

components are linked to automated systems or communications. During the linking process, 

there may be a break in the power supply. 

Even though there haven’t been many blackouts recently, the five most severe blackouts 

recorded in history are listed below. 

i. New Zealand – 20 February 1998  

A line failed, causing a chain reaction. The result was a power outage for 70,000 people. This 

was the longest period recorded for this type of fault [19] [5]. 

ii. Brazil – 11 March 1999 

In Bauru, São Paulo state, there was a lightning strike at an electric substation which tripped 

the circuits. The result was a blackout which affected ninety-seven million people covering 

over 70 percent of the area. It lasted for five hours [20] [5] [21]. 

iii. Northeast United States and Central Canada – 14 August 2003 

“A shunt fault was created when power lines were pushed together by trees” [2]. There were 

also as a series of technical difficulties and other circumstances that worsened the situation. 

The result of this was a power blackout lasting four days and affecting fifty million people. 

The losses for this outage were estimated at US $6 billion. Insurance only covered about half 

of these [20] [21] [2].  

iv. Italy – 28 September 2003 [22] 

The entire country of Italy experienced an eighteen-hour electricity blackout when a technical 

failure caused the nation to be separated from the other European nations. 

v. Indonesia (Java Island) – 18 August 2005 [2] [15] [5] 
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A seven-hour power outage (for around 100 million people in Java and Bali) began when 

there was a power failure in the utility system which serves Madura, Java, and Bali. The 

resultant cascading failure caused at least two units of the grid at the East Java Paiton plant to 

shut down and six units at West Java Suralaya plant to shut down [5]. 

vi. India – 30-31 July 2012 

On this day, “there was a grid disturbance at the Northern part of India which caused a 

blackout to 8 states in India” [23]. It is stated in [24], over 300 million people were affected 

in this incident. The metro had to start an hour late and major hospitals were affected as well 

as other public transports like the train service experienced a delay in operation. Hospitals 

which were able to operate during the black had to use their backup generators. 

Furthermore, the immediate cost of any blackout includes production loss (companies and 

individuals), facilities depending on power being unable to work or becoming idle, electronic 

data on computers being lost or damaged, spoiled food as there are big refrigerators that are 

used to store perishables, and equipment being damaged. In addition to these direct costs, 

there are indirect costs associated with blackouts. Some of the most common ones include 

loss of water, legal expenses, accidental injuries, and looting. Generally, indirect costs are up 

to five times those of direct costs. The previous paragraph stated the biggest blackouts that 

have happened so far. The next paragraph presents four companies that were hard hit by 

blackout in the United States. These are recorded as the most expensive cost ever to be 

incurred by companies as a result of blackout. 

As stated in the US blackout, approximately $6 billion USD was lost. Three companies that 

were hard hit by the blackout are listed below. 

i. Daimler Chrysler: Had production losses in nearly half (fourteen) of its thirty-one 

plants [1]. Six of the plants had paint shops where there were 10,000 vehicles in the 

process of being painted when the outage hit. All these vehicles had to be discarded or 

scrapped [25] [5] [26].  

ii. Ford Motor Company: At the Brook Park, Ohio, Ford casting plant, molten metal 

cooled and solidified in a furnace. The firm estimated that removing the metal and 

rebuilding the furnace resulted in a week of lost production [26]. 

iii. Marathon Oil Corporation [26]: Emergency shutdown procedures were triggered due 

to the blackout at the Marathon Ashland refinery located sixteen kilometres south of 

Detroit, Michigan. The authors stated that a carbon monoxide boiler could not be shut 

down properly when the blackout occurred. Therefore, there was a minor explosion 
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which released steam and hydrocarbons. The police took precautionary measures and 

evacuated hundreds of local residents forcing them to find alternative shelter. The 

evacuation extended in a one-mile wide strip around the plant.  

In general, various media, including newspapers and electronics work to get information out 

to the general public during a blackout. In most instances, the media had to use generator 

backup to provide electricity for their production purposes. The blackout happened at the 

same time that critical cyberthreats began to emerge. Business networks which were not 

patched or were only partially patched saw significant impact [2]. During the outage, most 

wireless services were overwhelmed. These included cellular and personal communication 

services [17].  

The blackout created storage and shipping problems for dairy producers and commercial 

establishments. Many retailers had to discard stock because of spoilage and numerous dairy 

producers were forced to send milk to Manitoba so that it could be processed.  

iv. A lengthy blackout created difficulties for a healthcare industry because of the 

inability to procure the chemicals needed to purify and treat drinking water [26] [5].  

v. Because a blackout occurred at the close of a working day across the service areas, 

there were disadvantageous effects on the grids used for distribution. The effect was 

highly felt during rush hour because traffic lights were no longer working and 

electronic signs on the highway were also switched off. There were travel delays at 

the airport, bus, and rail terminals.  

Figure 2.4 shows the summary of the impact of blackout on various industries. One or more 

of these industries will experience a loss when there is a blackout in the area in which they 

are connected to the power grid. 

 

Figure 2.4: Impact of blackout on various industries by Bruch et al. [5]. 
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2.4 Overview of Blackout Restoration 

There are several definitions of blackout power system restoration but in this thesis it is 

defined as the process of restoring generators to their normal operating state, transmission 

lines repair, and the restoration of network loads to an optimum condition in a favourable 

amount of time possible without damage to elements of the power grid [19]. Operators are 

under tremendous pressure during power restoration to restore the power supply quickly so 

that actions which might cause severe damage to the plants are limited. Operators must also 

ensure that appropriate staff is informed. If there are questions about operations in the 

aftermath of the outage, the validity of their decisions may need to be justified. It is common 

to encounter problems during the restoration process. This is due to the abnormal state of the 

system, differences between the forecasts of the control and outstation staff, and differences 

between training session drills and the actual event.  

Some of these problems occur are when there have been cascading failures in which 

emergency conditions of the power grid are unknown, thereby the same failures cause 

another blackout in the short-run. Firstly, it can be the consequence of an error caused by the 

operator [20]. Secondly, when there is voltage overload caused by conditions such as 

overexcitation of the transformers, self-excitation of the generator, or under-excitation of the 

generator, a problem can occur. Thirdly, insufficient knowledge of the system is another 

problem. In the power industry, having good knowledge of the circumstances of the grid 

failure is very important (overloading, equipment failure, or possibly human error) [27] [28]. 

Fourthly, too fast of a restoration can be bad because the operators may attempt to pick up 

demand too quickly. Then the generator demand balance can’t be achieved. The frequency 

could fall and the subsystem could collapse, leading to a delay in the overall restoration 

process. Fifthly, during some restoration operations, some equipment may not be available 

for operation, therefore causing the restoration process to be difficult. Also, according to [17], 

there are also times when “there is competition among distribution utilities to have blocks of 

load” reconnected that sometimes far exceed (high demand) what is possible during the 

restoration process. This can create new difficulties [17] [28]. As a result of these difficulties, 

a few considerations have to be taken into consideration, such as path management, where the 

status of the path that is found must be examined, i.e., faults, line capacity, and transients, due 

to the switching operations of the network. As restoration is a search problem, finding the 

shortest path with minimum switching actions between the distribution unit and the receiving 

units is the best result unless such a path is not possible or feasible. Also during restoration, 
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the loads are to be restored by taking into consideration factors such as the priority of the 

customers as well as the system security of the grid. The switching actions are to be 

coordinated to minimise problems such as overvoltage and voltage transients. Energisation 

from the low-voltage side to high-voltage side of transformers is prohibited. Line and 

transformer capacities should not be exceeded during restoration [20]. 

Overview of Existing Blackout Restoration Concepts and Approaches 

Several blackout restoration concepts have been proposed in the literature. According to 

Omara (2009), the general concept of power restoration is as follows [29]. 

i. Sectionalise power system to islands [6]. 

During this process the blackout location is sectionalised into multiple subsystems and the 

restoration is done concurrently across several islands. The problems of sectionalising the 

system can be fairly complex for a large-scale power system when constraints such as black-

starts, generation load balances, and voltage stability are taken into consideration. Planning 

the sections requires each of them to have 1) adequate black-start capacity to offer power 

starts to the additional generating locations within the island, as well as to supply critical load 

power, and 2) adequate generation to carry the majority of the load requirements within the 

island [30]. 

ii. Restore system islands. 

Within each of the islands, beginning with a sizeable thermal power generation station, the 

framework of the system is energized. The system then builds paths to other generation 

stations and on to the large load centres. At each step, loads are energised. Some of the 

critical loads are restored in order to stabilise the blackout units. The completion of this step 

ensures that the network has adequate power and stability to handle transients due to 

additional load pickup, as well as adding large power generation locations [6] [19]. 

iii. Synchronise islands. 

This step in the restoration process is when the various subsystems are interconnected. Over 

time, the rest of the loads are incorporated into the system and the system is able to transition 

to the alarm state or preferably, to the normal state [31]. 

iv. Normalise the system. 

The system begins its normal operation after the above three criteria have been met. 

The organisation and implementation of a plan for restoration is the key factor for success in 

any restoration process [19]. There have been multiple strategies suggested, including the 

bottom-up restoration which begins with restoration of the main network. Once that is 
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completed and transmission and substations are energised, the generators are resynchronised 

and the loads are picked up. Under this strategy, there is a parallel restoration of several 

areas. The design permits quick load pickup. During this process, the loss of one island 

doesn’t cause failure of the whole system. Another major strategy is the top-down system. 

When there is a multiple-fault blackout condition and electricity cannot be brought in from 

adjacent power units, this strategy is appropriate. First of all to start the restoration process, 

the system is sectionalised to some islands. In each island, the existence of at least one black-

start generator is necessary. The next step is to restore the lines, loads, and generators of each 

island, followed by resynchronisation of all the islands. The reconnection of the balance of 

the components is the final step [31]. The benefits of this strategy include the ability to 

restore more than one section of the system concurrently, quick restoration of critical power 

to generating stations as well as power and light to substations, and the fact that it does not 

require synchronisation due to one island. Other papers also proposed a combined method of 

using both the bottom-up strategy and the top-down strategy. The combined method uses the 

advantages of both systems.  

2.5 Categorisation of Power System Restoration 

This subsection presents ways in which the power system restoration problem can be 

categorised. Various research conducted in this field has different categories of classifying 

the power system. In this thesis, the following categories have been chosen as the main ones. 

2.5.1 Subsystem Restoration 

This category focuses on situations where there is only a minor part of the system which has 

no power, for example, in a restoration problem which uses a generator start-up sequence 

operation as stated in [28]. 

2.5.2 Manual Restoration 

This category assumes that operators have complete information about the system available. 

In the event of a power outage, the location of the blackout is determined by checking each 

station. Once the problem area is determined, the problem is manually repaired by the 

operators based on their knowledge and training [28]. 
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2.5.3 Computer-Aided Restoration 

In a computer-aided restoration, a tool is developed with the aim of helping operators during 

the blackout restoration process. Operators in the control room go through a specific action 

sequence to restore power. The computer-software tool presents the steps required and it 

shows the results in the form of a log once the operation has been performed [32] [33]. The 

operator also has a restoration manual which is studied as part of his training and is also 

familiarised with [33]. 

2.5.4 Cooperative Restoration 

Cooperative restoration methods combine the efforts of the computer and the operator. Each 

is responsible for performing tasks where efficiency is greatest. The restoration is able to 

proceed with the ability to plan future steps and execute them [19]. The operators or operator 

teams can work in parallel lines with the computer responsible for checking the proposed 

steps of each operator to ensure consistency between the lines [6]. 

2.5.5 Fully Automated Restoration 

When the system operates under fully automated restoration, the operator is only in a role of 

supervisor or observer. This strategy has not yet been proposed, but implementation is 

doubtful any time soon. It would require extensive and time-intensive searches [6] [34]. 

The objective of any restoration process is to return the power system from a disturbed status 

and loss of loads to a status of stability. All customers should be supplied with power. Then 

the voltage profile and the economically efficient generation status are adjusted. The goal is 

achieved through the correct sequence of restorative tasks, including switching, setting, 

queries, or commands to the appropriate power stations and outside control centres.  

Due to a certain extent of indistinct system response, having a steady orientation of the 

sequence at the actual power system status is crucial. Thus, an interactive proceeding is 

required, and the particular operational actions cannot be firmly predefined. Based on these 

principles and prevailing conditions, the concept of the restoration system was derived [35]. 

2.5.6 Algorithmic Restoration 

Multiple different algorithmic systems have been proposed over time. These include expert 

systems, tree search (heuristic search), petri-nets, discrete particle-swarm optimisation, 

combined Tabu Search (TS), genetic algorithms, and a multi-agent system [36] [37] [38]. An 

algorithmic approach is essential for improving consistency and efficiency during the 
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operation. Enhanced skills are acquired in the application of the process. Efficiency is gained 

when there is analysis readily available without forgetting the process of specification. 

The focus of this thesis is on the algorithmic category where there is no need for manually 

preparing guidelines for the operators of the power unit. The use of an algorithm helps in the 

development and identification of the various processes, not to mention the major decisions 

and variables that may come in handy to solve a given problem. 

To conclude, this chapter presented the different types of restoration approaches currently 

being used in blackout restoration. Even though there are other ways of categorisation, these 

six were chosen because they provide a broad view of power system restoration. The 

monetary losses of companies were also given, which shows the economic impact blackout 

can have on industries and communities as a whole. In the next chapter, the literature review 

of genetic algorithms was presented. The application of genetic algorithms in the power 

restoration field is also discussed at the end of this chapter. The proposed hybrid genetic 

algorithm is then presented. 
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Chapter 3 

The Genetic Algorithm (GA) 

In this chapter, an overview of the GA for this project and its important role in the field of 

power restoration research is presented. When using a genetic algorithm to solve a problem in 

any study, there is a need to find a balance between exploration and exploitation while 

finding the best solutions for success in various environments [39]. In the literature, genetic 

algorithms have been proven to give a robust search process in the most complicated search 

fields. The validity of the GA process has been demonstrated in multiple dissertations and 

research papers. It has been successful in optimisation and application problems such as those 

found in power restoration applications. The GA has been established as a reliable algorithm 

in complex search problems and is now being used in more far-ranging applications, 

including engineering, science, and business [36]. The reason for the increased number of 

applications lies in the simplicity of GA computations and its strength in finding 

improvements to the solution that is produced.  

But there is a limitation when using a GA because it makes assumptions that are restricted to 

the search space required. In such a scenario a solution is not guaranteed as the algorithm will 

not converge. In other cases, finding a solution which is close to optimal is acceptable (e.g., 

in this project when there is no full restoration [i.e., not all the buses were able to be 

powered], we take into account the amount of load restored) given that the computations 

(restoration) can be completed fairly quickly. In this instance, one approach would be to use a 

probabilistic algorithm which would reach solutions approaching the real optimum. Genetic 

algorithms are in the same category as probabilistic algorithms, where random candidates are 

initially generated and these candidates have to go through the process of evolution for an 

efficient solution to be obtained. As the project is based on how to find an optimal way of 

restoring power during a power blackout using a proposed hybrid genetic algorithm, this 

chapter will lay the foundation for this thesis. 

3.1 Literature Review on Genetic Algorithms 

One of the widely used heuristics-based search algorithms is the Tabu Search. The TS 

algorithm works by searching through a determined solution space in order to avoid cyclic 

searching or being trapped in local optima. Details of the TS algorithm are out of the scope of 
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this thesis, hence readers who are interested in this algorithm can find references in [40], [41], 

[42], [43], and others.  

GA is another widely used heuristic search algorithm. This thesis focuses on using GA for 

power restoration. The algorithm makes use of adaptive search methods which use a genetic 

process similar to that of biological organisms. A GA begins by randomly generating several 

solutions to any problem and encodes them as strings of symbols which are usually made of 1 

and 0. The generated string which encodes the individual solution is called a “chromosome”. 

(See the literature review for an explanation of this term.) The solution set consisting of 

several chromosomes is called the “population”. Some papers use the term “allele”, which 

refers to the position of the symbol within the string that was generated. The term “gene” is 

sometimes used to refer to the symbol or value which the allele contains. The generation of 

the initial population can be a random set. It may also be created from a number of known 

solutions. The population could also combine both. The GA steps involve replacing the initial 

population at the beginning of each of the generation steps with another population which is 

considered to be better in terms the fitness function. In each case, there is hope that the new 

population includes a solution to the problem in the question. As this follows the evolution 

process, there is the reproduction process, which involves combining chromosomes of the 

previous population in order to create new chromosomes. There are three operations for each 

reproduction step: selection (several forms are available), crossover, and mutation. This 

reproduction process continues till the necessary number of “chromosomes” is found in the 

newest population that has been generated. 

The idea of using GAs to solve difficult optimisation combinatorial problems resides in the 

fact that GAs perform a search through the space on which the problem is defined in several 

directions [44]. A random initialisation is performed on the population. Each individual 

becomes an encoded solution of the problem. In order to evaluate its fitness function, the 

individual information has to be decoded. It captures “the objective function and the 

constraints of the problem; in fact, it plays the role of the environment” [45] [46]. The search 

for the optimal solution starts from several points (e.g., initial population of individuals or 

solutions). Thanks to the selective adaptation of individuals to the environment through a 

number of generations, the search is guided by the fittest among them [47] [48]. Although 

GAs explore a search space randomly, this exploration is usually done only through the 

regions that are chosen considering the objective function. This makes GAs capable of 

finding the global optimal solution. Because GAs are capable of finding globally optimal 
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solutions when it comes to large-scale optimisation problems and according to the authors in 

[44], GAs have been found to be efficient in finding solutions in the power restoration 

domain [49]. Another characteristic of a GA is that the constraints or even the objective 

function can be easily changed and after those changes the algorithm can be applied to solve 

another problem. 

Irving et al. (2002) proposed a new systematic supply GA which utilises a scheme for 

encoding integer permutations. Each integer is a representation of a single controllable 

switch. Thus the integers are numbered from one to any higher number of positions, and they 

form integer permutation encoding. Determining a solution for the chromosome depends 

upon the order of the integers. The authors used graph theory to provide a way for to create 

“a mapping” leading from the list of permutations to the end status of each individual switch. 

The GA adheres to the constraints and objectives that are needed for the specific supply 

restoration scheme. The results of the simulation indicate that the proposed algorithm is 

effective for partial or full supply restoration [50]. 

Luan et al. (2002) proposed a GA where an “integer permutation encoding scheme” is used. 

The switches are represented by chromosomes and the final state of the chromosome 

determines which switches are to be turned off or on. The authors used a graph theory 

method to guarantee that the chromosome is connected to unique radial network topology 

during the evolution process. A “zero” gene was used to help find the point where load 

shedding could be done in a situation when the demand for power by customers is beyond the 

supply of the power grid. Load shedding is commonly used in Third World countries like 

Ghana. Real-life power systems were used to test the robustness of their algorithm [42]. 

In [51] an improved genetic algorithm for blackout restoration in power distribution systems 

was proposed taking into consideration the priority customers. Priority customers are 

customers who need power the most and this is dependent on the place where the blackout 

occurred. In a situation where a hospital and households lose power, the restoration is done 

first to the hospital and then to the households. The authors found that there were high-quality 

solutions produced at every next generation. In the paper, they also used a string to represent 

the status of the switches in the network. The three main objectives in the paper were to 

minimise the out-of-service area, reduce the number of used switches in the restoration, and 

lower the losses of the grid when there is a blackout, taking into consideration constraints like 

voltage and current. The proposed method tries to obtain a solution for the problem of service 
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restoration by utilising a remote-control switch. The solution, as demonstrated in the 

simulated results, requires less time to restore power to the grid.  

Gomez et al. (2009) proposed a GA which uses a new type of crossover technique and also a 

new form of initialising the algorithm in order to find a feasible solution [39]. In the paper, 

the proposed algorithm utilises a Power Flow Program (PFP) to compute the fitness function 

of problems that are considered unfeasible. A new crossover and mutation procedure was 

developed to only find feasible solutions in the search space [39]. According to the authors, 

this is an efficient way of reducing time because only feasible solutions are generated. Once 

the PFP has completed computing the feasible states, the result is then fed to the GA for 

processing. Then based on the fitness function an evaluation is made which helps in the 

restoration plan when there is power blackout [39].  

The GA proposed in [45] was able to lower the out-of-service area. Repairs are implemented 

on the failed section at the same time. The authors proposed a solution which divides the 

problem into two sections, both handled by ranked genetic algorithms. The constraints of 

each search space are reduced by a ranking procedure; therefore only local knowledge of the 

problem is required. The solution process is reduced to a manageable level because of the 

split. In solving the problem, the most desirable network structure in regard to the switch 

position is determined. Those genes which may be eliminated are determined. The next step 

is to decide on the most effective switching order. This step makes the best use of the 

switching task that was already used in the first step. The purpose was to limit the required 

time. Only a single constraint was utilised in the paper, i.e., switching precedence (avoiding 

overloading during switching). The results avoided overloading while the switching was 

going on. The result of the simulated approach indicated that the suggested method is fast and 

flexible. It doesn’t require onerous parameterisation for the grid. The authors stated that out-

of-service customers can be supplied with power when the proposed technique is used with 

other algorithms in finding the faulty areas in the grid. 

In this project, a GA has been chosen for this work because of the following advantages: 1) It 

can find several alternative solutions even in complex problem scenarios [44]. This can be 

achieved because there are different numbers of ways in which a GA can be improved or 

optimised. 2) The exploitation of the solution space can be varied, thus leading to a solution 

that fits the problem [52]. 3) It provides a flexible way for the algorithm to be hybridised. 4) 

It always provides an answer and the answer gets better with time [53]. 
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3.2 Basics of Genetic Algorithms 

John Holland was the first to propose the well-known concept of genetic algorithms. The 

basis of the search algorithm is natural genetics and selection. It applies the “survival of the 

fittest” rule to a string structure. But in this case, there is a randomised exchange of 

information to create a possible solution to a problem [36]. Then each new set of 

chromosomes is produced by using the best parts of the old parents [45]. The GA continues 

the process of evolution to converge on the best solution at each generation. It is for this 

reason that GAs are considered to be function optimisers. Genetic algorithms are suitable in 

many types of problems when traditional computational methods fail. Creating the random 

population of chromosomes is the initial process when solving a problem using a GA. The 

chromosome selection is done whereby the ones which are the fittest are always given more 

changes than the others. 

 

Figure 3.1: Layout of a GA by Razali and Geraghty (taken from [54]). 

Figure 3.1 shows the schema of a genetic algorithm and the processes involved. Details of the 

steps involved when applying a GA to a problem have been explained. 

The following shows the differences between a GA and other conventional search methods 

[46] [45].  
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 GAs use a population of solutions to conduct a search in a given space. This 

sometimes helps a GA search through the problem space with optimum points. While 

other optimisation algorithms depend on a single point during the search phase, a GA 

uses the different areas present or all the information present as a guide towards the 

solution to the problem. GAs have parallel computation ability because the fitness 

value of several individuals of the solution set are calculated at the same time. Lastly, 

it is efficient for GAs to find globally optimal solutions in a given problem. 

 GAs use fitness functions or several objective functions for the search process so 

specific information is used rather than some auxiliary knowledge of the solution. 

GAs can therefore find solutions to real-life optimisation problems that are complex 

to work on. The power restoration problem is such a problem that can be solved by 

applying GAs. A GA uses probabilistic transition rules during its evolution process, 

and this is preferable when compared to algorithms that use deterministic rules. 

 GAs can find solutions in a complicated area and they provide a flexible platform for 

hybridisation with other algorithms, which can lead to further accurate solutions. 

Also, a GA is a robust algorithm for complex problems [55]. 

3.3 Different Types of Operators Used in Genetic Algorithms 

3.3.1 Selection/Reproduction 

When an individual is directly copied to the next generation, it is called reproduction [54]. In 

the process, individual strings are reproduced using values which are related to their objective 

function. In some of the papers or literature, it is called the selection operator. The selection 

operator is responsible for reproducing strings according to the relative fitness value. To state 

it in another way, good solutions propagate to the next generation and poor solutions are 

eliminated. Typically, reproduction is the initial operator applied to the population. The 

selection is accomplished by [56] [57] doing the following: 

 Identifying the good solutions from the population which typically depends on the 

cost function of the defined problem. The lower the cost function, the better the 

solution.  

 Producing varied forms of the solution.  

 Eliminating bad solutions that are found in the set and replacing them with good ones 

(most fit ones).  
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The brief explanation of what happens during reproduction involves the replacement of bad 

solutions with good solutions that can progress to the next stage of the population. To do so 

several selection procedures can be used. The roulette wheel, tournament, and ranking 

selections are the commonly used selection methods in genetic algorithms [57] [39].  

In this thesis, tournament selection was used. Readers who are interested in ranking selection 

or roulette wheel selection can refer to the following papers: [58], [44], and [59]. 

3.3.1.1 Tournament Selection  

This type of selection is one of the efficient and useful ways to select parents for mating [54]. 

The selection is done by randomly taking two individuals from the population space. Mating 

is then done between the most “fit” pair. Each pair then creates an offspring which has a mix 

of the characteristics of the two parents, using the crossover method, which is described in 

the following section. The two parents then return to the population where they can be 

reselected [57]. The random selection of pairs and mating of the most “fit” individuals will 

continue until a new generation which has the same size population is created. Figure 3.2 

shows a diagram of how this is usually done. It can be seen that there are several candidates 

in the population and two which are the most “fit” won the competition in the tournament. 

They proceed to the next phase. In the next phase, the better one is chosen which then 

proceeds to the new generation phase.  

 

Figure 3.2: Tournament selection by El-werfelli (from [57]). 
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3.3.2 Crossover 

The crossover operator helps the GA explore additional areas within the search space. It is the 

exchange of data between solutions. Two individuals from the pool of potential mates are 

randomly selected. Then a point is selected for the crossover process. The data which 

originates from one of the solutions is transferred to the other solution to the specified 

junction point. This allows for the generation of a fresh pair of solutions in each subsequent 

generation. This is comprised of a mixture of the solutions from the previous generation [42] 

[57] [60]. 

In the literature, three types of crossover are commonly used.  

1. One-point or single-point crossover [57] [61] 

In this crossover method a random point along the solutions is picked. The bits which are 

present on the right side of the specified point are transferred between the solution strings so 

that a pair of offspring solutions is produced, as shown in Figure 3.3. 

Parent 1 1 0 1 0 1 

Parent 2 1 0 0 1 0 

 

crossover point is the 

thick line 

   Offspring1 1 0 0 1 0 

Offspring2 1 0 1 0 1 

Figure 3.3: Single-point crossover [57]. 

2. Two-way/-point crossover [60] 

This type of crossover technique makes use of two crossover places which are randomly 

selected. Bits of information between the two positions are transferred so that two offspring 

solutions are produced. Figure 3.4 shows how two-point crossover is implemented in GAs. 

Parent 1 1 0 1 0 0 

Parent 2 1 1 0 1 1 

 

2 crossover points are 

chosen 

   Offspring1 1 1 0 0 0 

Offspring2 1 0 1 1 1 

 Figure 3.4: Two-point crossover [61]. 
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3. Uniform crossover 

The third type of crossover uniformly selects positions [62]. The bits are transferred at 

coordinate pairs which have identical probability, as shown in Figure 3.5. 

 

Parent 1 1 0 1 0 0 

Parent 2 1 1 0 1 1 

      Offspring1 1 1 0 1 1 

Offspring2 1 0 1 0 0 

Figure 3.5: Uniform crossover [60].  

3.3.3 Mutation 

The procedure requires randomly altering information in order to create a new modified 

solution. It ensures that search diversification for the population is maintained. Mutation 

allows the search space to be enlarged because it provides diversity to the population. The 

technique is applied with care. It requires randomly selecting a solution and bit locations, 

followed by transferring ones to zeros, or zeros to ones, as shown in Figure 3.6. The process 

is used to prevent sticking in the local optima when applied carefully with selection and 

crossover. 

Parent 1 1 0 1 0 0 

      Offspring 1 1 1 0 1 

Figure 3.6: Mutation [57]. 

3.3.4 Fitness Evaluation  

Every solution must be checked. The fitness function should be used for evaluating it. This 

will lead to a value which can determine the respective quality of a solution [57] [60] [63] 

[64]. Hence, the values of maximum fitness, minimum fitness, and average fitness for all 

members of a generation are calculated. If a predefined criterion of convergence has not been 

met so far, then the process moves to genetic operations dealing with selection and 

reproduction as well as crossover and mutation. 
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3.3.5 Control Parameters of Genetic Algorithms  

A GA is an optimisation algorithm; therefore it requires using some parameters that help to 

make the algorithm work properly. These parameters are changed based on the problem or 

the guessed solution. Some parameters are to be kept constant while others are to be 

consistently changed by either increasing or reducing them. Specifically for GAs, the most 

common parameters include population size, iterations (maximum generation number), and 

types of genetic operations that fall under crossover and mutation. In [65], the two most 

important parameters are the population size and the number of iterations. Researchers can 

choose any of the listed crossover methods when working with genetic algorithms. The 

parameters must be carefully selected, because the GA’s performance depends upon the value 

chosen and kind of the operators used. Typically, low population size, high crossover, and 

low probability of mutation are the parameters frequently used in research. However, it is 

stated in the literature that the size of the population is directly proportional to the difficulty 

level of the problem [59]. Generally, the crossover rates vary from 0.5 to 1, and the mutation 

rate is usually very small [57].  

There is not a specific hard rule for determining the best value of operators [66]. Each 

problem is different and thus requires parameter tuning to find the best solution. Most 

researchers have reported that they used values which are suitable for their problems [65]. 

One of the widely used parameters comes from the De Jong function. In his book, De Jong 

[64] concluded that the generally optimal value for the population size should be between 50 

and 100, 0.001 should be used for the mutation rate, and that a crossover value of 0.6 should 

be used [67] [36]. He recommended that these settings be used as the guidelines for GA 

problems. On the quest to prove whether these parameters were optimal, some researchers 

conducted an experiment by using a different test system. It was later concluded that the 

efficiency of De Jong’s parameter settings outside his test suit was not clear. A mutation rate 

of 0.01 per bit in a 30 solution population plus a crossover rate of 0.95 per pair of solutions 

was later found to be the optimal setting [68]. The latter settings showed a distinct 

improvement in performance over the De Jong recommendations [37]. Owing to the fact that 

there are a variety of problem types, encoding patterns, and performance criteria, selection of 

the parameters is usually problem- and goal- specific. Some researchers have tried to treat 

this uncertainty by adapting the values of these operators during a GA’s run [46].  
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3.3.6 Stopping Criteria for Genetic Algorithms  

A GA without a convergence criterion will run forever without producing any result. The 

number of runs that algorithm can make depends on this convergence criterion. The GA is 

almost always stopped when the criterion is met. Widely used convergence criteria in GAs 

include the following [46] [39] [47] [57]:  

 Using the number of iterations when running an algorithm. Also, stopping the 

algorithm when the solution does not show any improvement after a set number of 

iterations. Solutions generated by GAs are expected to keep yielding improved results 

over time but in some cases this does not happen. Setting this criterion causes the GA 

to converge. In some cases, after finding a satisfactory average value for the fitness 

function, the algorithm can be made to stop. 

3.4 Application of Genetic Algorithms 

3.4.1 General Uses of GAs 

Due to the efficiency of the GA, it’s widely used in several scientific research domains. There 

are several different applications of the GA; the following are areas where GAs are 

extensively being used [65] [69] [70] [71]. 

 Modelling of social systems: Such as how a group of people can cooperate together. 

This study stems from the analogy of how ants are able to work together towards a 

common goal. So with the use of GAs, new models of communication can be 

invented to help in the cooperative process.  

 Machine and robot learning: In this field, GAs are used for predicting purposes and 

they are also being used in designing neural network structures. 

 Population genetics models: This is the biomedical field where the genes of living 

things are studied and how they evolve is being noted. It involves studying how one 

population evolves into another. 

 Automated Programming: In this field computer programs or software are being 

produced by using GAs. This involves studying the differing evolution of the software 

and hardware structure. 

 Immune system models: GAs are being used to study how the immune system of 

mammals and humans work. The result will be to find an improved immune system 

that can fight against several diseases. 
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 Interactions that happen between evolution and learning: Studies are being 

conducted to find how the evolution of species affects other species in the ecosystem. 

 Economic models: In the stock market, several algorithms that determine the 

“variations in the stock markets” [53] are mainly modelled by GAs. This helps to find 

the ups and downs of various stocks. 

 Optimisation: Optimisation problems such as blackout restoration, timetable 

scheduling, and other forms of scheduling have been based on GAs.  

3.4.2 GA Applications for Power Restoration 

In power restoration problems, three different types of GAs can be used to restore a blackout. 

They are stand-alone, integrated, and fused systems [53]. 

Stand-alone systems allow the GAs to operate completely alone without incorporating 

another algorithm for the restoration process. This can be handled in one of three manners. 

The first option is to obtain data for input and run the GA. The second is to use the GA to 

assist other methodologies in arriving at a final answer. The process involves running the 

methodology to find an answer and then applying the GA to find the optimal answer. A 

second option is to run the GA from the first input numbers to arrive at a partial answer. The 

methodology is then run from the partial answer, thus helping to reach the final answer. 

Integrated systems are the other type. Here, GAs and the methodology are run in cycles, one 

following the other. As an example, input data is given to the GAs and crossover and 

mutation is done for a number of iterations. At the end of the mutation process, a new 

solution is produced and this is fed into the methodology. From this data, the methodology 

runs its algorithm and obtains the next solution. This answer is returned to the GA and the 

process repeats. The process continues until a final solution is reached. When training a 

neural network, this is the preferred type of process.  

The last type is the fused systems. In these systems the GA runs together with the other 

methodology. There is no break between the end of one method and the start of the next. One 

can hardly make a distinction between the processes as they are fused together. 

3.5 Advantages of GAs 

A GA is considered a novel optimisation technique; therefore it is being used in a wide 

variety of ways. 
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Below are some of the advantages of GAs as stated in the literature. GAs are known to be all 

of the following [61] [46]. 

1. Flexible: The ability of genetic algorithms to hybridise with other heuristic algorithms 

makes them efficient in solving different types of mathematical problems. 

2. Adaptable: When using a GA to optimise a problem there isn’t much information needed 

due to the evolutionary nature of the algorithm. The algorithm is able to globally search 

within the problem space; therefore almost any type of objective requirements and constraints 

are acceptable.  

3. Robust: Because of the ability of GAs to evolve, they are quite effective in using 

probability for global searches. Most heuristic search algorithms only do local searches 

within the problem area. Studies show that GAs are more efficient and robust in finding the 

best solutions and reducing the computational time than most heuristic algorithms [46]. 

3.6 Disadvantages of GAs 

There are some disadvantages to the use of GA, even though they have been successfully 

used in solving complex problems. These disadvantages include [72]: 

1. The limitation of using a GA in real-time applications due to the randomness of the 

solutions which sometimes cause the algorithm to take a long time before it converges. To 

overcome this disadvantage, it is critical to test GAs in several simulation models and 

environments before using them in real systems. 

2. GAs producing some deceptive fitness functions which can give wrong information about 

the global optima and GAs getting stuck at the global optimum, making it difficult to solve 

some optimisation problems. Choosing a very bad fitness function can affect the convergence 

of the GA. This causes bad chromosome blocks to be generated. In a GA only good 

chromosomes can progress to the next phase. When there are only bad chromosomes, the 

algorithm gets stuck or the global best answer may not be found [61]. Hence hybridizing the 

genetic algorithm helps to solve this problem. 

In conclusion, a GA is considered one of the best algorithms for power restoration due to its 

able to restore power to the grid quickly and its other numerous advantages. Its disadvantages 

can be improved by hybridizing the genetic algorithm or using it together with other search 

algorithms. As can be seen, there is still ongoing research to improve the way this algorithm 

works in this field. The next chapter of this thesis discusses the basics of power flow analysis 
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by presenting the most commonly used Newton–Raphson (NR) power flow analysis found in 

the MATPOWER package [8]. 
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Chapter 4 

Power Flow Problem 

This chapter presents an overview of the power flow problem and its importance when 

restoring power during a power blackout. In the field of power systems engineering, power 

flow is a difficult problem. When the angles and voltage magnitudes for a set of buses are 

needed, then the same information is available for another bus set [73] [74]. Any computer 

software that implements a solution procedure for the power flow process is collectively 

called a PFP. The solution for any power flow analysis includes all the angles and voltages of 

the buses, allowing us to calculate load levels, real and reactive generation, and real and 

reactive flows at circuits and buses, respectively [75]. The word “power” is interchangeable 

with the word “load”. Most researchers prefer to use the former wording, as “load” is not 

usually associated with “flow” [76]. 

Originally, the power flow analysis was used only for planning purposes. Engineers found it 

important to look at various network configurations which might be needed to handle a 

projected load in the future. After time, it was more of an operational issue [77]. Power grid 

operators were forced to continually check the status of the network in real time depending 

upon the circuit flows and voltage magnitudes. At present, the power flow analysis is the 

basic operation performed on power grids [19]. There are a multitude of highly advanced, 

commercial-grade power flow software packages which can address power system analysis. 

The optimised program is able to handle power flow calculations for thousands of buses in a 

power grid. Power system engineers who are knowledgeable about power flow and its 

formulation and procedures, which are associated, are widely respected, especially if they are 

experienced with power flow programs at the commercial level.  

Determining the issues which are relevant to power flow requires an analysis of the power 

grid. The study of network operation will offer a better understanding when issues occur in 

the grid. The upcoming sections discuss power flow analysis (AC) as well as the use of the 

MATPOWER tool [8]. 

4.1 Power Flow Analysis 

The procedures or analysis of a power flow (also known as a load flow) attempts to define the 

voltages and current flow (both real and reactive) within the power grid system when the load 

conditions are known [78]. Planning ahead to determine a course of action in various 
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hypothetical scenarios is the purpose of conducting load flow analyses. Questions such as 

whether operational lines in a power system can handle the necessary loads if one line must 

be taken down for maintenance are examples of such case studies [77]. 

A power flow problem is usually represented mathematically as a system which consists of 

non-linear algebraic equations and hence calls for an iterative technique for obtaining the 

solution. The Gauss–Seidel (GS) method and Newton–Raphson method are commonly used 

to get the power flow solution [79]. 

Figure 4.1 is a simple power grid where several buses are interconnected by lines (branches). 

These lines can be either transmission lines or power transformers [79]. The buses receive 

power from the connected buses. Each transmission line has its capacitance and impedance 

upon which it works. In some grids, to boost the load at certain critical times, static capacitors 

are used. 

 

Figure 4.1: Simple power network. 

4.2 Classification of Buses 

Generally, in a typical power grid it is possible to classify buses in four different categories. 

They are generator, power-voltage, load, and switch buses. Table 4.1 shows the details of 

four types of buses, their most commonly used symbols of representation and the uses of 

these buses [80] [81]. 

Bus Type Specified Quantities/ their 

symbols used in 

Comments 

Generator Bus P 

|𝑣| 
𝑄𝑚𝑎𝑥, 𝑄𝑚𝑖𝑛 

The voltage magnitude remains 

fixed so long as the needed Q 

levels fall between the maximum 

and minimum range of Q. When 

the required Q goes beyond the 

range, the bus is defined as a PQ 
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bus. In this instance, Q is 

specified as the limit of Q which 

has been exceeded. P is set as 

zero for a synchronous 

condenser. 

PV Bus P 

|𝑣| 
Constant voltage magnitudes at 

the PV bus are maintained 

regardless of the level of reactive 

power (Q) which is needed. For a 

synchronous condenser, the value 

of P is zero. 

Swing Bus δ 

|𝑣| 
 

The swing bus is set as the 

baseline. The angle of “other” 

buses uses the swing bus angle as 

a measurement tool. If there are 

losses in the system, they are 

understood as being due to the 

swing bus. The reference bus is 

also responsible for holding the 

voltage of the system constant 

through manipulation of the 

power in the system. 

PQ or Load Bus P 

Q 

A PQ bus or load bus is a non-

generator type. Both active and 

reactive levels of power are 

defined with this bus. The phase 

angle and voltage level are not 

known. 

Table 4.1: Types of buses in a power grid [82] [83] [84]. 

4.3 Basic Power Flow Problem 

The calculation of various currents and voltages, which forms a big part of the power system, 

and its analyses are of critical importance [85]. The measurements are required in order to 

accurately create components which are part of the power system, including shunt elements, 

generators, transformers, and lines. These components must be able to handle the stresses of 

steady state loads with no danger of system damage. In order to maintain the economic 

efficiency of the system, any losses should be minimised [79] [86]. Any constraints in the 

system’s operation must be noted. The system must also allow for risks due to unstable 
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operational modes. To successfully manage all the complex voltages throughout the system, 

the state of the system must be monitored. By identifying the active and reactive power flows 

of the grid, the currents flowing through the grid can be calculated. Other relevant quantities 

can also be calculated from the known quantities. The equation set is formulated using a non-

linear formula for the load flow f (x, u, p) equals 0 [85], 

where 

f is a non-linear function; 

x is a vector which consists of the states of the components of the grid;  

u is the control outputs of the vector. These are usually the voltage outputs of the generators; 

and p is also a vector that consists of the parameters of the comment section in Table 4.1, 

such as the line resistance. 

Two commonly used methods are applied to solving problems related to load flow. These are 

the Gauss–Siedel and Newton–Raphson power flow analysis methods, each of which are 

root (iterative) finding solutions because they are designed to solve equations such as f(x)=0, 

which when solved produces the root of the function f(x). 

The term “iterative root” is applied to the process because a series of approximations are 

required in order to arrive at a solution. The method usually follows a series of steps 

beginning with a preliminary guess at a solution. This first guess will, except in unusual 

circumstances, be wrong. The first solution is updated with a new response with the purpose 

of moving the new solution nearer to the final solution. An important part of the iterative 

process is in how the update is determined. We must be able to determine that each update is 

nearer to the correct solution. This process results in a guaranteed solution, given that the 

procedure is repeated enough times.  

Commercial-level load flow programs typically will offer several different procedures for 

calculating a solution for a power grid. Nearly all such software programs will utilise at least 

the NR method. The NR approach has been accepted as the industry standard [87]. The NR 

approach is preferred due to the fact that convergence properties are quite good if the initial 

solution that starts the process is good. Using the NR scheme for calculating load flow 

typically begins with a good initial guess.  

The quality of the initial guess is often due to the fact that a previous procedure has already 

been conducted and the new set of conditions are very similar to the previous one. Perhaps 

only one circuit is changed or the load has been changed only slightly. The solution to the 

previous run may be utilised as the starting solution for the new conditions. Even without a 
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good starting-point solution, a guess may be very close. The accuracy of the solution comes 

because all quantities are solved as “per unit”. This standardisation using a per-unit voltage 

base means that under normal operating conditions the result will usually be near 1.0 per unit. 

The angles are not known from this information, but 1.0 per unit for the voltages and zero 

degrees at the angle is a satisfactory starting point [85]. 

In any “root” finding method, the process needs to converge at a certain amount of time. 

Determining whether the method will converge and how fast it will converge are the two 

convergence properties. Using NR means there are two factors which determine whether the 

method will result in convergence: these are the accuracy of the randomly generated solution 

and the function that is close to the final solution. If the guess is close and the function 

“smooths” out as it nears the correct solution, a convergence of NR will be found. 

Furthermore, the convergence will be quadratic, signifying that the solution’s accuracy is 

improved by at least two decimal places. For instance, when the result of a solution is 

1.73737273, we begin with the first decimal, which is 0.700000000. Then the first iteration 

will result in 1.737xxxxxx, the second iteration equals 1.73737xxxx, the third iteration equals 

1. 7373727xx, and the final solution will be the fourth iteration [85] [84].  

The NR load flow algorithm is the most powerful one in practice, but it does have a drawback 

because the Jacobian matrix terms require recalculation each time there is an iteration. This 

requires that the full range of linear equations be resolved during each iteration. Because the 

planning or operations study can require thousands of solutions, it is necessary to find 

methods for accelerating the process. 

The GS method is out of the scope of this project and will not be discussed. However, readers 

may find more information about the GS method in the following references [85] and [88].  

4.4 One Method of Solving the Load Flow Problem 

4.4.1 Using AC Power Flow (PF) Analysis 

The typical power flow study includes both reactive and active load flow measurements. Four 

variables for each node become the formulation components. These are the voltage angle, 

magnitude, and the active and reactive power injections. It is not possible to know the power 

losses ahead of time, since they are dependent upon the profile of the voltage and the active 

pattern of the power injection. Because other variables are interdependent, the problem 

becomes non-linear in nature. For the above reasons, the problem is commonly made linear 

[85]. A solution is reached by using a linearised form of iteration. At each iteration, there is 
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another estimation of the losses based on interactive variables. Today’s tools for analysis of 

power systems use the NR algorithm as a base. 

Usually the form of equations for power flow studies begins with a case of differential 

algebraic equations at steady state [85] [86]. It is then changed into a non-linear algebraic 

equation when a power flow analysis is done. This is written as 

g(x) = 0 

where g denotes a set consisting of algebraic equations in the grid. The formulations of the 

AC power flow is the current vector that is injected at the nodes of the network. 

𝐼 = [𝐼1,𝐼2, 𝐼𝑛]
𝑇
is a function of voltage vector 𝑉 = [𝑉1,𝑉2, 𝑉𝑛]

𝑇
and admittance matrix 𝑌 = 𝑌𝑖,𝑗: 

𝐼𝑖 = 𝑌 × 𝑉  

Where i = 1, 2,..., n 

which leads to writing the complex power injections (S) at nodes as:  

S = 𝑉 × 𝐼 – AC power transmission between two nodes 

The voltage amplitude, the load, and the reactive and active powers are some of the main 

variables required when performing power flow studies. In [85], [89], [90], [91], and [74], 

readers can find more information on AC power flow analysis. 

4.5 Overview of MATPOWER 

MATPOWER is a powerful tool consisting of MATLAB “M-files” which allow users 

(mainly power system engineers or researchers) to obtain solutions for optimal power flow 

and power flow issues. It is easy to use and modifications can be made to it, too. One good 

thing about the tool is that it is open source [92]. MATPOWER gives top-tier performance. 

The tool was part of the features and developments under the PowerWeb project of Cornell 

University [93]. Its architecture permits the users to include additional variables, limitations, 

and cost to the standard OPF formulation without losing the specific structure required when 

pre-compiled solvers are necessary [92]. The package has inbuilt tools for power flow 

analysis, including the Newton–Raphson method and the Gauss–Seidel method. The 

MATPOWER program incorporates .m files or .mat files, which list and provide one 

MATLAB structure. The .m file can have a .txt output therefore, a standard text editor can be 

used to edit it [8]. It also contains the IEEE bus test systems which make it easy to run 

simulations in MATLAB. For a more detailed overview of MATPOWER, the reader should 

read the MATPOWER manual provided by the authors of the program [8]. 
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In summary, this chapter presented the AC power flow analysis used in this project as well as 

the basic power flow problem. It also provided an overview of the MATPOWER package 

used in the simulation in MATLAB. A detailed overview of the NR method used for AC 

power flow analysis and its advantages were explained. The next chapter of this thesis 

discusses how power blackout was modelled in this project.  
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Chapter 5 

Power System Modelling 

This chapter covers the design and implementation of the restoration algorithm that was 

implemented in this project. Designing an algorithm to restore power when there is a 

blackout is a broad research area and several solutions do exist. When it comes to using a 

GA, several solutions spaces are possible. Due to this fact, it is assumed that the state of the 

power grid is known before applying a genetic algorithm in the solution space. When 

cascading effects cause failures in the grid, thus causing parts of the grid to be without power, 

the load needs to be restored [4]. The goal after any blackout is to restore the entire grid to its 

normal working condition. How to restore the grid is generally a complicated and difficult 

decision for the power system operator to make. This is due to the fact that different paths of 

restoring the network involve different restoration times. These restoration times could vary 

from short and acceptable times to unacceptable times. Moreover, the operator has to deal 

with many power system constraints at one time. Therefore, specific restoration procedures 

can be very helpful for the operator. The goal here is to find an optimised restoration path by 

using reserved switches in the power grid to restore the grid and then to pick up the rest of the 

loads within an acceptable period. This section will discuss the restoration method used in 

this thesis. The idea of the restoration is that there are reserved switches that can be used 

when there is a power blackout. Three objective functions will be taken into consideration: 

minimising the out-of-service area, lowering the cost by minimising the switching operation, 

and finally, minimising the losses. Switching in a power grid is expensive; therefore it is 

advised to have the minimum number of switches turned on during the restoration. 

“Minimum” means that the number of reserved switches used to restore the grid should be as 

small as possible. 

5.1 Modelling of Blackout (Encoding) 

This subsection presents how power blackout is modelled. The power grid is considered a 

network and therefore it can be represented in the form of a network topology [94]. Consider 

a working power system with five buses in Figure 5.1. The topology shows that one generator 

injects power into the whole system (network). The state of this network functions properly 

by distributing the required power to the subsequent buses and thus to the customers. This 

distribution complies to and obeys Kirchhoff’s law in the electrical engineering field. The 
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power flows from Bus 1 via S1 to Bus 2 and Bus 4 via S3 till it reaches Bus 5. Note that the 

state of the switches is represented in a binary numeral. When the value of the switch is equal 

to 1, it means the switch is closed and 0 represents an open switch. In Figure 5.1 the coloured 

circles show a closed switch while the uncoloured circle is an open switch. Note that S4 is 

known as a reserved switch. A reserved switch is the alternative path taken during the 

restoration of power to Bus 5. 

 

Figure 5.1: A simple power grid with five buses in working condition. 

From the above, the network configuration can be determined by two set of parameters: 

- the array of switch states and 

- the array of bus loads. 

Each branch is a connection between two buses, and this is essentially how the topology of 

the network is represented. Each bus also has its status as 1 being ON and 0 being OFF. This 

is a one-to-one correspondence with the switches. Thus the first branch in the case file is 

labelled as the first switch (S1), the second branch becomes the second switch (S2), and that 

continues till all the branches have been named. 

Initial pre-fault switch configuration 

The initial pre-fault switch configuration is represented as a string of 0s and 1s, where 1 

means a closed switch and 0 an open switch. The length of the string is the same as the 

number of branches and there is a one-to-one correspondence, so the first element of the 

string corresponds to the first branch, etc. 

Branches on which the fault occurred 
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The array of the IDs of the faulted branches (if there is more than one fault) represents the 

branches where the fault occurred. For example, if the array is (2, 5, 7), that means that the 

second, fifth, and seventh branches are faulted and hence set to 0. 

- For a simple network, these arrays are as follows. 

 S1 S2 S3 S4 S5 

Switch state 

(binary) 

ON 

(1) 

ON 

(1) 

ON 

(1) 

OFF 

(0) 

ON 

(1) 

Table 5.1: Switch state of the working five-bus network. 

 Bus1 Bus2 Bus3 Bus4 Bus5 

Load value 
0 (generator 

without load) 
10 MW 15 MW 20 MW 25 MW 

 
Total load is 10+15+20+25 = 70 MW 

Total power on all buses is 70 MW. 

Table 5.2: Total load value of the working five-bus network. 

The “skeleton” diagram in Figure 5.2 shows the topology of the power grid in a normal 

working condition. As can be seen, S1 is directly linked to the generator source and should 

always be turned on. Power begins to flow from S1 to Bus 2, then through to S3 before 

reaching Bus 4. The last is S5 before reaching the final destination, which is Bus 5. S2 and S4 

will be not used so all the power injected goes through from S1 to S3 and then to S5.  

 

Figure 5.2: Skeleton network. 

To model a blackout scenario, a switch or several switches in the network have to be turned 

off. For example in Figure 5.3, when switch S3 is turned off, the power flow is interrupted 

and power cannot be sent to the subsequent buses, thus there is no power supply to Bus 5. 
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Figure 5.3: Model of blackout in a simple power grid. 

In Tables 5.3 and 5.4, new network parameters are presented. 

 S1 S2 S3 S4 S5 

Switch state 

(binary) 

ON 

(1) 

ON 

(1) 

OFF 

(0) 

OFF 

(0) 

ON 

(1) 

Table 5.3: Switch state of the faulty five-bus network. 

 Bus1 Bus2 Bus3 Bus4 Bus5 

Load 

value 

0 (generator 

without 

load) 

10 MW 15 MW 0 MW 0 MW 

 Total load is 10+15+0+0 = 25 MW 

Table 5.4: Total load of the faulty five-bus network. 

The faulty switch changes the network topology and the new skeleton of Figure 5.3 can be 

represented as shown in Figure 5.4. 

 

Figure 5.4: Skeleton diagram when there is a blackout. 

The rest of the nodes in Figure 5.4 are disconnected from the main power source. As a result, 

there is no possibility to transfer power to the last node. In such an instance a blackout has 

occurred and the state of the grid changes from normal to extreme.  
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5.2 Modelling of Blackout Restoration 

The power grid that is being used in most First World countries was built centuries ago. The 

design of the grid was made so that it would not completely fail. It takes energy to create 

electrical energy. A power plant cannot start without any energy. For example, coal has to be 

burnt to help generate energy to start the grid. Also for hydropower plants, dams must be 

filled with water, which manually turns the valves and in the process generates energy. This 

subsection describes how a power blackout is restored in this project. 

When a blackout has occurred, the task of the operators is to restore power by finding an 

alternative route to get power to the affected areas or to the customers. Since Figure 5.1 had a 

reserved switch whose main task is to be used to restore power when there is a blackout, the 

new network topology when switch S4 is used is shown below. 

 

Figure 5.5: Alternative route with the reserved switch for power restoration. 

 

Figure 5.6: Schema of the restoration process. 

Figure 5.6 shows a depiction of the restoration during a power blackout. The working 

topology is a representation of the power grid in its normal functioning state, the one which 

follows next is when there is fault, and the one on the far right is the restored network after 
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the reserve network has been used. The abovementioned descriptions are the representation 

of a small network with only one reserved switch. In a typical network topology there are 

several switches, known as reserved switches, which provide alternative routes when a fault 

occurs on a different switch. In any restoration planning, the constraints of the network must 

be adhered to.  

5.3 Power Restoration Using a Genetic Algorithm 

The goal of this research is to restore power to a power grid using a genetic algorithm. This 

subsection provides details of how the algorithm was used. In a genetic algorithm, a 

population of possible solutions for restoration of the network experiencing a blackout is 

created as a start point. As several solutions are possible, the fitness function is calculated for 

these possible solutions. In this project the best fitness value is one with a low number. 

Between any two good solutions, one can be better than the other, and using the fitness 

function helps determine that. This is because the objective function is to minimise the result; 

therefore the lower the fitness function, the better the solution. Once these possible solutions 

are chosen, two parents (two topologies) are chosen from this solution set and crossed in a 

process known as a crossover. The purpose of the crossover is to have a new set of solutions 

which is known to have “better” fitness. Later on, mutation is done and a new set of offspring 

is generated and later put into the new population. When the stopping criteria set for the 

algorithm is achieved, the algorithm stops and the best solution is then used in the next 

population. 

5.3.1 Power Restoration in MATLAB Using a GA  

In restoring power using a GA, it is assumed that the network operators have prior knowledge 

of the state of the grid. The GA takes as its input the initial array which represents the 

network, the desired size of the population, and the number of initial seeds. The population 

size shows the number of solutions to the network. The number of initial seeds is the number 

of items in the population which will be seeded from the input array that is the topology. The 

idea is that the solution for the network restoration problem is probably “near” the initial state 

of the switches. The rest of the population is generated at random in order to widen the search 

space. The GA starts with some topologies close to the initial pre-faulted network and some 

randomly generated topologies. At each iteration, it chooses the best ones (the topologies 

with the smallest cost function) and combines them to produce better solutions. It is not 
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practical to keep the entire network for each instance in the GA so the topologies are coded as 

binary strings (an array of 0s and 1s) when string size is the number of branches. Active 

branches are coded with 1 and inactive branches with 0. For example, the following topology 

shows five branches: 

 

Figure 5.6: Structure of the grid using binary codes. 

This network topology is coded as 11010 since branches 1, 2, and 4 are active and branches 3 

and 5 are inactive. Each instance (an array representing topology) in the GA is called a 

genome. The GA is run at multiple iterations. At the start of each iteration, the cost function 

is calculated for each genome. The genomes with the highest cost function are selected as 

parents (to be combined to produce genomes for a new population).  

5.3.2 Selection of Parents, Crossover, and New Mating Pool 

In selecting the parents for the GA, tournament selection is used. Tournament selection is an 

algorithm for selection of the parents for crossover operation in genetic algorithms. It is more 

flexible than uniform and weighted selection algorithms. 

The algorithm has two parameters: 

1. Tournament size, k 

2. Selection probability, p 

Firstly, k parents are selected from the parent pool at random (uniform distribution). After 

that a tournament is held in order to select the parent. The tournament is done in the 

following way [95]: 

The overall best genome from the tournament pool is selected with probability p. 

The next best genome is chosen with a probability of (1–p)p from the pool. 

The third best genome is chosen with a probability of (1 − 𝑃)2p from the pool. 
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This means that the best genome can win the tournament with probability p. If it does not, the 

chance is given to second best to do it with the same probability, which leads to a (1–p)p 

probability that the second genome will win it. The process is repeated until a genome wins 

the tournament. 

Parameters can be adjusted to best suit the given problem. If k = 1, tournament selection 

becomes uniform selection. When p = 1, the best genome from the tournament pool is always 

selected.  

Parameter p should always be greater than 0.5 in order to give better genomes a bigger 

chance to win. When p is larger, better genomes are being “pushed” towards selection more 

strongly. Also, if k is large, genomes that are not among the best will be seldom selected. A 

careful combination of these parameters will lead to a selection which will converge but still 

not get stuck in the local optimum.  

The pseudocode can be written in the following way until all children are generated: 

tournamentPool = Select k genomes from parents 

pool at random 

parent1 = best genome from tournamentPool with 

probability p 

second best from tournamnetPool will have a 

probability of (1-p)p 

third best from tournamentPool will have a 

probability of (1 − 𝑝)2p 
tournamentPool = Select k genomes from parents 

pool at random 

parent2 = best genome from tournamentPool will 

have a probability of p 

second best from tournamnetPool will have a 

probability of (1-p)p 

third best from tournamentPool with 

probability (1 − 𝑝)2p 
child = crossover(parent1,parent2) 

perform mutation and evaluate the children 

Take the child into the child population 

Combine best child and parent to form a new 

population 

Figure 5.7: Pseudocode for tournament selection. 

The process can be illustrated with the following example. Let’s say there is a parent pool of 

ten genomes with the following costs: 

1. 10101  3 

2. 00101  5 

3. 11011  6 

4. 01010  9 

5. 10110  13 
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6. 10000  16 

7. 00001  18 

8. 11110  22 

9. 11111  25 

10. 00100  28 

The tournament size is k = 5 and the selection probability is p = 0.7. The first five genomes 

are selected from the population at random. This leads to the following tournament pool: 

1. 00101  5 

2. 11011  6 

3. 10000  16 

4. 00001  18 

5. 00100  28 

A tournament is held between these genomes, where 00101 has a 0.7 chance to win as the 

best genome in the tournament pool, 11011 has a 0.3*0.7 = 0.21 chance to win, 10000 has a 

0.063 chance to win, etc. A random number between 0 and 1 is generated to check if the first 

genome won and if it is less than p. If so, the first genome wins the tournament; if not, the 

same check is done on the second, etc. Let’s say the random number generator outputs 0.867 

> 0.7. This means that genome 00101 failed to win and we now proceed to the second one. 

Now the random number outputs 0.701 > 0.7, which means the second one failed to win it 

and we proceed to the third one, 10000. Let’s say now random number generator outputs 

0.543 < 0.7, which means the third genome won it and we have parent1 = 10000. 

The same process is now done for the second parent. 

The first five random genomes are selected from the population. 

1. 10101  3 

2. 11011  6 

3. 00001  18 

4. 11111  25 

5. 00100  28 

Now the same tournament process is held with p = 0.7. 

At first we check for 10101. Let’s say the random number generator outputs 0.342 < 0.7, 

which means 10101 won the tournament and we have parent2 = 10101. Now, crossover is 

done between these two parents to produce children for the next generation. When the new 

child is produced, it is put back into the mating pool to start a new tournament. Finally, 
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combining parents and newly generated children and having a tournament played among 

them helps to provide new offspring with better fitness.  

5.3.3 Mutation 

Mutation is a GA operation where bits are flipped randomly. Each bit has a probability of 

flipping and this probability is generally low, so p < 1/n, where n denotes the length of the 

string. At first, the iteration mutation probability starts with 1/n and decays with each 

iteration with a factor of 0.9. Initially the solution is far from a good solution and by adding a 

higher probability of mutation, the search space is spread out. As the iterations continue, it 

gets closer to the solution and mutation is no longer done with a high probability anymore. 

For example, with a string of 10011, when mutation happens on bit 4, the resultant answer 

will be 10001. 

A pseudocode of the genetic algorithm which has been described above is given Appendix 1. 

5.4 Evaluation of the Fitness Function 

The cost function is calculated for each genome at the given iteration. (The genome 

represents the network topology we are currently considering.) The final cost function is 

calculated as a linear combination of three cost functions and three constraints,  

thus, 

F = w1F1 + w2F2 + w3F3 

where F1 represents the minimisation of the out-of-service area. It is the difference between 

the total load of the pre-faulted network and the network currently being considered. Total 

load is the sum of loads on each energised bus. The smaller this function is, the smaller the 

difference is between pre-faulted load and current load; thus more buses are properly 

energised. (One could argue that this is the most important part of the cost function as it tells 

us how much power has been restored.) 

F2 represents the number of switching operations to be performed in order to move from an 

initial network to the current network. It is the hamming distance between the initial 

configuration and current configuration. For example, there could be an initial configuration 

of (11011 – init configuration, 10101 – current configuration). 

Then the hamming distance would be three since three bits need to be changed in order to 

change from initial to current configuration. This needs to be as small as possible since power 

needs to be restored via a small number of switching operations. 
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F3 represents the minimisation of losses. The losses are the sum of the losses on each branch 

since each branch will contribute to the power losses in the network. It also has to be small 

since the branches with small losses are a better option. 

Furthermore, F1 and F3 are calculated with the help of the power flow in MATPOWER. 

5.5 Weight Values 

The values placed for the weight determine the importance of the objective function as well 

as the constraints. From the literature it is known that the objective function of any power 

restoration depends on the network at hand. In some networks, an operator would want to 

reduce the amount of losses while another operator will put more importance on the 

switching operations. In this project we assume that the operator has prior knowledge of the 

objective function required to restore power to the grid. In cases where the operator has no 

prior knowledge of the network, the objective function that is given the highest weight 

becomes the most important. When the aim of the restoration is to satisfy the need of the 

customer, then it is appropriate to put high weights on the minimisation of the out-of-service 

area. Cost of restoration is also important to the network operators; therefore it is put as the 

second highest weight. The least important weight for this project was minimisation of losses; 

therefore it is assigned the least value. 

5.6 Data Normalisation of the Objective Function 

The algorithm has different objective functions and these functions have different 

measurement units. Their value lies within different ranges. Objective functions having large, 

differing ranges of values will result in a significant problem; therefore functions having 

large values will have a larger effect on the objective function than those with small values. 

This does not necessarily reflect their relative importance for classification. Therefore data 

normalisation must be performed first to overcome the differences in units between each 

objective function. In this work we restrict all feature values to a range of [0, 1]. This scaling 

guarantees that all features will be normalised to the same range of values. 

1. F1 is normalised by TL (initial total load) so now F1 = (TL – currentLoad)/TL and is 

thus a relative error. 

2. The number of switching operations is normalised by N (number of switches) so now 

it is HammingDistance(initialSwitch,currentSwitch)/N. So it represents the percentage 

of switch operations relative to the total number of switches. 
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3. Losses are normalised by the total generator output power, so F3 = 

sumOfLossesOnEachBranch/totalGeneratorPower. Now it represents a percentage of 

losses relative to the total output power. 

5.7 Stopping Criteria 

The stopping criteria in this project uses eps [96] (a MATLAB function known as “double 

precision”). The number of iterations are parameters of all numerical and optimisation 

algorithms and thus are GAs. At each iteration, the best genome of the current population and 

its cost function are calculated [97]. It is expected that the cost function of the best genome at 

iteration i+1 is smaller than the cost function of the genome at iteration i. The difference of 

Cost(i+1) – Cost(i) is kept. As the algorithm gets closer to the true solution, this difference 

will become smaller. It will ideally become 0 when the exact solution is reached; however, in 

practice this is rarely the case. The algorithm stops when this difference is smaller than eps. 

Practical values of eps are generally in the range 0.1 or smaller but depend on the application 

range of the cost function.  

Furthermore, the number of iterations is tied to eps. It is possible to have a case where the 

value of eps is never reached (so the difference between the costs at two subsequent iterations 

is never < eps), and as the algorithm cannot run indefinitely, thus it is bound by the number of 

iteration parameter. Therefore, regardless of the eps parameter, the algorithm will always run 

at most NumberOfIterations iterations. This parameter is set to a high value since it is only an 

upper bound and the algorithm will finish much sooner in most cases. So NumberOfIterations 

is set to a high number like 100 since its high value gives a better probability of reaching the 

local minima. 

To summarise, eps is the criteria which asks if the distance between two iterations has 

decreased below it. This can be represented on a graph where the number of iterations is on 

the x-axis and objective or function on the y-axis. Let’s say we have y = f(x). Eps will check 

every iteration if abs(f(x) – f(x-1)) < eps, and if it is, it stops the algorithm.  

In conclusion, this chapter gave a detailed description of how a GA was modelled in this 

project for power restoration. It should be noted that selecting the parameters for performing 

a GA is one of the most difficult tasks, especially with regard to the population size since a 

too small value or too big value has a negative impact on the solutions that are generated. The 

fitness function is also another important concept in GAs because it determines how the next 

chromosome will be reproduced. In this work, the smaller the fitness value, the better the 
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child produced because the aim is to reduce the cost of the restoration process. There is 

ongoing research to help find rules on how parameters for GAs can be selected. The next 

chapter presents the hybridisation technique used in combination with the conventional GA 

with the aim of improving the performance of the GA.  
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Chapter 6 

Hybridisation of the Proposed GA with Local Search 

This chapter presents the second search algorithm that was added to the conventional GA. 

One way of understanding the working principles behind the use of local search is explained 

by paraphrasing Di Gaspero [98]. Imagine an individual who has to climb to the top of Mount 

Afadjato [99] on a day which is foggy. The individual can only see what is close to him but 

cannot see the top of the mountain because of the foggy atmosphere. To reach the top of the 

mountain, the person must make decisions based on the slope of the mountain [98]. 

The mountain in this illustration is the “shape of the objective function” and choices can only 

be made based on the nearest slope. To reach the summit, the individual must continue to 

choose the upwards slope but even by making such a choice there is no assurance that he is at 

the top or midway [98]. 

6.1 Formulation of the Proposed Local Search 

There are two conflicting performance objectives of a GA and they depend on how the best 

solution is exploited as well as how the solution space is explored to find a good solution. 

How the exploration and exploitation process can be combined optimally shows how 

powerful the GA is. One advantage of a local search algorithm is that it has the ability to 

improve the chances of the individuals so that they can enter into the next generation phase 

[100]. Any local optimisation algorithm that can be used to find a good balance between the 

exploration and exploitation process can help to make the genetic algorithm produce highly 

accurate solutions. One problem with a GA is that it can easily find a global optimum but 

faces difficulties when finding the local optimum in the solution space. The addition of a 

local search algorithm can improve the search performance when the combination is done 

efficiently. 

Conventional GAs are known to be very slow in finding a local optimum because they do not 

make good use of the information available. As a result, a local search algorithm can be 

implemented to help remove this deficiency which happens in the local search phase of the 

GA [101]. When adding a local search to a GA, there is always a compromise between the 

time taken for the solution to converge and the accuracy of the solution [55]. In this project, it 

was realised that the restoration time increased but the better side was that full restoration 

was almost always achieved when the local search algorithm was used. In areas where it was 
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not possible, the algorithm restored the highest amount for a node. Figure 5.8 below shows 

the incorporation of local search into a standard GA. 

 

Figure 5.8: Incorporation of local search by Garg and Mittal (from [101]). 

After crossover and mutation is done, a new population is ready to be evaluated and passed to 

the next iteration. In the standard GA, this new population will be input into the population 

for the next iteration. To hybridise the proposed GA, one intermediary step is added in order 

to enhance this population. For each genome of the population, its local neighbourhood is 

examined to try to find a better solution. Only neighbours up to distance 1 (hamming 

distance, i.e., the difference in bits) are examined due to high running time. This means that 

for each genome in the population, each other possible string is examined when it only differs 

on one branch. Then the initial genome is replaced with the one in its neighbourhood with the 

lowest cost value. If the population size is N, the number of switches is M, and the time 

needed to calculate cost is t, then the running time of this method is O(MNt). 

Let’s say that after recombination and mutation we have the following populations and costs: 

1. 10101 cost = 30 
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2. 01001 cost = 20 

 

3. 11011 cost = 15 

 

4. 10000 cost = 22 

 

5. 01100 cost = 18 
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A local search for each of these genomes is run. The first local search is run for 10101. The 

neighbours of 10101 in the population list are those below because they differ in one bit, 

which is the same as having a hamming distance of 1: 

00101 

11101 

10001 

10111 

10100 

 

00101 (Neighbour 1) 

 

 

00101 (Original genome) 

 

Figure 5.9: Representation of the chosen genome and its neighbour. 

A similar process as shown in Figure 5.9 is done for the rest of the neighbours. A threshold is 

also used to limit the number of neighbours for the original genome. 

Let us now assume that the costs of the neighbours are listed below: 

00101  22 

11101  35 

10001  25 

10111  48 
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10100  37 

The lowest among them is 00101, with a cost of 22. Since that cost is lower than the cost of 

the original genome, which is 30, the original genome 10101 is replaced with 00101. 

Now another local search is run for the second genome from the population 01001 and all of 

its neighbours are examined: 

11001  35 

00001  23 

01101  28 

01011  55 

01000  64 

The lowest among them is 00001 with a value of 23. However it does not have a value lower 

than the original genome 01001, with a value of 20, so here the original genome is not 

replaced. It stays in the population since none of its neighbours are better. The same 

procedure is repeated for genomes 3, 4, and 5 from the population in the example. The 

introduction of local search thus helps to reduce the cost of the network and also helps to find 

the optimum genomes for the population. 

6.2 Addition of Radiality Check 

The layout of a power grid can be defined by two main topologies, namely, radial and mesh 

[102]. The radial grid is in the form of a tree-shaped topology in which closed loops do not 

exist. This means that you start on one bus and deliver power to the next without the 

possibility of finding the original bus unless you turn backwards [102]. It is stated in the 

literature that it is the simplest and cheapest topology for an electrical distribution grid, but if 

a line is disconnected, all the lines below the tree shape will also lose power. Such a topology 

is also not computationally expensive. When it comes to a GA, since there is a random 

generation of different topologies during the population generation process, having a radial 

network helps in encoding and decoding. With radiality in place, the final topology is the 

same as the initial topology but the final has no blackout area. The second topology is the 

mesh grid topology, where it is possible to find closed loops and the power is delivered 

through multiple lines, thus forming a mesh structure. If one line is malfunctioning or is cut, 

it is possible to reroute power from elsewhere while the damaged line is repaired [103]. The 

advantages are that a mesh topology is more reliable due to the several reroutes possible 
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[104] and has less losses, but this means a bigger investment is required in maintaining the 

other lines [105]. Figure 5.10 shows a simple representation of both network topologies. 

 

Radial network structure  
 

Mesh network structure 

Figure 5.10: Radial and mesh network structure adapted from [106]. 

Furthermore, all the IEEE bus test systems, which are the commonly used test systems for a 

power flow analysis, have a mesh topology. Restoring power to a mesh network is expensive 

and computationally extensive due to the interconnection between the nodes because the flow 

calculations are difficult. As the main goal of this project is reducing cost, converting a mesh 

network to a radial network is more appropriate and non-radial networks are penalized by 

increasing its cost. Also, the conversion helps in the encoding of the network because when 

the restoration is complete, the string is decoded. After the decoding, the network that the 

power was restored to should be the same network which initially had the fault. Put in 

another way, when the final restoration of the restoration is achieved, it should be possible to 

trace/map it back to the initial network. Radial power networks can be provided with 

additional branches called “reserved branches”, which can be enabled as an alternative route 

in case of a failure. In this current project, the initial power network is considered to be radial 

with reserved branches. Once a new configuration of branches is found, it is essential to 

maintain that radiality. Hence a check must be done to see that there are no loops in the 

network, i.e., the network must remain radial. When a GA produces a string which is non-

radial, it is penalised by increasing its cost. This penalty serves as a check so all networks 

maintain a radial structure during and after restoration. During the generation of the 

population, it is efficient to select only topologies that are radial. The radiality of these 

parents and offspring should be maintained throughout the process of using the GA. Having a 

radial network improves the performance of the GA. The main criterion is that if the number 
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of branches connecting the buses is one less than the number of buses, the network is said to 

be radial. One important condition to note here is that only the buses that are supplied are 

taken into consideration. For example, if a network has ten buses out of which only six are 

supplied, i.e., connected to a generator, then the number of switches that are connecting these 

buses must be only five. In other words, the network must form a minimum spanning tree 

between the supplied nodes. 

In order to understand the terminologies, please refer to the diagram below. S1, S2..., etc. 

represents the switches/branches which can be ON or OFF. M1, M2…, etc. represents 

nodes/buses which can be supplied or not supplied. Some of these nodes can be generators. If 

a node is connected to a generator with a series of switches, then it is considered supplied 

because load will be sent to it. 

 

Figure 5.10: Radiality of a network. 

6.2.1 Implementation  

Consider the network of five buses below. 

 

Figure 5.10: Sample network with blackout. 

 

Figure 5.11: Representation of adjacent 

matrix. 

Algorithm 
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As described above, first the number of supplied buses must be calculated and then the 

number of branches/switches connecting only these buses must be determined. 

To find the number of supplied buses: 

Start with the initial bus vector M = {M1,M2,…Mn}. Where mi is the state of the bus, a 1 

indicates the corresponding bus is supplied by the generator and a 0 indicates a blackout. 

Start by setting all the generator buses to 1. 

Consider the network adjacency matrix A. Now perform Cj = M x Aj, where Aj is the column 

of the network adjacency matrix. If Cj is greater than 0, then the corresponding M(j) is set to 

1. M is changed to M || Aj. 

Once this operation is completed for every column of the adjacency matrix, it is repeated 

again starting with the newly calculated vector M. This iteration is terminated once two 

successive vectors M remain the same. At the end of the iteration, vector M indicates the 

supplied buses, i.e., the count of 1s in the vector gives the number of supplied buses. 

Note: Only one diagonal half of the adjacency matrix must be considered. Either the top right 

of the principal diagonal or bottom left. This is because a connection between, say, Buses 1 

and 2, is the same as a connection between Buses 2 and 1. The diagonals of an adjacent 

matrix is symmetrical hence the upper half is the same as the lower half. 

To find the number of branches/switches: 

The number of branches is simply obtained by counting the number of 1s in the adjacency 

matrix. Please see the above note on adjacency matrices. 

However, the branches connecting the unsupplied/blackout buses must be ignored. This is 

accomplished by simply performing Aj = Aj x M. 

This gives a new adjacency matrix with the branches involving blackout nodes being 

removed. 

Now we have vector M and the new adjacency matrix. The number of 1s in both are counted. 

The number of 1s in the newly obtained adjacency matrix must be one less than the number 

of 1s in vector M. Then the network is radial. An example of the implementation is given in 

Appendix 2. 

In conclusion, Chapter 6 presented the detailed overview of how the GA was hybridised by 

using a local search. Local search helps to fine tune the selection process and reduces the cost 

even further since the selection is done twice. During the second process, the fitness function 

that is used in the next generation is less than or equal to the original. Also, the addition of 

the local search helps the objective functions to converge quickly. Even though radiality 
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helps in keeping the structure of network it can have some implications when converting the 

mesh grid to a radial grid. For example, in some cases, there is a tendency to increase losses 

every time a connection line between two buses is removed even though the aim was to 

remove a connection with less losses. Also, when a line is removed, it can cause a voltage 

drop between the buses. All of this should be taken into consideration when applying any 

radiality algorithm on a mesh topology. Chapter 7 of this thesis discusses the results of the 

hybrid GA. An extensive test was performed on the IEEE14 bus system where the objective 

function of different GAs used in this project is discussed. 
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Chapter 7 

Simulation Results and Discussion 

To know the efficiency of any algorithm, solutions to the problem are to be first produced 

and later analysed. Therefore, this chapter presents the simulation results of the hybrid 

genetic algorithm for the solution to blackout restoration problem. For the purpose of 

showing the results, each different type of GA is applied separately. In this work, the GA was 

tested on these bus systems: IEEE14, IEEE30, and the remodelled IEEE118. The three 

different power grids have differences in the number of buses, switches, and generators. The 

higher the number of branches in the network, the more computation power is required by the 

algorithm to solve the power flow problem. Bus 1 is the black-start bus, which should not be 

turned off as it is considered the main generator for the distribution grid. A comparison is 

made between a GA without local and radiality check and a GA which includes local search 

and radiality. Each test system is different; therefore, there is the need to vary the parameters 

of the algorithm when running the test for the different bus systems. This means that with the 

population size and the number of iterations, the penalties are varied for IEEE14, IEEE30, 

and IEEE118. Without having optimal parameters, the GA will not converge. Two types of 

blackouts are used to conduct this comparison. The first one is a single-fault blackout and the 

second one is a multi-fault blackout. After running each test, the objective functions for the 

different GAs are compared. Also due to the time limitation, only the result of the smallest 

system is presented in this results section. For the other systems, a summary of the results is 

provided. In analysing the results, these were the benchmarks in assessing which GA was the 

best during restoration. One of the important things during a restoration is to find out where 

there was a full restoration or a partial restoration. In a full restoration, first and foremost, the 

whole grid is connected, which means power was supplied to the buses that needed them and 

secondly, the total load that was lost during the restoration is fully regained. This means that 

when the grid is functioning normally and its load is 189 MW, when a blackout occurs and 

let’s say 40 MW is lost, the grid is operating at 149 MW while the blackout is still in place. It 

is expected that during any restoration process, the whole grid is reconnected and that the 

total load is restored. In situations where the total load is not restored, then that is called a 

partial restoration. In a real-world situation, several factors are possible, such as the location 

of the affected area or the type of fault that occurred. In the case of this project, it was 

realised that the type of switch that caused a blackout can be the determining factor along 
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with the number of available reserved switches for restoration and the type of switch used for 

the restoration. When the case file is studied carefully, each of the branches (switches) has its 

unique configuration, thus making each of them different. As there are several reserved 

switches available, there are situations where the chosen reserved switch does not have the 

same configuration and working capacity as the fault switch. Thus it is not able to transfer the 

same amount of load to the affected area. In other cases, the reserved branch is better in terms 

of its configuration and working capacity. In the power grid, it is assumed that network 

operators already know the reserved switches that can be used for the restoration. Without 

knowledge of the reserved switches, it is not possible to restore power through the use of any 

switch.  

After running the proposed hybrid algorithm, it is checked whether a full restoration was 

achieved (i.e., whether the whole grid was reconnected and there is a full load restoration or a 

high amount of it restored) or whether only part of the load was restored, i.e., a partial 

restoration. Once this information is known, the analysis of the objective function follows. 

The first objective function is the minimisation of the out-of-service area. Therefore after 

obtaining the results, this first objective function is compared. When the result is the same for 

the different types of GAs, the next objective function is then taken. This objective function 

is the minimisation of the switching operation for the network that was restored. Therefore 

the less number of switches used, the less the cost. If the result continues to be same, then the 

third objective function, which is the minimisation of losses, is analysed. When doing the 

comparison, if it is found that the first objective function of one GA has a smaller value 

compared to the others, it is considered the superior solution.  

Selection of Reserved Switches 

Figure 7.1 shows the reserved switches in a network containing thirteen buses and ten 

switches. 
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Figure 7.1: Network showing reserved switches S4, S6, and S10 (taken from [107]). 

In a power restoration problem, it is assumed that the initial network will have radial 

topology. In other words, all the buses will be connected by the minimum required number of 

branches. If there are n buses in the network, there will be exactly n–1 branches connecting 

them. Such a network is also called a spanning tree. Any additional branches apart from the 

minimum required branches will be termed “reserved branches”. These reserved branches 

will be used when there is failure in any part of the network. 

Description of IEEE14 Bus System 

The IEEE14 bus system is mostly used in a power restoration problem, as was found in the 

literature. In this project, extensive testing was performed on it. This system has twenty 

branches (switches) and all the branches can be available for power restoration. But since the 

first branch is always ON, then there are only nineteen switches available for restoration. 

Thus said, there can be several choices for the reserved switches and several combinations. 

Testing all the combinations is a time-consuming process and thus is also a limitation of this 

project. Therefore the test presented here only shows part of test that was run for this project. 

In the simulation, single-fault and multiple-fault conditions were tested. “Single fault” means 

only one a single switch was turned off while the multiple uses two or more switches to 

model the faulty area.  

During the test, the different parameters of the GA were varied. The test results show the 

average of ten executions and ten iterations but the number of iterations can also be 

increased. The higher the iteration number, the longer it takes for the algorithm to complete 
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its run. Also, the test was performed on an Intel Core i5 processor with a Windows 8.1 

operating system and 8 GB of RAM.  

7.1 Parameters for Fine Tuning the Hybrid GA 

In any GA, there are a number of generations made in order to solve the problem. Within the 

generation, the fittest members are chosen and propagated to the next process. Each 

generation consists of strings of 1s or 0s and in each generation there are individuals that 

represent some points in a search space of the GA or are a possible solution/candidate that 

can go through the evolution process. This subsection presents the parameters chosen for this 

project. In the literature it was found that there is no standard benchmark for selecting the 

different parameters of a GA. In [108] it is known that the parameters chosen for any genetic 

algorithm will have an influence on its performance; therefore the parameters need to be 

carefully investigated. The goal should always be to find the optimal parameter values for the 

problem. The optimal values for the parameters depend mainly on 1) the problem and 2) and 

the computational time that will be spent in solving the problem [108]. There is a population 

size parameter which initially it is best to select a high population for and then later decrease 

the value. Having a big population size always broadens the solution space by making it 

stochastic, thus it can lead to the GA not finding a solution. Later it is advisable to reduce the 

search space so a local optima can be found. The role of the population is to hold possible 

solutions for power restoration. In the population, each individual is a possible solution that 

will help restore power to the grid. And within the population, some individuals are better 

than others when their fitness function is analysed. Others are quickly discarded because they 

do not provide any acceptable solution. Once the good individuals have been selected, two of 

them are chosen and they form the parents. There is mating done between the parents to 

produce a child during crossover. Then mutation is done. Once the stopping criteria are met, 

the algorithm stops. A more detailed explanation was provided in Chapter 3. A good 

population size gives a good solution space for the GA. The number of iterations tells us the 

number of times the algorithm is run before it stops. 

 Meaning Value 

Populationsize The population size 100 

numParents Number of parents to be 

selected from the ranked 

population 

20 
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numInitSeed Number of initial seeds 

constructed from parents 

10 

numTransferredParents Number of parents to be 

transferred to the next 

generation 

10 

numIterations Number of iterations 100 

mutationProb Initial probability of 

mutation 

3.0/length(initSwitchArray) 

Table 7.1: List of parameters that should be tuned when using GA. The numbers in the value 

section should be changed based on the network.  

7.1.1 Rules for Parameter Selection in This Project  

As choosing parameters is time consuming and requires a lot of changes, after tuning, these 

were found to run the algorithm efficiently when applied to the hybrid algorithm proposed in 

this project. 

1. PopulationSize: Size of the population in each iteration. The larger this value is, the 

better the chances are for finding a good solution. However, very high values may 

increase running time. One should start with a value of 100–500 and increase it if one 

is not satisfied with the solution. 

2. NumParents: Number of parents to be selected from the population. Empirically the 

best value lies around 20 to 30 percent of the populationSize, but it can be increased if 

one wants less optimal genomes to be included in the crossover. 

3. NumTransferredParents: Number of best parents to be transferred to the next 

generation. The value should be around half of the numParents but never greater than 

numParents as stated in the literature. 

4. NumInitSeeds: Number of genomes in the initial population to be created from the 

initial string (network topology similar to the initial one since the solution lies 

somewhere near). It should be around 10 percent of the populationSize. 

5. NumIterations: Maximum number of iterations that a problem can run if it does not 

find good solutions. In most cases, the program will converge in a few number of 

iterations (10–15 or less) and this is the upper bound (so that we are certain the 

program will not go into an infinite loop). It is kept at 100 and should be increased 

only if the program fails to find a solution in this number of iterations. 



72 

 

6. MutationProb: The probability of a mutation. It represents the probability of a 

mutation for a specific genome. If a more randomly spread solutions is desired, this 

should be increased. It is represented as a portion of the string size, i.e., 3/size 

(initString). The numerator should never be greater than size (initString) and should 

be kept low or the solutions will be very random. Lower values will assure faster 

convergence but higher chances to be stuck in a local optimum. 

7.2 Assessment of the Proposed Hybrid Genetic Algorithm 

This subsection discusses how the performance of the proposed hybrid algorithm is assessed. 

This is done by comparing the result of the GA to that of the hybrid GA. The goal of 

comparing two different genetic algorithms is to show that the hybrid version outperforms the 

conventional GA in the subsequent sections. In order to show the advantages of combining 

the GA with a local search and radiality check to the problem of the design of a restoration 

plan, a comparative case between the restoration algorithm and the traditional GA method is 

presented. The comparison between the restoration algorithm and the traditional GA uses the 

IEEE14 bus test system. The algorithm was also run on IEEE30 and IEEE118 bus systems to 

test its scalability and robustness. The comparison focuses on the three objective functions, 

the time required to restore the network, and the amount of restored load of the network. 

Whenever there is a blackout, a certain amount of load is lost. When there is full restoration, 

it is expected that the areas that lost power will be reconnected and that the load will be 

restored to its full amount. In some cases, when there is a full restoration of the network, only 

some amount of the load is restored. Thus in such cases the percentage of the load restored is 

used for the analysis. This is called partial restoration. 

Depending on the type of GA used, there can be several steps involved when running the 

project. As this is a power restoration problem, the nine steps stated below were found to be 

useful for this project. There is the need to have the input, which is the topology of the power 

grid. This tells us how big the grid is. The size of the grid is directly proportional to the 

complexity of the restoration process. Thus when the grid is small, it is expected that the 

restoration process will take less time and vice versa. From the structure of the grid, the data 

of the components, such as the generators, lines, and transformers, are known. These data tell 

the operator how the power is being transferred from the source to the destination (usually the 

customer). The grid is tested to be certain that there are no faults and that the load 

calculations are correct. Once that is done, the parameters of the GA are set. These 
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parameters take into consideration the rule that was set for Section 7.1.1, which helps to run 

the GA efficiently. The constraints are also set for the project. The constraints help to show 

which solution fully satisfied the GA. Furthermore, a fault is then injected into switching off 

one or several switches. When this happens, a blackout is said to have occurred. The power 

flow analysis is run and during the process, the fitness function of the individual candidates in 

the population is calculated. The calculation is done internally by the MATPOWER suite 

during the simulation process. After completing the run, the program outputs the graph which 

shows the objective function and the number of iterations it took for the algorithm to 

converge. The other output results include the buses in the network which were not supplied 

during the restoration process, the number of reserved switches used in the restoration, and 

the total load of the network after the restoration process. By analysing these, the best GA 

was chosen as the restoration method for the grid. This process of running the algorithm is 

explained in the subsection below. 

7.2.1 Steps in Testing the Hybrid Genetic Algorithm 

Step 1: Input the IEEE14 bus test system data, which contains the generator, bus, line, 

transformer, and reactor data. This is the input of the power grid into the system. The 

information provided to the program is the type of IEEE test bus system (i.e., the topology) 

used and its respective data, such as generator input and the line data. In summary, this is the 

input needed for MATPOWER to recognise the type of power grid that is being used in the 

modelling. 

Step 2: Put a number for the population size (pop size), crossover rate, and iterations. These 

are parameters which are to be optimised when using a GA. A population size is required 

before running a GA. The iteration count helps in determining when the algorithm needs to 

stop. A detailed explanation of the parameters can be found in Table 7.1. 

Step 3: Initialise the number of reserved branches and the fault. The number of reserved 

branches tells the model which alternative switches can be used when restoring a network 

with a blackout. The faulty branches inject a problem into the network, thus changing its state 

from normal to critical. When there is a critical state it means there is a blackout and there is 

the need to restore the load back to the system. 

Step 4: Set whether to use only a GA, a GA with a local search, a GA with a radiality check, 

or a genetic algorithm with a local search and radiality check. This is the part where the 
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selection of which GA to use is made as there are different algorithms called into play during 

the run-time of the project. 

Step 5: Run a Newton–Raphson power flow. The load flow analysis is done by using the 

inbuilt analysis function of MATPOWER. In this case, an AC power analysis is being used 

and using the NR flow is one powerful technique for solving equations numerically. The 

solution time is fast and it converges with a reasonably small tolerance. 

Step 6: Calculate the fitness value. This is also known as the objective function of the model. 

The objective of the thesis was to minimise the fitness function. The smaller the fitness 

function, the better it is. 

Step 7: Check the constraints that are mentioned in Step 6. The constraints are of utmost 

importance; therefore when one constraint is violated, the solution is discarded. 

Step 8: Check the final output of the objective function, the load of the grid during the 

blackout, and the load that was restored after using the algorithm to restore power to the grid. 

During this process the program shows the switch string which helps us to know which 

reserved switches were used during the restoration process.  

Step 9: Plot the graph of the objective function against the number of iterations of the model. 

By comparing the different graphs produced by the algorithm, we are able to assess the 

correctness of the solution. The values of the objective function are inputted on the project 

window of MATLAB. The graph helps to show the minimisation of the objective functions 

and it also helps in the analysis of the results. 

Step 10: Select the best GA that solved the problem by satisfying all the required objectives 

and restored power to the grid either fully or partially. 

These ten steps helped in this research to fully test the proposed hybrid GA for blackout 

restoration. Depending on the project or task at hand, there can be fewer or more steps than 

what is provided. Steps that remain general for most projects are the setting of the parameters 

of the GA and using the power flow analysis when the project is modelled in MATLAB. 

7.3 Two Types of Blackout Modelling 

In this project, two types of power blackout scenarios, namely, single fault and multi fault 

were used. The input data required for this to be done are 1) the IEEE test system or any grid 

topology, 2) the number of reserved branches which can be used during the restoration 

process, 3) the faulty switch which causes a blackout to the power grid, 4) turning ON/OFF 
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the radiality function by using 1 (on) or 0 (off), and 5) finally, turning ON/OFF the local 

search function by using 1 (on) or 0 (off). 

These are explained in the subsequent subsection. 

7.3.1 How a Single-Fault Blackout Was Modelled in This Project 

In this project the modelling of a single-fault blackout was done by disconnecting one branch 

(line) in the power network. Any branch excluding the connection to the main bus of the 

network can be disconnected. The reason being that when the main generator is cut off from 

the grid, there cannot be any restoration of power since there is no way electricity can be 

transferred to another part of the grid. So keeping the main bus connection always ON is a 

must for the algorithm to work. For the IEEE14 bus, one switch was disconnected. In this 

case, Switch 9 was selected as the faulty switch. The criterion for the selection of the faulty 

area is that when the switch is turned off it should interrupt the normal working condition of 

the grid and that the main generator is always connected to the grid. Therefore it doesn’t 

matter which switch is chosen in this case. What needs to be taken into consideration is that 

the chosen bus must cut off power to some zone of the grid. Any branch can be turned off to 

model the blackout scenario, excluding the ones connected to the main generator as was 

explained above. In this project any candidate switch for a blackout was chosen and the 

algorithm was applied. Figure 7.1 is the layout for an IEEE14 bus test system that is 

commonly used in power simulation problems. 

 

Figure 7.1: IEEE14 test system [9]. 
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The IEEE14 bus was remodelled to have reserved branches (switches), which are alternative 

paths or switches that can be used during the restoration process. In order to model a 

blackout, part of the network has to be switched off. Refer to Appendix 3 to see how the 

remodelling was done. After the remodelling, a fault is injected into the power grid, for 

example, at the fourth branch, by turning this switch off which is known as switch number 4 

(S4). It is possible to inject a fault by turning off any other branch in the grid when running 

the simulation. 

Table 7.2 shows an example of the parameters for a single-fault blackout. 

Reserved switches* [S5, S6, S7, S15, S18, S19, S20] 

Faulty switch** [S4] 

Weight*** [400 for F1, 200 for F2, 100 for F3] 

Table 7.2: Single-fault blackout parameter settings. 

*Refers to the switches or alternative path that can be used for restoring the power grid when 

there is a faulty switch. 

**Refers to the blackout area. 

***Refers to the weight that is put on the constraint. The effect of the weights is explained in 

Chapter 3 of this thesis. 

7.3.2 How a Multi-Fault Blackout Was Modelled in This Project 

In order to model a multi-fault blackout, two or more switches can be turned off in the 

network. The greater the number of switches turned off , the higher the computational time to 

restore the lost load and to put the grid back to its normal working condition as well as the 

higher the computation of the power flow. For example, multiple faults can be injected into 

the power grid at the fourth, eleventh, twelfth, thirteenth, eighth, and ninth branches.  

An example of the parameters for a multi-fault blackout is given below. 

Reserved switches* [S5, S6, S7, S15, S18, S19, S20] 

Faulty switches** [S4, S11, S12, S13, S8, S9] 

Weight*** [700 for F1, 300 for F2, 50 for F3] 

Table 7.3: Modelling of a multi-fault blackout. 

*Refers to the switches or alternative path that can be used for restoring the power grid when 

there is a faulty switch. 

**Refers to the blackout area. 
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***Refers to the weight that is put on the constraint. The effect of the weights is explained in 

Chapter 3 of this thesis. 

7.4 Metrics for the Evaluation of the Proposed GA 

This subsection presents the metrics for the evaluation of the hybrid GA proposed in this 

thesis. The performance of the GA is later also presented. The evaluation of performance was 

done based on the following metrics [109]. 

1. Scalability (robustness) of the hybrid GA: Scalability refers to how the algorithm 

performs when used on different test systems. In this case, it means the different IEEE 

bus test systems and any other grid system available. The hybrid algorithm was run on 

the IEEE14, IEEE30, and IEEE118 bus test systems. In all cases, the proposed 

algorithm was about to find results for the restoration of the system back to its normal 

condition. In some cases for the multi-fault blackout, not all the buses of the network 

were powered but a greater percentage of the lost load was restored. 

2. Quality of the results: In this metric we take into account how optimal the final 

result is by considering the objective functions as well as the constraints stated in the 

first chapter of the thesis. This takes into account the number of switches used in the 

restoration process. For example, in a restoration process where there are about ten 

reserved switches that can be used, using all of these switches will make the 

restoration very costly. An ideal solution would be to use a fewer number of switches. 

3. Computational effort refers to how fast the computation was. Computation effort is 

equal to the time the algorithm is run in order to obtain the solution for any particular 

case. Time is essential in power restoration. Consumers are not used to having 

blackouts; therefore the need to restore power to the grid in a time-efficient manner is 

ideal. Secondly, as there are different test systems that the algorithm can be run on, 

the GA should be able to find a solution even for a large grid. It is expected that the 

restoration will be faster for a small network than a large network and that the 

difference will not be extremely big. 

Metrics one and two are used to determine the efficiency of most metaheuristic algorithms 

and metric three deals with the time it takes for the restoration of a blackout. In this project, 

each of the different types of GAs were run approximately ten times with 10 iterations for the 

IEEE14, and the average of the solutions is recorded. 
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7.5 Robustness or Scalability of the Proposed Hybrid GA 

To compare several forms of the same algorithm, different test problems are to be taken into 

consideration. In the electrical engineering field and especially with researchers in the power 

flow field, the widely used test system is the IEEE bus test system. This has been 

standardised by power engineers in the power grid community and is known as the 

benchmark for most papers written on power systems as can be found in the literature. An 

advantage of using a standard benchmark such as the IEEE bus test system is that one can 

easily make a comparison between the performance of the hybrid GA and existing GAs, thus 

helping to understand its performance. From the literature it was understood that the bigger 

the power grid, the longer it takes to restore power to it when there is a blackout and the more 

expensive the flow calculations are. Therefore it is expected that if the algorithm works in 

similar manner, then the biggest IEEE test system should have the longest run or should pose 

the most difficulties during power restoration. 

Test System Time Run (seconds) 

IEEE14 23(+/-2)* 

IEEE30 58(+/-5) 

IEEE118 244(+/-5) 

Table 7.4: Test using different benchmark systems (average of ten executions)**. 

* The mean plus or minus the standard deviation of the time 

**The number of executions is not the same as the number of iterations. It is possible to have 

20 executions and 100 iterations for a larger network 

As can be seen from the results in Table 7.4, the algorithm was able to find solutions for 

different types of grids. The time run, which increases as the grid becomes bigger, was as 

expected since the time is directly proportional to the size of the power grid. This shows the 

scalability of the proposed hybrid GA. Also the type of switch that is turned OFF to model 

the blackout also affects the rate at which the restoration can be done.  

7.6 Quality of the Solution (Accuracy) 

This subsection describes the quality of the solution. To assess the results produced by the 

hybrid GA, the constraints set for the grid have to be met. Also the aim of the project is to 

minimise cost (objective function); therefore, the lower the cost, the better the solution is for 

the electricity company. The total cost is a sum total of the three objective functions 
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(weighted sum) and as a result, each individual function is checked and compared with the 

others. 

7.6.1 Single-Fault Blackout 

This subsection will discuss the results obtained when a single-fault blackout was modelled 

in the project. The results will include a comparison of the 1) minimisation of the out-of-

service area as well as the minimisation of the switches and losses, 2) the weighted sum of 

the objective function, 3) the completion time for the restoration, and 4) the load that was 

restored to the network after the restoration procedure. 

Henceforth, the following abbreviations will be used in representing the tested algorithm: 

 The traditional genetic algorithm will be represented as GA. 

 The GA with a radiality check will be represented as GA + RAD. 

 The GA with a local search will be represented as GA + LS. 

 The GA with a local search and radiality check will be represented as GA + 

LS + RAD. 

Several simulation tests were done with IEEE14. A few of these results run by using this test 

system are presented in this section. Below is a test run on the IEEE14 bus test system when 

there was a single-fault blackout. 

7.6.1.1 Comparison of the Minimisation of the Out-of-Service Area (F1) 

 

Figure 7.2: Graph of F1 for the IEEE14 bus system. 

The figure above shows only ten iterations. After the tenth iteration, all four types of GAs had 

converged. The results below show the average number of ten executions of the algorithm. In 
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the above graph it is not possible to see the lines of the GA + LS and the GA + LS + RAD as 

they are almost close to zero. Their closeness to zero thus shows both algorithms were able to 

minimise the first objective functions. The GA + LS was the best algorithm based on its 

lowest F1 value. As F1 is the most important parameter among the three objective functions, 

GA + LS is superior in this category; hence it is to be monitored for the rest of the other 

objective functions as well as the parameters. 

 GA GA + RAD GA + LS GA + LS + RAD 

F1 (MW) 

 

0.42123 0.46949 0.00025 0.000742 

Table 7.5: Values of F1 for the IEEE14 test system (average of ten executions). 

7.6.1.2 Comparison of the Switching Operations (F2) 

 

Figure 7.3: Graph of F2 for the IEEE14 bus system. 

From the above graph, it can be seen that the GA + RAD has a zigzag shape. Its F2 value was 

fluctuating. It reduced during the second iteration, then increased again during the next. On 

the fourth iteration it had a sharp decline but later went up again before converging from the 

sixth iteration. During the different iterations the GA + RAD picked different reserved 

switches. The change in the switching operation affected the convergence of the algorithm. 

This shows that until the GA converges for a consecutive number of iterations. Selecting the 

GA as the better option would lead to a wrong result. Both the GA + LS and 

GA + LS + RAD converged at the second iteration till the end of the run. Therefore in this 

category, there was no superior F2 between the GA + LS and the GA + LS + RAD. The 

results were the same. 
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 GA GA + RAD GA + LS GA + LS + RAD 

F2 (MW) 0.100 0.200 0.050 0.050 

Table 7.6: Values of F2 for the IEEE14 test system (average of ten executions). 

7.6.1.3 Comparison of the Losses of the Network (F3) 

 

Figure 7.4: Graph of F3 for the IEEE14 bus system. 

Losses were considered the least of the three objective functions and hence had the lowest 

weight. The algorithms all seem to have an increase in losses as the number of iterations 

increased, because the count of switched ON branches increases step-by step from the initial 

string. The initial string has only part of the branches which provide power to the network 

before a fault. Each active branch provides some losses. When the network is totally turned 

off there are no losses. However, when we restore power in network, the losses are also 

restored. The GA + LS and GA performed the worst in this category. Another explanation is 

that at each iteration the algorithm makes a trade-off between the three objective functions. 

The outcome is that the first and second objective functions are always chosen or given 

priority in the selection of the new path for the restoration. This thus leads to a situation 

where both F1 and F2 are minimised while F3 keeps increasing because of its low importance 

in the GA process. A slight increase in the losses whereby F1 and F2 are drastically 

decreased will invariably lead to a lower-weighted sum of the objective function. 

 GA GA + RAD GA + LS GA + LS + RAD 

F3 (MW) 0.174 0.091 0.174 0.148 

Table 7.7: Values of F3 for the IEEE14 test system (average of ten executions). 



82 

 

In another run to test the weight on F3, W3 was given the highest weight among all three 

objective functions. The graph below shows that in this instance there was a reduction in the 

losses which is opposite of that which was recorded when the losses were given less weight 

value. The GA + LS and GA + LS + RAD had the same pattern on the graph and hence only 

one line appears on the graph. After the point of convergence, the GA, GA + LS, and 

GA + LS + RAD all had the same losses. By turning off a different set of switches in other 

executions, a different pattern was shown. This thus tells us that the type of switch turned off 

plays a big role in how many losses are incurred during the restoration process. 

 

Figure 7.5: Graph of F3 for the IEEE14 bus system when W3 is given priority. 

7.6.2 Multi-Fault Blackout 

As was stated in the modelling section, when two or more switches are turned off, then we 

have a multi-fault blackout. Several switches were selected as the reserved branches 

(switches) of the above network. The result presented here has five switches turned OFF to 

model the blackout situation. The results of other multi-fault blackouts are presented in 

Tables 7.5–7.8 of this subsection. 

The comparison of the results obtained followed the same format as that of the single-fault 

blackout. A good restoration algorithm will use less of these reserved switches in order to 

reduce the overall cost of the restoration as well as restore the maximum load even if all the 

buses cannot be powered. Reasons for not having a full restoration have been presented in a 

previous subsection of this thesis.  

Multi-Fault for the IEEE30 Bus Test System 
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In modelling the single fault, IEEE14, which is a small power grid, was chosen. IEEE30 was 

chosen to model the multi-fault blackout in this section because there are more buses in this 

grid and therefore it is slightly bigger than the IEEE14 bus test system. This is more than 

twice that of IEEE14. Also, there is the option to switch off as many buses as possible, which 

means that there are more variations of turning off these switches at different sections of the 

grid. Also, it provides a wide range of reserved switches which tests the intelligence of each 

GA as to whether more switches will be chosen by the GA or vice versa. The results that 

were achieved shows that the algorithm was able to restore the grid to the IEEE30 test 

system. Lastly, having to see the result of another test system used gives detailed insight into 

the working process of the different GAs. 

7.6.2.1 Comparison of the Minimisation of the Out-of-Service Area (F1) 

 

Figure 7.5: Graph of F1 for the IEEE30 bus system. 

In the graph, F1 of the hybrid GA has the least value. From the first iteration, it started to 

decrease until converging on the third iteration. This shows that the hybrid algorithm 

achieved the aim of minimising F1, which is almost similar to the GA + RAD but the 

convergence of the hybrid GA was faster as it started at the third iteration. The GA + LS was 

the third best with the GA performing badly in comparison to the others. Both the GA and the 

hybrid GA converged. Therefore both algorithms chosen are superior in this test. The exact 

value of F1 can be seen in Table 7.5 which is the value that is seen in Figure 7.2. 

 GA GA + RAD GA + LS GA + LS + RAD 

F1 (MW) 0.277  0.133 0.138 0.133 

Table 7.8: Values of F1 for the IEEE30 test system (average of ten executions). 
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7.6.2.2 Comparison of the Switching Operations (F2) 

 

Figure 7.6: Graph of F2 for the IEEE30 bus system. 

F2 refers to the number of switching operations that were done during the restoration process. 

The number of switches used in the restoration is directly proportional to the cost. Therefore 

the higher number of switches used, the more expensive the restoration process becomes. 

That is to say, if a restoration process uses five switches during the process, it is more 

expensive when compared to a restoration process which only uses four or less switches. The 

GA + LS + RAD did converge quicker than all the other types of GAs. The GA and 

GA + RAD during the different iterations picked more switches for the restoration. 

Specifically, on the fourth iteration, the GA + RAD chose a switch which had a lower 

electrical property than the faulty switch. From the graph, the cost of switching for the hybrid 

algorithm was lower compared to all other GAs. The exact value of F2 can be seen in Table 

7.6 which is the value that is seen in Figure 7.3. 

 GA GA + RAD GA + LS GA + LS + RAD 

F2 (MW) 0.195 0.097 0.170 0.073 

Table 7.9: Values of F2 for the IEEE30 test system (average of ten executions).  
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7.6.2.3 Comparison of the Losses of the Network (F3) 

 

Figure 7.7: Graph of F1 for the IEEE30 bus system. 

F3 refers to the losses that were incurred and the aim is to have the minimum amount of 

losses. But in setting the weight of the objective function, the least important objective was 

the losses. The losses increased because the count of switched ON branches increases step-by 

step from the initial string. The initial string has only part of the branches which provide 

power to the network before a fault. Each active branch provides some losses. When the 

network is totally turned off, there are no losses. However, when we restore power in the 

network, the losses are also restored. In the graph, the GA + RAD had the minimum losses 

and the GA was the last one but the hybrid algorithm had the highest amount of losses. Even 

though the hybrid GA performed worse, this is acceptable in the final objective function 

because losses were placed as the least important objective by setting the weight for F3 to be 

the lowest. The exact values can be seen in Table 7.10. 

 GA GA + RAD GA + LS GA + LS + RAD 

F2 (MW) 0.231 0.138 0.133 0.138 

Table 7.10: Values of F3 for the IEEE30 test system (average of ten executions). 

7.6.2.4 Comparison of the Load Restored after the Restoration 
When analysing the results of the project, these should be taken into consideration. First of 

all, we need to know whether the part of the grid that lost power was first restored. This is 

followed by checking whether there was a full restoration or partial restoration. In a fully 

restored network, the areas that lost power due the disconnection of the branches have their 

full amount of load restored or the final load of the network is almost always equal to the 
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initial load before the blackout. In a partial restoration, only a portion of the network was able 

to get reconnected and also only a portion of the load that was lost was restored. This means 

that some part of the grid will not have the full load required to make it function normally but 

the power grid will be in a stable state. In the IEEE14 test with one switch turned OFF, for all 

the other GAs as well as the hybrid GA, the whole network was fully connected. The initial 

load of the network was 258.999 before the blackout was injected by turning off one switch. 

When the blackout occurred, the total load on the grid become 233.907 and that was when the 

restoration was done. After the restoration, by applying the various types of GAs, the results 

in Table 7.11 were collected for the restored load. It is to be noted that all the various parts of 

the grid were reconnected but there was a slight difference that was realised in terms of the 

restored load. For the proposed hybrid GA, besides having to minimise F1 and F2, it was also 

able to provide almost the full load required by the grid. It fell short of  

Type of GA Load Restored (MW) 

GA 250.210  

GA + RAD 256.350 

GA + LS 258.290 

GA + LS + RAD 258.940 

Table 7.11: Comparison of the restored load after a single-fault IEEE14 blackout restoration 

(average of ten executions). 

Thus it can be concluded that for a single fault for IEEE14, the proposed hybrid algorithm 

was superior to all the other GAs. 

The result of the IEEE14 test with two switches turned off can be seen in Table 7.12. Once 

again, all four types of GAs were able to reconnect the areas that were disconnected. The 

initial load of the network was 258.999 before the blackout was injected by turning off two 

switches. When the blackout occurred, the total load on the grid became 219.400 before the 

restoration was done. The GA + LS performed better than all the other GAs, with GA + RAD 

restoring the least load. 

Type of GA Load Restored (MW) 

GA 235.700  

GA + RAD 249.800 

GA + LS 258.100 

GA + LS + RAD 253.400 
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Table 7.12: Comparison of the restored load after a two-fault IEEE14 blackout restoration 

(average of ten executions). 

Table 7.13 shows the load values received from the IEEE30 network. The initial load of the 

IEEE30 network was 289.199 before the blackout was injected by turning off two switches. 

When the blackout occurred, the total load on the grid became 230.600. After the restoration, 

by applying the various types of GAs, the following results of the restored load were 

recorded, taking into consideration the fact that the whole grid was fully reconnected (a fully 

restored grid). The hybrid GA restored more load to the network than the other three types of 

GAs used in this project. 

Type of GA Load Restored (MW) 

GA 256.613  

GA + RAD 276.945 

GA + LS 273.037 

GA + LS + RAD 284.097 

Table 7.13: Comparison of the restored load after a two-fault IEEE30 blackout restoration 

(average of ten executions). 

The initial load of the IEEE30 network was 289.199 before the blackout was injected by 

turning off five switches. When the blackout occurred, the total load on the grid became 

102.300, which means more than 50 percent of the load was lost in this blackout modelling. 

After the restoration, by applying the various types of GAs, the following results of the 

restored load were recorded. There was also full restoration in terms of the buses that lost 

power; they were powered back on. The hybrid GA restored more load to the network than 

the other three types of GAs used in this project. 

Type of GA Load Restored (MW) 

GA 225.700  

GA + RAD 230.800 

GA + LS 252.900 

GA + LS + RAD 239.400 

Table 7.14: Comparison of the restored load after a five-fault IEEE30 blackout restoration 

(average of ten executions). 

7.6.3 Computational Effort of the Solution 

This subsection is about the computational effort of the algorithm which is measured in terms 

of time for this blackout power restoration project. It was not measured in CPU time but 
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rather in restoration time. In any restoration process, the time of restoration as well as the 

restored load after the restoration process is crucial. It was realised that when the local search 

was implemented together with the conventional GA, the time of computation was increased 

due to the additional step that was added to the GA process. The trade-off was that the quality 

of the solution was improved, which can be seen in the minimised value of F1 and F2 and the 

improved amount of load that was restored to the network. 

Restoration Time for the IEEE14 Test System 

Type of Genetic Algorithm Time of Restoration (seconds) 

GA 13.654+/- 3  

GA + RAD 12.210+/- 1 

GA + LS 27.190+/- 5 

GA + LS + RAD 22.766+/- 5 

Table 7.13: Time of restoration (average of ten executions). 

Restoration Time for the IEEE30 Test System 

Type of Genetic Algorithm Time of Restoration (seconds) 

GA 34.088+/-3  

GA + RAD 36.372+/-2 

GA + LS 84.820+/-1 

GA + LS + RAD 81.504+/-7 

Table 7.14: Time of restoration (average of ten executions). 

As can be seen from the two restoration times for IEEE14 and IEEE30, it can be concluded 

that the time increases when the network becomes bigger. There is an approximately 1.5 time 

increase in the restoration time. 

Test for Remodelled IEEE118 

In this subsection, the results of the experiment carried out on the IEEE118 bus system is 

presented. A single fault was not modelled for this system because it is a big network, hence 

injecting a large fault makes much sense to help test how resilient the algorithm is. Single 

faults were done for the other networks as those are small in nature. With 118 buses, it makes 

sense to have multiple faults. 

Input Parameters for Test 1 

The maximum number of reserved branches in the remodelled IEEE118 test is sixty-nine. In 

this test, this was used. Eighteen branches were turned off to model the multi-fault situation. 
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When this grid is fully operational, the total load is 4190 MW. When the fault was injected, it 

began to operate at a lower load and then different types of GAs were applied. In this 

restoration, a full restoration was achieved. The time taken for the restoration was longer for 

this test. With a large number of faults present, the hybrid GA was superior and resilient 

when compared to the other algorithms as it had the lowest F1 and F2 values. However there 

were more losses which can be seen by looking at its F3 value. 

Type of GA F1 F2 F3 Fault on 

Load 

Load 

Restored 

Time 

GA 0.0186 0.279 1.140 1597 Full load 322.573 

GA + LS 1.7362 0.150 0.696 1597 Full load 465.148 

GA + RAD 0.0251 0.263 0.866 1597 Full load 321.970 

GA + LS + RAD 0.0043 0.118 1.001 1597 Full load 466.833 

Table 7.15: Results for Test 1 (average of ten executions). 

Input Parameters for Test 2 

The number of reserved branches in the remodelled IEEE118 used for this test was sixty-six. 

Sixteen branches were turned off to model the multi-fault situation. When this grid is fully 

operational, the total load is 4191 MW. The load output when the grid is operational was 

found to be 4191. When the fault was injected, it began to operate at a lower load and then 

different types of GAs were applied. In this restoration, only a partial restoration was 

achieved as the full load could not be restored. The average time taken for the restoration was 

also a bit shorter compared to Test 1. The hybrid GA + LS was superior in that it had the 

lowest F1 value but in terms of load restored it had the lowest value. The values of F1 were 

the same as those for the GA + RAD, hence F2 of the next objective function was taken. The 

GA + LS + RAD was the second best in this run. There was only a partial restoration as the 

full load could not be restored to the network. 

Type of GA F1 F2 F3 Fault on 

Load 

Load 

Restored 

Time 

GA 0.2973 0.5185 0.4227 1598 2945 154.624 

GA + LS 0.0696 0.1975 0.6125 1598 2945 496.218 

GA + RAD 0.1527 0.5061 0.6638 1598 3898 145.341 

GA + LS + RAD 0.1527 0.1851 0.6963 1598 3898 494.769 

Table 7.16: Results for Test 2 (average of ten executions). 
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Input Parameters for Test 3 

The number of reserved branches in the remodelled IEEE118 used for this test was sixty-

nine. Seven branches were turned off to model the multi-fault situation. When this grid is 

fully operational, the total load is 4191 MW. The load output when the grid is operational 

was found to be 4191. When the fault was injected, it began to operate at a lower load and 

then different types of GAs were applied. In this restoration, only a partial restoration was 

achieved. In this run, the GA + LS was superior as it had the lowest F1 value and restored the 

maximum amount of load. From the simulation results, it was realised that the hybrid 

GA + LS + RAD performed less efficiently as it had the second best F1 value when there 

were a fewer number of faults for the big network but it outperformed the other GAs when 

the fault was high. Thus it can be concluded that the hybrid GA is more resilient compared to 

the other GAs. 

Type of GA F1 F2 F3 Fault on 

Load 

Load 

Restored 

Time 

GA 0.0361 0.040 1.128 3224 4074 254.624 

GA + LS 0.0143 0.086 0.825 3224 4130 432.218 

GA + RAD 0.0433 0.030 1.099 3224 4027 135.341 

GA + LS + RAD 0.0321 0.052 1.116 3224 4021 412.769 

Table 7.17: Results for Test 1 (average of ten executions). 

The next subsection presents the discussion, rules or guidelines for selection which type of 

Genetic algorithm. 



91 

 

7.7 Discussion, Guidelines, and Rules for Using the Algorithms 

Even though the performance of the algorithm was chosen as superior based on the objective 

functions, the restored load, and the time taken for restoration, several things should be taken 

into consideration. In this project it was assumed that there was only one type of switch 

which is the automated switch. In power grids there are mainly two types of switches, 

namely, automatic switches and manual switches, and the restoration time associated with 

these two are always different. Therefore minimisation of the number of switching operations 

should take into consideration the different timings of the different types of switches where 

applicable. 

Furthermore, as was stated, the GA which is superior is the one that has minimised the out-

of-service area the most. This means the GA that has the lowest F1 value, as it is the one on 

the first front with the highest weight or the highest importance. But it is possible to have a 

situation where the GA has the lowest F1 but a very high F2, value which means that the 

solution used a large number of switches during the restoration process. Therefore one way to 

keep from having a very high F2 value is to set a constraint on the maximum number of 

switches that can be used during the restoration and also penalizing the GA that tries to 

violate this. Any solution that violates this will be taken to the lower front of the solution.  

Additionally, based on the results of the project, when the goal of any restoration is to have a 

quick time of restoration, then the best GA to choose would be the conventional GA. This is 

because the GA worked faster in the restoration, but it did not provide the quality required 

when assessed based on the objective function, thus leading to a poor solution. 

To summarise, the advantages of the GA make it flexible to use in several complex problems. 

In this project it was used to solve an NP-hard problem which is power restoration. When 

working with GAs, one of the limitations is finding the optimal parameters (e.g., population 

size, crossover, and mutation probability) as well as the number of iterations. Any change in 

the parameters affects the results. In this project, the population size was first chosen to be 

very high and then it was reduced consistently. At each run, the result of the GA was 

examined to see if the required goal had been achieved. In some cases it got stuck at the 

global optima and had to be changed. A half-uniform crossover and a three-way crossover 

were tested but there wasn’t a big difference in the final outcome of the GA. The half-

uniform crossover was slightly better than the three-way crossover. So it was decided to use 

only the half uniform for all the executions. The mutation probability also had to be adjusted 

to find the optimal value. It is hard to know how different combinations can affect the results 
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since any change in the parameters also has some effect on the final results of the model. 

There is still on-going research with the aim of finding a good range of parameters when 

using GAs for power restoration. 
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Chapter 8  

This chapter presents the conclusions from the MSc thesis that proposes a new hybrid genetic 

algorithm on solving the power restoration problem.  

Conclusion and Future Work 

The aim of this project was to restore power to a grid using a hybrid GA. By answering the 

sub-research questions and the main research questions we show how this was done: 

1. What is the current state of existing power grids? 

The current state of the grid is ageing, in addition to being overloaded. The electricity 

required by households and industry comes from main power suppliers. Since the power 

system is ageing and degrading, some parts must undergo regular maintenance so that the 

entire grid remains in top working conditions in order to provide the electricity that the 

consumers need. Besides the regular maintenance, they are also more likely to be operating 

close to the security boundaries because the number of people dependent on electric power is 

increasing whiles the grid structure is still the same. As such when an overload of the lines 

occur, the line is tripped in order to protect it from further damage by cutting electricity 

supply to that part of the grid which can lead to blackout (by cascading failures). 

2. What is a power blackout and how are these caused? 

When a major portion of, or even an entire, electrical power grid fails, it is called a blackout. 

This can be due to the malfunctioning of closed breakers which link the grid system or an 

external event such as a natural disaster like tornados breaking part of the grid. Furthermore, 

human errors, natural disasters like earthquakes, heavy rain falls and strong winds, a lack of 

evolving regulatory rules, power system deregulation and reduced investment in the power 

system industry also cause blackouts to occur in the power grid. Natural disasters like 

earthquakes and heavy rains can only be monitored but cannot be controlled. The monitoring 

of natural disasters is out of scope of this project, hence they were not discussed in the thesis. 

In addition, major failures of the grid can be caused by a series of cascading failures. 

Therefore, developing a reliable algorithm which restores power to the system after a power 

blackout is crucial in order to guarantee the reliability of the power supply. 

3. What are the steps that need to be taken in order to restore power to customers when there 

is a blackout on the power grid? 

There are two main types of power restoration methods namely “bottom up” and “top down” 

restoration method. Bottom up begins with restoration of the main network. Once that is 
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completed and transmission and substations are energised, the generators are resynchronised 

and the loads are picked up. Under this strategy, there is a parallel restoration of several 

areas. Another major strategy is the “top-down” approach. Here, the power system is 

sectionalized into a number of islands. In each island, the existence of at least one black-start 

generator is necessary. Once each section is energized, they are reconnected to form the 

whole grid and restore it to its original working condition. 

4. “How is hybrid genetic algorithm approach used to restore power in a smart grid” 

The hybrid GA proposed in this thesis uses local search to improve the performance of 

conventional GAs in power distribution. By using local search, the algorithm is able to find 

the best offspring among the parent population. By also using the local knowledge provided 

by the local search, the solution is improved and also individuals with better fitness functions 

are chosen to propagate to the next stage of the generation. The hybrid GA proposed in this 

thesis can help power operators restore power in real scenario of power blackout restoration. 

Furthermore it is up-to-date with the current power system models that can be found in the 

literature.  

After answering the four main research questions, we can now answer the main research 

question of the thesis, which is stated below. 

“How to efficiently restore power in a smart grid after such a power blackout by minimizing 

the number of switching operations, minimizing the out-of-service area,  minimizing the 

losses, restoring a high percentage of the load thereby leading to a reduction of cost.” 

Conventional GAs are able to solve the power restoration problem but they fail to provide 

quality solution. This means that in restoring power, GAs use as many reserved switches as 

possible and it takes a long time to converge to a solution. The proposed GA uses a radiality 

check and also local search to improve the quality of the solution. With the radiality check 

enabled in hybrid GAs, a smaller number of switches is chosen when restoring power to the 

grid and also by enhancing the search process of the genetic algorithm. Local search also 

helps to improve the fitness function because only the fittest are chosen and candidates with 

the lowest fitness function propagate to the next stage. By so doing, the first objective 

function is minimized. When tested on bigger networks, it was found to be very resilient 

because when a lot of fault was injected into the grid by turning off a lot switches, the hybrid 

GA was found to be superior in restoring the grid due to its resilience when compared to the 

other GAs. The hybrid algorithm was able to minimize the out of service area and the number 

of switches used in the restoration.  
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One of the problems that was encountered was that the algorithm wasn’t able to minimize the 

losses. Even though the proposed hybrid GA finds a better quality solution, there was a 

computation time problem as the selection process of the best candidates has to be done twice 

during the search process. From the results of this thesis, using local search in addition to the 

proposed radiality check, the out of service area was minimized as well as the number of 

switching operations during power restoration which leads to a reduction in cost when power 

restoration is performed. 

The following studies are suggested for future research in this field 

1) Several different distributed power generators like solar power or wind power which are 

both renewal energies can be added to the system. With a lot of focus being put on the use of 

green energy, the effect of large-scale DG penetration can be an area of study. 

2) In this project only automatic switches were used. Some power grid systems have manual 

switches which are operated manually by power operators. The effect of using manually 

operated switches can be studied. 

3) Further work could be conducted to explore the effect of the several different types of 

crossover operators. In practice there are a number of crossover operators which all provide 

different ways of improving the genetic algorithm. 

4) More research could be done to find ways to reduce the computational effort in terms of 

the time when using the hybrid GA. 
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Appendices 

Appendix 1 

Pseudocode of the GA with tournament selection. 

N = population size 

P = create parent population by randomly 

creating N individuals 

while not done 

    C = create empty child population 

    while not enough individuals in C 

        parent1 = select parent using 

tournament selection 

        parent2 = select parent using 

tournament selection 

child1, child2 = crossover (parent1, 

parent2) 

        mutate child1, child2 

        evaluate child1, child2 for fitness 

        insert child1, child2 into C 

    end while 

    P = combine P and C somehow to get N 

new individuals 

end while 

Figure 5.7: Pseudocode of the GA [50]. 

The expanded form of the Genetic algorithm is given below. 

Algorithm 

1. Run the powerflow on prefaulted network. 

2. Calculate total load (TL) as the sum of the loads on each bus. 

3. Remove the faulted branch from the branch matrix(Radiality check- ON or OFF). 

4. Create initial string from the status of each remaining branch (1 closed, 0 open). 

5. Create initial population. 

a. numInitSeeds are created by applying mutation to the initial solution. 

b. The rest is generated at random. 

6. While cost < errorTreshold or the maximum number of iteration is reached, do the 

following. 

7. Evaluate the population. 

a. For each string, calculate the cost function (see the sub-procedure 

below). 

b. Sort the genomes into ascending order. 

8. Generate the new population. 



107 

 

a. Take first numParents elements from the sorted genomes to form 

parentPool. 

b. For every new genome do the following: 

i. Select parents from the parentPool by using tournament selection. 

ii. Perform crossover to create a new genome (half uniform and three-way 

available). 

c. Apply mutation to each new genome according to mutationProb. 

d. mutationProb = mutationProb*mutationDecay 

9. Perform the proposed local search which does a re-evaluation of fitness in order to 

have an improved solution. 

10.  Go to Step 6. 

11.  The solution is a best-fit genome from the current population. 

CalcCost Sub-Procedure 

1. Change the status of each branch according to the genome. 

2. Run powerflow. 

3. Calculate the total load on the current network as a sum of the loads on each 

bus. 

a. Load on a bus is equal to the difference of the outgoing load and the 

incoming load. 

b. The incoming load is read from the branches going into the bus. 

c. The outgoing load is read from the branches going from the bus. 

4. f1 = TL - currentTotalLoad 

5. f2 = hamming distance between current and initial switch state 

6. f3 = total losses 

a. Total losses are the sum of losses on each active branch. 

b. Losses on a branch are the difference of the outPower and inPower of 

the branch. 

7. f4 = 1, if some voltage constraint is violated or 0 otherwise 

a. Each bus has V (current voltage) and Vmin and Vmax. 

b. If V is not between Vmin and Vmax, the voltage constraint is violated. 

8. f5 = 1, if some priority customer is not powered or 0 otherwise 

a. Each bus has a flag whether it is a priority or not. 

9. f = sum(wi*fi), wi are weights of the cost function 
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Appendix 2 

Check Radiality Algorithm Description 

1. Main principles: The count of connection between buses is equal to the count of buses 

decreased by one.  

Base restriction: The tested network must be without blackouts. 

2. Implementation: 

Count of connection is estimated by calculating the count of 1 in the adjacency matrix. In a 

common adjacency matrix, the count of 1 will be double by the count of connection. For 

review we will use half of the adjacency matrix – divided by the main diagonal (the top-right 

field). 

Connection of blackout buses must be excluded from the adjacency matrix. 

№  Algorithm Step Example 

1 

Init the adjacency matrix. 

 

Lower-left field under the main 

diagonal must be set to zero. 

Init the bus state vector string, M 

= {m1, m2,…mn}. 

Where mi = state of i bus, it is 1 if 

connected to the main generator 

of the network and 0 if it is 

unconnected. 

 

Example network with five buses, and the 

adjacency matrix is: 

 

M={1, 0, 0, 0, 0} 

In first step, the network contains only bus with 

number 1. 

2 

For each column in the adjacency 

matrix, Aj must be calculated: 

AjMC   

If C is a greater than zero, then 

perform next operations:   

     M(j)=1; and 

     M= M logical or Aj. 

Column 1: Skip because it is a dummy operation 

since the same value will be obtained. 

Column 2: M*A2 = 1*1 + 0*0 + 0*0 + 0*0 + 0*0 

= 1. 

               If result 1 is greater than 0, we perform: 

M(2) = 1; M = {1, 1, 0, 0, 0} 

M =  M logical or A2 (here M is still the same) 
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Column 3: M*A3 = 1*1 +1*0 + 0*0 + 0*0 + 0*0 

= 1. 

              If result 1 is greater than 0, we perform: 

M(3)=1; M= {1, 1, 1, 0, 0} 

M = M logical or A3 (here M is still the same) 

Column 4: M*A4 = 1*0 +1*0 + 1*0 + 0*0 + 0*0 

= 0. 

If result 0 is equal to 0, go to next iteration, 

A4= {0, 0, 0, 0, 1}. 

Column 5: M*A5 = 1*0 +1*0 + 1*0 + 0*1 + 0*0 

= 0 

If result 0 is equal 0, go to next iteration. 

3 

Perform Step 2 when result M is 

different from start M on each 

iteration of Step .2 

Perform Step 2. Result Mk= {1, 1, 1, 0, 0} will be 

the same as 

                                     Mk-1= {1, 1, 1, 0, 0} 

4 

Exclude the connection of an area 

with a blackout in the adjacency 

matrix by multiplying (as an 

array) vector M and vector-

column Aj: 

Aj=Aj multiply M 

 

A1:        A1={0, 0, 0, 0, 0} 

              M ={1, 1, 1, 0, 0,} 

Result  A1= {0, 0, 0, 0, 0} 

 

A2:        A2={1, 0, 0, 0, 0}  

              M ={1, 1, 1, 0, 0,} 

Result  A2= {1, 0, 0, 0, 0} 

 

A3:        A3={1, 0, 0, 0, 0} 

              M ={1, 1, 1, 0, 0,} 

Result  A3= {1, 0, 0, 0, 0} 

 

A4:        A4={0, 0, 0, 0, 0} 
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              M ={1, 1, 1, 0, 0,} 

Result   A4= {0, 0, 0, 0, 0}  

 

A5:        A5={0, 0, 0, 1, 0} 

              M ={1, 1, 1, 0, 0,}        

Result   A5= {0, 0, 0, 0, 0}   The connection 

between Buses 4 and 5 is excluded. 

 

The new adjacency matrix is 

 

 

Calculate the count of 1 in the 

upper-right field of the adjacency 

matrix. 

Calculate the count of 1 in the M 

vector. 

The count of 1 in the upper-right field of the 

adjacency matrix is a 2. 

The count of 1 in the M vector is a 3. 

Checking the main criteria: 2 = (3-1), so the 

network is radial. 

 

Optional: Calculate the power 

flow. 

Obtain the existing vector of bus 

loads P. 

Calculate the power flow 

PMP   
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Appendix 3 

How the reserved switches were found in the network 

1. Load the network by executing. Example: 

net = eval(“case14”) 

2. The field “branch” in the structure gives us information about the branches. The 

number of rows tells us the number of branches in the network. 

3. The first two columns of the matrix branch is of importance for us. This two columns 

tells us the two buses that the particular branch is connecting. It can be viewed by 

executing the below command. For explanatory purposes, let us call Column 1 the 

source and Column 2 the destination. 

net.branch(:,1:2) 

4. Now the task is to find reserved branches, i.e., to make the network radial or to 

remove redundant branches. The resulting network must be a spanning tree with no 

loops. For this, it can be observed that any branch must terminate into any destination 

bus only once. In other words, the second column of the above matrix must not have 

any repetitions. So to find the duplicates we can execute the following. 

[b m n] = unique(net.branch(:,2),'first'); 

5. From the output variable, “[b m n]”. b gives the bus numbers, which is not important 

for us. m gives the indices of the branches that are unique, which means the branches 

present in the variable m must be ON while the rest of them must be OFF. 

6. The next step would be to simply list all the remaining branches that are not present in 

the variable m. This can be done by executing the following line. 

setdiff(1:size(net.branch,1),m) 

For any network, replace its name in the first command. 

 


