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Binary Variable-to-Fixed Length Balancing Scheme
with Simple Encoding/Decoding

Theo G. Swart, Senior Member, IEEE, and Jos H. Weber, Senior Member, IEEE

Abstract—We present a systematic variable-to-fixed (VF)
length scheme encoding binary information sequences into binary
balanced sequences. The redundancy of the proposed scheme is
larger than the redundancy of the best fixed-to-fixed (FF) length
schemes in case of long codes, but it is smaller in case of short
codes. The biggest advantage comes from the simplicity of the
scheme: encoding only requires one to keep track of the sequence
weight, while decoding requires only one extremely simple step,
irrespective of the sequence length.

Index Terms—Balanced code, constrained code, dc-free code,
variable length

I. INTRODUCTION

A binary sequence is said to be balanced if the number of
zeroes equals the number of ones. Hence, if we consider the
bits as bipolar symbols, i.e., they are taken from the alphabet
{−1, 1} rather than from {0, 1}, then a sequence is balanced
if the sum of the symbols equals zero. Balanced sequences,
sometimes called dc-free codes, have found widespread appli-
cation in magnetic and optical storage media [1], [2] and in
cable communication [3].

The study of simple and efficient algorithms for transform-
ing arbitrary binary sequences into balanced binary sequences
has been an active field of research. Look-up tables can be
used for short sequences, but this quickly becomes memory
inefficient for long sequences. Knuth [4] presented two simple
schemes for generating binary balanced sequences that are
efficient even for very long sequences. The simple parallel
scheme works by complementing the fixed-length information
sequence, bit by bit, until balancing is achieved, and then using
a fixed-length balanced prefix to convey this balancing point.
At the receiver, the balancing point can be obtained from the
prefix, and the original information sequence is retrieved by
omitting the prefix and inverting the remaining sequence up
to the balancing point. The price to pay for this elegancy is
a somewhat higher redundancy when compared to that of the
full set of all possible balanced sequences.

Ever since the presentation of Knuth’s celebrated algo-
rithms, many other binary balancing schemes have been
proposed, such as [5]–[8]. Mostly these are based on the
ideas of Knuth, offering some improvements with respect to
redundancy and/or complexity. As in Knuth’s scheme, most
prior-art balancing methods convert fixed-length information
sequences to fixed-length balanced sequences (FF schemes).
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Schouhamer Immink and Weber [9] presented a more
efficient balancing scheme, also based on Knuth’s algorithm
to modify the information. It uses a variable-length prefix to
indicate which segment has been inverted. In essence, this
is a scheme that converts fixed-length information sequences
into variable-length balanced sequences. Steadman and Fair
[10] presented a simple construction for converting variable-
length information sequences into variable-length constrained
sequences, based on the search of partial extensions of a
minimal set of codeword lengths. It is shown that dc-free codes
close to capacity can be constructed. If dc-free codes with very
specific spectral performance are required, then the multicodes
of Schouhamer Immink and Patrovics [11] can be used.

We will present a method to convert variable-length in-
formation sequences to fixed-length balanced sequences (VF
scheme), and show its advantages in terms of decoding and
memory requirements, as well as the received sequence being
systematic, i.e., the information appears as is without being
transformed. Furthermore, we will show that for small lengths
the proposed VF scheme has a smaller redundancy than all FF
schemes.

In the rest of this letter, let x = (x1, x2, . . . , xn) represent
a binary (bipolar) sequence of length n with xi ∈ {−1, 1}, n
even. The sequence x is balanced if w =

∑n
i=1 xi = 0, where w

represents the weight of the sequence. Since the information
sequences will be of variable length, let k represent the average
length of these sequences, and let r represent the average
redundancy, i.e., r = n − k. It is assumed that the information
source is memoryless and uniformly distributed.

This letter is organized as follows. In Section II we present
the encoding and decoding of the new variable-to-fixed length
balancing scheme. Section III studies the redundancy of the
proposed scheme, while Section IV provides comparisons with
fixed-to-fixed length balancing schemes. Section V concludes
this letter.

II. VARIABLE-TO-FIXED (VF) LENGTH BALANCING

We illustrate the idea using n = 6, along with the weight
diagram in Fig. 1, where the normal edges going to the left
represent a −1 bit and the bold edges going to the right
represent a 1 bit. For the bit in the first position we have
a free choice, i.e., −1 or 1. The same applies to bits in the
second and third positions. However, should the information
sequence be (−1,−1,−1) or (1, 1, 1), it is obvious that the
fourth bit, and in fact the fifth and sixth bits, must be con-
strained to achieve balancing, resulting in (−1,−1,−1, 1, 1, 1)
and (1, 1, 1,−1,−1,−1), respectively. Thus in these cases only
the first three bits represent information.
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Fig. 1. Example of weight diagram and information lengths for n = 6

It is obvious that once the bottom edges of the weight dia-
gram are reached, that one is forced to follow the dashed paths
to reach the balanced state. By keeping track of the weight of
the sequence as the weight diagram is being traversed, it can
be determined whether the next bit will be an information bit
or a constrained bit. All possible n = 6 balanced sequences,
with the underlined bits representing the information bits, are:

(−1,−1,−1, 1, 1, 1), (1, 1, 1,−1,−1,−1),
(−1,−1, 1,−1, 1, 1), (1, 1,−1, 1,−1,−1),
(−1,−1, 1, 1,−1, 1), (1, 1,−1,−1, 1,−1),
(−1,−1, 1, 1, 1,−1), (1, 1,−1,−1,−1, 1),
(−1, 1,−1,−1, 1, 1), (1,−1, 1, 1,−1,−1),
(−1, 1,−1, 1,−1, 1), (1,−1, 1,−1, 1,−1),
(−1, 1,−1, 1, 1,−1), (1,−1, 1,−1,−1, 1),
(−1, 1, 1,−1,−1, 1), (1,−1,−1, 1, 1,−1),
(−1, 1, 1,−1, 1,−1), (1,−1,−1, 1,−1, 1),
(−1, 1, 1, 1,−1,−1), (1,−1,−1,−1, 1, 1).

(1)

One can easily see how the weight diagram of Fig. 1 can
be expanded to account for any sequence length, by extending
the weight and length axes. Based on this, we next present the
encoding/decoding algorithms.

A. Encoding

The first n
2 bits are information bits, as the sequences up

to this point in the weight diagram need not be constrained.
For the next n

2 bits it needs to be determined, according to the
weight of the preceding bits, whether we are on the bottom
edge of the weight diagram. More formally, the encoding
algorithm is described as:

1) Take n
2 information bits from the source and set these

as (x1, x2, . . . , x n
2
).

2) Set j = n
2 + 1.

3) If |
∑j−1

i=1 xi | ≤ n − j, then choose xj to be a (new)
information bit, else set xi = −xj−1 for i = j, j +1, . . . , n
and end the algorithm.

4) Set j ← j + 1 and return to Step 3.
It is easy to check that the resulting x is indeed balanced.
In order to illustrate the variable-to-fixed length nature of

the encoder, we consider as an example a stream of source
symbols starting with

1, 1,−1, 1, 1, 1, 1,−1, 1, . . .

and a block length of six. Then the first codeword generated
is

x1 = (1, 1,−1, 1,−1,−1),

representing the first four information symbols, the second
codeword is

x2 = (1, 1, 1,−1,−1,−1),

representing the next three information symbols, etc. Note that,
for the encoding process, the only memory requirement is
space to store the sequence and the calculated weight.

B. Decoding

Decoding consists of one extremely simple step: drop
the entire last run of (identical) bits from the received n-
bit sequence. Hence, if the received balanced sequence is
x = (x1, x2, . . . , xn), then the resulting information sequence
is (x1, x2, . . . , xg), with g being the largest integer from the
set {n/2, n/2 + 1, . . . , n − 1} such that xg , xn. For example,
if n = 6 and x = (1, 1,−1, 1,−1,−1), then g = 4 and the
information sequence is (1, 1,−1, 1). This is further illustrated
in (1), where for all sequences the (underlined) information
bits will remain once the last run of bits is discarded. Note that,
for the decoding process, there are no memory requirements,
except for the received sequence itself, and no calculations are
needed.

III. REDUNDANCY

To determine the average information length, and thus also
the average redundancy, we first consider again the n = 6
example in Fig. 1. The number of sequences at different
points is related to Pascal’s triangle. For length 0 we have
one sequence, the empty sequence, for length 1 we have one
sequence of weight −1, i.e., (−1), and one sequence of weight
1, i.e., (1), for length 2 we have one sequence of weight
−2, i.e., (−1,−1), one sequence of weight 2, i.e., (1, 1), and
two sequences of weight 0, i.e., (−1, 1) and (1,−1), and so
forth. The labels on the bottom nodes indicate the number
of information bits in the sequences up to that point, as well
as the number of these sequences. So, for example, there are(3
1
)
+

(3
2
)
= 3+3 = 6 sequences that contain 4 information bits,

each occurring with probability 2−4. Since there are further 2
sequences with 3 information bits and probability 2−3 and 12
information sequences with 5 information bits and probability
2−5, we find that the average number of information bits in a
coded sequence is

2 × 3 × 2−3 + 6 × 4 × 2−4 + 12 × 5 × 2−5 = 33/8 = 4.125,

and thus the average redundancy is 6 − 33/8 = 15/8 = 1.875.
Generalizing this reasoning, we can determine the average

information length k and the average redundancy r for any
block length n. Actually, this is equivalent to solving (a slightly
modified version of) Banach’s matchbox problem [12] using



IEEE COMMUNICATIONS LETTERS, VOL. X, NO. X, XXX 3

properties of the negative binomial distribution. The results
are that

k =
n−1∑
l= n

2

l
2l

[(
l − 1
l − n

2

)
+

(
l − 1
n
2 − 1

)]
=

n−1∑
l= n

2

l
2l−1

(
l − 1
n
2 − 1

)
and

r =

n
2∑

j=1

j
2n−j−1

(
n − j − 1

n
2 − 1

)
=

n − 1
2n−2

(
n − 2
n
2 − 1

)
. (2)

For very long sequences, we can can use Stirling’s formula,
i.e., m! ≈

√
2πm

(
m
e

)m, to approximate the last binomial
coefficient in (2) as

2n−2√
π
2 (n − 2)

,

giving

r ≈
n − 1√
π( n2 − 1)

.

Hence, the redundancy of our scheme is O(
√

n).

IV. COMPARISONS

From a redundancy perspective, the best fixed-length code
consist of all balanced sequences of the length n under
consideration, with all sequences being equiprobable. So for
instance, in the case of n = 6, we have the 20 sequences
listed in (1), ignoring the underlining, each with probability
1
20 , leading to a redundancy of 6 − log2 20 = 1.68. In general,
the full set of balanced sequences has redundancy

r+ = n − log2

(
n

n/2

)
. (3)

However, encoding/decoding cannot be established by a sim-
ple mapping in case of a binary uniform source, since the
cardinality of this set is not a power of two.

This leads to a more practical scheme where a number
(specifically a power of two) of sequences are chosen from
the full balanced set. For the n = 6 example, we choose 16
of the 20 sequences from (1), again ignoring the underlining,
and therefore information words of length 4 can be mapped
one-to-one to these chosen balanced sequences, leading to a
redundancy of 6−4 = 2. Then in general, the best FF balanced
code of length n consists of a subset of the full set of balanced
sequences of length n, where the size of the subset is 2k∗ with

k∗ =
⌊
log2

(
n

n/2

)⌋
.

Encoding and decoding can be established through look-up
tables, one-to-one mapping information sequences of length
k∗ to balanced sequences of length n. We refer to this scheme
as FF∗. Its redundancy is

r∗ = n − k∗ = n −
⌊
log2

(
n

n/2

)⌋
. (4)

Again using Stirling’s formula gives the well-known result that
this redundancy is O(log n). Also for practical FF methods not
requiring large look-up tables, like Knuth’s and its variants,
the redundancy is only O(log n). In contrast, recall that the

TABLE I
REDUNDANCIES OF THE FULL BALANCED SET, THE BEST FF SCHEME AND

THE PROPOSED VF SCHEME FOR SMALL BLOCK LENGTHS

n Full set FF∗ VF
4 1.42 2 1.50
6 1.68 2 1.88
8 1.87 2 2.19

10 2.02 3 2.46
12 2.15 3 2.71
14 2.26 3 2.93
16 2.35 3 3.14
18 2.43 3 3.34
20 2.50 3 3.52

proposed VF method has a redundancy of O(
√

n). Hence,
although its relative redundancy r/n goes to zero when n gets
large, it has a poor redundancy compared to FF methods for
long codes.

On the other hand, for some very short codes (n =

4, 6, 10, 12, 14), the VF method is doing better than any FF
method, as shown in Table I, where the Full, FF∗ and VF
entries follow from (3), (4) and (2), respectively. We believe
this to be an important observation, since for most applications
where the balancing property is relevant, block lengths will be
small, as argued next.

It is often desired to keep the running digital sum (RDS)∑h
i=1 xi of a bipolar sequence close to zero. This can be

established by the balancing property, since it leads to an RDS
of exactly zero at h = n. However, along the way, the RDS
may be large for long sequences, with the balanced length-n
sequence (1, . . . , 1,−1, . . . ,−1) as an extreme example, leading
to an RDS of n/2 at h = n/2. Note that there are n + 1 RDS
values in principle, ranging from −n/2 to n/2. This span may
not be acceptable for large values of n. A possible strategy
to keep the RDS small in a long string is to parse it into
short subsequences (of either fixed or variable length), and to
map each subsequence to a balanced sequence of a small fixed
length n. Cascading many of such short balanced sequences
results in a long sequence in which the number of RDS levels,
n + 1, is small in comparison with the total length (a large
multiple of n). Since for small values of n the redundancy of
our VF balancing scheme is smaller than for any FF balancing
scheme of the same length, this gives an important advantage
of the new method in the context of achieving limited RDS
through balancing.

Furthermore, it is important to note that our new VF scheme
has the benefit of being systematic, in the sense that the
information appears as an unchanged integral part of the
code sequence, which is not the case for the mentioned FF
methods. In fact, the best-case scenario for an FF scheme to
be systematic would require a redundancy of r = k, i.e., r
is O(n), since an information sequence of k 1’s can only be
balanced by the same number of −1’s. So also in this respect
the VF length scheme significantly improves on the prior art.

Fig. 2 shows the power spectral densities for the full
balanced set and for our VF scheme. Although both codes
consist of exactly the same sequences, as we have seen the
probabilities for sequences in either code differs, resulting in
the VF scheme having a narrower spectral null at dc.
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Fig. 2. Power spectral densities for balanced sequences of various lengths

Finally, as mentioned when introducing the encoding and
decoding procedures, the VF scheme has hardly any time and
space complexity, e.g., no look-up tables are needed. Such
tables are commonly used for encoding and decoding the
FF∗ codes, which have minimum redundancy among all FF
schemes. Since their size grows exponentially with the block
length n, the FF∗ scheme with look-up tables is infeasible for
large block lengths. In such cases, the Knuth scheme or one
of its many variants are good efficient alternatives in case of
large values of n. However, if extremely low complexity is the
goal, one may prefer the proposed VF scheme.

V. CONCLUSION

In this letter we presented a variable-to-fixed length
scheme for balancing arbitrary binary information. The encod-
ing/decoding is extremely simple and efficient, irrespective of
the sequence length. Advantages include the coded sequences
being systematic and the decoder having no processing or
memory requirements, except for storing the sequence itself.
The price to be paid for all these virtues is a higher redundancy
than prior-art codes in case of large lengths: O(

√
n) versus

O(log n). However, for very short codes, the redundancy of the
proposed VF codes is smaller than the redundancy of any FF
code. This is of particular importance for applications where
the balancing property is imposed in order to keep the running
digital sum low at all sequence stages.

Sequences close to the outer edge of the weight diagram
with long runs of the same bit, such as (−1, . . . ,−1, 1, . . . , 1) or
similar, although balanced, are best avoided in practice. These
are also the sequences that contain the least information in our
VF length scheme. Thus, as future work it would be interesting
to investigate whether using a constrained code, such as a run-
length limited code, as input could be beneficial with respect
to the average redundancy.

Naturally the variable-length technique used will introduce
insertion/deletion errors into the decoded information, when
channel errors are considered, possibly resulting in undesir-
able error propagation. Further future work would include an
analysis of the error propagation in this scenario, and methods
to mitigate against this, be it modifications to the proposed
scheme or introducing error correction coding.
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