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“If you want to find the secrets of the universe, think in terms of energy, frequency and vibra-
tion. ”

Nikola Tesla
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Abstract
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Improving Inverse Substructuring

by Rutger van Haastert

The electrification of drive trains in current and next generation vehicles require vibration
dampers that possess different dynamic properties than its internal combustion engine coun-
terparts. This makes research in automotive vibration damping a hot topic. Research in this
field often contains the practice of Frequency Based Substructuring (FBS) in which dynamics
of individual components can be used to predict dynamics of an assembly or vice versa. A
method to incorporate vibration dampers in FBS is the practice of Full Decoupling but this can
be a time consuming and cumbersome exercise so the alternative method of Inverse Substruc-
turing was developed. This approach is quicker and simpler but suffers from shortcomings as
underestimating stiffness and neglecting some DoF relations. In this thesis an improvement
on this technique is proposed by making use of the geometrical shape of the vibration isolator.
This results in better prediction of the dynamics of the vibration isolator in most directions
however the dynamicist should make a decision if this simpler method of Improved Inverse
Substructuring is more suitable for the application over Full Decoupling.
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Chapter 1

Introduction

Vehicle costumers have an increasing expectation for luxury, which can set a vehicle ahead
of its competition. Noise, vibration and harshness (NVH) have a strong influence on our
perception of luxury, so it can be seen that vehicle manufacturers are very concerned with
sound and vibration engineering. In NVH engineering, an engineer aims to tweak the sound
of certain parts of a vehicle to the desired sounds. Often the endeavour of the NVH engineer is
to remove unwanted noise and vibration. Away to isolate the vehicle costumer from unwanted
vibrations is to dissipate the vibration energy before it reaches its senses and a way to achieve
this is by making use of rubber vibration dampers between the vibration source and the driver.
In this thesis, the focus is on determining the dynamic properties on rubber vibration dampers
between the engine subframe and the chassis.

Figure 1.1: Location of rubber vibration damper in the vehicle. On the right:
A is the chassis frame, B the engine subframe and I the isolator.

Figure 1.2: A rubber vibration isolator removed from the assembly.

Driven by the need for sustainable transportation, vehicles are shifting from internal com-
bustion engines to electric alternatives. For NVH engineering, this has two consequences.
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The first consequence is that noises previously masked by the ICE are now relatively louder.
As a second consequence, one can say that electric engines produce more tonal vibrations in
a higher frequency band, so vibration analysis for higher frequencies is required. This makes
research on dynamic properties of rubber vibration dampers a hot topic.

As it turns out, determining dynamic properties in a higher frequency range is more chal-
lenging. Newmethods are still developed today and the state of the art relies on a combination
of experimental dynamic substructuring techniques. The state of the art method does suffer
from certain flaws, so a proposition for improving this method is made and tested in theory
and practice.



17

Chapter 2

Theory

To improve the current state of the art methods in determining the dynamic properties on re-
silient elements, some theory needs to be mastered. Section 2.1 discusses what property this
research aims to acquire, why this is important in this day and age and how this property can
be obtained. In the following sections, key mathematical principles and practical considera-
tions are discussed. Thereafter the current state of the are methods for determining dynamic
properties are explained to conclude with a proposition on an improvement on the state of the
art. This proposition will be validated in chapter 3 on computer models and in chapter 4 on a
real life test case.

2.1 What, why and how

This section aims to answer the questions: What does one require to know of the resilient
element, why is this research required and why is it now a hot topic and how is this required
information obtained? The answers to these questions lie in the following subsections.

2.1.1 What: Dynamic stiffness

The interesting property of a vibration isolator is dynamic stiffness Z(ω). The dynamic stiff-
ness is a frequency dependent property that is built up from the physical properties of mass,
stiffness and damping and by so it can relate a harmonic force to a displacement as seen in
equation 2.2.

Z(ω) = −ω2M + ωC + K (2.1)

With ω is frequency and M, C and K the systems mass, damping and stiffness matrix respec-
tively.

Z(ω) =
f(ω)

u(ω)
(2.2)

To save dynamic stiffness information of a system containingmultiple degrees of freedom,
a matrix notation is used. For a 4 degree of freedom system, we denote the stiffness from node
to node by the subscripts:

Z(ω) =


Z11 Z12 Z13 Z14
Z21 Z22 Z23 Z24
Z31 Z32 Z33 Z34
Z41 Z42 Z43 Z44

 (2.3)

The dynamic stiffness values are determined permeasured frequency point, so a 3Dmatrix
emerges as shown in figure 2.1.
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Figure 2.1: The 3D stiffness matrix with the frequency dependency shown
in in-paper-axis

2.1.2 Why: Electrification of the drive train

In recent years vehicles are shifting from the internal combustion engine (ICE) to electric
alternatives. Not only are electric motors quieter in general but they also generate a very
different sound and vibration. Due to the nature of the combustion, ICEs exhibit a pattern
of harmonic orders and possess a natural frequency in the 50-200 Hertz range. Humans do
not perceive this as unpleasant sound per se. In contrast, an electric engine create sounds and
vibrations in the kiloHertz range with more fluent sine waves at odd harmonic rations which
are generally perceived as very unpleasant. Due to this new type of vibrations, newmeasuring
methods are developed. As it turns out, measuring dynamic properties gets more challenging
in higher frequency regions so this is an active field of research today.

2.1.3 How: experimental testing

There exist two methods to acquire the dynamic stiffness Z of a structure: numerically and
experimentally. Numerical analysis can be preferred in the case of running computer simula-
tions of a measurement. To compute the dynamic stiffness, the system matrices M, C and K
are used.

In the case of real life testing, experimental methods are often preferred. Two main meth-
ods can be distinguished which are separated by the requirements of the needed testing equip-
ment. The first branch utilizes an electric or hydraulic shaker apparatus to excite the structure.
The shaker apparatus is a device that can be set to excite the test object with a given ampli-
tude and frequency. By measuring the response (in force or acceleration) of the test object,
the dynamic stiffness can be computed. Two methods are the ’direct’ and ’indirect’ method
[22].

By using a shaker for dynamic stiffness measurements, one has to consider some practical
disadvantages:

• The frequency range is up to 300 Hz [22]. Measurements in the kHz range are not
possible.
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• Obtaining measurements in different directions is time consuming because for every
direction the test object has to be removed from the measurement setup and placed in
the correct position.

• The shaker apparatus is not infinite stiff which will influence the measurement.

The second branch utilizes an impact hammer to excite the structure. This overcomes the
practical problems induced by the shaker but can only be used on light structures. Heavy
structures need too much excitation energy to distinguish a measurement signal from noise,
but in the application ofmeasuring dynamic properties on resilient elements, themeasurement
setup is accepted as a light structure. In impact testing, one obtains the receptance matrix
Y, often called the Frequency Response Function (FRF). This FRF relates the impact to the
measured response as:

Y(ω) =
u(ω)

f(ω)
(2.4)

In which u is the measured displacement and f is the exerted force by the tip of the impact
hammer. As can be seen in equation 2.2, by simply inverting this FRF matrix, one obtains the
dynamic stiffness matrix: Y(ω)−1 = Z(ω). For detailed information on how to construct an
FRF matrix from impact testing, consult section 2.2.

2.2 Constructing FRFs from impact testing

A Frequency Response Function (FRF) relates an excitation of a test structure to its response.
In experimental impact testing, this means relating the impact of an impact hammer to a re-
sponse of an accerelerometer. The force exerted by the impact hammer is measured by a load
cell on the tip and the acceleration is measured by an accelerometer. If not accelerance but
displacement is required, one is able to integrate accelerance twice in time to obtain displace-
ment:

∫∫
ü = u.

The force and acceleration signals are routed to a data acquisition system (DAS). This
DAS accepts the voltage versus time signals and performs spectral analysis to convert the
time signal to the frequency domain by means of a Fourier transform. The results are send to
a computer for further analysis and investigation. A typical measurement setup is depicted in
figure 2.2.

Impact hammer

DAS

Computer

Accelerometers

Load cell

FRF

Figure 2.2: A typical measurement setup for determining FRFs of a test
structure using impact testing.
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Figure 2.3: Left: an impact hammer with a load cell on the tip. Right: An
accelerometer suited for adhering to a test structure.

As mentioned, this FRFs are stored in a matrix Y(ω). This matrix contains as many rows
as there are sensor channels (three channels per accelerometer for a triaxial unit) and as many
columns as impacts. This matrix is three dimensional with on the third axis the response per
frequency point. An example for a measurement with four impacts and four sensor channels
is shown in figure 2.4.

Impacts

Sensors

Figure 2.4: The cubes on the structure are accelerometers. The red arrows
are impacts by an impact hammer. For display purposes, just a 4 DoF FRF
matrix is shown on the right, relating the impacts to sensors in the frequency
domain. The circled value is the response of sensor(channel) 2 on impact 3.

2.2.1 Practical considerations

Because impact testing is handwork conducted by a human being, every impact is different.
Also the sensors are placed by hand which can differ slightly from the intended place. In
preparing a measurement some practical aspects need te be considered. These are discussed
in section 4.5.

2.3 Experimental Dynamic Substructuring

Dynamic substructuring (DS) is a collection of techniques to perform dynamic analysis on
systems by dividing these into subsystems. This approach has four advantages over handling
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an entire problem at once [8] [17]:

1. It allows evaluating the dynamic behaviour of structures that are too large or complex
to be analysed as a whole.

2. By analysing the subsystems, local dynamic behaviour can be recognized more easily.

3. Subsystems can be modelled in the domain that is most appropriate.

4. Substructures models of different development groups can be shared and combined
without exposing all modelling details

DS originates from the desire to analyse complex systems but being unable to because of
limited resources. The problem is split into smaller problems of the separate components and
its interfaces. The original idea of decomposing a complex problem can be brought back to
around 100 BC when Emperor Julius Caesar used his famous divide and conquer technique to
take power of the French part of Europe. However, for sake of scope of this document we stick
to engineering applications. In that case, Schwarz [18] proposed a procedure based on domain
decomposition in 1890. Domain composition in this context is the process of subdividing the
solution of a large system into smaller problems whose solutions can be used to produce a
solver for the whole system of equations that results from discretizing on the entire domain
[21].

Fast forwarding to the 1960s, the first dynamic substructuring techniques were proposed
by Gladwell. His methods are known by the name of ’Component-mode synthesis’ [1]. A
major step was taken by Crowley who looked into frequency based coupling techniques called
SMURF. This method was later rewritten by Jetmundsen [5]. In 2008 De Klerk [8] provided
an overview of historical methods and classified them in a general framework. His work
provides the example on which the substructuring notation is based in this document.

DS can be performed in multiple domains including the physical, frequency and time
domain which are related as in figure 2.5. In the physical domain, a system is represented by
its mass, stiffness and damping distributions which are stored in its M, K and C matrices. If
we consider a discrete dynamic system, one can write an equilibrium between the external
forces and the internal forces by stating equation 2.5.

Mü(t) + Cu̇(t) + Ku(t) = f(t) (2.5)

In this equation M, C and K are mass, damping and stiffness matrices. u is the set of
displacements for all the degrees of freedom of the system and f represents the external forces.
The system matrices M, C and K are typically obtained by finite element modelling. From
this physical domain it is possible to convert to other domains if they suite the application
better. If one is interested in the response in the time domain, a time integration can be
conducted to construct functions that display amplitude over time (for example the response
of an impulse in time; an impulse response function (IRF)). However, in vibration analysis,
one is interested in the structures response to a harmonic load. A more convenient domain
to assess this behaviour is the frequency domain. By assuming a linear, time-invariant and
steady state system, one can rewrite equation 2.5 in the frequency domain by using a Fourier
transform:

Mü(ω) + Cu̇(ω) + Ku(ω) = f(ω) (2.6)

By knowing that u̇(ω) = jωu(ω) and ü(ω) = −ω2u(ω), one can rewrite this as:[
ω2M + jωC + K

]
u(ω) = f(ω) (2.7)
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In which
[
ω2M + jωC + K

]
can be written in one matrix Z(ω), the dynamic stiffness

matrix. As explained in section 2.1.1 this is our desired property. The dynamic stiffness
matrix is the inverse of the experimentally obtained frequency response function Y(ω). For a
detailed explanation on how this Y(ω) (and by inversion: Z(ω)) is obtained, see section 2.2.

In theory, the same information is stored in the three domains, however sometimes one
domain is more suited for the occasion than the others. Regardless of domain choice, two
conditions must be satisfied at all times[8] regarding coupled systems:

1. Compatibility of the substructures’ displacements at the interface.

2. Force equilibrium on the substructures’ interface degrees of freedom.

These conditions form the basis of experimental dynamic substructuring, and by express-
ing these conditions mathematically in the domain of choice, one can analyse the dynamic
behaviour of components and assemblies. In the scope of obtaining dynamic stiffness by
experiment, the frequency is the domain of choice.

Physical domain

Frequency domain

Time domainM,C,K

Numerical modelling

FRFs

IRFs

Fourier transform

Inverse Fourier transform

Dynamic stiffness inversion

Time integration Experimental testing

Figure 2.5: Relation between the physical, frequency and time domain in the
context of dynamic substructuring.

2.3.1 Frequency based substructuring

There are multiple ways to Rome, and multiple methods to couple substructures in the fre-
quency domain. Two methods are discussed in this subsection. The first method is the dual
assembly which starts with the receptance matrices Y(ω). From here on, a frequency depen-
dency is not always explicitly expressed for better readability. This Y can be experimentally
measured, so the dual assembly is applied when measured frequency response functions are
available. The second method is the primal assembly in which the impedance matrices Z of
the substructures are coupled. A Z matrix can be found from for example a finite element
model. The relation between Y and Z is Z = Y−1, so one can obtain the dynamic stiffness
of a structure, simply by inverting the measured FRF matrix. It should be mentioned that a
matrix is not always invertible so particular techniques are more suitable for solving certain
problems [16].

Primal assembly

When one has access to the impedance (or dynamic stiffness) matrices Z, the primal assembly
is the way to go. A practical use case can bemodels created by Finite ElementMethod in CAD
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software from which the Z matrices can be extracted. The procedure to couple subsystems in
the primal assembly is explained hereafter.

Firstly, one defines the system of equations to be:

ZLq = f + g (2.8)

LTg = 0 (2.9)

In equation 2.8 and 2.9 f resembles the external forces and g the interface forces between
the substructures. L is a localisation matrix mapping the physical DoFs of the system on a set
of generalized DoF q as follows:

u = Lq⇒


uA

1 = q1
uA

2 = q2
uA

3 = q3
uA

4 = q4

with L ,


I 0 0
0 I 0
0 I 0
0 0 I

 (2.10)

If equation 2.8 is multiplied by LT, one sees:

LTZLq = LTf (2.11)

of which LTZL = Ẑ is the assembled impedance matrix for the generalised coordinates.
Simply said, the primal couplingmethod comes down to adding overlapping dynamic stiffness
matrix parts.

Dual assembly

Experimental Frequency based substructuring (FBS) is a method of DS which derives the
admittance of an assembled system YAB from the separate admittances of two subsystems YA

and YB. In the dual assembly method, one starts with the receptance matrix Y.

Y(ω) =
u(ω)

f(ω)
(2.12)

In this section a brief example of frequency based substructuring is described. If one has
two substructures A and B of which the FRF-matrix can bemeasured, the FRF of the assembly
AB can be calculated as shown in figure 2.6. However, it is also possible to measure the FRF
of the assembly AB and subtract the FRF of a substructure, for example A. This leaves the
FRF of substructure B. This decoupling will prove to be very useful in the scope of measuring
dynamic properties on resilient elements.

Figure 2.6: The FRF of the assemby can be mathematically calculated with-
out ever physically couple the two substructures.
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The equation to couple the FRFs of structure A YA and structure B YB is:(
YA|B − YA|BBT

(
BYA|BBT

)−1
BYA|B

)
f = u (2.13)

In this equation YA|B a matrix containing the uncoupled FRFs, B is a bookkeeping matrix
which is explained below. The coupled FRF matrix is found to be:

YAB =

(
YA|B − YA|BBT

(
BYA|BBT

)−1
BYA|B

)
(2.14)

The procedure is as follows. The first step is to measure the FRF-matrices of A and B
from figure 2.7.

Figure 2.7: Substructure A and B, with four degrees of freedom. UA
2 and

UB
2 are DoFs on the interface, gA

2 and gB
2 are forces on the interface.

YA =

[
YA

11 YA
12

YA
21 YA

22

]
and YB =

[
YB

22 YA
23

YA
23 YA

33

]
(2.15)

The next step is to relate these FRFs to the assembly forces and displacements.
YA

11 YA
12 0 0

YA
21 YA

22 0 0
0 0 YB

22 YA
23

0 0 YB
32 YA

33





fA
1

fA
2

fB
2

fB
3

+


0

gA
2

gB
2

0


 =


uA

1
uA

2
uB

2
uB

3

 = u (2.16)

With f(s) as the external force vector and g(s) is the vector of connecting forces with other
substructures. In this equation 2.16 it is assumed that the sensors on either side of the interface
are in the same geometric position and that the impact forces are also on the same position
and in the same direction. In finite element modelling this can be a fair assumption, however
in experimental modelling this cannot be guaranteed. To overcome this practical problem,
some solutions are proposed in section 2.3.2.

The next step is to formulate two conditions that an assembled system must comply to:

1. There must be continuity on the interface. So displacements of DoFs on the interface
on A must also be on the connecting interface on B. In this example this translates to
UA

2 = UB
2 .

2. There must be force equilibrium on the DoFs on the interface. In our example this
translates to gA

2 = −gB
2 .

With these conditions in mind, it is helpful to introduce a ’bookkeeping’ matrix B which
keeps track of what degrees of freedom are on the interface and impose the conditions on the
system. For this example the B matrix is:

B =
[
0 I −I 0

]
(2.17)

So it is possible to write a system of equations:
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uA
2 − uB

2 = 0 (2.18)

Bu = 0 (2.19)

B =
[
0 I −I 0

]
(2.20)

If equation 2.18 is substituted in equation 2.19 and solve for λ one obtains equation 2.21.

λ = −
(

BYA|BBT
)−1

BYA|Bf (2.21)

And if this is substituted back in equation 2.18, one can find equation 2.22.(
YA|B − YA|BBT

(
BYA|BBT

)−1
BYA|B

)
f = u (2.22)

Of which the left expression between the brackets is the coupled FRF of the assemby AB.

YAB =

(
YA|B − YA|BBT

(
BYA|BBT

)−1
BYA|B

)
(2.23)

The use of EDS/FBS on resilient elements

One can asks themselves, why bother with EDS and FBS for measuring dynamic properties
on resilient elements in the first place? Why not place accelerometers on the resilient element,
excite the structure by impact and measure the response? Multiple reasons prevent from this
to be feasible. The reason lies in the nature of an impact on a soft object. One can imagine
that hitting a soft object with a hammer will result in a longer contact time than hitting a hard
material. The duration of the impact will be longer. This lesser perfect impact will excite the
test structure up till lower frequencies. A visual example is shown in figure 2.8.

Figure 2.8: An example of an impact on steel and rubber in the time and
frequency domain.

This can be understood mathematically by examining how the time signal is converted to
the frequency domain by the Fourier transform. Secondly, it is often not possible to excite
and measure a vibration isolator in all necessary direction because of its geometrical shape.

2.3.2 Interface modelling

DS is a wonderful engineering tool of which the techniques are formulated in a straightforward
way. The biggest challenge in DS lies in the determining of the dynamics at the interface
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between the substructures [19]. To couple substructures properly, a complete and accurate
model of the dynamics at the interface is required. From section 2.3 one learns that DS
requires two conditions to be satisfied, namely:

• There must be continuity on the interface.

• There must be force equilibrium on the interface.

Which are mathematically described in equation 2.18 and 2.19. These conditions are
imposable on point connections but unfortunately in the real world, joints are usually welded
or bolted which are better represented by a line or surface connection. Modelling continuous
connections is not feasible since one needs (in theory) an infinite amount of DoFs so usually a
surface or line connection is represented by a set of discretized nodes, thus losing information
on for example the rotation on the interface.

In a finite element analysis, one can impose a sufficient number of nodes over a large
area so that any rotational coupling is implicitly accounted for. In experimental analysis it
is harder to produce a method that will account for the desired six DoF measurement (three
translational and three rotational). Translational accelerometers are readily available, but ro-
tational sensors are still exotic [4]. Also, it is often not possible to place sensors directly on
the interface between substructures. To overcome these obstacles, multiple methods are pre-
sented in section 2.3.2. In section 2.3.2 a more elaborate explanation is written on the state
of the art method of introducing a Virtual Point (VP) on the interface of which the dynamics
are calculated using multiple translational accelerometers placed nearby.

Brief history

An alternative to using rotational sensors is calculating rotational DoFs by mathematics,
which can be separated in two branches.

The first branch is based on global vibration modes of a system and are closely related
to component mode synthesis techniques known from numerical modelling. In this branch
one finds the system equivalent reduction and expansion or SEREP procedure [13] in which
the translational motion of tri-axial sensors is combined to calculate rotational data. The
advantage of this method is that the mode identification has a smoothing effect on the FRFs
and thereby avoiding numerical instabilities. A disadvantage is that the global modes have to
calculated by building a finite element model or perform modal analysis. The second branch
is not based on global vibration modes but is a frequency based approach. An advantage
of using FRFs directly is that the measurement data contains the residual terms from higher
order modes. To include the rotational DoF data implicitly, multiple connection points on
the interface are coupled which got the name equivalent multiple point connection or EMPC.
A disadvantage is that overdetermination of the problem can lead to numerical instabilities.
Recently a combination of CMS and EMPC is proposed including the concept of interface
displacement modes [4].

State of the art: Virtual Point transformation

In section 2.3.1 it is implicitly assumed that the sensors on either side of the interface are in ex-
actly the same geometric position and directions when the substructures are coupled. It is also
assumed that the forces on the interface are in the same spot and direction. These assumptions
are required for FBS. Often it is not possible to measure directly on the interface between the
substructures due to space restrictions. However, it is possible to project the measurements
and impacts on a set of generalized displacements q and forces m to create collocated DoFs
on the interface between the substructures using a Virtual Point (VP) transformation.



2.3. Experimental Dynamic Substructuring 27

With the VP transformation, a virtual point is created using a set of measured DoF nearby
that defines the 6 DoF (x, y, z, θx, θy and θz) of this virtual point. The first step is to project
measured displacements u and forces f on a set of generalised displacements q and forces m
by using interface deformation mode (IDM) matrices Ru and R f .

u = Ruq and m = RT
u f (2.24)

These IDMs contain geometric properties relating the position of the physical sensors to
the virtual point. A row in a R matrix is constructed as:

Ri =
[
eT|(ri × e)T

]
(2.25)

In which e resembles the direction of a displacement DoF ui and ri is the distance from
the physical sensor and the virtual point calculated as ri = pi − pvp with pi the location of
the physical sensor and pv p the location of the virtual point. To relate the measured FRF Yu f
to the calculated FRF in the virtual point Yqm, transformation matrices are constructed from
the IDMs as seen in equation 2.26. These T matrices transform the measured FRFs to the
virtual FRFs as seen in equation 2.27.

Tu =
(

RT
u Ru

)−1
RT

u and TT
f = R f

(
RT

f R f

)−1
(2.26)

Yqm = TuYu f TT
f (2.27)

Acc.

Acc.

Acc.

VP

Impact

Figure 2.9: Visual representation of entities required to construct the virtual
point transformation

In figure 2.9 accelerometers are placed on a structure with a hole in the middle. The
structure will be coupled by a bolt through this hole so a description of the dynamics at this
hole is required, but placing a sensor here is not possible. By using the entities depicted
in the figure, it is possible to project the dynamics in the accelerometers surrounding the
interface, on the interface creating a Virtual Point. By constructing VPs on the interface
between substructures, one is able to couple them using FBS.
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2.4 State of the art methods in EDS

Two dominant methods for determining the dynamic properties of resilient elements using
FBS, impact testing and VP transformation exist today: full decoupling and inverse substruc-
turing. Full decoupling exploits knowledge on the dynamic stiffness on structures surrounding
the resilient element, while inverse substructuring is based on two assumptions that enables
the use of a mathematical trick to determine the full dynamic stiffness matrix. Both methods
are described hereafter.

2.4.1 Full decoupling

For the full decoupling method, one has a measurement setup as depicted in 2.10. This setup
consists of three main components: A, I and B. A and B are steel (or another stiff material)
crosses glued to the test object (resilient element) I. The red arrows in figure 2.10 resemble
impacts, the cubes are accelerometers. Ideally, the assembly would be floating in space, with
no connections to other structures that could influence the measurement. Since this is not
possible, the structure is suspended in low stiffness springs. If the eigenfrequency of the is
lower than the first eigenfrequency of the structure itself, the influence of the connection can
be neglected [11].

A

I

B

Figure 2.10: Measurement setup for the full decoupling method.

By exciting and measuring this assembly consisting of A, I and B, the receptance matrix
YAIB is obtained of which ZAIB is calculated by inverting the receptance as shown in section
2.1.1. This matrix will be composed as follows:

ZAIB =

[
ZI

11 + ZA
11 ZI

12
ZI

21 ZI
22 + ZB

22

]
(2.28)

This ZAIB from equation 2.28 can be derived by following the primal assembly procedure
described in section 2.3.1. A short recap example for this structure is shown hereafter. If one
assumes cross A and the resilient element I coupled using a virtual point transformation with
generalized displacements q and forces m, one can write:ZA

11 0 0
0 ZI

11 ZI
12

0 ZI
21 ZI

22

qA
1

qI
1

qI
2

 =

mA
1 + gA

1
mI

1 + gI
1

mI
2

 (2.29)

in which g resemble the interface forces and the subscripts1 and 2 declare on which side of
the isolator the property in question is located. The properties are sketched in figure 2.11.
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Figure 2.11: Sideview of the uncoupled structures A (left) and I (right).
Two virtual points, VP1 and VP2 are defined on the interfaces between the

substructures.

By imposing the the requirement of compatibility of displacements, one can state qA
1 =

qI
1. Define qAI

1 , qA
1 = qI

1 to write:ZA
11 0

ZI
11 ZI

12
ZI

21 ZI
22

 [qAI
1

qI
2

]
=

mA
1 + gA

1
mI

1 + gI
1

mI
2

 (2.30)

And by also imposing the second condition, the condition of equilibrium of forces on the
interface gA

1 = −gI
1, one can simplify:[

ZA
11 + ZI

11 ZI
12

ZI
21 ZI

22

] [
qAI

1
qI

2

]
=

[
mI

1 + mA
1

mI
2

]
(2.31)

In which: [
ZA

11 + ZI
11 ZI

12
ZI

21 ZI
22

]
= ZAI (2.32)

With ZAI being the coupled dynamic stiffness matrix of the two components A and I.
By following the same procedure to couple component B, one obtains equation 2.28. In this
matrix ZAIB the off-diagonal terms represent the dynamic transfer stiffness while the diagonal
terms are the dynamic driving point stiffness. It is clear that the off-diagonal terms are solely
a property of the isolator, but the diagonal terms also have a term containing the stiffness
of the surrounding structures A and B. In figure 2.6 it is shown that by obtaining FRFs of
components, the FRF of the assembly can be calculated. The full decoupling exploits the fact
that it is also possible to subtract the dynamics of a component from a measured structure,
shown in figure 2.12.

Obviously, to execute this method one requires the dynamic stiffness matrices of the sur-
rounding structures. This ZA and ZB can be obtained in two ways: numerically or experi-
mentally.

Numerically, it is possible to obtain the dynamic stiffness by making use of the system
matrices as shown in equation 2.7, if these are available. Another approach is to just use the
weight and the rotational inertia from the structure, which are highly likely to be available
from CAD software [4]. Z is obtained by equation 2.33.

Z = −ω2M =

[
mI −m× rV,G

m× rV,G ΘV

]
(2.33)
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- =-

Figure 2.12: By subtracting the dynamic stiffness matrices of structure A
and B, only the properties of the isolator remain.

In which m is the mass of the cross, I is an 3 by 3 identity matrix, rV,G a direction vector
from the virtual point V to the center of gravity G and ΘV the rotational inertia around the
virtual point which is calculated by:

ΘV = ΘC + m(|rV,G|2I− rV,GrT
V,G) (2.34)

in which ΘC is the rotational inertia around the center of gravity which is commonly
available from CAD software. The virtual point is located in the center on the interface where
the crosses will be bonded with the resilient element.

The second way to obtain Z is by experiment. This is done by physically decoupling the
crosses and follow the procedure described in 2.3.1. This method produces promising results
[4] however the requirement to obtain the dynamic stiffness of the surrounding structures A
and B can be experienced as a disadvantage to using this method. The next state of the art
method, inverse substructuring, does not require knowledge of the dynamics of the surround-
ing components.

2.4.2 Inverse substructuring

Inverse substructuring is a method of determining the dynamic stiffness of a resilient element
by making clever use of two assumptions. The first assumption is that the rubber isolator
should have negligible mass. The second assumption states that the structure is coupled in a
special topology in which a DoF on one side only has influence on the same DoF on the other
side of the isolator. If these assumptions hold, the inverse substructuring states:

ZI
11 = −ZI

12 = −ZI
21 = ZI

22 (2.35)

As seen in equation 2.28, the off diagonal terms ZI
12 and ZI

21 can be perfectly measured
and using 2.35 the full dynamic stiffness matrix can be calculated. However, this assumes the
two facts of negligible mass and the special topology, which are discussed hereafter.

Assumption 1: The isolator has negligible mass

This assumptions rises from the fact that by equating equation 2.35, the virtual point displace-
ments on either side of the isolator are in phase so no internal resonances occur.
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Assumption 2: The structure is coupled in a special topology

The second assumption on inverse substructuring is that the resilient element connect the
surrounding components A and B in a special topology. This special topology prescribes that
a DoF on one side only influences the same DoF on the other side, as depicted in figure 2.13.

Figure 2.13: The special topology required for the assumption on inverse
substructuring.

This assumption is in place to guarantee a matrix in which the four quadrants are block
diagonal. To illustrate this phenomenon, a simple example involving two DoF on A and two
DoF on B is closely examined, see figure 2.14.

Figure 2.14: A simpler 4 DoF example on inverse substructuring. (left). The
corresponding stiffness matrix of the system. (right)

If one splits the stiffness matrix of the simplified system in four quadrants, distinguishing
the driving point stiffness and the dynamic transfer stiffness, on sees figure 2.15, assuming k1
and k2 to be dynamic stiffness.
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Figure 2.15: The stiffness matrix of a simplified system divided into four
quadrants defining driving point- and transfer stiffness.

It is clear that the inverse substructuring equation 2.35 perfectly holds:

ZI
11 = −ZI

12 = −ZI
21 = ZI

22[
k1 0
0 k2

]
= −

[
−k1 0

0 −k2

]
= −

[
−k1 0

0 −k2

]
=

[
k1 0
0 k2

]

2.5 Proposition on improvement on inverse substructuring

It is a fact that the assumption on the special topology is invalid [2]. In [2] it is concluded,
after validation with shaker tests, that cross couplings exists. Specifically named is the cou-
pling between the radial directions and the rotation around the axis perpendicular to it. This
phenomenon makes the equation 2.35 untrue. However, if one examines what occurs when
cross couplings are present, it is possible to determine the driving point stiffness matrices
from the unaffected transfer stiffness. If one takes the simplified example from section 2.4.2
and assume cross couplings, one sees figure 2.16.

Figure 2.16: The simplified topology with cross couplings present. (left)
The stiffness matrix of the system. (right)

If one again divide this stiffness matrix in quadrants, it shows:
This has the consequence that equation 2.35 does not hold:
This is just an arbitrary 4 DoF example. In section 2.5.1 a proposition is to determine the

off diagonal values by making an educated guess using the geometry of the isolator.
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Figure 2.17: The simplified topology with cross couplings present. (left)
The stiffness matrix of the system. (right)

ZI
11 6= −ZI

12 6= −ZI
21 6= ZI

22[
k1 + k3 0

0 k2 + k4

]
6= −

[
−k1 −k3
−k4 −k2

]
6= −

[
−k1 −k4
−k3 −k2

]
6=

[
k1 + k4 0

0 k2 + k3

]

2.5.1 Proposition for including crosscouplings

A solution to include crosscouplings in the description of the dynamic stiffness is to make an
assumption of the shape of the isolator and make use of the known dynamics of this geometric
shape. The shape of the isolator in this thesis resembles the most of a beam element. If one
defines a beam with two nodes with six DoF each, as in figure 2.18, one can relate these DoF
in multiple ways. Often used is the Euler Bernouilli beam theory for calculating loads and
deflections for all degrees of freedom.

Figure 2.18: 2x6 DoF Euler Bernoulli beam

The stiffness matrix of a EB-beam element has the following sparsity pattern:
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Figure 2.19: Sparsity pattern of a 2x6 DoF Euler Bernoulli beam

It is clear that in a EB-beam not only diagonal relations between DoF exist, but some DoF
are coupled with other DoF. The K matrix is built from four quadrants K1,1, K1,2, K2,1 and
K2,2 as follows:

K =
E
L

[
K1,1 K1,2
K2,1 K2,2

]
(2.36)

With:

K1,1 =



A 0 0 0 0 0
0 12Iz

L2 0 0 0 6Iz
L

0 0 12Iy

L2 0 −6Iy
L 0

0 0 0 GJ 0 0
0 0 −6Iy

L 0 4Iy 0
0 6Iz

L 0 0 0 4Iz


(2.37)

K1,2 =



−A 0 0 0 0 0
0 −12Iz

L2 0 0 0 6Iz
L

0 0 −12Iy

L2 0 −6Iy
L 0

0 0 0 −GJ 0 0
0 0 6Iy

L 0 2Iy 0
0 −6Iz

L 0 0 0 2Iz


(2.38)

K2,1 =



−A 0 0 0 0 0
0 −12Iz

L2 0 0 0 −6Iz
L

0 0 −12Iy

L2 0 6Iy
L 0

0 0 0 −GJ 0 0
0 0 −6Iy

L 0 2Iy 0
0 6Iz

L 0 0 0 2Iz


(2.39)
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K2,2 =



A 0 0 0 0 0
0 12Iz

L2 0 0 0 −6Iz
L

0 0 12Iy

L2 0 6Iy
L 0

0 0 0 GJ 0 0
0 0 6Iy

L 0 4Iy 0
0 −6Iz

L 0 0 0 4Iz


(2.40)

With parameters A = cross sectional area of the interface, Ixyz = moment of inertia
around x, y, z axes, L = length of the interface, G = the shear modulus of elasticity, J = the
polar moment of inertia E = Ec(1 + η j) = Young’s Modulus of the material with Ec is the
Young’s Modulus coefficient and η the Loss Factor.

From the stiffness matrix for a beam, and the geometry of the rubber isolator, one can con-
clude that all cross couplings are equal and can be opposite, as presented in the full element
stiffness matrices in 3.5. So one can account for cross couplings in the ZI matrix by taking
the transfer coupling stiffnessess (which are unaffected by the transmission simulators) and
correct these values with the correct sign and add them to the ZI matrix on the correct places
following the bernouilli beam scheme. One can just use one value of the transfer crosscou-
plings for this procedure. For example:

ZI
12(5, 1)→ ZI

11(5, 1), ZI
11(1, 5), ZI

22(4, 2), ZI
22(2, 4) (2.41)

And
− ZI

12(5, 1)→ ZI
11(2, 4), ZI

11(4, 2), ZI
22(1, 5), ZI

22(5, 1) (2.42)

In which the arrow means ’substitute for’.

2.5.2 Proposition for including Isolator Mass

As suggested by [3], a way to incorperate the isolator mass in inverse substructuring is by
addind a correction term to the dynamic stiffness matrix. Firstly, the weight of the isolator is
simply weighed on a scale to obtain MI . To correct for the mass one applies the following
correction to ZI obtained by inverse substructuring:

ZI =

[
−diag

(
ZAIB

12

)
diag

(
ZAIB

12

)
diag

(
ZAIB

12

)
−diag

(
ZAIB

12

)]−ω2
[

Mr 0
0 Mr

]
(2.43)

However, research in [3] concluded that including the isolator mass does not yield signif-
icantly better results and is not included in this thesis.
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Chapter 3

Example

In this chapter a simple system is constructed to do basic analysis. This exercise is vital to
get an understanding on the dynamics in multi DoF systems. The influence of the system
matrices on the frequency response is examined and the difference between Full Decoupling
and Inverse Substructuring on a basic system is checked.

3.1 A simple system

To gain insight in the frequency response of complex systems, it is essential to have knowledge
on the influence of different factors on these systems. A way to gain this knowledge is by
creating a simple system and vary some parameters which are to be expected to be the most
influential on the frequency response. This simple system consists of two masses m1 and m2
connected by an interface I. The model consists of 12 Degrees of Freedom; Per mass there
are three translational degrees of freedom and three rotational degrees of freedom.

Figure 3.1: Simple model of the crosses and isolator system with two times
6 DoF connected by a beam element.

The interface is modelled as a massless beam element with six DoF on each end with a
complex stiffness component (structural damping). The expression for dynamic stiffness is:

Z(ω) = −ω2M + K (3.1)

With system matrices M and K:

M =

[
M1 0
0 M2

]
(3.2)
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With:

M1 =



m1 0 · · · · · · · · · 0

m1
. . . ...

m1
. . . ...

0.4m1r2 . . . ...
Sym. 0.4m1r2 0

0.4m1r2


(3.3)

and M2 dito (replace m1 for m2). The stiffness matrix is:

K =
E
L

[
K1,1 K1,2
K2,1 K2,2

]
(3.4)

With:

K1,1 =



A 0 0 0 0 0
0 12Iz

L2 0 0 0 6Iz
L

0 0 12Iy

L2 0 −6Iy
L 0

0 0 0 GJ 0 0
0 0 −6Iy

L 0 4Iy 0
0 6Iz

L 0 0 0 4Iz


(3.5)

K1,2 =



−A 0 0 0 0 0
0 −12Iz

L2 0 0 0 6Iz
L

0 0 −12Iy

L2 0 −6Iy
L 0

0 0 0 −GJ 0 0
0 0 6Iy

L 0 2Iy 0
0 −6Iz

L 0 0 0 2Iz


(3.6)

K2,1 =



−A 0 0 0 0 0
0 −12Iz

L2 0 0 0 −6Iz
L

0 0 −12Iy

L2 0 6Iy
L 0

0 0 0 −GJ 0 0
0 0 −6Iy

L 0 2Iy 0
0 6Iz

L 0 0 0 2Iz


(3.7)

K2,2 =



A 0 0 0 0 0
0 12Iz

L2 0 0 0 −6Iz
L

0 0 12Iy

L2 0 6Iy
L 0

0 0 0 GJ 0 0
0 0 6Iy

L 0 4Iy 0
0 −6Iz

L 0 0 0 4Iz


(3.8)

With parameters A = cross sectional area of the interface, Ixyz = moment of inertia
around x, y, z axes, L = length of the interface, G = the shear modulus of elasticity, J =
the polar moment of inertia E = Ec(1 + η j) = Young’s Modulus of the material with Ec is
the Young’s Modulus coefficient and η the Loss Factor. For clarity, the visualized sparsity
patterns of the system are seen in figure 3.2.
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Figure 3.2: Sparsity pattern of the 12x12 Mass- and Stiffness matrix.

3.1.1 Varying Mass
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Figure 3.3: Dynamic stiffness response of varying mass

Observation

Static Dynamic stiffness, the stiffness at 0 Hz, does not change with changing mass. The
resonance peak frequency does increase with decreasing mass. With m1 = 0, the dynamic
stiffness is a flat line. The dynamic stiffness for frequencies higher than resonance will never
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be the same for different mass. The dynamic stiffness will keep rising for higher frequencies
regardless of mass.

Explanation

When equation 3.1 is observed, most phenomena can be explained. Firstly, for the static
stiffness ω = 0, so Z(0) = K is not dependent on mass. The increasing stiffness of the
resonance peak is caused by the fact that a resonance occurs at ωn =

√
k/m1, with k and m1

the stiffness in the DoF. With an decreasing mass, ωn will rise. For m1 = 0, 3.1 becomes
Z(ω) = K, so not dependent on frequency and will display a flat line in this spectrum with
K as magnitude. At higher frequencies, the difference between dynamic stiffness for different
mass will linearly scale with said mass. At frequencies hiogher than resonance, the dynamic
stiffness will keep increasing. This is the typical mass line where the stiffness matrix K is
relatively irrelevant and the Z is mostly determined by −ω2M because of high ω.

3.1.2 Varying Stiffness
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Figure 3.4: Dynamic stiffness response of varying stiffness

Observation

The resonance frequency increases with an increase in stiffness. The resonance peak will
bounce up at a higher dynamic stiffness for an increase in stiffness. Static stiffness will in-
crease with increasing K matrix. At higher frequencies all frequency responses converge to
the same value regardless of stiffness matrix.
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Explanation

The resonance frequency increases with stiffness because of the resonance frequency is cal-
culated by

√
k1/m. The resonance peak is also at a higher frequency so if one examines

equation 3.1, one can see that for an increasing K, the value of Z will also increase.

3.1.3 Varying Loss Factor
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Figure 3.5: Dynamic stiffness response of varying mass

Observation

The static stiffness decreases with decreasing loss factor. The resonance frequency is not
frequency dependent. The amplitude of the resonance is greatly reduced by an increase in
loss factor. Also the sharpness of the peak is reduced. At higher frequencies, the dynamic
stiffness is not influenced by a varying loss factor.

Explanation

The loss factor η is introduced as a material property that influences the complex Young’s
modulus E = Eco f f (1 + η j) with j =

√
−1. This complex E in turn creates a complex K

matrix. For a more in depth discussion on this phenomenon and how it causes a damping
effect, see [15]. It is important to note that absolute values are plotted in figure 3.5.
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3.1.4 Summary

In this graph 3.6 four lines are plotted. In blue is a baseline, and the three remaining lines
change one system matrix at a time. By glancing over this figure one can quickly figure out
how the different building blocks of Z(ω) influence a frequency response.
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Figure 3.6: Dynamic stiffness response with multiple parameters varied.

3.2 Dynamic substructuring: Full Decoupling and Inverse Sub-
structuring

Now there is knowledge on the simple system but how do the two substructuring techniques
compare on this simple system. A quick recap for this simple system is now given and the the
results are compared.

Full Decoupling

To perform full decoupling on the assembly, the dynamic stiffnessess of the three substruc-
tures A, I and B are required. For this simple system, these can be calculated by hand. For
substructure A:

ZA = −ω2M1 + KA (3.9)

Since it is assumed that the substructure behaves like a rigid body one can say KA = 0.
For subsystem B, the same holds:

ZB = −ω2M2 (3.10)

The full decoupling procedure takes place as follows:
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ZAIB − ZA − ZB = ZI
FD (3.11)

Or in more detail:[
ZA

11 + ZI
11 ZI

12
ZI

21 ZB
22 + ZI

22

]
−
[

ZA
11 0
0 ZB

22

]
=

[
ZI

11 ZI
12

ZI
21 ZI

22

]
= ZI

FD (3.12)

Where the subscript FD indicates the dynamic stiffness is obtained by full decoupling.

Inverse substructuring

For inverse substructuring, one does not compute the dynamic stiffness of the substructures A
and B but claim that the transfer stiffness ZI

12 and ZI
21 are not dependent on these substructures

andwhen A and B are decoupled the driving point stiffness is equal but opposite. In equations:

ZAIB
12 = ZI

12 and ZI
12 = −ZI

11 (3.13)

This way the full ZI
INV matrix can be created without knowledge of dynamic properties of A

and B. In the next subsections the results of fully decoupling and inverse substructuring are
compared for the simple model.

3.2.1 Axial stiffness
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Figure 3.7: Dynamic stiffness response with multiple parameters varied.

Observation

For axial transfer stiffness, the dynamic stiffness for the full decouplingmethod and the inverse
substructuring method is a flat line in the frequency domain. The full decoupling stiffness and
the inverse substructuring stiffness is equal. The same holds for the driving point stiffness.



44 Chapter 3. Example

Explanation

Firstly the driving point stiffness is examined. The dynamic stiffness is calculated by equa-
tion 2.2. If one fills this equation in for ZFD

12 with the system matrices 3.3 and 3.5 after the
decoupling procedure described in 3.11, one finds for the axial direction:

ZFD
11 = −ω2(M1 −m1) + A = A (3.14)

Which is obviously not frequency dependent and has a constant value of A. If one then ex-
amines the axial stiffness for the inverse substructuring method by using the same system
matrices from section 3.1, one finds:

ZINV
11 = −Z12 = −(−ω2(0− 0)− A) = A (3.15)

Which is also not frequency dependent and has a constant value of A.
For the transfer stiffness, the system matrix from equations 3.6 and 3.3 are used to find

that for the full decoupling:

ZFD
12 = −ω20 + A) = A (3.16)

and
ZINV

12 = Z12 = ZFD
12 = −(−ω2(0− 0)− A) = A (3.17)

3.3 Adding mass to the isolator

To create a more complex model, mass is added to the isolator subsystem as shown in figure
3.8. This will convert the system from 12 DoF to 18 Dof with the following system matrices:

Figure 3.8: Simple model of the crosses and isolator system with three times
6 DoF connected by two beam elements.

M =

M1 0 0
0 Miso 0
0 0 M2

 (3.18)
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With M1 is equal to equation 3.3 and M2 dito (replace m1 for m2). If one assumes a point
mass in the centre of the isolator, Miso is:

Miso =



miso 0 · · · · · · · · · 0

miso
. . . ...

miso
. . . ...

miso
. . . ...

Sym. miso 0
miso


(3.19)

As can be seen in figure 3.8, the masses and isolator subsytem are connected by two beam
elements. This 18 DoF K matrix will take the form of:

K =
E
L

K(1)
1,1 K(1)

1,2 0

K(1)
2,1 K(1)

2,2 + K(2)
2,2 K(2)

2,3

0 K(2)
3,2 K(2)

3,3

 (3.20)

Where the superscript (1) or (2) indicates if the partial stiffness matrix is part of Kbeam1

or Kbeam2. In equation 3.20 K(1)
1,1 , K(1)

1,2 , K(1)
2,1 and K(1)

2,2 are equal to equation 3.5 and 3.6
respectively, as well as K(2)

2,2 , K(2)
2,3 , K(2)

3,2 and K(2)
3,3 .

It is interesting to examine what the influence of isolator mass is on the frequency re-
sponse, and to inspect if it creates a difference in this frequency response for transfer and
driving point stiffness when the two substructuring techniques are applied.

For research on structures withmore than two nodes, the receptance notationY is preferred
over the dynamic stiffness Z notation, since the dynamic stiffness only comprises element
behaviour. Usually Z is a sparse matrix whereas Y is generally a full matrix. In figure 3.9,
the difference for the system discussed in this section is visualized.
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Figure 3.9: Sparsity pattern of the 18x18 Stiffness and Receptance Matrix.

Misschioen nog iets meer in depth hierover? bijlage?
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3.3.1 Varying mass ratio for transfer receptance

In figure 3.10 and 3.11 the influence of the mass of the isolator can be discerned for transfer
and driving point receptance.

Frequency (Hz)

A
c
c
e
l
e
r
a
n
c
e
 
m
/
N
s
 
 
 
 
 

2

Transfer accelerance with varying isolator mass

Figure 3.10: Transfer receptance with varying isolator mass. The lighter the
line, the lighter the isolator mass.

Observation

As expected, the first resonance peak is not influenced by isolator mass. The higher the iso-
lator mass, the lower the second resonance frequency. No antiresonance is visible. After the
second resonance frequency, the accelerance slowly decreases, however, for a lighter mass,
the accelerance is higher.

Explanation

The fact that the isolator mass does not influence the first resonance peak can be explained by
the mode shape at the frequency of the first resonance peak. In this mode shape, M1 and M2
are moving equal but opposite in axial direction creating an equal but opposite force on the
point mass of Miso, which in turn makes Miso stationary. A stationary mass does not influence
the frequency response. The moving of the second resonance peak can also be explained by
the mode shape. In this mode shape, M1 and M2 are stationary and the Miso oscillates back
and forth in axial direction. By constant stiffness, a higher mass will lower the resonance
frequency. The absence of antiresonances can be explained by inspecting the accelerance
equation 3.21.

Y(ω) =
u(ω)

f(ω)
(3.21)
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Antiresonance, where Y approaches zero, is caused by u, the displacement, going to zero.
This will never happen for transfer stiffness in this system.

The lighter isolator mass keeps the accelerance at a higher value for higher frequencies
because the lighter the isolator mass, the less energy is absorbed at this point and is transferred
from M1 to M2.

3.3.2 Varying mass ratio for driving point receptance
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Figure 3.11: Driving point receptance with varying isolator mass. The
lighter the line, the lighter the isolator mass.

Observation

As expected, the first resonance peak is not influenced by isolatormass. The higher the isolator
mass, the lower the second resonance frequency. Antiresonance is visible. After the second
resonance frequency, the accelerance slowly decreases and converges to one value for varying
mass.

Explanation

In this case the first resonance-antiresonance pair is not influenced by the isolator mass as well.
This can also be explained by the mode shapes as in section 3.3.1. The same explanation for
the second resonance-antiresonance pair, where the Miso oscillates between the stationary M1
and M2 also holds. Different in this graph is the antiresonances which do occur for driving
point FRFs.
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Chapter 4

Practice

4.1 Introduction

With the basic knowledge from chapter 3 a grounded experiment can be conducted. In this
experiment, four measurement campaigns are carried out to compare the method of Full De-
coupling of the substructures A , I and B, the Inverse Substructuring method and the Im-
proved Inverse Substructuring method. In section 4.2, the general setup of the measurement
campaigns are explained, the results are shown in section 4.4 and a discussion on the practice
is held in 4.5.

Firstly, a measurement campaign is conducted to determine the dynamic properties of the
Isolator by FD, InvSub and ImInvSub. Secondly, these properties are plugged into a validation
structure to see if the propositions on improvement of inverse substructuring have any effects.

4.2 Measuring the dynamic properties of the Isolator

4.2.1 General setup

To measure the dynamic stiffness properties of rubber isolators, it is clamped between two
aluminium crosses manufactured by a water jet cutter. The center sinkhole for the M10 nut is
milled. The rubber isolator is placed between the aluminium crosses, and the washer and nut
are screwed on the thread. The nut is secured using a torque wrench set to 15Nm. This is the
maximum reliable torque that the torque wrench can measure.

Figure 4.1: Exploded view from the assembled AIB system with from
left to right: nut-washer-transmission simulator-ruber isolator-transmission

simulator-washer-nut.

To measure the response to an impact, sensors are adhered to the structure on four places
as seen in figure 4.2.
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Impact location

Bungee cord

Acc. sensor

Figure 4.2: Single transmission simulator (TS) cross hanged from a bungee
cord. Three sensors are adhered the TS and impact locations are visible.

The structure is struck with an impact hammer with a force measurement sensor on pre-
marked locations on the structure to measure a response to a known input.

4.2.2 Used materials

Transmission simulators The transmission isolators are water jet-cut crosses from alu-
minium. The nut hole is sunk with a mill. On this transmission simulators, the 32 impact
locations are marked by permanent marker.

Vibration isolator The vibration isolator is rubber with a depth of 50 mm and a length of
30 mm.

Fastening To perform measurements on the characteristics of the vibration isolator, it must
be mounted to the transmission simulators. These TMs are fastened to the vibration isolator
by a washer and M10 nut by use of a calibrated torque wrench every measurement campaign
to rule out inconsistencies caused by fastening torque.

Figure 4.3: Materials to fasten transmission simulator to the vibration isola-
tor From left to right: Nut, washer and calibrated torque wrench.

For measuring the frequency response of solely the assembly of transmission simulators
and vibration isolator, it must be mechanically decoupled from its environment or be in ’free-
free’ conditions. Free free conditions are very achievable in computer simulations however
in practice some considerations must be made. The method used in this experiment is sus-
pending the assembly AIB from low stiffness bungee cords where the free-free resonance
frequency of the assembly AIB is separated from the rigid body mode frequencies of the sus-
pension setup. A rule of thumb is that these ratios should be apart by minimum a factor of 10
[10]. In this experiment, the free-free resonance frequency is in the multi kHz range, and the
rigid body mode frequency is ±2 Hz, so these frequencies are separated sufficiently.
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Lastly, the sensors need to be adhered to the transmission simulators. Multiple adherents
can be used, such as loctite, xc60 or bee wax. In this case a sensor mount with loctite is used.
The easy removal of the sensors is a good characteristic for the roving measurement setup of
the second campaign as explained in 4.2.4.

Sensors andData acquisition The sensors used are PCB356 A32 piezo electric accelerom-
eters and the impact hammer is a PCB086 modal hammer. Both sensors and hammer are
connected to a Müller-BBM PAK MKII data acquisition system.

Software A measurement campaign consists of three steps: Preparation, Measurement and
Analysis. For the first two steps the in-house developed application DIRAC is used. In this
software, the engineer prepares a measurement by loading a CAD file from the measurement
setup in the software and placing impact- and sensor locations on the object. When this is
completed, the ’Measure’ module is started. During the measurement DIRAC will share live
feedback about the model quality, using the sensor specifications and the geometry of the
experiment.

Figure 4.4: Screenshots of the DIRAC software (Alpha Version 0.1.0.107).
Left: The Prepare module. Right: The Measure module.

The DIRAC software is also capable of performing analysis on the measurements. How-
ever, it is in the Alpha development phase, so the data is exported to MATLAB and analysed
by the VIBES toolbox for MATLAB add-on. In the VIBES toolbox, the impacts and sensors
are converted to virtual points and the FRFs are created.

4.2.3 Campaign 1: Dynamic stiffness of the crosses

To perform the full decoupling method in dynamic substructuring, the dynamics of all but one
structure is required to be known. In this research, the assembled system AIB is measured,
and the crosses A and B are measured separately so these dynamics can be subtracted from
the assembled system to obtain the dynamics of solely I, the isolator.

Three sensors are used, as seen in figure 4.2. Sixteen impact are exerted on the structure.
Using the nine response channels and sixteen input channels, a virtual point is created at the
heart of the interface of the cross with the (non present) isolator to form a 6x6 FRF matrix.

4.2.4 Campaign 2: Roving measurement of the isolator

In this measurement campaign the transmission simulators and vibration isolator are assem-
bled. The sensors are placed on the transmission simulator as can be seen in figure 4.2. 16
impacts on side A are performed to measure driving point stiffness, and 16 impacts on side B
are performed to measure transfer stiffness. Then the sensors are removed from transmission
simulator A and placed on B to repeat the measurement.
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4.2.5 Campaign 3: Dynamics of the A structure

For validation, the rubber isolator dynamics using different substructuring techniques are
plugged into a validation structure. To make use of substructuring techniques, the dynam-
ics of all individual components of the assembly are required. This means that the A-frame is
measured separately. Three sensors are used to create a Virtual point on the future interface
between the rubber isolator and this A-structure, while one sensor will be used for validation
of the different substructuring methods. This will result in a 6x9 FRF matrix with the first
6x6 entries consisting of Virtual Point channels and refchannels, and the last three channels
will be real sensor channels excited by virtual refchannels of the virtual point as can be seen
in figure 4.6

Validation sensor

Figure 4.5: Left: The A-structure with the validation sensor on the far end.
Right: Zoomed in view on the impacts and sensors used for creating the vir-

tual point, visualized by an orange ball.

Six Virtual Channels

Six Virtual RefChannels

Three real Sensor Channels

Figure 4.6: FRF matrix of the A structure built from virtual and real chan-
nels.

4.2.6 Campaign 4: Measurement of the validation structure

Lastly, a validation measurement is carried out by impacting a transmission simulator at-
tached to the rubber isolator attached to the A-structure. The three components are measured
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separately so this assembly can be fully reconstructed using dynamic substructuring and com-
pared with a validation measurement where the different components are connected in the real
world.

Figure 4.7: The validation measurement assembly

Impacts on TSTransmission simulator Validation Sensor A Structure

Rubber

Isolator

Figure 4.8: The assembly for the validation measurement as built prior to
the experiment.

4.3 Data Processing

Classical FRFs can be exported from DIRAC in .mat format for use in MATLAB in combi-
nation with the VIBES toolbox for MATLAB. The FRFs are not directly suited for use in this
toolbox, so a converting script is utilised to create FRFMatrix objects since this object type is
used heavily in processing data in the VIBES toolbox. From the Classical FRF data, a virtual
point transformation is performed to make decoupling of substructures possible.
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DIRAC software

Müller-BBM SC42G2 
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Dynamic substructuring

Graphing

Frequency domain data

Figure 4.9: The dataflow from the sensors (channel voltages) and im-
pacthammer (refchannels) to the graphing

The accelerometer sensors connect to the Müller-BBM signal processing box with three
wires, one for each direction (x,y and z). The voltages in these wires range from 0-10V which
change due to the piezoelectric effect. On the tip of the impact hammer, a load cell is placed.
This load cell is connected to the same signal processing unit. This box converts these voltages
in directional accelerations or impact forces and sends this data to a personal computer over
an Ethernet cable.

DIRAC software then handles the rest of the signal processing. This means to a conversion
the frequency domain and signal conditioning.

The frequency domain data is imported in Matlab and the VIBES toolbox to create Vir-
tualPoints. The first step is to convert the structured data from Dirac to a format suitable for
the VIBES toolbox. Then the location of the VPs are determined. The correct channels of the
measurement are allocated to the correct VP by means of an interface deformation matrix and
the VP FRF matrix is calculated. This is reviewed more in depth in section 2.3.2, but quickly
recapped here. The measured FRF matrix Ymeasured is transformed in the virtual point FRF
matrix Y virtual by means of two transformation matrices: Tu to transform the displacments
of the sensors to the virtual point and Tf to transform the forces exerted by the impact hammer
to virtual forces on the virtual point location. These transformation matrices are built from
geometric information that relate the position of the sensors and impacts to the location of the
virtual point.

Yvirtual = TuYmeasuredTT
f (4.1)

Tu =
(

RT
u Ru

)−1
RT

u and TT
f = R f

(
RT

f R f

)−1
(4.2)

In which

Ri =
[
eT|(ri × e)T

]
(4.3)

Where e and r are the geometric properties as depicted in figure 2.9.
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4.4 Results

In this subsection the results of the experimental measurements are discussed. In 4.4.1 and
4.4.2 the quality of the measurements are shown. In 4.4.4 the three substructuring methods
are compared to a validation measurement.

4.4.1 Dynamics of the Transmission Simulators

To conclude that the measurements were performed correctly the dynamic stiffness of the
crosses (transmission simulators: from now on TS) is inspected. One does expect this alu-
minium TS to be so stiff to not show any dynamic behaviour in the frequency of interest. If
one checks the equation for dynamic stiffness Z it is expected that only the mass of the TS is
of influence which is a flat line in the frequency domain.
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Figure 4.10: Accelerance of the TS in translational x-direction. No dynam-
ics in the frequency range of interest are observed.

Which can be seen to be true for both transmission simulators A and B.

4.4.2 Dynamics of the rubber vibration isolator

In this section the dynamics of the rubber isolator are obtained by decoupling the dynamics
of the TM from the assembly. Three FRF-matrices are required for this operation namely the
FRF-matrix of the assembly, (isolator with transmission simulators), and the FRF-matrices of
the two transmission simulators as explained in section 4.2.1. The decoupling procedure using
virtual points is explained in section 2.3. After decoupling, one obtains the Fully Decoupled
FRF matrix of the rubber isolator. In this thesis it is compared with the Inverse Substructured
and the Improved Inverse Substructured variant. How these variants are obtained is explained
in section 2.4.2.
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But first things first. It is required to check if the measurement campaign was caried
out carefully with concise impacts and sensor locations. A way to check this is to assume a
symmetric assembly and see if the driving point accelerances of A and B, and the transfer
accelerances from A to B and B to A are similar. An example of a comparison can be seen in
figure 4.11.
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Figure 4.11: Accelerance of the Assembly in translational y direction. Driv-
ing point A andB, and Transfer accelerance fromA to B andB toA is checked
to check if these measurements do overlap as expected for this symmetric as-

sembly.

With this consistency checked, one can perform the decoupling procedure. A quality
check to see if this decoupling procedure is carried out correctly the dynamic stiffness of
the vibration isolator is inspected in directions which are symmetric: x and y. If these plots
overlap the decoupling procedure is carried out succesfully.
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Figure 4.12: Dynamic stiffness of the vibration isolator in symmetric trans-
lational and rotational directions.

4.4.3 Dynamics of the A-structure

To get a feeling for the dynamics of the A-structure a FRF is plotted. However by just glancing
over an FRF the quality of the measurement is not ensured yet. To check the quality it is not
possible to use symmetry of this object because it is not symmetric. To ensure the quality of
this measurement two other metrics are inspected: sensor and impact consistency to ensure a
good quality virtual point.
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Figure 4.13: Dynamic stiffness of the vibration isolator in symmetric trans-
lational and rotational directions.

To perform the virtual point transformation one requires suitable sensor and impact loca-
tions. This metrics can be quantified in a value called the impact and sensorchannel consis-
tency. This metric will take a value between zero and one. A one indicates that the sensor
can describe the dynamics of the virtual point very well, while a zero means that it is not con-
tributing to improving the dynamics of the virtual point. For calculation of this consistency
metric refer to [19].
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Figure 4.14: Left: Impact consistencies. Right: Sensorchannel consisten-
cies.

These sensor consistencies show that the measurement is carried out in a careful manner
with sensors on correct locations securely fastened. These impact consistencies show that
the impacts were intended and placed on correct locations without much variation due to the
human nature of executing an impact.

4.4.4 Comparing FD, InvSub, and ImInvSub to a validation measurement

To compare the three variants of substructuring to a validation measurement, several mathe-
matical operations in the form of decoupling and coupling of substructures is required. Firstly,
the TS crosses are decoupled from the isolator to obtain the dynamic stiffness of solely the
isolator.

Next, the isolator needs to be coupled to one transmission simulator and the A structure.
In this coupling procedure is where the difference between different methods of modelling

the isolator is implemented as can be seen in figure 4.15. For the model of I, the three variants
of FD, InvSub and ImInvSub are used.

[   ]

[   ]

[   ]

Figure 4.15: The substructures used in the validation assembly. For the dy-
namic stiffness of the isolator three models are used and the sparsity of the

dynamic stiffness matrices is displayed.
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Figure 4.16: The three Z matrices with overlapping rectangles for coupling
DoFs used for dynamic substructuring.

Figure 4.17: The three substructures. The yellow rectangle shows what the
validation matrix consists of.

4.4.5 Observations for translational input in x and y direction

In this section the resulting FRFs with different coupling techniques are observed for virtual
translational input.
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Inverse substructuring overestimates accelerance

The inverse substructuring response ’measures’ higher accerelance accros almost the whole
frequency range.

Explanation The fact that inverse substructuring overestimates accelerance can be at-
tributed to the fact that some relevant stiffness entries are removed from theZmatrix due to the
operation of assuming diagonality. This reduced stiffness will result in a higher accelerance
response accross the whole frequency range.

Missing dynamics in substructuring

In the validation measurement more resonance and anti-resonance peaks show than in all
substructured responses for example around 1650 Hz. This is not only true for the inverse
substructuring methods but also for full decoupling.

Explanation There exist multiple reasons why certain dynamics are missed when con-
structing dynamics using FBS. In this case the assembly is too complicated to pinpoint to a
certain mode or modeshape so a guess must be made. It is for example possible that a the
rigidifying around an interface by using a virtual point is not justified and dynamics because
of this flexibility are not present in substructured responses.
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Resonance peak shifts of inverse substructuring

One can see that the fully substructured response predicts resonance peaks the most accu-
rate, while the inverse substructuring techniques predict a slightly higher frequency for the
resonances.

Explanation Resonance peak shifts are discussed in section 4.4.1 and it was discovered
that it is caused by either a difference in mass of the system or a difference in stiffness. If one
firstly compares InvSub and ImInvSub to FD and can see that the resonance peaks shift to the
right, so to a higher frequency. Physically this indicates a difference in the relation of mass to
stiffness in which the mass is lower or the stiffness is higher as one can see in the relation to
calculating resonance peaks:

ωn =

√
k
m

(4.4)

With ωn the frequency at which resonance occurs. Both quantities are encapsulated in the
dynamic stiffness quantity Z as shown by equation 3.1. Because for InvSub and ImInvSub the
Z is drastically altered and it is tried that most important values are only taken into account
this can slightly alter the solution for eigenvalues in and shift resonance peaks.

Dynamics solely found in ImInvSub

Around 800 and 980 Hz the improved inverse substructured respons shows resonance peaking
which is not present in the validation nor the fully substructered and inverse substructered
response.

Explanation To find some dynamics only present in ImInvSub while it is not present in
InvSub, FD or the validation is surprising and physically not expected. However, due to the
mathematical operations, especially matrix inversion, small deviations can lead to miscalcu-
lated resonance peaks. This is most likely the case for unexpected dynamics in ImInvSub.

Differences for low frequencies

For frequencies lower than 200 Hz the validation measurement does not remotely come close
to the substructured techniques.

Explanation The used sensors are sensitive devices however it is possible that a desired
signal to noise ratio is not achieved. This is because of the design of the accelerometers.
The sensors contain a piezoelectric element that converts strain to a difference in electric
potential. A known mass in the sensor moves around creating strain inside the piezo material
causing a difference in electric potential which is detected by the data acquisition system.
This sensor is best for measuring vibrations at higher frequencies because more changes in
acceleration happen. At low frequency relatively more noise is present in the signal because
less accelerations happen.
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4.4.6 Observations for translational input in z direction
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Inaccurate results for substructuring

The shape of the substructuring curve somewhat resembles the same shape of the validation
measurement however across the whole frequency range the results are inaccurate. Reso-
nances and antiresonances are miscalculated and the overall accelerance is not similar.

Explanation The substructured result does not come close to the validation because of
multiple errors in executing the experiment presumably. It is so far off that not a single source
can be pointed out but it is a combination of effects described in section 4.5.

ImInvSub similar to InvSub It is interesting to see that for excitation in Z direction,
the ImInvSub response is more similar to InvSub than to FD or the validation compared to
excitations in x and y direction.

Explanation This can be explained if one inspect the difference in stiffness matrices for
InvSub and ImInvSub closely. One can see in the sparsity pattern that for the row of x and
y excitations the crosscoupling term is added to the matrix for ImInvSub but for the row of
the z excitation there is no crosscoupling term added so it is expected that these responses are
quite similar.



4.4. Results 63

Figure 4.18: The sparsity pattern for InvSub and ImInvSub with the row for
the impact in the Z-direction highlighted.

4.4.7 Observations for rotational input

In this section the resulting FRFs with different coupling techniques are observed for virtual
rotational input.
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Inverse Substructuring overestimates accelerance response in x and y direction

For the two graphs relating rotational excitation to sensor output in x and y direction, inverse
substructuring overestimates accelerance.

Explanation This phenomenon can be expected because of the missing crosscoupling
stiffness termswhichmakes the constructed rubbermodel not stiff enoughwhich in turn shows
as higher accelerance over almost the whole frequency range.

Improved Inverse Substructuring over estimates accelerance response in z direction

While Improved Inverse Substructuring does a better way of predicting dynamic behaviour
for response channels in x and y direction, it is closer to the overestimated InvSub response
when checked for the z direction.

Explanation As mentioned at the section on translational excitations, the row for z ro-
tational excitations in the Z matrix also does not differ between InvSub and ImInvSub which
explains the close similarities between these responses.
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4.5 Discussion

In this section the possible flaws of the research are discussed which are divided in two cate-
gories: practical and theoretical.

4.5.1 Practical

For performing dynamic substructuring, one has to be very careful in conducting an experi-
ment. Below are listed some common pitfalls in executing such an experiment of which most
apply to this thesis.

Imperfect impacts

The impact hammer method is a beautiful and practical method to excite structure, however
it is done by a human hand. This means that each impact is slightly different so usually an
average of multiple impacts on the same location is used. Still this average can be different
from the intended impact resulting in an inaccurate FRF. In this thesis great care is taken to
make the impacts as accurate as possible by conducting the experiment in high concentration
and checking the response coherence after every impact in the measuring software as seen in
figure 4.19.

Figure 4.19: Left: Consistency indicator of different for the VP transforma-
tion. Right: Example of two impacts on the same spot. The response quite

similar indicating a consistent impact location
.

Imperfect sensor mounting

Similar to what is discussed in section 4.5.1, the mounting of sensors can also be inconsistent.
If a sensor is used for the virtual point transformation, its exact location must be known. It
can be however, that a sensor is not exactly placed on the desired location. To remedy this
issue one can choose strategic mounting options. An example is to not place a sensor on the
middle of a structure, but to line up the corners of a sensor with a structure to ensure it is
placed precisely. This is not always a possibility but in this thesis it was put in to practice.
The experiment was also conducted multiple times including re glueing the sensors. This
method helps to place the sensor as close as possible to the same positions as previously used,
however deviations are possible.
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Figure 4.20: Left: A sensor placed in a location hard to measure accurately.
Right: A sensor placed in a location that is easy to measure in relation to the

component it is placed upon.

Bookkeeping errors

Bookkeeping errors can always sneak in. If one has weak concentration during a measure-
ment, one can connect the wrong cables to the wrong sensor or exert the wrong side of a
symmetric structure or save impacts under the wrong index and so on. Humans make mis-
takes, but software can help to minimize these errors. For this thesis the in-house software
Dirac is used the execute the measurement campaign. This revolutionary software in experi-
mental dynamics has a built in 3d environment for visualizing impacts and sensors on the test
structures and built in graphing tools to quality check the measurement which can indicate a
bookkeeping error in an early stage.

Physical connection between substructures

In this thesis, the connection between the substructures is assumed to be rigid while in the
real world this might not be the case. Care has been taken to make this assumption as tight
as possible however it can not be guarenteed. In this thesis the transmission simulators are
connected to the rubber isolator with a bolted connection torqued down with a torquewrench
to ensure consistend connection forces. Due to geometrical constraints the isolator is glued
to the A-structure with X60 glue. This is a cold curing adhesive intended for strain gauge and
other experimental applications.

Stiffness of sensor mounting

Not only the physical connection between substructures is of importance, the connection be-
tween sensor and substructure also requires attention. Multiple methods of adhering a sensor
to a substructure can be applied. For this thesis, three methods were considered:

1. 1. Using bee wax to directly mount the sensor to a substructure.

2. 2. Glueing a sensor mount of type 1 to the substructure and screwing the sensor on.

3. 3. Glueing a sensor mount of type 2 to the substructure and screwing the sensor on.

All methods have there advantages and disadvantages. For method 1 an advantage is
that is quick and can be corrected easily if a sensor is misplaced. A disadvantage is that the
sensor is easily displaced unintentionally. It is even a possibilty that a sensor moves slightly
while it is unnoticed resulting in inaccurate measurements. Method two does not suffer from
these disadvantages as it can be adhered very securely to the substructure with loctite or x60
adhesive. A disadvantage of this method is that the mount adds significant mass (and perhaps
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stiffness) to the assembly. A second disadvantage is that one needs to take into account the
mounting offset in processing the measurement data. The third method is the method used
in this thesis. In this method a mount is used, however this one is greatly reduced in size
compared to method two as can be seen in figure 4.21. The advantage is less added mass and
less offset from the assembly so it can be adhered close to a potential virtual point.

Figure 4.21: Left: A sensor mount of type 1. Right: A sensor mount of type
2, used in the measurement campaigns for this thesis

Influence of sensor cables

The sensors are connected to the data acquisition device by cables which will add mass, stiff-
ness and damping to a system. This will influence the response of the system. During an
experiment cable management is an important consideration, not only for safety of the mea-
suring equipment, but also for the results of the measurement campaign. It is best to attach
the cable to a surrounding structure in a manner that it exerts the least force on the sensor and
thereby on the structure. This is up to the interpretation of the executer of the experiment. In
the case of this thesis a surrounding aluminium box fromwhere the structures-to-be-measured
where suspended provided suitable positions to adhere the sensor cables in a style that mini-
mized the influence of measurement cables.

Suspension of the object for testing

To do measurements on objects it needs to be decoupled from all surroundings called a free-
free condition. The solution is suspending the test object from a suspension where the eigen-
frequency of this system is not anywhere near the frequency range of interest. A rule of thumb
is to suspend an object by creating a system that resonates around oneHertz in all directions, or
atleast a factor of ten from the frequency region of interest. This is not always easily achieved
and this suspension can add unwanted and unaccounted for stiffness and damping to a system.

4.5.2 Theoretical

Virtual point: Sensor consistency

To perform the virtual point transformation one requires suitable sensor locations. This met-
ric can be quantified in a value called the sensor consistency. This metric will take a value
between zero and one. A one indicates that the sensor can describe the dynamics of the virtual
point very well, while a zero means that it is not contributing to improving the dynamics of
the virtual point. The sensor consistency is defined for every frequency point relating every
sensor channel to every impact. During a measurement campaign it is possible to encounter
low sensor consistency. This is mostly caused by incorrect sensor placement so the kinemat-
ics around the sensor are not compatible with the defined IDM matrices. Another problem
can be that the interface between the sensors is flexible such that flexible deformations modes
are present on the interface, while these are not defined in the IDM.
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Virtual point: Impact consistency

Not only the sensors need to be placed correctly around the virtual point but also the applied
forces. This metric also takes value between 0 and 1. As can be seen in the left side of
figure 4.19 the Dirac software can give live feedback on this number which makes executing
a measurement campaign and especially the post processing less cumbersome.

Virtual point: Rigid transformation matrices

For the virtual point transformation a rigid transformation from sensor location to the virtual
point is used. This rigidity is an assumption and is not correct if there exist flexibility between
sensors and the location of the virtual point. To remedy this the sensors must be placed close
to the virtual point and the impacts must be exerted close to the virtual point to minimize the
possibility of flexibility.

Nonlinearity of the rubber material

The anaylsis in this thesis is conducted in the frequency domain but measurements are done
in the time domain. To convert time domain signals to the frequency by a fourier transform
one takes a harmonic load ot have a synchronous response. This poses assumptions on the
measured structures, namely:

1. The structure is linear

2. The structure is time invariant

3. The structure is at steady state

Assumption two requires a structure to have steady M, C and K matrices which is not a
problem. Assumption three requires that all transient effects have faded out which is also not
a concern for this thesis. However assumption 1, linearity of the structure, can be a problem.
The rubber material is not a linear material. However in appendix A the properties of this ma-
terial is discussed and it can be concluded that for small displacements in this thesis linearity
can be assumed.

Repeating the experiment

A common practice in scientific research is to perform experiments multiple times to remove
random errors. In this research random error sources can be sensor noise, environmental
noise, roundoff errors in analog to digital conversion and the aforementioned misplaced sen-
sors and impacts. Great care has been taken to minimize these random errors by already an-
alyzing the measurement data while performing the measurement effectively doing the mea-
surement already multiple times. To exclude even more uncontrollable factors it the same
experiment can be repeated and compared.

Signal to noise ratio for low frequencies

By nature of the used equipment the signal to noise ratio for frequencies below approximately
50 Hz can be insufficient [3]. A solution can be to assume that for this low frequencies the
stiffness of the rubber is constant and perform an extrapolation from 50-100 Hz to the 0 to 50
Hz range as suggested by aforementioned literature. In this thesis the low frequent responses
seem unaccurate till higher frequencies up to 200 Hz. An explanation for inaccuracies for low
frequenct measurements can be found in the nature of the workings of an accelerometer. The
used accelerometer is a PCB356A32. This is a piezo-electric accelerometer in which a known
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mass is suspended and accelerations move the mass inside causing strain inside the measuring
channels affecting electrical flow which is registered by the data acquisition system. This sen-
sor construction is suitable for picking up changes in acceleration. Higher frequencies mean
more changes means more data to measure. Assuming that noise is frequency independent,
the signal to noise ratio is lower for lower frequencies which can even be too low to procuce
accurate measurements.

Matrix inversions on experimental data

For performing dynamic substructuring and inverse substructuring the inversion of FRF ma-
trices is inevitable. As already discussed experimental data is highly likely to contain errors
from different sources. Due to the nature of the mathematical operation of matrix inversion,
even small random errors can be significantly enlarged in practices as substructure coupling
and inverse substructuring. This is why great care is taken to get a clean as possible dataset
(by practises discussed in this sectoin) before matrix inversions are performed. However it is
assumed that an experimental dataset set is not perfected and errors by matrix inversions are
enlarged in the final results.

Different shapes of isolators

Not all isolators are beam-like shaped. In the case of this thesis a simple cylinder was used. As
can be seen in figure 4.22 alternative shapes for isolators exist and can perhaps not be described
by a stiffness matrix resembling a beam. For these shapes different stiffness matrices (which
will not be as symmetric as a beam or cylinder matrix) should be used. It is very possible
that by just assuming crosscouplings between translational and rotational DoFs will not be
sufficient to improve the inverse substructuring method.

Figure 4.22: A differently shaped vibration isolator to which this thesis not
applies.
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Chapter 5

Conclusions

The goal of this thesis is to improve the method of Inverse Substructuring to make it suitable
for use in practice. Therefore basic dynamics as changing system matrices and checking the
influence is studied as well as more advanced concepts as Frequency Based Substructuring
using Virtual Point Transformations and Inverse Substructuring. After this knowledgde was
ammassed an educated proposition on improving the state-of-the-art concept of Inverse Sub-
structuring could be made. This proposition of including crossoupling terms in the dynamic
stiffness matrix based on the geometrical properties was carried out in a comprehensive ex-
periment. From the results of this experiment two conclusions can be drawn:

1. Improved Inverse Substructuring does improve the prediction of coupled dynamics in
most directions over Inverse Substructuring

2. ImInvSub can only be implemented with care

5.1 Improved Inverse Substructuring does improve the prediction
of coupled dynamics inmost directions over Inverse Substruc-
turing

From theory one expects an improvement in prediction of dynamics by adding stiffness terms
in the dynamic stiffness matrix by making use of the geometrical properties of the vibration
isolator. The results in section 4.4 prove that by including expected crosscouplings between
rotational x and translational y and vice versa does improve the prediction dynamics while
not complicating the measurement procedure. Excitations in translational and rotational z
direction do still produce overestimated accelerance results. This is attributed to the fact that
the stiffness matrix chosen in this thesis does not alter the rows of z translation and rotation
compared to Inverse Substructuring.

5.2 ImInvSub can only be implemented with care

The improvements of ImInvSub over InvSub are significant but a dynamicist should be hes-
itant with using this method in practice. Due to the nature of inverse substructuring and its
matrix inversions, it is very possible to produce artifacial dynamics which are not present in
the real structure. Also it can be seen in section 4.4 that some dynamics are not predicted.
In general it can be stated that the Full Decoupling method will provide better results so the
dynamicist should make the trade off decision between a simple and quick measurement with
a possibility of inaccurate results and a more cumbersome procedure which is likely more
accurate.
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Appendix A

Properties and modelling of Rubber

A.1 Properties and modelling of Rubber

To gain insight in the underlying physical processes that result in the dynamic properties, in
this chapter the rubber material is researched and the key properties are dissected. It is key to
know that rubber is not one material, but the name rubber is widely used to indicate a wide
variety of materials used for different purposes. If rubber is mentioned in this document, a
carbon black filled vulcanized rubber is assumed, suited for vibration damping. Usually the
loading history of a rubber component can be split in two sections and this also applies to a
vibration damper. The first section is a static preload. A part of an assembly or machine is
’resting’ on the rubber vibration damper. Under this loading condition already some interest-
ing phenomena appear such as the non-linear stress strain behaviour and stress relaxation. The
second section of the loading history is of the dynamic kind. A damper experiences cyclic
loads and attempts to dissipate the vibration energy. Rubber has excellent dynamic properties
to achieve the desired result because of its viscoelastic behaviour.

Crosslink

Polymer chain

Carbon black filler

Figure A.1: Microstructure of carbon filled vulcanized rubber. The grey
dots represent the carbon filler particles, the fat lines are polymer chains and

the thin zigzag lines are crosslinks created by vulcanizing.

A.1.1 A brief history

Rubber is produced from the sap of rubber trees in tropical climates. The famous explorer
Columbus discovered ancient tribes in South and Central America using this exotic material
and brought it to Europe where it caught the attention of scientists but was deemed not of
any engineering value because of its poor mechanical properties. A few hundred years later,
during the industrial revolution, this was all to change when Charles Goodyear discovered
the process of vulcanization. Vulcanization is a the chemical process in which the natural
rubber is heated with sulfur to form crosslinks between the rubber polymer chains. This
operation creates a vastly more durable material that has good tensile strength, resilience,
resistance to oxidation and solvents and it is useful in a broader temperature range. For nearly
all engineering applications a rubber is not only vulcanized, but also a reinforcing filler is
added. The filler particles create a physical and chemical bond with the polymer chains.
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Figure A.2: The loading and unloading curve of an elastic and viscoelastic
material

Different fillers can be used for different purposes as increasing stiffness, abrasion resistance
or improved damping performance [14].

A.1.2 Strain rate dependent stiffness

Rubber is a unique material in that it is both viscous and elastic. This so called viscoelas-
tic material is a little trickier to understand than just elastic solids or viscous fluids. When
undergoing deformation, an elastic material will return to its original shape when the load is
removed. A viscous material resists strain with time when a stress is applied. It is interesting
to compare the loading unloading curve of an elastic material and a viscoelastic material in
figure A.2.

In the figure of the elastic material, the unloading part exactly matches the loading part.
This means no energy is lost. The viscoelastic graph shows a difference in loading and un-
loading also known as a hysteresis loop. The area between the loading and unloading curve is
energy lost as heat. In the case of rubber vibration damping this is excellent because the goal
of a damper is the dissipation of (kinetic or potential) energy.

A.1.3 Non linear stress-strain relation

A linear elastic model does not accurately describe the stress strain relation of rubber. As
seen in section A.1.2 the stress and strain are time dependent, but their relation is also non
linear. To model this non-linearity the concept of hyperelasticity is used. In the concept
of hyperelasticity the concept of a strain energy density function is used. A strain energy
density function is defined as the work that must be done on unit volume of the material in the
reference state to deform it to the current configuration [6]. A strain energy density function
can take many forms to suit the occasion. The most common approaches are discussed in
section A.1.7.

A.1.4 Effects of temperature and frequency

Temperature has a significant effect on the mechanical properties of rubber. Non-linear be-
haviour occurs at strain levels above certain thresholds. We have three regions in which the
material will behave differently . The region of the lowest temperature is the glassy region.
For rubber-like materials region is small, often below room temperature. In the glassy region
the material is stiff and has a low energy loss under deformation. In the transition region,
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Figure A.3: The effect of temperature on complex modulus behaviour
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Figure A.4: The effect of frequency on complex modulus behaviour

the stiffness decreases rapidly en the energy loss increases to a maximum. At even higher
temperatures, the stiffness decreases slowly just as the energy loss.

The effects of frequency are typically low for elastic solids. However for rubber-like ma-
terials the effects can be significant. In a way, it is the exact opposite of what the effect of
temperature does. However, the effect of frequency occurs on a larger frequency scale.

A.1.5 Stress softening

The stiffness of filled-rubber decreases with increasing displacement amplitude. There a two
effects responsible for this property: the Mullins effect and the Payne effect [20]. The Mullins
effect is the phenomenon in which when a rubber specimen is subjected to cyclic loading, the
load required to produce a given stretch during the second loading cycle is smaller than that
required to produce the same stretch during the primary loading cycle. [9]. The Mullins
effect is dependent on the maximum previous strain. If the rubber specimen reaches a new
maximum strain, the effect will take place again in this unreached region of strain. This
effect is instantaneous and irreversible (or takes more than 24 hours to reverse).[7] The Payne
effect is an other amplitude dependent non-linear stress softening property. The Payne effect
describes decreasing stiffness with increasing strain amplitude and is attributed to the physical
breaking of bonds in the filler of the rubber. In contrast to the Mullins effect, the Payne effect
is reversible and is reversed in seconds.
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A.1.6 Viscoelastic models

In the following subsections the observed properties of rubber are incorporated in material
models. For the static and dynamic modelling rubber a combination of two material models
is required. To model the strain rate dependent stiffness and the effects of frequency (and
temperature) a viscoelastic modelling approach is suitable. To include the non-linear stress-
strain behaviour, hyperelastic properties are added.

As discussed in section A.1.2 of part ??, rubber materials exhibit viscoelastic behaviour.
In the nineteenth century there is a great expansion of effort on research on viscoelasticity.
They discovered that rubber polymers that are homogeneous and isotropic have very simi-
lar behaviour compared to elastic materials. However, the behaviour changes drastically with
temperature and somewhat with frequency, but the most important difference is that the damp-
ing levels in the rubber materials is much higher. This phenomenon is what makes the mate-
rial suitable for vibration mitigation [6]. In this section several approaches for describing this
somewhat complicated material behaviour are described.

The complex modulus model

A common way to describe the properties of rubber is in terms of a complex modulus first
introduced by Myklestad [12]. If we know that in elastic materials the stress and strain occur
in phase and in a viscous material this happens 90 degrees out of phase, and viscoelastic
materials are a combination of the two, we can see that a viscoelastic behaviour is somewhat
out of phase as shown in figure A.5.

Figure A.5: Harmonic excitation and response of a viscoelastic solid

This behaviour can be described by combinations of sin ωt and cos ωt. However when
the problem gets complicated, for example in non-harmonic response, it is difficult to describe
the problem using real numbers so in the complex modulus model a representation in terms of
complex numbers is used. To convert the real sinusoids from the real to the complex number
space equation A.1 is used:

cos ωt + i sin ωt = eiωt (A.1)

With this mathematical trick in mind, lets derive the equations for viscoelastic stresses
in the complex modulus model. For an elastic solid we know the stress and shear stress are
defined as:

σ = Eε and τ = Gφ (A.2)
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Figure A.6: Configurations of springs and dashpots to represent viscoelas-
ticity

Where σ is the direct stress, E is the Young’s modulus, ε is the extensional strain, τ is the
shear stress, G is the shear modulus and φ is the shear strain. For rubber like materials, the
equation A.2 is not as simple. As discussed in section A.1.2 a phase lag between stress and
strain applies. This implies that a velocity dependent term should be present in the relation-
ship. By incorporating this velocity term and rewrite our equations in the frequency domain
we arrive at the final the following useful equations:

σ = E(1 + iη)ε and τ = G(1 + iη)φ (A.3)

In which η is defined as the loss factor defined as the ratio of the imaginary and real part
of the complex modulus. Equation A.3 represents the complex modulus form for extensional
and shear deformation. it can be observed that we have three parameters: G, E and η. These
vary with temperature, frequency and differ from material to material.

A way to express the complex modulus is as follows:

G = G′ + G′′ (A.4)

With:
G′ =

σ

ε
cos δ and G′′ =

σ

ε
sin δ (A.5)

In which G′ represents the storage modulus and G′′ represents the loss modulus.

Spring-dash pot representation

Another common way to describe a viscoelastic material is to create a mechanical equivalent
consisting of spring and dash pot elements. Depending on how these mechanical elements
are arranged, the behaviour of the network changes. Three arrangements are highlighted: the
Maxwell arrangement, the Kelvin-Voigt and the standard model.

In a Maxwell element (as depicted in figure A.6 the linear spring and linear dash pot are
placed in series. The governing constitutive equation is thus a summation of the two elements:

ε̇ =
dσ

Edt
+

σ

η
(A.6)

With E and η are Young’s modulus and the viscosity and σ and ε are stress and strain. If
a Maxwell element is put under a constant strain, the stresses gradually fade. Evenso, if the
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Figure A.7: Several Maxwell elements in parallel with a spring, also called
a Generalized Maxwell model

Maxwell element is put under stress and the stress is released it will decay exponentially with
time which corresponds somewhat to reality.

The Kelvin-Voigt model consists also of a spring and a dash pot, but now they are config-
ured in parallel. This will show a constitutive equation:

ε̇ =
σ

η
− E

ε

η
(A.7)

The Kelvin-Voigt approach is accurate for modelling creep behaviour at is predicts a strain
gradually going to a value of σ/E as time goes to infinity for a constant stress.

The standard model is a combination of a Maxwell element in parallel with a spring,
combining the properties of the Maxwell and Kelvin-Voigt properties.

However, rubber materials show more complex behaviour than a standard model can pre-
dict. It is possible to create a more general model by placing several Maxwell elements in
parallel as in figure. The stress response in this configuration is:

σ = Eε−
N

∑
i=1

Eiεvi (A.8)

A.1.7 Hyperelastic models

In the event of large deformations the linear elastic model will not be accurate anymore as
depicted in figure A.2. Hyperelastic material models use a strain energy density function to
define the relationship between stress and strain. The strain energy density function (SEDF)
is a function that relates the strain energy density of a material to the deformation gradient.

since the rubber enginemounting will not experience large deformations, it is unnecessary
to include hyperelastic effects in an attempt to define dynamic properties.
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Figure A.8: Comparison of the stress-strain relationship two Hyperelastic
models and a simple linear relationship
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Appendix B

Construction of the 12x12 FRF matrix

To illustrate how one creates a 12x12 FRF matrix of a rubber isolator assembly, a finite ele-
ment model is created in Ansys software. This assembly is exported to toMatlab and anaylzed
using the VIBES.technology toolbox. Impacts are placed on the crosses and accelerations are
measured by accelerometers as described in 2.3.1 and can be seen in figure 2.10. To fully
describe the dynamics on the interfaces between A and I as well as B and I, eight tri-axial
accelerometers are used and 32 impacts are exerted resulting in the 24× 32 matrix:

YAIB =



Y1−1 Y1−2 Y1−3 . . . . . . Y1−32

Y1−1
. . .

Y1−1
. . .

Y2−1
. . .

... . . .
Y8−1 . . . . . . . . . . . . Y8−32


(B.1)

The values in this matrix are built up as follows. If one takes as an example Ya−b, a
indicates the sensor channel (for a tri-axial channel, a sensor contains three channels: one for
each direction) and b is the impact number.

As can be seen in figure 2.10, the accelerometers are placed nearby the interfaces between
the substructures A, I and B. The impacts are placed in a way that every direction of every
accelerometer is excited to fill the whole matrix in equation B.1. The virtual points are created
using the geometrical relation from the virtual point, the accelerometers and the impacts as
described in section 2.3.2. From this measurement setup FRFs are created and transformed
to virtual points using theory from section 2.3.2.

Figure B.1: Locations of the virtual points visualized as red dots. Left: Side
view. Middle: Isometric view. Right: Top view.
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In these Virtual Points (VPs) 6 DoFs are defined: three translational(x, y and z) and three
rotational (θx, θy and θz). This results in a 12× 12 virtual FRFmatrix composed of four 6× 6
matrices:

Y11
qm =



Y11
x1,x1

Y11
y1,x1

Y11
z1,x1

Y11
θx1,x1

Y11
θy1,x1

Y11
θz1,x1

Y11
x1,y1

Y11
y1,y1

Y11
z1,y1

Y11
θx1,y1

Y11
θy1,y1

Y11
θz1,y1

Y11
x1,z1

Y11
y1,z1

Y11
z1,z1

Y11
θx1,z1

Y11
θy1,z1

Y11
θz1,z1

Y11
x1,θx1

Y11
y1,θx1

Y11
z1,θx1

Y11
θx1,θx1

Y11
θy1,θx1

Y11
θz1,θx1

Y11
x1,θy1

Y11
y1,θy1

Y11
z1,θy1

Y11
θx1,θy1

Y11
θy1,θy1

Y11
θz1,θy1

Y11
x1,θz1

Y11
y1,θz1

Y11
z1,θz1

Y11
θx1,θz1

Y11
θy1,θz1

Y11
θz1,θz1


(B.2)

Y12
qm =



Y12
x1,x2

Y12
y1,x2

Y12
z1,x2

Y12
θx1,x2

Y12
θy1,x2

Y12
θz1,x2

Y12
x1,y2

Y12
y1,y2

Y12
z1,y2

Y12
θx1,y2

Y12
θy1,y2

Y12
θz1,y2

Y12
x1,z2

Y12
y1,z2

Y12
z1,z2

Y12
θx1,z2

Y12
θy1,z2

Y12
θz1,z2

Y12
x1,θx2

Y12
y1,θx2

Y12
z1,θx2

Y12
θx1,θx2

Y12
θy1,θx2

Y12
θz1,θx2

Y12
x1,θy2

Y12
y1,θy2

Y12
z1,θy2

Y12
θx1,θy2

Y12
θy1,θy2

Y12
θz1,θy2

Y12
x1,θz2

Y12
y1,θz2

Y12
z1,θz2

Y12
θx1,θz2

Y12
θy1,θz2

Y12
θz1,θz2


(B.3)

Y21
qm =



Y21
x2,x1

Y21
y2,x1

Y21
z2,x1

Y21
θx2,x1

Y21
θy2,x1

Y21
θz2,x1

Y21
x2,y1

Y21
y2,y1

Y21
z2,y1

Y21
θx2,y1

Y21
θy2,y1

Y21
θz2,y1

Y21
x2,z1

Y21
y2,z1

Y21
z2,z1

Y21
θx2,z1

Y21
θy2,z1

Y21
θz2,z1

Y21
x2,θx1

Y21
y2,θx1

Y21
z2,θx1

Y21
θx2,θx1

Y21
θy2,θx1

Y21
θz2,θx1

Y21
x2,θy1

Y21
y2,θy1

Y21
z2,θy1

Y21
θx2,θy1

Y21
θy2,θy1

Y21
θz2,θy1

Y21
x2,θz1

Y21
y2,θz1

Y21
z2,θz1

Y21
θx2,θz1

Y21
θy2,θz1

Y21
θz2,θz1


(B.4)

Y22
qm =



Y22
x2,x2

Y22
y2,x2

Y22
z2,x2

Y22
θx2,x2

Y22
θy2,x2

Y22
θz2,x2

Y22
x2,y2

Y22
y2,y2

Y22
z2,y2

Y22
θx2,y2

Y22
θy2,y2

Y22
θz2,y2

Y22
x2,z2

Y22
y2,z2

Y22
z2,z2

Y22
θx2,z2

Y22
θy2,z2

Y22
θz2,z2

Y22
x2,θx2

Y22
y2,θx2

Y22
z2,θx2

Y22
θx2,θx2

Y22
θy2,θx2

Y22
θz2,θx2

Y22
x2,θy2

Y22
y2,θy2

Y22
z2,θy2

Y22
θx2,θy2

Y22
θy2,θy2

Y22
θz2,θy2

Y22
x2,θz2

Y22
y2,θz2

Y22
z2,θz2

Y22
θx2,θz2

Y22
θy2,θz2

Y22
θz2,θz2


(B.5)

In these matrices a value is built up as follows. If one takes as an example Y12
x1,θy2

, the
superscript 12 indicates the frequency response from virtual point 1 to 2 and the subscript
x1,θy2 resembles an excitement in x direction on virtual point 1, and the rotational response
around the y axis in virtual point 2. q and m are the generalized forces and displacements
respectively. These four matrices from equations B.2-B.5 assemble to one FRF matrix:

Yqm =

[
Y11

qm Y12
qm

Y21
qm Y22

qm

]
(B.6)

From here on the generalized forces and displacements notation is omitted for readability.
By inverting the virtual point FRFs, the dynamic stiffness between and in the virtual points
are obtained following Y−1 = Z:[

Y11 Y12
Y21 Y22

]−1

=

[
Z11 Z12
Z21 Z22

]
=

[
ZA

11 + ZI
11 ZI

12
ZI

21 ZB
22 + ZI

22

]
= ZAIB (B.7)

With the dynamic stiffness of the structure now obtained, one can compare different meth-
ods for obtaining the dynamic stiffness of the isolator. As shown in section 2.4, one can
decouple the dynamics of cross A and B as:
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[
ZA

11 + ZI
11 ZI

12
ZI

21 ZB
22 + ZI

22

]
−
[

ZA
11 0
0 ZB

22

]
=

[
ZI

11 ZI
12

ZI
21 ZI

22

]
= ZI (B.8)

Because this decoupling procedure is done virtually, the experiment is conducted per-
fectly. There are no misplaced excitations or measurement errors and noise. Therefore the
dynamic stiffness of A and B can be determined and decoupled perfectly. This full decou-
pling method results are therefore suited as validation.
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