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search pro ject is a collaborative effort between three
university research groups of Delft Univ ersity, indus­
try and th e national aerospace research lab oratory
NLR. Finally, th e paper by Henk Huisman discuss­
es a new approach to torque ripple minimization
in brushless DC motors. In precision drive systerns
such as video scanners, it is of utmost im portance to
have mass produced, cheap motors disp laying high
servo control performance.
Robust control issues are disc ussed in several paper­
s. Some preliminary results on an uncompromised
11.2/1ioo optimal control problem are given in th e
paper by Maart en St einbuch and Okko Bosgra . As
a contribution to th e recent interest in LMI-based
robusi control problem formulations, th e paper by
Garsten Sc herer has results on th e so lvability of
Lyapunov inequal iti es. T he issue of model reduc­
t ion for control design is considered in th e paper
by Pepijn Worte lboer and Okko Bosgra, where fre­
quency weighted versions of the 11.2 optimal reduc­
tion prob lem are studied. Som e unifications of ro­
bust stability theory for fractional unc ertainty mod­
els are presen ted in the paper by Raym ond de Galla­
f on, P aul Van den Hof and Peter Bongers. Finally,
in the paper by Dick de Roover the servomechanis­
m pro blem with fini te hori zon is considered, using
an approach in whi ch ideas of feedfor ward three­
degrees-of-freedom cont ro l, predictive control, t he
intern al model principle, and rep etitive control, are
combined .
In th e pr esent issue th ere finally are two contribu­
tions on the metho dology of syste m identific ation.
T he pap er by Ramond de Gallafo n and Paul Van
den Hof discusses a feedback relevan t identifica t ion
approach using coprime fractional model represen­
tations . T he assessment of frequency domain un­
certainty bounds from system ident ifica tion experi­
me nts is discussed in the paper by Richard Hakvoort
and Paul Van den Hof
We wish to acknow ledg e th e important contribu­
tions to th e work in the group made by colleagues
from industry. In th is issue we have contributions
by Maart en St einbuch and Pepijn Wortelboer from
Philips Research, and by Pet er Bongers from U­
nilever Research.
If you wish to react to any of the papers in this vol­
ume, please do not hesitate to contact us.

Editorial

This is the seventh volume in th e series Se/eet ed
To pics in Id entificati on, M odelling, and Control re­
por ting on cur rent resear ch pr ojects in th e M echani­
cal E nginee ring S yste ms and Control Group at Delft
University of Technology, Delft , The Netherlands.
This volume conta ins 13 papers , of which 6 address
engineering modelling and control problems and th e
ot her 7 consider methods and techniques for control
design and system identi ficat ion . This reflects th e
general pattern of activity in our group , where th e
research is both ad dressing th eoretical issues in con­
trol th eory and system ident ificat ion , as weil as con­
trol engineering issues in the fields of process control
and motion servo systems.
An industrial glass tub e manufacuring process is
considered in th e paper by Richard Hakvoort
and Dick de Roover, where issues of system
identification-based model uncertainty are st udied
in th eir relevanee to robust cont ro!. A full sca le
wind turbine pow er generating system is considered
by Gregor van Baars, where the validation of dy­
nam ic system models on th e bas is of closed- Ioop
system identification experim ents is discussed. A
large pi lot-scale industrial crystallizer is consi dered
in the paper by Ro b Eek, Jaap B oth and Paul Van
den Hof The research repor ted here is part of a col­
labora ti ve project, jointly with the ParticIe Techno l­
ogy, Process Eq uip ment, an d Crystallization groups
at Delft University, and co-sponsored by European
and US industria l process industries. Here, syste m
ident ificat ion experiments are used not only to ob­
tain dynamic models for control purposes, but the
experimental evidence also reveals impor tant infor­
mation on the actual physical mechanisms taking
place in a continuous crystallizer .
The paper by Hans Heintze and Ton Van der Wei ­
den considers th e feedback design of impedance con­
trol for a hydraulically actuated robot. The project
is part of a collaborativ e effort with industry to de­
velop a brick-laying robot. The experime ntal work
reported has been performed on a la rge scal e proto­
type 3-DOF SCARA rob ot available in our laborato­
ry. The pape r by Geri van S chothorst. Pi et Teerhuis
and Ton van der Weiden considers a hydraulic servo
system whi ch is designed as an ac tuat ion mechanis­
m for the SIM ONA Flight S im ulator to be locat­
ed a t th e Simona Resear ch Cente r operated by th e
Department of Aerospace Engineering at Delft U­
niversity. This simulator is a large 6-DOF St ewart
platform, now under construction and planned to be
avai lab le by the end of 1995 . The re-

VI

Okko Bosgra
Paul Van den Hof
Editors

bosgra@tudw03.tudelft .nl
vd hof@tudw03 .t udelft.nl
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Robust performance H 2/ H oo optimal controll

Maarten Steinbuch § and ükko H. Bosgr-a!

§Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, Th e Neth erlands.
ttMechanical Engineering Syst em s and Contral Group,
Delft Universi ty of Technology, Mekelweg 2, 2628 CD Delft , The Netherlands.

Abstract . T his pap er considers th e robust performance mixed H2/H00 optimal cont rol
probl em formulation. An explicit param etrization of H00 norm bounded , causal, real­
rational uncertain ties is used , based on LMIs. This leads to a const rained H 2 optimal
cont rol prob lem. In case th e uncertainty can be consid ered to lie on its bound , a new
par am etri zation for lossless bounded real functions can be used . Using this parametriza­
t ion , it is possibl e to formulate an unconstrained optimization problem for the solution of
the robu st performance mixed H2/ Hoo optimal control problem. The theory is applied
to a Comp act Disc robust control problem .

Keyword s. H2/H00 control ; optimal control ; robust control; compact disc player; uncer­
tainty; opt imizat ion.

1 Introduction

In th e sixties th e opt imal LQG control approach
provid ed a systematic solution to the control de­
sign problem of multivariable systems , see for in­
stance And erson and Moor e (1971) , Kwakernaak
and Sivan (1972) and Levine and Athans (1970) .
Despi te of its relevan ee in th e formulation of perfor­
mance requir ements, LQ optimal control was shown
to possess na guara nteed robustness margins if ap­
plied in conjunction with an observer or Kalman
filter, see Doyle and Ste in (1981). The robustness
issue has attracted a lot of at tent ion during the las t
decade, resul t ing in the developme nt of H 00 con­
trol theory, see for instanee Fra ncis (1987), Doyle
and Glover (1988), Maciejowski (1989) and Doyle
et al. (1989). Robust cont rol based on the H oo

norm of a weighted closed-Ioop transfer funct ion is
capable of handling the design problem for systems
wit h uncert ainties. However , the use of one single
number, albeit frequency dependent, to address ro­
bustness and performan ce for multivariable syst ems
is rather restrictive. T he design problem of st ating

l This paper is presented at the 33rd IEEE Co nference on
Decision and Co n trol, Orlando , F L, USA , December 14-16,
1994. Copyright of this paper remains with IEEE .
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performance and robustness objectives in both th e
H 2 and H oo framework has recently been stated by
several authors, see Bernstein and Haddad (1989) ,
Doyle et al. (1989), Mustafa (1989), Rotea and
Khargonekar (1991), Scherer (1995), Steinbuch and
Bosgra (1991a, 1991b) , Stoorvogel (1993) , Paganini
et al. (1994), Yeh et al. (1992) , Zhou et al. (1994) .
In general one can define the problem as follows .
Suppose th e plant is given by its transfer function
G( s) with three sets of inputs and outputs.

W2 Z2

Wl
G(s)

Zl

U y

I F(s) I
I I

Fig. 1: Standard H 2 / Hoo control problem



The m anipulated vari abl es are u , t he measured
output s are y . The signa l sets (Wl , Z l ) are re­
lated to H 2 or LQ type of performance crite ria,
whereas (W2, Z2 ) are rela ted to Hoo norm require­
ments. Doyle and Zhou (1989) and Zhou et al.
(1994) posed th e probl em Zl = Z2, W l =F W 2 and gave
a very nice int erpretation for an induced semi-norm
on the t ransfer fun ction. Their work showed that
th e H2/ H00 cont rol probl em definition can be st ated
precisely in terms of signal sets . Bernstein and Had­
dad (1989) hav e considered th e dual mixed H 2 / H oo

problem for th e situation where Wl = W 2 , Zl =F Z2 ·

They used a performance crite rion relating w(=
W l = W 2) with Zl, under the const raint of an H00

norm bound on th e tran sfer fun ction from w to Z2.

T hey deriv ed necessary condit ions for redu ced order
controllers and necessary an d sufficient condit ions
for the full order case. Mustafa (1989) showed that
if Wl = W2 and Zl = Z2 the auxiliary performan ce
index of Bernstein and Haddad can be int erpret ed
nicely as an entropy exp ression, yielding th e cent ra l
H00 controller for th e full order case .

In all these cases, the problem solved does not
add ress the t rue robust performan ce control prob­
lem relevan t in practi cal applications: only a very
restri cted class of problem s do have the same inputs
(or dua lly outputs) for the H2 performance mea­
sures as for th e H 00 norm-bounded un certain ties.

The mixed H2/ Hoo problem with minimizing th e
transfer fun cti on in th e H 2 sense from Wl to Zl,

while constraining th e H 00 norm of th e transfer
function from W2 to Z2 to som e bound is unsolved.
However , this problem does not address robust H2
performance.

In contrast to the aforem entioned resu lts, in th is
paper a rob ust performance mixed H2/H00 optimal
control problem (or 'robust H2 problem ' as called
by Stoorvogel (1993) and Paganini et al. (1994)) is
considered including a parametrization of th e worst
case H 00 norm bounded uncertainty relating th e sig­
nals W2 and Z2 (Steinbuch and Bosgra (1991b)) , see
Fig. 2.

In t his problem , th e worst-case norm-bounded un­
certainty represents unmod eled dyn amics of th e sys­
te m for which we are abIe to formulate both th eir
magni tude bound and the ir structural interconn ec­
t ion with the system dyn amics.

T he robusi performance mix ed H2 / Hoo control
probl em is to minimize the H2 norm of the tr ans­
fer fun ction from W l to Zl using th e feedback K ts),

while m aximizing th e H2 norm of th e sam e transfer
functi on over th e allowable un certainties:

sup min 11 TW 1 - Z 1 (K, L),) 11 2 (1)
11.::\11 "" <1' K (s )

In the literature th ere exis t vari ous formulations
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for performance optimization problems involving
worst-case disturban ces , resulting in a minimax
formulation , e.g. Mills and Bryson (1994) and
Sweriduk and Ca lise (1993).

From an application poin t of view this rolrust per­
forman ce mix ed H 2 / H oo cont rol problem addresses
many design problems in which H 2 performance is
th e optimization crite rion, subject to (un)s t ructured
H 00 norrn-bounded uncertainties . This problem is
hard to solve, but because of the possibl e impli­
cat ions for use in practi ce, it seems worthwhile to
further investigate th e problem . Not e also th e in­
teresting work of Paganini et al. (1994) in which
th e behavioral framework is used to asym pto tica lly
calculate th e worst-case un certainty for the robust
performan ce lh/H00 cont rol problem. In thi s pap er
we will explore th e validity and usefuln ess of this
mix ed HdH00 probl em formulation usin g numeri­
cal too!s. In earl ier work we considered t he calc u­
lation of th e worst- case un cer tain ty, see Stein bu ch
and Bosgra (1994). In this paper we will extend
th e calculation of the worst case un certain ty and in­
vesti gate th e related contr ol design . A numeri cal
approach will be presented and applied to a mixed
H2/ Hoo Compac t Disc control prob lem.

I L),(s) I
I

Z2W2

Wl G(s)
Zl

U y

I K( s) I
I I

Fig . 2: Robust performance H 2 / H oo cont rol prob­
Iem .

2 Prelim in a ries

Given a stabie strictly proper transfer function ma­
trix G(s) with state space real ization C (sI - A)-l B,
th en th e following performance measures can be de­
fined .



(i ) FT X + X F + [ X G HT 1a: 1 [ C:X ] < 0D efinition 2.1 T he H 2 norm of a transfer fun ction
G ts ) is defined as:

(
1 J OO ) 1/2

11 C 112 = 271" - 00 t7-(CT (- jw )C(jw) )dw (2)

untli t r(. ) the trace m atrix operator.

(i i) .J > 0

with

.J = [ I _J
T

]
-J I

(10)
(11)

(12)

T he 2-norm ean be eomp uted with Lyapunov equa­
tions:

where S is th e eont rollability Gramian and P is th e
observa bility Gramian solving:

AT p + P A +CTC = 0
(4)

Proof: Follows direet1y from th e Bounded Real
Lemma as formulated in Petersen et al. (1991). 0

In the sequel we will denote th e set of all transfer
functions .6.(s) with 11.6. 11 00 < 1 as V.

This result direetly leads to th e fol1owing
parametrization whieh eha racte rizes all real ratio­
nal caus al stable transfer functions .6.(8) of ord er n
having 11 .6. 11 00 < 1:

1. Choose J sueh that
D efinition 2.2 T he H 00 norm of a transfer fun c­
tion C (s) is defi ned.as: .J > 0 (13)

11 C 1100 = max ë (C(jw))
wER

untli ü the maximum singular value.

(5) 2. Let C and H be matrices of appropriate di­
mensions eontaining free parameters, and let F =
F. + Fk with F. = Ft and Fk = -Fr , sueh tha t

3 Parametrization of H oo norm
bounded transfer funetions

(14)

and

3.1 Inequality formulation

Theorem 3.1 Let (F , C , H , J) be an asymptoti­
call y stabie m in imal realizat ion of th e transfer [utic­
t ion .6.(s ) = H( sI - F)-lC + J. Th en th e fol/owing
sta te me nts are equiv alent.

In Steinbueh and Bosgra (1991b) a parametriz ation
was introduced for st ab le st rict1y proper H oo norm­
bounded uneer tainty modeIs. In this paper we will
extend thi s parametrization to proper H 00 norm­
boun ded un eertainties using Linear Matrix Inequal­
iti es (LMIs) , see Section 3.1. Based on numerical ex­
perienees with this parametrization it seems worth­
while to exploit the boundary eonditions, i.e. when
the worst- case perturbation is lossless bounded real ,
see Section 3.2.

. 1
1=1 ,2"" ''2 n

(15)

(16)

for n even , and

3.2 Lossless bounded real formulation

When the inequality const raints stated in th e previ­
ous section ar e all active then the worst-case pertur­
bation is lossless bounded real (all-pass property).
This means that the perturbation is on its bound
at all frequeneies and for all its singular values . In
ord er to investigate the mix ed H2/H00 problem also
for this case, we develop a suitable parametrization .
Let us first eonsid er lossless positive real and lossless
bounded real transfer funetions, see also Anderson
and Vongpanitlerd (1973).

for n uneven.
These equat ions follow from th e theorem above by .

selecting a coordinate fram e sueh that X = l and
by utilizing an additional orthogonal transformation
that brings Fk into modal from .

11 .6. 11 00 < 1 (6)

3X > 0 sueh that (7)

[FTX+XF XC HT]
CT X -I JT <0 (8)

H J-I

3X > 0 sueh that (9)

3

1.

2.

3.



Proof: follows by direct application of Defini­
tion 3.2. 0

Lemma 3.4 Let .6.(s ) = (I - f(s») (I + f( s»)- l , then
.6.(s ) is lossless bound ed real iff I' (s ) is /oss/ess posi­
ti ve real.

(18)
Ax + B çui; + B 2 lU 2

Cl x + D I2lU2

C2 x + D2l lU i

x

r .6.(s) 1
I r

lU2 z2

lUl
M(s)

zl

Fig . 3: H 2 worst case un certainty .

Co nsider Fig. 3. The noise dist urbances lUI have
uni t noise intensi ty, and t he uncertainty .6.(s ) rep­
resents unstructured H 00 norm bo unde d pe rturba­
t ions of th e nominal closed-loo p system (M (s) in­
cludes G(s ) and /( s»).

4 Worst case perturbations

and let .6.(s) = H (s I - F )-I G + J . T hen th e closed­
loop syste m is:

In cont ras t to Stoorvogel (1993), causality of the
perturbation is assume d as an implicit and neces­
sary ingredient to pose th e true pr obl em . Thus we
consider a set V of real-rational causal stable trans­
fer function matrices .6.(s ) sat isfying 11.6. 11

00
< I J

and Va if .6.T(- s ).6.(s) = J. As performance indica­
tor we use the varianee of the sign al Zl, i.e. th e H2
norm of t he closed- loo p transfer fun ct ion from lUl
to Zl. Let Mt .s ) have t he state space reali za tion

(17)

F - flT(1 + J )- I fl

-V2fl T (1+ J)- I

V2(1+ J)-l fl

(I - J)( I + J) - I

F

G

H

J

Lemma 3.5 Let I'(s ) = fl(sl - F)-l(; + J , with
F + FT = 0 , o = flT and J + JT = 0, with
F E IRn x n and J E IRm x m

, and with fl and (;
of com patible dim ensions . Th en th e real matrices
F, fl and J param etrizes all /oss/ess positive real
tran sfer funct ions I' with state dim ension n.

Lemma 3.6 Let .6.(s ) = (I - f(s») (I + f(s»)-l with
r (s) = fl (sl - F) -l(; + J, with F, fl and J as
dejined in th e previous lemma. T hen a st ate space
realization f or .6.(s ) = H (sl - F)-IG + J is given
by:

Proof: .6.T (-s ).6.(s ) =
(I + rT(_s »)-l(1 - rT(- s»)(1 - f(s»)(1 + f(S »)- 1 =
(I + r T(_s»)-l(1 + r T(-s )f(s»)(1 + f(S»)-1 = (I +
rT (- s »)-l(l+rT (-s»)(I+f(s»)(I+f(s»)- l = I, and
con versely. 0

D efini tion 3.2 The real rationa/ f uncti on I' (s ), s E
<C, is loss/ess positive rea/ iff(s ) + r T(- s ) = O.

D efinition 3.3 Th e real rationo l f un ction .6.(s ),
s E <C , is loss/ess bounded rea/ if .6.T(-s).6.(s) = I.
T he set of all such .6.(s ) is denoied Va.

or
max tr[Cf[C]S (21)

( F. ,Fk, G, H ,J )

sup I1 TW' _ Z'( .6.) 11 2 = sup tr[Cf [C]S (20)
6EV 6EV

(19)

(
A + B2 J C2

GC2

(
s , + B 2 J D 21 )

GD
21

lUl

( Cl + D 12J C2 D 12H ) ( ; )

( ~) =

denoted as [A], [B], [Cl. Notice th at D 12J D2l = 0
for 11 TW 1 - Z 1 (.6.) 112 < 00 .

Let th e system (19) be stabie and consider the
consirained optimization problem

A nd this is a param etrization [or all stable loss/ess
bounded real .6.(s ).

Theorem 3.7 Defin e the matrices 0 and if; as up­
per triangu/ar real matrices, with zero on their di­
agonal , and with appropriate dim ensions, such that
F = 0 - OT , and J = if; - if;T , then the trip le (0,
if;, fl) param etrizes all stabie lossless bounded rea/
transfer functions .6.(s) = H(sI - F)-lG + J, with
H ,F,G and J dejin ed by (17) .

Proof: follows by some matrix m anipulations and
is omitted here. 0

Since m atrices F and Jare defined as skew­
sy m metrie (see Lemma 3.5) , we further reduce th e
number of free variables and end this section with
the main result.

4



with F., Fç ;C , H , J according to (13)-(16) , and with
the st ate-varianee matrix S = sr the solution to:

and let ~(s) = H(sI - F)-IC + J , th en th e per­
turbed system is given by:

[AJS + S[Af + [B][Bf = 0 (22)

In case of ~ being lossless bounded real , i.e.
~ EVa the optimization problem can be reformu­
lated as an unconstrained optimization problem: with

y

Apxp + Bpl WI + Bpu

c.;», + Dplu

Cpx p + DlpWI

(27)

(23)max tr[Cf[CJs
(8 ,,p,H)

with S th e solution to (22) , and with (F,C , H, J)
defined by (17), where ft' =0 - OT, J = </J - </JT .

5 Numerical exploration of the con­
trol design problem

In the preceding section we have considered worst­
case per turbations ~(s) for the fixed system M te).
As Mt .s) includes th e feedb ack cont roller J«s), we
have to investiga te how ~(s ) and Kt .s) are related .

Recall the set V of all stabIe norm-bounded un­
certainties . Let ~k (S ) E V be the worst- case dis tur­
bance, i.e. a disturban ce attaining

X Ax + B1WI + B2W2 + B3u

ZI CI x+ D12W2 + D13U (26)
Z2 C2x + D21WI + D23U

y C3x + D3IWI + D32W2

sup 11 TWt -Z t( ](' ~) 112 (24)
6 E"D

for a certain feedb ack controller Kt ;s). Although
the underlying probl em may show a mu ch more
complicated st ructure, we assume here that (at least
locally) there exists a unique maximizing ~k(S ).

Now consider all such ~k(S) , and determine th e feed­
back law JC th at would be H 2-optimal in case ~k(S)

ind eed would qualify as worst-case unc ertainty. By
assigning an H 2-optimal K " to each ~k (S), we iter­
ate over ~k (S ) until it satisfies th e conditions for
a worst-case disturbance, i.e. the gradients with
resp ect to its parameters ar e zero for a fixed H2­

optim al ](* .

Using th e parametrization of th e worst case un­
certainty we ar e now abl e to rewrite the control de­
sign problem in a numerically tractabIe way. Con­
sider Fig. 2, with th e noise disturbances WI having
unit noise int ensity and uncertainty ~(s) E V or
~(s) EVa resp ectively. The design problem is

(A; - CJIDpIBJ)X + X(Ap - BpD;ICpt)-

X BpBJ X + CJI(I - DpID;I)CpI = 0(29)

(A p - BpIDîpCp)Y + Y(A; - CJ DIpBJI) ­

YCJCpY + Bpl(I - DîpDIP)BJI = 0(30)

and the H 2 optimal control law u = J(*(s )y is
defined by

DIp = ( D31+ D32J D2I )

Notice that D I2J D2I = 0 for 11 TWt-Zt (~) 11 2 <
00 and that D32J D23 = 0 is assumed for simplicity.
The feedback cont roller Kt s ) connects th e measured
variables y with th e inputs u .

Let the system (27) be stabIe and assume
for the moment that the uncertainty parameters
(F,C , H , J) are fixed. Then the optimization prob­
lem

min 11 Twt_ zt(u = J«s)y) Ib (28)
K

can be solved as a standard H 2 or LQG type of
problem:

(25)sup min 11 TWt-Zt (](,~) 112
6E"D(. ) K (. )

Let Gis ) have th e state space realization

5



Fig. 5: Configuration of the CD MIMO control
loop .

Xrad

x Joe

f-L-----.-o--.--spot
L..-_-'

t rack- - -o--o-l

th e controller uses position-error information pro­
vided by four photo diodes. As input to th e system
th e controller generates contro! curre nts to th e ra­
dial and focus actuator, which both are permanent­
magnet/coil systems.

In Fig.5 a block-diagram of the control loop is
shown. T he difference between the radia l (Xrad) and
vert ical (Xjoc) spot pos ition and the reference t rack
is detected by an optica! piek-up which gene rates
a rad ia! erro r signa l (erad) and a focus error sig­
na! (e joc) ' A controller J( ( s ) feeds the system with
the currents i rad and i j oc, see also Steinbuch ei al.
(1994).

In th e numerical experim ents a MIMO 2 x 2 mode!
(G) of orde r 10 is used. We will consider two types
of uncertainties. The first is a mu !tiplicative output
unce rtainty. The unce rtainty ~ is 50 %. The noise
disturbances w] acting on the multivariable control
loop enter the loop at the input of the system and
measurement noise act on the feedback loop. The
performance measures Z I ar e the inpu t to th e plant
and the output of the plant ('spot') . Our interest is
in how the un certainty ~(s ) can disturb th e H 2 per­
formance from w] to Z], and how the H2 optima!
controller Kts) counteracts this. By using a gen­
eral purpose optimization program th e results are
obtained, using the formulation of th e previous sec­
tion . The inputs w] and W2 hav e been scal ed such
that the nominal performance equals 1 and such
that " ~ 11 00 = 1 corr esponds to 50 % model uncer­
tainty. The results are presented in the table below,
and have been obtained with a first order (2 x 2)
uncertainty; see St einbuch and Bosgra (1994) for
investigations with respect to the number of states
in a worst-case ~. The resu lts obtained using th e
LMI formul at ion showed that all th e boundary con­
ditions were met, and afte r application of the lossless
bo unded real formulation it appeared that identical
solut ions were obtained. It should be noted that th is
resul t holds for this example. It is not clea r whet her
more general stateme nts can be mad e. T his is sub­
ject of future resear ch.

The results are sum marized in Tabl e 1. In th e Ta­
bie th e column 'nom ina l, J(n om , ~ = 0' denot es the
valu e of th e objec t ive fun cti on for th e unperturbed

max 11 Tw,_ z,(u = J(*(s)y) 11 2 (33)
(8, q" H )

with J(* the so!ution to (29) -(3 1).

T he optim ization pro b!em includin g th e un cer­
tainty ~ E V can now be form u!ated as a con­
sirained opt im iza t ion prob! em over a st andard H2

optima! cont ro! prob!em:

6 Example: Compact Disc player ro­
bust control problem

with IC t he so!ut ion to (29) - (31) , and
F.,Fk,G, H, J acco rding to (13) - (16) .

Ir ~ E V a the optim izatio n prob!em can be for­
mul ated as an unconstrained opt imization prob!em:

Fig. 4: Schematic view of a rotating arm Compact
Disc mechanism.

m ax 11 Tw,_ z,(u = IC (s )y) 11 2 (32)
(F., Fk,G, H ,J)

V (A p - Bp(BJ X + DJ]CP]»v +
(YCJ + Bp]D[p)Y (31)

u. = - (BJ X + DJ]CP])v

Both th e radi a! and th e verti cal (focus) position
of the laser spot, relative to th e track of th e disc,
have to be controlled active!y. To acco mplish thi s ,

In FigA a schematic view of a Compact Disc mech­
anism is shown. The mec hanism is composed of a
turn-tab!e DC-motor , and a ba!anced radia! arm for
track-following . An optica l element is mounted at
th e end of th e rad ia! arm. A diod e !ocated in th is el­
ement generates a laser beam that passes through a
ser ies of optica! !enses to give a spot on the informa­
tion !ayer of the disc o An obj ective lens , susp ended
by two paralIe! !eaf springs, can be actuated ver ti­
cally for focussing.

6



11 Tw, _ z , 112
nominal: J(n om , .6. =0 1.00
nominal: J( * , .6. =0 1.06
perturbed : J( * , .6.k 1.38
per turbed: J(n om , .6.k 1.48

Table 1: H2 performan ce for CD player with output
uncer tain ty

case with th e standa rd H 2 opt imal control [(n om .

T he second column 'nominal, J(*, .6. = 0' means
the robust performance opt imal controller solving
(32) or (33) and with which th e H2 performan ce is
evaluated without a perturbation . The third col­
umn 'perturbed , [(*, .6.k' means th e robust perfor­
man ce optimal cont roller solving (32) or (33) and
wit h which the H2 performance is evaluated with
the worst case perturbation , i.e. th is number is th e
value of (32) or (33). Fin ally , the last column 'per­
tur bed , J(n om , .6.k' means th e nominal performance
optimal cont roller [(n om for which the H2 perfor­
man ce is evaluate d for th e worst case perturbation ,
i.e. this nu mb er is th e valu e of (32) or (33) with
J( = J(n om fixed.

The results shown in the Table indicate that th e
worst case varianee of th e performance variables Zl

increases with a factor 1.48 if th e nominal optimal
H2 cont roller is used. In case of the optimized con­
t roller for th e un certainty, th e nominal performance
degrades with 6%. The worst-case performance is
1.38, which is about 10% better than with the nom­
inal feedback . In the following figure the nominal
and perturbed transfer functions are shown from the
input i-: « to th e radial spot position.

Disc play er MIMO control loop , but now with an
uncertainty affecting th e resonance at 860 Hz. The
uncertainty perturbs especially the damping of th e
resonance, with an amount almost equal to 100% I .

Again , the noise disturbances W l acting on th e mul­
tivariable controlloop ente r th e loop at the input of
the system and measurement noise act on the feed­
back loop. The performance measures Z I are the
input to th e plant and the output of th e plant . The
results of th e calculat ions ar e presented in Tabl e 2.

I1 Tw , _ z, 11 2
nominal : J(n om, .6. =0 1.00
nominal: J(* , .6. =0 1.01
perturbed : IC , .6.k 1.01
perturbed : [{n om , Ó k 17.90

Table 2: H 2 performance for CD play er with reso­
nance uncertainty

The varianee of th e performance variables Zl in­
creases with a factor of almost 18 (!) if th e nominal
optimal H 2 cont roller is used , while in case of th e
optimized controller for the uncertainty, the robust
performance is only 1% less than th e nominal per­
formance . Analysis of the worst-case uncertainty
revealed that it is equal to a proportional term (1)
driving the damping of the system close to zero.
The H2 / H 00 optimal controller counteracts this ef­
fectively . In the following figure the nominal and
perturbed transfer functions are shown.

no~-:per

......... . '!e!~!_ ~~.. __.. ~.. .__

IO-' ~ --__

! oom_per

~\. opf.J)Cr.,.
~ nol

10.2

10-)

oom "'W'" , .•• •

-,'.;\.....
~ ..' .' .....-.

10-)

IO~

frequency (Hz)

10' 10'

Irequency (H z)

10' Fig. 7: Nominal (-) and worst case perturbed (- - ,
... ) transfer function from W I to Z I

Fig. 6: Nominal (-) and worst case perturbed (- - ,
... ) transfer function from Wl to Zl

The second example considers th e same Compact

7

1 Although this ca n b e described as a pararnetric un­
certainty (real-valued) it is treated here as a complex
uncertainty.



Conclusions

A new formulation of th e robust performance
H z!H 00 opt im al control problem has been pro­
posed in this paper , and an explicit parametriza­
t ion for a worst-case norrn-bounded unc ertainty has
been used , yielding an (un)constrained optimization
problem . A Compact Disc system with an unstruc­
tured uncertainty has been discussed. Using a nu­
merical a lgorithm we hav e shown th at it is possible
to calculate worst case unc ertainties and to rob us­
tify th e controller to counteract with the worst case
perturbation. The robust performance obtained in
th ese examples shows that it is worthwhile to fur­
th er explore th e th eory of th e robust pe rformance
mixed H 2 / H oo control problem .
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representations
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Abstract. The powerful standard representation for uncertainty descriptions in a basic
perturbation model as introduced by Doyle can be used to attain necessary and sufficient
conditions for stability robustness within various uncertainty descriptions. In this paper
these results are employed to formulate necessary and sufficient conditions for stability
robustness of several uncertainty sets based on simpIe additive coprime factor uncertainty,
gap-metric uncertainty as weil as the recently introduced and less conservative A-gap
uncertainty.
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1 Introduction

In a model-based control design paradigm, the de­
sign is based on a (necessarily) approximative model
F of a plant to be controlled . An apparently suc­
cessful control design leads to a controller C, having
som e desired closed loop properties for th e feedback
cont rolled model F, but due to the possibl e mis­
match between th e actual plant Po and the model
F, a verification of th ese desired closed loop proper­
ties is preferr ed before implementing th e controller
Con the actua l plant Po. In this paper th e discus­
sion is directed towards th e verification of one of the
most important closed loop properties: stability.
To evaluate stability when th e cont roller C is being
ap plied to the plan t Po, a characte rizat ion of the
discrepancy between th e plant Po and th e model F
can be used (Doyle, 1982; Francis, 1987; Doyle et
al., 1992). Since th e real plant Po is unknown , th e
discrepancy in general is characte rized by a so called
un certainty set , denot ed with P . Typically an un­
cert ainty set P is defined by th e (nominal) mod el
P, which is found by physi cal modelling or identifi-

lThe work of Raymond de Callafon is sponsored by the
Dutch Systems and Control Theory Network .

§Now with Unilever Research, Technical Application Unit,
Vlaardingen, The Netherlands.
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cation techniques, and some bounded 'area ' around
it (Doyle et al., 1992) . The uncertainty set Pitself
reflects all possible perturbations of the (nominal)
model F that may occur. Some typical examples of
commonly used unstructured uncertainty sets that
are norm-bounded by using an Hoo-norm can for
example be found in Doyle and Stein (l981),Doyle
et al. (1992) :

• Additive uncertainty set:

PA(F , V, W,r):= {P I P=F+.6..A,

with IIVLlA Wil 00 ::; r}. (1)

• Multiplicative (output) uncertainty set :

PM(P , V, w,r ) := {P I P = [I+ LlM]F ,

with IIVLlMWll oo ::; r} . (2)

• Additive (right) coprime fractional uncertainty
set, where F has been factorized first in a right

- - - - 1
coprime fact orization P := N D and th e set
is defined as
P CF(JÎl,ÎJ, VD, VN, W,r):=

{P I P= [JÎl + LlN][ÎJ+ LlD]-1 , with

I1 [V; :N] [ ~~ ]-L ::; r}· (3)



Clearly, by defining the uncertainty set in such a
way that at least th e plant Po E P, stability ra­
bustness results for the set P will refiect sufficient
condit ions under which the plant Po will be stabi­
lized by C , (Doyle et al., 1992). In this persp ective,
sp ecial attention will be given in this paper to an
un certain ty set P c F which is charac terized by per­
turbations on an additive coprime factor description
of the nominal model P, like in (3). The specif­
ie applica tion of th e unc ertainty set description of
(3) will be motivated by th e favourable properties
it has over a standard additive (1) or multiplicative
(2) un certainty set description.
Stability robustness results for un certainty sets em­
ployin g weighted and unstructured additive pertur­
ba tions on a coprime factorization , gap-meti c bas ed
un certain ty set s and the recently introduced A-gap
un cer tai nty sets will be shown to be closely related
to eac h ot her . T he cont ribut ion of this paper is in
the unified t reatment of th e situat ions of th e dif­
feren t uncer tainty sets, by em ploying th e weigh tin g
and the factoriz ation used in an un certainty P CF

as given in (3). While stability robustness results
for un certainty set s usin g addit ive perturbations on
normaliz ed (Jeft) coprime factoriz ations (Gl over and
McFar lan e, 1989) and gap-metric based un certainty
sets (Georgiou and Sm it h, 1990a) have separately
bee n derived before, t his paper amp lifies their rela­
tio n, as weil as the extension to a less conservative
A-gap (Bongers, 1991; Bonge rs, 1994) un cer tainty
set desc ript ion.
T he out line of this pap er will be as follows. In
section 2 som e preliminary no tations and definitions
will be given, whil e in section 3 th e basi c stability
robustn ess result usin g th e powerful perturbation
model (Doyle , 1982) will be summarized . This per­
t urba t ion model gives rise to an unified approach to
handle stability robustness for various uncertainty
descriptions, including additive weighted perturba­
t ions on a coprime factorization. Section 4 contains
th e results of applying this unified approach to ad­
ditive un certainty descriptions on fractional model
representations like in (3) and favourable properties
ar e illuminated. The link with gap and A-gap bas ed
stability robustness results is discussed in sections
5 and 6, th e latter one being less conservat ive than
th e former one, as shown in secti on 7. The paper
ends with some concluding remarks.

2 Preliminaries

Throughout th is pap er , th e feedback configur at ion
of a plant Pand a cont roller C is denoted by
T(P , C) and defined by th e feedback conn eetion
st ructure depicted in figur e 1.
P and Care represented by real rational (di scret e
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1'1 U I P I
+' + Î I

I I -
1' 2

Ye I
C

r U e ~ +

Fig . 1: Feedback conneetion structure T(P ,C ) of a
plant Pand a controller C

time) transfer function matrices, and it will be as­
sumed that th e feedback conneeti on is well-posed,
i.e. th at det[I + C P] =1= O.
In figure 1 th e signals u and y refiect resp ectiveiy
th e inputs and out puts of the plant P. The signals
U e and Ye are resp ectively the inputs and out puts
of the cont roller Cp, and 1'1 and 1"2 are externa l
reference sign ais . The feedb ack system T(P ,C) is
defined to be internally stabie if th e mapping from
COI(1'2, 1"1) to col(ue, u) is BIBü st abi e , i.e. if th e
corresponding transfer function is in IR7-loo , being
th e I-I ardy space of real rational transfer functi on
matrices with bounded 7-loo-norm (Francis, 1987) :

II Gll oo := sup o-{ G(eiw
)} (4)

wE[D, ")

with 0- t he maxim um sing ula r value.
The dyn ami cs oftl~e closed loop system T (P ,C) will
also be describ ed by th e m apping from eol(r2, 1"t}
to col( y, u) which is given by th e transfer fun cti on
matrix T(P, C ):

T(P ,C) := [~] [I+ CP]-l [ C I] . (5)

Using the th eory of fractional representations , as
e.g. presented in Vidyasagar (1985) , a plant P is
expressed as a ratio of two stabie transfer functions
N and D. For two transfer functions N , DE IR7-l oo

th e pair (N , D) is called right coprime over IR7-l oo if
th ere exist X, Y E IR7-loo such that X N + Y D = J.
The pair (N, D) is a right coprime factorization (ref)
of P if additionally det{D} =1= 0 and P = N D- 1

. A
right coprime factorization (N , D) is call ed normal­
ized (nref) if it satisfies N* N + D * D = I , where *
denotes complex conjugate transpose. For (normal­
ized) left coprime factorizations (lef) dual definition­
s exist . With respect to intern al stability of th e
feedback system T(P, C) th e following lemma will
be used .

Lemma 2.1 Let P have ref(N , D) atul Icf(D , N),
and let C have re] (Ne, De) and lef (D e, Ne) . Th e
fol/owing stat em ents are equivalent



t. the feedback system T(P ,C) given in figure 1 is
int ernally stabie

H. T(P,C) E IR1l00 1 with T(P, C) defined in (5).

m. A- I E IR1loo J with A := ['De Ne1[ ~ ]

IV . Ä-I E IR1l00 1 with Ä:= [D N 1[~:]

Proof: i Ç:} ii: Fram figure 1 and lemma 2.1 it can
be seen that

~ ~
-~

d z

rl U Y P r- Yr +

- r2

Yc
C

U e ~+

d z

3 Stability robustness in standard
form

IGiven two topologies Ol and O 2 , Ol is said to be weaker
than 0 2 if Ol is a subcollection of 02, see also Vidyasagar
et al. (1982)

Definition 2.2 Consider the two plants PI , P2 with
nrcf's (NI , DI) of PI and (N2 , D2 ) of P 2 . Th en the
gap between PI and P2 is expressed by

(7)

(6)

U

Ue

M

IIMll~lIoo < 1

Fig. 2: (a) Feedback conn eetion structure of a
perturbed plant Pt>. and a controller C;
(b) general feedback conn eetion structure
K(M, ~).

(b) !C(M,~) is BIBO stablefor all ~ with 11~11 00 ::;
"y if and only if

It is weil known that th e feedback system depicted in
Figure 2(a) can be recasted into the situation given
in Figure 2(b), where the uncertainty ~ has been
pulled out (Doyle et al., 1992) using the artificial
signals d and z . Provided that the transfer M is
BIEO stabie, internal stability of the configuration
in Figure 2(a) is equivalent to BIBO stability of th e
feedback system K(M,~) in Figure 2(b) , where M ll
will denote th e map from from d onto Z only.
The small gain th eorem can now be applied to char­
acterize stability results for the conneetion structure
of Figure 2(b) and has been summarized in th e fol­
lowing lemma.

Lemma 3.1 Let the stabie transfer functions
M, ~ E IR1loo construct a feedback connection
K(M, ~) . Then

(a) A sufficient condition for BIBO stability of
K(M,~) is given by

max{5(P I , P 2 ) , 5(P 2 , PI)}, with

QEiR~oo 11 [ ~: ] - [ ~~ ] Qll oo

5(P I , P 2 )

5(P i , Pj)

Fractional representations have a close relation with
approxim at ion in th e graph topology. The graph
to po logy is th e weakest topology ' in which a vari a­
t ion of the eleme nts of a stabi e feedback configura­
t ion around th eir nominal valu es, pr eserves st ability
of that closed loop system (Vidyasagar et al., 1982).
The graph topology is known to be induced by sev­
era l metrics, as e.g. th e graph metric introduced
in Vidyasagar (1984) or th e gap metric introduced
in Zames and EI-Sakkary (1980) , being expressed in
the following way (Georgiou, 1988).

For describing th e stability robustness of several un­
certainty sets based on fractional model representa­
tions, th e standard results on stability robustness
for a general situation as depicted in Figure 2 will
be used .

Hence T(P, C) E IR1ioo if and anly if H(P, C) E
IR1ioo whi ch is equivalent to T(P, C) being inter­
nall y stabie.
i Ç:} iii, iv: See Vidyasagar (1985), Bangers (1994)
or Schrama (1992) . 0
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+

with A = [beD + JÎleJÎl] and (D e, Ne) a lef of C. As
th e weighting functions ar e stabie and stably invert­
ible, and A-1 is stabie according to Lemma 2.1 it
follows that M 1 1 is stabie. Application of Lemma
3.1 th en proves th e result. 0

Fig. 3: Additive pert ur bations on a righ t cop rime
factoriz ation

+
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Denoting col(d1 , d2 ) = .6. z with th e appropriate
signals defined as indi cated in figure 3, th e cor­
responding stabie tr ansfer fun ction M ll satisfying
z = M l1col(d1 , d2 ) can be wri tten as

In th e next section it will be shown how th ese re­
sults can be exploited to deriv e stability robustness
conditions for gap-metric unc ertainty sets as weIl as
for uncertainty sets based on further generalizations
of th e gap-metric. To this end , th e result on th e e­
quivalence between several formulations of th e same
uncertainty sets wiII be presented first.

The result of section 3 on stability robustness can be
applied to various Hoo-norm bounded uncertainty
sets by rewriting the un certainty description into th e
basic perturbation model IC(M, .6.) . In this section
th is is don e for uncer tain ty sets based on coprime
factor un certainties.
A crucial asp ect in th e result of lemma 3.1 is th e
ass um pt ion that .6. E lR1ioo. In case of an addi­
tive (1) or multiplicative (2) un certainty set in th e
basic per turbation model , this assumption implies
the condit ion that the locati on of all unstable poles
of Pare assumed to be fixed. Additive perturba­
tions on coprime factoriza tio ns (3) are more flexi­
bie and allow changes in both the number and the
locat ions of po les and zeros anywhere in (f; (C hen
and Desoer, 1982). Moreover , fractional represen­
tations have a close rela tion wit h approximation in
the graph topology. Distan ce measures (or metrics)
like the graph and gap metric given in defini tion 2.2
induce t his same graph to pology and can also be
used to eva luate stability rob ust ness pro perties of a
closed loop system (Vidyasagar, 1984; EI-Sakk ary,
1985; Vidyasagar and Kirnura , 1985).
First ly, the un cer tain ty set P CF (3) , as mentioned
in the introduction , will be discussed.

Corollary 4.1 Consider a plant ft with rcf( JÎl , D),
stabilized by a given controller C , and consider ihe
un certainty set
P CF( JÎl , D, VD , VN, W,,) :=

{P 1 P = [JÎl + .6.N][D+ .6.D]-l, with

A proof of this lemma can be found in Doyle et al.
(1992) and Maciejowski (1989) .

4 Stability robustness for uncertain­
ty descriptions based on fractional
model representations

for stabie and stably inv ertibl e filt ers VD, VN, W.
Th eti ihe f eedback system T(P, C) is int ernally sta­
bie f or all P E P CF if and only if

, < IIW-1 [D + CJÎl]- l [I C ] [V~l V~ l] 1[1
Proof: Definin g

.6. := [~D ~N] [~~ ]W, such that 11.6.11 00 ::; "

(9)
th e basic perturbation structure of the uncertain­
ty set P CF can be written into a form that cor­
resp ond s to IC (M , .6.) for a specific form of MIl.

Proposition 4.2
Th e uncertainty set P CF(JÎl, D , VD , VN, W,,) as de­
fin ed in Corollary 4.1 can alternatively be writt en in
the following equivalent forms:

(a) PCF(JÎl,D, VN, VD, W,,) = {P I

P = (JÎlw + V;l.6.N)(DW + V;l.6.D)-l ,
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(b) PCF(N, ÎJ, VN, VD, W , I) =
{P I P = NnD;;,1 , (Nn, D n) nrcf, and there
exists a Q E IR1ioo such that

(a) PCF(N , ÎJ , VN, VD, w,I) = Pg(P, I) ;

(b) For 1 < 1, P g(p , I ) = P~(p , I)·

Proof: Part (a) . According to Proposition 4.2(b)
and taking into account th e sp ecific choie e ofweight­
ing functions in the lemma, it follows that
PCF(N ,ÎJ, VN, VD, W'/) =
{P 1 P = NnD;;,l , (Nn, Dn) nrc],
and there exists a Q E IR1ioo sueh that

Proof: Part (a) follows by simpIe calculation . The
proof of part (b) is more involved. In this derivation
th e freedom in (11) is used to denote:

(NW + V;Vl!::iN) = NnQ

(ÎJW + VD1!::iD) = DnQ

with (Nn , Dn ) a nrcf and Q E IR1ioo . Such factors
ean always be found . It follows then that

Since (N ,ÎJ) is chosen to be a nrcf of Pit is straight­
forward to verify that P CF = P g.
Part (b) is proven in Georgiou and Smith (1990a) .
The restrietion to 1 < 1 is caused by th e fact that
t hese sets with 1 > 1 can not be stabilized by a
single controller . 0

whieh proves t he resul t . Note that the factor Q
ca ncels in the representation of P. 0

!::i N VN[NnQ - NW]
!::iD VD[Dn Q - ÎJW] .

for whieh the following relation with the coprime
factor uncertainty sets can be shown, as presented
befor e.

Lemma 5.1 Let a plant Pand a controller
C constitute an internally stab/e feedback sys­
t em T (P, C). Consider the uncertainty set
PCF(N ,ÎJ, VN, VD, W'/) under the additiona/ con­
ditions th at (N,ÎJ) is a nrcf of P, and VD = J,
VN = J , and W = J . Th en

(16)1 < IIT(P, C)II ;;:,I .

Lemma 5.1 relates th e set defined by a gap metri c
bound with the set of coprime factor purturbations
by a sp ecial choiee of t he weigh ting functions VD,

VN , Wand the coprime factorizat ion (N ,ÎJ) of t he
model P. This gives rise to an unifi ed approach
to handle sets of plants that ar e bounded by a gap
metric , and the stability robustness result for these
sets follows now directly from Corollary 4.1.

Corollary 5.2
Consider the situativn of Lemma 5.1 with 1 < 1.
Th en for each of th e three sets of plants P c F , P g
and P~, T(P, C) is internallç stable for all PEP
if and only if

Not e that the result of this corollary is not new. It
was shown already in Georgiou and Smith (1990a),
where a complete proof of the stability robustness
result is given. It has been shown here that the
stability robustness results in the standard form
has simply be exploited, as formulated in section
section 3. Restricting attention to the situation that
1 < 1 is natural, as Bode's sensitivity integral shows
that IIT(P, C)lIoo > 1, (Maciejowski, 1989), show­
ing that stability robustness can only be achieved
for sets with 1 < 1.

Proof: The proof follows simply by substituting
the specific weightings in the result of Corollary 4.1 ,
employing the fact that premultiplication of the ex-

- T - T
pr ession within the norm by [N D jT leaves th e
norm invariant, due to the normalization of the ref.

o(13)

(14)

{P I b(P, P) ::; I}

{P 16(P,P) ::;/},

Pg(P , I)

P~(P, I)

5 Stability robustness based on dis-
tance measures

In this sect ion stability robustness results for gap­
metric un certainty sets ar e formulated . The main
result of this section is not new, but al ready proven
separate ly in Georgiou and Smith (1990a) . The
close relation of th e stability robustness result here
with the formulation in the previous seetion eon­
cerning general coprime factor uncertainty sets will
be illuminated . This relation will be employed in the
next section to formulate similar results for uncer­
tainty sets based on the so-called A-gap , as recently
introduced in Bongers (1991) and Bongers (1994).

The following unc ertainty sets are being considered
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Finall y it sho uld be noted that th e gap and graph
metri c are induced by the same to po logy and are
uniformly equivalent (G eorgi ou , 1988; Packard and
Helwig , 1989). Therefore stability robustness in th e
graph metric yields a similar result as mentioned in
corollary 5.2.

6 Stability robustness in the A-gap

The resuIts obtained in th e previous section for gap­
bas ed stability robustness can be further extended
for uncertainty sets bas ed on the recently introduced
A-gap, (Bongers, 1991 ; Bongers, 1994).

Definition 6.1 Let two plants Pi , P2 have nrcJ's
(NI , DI) , (N2 , D22 re~pectively. Let C be a con­
troller with nlcf (D e, Ne) such that T(Pl , C) is in­
ternally siable. Then the A-gap between the plonis
Pl , P2 is defined to be expreseed by

unth. A = [DeD l + NeN d .

The differen ce between g(P 1 , P2 ) and 8t.(P 1 , P 2 ) is
t he additional shaping of th e nr cf of PI with A-I
into a rcf (N, iJ). In this way Ä := DeÏJ+ NeN = I ,
with N = N IA -1, IJ = D IA -1 , which is used
to conside r the closed loop opera tio n of P I in­
du ced by t he controller C being em ployed. This
makes the distance betw een PI and P 2 dep end en­
t on th e nrcf of th e cont roller C . Not e that th e
distan ce measure 5A(P l , P 2 ) is not a metric sinc e
8t.(P l ,P2 ) -I- 8t.(P 2 , Pi) du e to th e influ ence ofthe
cont ro ller C (Bon gers , 1994).
Accordingly , an un certainty set based on A-gap un­
certainty can be defined as:

P gJP , , ) := {P I 8t.(p , P) :Ç , }.

This un cer tainty set can also be shown to be equiv­
alent to an un certainty set of coprime factor un cer­
tainties , provided appropriate weighting functions
a re chosen.

Proof: The pro of of (a) is straight forwa rd, along
the same lines as th e proof of Lemma 5.1 (a). Re­
sult (b) th en follows dir ectly from Corolla ry 4.1, em­
ploying th e fact that A[b + CN]- l [I C] = [De Ne]
having an co-norm of 1 du e to th e fact t ha t it is a
normalized left coprime factorization. 0

As said before, in case of th e A-gap , th e un certainty
set defined accordingly considers perturbations of
th e nominal plant P that ar e controller dep end ent.
The introduetion of weightings in th e gap met­
ric has also been studied in Gedd es and Postl eth ­
waite (1992), Georgiou and Smith (1990b) or Qui
and Davidson (1992). In Gedd es and Post!ethwait­
e (1992) a multiplicative uncertainty description on
th e nrcf (N, 0) of th e model P is being used , leading
to an uncertainty structure ~ having a diagonal for­
m . Due to th e diagonal form only necessary and suf­
ficient conditions bas ed on th e st ru ct ured singular
valu e J.l{.} can be obtained. The weightings in th e
weighted gap of Gecirgiou and Smith (199Db) have
to be defined a posteriori whi ch makes th e cho ice
of th e weighting fun ctions , to access robustness is­
sues on th e basis of a weighted ga p, not a trivial
task. Information on th e size of the coprime factor
perturbations can be used in th e weighted pointwise
ga p metric defined in Qui and Davidson (1992) , bu t
st ill an efficient computa t ional method for pointwise
ga p metric is not available yet.

7 Conservatism issues

All stability robustness results in this paper refiect
necessary and sufficient condit ions of an uncertain­
ty set to be stabilized by a singl e cont roller. As
su ch no conservatism is introduced in th e test for
checking stability robustness it self. However, for a
single given controller, different of su ch un cert.ain­
ty sets contain a different portion of th e set of all
syste ms that is st abilized by th e cont roller. In th is
perspective th e concept of conservatism is an intrin­
sic property of th e un certainty set being used. As a
result an uncertainty set will be called more conser­
vative than another if one controller stabilizes both
sets , while th e form er set is contained in th e latter.

Theorem 7.1 (Bongers, 1991) Consid er a plant
Pand a stabilizing controller C with nlcf (De, Ne).
Consider the following two uncertainty sets resulting
[rom ihe stability robusiness resulis in the previous
sections:

Lemma 6 .2 Let a plant Pand a controller C with
nlcf (b; Ne) cons tituie an int ernally stabie feed­
back syst em T(P , C) . Consider the uncertainty set
PcF( N ,D, VN, VD , W,,) uiuler the additional con­
ditions that (N, D) is a nrcf of P , and VD = I ,
VN = I , and W = A-I with A = [DeD + NeN].
Tlten

(a) PCF(N, D, VN, VD, W, ,) = PgJP, ,);

(b) T(P, C) is internally stabie [or all P E PCF if
and only if, < 1.
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S6(P, C)

SgJP,C)

then

{u P6(P , b), b < IIT(P, C)I I ~;;n

{U PgJP, c), c < I}

(17)



Proof: The followin g implication wil! be proven: Acknowledgement

P E Sb(P ,C) ::} P E Sg" (P ,C ). (18 )

As P E Sb(P, C) there exists a 0 E mn., such that

11 [
o; ] _ [~ ] ij < 1
N« N 11 00 - IIT(P,C)IIoo . (19)

The authors would like to thank Carsten Scherer
and Ruud Schr am a for frui tful discussions that COIl ­

t ributed to the results of thi s paper.
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Abstract . For arbitrary complex A and Q (Q Hermitian), this paper provides an alge­
braic test for verifying the existence of a Hermitian solution X of the nonstrict Lyapunov
inequality

A·X + XA + Q 2: 0.

Ir exist ing we exhibit how to const ru ct a solut ion. Moreover, a necessary condit ion for th e
existence of a positiv e definite solution is present ed which is most likely to be sufficient
as weil. Our approach involves the valid at ion problem for the linear matrix inequality

k

2)Ajx, Bi + Bi Xi Ai ) + Q > 0
i =1

in Xi for which we provide a (constructive) algebraic solvability test if the kemels of Ai
or , du ally , those of Bi form an isot onic sequence.

Keywords. Lyaj -m ov inequa lity, linear matrix inequali ty, Riccati inequali ty.

Notation. C = C- U CO U C+ is th e complex plane,
th e open left-half plane, th e imaginary axis and th e
open right-halfplan e. For A E cn x m

, A- ll S denotes
th e preimage {x E Cm I A ll X E S} of S C Cn und er
All. For a Hermitian Q E cn x n , Qs denot es the
sesquilinear form S x S 3 (x , y) -+ x· Qy E C. Then
Qs > 0 (Q is positive definite on S) iff x·Qx > 0
for x ES \ {a}, Qs 2: 0 (Q is positive semidefinit e
on S ) iff x·Qx 2: 0 for x ES, and ker(Qs) = {x E
S : x· Qx = a} (the annihilating set of Q on S).

1 Introduction

The Lyapunov equat ion and inequality is one of th e
most studied obj eets in th e control lit erature. In
particular , it arises in stability theory where th e in­
terest is on inertia relations rather than on solvabili­
ty questions. The present work is mainly motivated

IThis paper is presented at the 33rd IEEE Conf. Decision
and Con tro!, Lake Buena Vista, FL, December 14-16, 1994.
Co pyr igh t of this paper remains with IEEE.

§su ppor ted by Deutsch e Forschungsgemeinschaft, grant
Wi 121 9/1-1.
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by state-space Hoo-theory (Petersen (1989) , Doyle
et al. (1989) , Scherer (1994)) . It has been shown in
Scherer (1994) th at the optimal value in th e general
state-feedback Hoo· problem is attained iff a certain
algebraic Riceati inequality has a positive definite
solution. In Scherer (1993 ,1994) we present a te eh­
nique which redu ces this problem , under a mild reg­
ularity assumption , to th e solvability problem for a
nonstrict Lyapunov inequality (LI)

A·X+XA+Q2:0

where A and Q can be computed from th e system 's
state-space representation . Here Q is generally in­
definite and the eigenvalues of A correspond to in­
variant system zeros in CO U C+. Hence eigenvalues
in CO ean only be excluded by assuming the abs ence
of system zeros on th e imaginary axis.
Ir A has na eigenvalues in CO then it is a eonse­
quene e of the reduction principles in Scherer (1993 ,
1994) (but easily proved directly) that the LI is al­
ways solvable, although the corresponding equat ion
might not have a solution . Hence the main difficul-



In this paper we need a generalizat ion to th e LMI

3 The Lyapunov Inequality

Theorem 2 .2 Th e in equa/ity (i) is ( constructive­

/y) so/vab/ e iff Qker(A) > 0 and Qker(B) > O.

k

2)A;x,e, + Bj Xj Aj) + Q > 0 (2)
j=l

o and

j-lnker(Bv ) n ker(Aj)
v=O

Clearly, a dual result holds if the kemels of Bj form
a nondecreasing sequence and , by reordering, on e
can easily translate all this to nonincreasing kemel
sequences as weil.

for which we can ind eed give an alg ebraic solvability
test and a procedure to const ruc t a solution if th e
kemels of Aj form a nondecreasing sequ ence.

A key step will consist of identifying the largest su b­
space on which A *X + X A + Q vanishes for every
X in the solution set

[or all j = 1, . .. , k + 1 uihere setting B o
Ak+l = O.

Theorem 2 .3 Suppos e ker(At} C . .. C ker(A k ) .

Then ih e LMI (2) is (constru ctively) solvable iff Q
is positive definite on

ties arise if A ind eed has eigenvalues in Co. If the
CO-Jordan blocks of A with resp ect to CO ar e diago­
nal , it has been pointed out that th e LI is solvable iff
Q ker(A->.I ) 2: 0 for each À E CO (Scherer (1994» . If
t he CO-eigenstructure of A is nonderogatory, solv­
ab ilty tests have been obtain in Scherer (1995a) .
However , th e general case with an unrestricted Co_
Jordan st ructure is considerably more difficult to
handle. In this paper we exte nd results from Scher­
er (1993) and show how to verify th e solvability of
th e LI in com plete generality. In view of th e recen­
t progress in sol ving more general strict linear ma­
trix inequalities (Nesterov, Nemirovsky (1994», our
work is intended to c1arify, for aspecific inequality
of ind ep endent importance, that th e algebraic ap­
proach leads to deep insights into the structure of
th e solution set and into th e possibly tr emendous
difference between stric t and nonstrict inequalities.
We work throughout with complex matrices and s­
paces. If A and Q ar e real symmetrie, our results
allow to verify th e existe nce and to constru ct a com­
plex Hermitian solution X. Then ~(X+X) is a real
symmetrie solution of th e Lr. Hence the present re­
sults apply to real data as wel!.
The paper is structured as follows . In Section 2 we
present some auxiliary results of independent inter­
est . In Section 3 we motivate and formulate the
solvability characterization , and in Section 4 it is
shown how to construct a solution. For reasons of
space th e proofs ar e given in the ful! version of th e
paper which will appear elsewhere.

2 Auxiliary Linear Matrix Inequali­
ties

We first reeall a key result in Scherer (1992) for the
strict Lyapunov inequality (SLI)

A*X+XA+Q>O.

Theorem 2.1 Tli e SLI lias a Hermitian so/ution
iff Qker(A->.I ) > 0 for all À E Co. If so/vab/e, tlie
S Lf lias arb itrari/y larg e (and th us positive definite)
so /ut ions iff O"(A) C COU C+ .

Remark. In Scherer (1995b), th e last part has been
genera lized to th e nonstrict Lyapunov inequality:
T he LI has ar bitrarily large solutions iff O"(A) C

CO U C+, Qker(A->.I ) 2: 0 and ker(Qker(A-AI)) n
im( A - >.I) = {O} for a ll À E CD.
If we drop the st ruc t ura l const raint X = X * , we
can even conside r th e more genera l inequality

X := {X: X = X*, A* X + XA + Q 2: O}

of the Lr. It wil! turn out that we can indeed corn­

pute
IC := n ker(A* X + XA + Q) (3)

XEX

on th e basis of th e data matrices A and Q without
having a solution availablel The space IC wil! be
shown to be A-invariant. Mor eover , it might happen
that for each individual X E X th e kemel of A *X +
X A + Q is larger than IC . Luckily enough this is not
th e case sinc e we ar e abl e to prove the existe nce of
an X EX with ker(A*X + XA + Q) = IC . Al! this
will be essent ial for th e test whether X is em pty or
not.
For formulating th e main result we need th e follow­
ing notations. For any À E CO define

AA := A - >.I

A* X B + B* X *A + Q > 0 (1) and th e Iinear map

whi ch has recently proved important in th e IJ00 ­

problem and variations th ereof (Gahinet, Apkarian
(1994) , Iwasaki , Skelton (1994)).

j

.c{(Q) := 2)-lt(A>y-vQA~.
v=o
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Not e that .c~ (Q) = Q and that .c{ is just the j-fold
composit ion of .c)..(Q) = A>.Q - QA).. . We exploit
À E Ca to infer A· X + XA = AAX + XA).. which
implies .c{(A· X +XA) = (AA)i+1X +( - 1)i X A{+l .
For any j = 0,1 , . .., this shows that A· X + XA +
Q = P implies

(A>. )i+1 X + (-I)i X A{+l + .c{(Q) = .c{ (P) . (4)

Let us now motivate th e computat ion of (3) und er
th e hypothesis X =1= 0. Choose X E X, À E COnlT(A)
and define the positive semidefinit e P := A· X +
X A+Q.
Look at (4) for j = O. A,\x = 0 yields x·Qx =
x· P x ~ O. H, in addit ion , x·Qx =0 then z "Px =0
and thus P x = O. Hence Q is positive semidefinit e
on A>: l {O} and Nt = {x E A>: l {O} : x· Qx = O}
is a subspace with Nt C ker(P) . We pro ceed with

,q = {Ol + A~Nt = Nt·
To increase the space «: the cent ra l trick is to
exp loit (4) for j == 2 which leads to

[(A>YX+XAl]+.c~ (Q) = (A>. )2p-A>' PA).. +PA~.

If x satisfies A~ x E Kt then A1x = 0 (sinee A).. Kt =
{O} ) and PA~ x = 0 (sin ee PK t = {O}) . We infer

z " .c~(Q)x = - x· AAPA)..x.

Hence -.c~ (Q) is 'p~sit~ve semid~finite on AJ'22Kr
Moreover , th e annihilating set N2 = {x E A).. Kl :
x· .cX(Q)x = O} is a subspace with A)..N'; C ker(P) . .
We proce ed with K~ = Kt + AN'; .
Now we can turn to a formal definition of this al­
gorithm. Since we do not require the LI to have a
solution, certain positivity conditions (as appearing
in the above motivation) need not be verified. If
th ey are not true, we allow the algorithm to stop
irr egularly sin ce th en , as can be proved , the LI has
no solution .

Definition 3.1 Fix À E Ca and KB := {Ol. Sup­
pose K ~ has been construeted. Then th e algorith-

] .
m stops irr egularly ij (-I)i .c~] (Q) is not positive

semidefinite on A ~ (j +1 )KJ . Oth erwise defin e th e
neutralizing subspace

and it erat e with

y).. ._ y).. Ai .r)..
"'i+ 1 .- "' i + ).. .Ivi+1·

R emark. To clarify the behavior of KJ und er
transformations of (A, Q) we wil! sometimes stress
th e dependenee on th e data by writing K;(A, Q)

and Nf(A, Q).
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The inclusion K; C K;+1 is obvious. If the algorith­
m does not stop irr egularly th en KJ is well-defined
for all j = 0,1 , ... and th ere exists a (smallest) k
with K~+l = K~ which implies KB C Kt c ... c
K~ = K~+l = K~+2 = .. .. The limiting subspace
K~ is denoted by K; .

Definition 3.2 We say that K: exists iff th e algo­
rithm does not stop irregularly [or À. W e say that
K. exists iff K; ez ists [or each À E Ca, and defin e

K. := L K; .
)..ECO

Remarks.

• If exist ing, all KJ and hence also K. are A­
invariant.

• For À E Ca \ IT (A) it is clear that K: exists
and equals {Ol. Only if À is an eigenvalue o]
A on th e im aginary axis, th e space K: might
not exist or might be nontrivia1. However , if
Qker(A ~ ) > 0 (as appearing in Theorem 2.1)
th en , again, K; = {Ol.

We can now state in generality what has been mo­
tivated abov e.

Lemma 3.3 IJ X =1= 0 then K. exists and sat isfi es
(A· X + XA + Q)K. = {Ol [or all XE X.

Hence the existence of K. and of some Hermitian X
with (A· X +XA+Q)K. = {Ol are necessary condi­
tions for the solvabi lity of the LI. The first condition
amounts to the algorithm not stopping irregularly
for each À E IT(A) n CO, and the second is a vali­
dation problem for a linear equation whose solution
can be constructed if exist ing - both conditions ar e
algebraically verifiable.
It is the new core result of the present paper that
these conditions ar e also suflicient for the existence
of solutions of the LI. As an important structural
result we prove that not only K. C K but in fac­
t equality holds . Hence th e subspace K is exact­
Iy computable without having a solution of th e LI
available.

Theorem 3.4 Th e Lyapunov in equality A · X +
X A + Q ~ 0 has a solution iff K. exists and th ere
is a Hermitian X with (A· X + XA + Q)K . = [D} .
Suppos e X =1= 0. Th en K. C ker(A· X +XA+Q) [or
all X E X and th ere exists a special solution such
that equality holds .

For testing th e existe nce of a positive definit e ele­
ment in X we try to find a large subspace on which
the quadratic form x · X x remains fixed if X vari es
in X. The following can be shown to be a candidate .



and then

Definition 3.5 For each À E CO define the subspace

(9)

(7)

(8)

J(k = diag(J{f
LI = diag(Lf

K = diag(Ko, KI,"" Km),
L = diag(L I, . . . , Lm , Lm+d

( KM) (00)A = 0 Land Q = 0 P

to obtain (recalling AK. C K. and QK. = {O})

K. = {( Xl) I X2 = O}
x2

• all blocks in Ko are smaller than those in L ,

• all blocks in J(k and Lk have the same size mk ,
k = 1, . . . , m, with mk < mk+l ,

with singl e upper Jordan blocks J(k ' L~. This in­
duc es on a vector x compatible to the size of K ,
a vector y compatible to th e size of L, and on
any matrix Z of th e same size as M the partitions
x = (Xk)k, Y = (YI)I, Z = (Zklh l according to (8)
and Xk = (x k)", YI = (yt))" Zkl = (Zkt),,), accord­
ing to (9).

and

where K and L are in Jordan canonical form parti­
tioned as

• all blocks in K ar e smaller than those in L m +l .

'We stress that ext reme cases are not excluded: Ko
or L m +1 or all KI ," ., Km might be em pty matrices!
We also need notations for th e refinem ent of this
partition into

A is nilpotent.

From now on we drop the index À = 0 in Definition
3.1. After a further coordinate change we assume
w.l.o .g.

that these are just th e properties (6) for th e nilpo­
tent matrix Av - ÀvI and Qvv. Suppose that ,
under th e assumption (6) with A being nilpoten­
t , we can construct an X satisfying (5) . Then one
can compute X vv for v = 1, . .. , i with A~Xvv +
XvvAv+Qvv 2: 0 and ker(A~Xvv+XvvAv+Qv v) =
K~(Av - ÀvI, Qvv) . Let us choose Xoo as AóXoo +
XooA o + Qoo > O. For all other indi ces we take
XVI-' as the solution of A~XVll + XVI-'AI-' + QVI' = 0
(which exists by u(A~) n u( -AI-') = 0). Then
A' X + XA + Q = diag(A~Xvv + X vvA v + Qvv) im­
plies that XE X. Moreover, ker(A' X +XA+Q) =
{x: (A~Xvv + XvvA v + Qvv)xv = O} = {x: Xo =0, Xv E K~(Av-ÀvI,Qvv)} = K.(A ,Q) finishes th e
proof.
We have reduced the general problem to th e case
that

(6)K. exists and QK . = {ü} .

By changing coordinates, we can also assume A in
th e shape

From now on we assume that K. exists and th at we
have found an X with ker(A' .f< + ..YA+Q)K. = {Ol·
To prov e sufficiency in Theorem 3.4, we intend to
const ruct an X = X' with

Hence K;"(Av,Qvv) = K~(Av - ÀvI,Qvv) exists
and satisfies QvvK~(Av - ÀvI,Qvv) = {ü} . Note

4 Construction of Solutions

00

P; := L ker(A{) n im(A{) n K;
j = 1

A = diag(Ao AI ... Al )

with u(Ao) C C- U C+ , u(Av) = {Àv} C Co, x, =F
ÀI-' for u, f.l = 1, ... , i , v =F f.l and partition X , Q
accordingly. Noting ALK;" = {Ol, it is very simple

to see that K;"(A ,Q) exists iff K;"(Av,Qvv) exists
and

A'X+XA+Q 2: O,ker(A'X+XA+Q) = K•. (5)

Theorem 3.6 IJ the Hermitian X I, X 2 satisJy
(A·Xj+XjA+Q)K. = {O},j= 1,2, thenx'Xlx=
x' X 2x holds [or all x E P•. IJ X contains positive
definite eiements then 07~e/all Hermitian X satisJy­
ing (A' X +XA+Q)K. = {Ol is/are positive definite
on P•.

Remarks. This necessary condition for the exis­
ten ce of positive definite solutions to the Lr is veri­
fiable. It can be shown constructively that it is al­
so sufficient if A has precisely one J ordan block for
each CO-eigenvalue . We conjecture th at sufficiency
also holds for a general A.

With Q := A' X +X A+Q, we can instead determine
a Hermitian solution of A' Z + ZA + Q 2: 0 with
ker(A' Z + ZA + Q) = K. since then X := Z +
..Y satisfies (5) . It is not difficulty to prove that
K.(A , Q) exists iff K.(A, Q) exists, and that both
spaces coincide. Herree we can work w.l.o .g. with
th e hypotheses that
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Indeed we will fulfill (5) with X structured as

.: ~ ) such that A· X + X A + Q equals

(
0 J< · Y + YL )
* L· Z + Z L + Y· M + M .Y + P . (10)

In the remainder of this sectio n we clarify how to

compute a Y E Y := {Y: J<·Y +Y L = O}
for which L· Z+ZL+Y · M +M·Y+P > 0
has a Hermitian solution Z .

By Theorem 2.1 , we hence need to guarantee, for
any basis matrix E of th e kemel of L, th e existence
of Y E Y with E ·(Y· M + M·Y + P)E > 0 or

(Y E)*(M E) + (M E)*(Y E) + E· P E > O. (11)

Not e that this is a linear matrix inequality with a
struciural constraint on Y and hence gen erally very
difficul t to handle. Luckily enough the pres ent case
is indeed tractabie.
We choose E (in our coordinates) as simpIe as pos­
sible. With e~ := (1 0 .. . of oflength equal to the
size of L~ , E, := diag(el ... et' ) is a basis matrix
of ker(L,) and hence E := diag(E1 . . . Em Em+d
is one of L .
If we partition Y as M , we now intend to identify
the st ruc ture of (M E)* (Y E) for Y E y. Clearly
Y E Y iff

YkÎ), E Ykl), := {W: (J<k)*W + WL~ = O}

for all indices. For our purposes it suffices to find
Ytf e~ whi ch is pr etty simple since the structure of
YkÎ ), E Ytf is easily described explicit ly (Gantmach­
er (1986)) (with d(.) denoting th e size of a square
m atrix):

Therefore (M E)*(Y E) equals

where
Ykl is free for k ~ /.

With P := E · P E , we hence need to prove th a t th e
constraint LMI

Sry + Y · Û + P > 0, Ykl = 0 for k < / (14)

is solvable. Here is th e point where we apply Theo­
rem 2. With

(Z ...
and

Bj := (0 . . . 0 I 0 ... 0)
"--v---'

j -1 bloeks

(whose columns are partitioned as those of A j ) ,

the LMI (14) is equivalent to 'LJ= l (AJ XjBj +
BJ XJ A j ) + P > 0 with [ree X ], Since AH 1 re­
sults from Aj by canceling a block row , we have
ker(Aj) C ker(AH 1). For applying Theorem 2,
we hence need to show for j = 1, ... , m + 1 (with
Am+! := 0) that

Aj z=O, Zl = O, ... , Zj _1 = 0, z =/= O=>z· Pz > O.

A pr etty involved chain of arguments reveals that
this is a consequence of th e existe nce of K. and th e
resulting nonnegativity condit ions in Definition 3.1.
We conclude th at we can det ermine a solution Y of
(14) . Then it is possible to compute a Y E Y with
(13). Hence (11) holds and implies that L · Z + Z L +
Y" M + M· Y + P > 0 is solvab le what finishes the
construction.

Here is the reason for introducing th e partitions (8):
By (12) , if Y vari es in Y th en Ykl vanishes identi­
ca lly if k < / and Ykl is a [ree Juli b/ock for k ~ /.

(12)
As for YkÎ), e~ we introduce a notation for t he last
element in Mk/e~ = (* .. . * m'knT and collect

as kh l := (m'kn" ), , Û := (Ûklh " 1'kl := (Y'kn"),,
Y := (Yk l)k l. Because of the leading zeros in (12) ,
we infer for any Y E Y th at

(M E )*(Y E) = Û ·1'. (13)
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Abstract. The H2-norm frequency-weighted optimal model reduction problem is anal­
ysed. Necessary optima!ity conditions are derived for the genera! case with input and
output weights . For non-dynamic weights th e optimal reduction problem is reformulated
as aspecific projection of dynamics problem which is solved numerically by a new algo­
rithm that forces each new iterate to be a balanced approximation. The paper shows the
difficulty with formulating the dynamically weighted problem as a direct projection prob­
Iem . The proposed algorithm shows remarkably fast convergence for the non-dynamic
case. Convergence and global optimality are not analysed analytically. This paper also
derives a method to create a central approximation within a set of modeis. The fixed-erder
central approximation requires the solution of an optimalorder reduction problem. Opti­
mal eentering and reduction play an important role in the design process of a limited-order
controller yie!ding well-specified performance and robustness properties. The algorithm
is tested on two examples, one of which shows the existence of a non-global minimum.

Keywords . Model reduetion; H 2-norm optimal; frequency-weighted reduction; nominal
modelling; optimal central approximation; numerical algorithm.

1 Introduetion

Order reduction is an important issue in model­
based cont ro l design , both for deriving manageable
plant models that can be used in com pute r pro­
grams for controller computation, and for reducing
the resulting controller for reasons of implem enta­
tion , robustness and cost . In order to avoid lengthy
or non- converging iterations in the design process
of high-performance controllers, order reduction is
ofte n used to diminish th ese numeri cal problems.
When and where order redu ction should be applied
depends highlyon th e defined contro! problem and
th e properties of th e available model. Answers to
th ese questions only arise in the course of the de­
sign. This means that order reduction is not a well­
defined stand-alone problem and it explains the ef­
fort to limit the amount of work (and time) invo lved
in reduction steps.
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Existing model reduction methods can be very
valuable, but each has to be tested in an appropri­
ate framework . Modal reduction and balanced re­
duction (Moore, 1981) don 't need any further intro­
duetion nowadays since th ese methods have gained a
firm position in today 's contro! design education and
practice. These simple and very direct methods can
be tried a number of times without wasting much
time. Optimal Hankel-norm reduction (see Glover
1984) is considered com putat ionally more demand­
ing , yet it is t he only method that provides a s­
traightforward construct ion of a reduced-order mod­
el th at in fact is optimal in a sense (the Hankel-norrn
is the maximum Ranke! singular valu e of a system).

The search for a construction of the Hoe-norm op­
timal approximation is ongoing (Kavranoglu, 1994)
and is most wanted in relation with Hoe-control de­
sign. Optima] reduction in H 2-norm has been stud­
ied in many areas. One of the first applications was



in the area of network synth esis to approximate de­
sired t ransient resp onse (Aigrain & Williams, 1949).
T he t ransfer fun cti on necessary condit ions were gen­
era lized to the mul tiv ariable case by Krajewski et al.
(1993). St ate-sp ace necessary condit ions can be
found in Wil son (1970). These conditions were
tra nsforme d into th e opt im al projection equat ions
by Hyland & Bern stein (1985). The solution of th ese
conditions is difficult . A larg e effort is dir ect ed to­
wards homotopy solution of th e optimal projection
equat ions (see for instanee Zigié ct al., 1992). There
does not yet exist a complete th eory that charac­
terizes th e existence, uniqueness and properties of
th e opt im al solution (Baratchart et al., 1992). Es­
pecially th e solutions to th e necessary conditions for
an optimum are not com plete ly understood . These
equa tions may weil have multiple solutions and it
is not clea r how to characterize the global opt imum
ana lytica lly. Thus one has to rely on numerical ap­
proaches. Curre nt a lgorit hms to solve the necessary
cond it ions seem to be lit tle used in practice, whi ch is
probably due to the computational complexity (ho­
motopy me tho ds) or the st rong dependence on goo d
initial approximations (for iterati ve meth ods ).

T his paper cont ributes a relati vely simple itera­
tive algorit hm to solve the necessary condit ions. AI­
though we cannot prove any convergence proper ties,
only a few iterations suffice to find solutions of the
optimal projection equations in the majori ty of tes t
cases considered . T he cons istent usage of projee­
t ions that are facto red su ch th at the redn eed-ord er
models are bal an ced in each st ep , are believed to be
crucia l for convergence .

It is important to realiz e that th ese optimal solu­
tions ar e not dir ectl y relevant in feedback system­
s: th ese require th e solution of so-called frequency
weighted closed-Ioop reduction problems . One of
the first extensions of order reduction to cont rolled
systems was du e to Enns (1984) , who develop ed îte ­

quettcy weighted balanced redu ction , and who ap­
plied it to closed-Ioop systems.

Other extensions of th e bal an cing idea to closed­
loop relevant redu cti on problems ar e Graph or frac­
tional balanced redn eti on (Meyer , 1988) and LQG­
balan ced redn etion (J on ckheere & Silverman , 1983).
Two other method s tha t embed ord er reduction in
a relevan t way in the control design process are de­
scribed in Villemagne & Skelton (1988) and Wortel­
boer & Bosgra (1994). In th e last method , it erations
with mod el and cont roller reduction are exploit­
ed based on closed-Ioop balan ced reduetion, which
genera lizes frequency-weighted balanced reduction .
Non of th ese methods is optimal however .

A first step to optimality was th e solution of spe­
cific îreou en cy-weighted optimal IIankel-norm re-
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du etion problems (Latham & And erson 1985, An­
derson & Liu 1989, and Zhou 1993). The objec­
t ive has always been to get close to th e frequ ency­
weighted optimal solution in H oo-norm . As Zhou
(1993) remarks , th e opt imal Rankel-n orm solut ion
is no guarantee for small weighted H oo-norm erro rs.
Another approach to limit th ese errors could be the
development of weighted H 2-norm optimal redu c­
tion . There has not been mu ch interest in such
a form of Hç-norn: optimal reduction. In Halevi
(1992) the minimization of a squared singl e-sid ed
frequ ency-weighted error is addressed. This is e­
quivalent to H2-norm optimal redu ction with either
input weight or output weight . The general case of
input and output weight is tr eated in Wortelboer
(1994). This paper tri es to present a full and t ra ns­
parent derivation of the coupled equat ions tha t the
opt imal solution has to sat isfy. It will be shown
that th e nice structure th at exists for unweigh ted
H2-norm op timal solut ions is corrup ted by dy na mic
frequency weights. This has severe implica tions for
th e implementation of numerical algori th ms.

Once we have an efficient algorithm for H ç-noun
optimal redu ction , we can sharpen many resul t­
s that have previously been obt ained by ba la nced
redu ction : th e redu cti on errors are always smaller
measured in H ç-nottn , and often also smaller mea­
sure d in Hoo-norm .

An impor tan t issue in robust cont rol is the char­
ac terization of the robustness objective. In ot her
words , what variations are to be coped with by the
cont roller? A mathematical elegant obj ective is to
meet well-defined closed-loop sp ecifications for a se t
of models using a constant feedback controller. This
set may consist of a finit e number of mod eIs, it can
also be defined as a 'b ali ' around a central mod el.
In robust control th e central model is oft en called
' nominal mod el ' , and th e bali represents th e un cer­
tainty. The issue here is to find an appropriate norn­
inal model based on a discr et e set of modeIs. This
pap er contributes th e following : aspecific cent ral
approximat ion is th e best nominal model from both
an H 2-norm and an H oo-norm point of view and lim­
itation of th e ord er of th e nominal model requires
th e solution of an H2-norm optimal reduction and
an H oo-norm optimal reduction problem resp ective­
Iy. This also holds in th e frequency-weighted case.

The organisation of this paper is as follows. Fir st ,
som e preliminaries are summarized (Section 2).
These include properties of projections, H 2-norm,
H oo-norm, and Lagrange functions. Section 3 de­
rives the conditions for th e H 2-norm optimal solu ­
tion in the frequ ency-weighted case and links th ese
conditions to th e optimal proj ection equat ions for



the unweighted case. The new algorithms are pre­
sented in Section 4. Section 5 describes the optimal
fixed-erder central approximation of a model set. In
Section 6 numerical examples is given, and a discus­
sion is given in Section 7.

2 Preliminaries

Let G = (A , B, C, D) represent a minimal real­
ization of a linear stabie finite-dimensional system,
x= Ax + Bu, y= Cx + Du, The associated trans­
fer function matrix is G(s) = C(sI - At1 B + D .
We use G = (A, B, C, D) to denote a specific real­
ization, not the associated transfer function matrix
G(s ). The order of G (the McMillan degree of GCs)

is the size of A and will be denoted by n. A minimal
nt h-order realization can be written in the following
form

Reduction can be achieved by operating on the row
and colum n dimension of th e state-space matrices.
Let Lr , n; E IRn x r with 0 :::; r :::; n. We define

G = [L;ARr L;B] ~ n (G) (1)
r CRr D [Lr.R r] n

If L; R; = Ir , th en th e red uction is in fact govern ed
by a projection of dynamics with projection matrix
IIr = RrL; . We refer to Wortelboer (1994) for a
detailed description and analysis of th e projection
of dynamics principle. Here we just state that any
proj ection matrix has a factorization II = RL· of
which th e factors satisfy L*R = I. The property
II 2 = II can also be used as a definition of a projec­
tion matrix. The matrix pair [Lr, Rr] fully defines
th e projection of dynamics. In th e sequ el we will
oft en use th e term 'projection ' when we mean 'pro­
jection of dynamics'.

Definition 2.1 (H2-n o r m of Gn (s))
The Hs-norm of a strictly stabIe and strict1y proper
system Gn(s) is

I

IIGI12 = (217'i 1: tr(G~CjW)Gn(jw)) dW) 2' (2)

impulsive input. For MIMO systems a similar inter­
pretation requires the notion of an impulse with ran­
dom input direction (Zhou et al. 1993), wet) = TJti(t)
satisfying E(TJTJ*) = I n w where E(·) the expectation
operation. Then the H 2-norm is the expectation of
the output energy.

Lemma 2.2 (Properties of the H 2- n o r m ) Let
Gt.s) and Ht s ) be strictly stabIe and strictly proper
square transfer function matrices. Then the foIlow­
ing two properties hold:

11 [G H] 11 ~ = 11[ ~ ] 11:

= IIGII~ + IIHII~ (3)

liG + HII~ + liG - HII~

= 211GII~ + 211HII~ (4)

Proof: We can prove (3) by exploiting th e fact that

tr( [ ~ ] [G* H*]) = tr(GG*) + tr(H H*).

Property (4) is also known as th e 'parallelogram law '
in an inner product space (Luenberger 1984). To
prove (4) we first introduce th e inn er product un­
derlying th e H ç-noun:

(G , H) = 2~I:tr(G* (jw )H(jw )) dw (5)

Then the following is immediate

IIX + YII~ =

.i. J OO tr((XCjw ) + Y (jw))*(X(jw) + Y(jw))) dw =27'i
- 00

(X, X) + (Y, Y) + 2 Re (X, Y) =
IIXII~ + IIYII~ + 2 Re (X, Y)

If we take -Yes) instead of Yes), the last term
changes sign and disappears in the addition. 0

Notice that the above lemma does not hold for the
Hoo-norm. The H 2-norm can be computed as

with P the controllability Gramian of G solved from
the linear matrix equation (the controllability Lya­
punov equation)

We can also use (6, 7) as the definition of the H2­

norm. This definition will prove convenient in es­
tablishing the dependenee of IIGII2 on state-space

with G~(jw) = G~(-jw).

With H (t) = Ce A t B the impulse response of G;
we also have due to Parseval 's relation (see for in­
stance Rudin 1966)

The H 2-norm of a SISO system can be interpreted as
th e square root of the energy of the output due to an
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IIGII2 = .jtr(CPC*)

AP+PA*+BB* =0.

(6)

(7)



1
IICiloo = sup Àmax(C (jw)"G( j w )) 'i (13)

w

Fin ally we give th e definition of th e H oo-norm of a
transfer fun ction m atrix . The Hoo-norm of Gts) is

(11)A" Q + Q A +C*C = 0

Ll"'W(G-G,)V= [W].

This section is eoneerne d with th e construetion of
Cr that aehi eves a minimum of IIW(Cn - C r)VI12 .
Transfer function matrices V(s) and W (s ) play th e
role of frequ ency weights. Mod el reduction in a
weighted setting ean be very effect ive to simpli­
fy models that int end to deserib e th e transition
from (V (s)-)filtered signals to new sign als (that may
be filtered additionally by W (s)) . In Wortelboer
(1994) , the derivation of necessary conditions to
solve th e H2-norm optimal Irequeucy-weighted re­
duction problem

has been given for th e first time. This section gives
a mor e detailed derivation and besides , shows that
in th e unweighted case th e opt imum is governed by
projecti on of dynamies.

This is precisely the observabilit y Lyapunov equa­
t ion and th us Q can be identified as the obse rvab ility
Gramian.

From now on we identify P and Q as the eon­
trollability and observability Gra m ian of G =
(A , B, C , D). This sim plifies (10) to

ó.L = tr(CPóC" + QB8B" + QPóA") (12)

3 N ecessary conditions for H 2 - n o r m

optima1 weighted reduction

We see that th e introduetion of Lagrange multipl ier
matrix Q allows independ ent variations in Pand
returns a new eonstraint equat ion resulting from th e
required invariability of f- for 8P:

3.1 The square weighted case

Let W (A w , B« , Cw , D w ) be any mnu­
mal realization of W (s) and similarly let V =
(A v , Bç , C v , Dv ) be any minimal realization of
v:». We consider Cr = (Ar , e. ,Cr, D) , i.e. we
do not allow th e D- term to cha nge in th e reduction .
T his presupposes tha t D w and D v sat isfy certain
rank condit ions (Halevi 1992) , and in case both D w
and D v are square, t his presupposes that D w and
D' ; are inver tible, whieh does not imply a severe
practi cal restriction. Next , define

óf- = tr(CPóC* + QBóB" + QP8A"

+ } óP (A" Q + Q A + COC)

+tóQ (A P + P A" + B B" )). (10)

f- = } t r(C PC" + QBB" + 2QPA " ). (9)

paramet ers of Gt.s). We remind that IICII 2 does not
depend on th e realization that is used to compute
th e H 2-norm. To find stationary valu es of th e H 2­

norm of C (s ) with resp ect to varying system par am­
ete rs in (A, B , C, 0 ) we want to express th e vari­
ation of IICI1 2 in te rms of variations in A , B , and
C . In the sequel we will take the squa red H2-norm
as a starting poin t in order to get rid of the squ are
root in (6). The way in which variations in A, B ,
an d C affect } II CII ~ cannot be determined dir ectly
since we cannot exp licit ly exp ress the vari ation of P
in te rms of vari ati ons in A and B ; this is du e to th e
fact that we cannot solve th e linear matrix equat ion
(7) for P explicit ly. From the vari a tional th eory of
Lagran ge we know tha t we can incorporate the set
of ~ n (n + 1) ind ependent constra int equations from
(7) into the scalar function } I IC I I~ = } tr(CPC*)
using a Lagr ange mult ip lier vecto r in an inn er pro d­
uct (Luenberger 1984) . We define the so-called La­
grangian in matrix form:

J the a u thors thank a n a no nymous refer ee for pointing to
the importance of this co n d it ion .

Next consider (independent) first-order varia t ions
6A , se, se, ÓP, and so. We then find

f-( A , B , C, P , Q) ~ t tr(CPC ")+

t tr(Q(AP + PA" + B8*))
(8)

with Q a matrix of Lagrange multipliers. The in­
ner product in this matrix formulation is represent­
ed by th e trace op eration on th e product between
Q and AP + PA" + BB". The Lagrange forrnu­
lation is based on th e assumption that a loeal ex­
t remum point (A,B,C,P) of } t r(C P C* ) satisfying
(7) is a regular point (Luenb erger 1984) . For our s­
mooth problem , this regularity eondition is satisfied
for (A ,B) a strietly stabie controllabie pair 1. Now,
fitst-order necessary conditions for an Hs-noru: min­
imum ean be deriv ed from f-(A , B , C, P, Q) . Instead

of looking for A, B,C that can be varied infinitesi­
mally without causing a change in }IICII ~ , we are

now looking for A, B,C, P,iJ for which infinitesimal
vari ati ons do not cha nge th e Lagrangian f-. The
idea is that we ean allow ind ependent variations of
P and Q in (8) as long as we are looking for 8f- = 0:
th e const raint equations for Pand Q result from th e
requirem ent that neither 6P nor 6Q may change f-.
We rewrite (8) using standard traee op erations to
obtain
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(18)

(16.b)

(16.c)

(17.a)

(17.b)

(19.a)
(19.b)

(22.a)

(22.b)

C]+

(21)

o
o

o
O.

C = C"D- "D -1
v v v v

B = D-1D-"B·w w w W'

66. A 6 * 6..6..

AP+PA +BB
.0.* A 6. A .0.* A

A Q+QA+C C

6. A 6. A

[QB]rD~ + [QP]rvC~

66 AA

D~v[CP]r+ B~[QPJwr

Then (16.b) can be rewritten as

B; = (L~Pwv - Prv)Cv + [L; L~ J x

([ .i. ]+ [ ;: ] C v) . (20)

To derive compact formulas for Ar, Bç ; and Cr, we
introduce

such that (16.a) can be rewritten as

The matrices P; and Qr are symmetri e positive def­
inite if W , C , V and C r are all st rict ly st abie and C r
is minima!. We define

Similarly, (16.c) yields

Cr = Bw(QwvRv+Qwr)+( [D';Cw

B w [ o; Qwa ]) [ ~~ ] .

As derived in th e prev ious section, the necessary
conditions also include the following two Lyapunov
equat ions

A* A 6. A

= ErQPEr
6* A A A

ErQPE v
.0. " .0..0..0.

EwQPEr
.0." .0. .0.

= ErQB
.0..0..0.

CPEr

.0..0.

[QPJr
.0..0.

[QPJr v
.0..0.

[QPJwr
.0..0.

[QBJr
.0..0.

[CPJr

A A* A A* A 6*

E r8ArEr + E r8BrCvEv - E wBw8CrEr
(15.a)

(15.b)

.0.

8A

.0.

8B

Following the convention of Wortelboer (1994) we
have (empty entries refer to zero matrices)

[

A w

.::1=

Cw

Let th e cont rollability Gramian of L1 be partitioned
as

[

r; P
wa n: P

wv 1
ft = Paw Pa Par Pav .

r.; r.; r. r.;
r.; PV G r.; r;

The same partitioning is applied to th e observability
'"Gr amian Q. Further let

Êw ~ [ I~ ] , Ê, ~ [ ~1,Êv = [n
(14)

We can also partition matrix products. A similar
notation is used. The following matrix product part­
s will be needed in th e sequel:

.0..0. .0.

The only possible variations in A, B, and Care due
to 8A r, 8Br and 8Cr:

Subst it ut ion of (15) in (12) gives

For C r = (Ar , Bç , Cr , D) to be th e minimizing so-
.0.

lution we need to have 8.t = O. This means that th e
following matrix equat ions have to be satisfi ed:

.0. A D. 6 * .0. 6..ö.* A A .0. *

ss: t r(C P 8C +QB8B' +QP8A )
6 6 6 A

t r( (ErQPEr ) 8A ; ) +
6* A A .0. * A 6. A

t r( (ErQBD~ + ErQPEvC~) 8B;) +
A 6. 6 .6 * 6. A 6

tr( (-D~CPEr - B~EwQPEr) 8C; )

We use th ese to derive an implicit solution for A r .
Premultiplying (22.a) by [L~ L; -t; L';,] and
postmultiplying by [0 0 pr-

l 0 J" yields

A r = L~AwRw + L; ARr + L~AvRv +

L~Bw (CRr - Cr) + (L ;B - Br) C vRv .
(23)

The result given in (23) can also be derived by
premultiplicationof (22.b) by [0 0 o;' 0 J and

postmultiplication by [R7.v R; Ir R ';, J".
Summarizing, the necessary condit ions for an op­

timum are given by (18, 20, 21, 22). These equ a­
tions are strongly coupl ed. Once th ey are solved,(16.a)

(15.c)

.0..0.

[QP Jr = 0
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th e redu ced order mod el follows from (23, 20, 21) .
It remains to be checked if this reduced order model
is a minimum. In order to find solu tion strategies,
we first study the easiest case in which th e weights
are all st a t ie.

3.2 Statie weights and optimal projections

For W( s) = D w and V(s) = D v (18) and (23 , 20,
21) specia lize to

(24)

a 'balancing factorization ' of th e opt imal projecti on
matrix: tt, = R rL; with (L; Ak , L;B , C Rr, 0) a
balanced op timal r th-ord er realiz a tion .

In th is context it is also interesting to ana lyse
the influence of the origina l realiz at ion on the pro­
jection matrix. In Wortelboer (1994) it was shown
that th ere exist s a realization of GCs) such that the
optimal redu cti on is a mere t runca tion. Then the
associated optimal proj ecti on is orthogo na l. This
cont rasts with Hyland & Bernstein who eliaraeter­
ize th eir optimal projecti on as 'o blique '.

and

APGr + PGrA; + BB; 0
A*Q Gr + QGrAr - C *Cr O.

Substituting PGr = RrPr and QGr = -LrQr (see
(17)) , we obtain

4 Algorithms

3.3 Reexamination of the weighted ca se

At this point we can explain the main difference
between th e weighted and unweighted (or statica lly
weighted) case . The absence of states X w and Xv in
the statically weighted case enabled th e reformula­
t ion of the necessary condit ions into the proj ecti on
form. We cannot prove that the opt imal solut ion in
the dynamically weighted case can also be obtained
by a proj ecti on.

In th is section we describ e th e algorithmic approach
to find H 2-norm optimal approximations. The idea
was first introduced in Wortelbo er (1994) and th e
computer code developed by th e au thor is freely
available in the form of a tooi box for use with
MATLAB™ (version 4). The so-called Wor-toolbox
for Weighted Order Reduction can be obtained by
anonymous ft p2 .

In this section we first give th e algorithm for th e
unweighted case. The succes of this algorithm s­
timulated the sear eh for a similar algorithm for th e
weighted case, but the abs ence of a projection foun­
dation seems to hamper areliabie implementation.
Nevertheless, solutions for weighted problems with
smooth weights are numerous.

(25 .a)
(25.b)
(25 .c)

respectively. T his mean s th at a necessary condition
for statica lly weighted Hç-nom: optimal redu cti on
is that the redu ced-order mo del is a projection of
the full-order model. T he projection is governed by
the projec tion matrix IJr = RrL;. Not ice that the
redn eed-ord er mod el depends on D w and D'; (whi ch
cannot be concluded from (25) directly) , due to th e
fact that th e optimal projection solution also has

A A
to satisfy the two Lyapunov equat ions for Pand Q
which include both D w and D ,),

For th e constant weighting case, the Lyapunov
A A

equa t ions for Pand Q can be divided into th ree
parts each : a part asso ciated with C , a part asso­
ciated with Cr , and a part in which the coupling is
expressed . The coupling equat ions form th e crucial
part:

Note that Pr and o, are th e Gramians of Cr.
Wi th ou t loss of genera lity, we may assume that
the optimal redu ced-ord er ap proximation à . is in
ba lanced coordinates. Thus we can always ensure
that P; = Qr = diagt ov). Similarly , we can as­
sume that C is a balan ced realiz ation such that
PG = Q G = diag(G'G)' Not ice that the optimal pro­
jeeti on matrix !I r only defines th e transfer fun ction

matrix Gr(s), th e realiz ati on eme rges aft er a fact or­

ization : with it, = k; l; we find th e realization

à , = (lrAk , L,», ck. , D). In order to arrive
at a balanced opt imal approximation we thus need

A R r Pr + RrPrA; + BB;
A* LrQr + c.o,»; + C*Cr

o (26. a)
O. (26.b)

4.1 The unweighted case

The main idea is to use an it erative schem e in which
cur rent redu ced-order matri ces A r, B r , and Cr (to­
gether with P; and Qr) are subst it uted in (26) which
is solved subsequently for Lr and R; afte r which
new A r, B« , and Cr can be compute d (25) . The
key modification to this ra th er sim pIe schem e is a
(minor ) adj ust me nt of n; such that Lr , Rr forms
a projection (i .e. sa t isfy (24)) . A further modifi­
cation is that inst ead of arbitrary realizations, all
int ermediate results ar e rewritten in balanced form.

2ft p: ftp-rnr .wbrnt.tudelft.nl
us ername: anonyrnous
password: your e-m ail address
directory : jpubjwortelboer
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Now suppose we hav e preliminary L~O) , R~O) sat­
isfyin g (24) and a preliminary approximation G~O).

For k > 0, we can solve for L~k ), mk
) from

AR~k)È~k -l)+ R~k) È~k -l)Ä~k- l)" +BÈ~k- l )" = 0
A* L~k)È~k- l )+L~k)È~k-l)Ä~k-l)+C*ê~k-l) = 0

Only when the solution has converged L~k ) * R~k ) =
Ir holds. The cruc ial st ep in th e algorithm is to
adj ust th e pair Lr, R; such that

-( k )" -e k)• Lr Rr = Ir

• ë~k ) is balanced

The following approach is a slight modification of
th e approach proposed in Wortelboer (1994).

Proposition 4.1 (Reorthonormalization) Let
R ; E IRn x r and Lr E IRn x r then

s~tisfy i;. Ëlr_= Ir ' whiJeJ'r can be chosen such that
G; = (L;ARr , L;B , CRr, D) is an rth-order bal­
anced realization .

In th e iteration we can replace L~k ) by L~k+l ) (and

mk
) by mk+l

) ) , but this is not very rob ust . Esp e­
cially in the first iterations it is better to use part
of th e previous solutions (0 :::; 0' :::; 1)

(27.a)
(27.b)

' (k+ l ) ' (k+ l )Of course we have to adjust Lr and Rr again
such that L~k+l) and R~k+l) define a new balanced
approximation (see (1))

~(k+ l)

Gr = n[L~k+l ) .k~k+l )](G) ,

~( k + lr ~( k + l)with Lr Rr = Ir . Ir th is iteration converges
th en this rth-order balanced realization will eventu­
ally satisfy th e necessary conditions. There is not
(yet) a formal proof of convergence, but th e rem ark ­
able results obtained so far suggest that th e formula­
t ion of the problem in terms of balancing projecti ons
avo ids most of th e numerical probl ems encounte red
in alte rnative algorit hms. Again it is stressed that
convergence does not im ply that th e global mini­
mum is found .

4.2 The dynamically weighted case

T his schem e can also be extended for weighted op­
timal Hç-tioru: reduction (see Section 3) . In each
• • L:. L:.
iterat io n step we com pute Pand Q for a given Cr ,
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calculate RR and LR and apply a small modification
to get RR and i; th a t satisfy (18). With this pro­
jection pair and current valu es for PW Y , Pr y , PG y ,

r; Q W Y . c-: QWG ' and a«.new e. , Cr an d Ar
can be computed. Similarly as in th e unweighted
case (27) , th e modification of R R and L R is damped.
This is also done for th e updates of B; andj or Cr'
The tooibox function weigH2R applies to opt im al
H 2- norm frequ ency-weighted redu ction. For the un­
weighted case we have optproj . Both fun ctions
have restart facilities. To check th e optimality we
can use gr adH2R for both cases: it computes th e
derivatives a.t j aAr, a.t j aBr, and a.tjoCr.

It is also straightforward to apply opt imal
H ç-uomi redu ction to th e Graph of a system
(Vidyasagar 1985) . Recall th at balanced redu c­
t ion of th e Graph of a system is used to define
Graph-balanced reduction . The correspo nding tool­
box functions are g optH2R, and gbalR.

5 R educed-order central approxirna­
tion

Here we discuss a method to obtain a nominal mod­
el from a discr et e set of modeis. As we have said
in the introduction , robust control is oft en pursued
by deriving a controller with a guaranteed perfor­
mance level on a set of models around a nominal
model. The variations that the controller can cope
with are often cha racterized by an H co-norm dis­
tance measure with respect to the nominal model
and a maximum distance value. In the ideal sit­
uation for robust Hco-control design the eentering
should be performed in an H co-norm setting. Let
the Hco-norm distance measure be

for C(i) E 9 any model from the discret e model
set 9. The best nominal model th en minimizes
8co(9,C nom ) ' This minimization problem cannot
yet be solved in a structured way.

We can also adopt the point of view of Miyazaw a
& Dowell (1989) and cast the problem in an H 2­

norm setting. Then we use th e following distance
measure

[
G~i)] [j] G

C(i:+ I) ~ nom

2

First we consider th e simplest case with two modeis:
9 = {Ca,Cb} ' We are int erested in constructing a
third model that is close to both Ga and Gb. Mor e



(32)

(34)

(37)

(33)

(35)5(Ç ,L1)

[I I I]r=[O 0 0] .

H(Ç , L1)*H(Ç , L1)

Using (33) we can derive

5(g , L1)* 5(Ç , L1)

[

Ga"- Gm j
Gb - Gm .

Gc-Gm

V3L1

From the definition of IIHII2 (2) and IIHlloo (13) , we
see that both norms have a kemel H* H. Using (34)
we conclude that IIH(9 , L1)lIp = 115(9, L1)llp for both
p = 2 and p = 00 . Since th e only free parameters
for minimizing th ese norms ar e within L1 , we can
conclude that th e central full-ord er approximation
Gm is optimal in both lh-norm sense (82 (Ç,G m )) ,

and Hoo-norm sense (e5oo (Ç, Gm ) ) . If th e approxi­
mation has to be of a fixed ord er, we have to find a
L1 = G r - Gm with minimum 11L1l lp such th at 7' does
not exceed the maximum allowab!e valu e. Thus th e
best fixed-order centra! approximations are optimal
reduced-order approximations of Gm .

For th e general case of centering an arbitrary
number of models we state the following.

Proposition 5.1 (Center of kmodels)
Let G (i ) ' i E [1 , ... , kj, farm a model set 9 with
strictly stabIe and st rictly prop er m odeIs, and let
G; be an rth-order strict ly stabIe and stric tly prop­
er m odel. Th e rth-order solut ion to the following
nominal m odelling problem ,

Let

[

~ J _lJ _lJ]333r - _lJ ~ J _lJ
- 3 3 3 '

-~I -~I ~ I

th en 8p(9 ,Cm + L1) = IIH(Ç, L1)lIp. A crucia! prop­
erty of ris

The eentering obj ective is the same as in (29 , 30) ,
but here we formuiate it as a search for th e mini­
mizing L1:

~lrn [ G~ l) ] _ [ ~] o, (36)

G(k) I
p

îor p E {2, oo}, is the solution of the optimal model
reduction problem

and

(29)

(31)

which is an improvement compared to

liGa - Grll ~ + 11Gb - Grll ~

II HGa - Gb) - L111~ +
II H Gb- Ga) - L111~

~ t li Ga - Gb l l~ + 211L111~·

with

with

The prie e we pay is an incr eased ord er . For simula­
tion and control design, we want to have a lew-order
mode! c, with small distance measures 82(9 , Cr)
and 800 (Ç, G r ) . We formulate the following fixed­
order eentering problems (p E {2, oo}):

c.; = t (Ga + Gb ) .

First consider p = 2. The following expression can
be derived straightforward!y:

with p any system norm. This means 600 (Ç, Gm ) =
t llGa - Gbll oo , whereas 6oo(g , Ga) = 6oo(Ç,Gb) =
liGa - Gbll oo. Similarly we have

precisely we look for a new model Gm that mini­
mizes 600 (Ç, Gm ) or e52(Ç, Gm ) . A straightforward
centering, Gm = HGa + Gb) achieves

The minimization problem (29 , 30) can be reformu­
!ated as an optima! reduction prob!em. Therefore
we write

Note that a simila r derivation ean be given for prob­
!em (29, 30) with p = 00 . This will be shown next
for th e three model case: 9 = {Ga,Gb,Gc}. We
mak e Gm = ~(Ga+Gb+Gc) and set G; = Gm+L1.

Since Ga and Gbare given, opt ima! eente ring implies
a minimization of 11L111 2. T he optimal eente ring so­
!ut ion with unconstrain ed order is G; = Gm . For
fixed-order cente ring, the op t ima! G; can be solved
from th e following optima! redu cti on problem
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Proof: Let G; = Gm + .11 , substititute th is in th e
p-n orm expression of (36), giving

with
k

o: = iLG(i)'
i = l

(38)

6 Numerical examples

First we test our algorithm for weighted redu cti on
on a test probl em defined in lit erature, and second
we look at the problem of finding a sing le nominal
model from two slight ly different models of the sa me
order .

with

For p E {2,oo} , we can invoke the f-property

6.1 Frequency weighted reduction of a
sixth-order filter

1

nes)

sS + 3.8637s5 + 7.464184 +
9.14168 3 + 7.46418 2 + 3.8637s + 1

n es)

G s(s)

As a first example we take th e system and weights
as in Latham & Anderson (1985). Gis) is a sixth­
order Butherworth filter with 3dB point at w = 1
(low-pass filter).

(39)

and rewrite (39) as

[1 .. : I ] f = [ O " · O ]

Minimization of (40) implies minimization of 11L1llp ·
o

( 8 + 1)2
W (s ) = ~c....-.:.---.!..._

S 2 + 2as + 1

with 0 < a :::; 1. Primarily it was th eir obj ec­
tive to make IIW(Gs - G4)1100 as sm all as possi­
bie for G4 (s ) a stabie fourth-order approximation .
Here we also take IIW(Gs - G4)112in consideration .
We take a = 0.1. For this case, Latham & Ander­
son found a weighted Hankel-norm optimum (04(S»)
with IIW(Gs - 04)11 00 = 0.031. The authors did
not provide th e model data nor th e H2- nor m of th e
weighted error . For this weighted reduction prob­
lem we have computed th e following fourth-order
approximat ions (see Wortelboer 1994 for a full ac­
count of the notation) :

To have a good approximation for frequ en cies
around w = 1, Latham & Anderson proposed a
frequency-weighted opt im al Hankel-norm redu cti on
technique using th e following type of second-order
weighting functions

(40)

The opt im al solution can be interpreted as the opti­
mal reduced-order approximation of the mean mod­
el Gm . The result of Miyazawa & Dowell (1989) is
covered for p = 2. Note that the ultimate goal in
eentering for robust H00 control design is th e min­
imization of 800 (Ç,Gr ) (28) which is different from
the minimization of 800 (Ç,Gr ) tr eated in th e propo­
sit ion ab ove. Noti ce that th e eentering is restrieted
to stabie mod eis.

T he eente ring problem can also be posed in a
frequency-weigh ted set t ing. ft can be shown eas i­
ly that the full- order cent ra l approximation (38) is
also the minimizing solut ion of

balan ced :

weighted bal an ced :

H 2 opt im al:

weigh ted H 2 op timal:

balR.4 (Gs) = 64

balR.4(W~ = 64

optH2R.4 (GS) = 04

OptH2R.4(W~ =04

2

T he comput at ional cost to find

o _ -0.0474s3 + 0.1591s2
- 0.3339s + 0.37 49

--.1. - S 4 + 1.3834s 3 + 1.7926s2 + 1.0764s + 0.3891

with W (s ) an output weight and V (s ) an input
weight. The difference with th e unweighted case is
that. th e fixed-erder central approximation has to be
solved from a weighted optimal reduetion problem:

was considerable compared to the others . The con­
vergence to th e (unweighted and weighted) optimal

solutions 04 and 04 is shown in Fig 1. Table 6.1
shows that the weighted solutions (underlined) ar e
indeed bet ter than the unweighted ones and that
the H2-norm optimal solutions are better than the
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(45)

wit h
Gm,g = (l-q) Ga + q Gb. (46)

The central solution (q = 0.5) is the optimal one.
Figure 2.a shows that èq=o and è g=l are th e

with kg = (l - q) ka+ q kb, f3g = (l -q)f3a+qf3b, and
wg = (l-q) wa+q wb' T hesecond method is theone
advocated in th is pap er: eentering followed by opti­
mal reduction . In order to visu ali ze the optimalit y
of this solu tion , we first derive a line of secend-order
ap proximations

. kg
G; g = (44)

, S2 + 2f3 W s + w2g g g

The optimal {uH-order central solution G m =
HGa+Gb) gives J (Çi ,Gm) = V2 and Ja(Çi,Gm) =
J b(9 ,Gm ) = 1. We compare two methods to con­
struct a line of second-order models in between Ga
and Gb. The first is a me re linear parameter vector
interpolation:

40

baIn4 (G6 ) 0.064 0.209

baIn4(W~ 0.037 0.050

optH2R 4 (G6 ) 0.058 0.182

optH2R4(WQ&) 0.034 0.040

+

+

+ 0

··. IIG6 - G4 ,(i)112- IIG6 - G4 112
10 20 30

step number

Fig . 1: Convergence to optimal solu tions

10-4

10-10 '--_ +-_ --'- --'-- ........... _'''*_'

o

Table 1: Frequency-weighted reduction errors:
Ll = W(G6 - G4 ) IJ (Çi , G) -11 Ja (9, G) - -11 Jb(9 , G) - - -I

3 3.------ - - - --,

o 0"'------ --"'-'"
o 0.5 q 0 0.5 q

Fig. 2: Scaled distance measures for two interpo­
lat ion methods

a: G =c., b: G =c.,
best approximations for the parameter interpolation
method, meaning that interpolation in this way does
not give a clue for dec reasing J(Çi, G) . Figure 2.b
shows that the optimum on the line of approxima­

tions is indeed Gr,g=O.5 ' Moreover J (9 ,Gr,g) < 2
for all 0 < q < 1, whereas for q = 0 and q = 1 the
maximum value 2 is attained which means that the
tr ivia l fixed-o rde r solutions Ga and Gb are worst .

balanced solutions. Finally it is remarked that th e
weighted reduction error measured in Hoo-norm can
be reduced by exploit ing th e freedom in th e D-term
of th e reduced mode!. This is common practice in
frequ ency-weighted optimal Hankel-norm reduction ,
but should not be recommended in case the weight­
ed H2-norm is of concern .

6 .2 In b etween t wo secon d -order m odels

Here we int roduce the problem of finding a single
model that is close to two other models with the re­
strict ion that all three models have the same order.
Let

Ga
ka

(41.a)
s2 + 2f3awas + w~

Gb
kb

(41.b)= s2 + 2f3bwbs + w~

Ir '\
2 -;..- ~ =- -

I •

I

2__ __

---;',
;-- .

with ka = 0.8, kb = 1.2, f3a = 0.005, f3b = 0.02,

Wa = 1.1 , and Wb =0.9 . Let d ~ IIHGa - Gb)lb. In
th is example we have d = 4.929 1. T he objective is
to find a seco nd-order G such that

is minima!. We also define

liG- Ga ll 2 / d
liG- Gblb /d.

(42)

(43.a)
(43 .b)

T his example also exhib its an important phe­
nomenon in reduct ion problems. From Fig 2.b

we see that for increasing values of q, J a(9 ,Gr,g)

increases an d J b(9 ,Gr,g) decreases; the steepest
change occurs at

q ~ Ij = 0.62.

T his pr oved to be du e to th e fact that Gm,q has two
resonan ce peaks of approx imate ly the same magni­
tude. The Hankel singular valu es of Gm,q are:
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This suggests that reduction is not appropriate, and
indeed balanced reduction gives bad resu lts . S­
t art ing from the balanced approximation, Gr,q =
balR2(Gm,q), our optimal Hç-nottï: reducti on algo­
rithm converges to

G • = -0.041618+ 0.3096 (48)
r ,q 82 + 0.00570 78 + 1.2109

with wr = 1.1004, and ffir = 0.0025932 . Since wr ~

Wa = 1.1 and ffir ~ f3a = 0.002, Gd essentia lly fits
th e resonance of (1- q)Ga . Since we know that for
q --+ 1 the resonance of Gb becomes the dominant
one, there has to be a switch point for some q. To
see if there exists another extremum that essentially
fits the resonance of qGb , we restarted the iteration
from qGb• After a few iteration steps we found

G • = 0.054398 + 0.7484
r ,q 82 + 0.018218 + 0.8090 (49)

with W r = 0.89942 , and f3r = 0.010125 which is
indeed close to Wb = 0.9 and f3b = 0.01. Let

Li = Gm,q - Gr,q, L1 = Gm,q - Gr,q , and j =
Gm,q - Gr,q . Since IlLill 2 = 5.1808 , 1IL1112 =4.3481

and II jl12 = 2.6272 , Gr,q can only be a local min­
imum. Figure 3 compares the square reduction er­
rors L1*(jw)L1(jw ) as a function of frequ ency . The
scales are lin ear in Fig 3, such that the enclosed
ar ea of the curves is proportional to 11 L111 ~ · We see

(50)

[

25.18 ]
lT(Gm ,q) = ~~:n .

22.70

(47)
not completely characterized by the necessary opti­
mality conditions: at least two local minima of the
H2-norm reduction error exist.

Finally we pos e th e following qu estion : ar e th e re­
duetion errors involved in the second-order approx­
imation of Gm,q truly larger than the reduction er­
rors involved in the second-order approximation of
Gm,i[ with ij = 0.5? The answer is no , and th is con­
t ra diets the common confidence in the importance
of Ha nkel singular values. The Hankel singular val­
ues of Gm,i[ are

[

33.11 ]
lT (G _) = 32 .95

m,q 18.67 '
18.30

Comparison with (47) usually leads to the conclu­
sion that it is more appropriate to reduce Gm,i[ to
order two than to reduce Gm,q to order two. Table 2
shows that in fact Gm,q can be reduced at th e cost
of a lower err or than Gm,i[, provided we use optimal
H 2-norm reduction instead of balanced reducti on .

q IIGm,qll2 IIGm,q - Gr ,ql12 IIGm,q - Gr ,q112

0.5 4.943 3.507 3.511
0.62 5.098 2.627 5.181

Table 2: Optimal and balanced reduction erro rs for
two 4t h-ord er syste ms Gm.i[ and Gm,q

3000 ,---- - - -,-- - - ...-- - - ...-- - - 7 Discussio n of usage

- H2 - norm optimal (global)
2500 --- balaneed

•••• H2 - norm extremal (Iocal)

2000 h
'\I.

1500 '\I., \I ,,
\1000 I ,,
\I ,

500 i \ ,•,
\

I

I I

, . I'._- ,
0

_../ ..........
0.8 0.9 1 1.1

frequeney [rad/sj

Fig. 3: Squared reduction errors for q = q= 0.62

that the global optimum fits t he Wb = 0.9-resonance,
th e balanced approximation fits neither of t he two
resonances, and the local optimum fits the Wa = 1.1­
resonance. Summarizing, t he redu cti on of a fourth­
order model to an optimal second-erder model is

1.2

The algorithm for optimal Hç-uom: reduction
proved very powerful in the unweighted case. The
choice of the initial projection of Gn is very impor­
tant . In most cases a balanced projection will give
good convergence. As we have seen, there exist ex­
amples for which balanced reduction does not give
good redu ction resu lts , and precise ly in these cas­
es optimal H 2-norm reduction should be preferred.
T he difficu lty then is to construct a good initial
projection. In this respect the interactive tool in­
troduced in Wortelboer (1994) to monitor frequen­
cy response changes as a function of use r supplied
interval-based frequency penalty functions is cru­
cia l to ini t ial ize a promising projection. The us­
er iterates towards a 'visually ' good approximation
and the a lgorithm discussed here iterates from there
to t he optimal approximation . T he weighted case
is conside rably harder to solve numerically. The
main ad vantage above balanced reduct ion is the op­
t imality. Yet balanced redu cti on rem ains a valuable
metho d since it is computationally less demanding
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and often achieves both small H2-norm and H00 ­

norm errors. As we have said before, such simple
reduction methods are very appropriate in iterative
control design procedures .

8 Conclusion

Necessary conditions have been derived for obtain­
ing a reduced-order model that minimizes a frequen­
cy weighted reduction error measured in H 2- nor m

(both input and output weights are allowed). This
new derivation has been specialized to a known re­
sult for unweighted optimal H2 reduction, resulting
in the optimal projection formulation and a new nu­
merical algorithm. Results for unweighted optimal
reduction are often close to balanced approximation­
s and can be obtained in only a few iterations. The
weighted case is considerably harder to solve numer­
ically. Existence of multiple local minima for our
non convex minimization problem has been shown
in an example. The proposed solutions can play a
role in model-based control design. A special appli­
cation of optimal reduction is the straightforward
construction of a fixed-order central approximation
of multiple modeis. This central approximation can
be used as a nominal model for controller design,
and the minimized distance to all other models al­
lows a formal robustification of this controller.
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Filtering and parametrization issues in feedback
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representations
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Abstract . This paper discuss es filtering and parametrization issues involved in th e usage
of fractional representations in multivariable, approximate and feedback relevant identifi­
cationof a possibly unstable plant operating under closed loop conditions. The knowledge
of th e controller is used to access any stabie right coprime factorization of th e plant by
measuring and filtering the signals present in th e closed loop system . By exploit ing a spe­
cific class of parametrizations in the est imat ion of th e stabIe coprime factorization with
a prespecified McMillan degree, a linear time invariant model having th e same McMillan
degree will be obtained. In addition th e approximate and feedback relevant est imat ion
of a fixed order linear time invariant model based on coprime factor identifi cation leads
to an addit ional const raint, which can be written down explicitly as arelation between
the filterin g of the signa ls present in th e closed loop system and th e coprime factors of
the model being est imated. A possible solution to deal with thi s constraint based on an
update algorit hm is presented .

Keywords. Systern identifi cation ; robust cont rol; coprime factors; filtering; pararnetri­
zation.

1 Introciuction

Induced by th e fact that dynamical mod els ob­
tained from system identification are used as a basis
for model based control design, there is a growing
interest in merging the problems of identificat ion
and contro!. Mode ls found by system identificat ion
techniques are necessari ly approximative since exact
modelling can be im possible or too cost ly to per for­
m . The validity of any approximative model hinges
on th e intend ed use of the model and th erefore th e i­
dentification procedure being used, will be subjected
to several requirements to estimate a model suitable
for control design thoughtfully. This has been the
motivation to develop methods for a feedback rele­
vant identification, which implies that the feedback
relevant dynamical behaviour of a plant operating
in a closed loop configuration has to be estimat-

IThe work of Raymond de Callafon is sponsored by the
Dutch Systems and Co ntro! Theory Network
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ed in ord er to design enhanced controllers (Gevers ,
1993; Van den Hof and Schrama, 1994).

To perform a feedback relevant identification , ex­
periments from the real plant, denoted with Po,
operating in a closed configuration are needed to
come up with a model, denoted with P, su itable
for control design (Lee et al., 1992; Hakvoort et al.,
1994; Hja lmarsson et al., 1994a). Since the con­
troller to create the closed loop configuration can
(yet) be unknown , a simultaneous optimization of
identification and control design has been proposed
in Bayard et al. (1992) or Hjalmarsson et al. (1994b).
Furthermore, it has been widely motivated to sepa­
rate the two stages of identification and control de­
sign and to use an iterative scheme of identification
and model based control design (Schrama, 1992a).
One of the first papers using this separation can be
found in Farison et al. (1967) or Schwartz and Stei­
glitz (1971) and more recent examples of iterative



schem es can be found in Zang et al. (1992), Rivera
and Bh atn agar (1993), Bitmead (1993) or Lee et al.
(1993). In such an iterative schem e th e cont roller of
step i - I, is used to perform closed loop experiments
with the plan t Po and to est imate a feedback rele­
vant model P. The model P is used to design an
improved model based controller, denoted by Cp,
again to perform closed loop experiments with in
ste p i .

In this paper th e id entification stage in such an
it erative schem e will be discussed. The identifica­
tion is bas ed on th e algebraic th eory of fraction­
al repr esentations (Vidyasagar , 1985) and involves
the feedback relevant identification of a coprime fac­
tor realization of a model P based on closed-Ioop
observat ions of th e plant Po using a controller C
from the previous it era tion (Hansen , 1989; Schra­
ma , 19926; Van den Hof et al. , 1993) . In order to
cont rol th e McMillan degree of th e linear time in­
variant model P, a specific class of parametrizations
is used to parametrize th e coprime factorization be­
ing est imate d. Furthermore, the approximate and
feedback relevan t est imation of a fi xed ord er linear
time invariant model gives rise to an addit ional con­
st raint, which can be written down explicit ly in case
of th e coprime factor identification .

The out line of this paper is as follows. In section 2
some preliminary no tations and definitions used in
the sequel will be given. Section 3 discus ses th e re­
lat ion between ident ification and control design . To
dea l with the closed loop identification prob lem, in
sect ion 4 the frame work of equivalent open-loop i­
dentifica tion of a cop rime fact or repr esentation of
the plant Po will be summarized. Section 5 con­
tains th e par ametriz ati on aspects on th e identifi ca­
t ion of a coprime factoriz ation itself and th e results
of perform ing the identi fication in a feedb ack rele­
vant way, leadin g to an addit ional parametrization
const ra int. Poss ible solutions to cope with this pa­
ram etrization const raint are summarized. Finally,
section 6 contains som e concluding remarks.

2 Preliminaries

2.1 Feedback configuration

Throughout this paper th e feedback configuration
of a plant Pand a controller C is denoted with
T(P ,C) and defined as th e conn eetion structure de­
picted in figur e 1.
In figure 1 the signals u and Y refiect respective­
ly th e inputs and outputs of the plant P , where v
is an additive noise on the output y of th e plant.
The signals U e and Ye ar e respectively the inputs
and outputs of th e controller C , and rl and r2 are
exte rnal reference signal that are uncorrelated with
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Ye I
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Fig. 1: feedback conneet ion structure T (P , C)

the additive noise v . From an identifi cation point
of view the signals u and Y are being measured , v
is unknown and rl, 7"2 (and consequent ly U e, Ye) are
possibly at our disposal.

It is assumed that th e feedback conneetion struc­
ture is weil posed , that is det[l + CP] =t O. In this
way th e closed loop dynamics of th e closed loop sys­
tem T(P , C) can be described by the mapping of
[r2 rljT to [y ujT which is given by th e transfer
function matrix T(P , C ):

T(P ,C) := [ ~ ] [I + CP]-l [ C I]. (1)

and describing th e data coming from the closed loop
system T(P, C) in the following way

[ ~] = T( P, C) [ ~: ] + [ _~ ] [1 + p C]- lv (2)

where th e addi tive noise v := H e can be mod­
elled by a monic , st abi e and stably invertible noise
filter H having a white noise input e (Ljung,
1987). In case of an inte rn ally stabie closed loop
syst em T (P ,C), all four t ransfer function matri­
ces in T (P, C) will be stabie (Desoer and Cha n,
1975; Schrama , 19926; Bongers, 1994) whi ch im plies
T( P, C) E IR1ioo , where IR1ioo denotes the set of all
rati onal stabJ e transfer fun ctions.

The controller C will be applied to both the real
plant Po and th e model P, according to th e feedback
conneetion structure given in figure 1. The corre­
sponding closed loop dynamics of the two different
feedback configurations will be described respective­
Iy by the two transfer function matrices T(Po , C)
and T(P, C).

2.2 Coprimeness and stability

Using th e th eory of fractional repr esentations, an
arbitrary plant P is expressed as a ratio of two
stabie mappings N and D. Following Vidyasagar
(1985) the following definitions for coprimeness and
coprime factorization will be used, where IR1ioo de­
notes the set of all rational stabie transfer functions.



D efinition 2.1 Let N, D E lR1i oo ! th en th e pair
(N, D) is calied rig ht coprime over lR1i oo if there
exist rig ht B ezout fa ct ors X, Y E lR1i oo suc h th at

X N+ YD= J.

T he pair (N, D) is a right copri me fa ctorizat ion [r­
cj] of P if det{D} "t- 0 and P = N D- 1 and (N , D)
is right copri me over lR1ioo .

Based on the theory of fractional representations
and the usage of left and right coprime factoriza­
tions given in definition 2.1 the following result for
internal stability of a closed loop system T(P, C)
ca n be derived .

Theorem 2.2 Let P = N D - 1 = iJ-IN wh ere
(N, D) is a re] and (IJ, N) a lc] of P. Let C =

-1 - -1 - .NeDe = De Ne wh ere (Ne, De) ss a rcf and
(b., Ne ) a lcf of C. Now th e following statements
are equiv alent

z. th e f eedback system T(P , C) given in figure 1 is
inte rn ally st abie

H . T( P, C ) E lR1i oo

ttt. A-I E lR1i oo ! with A := [iJe Ne] [~]

IV. Ä- l E lR1i oo , with Ä:= [iJ N] [~: ]

crite rion II J (P, C)lIx usin g a mod el P. In this way
t he contr ol des ign will be model based and ca n be
interpreted by t he computation of a so ca lled model
based controller, denoted with Cp, such that

c, = ar g minIlJ(P ,C)lIx. (3)
C

This minimiza tion gives rise to a valu e of the ob­
jective fun ction given by IIJ(P ,Cp)lIx and can be
classifi ed as the design cost (G evers , 1993). Apply­
ing the mod el based contro ller Cp to the real plant
Po gives rise to t he valu e IIJ(Po,Cp)II,l' whi ch is
characterized as t he achieved cost. In this perspec­
tive the controller Cp is said to satisfy the design

objective for the corresponding model P if

IIJ(P ,Cp)llx :S,' with y > 0 (4)

holds , which is a nominal performance sp ecification.
Related exam ples can for exam ple be found in Bit­
mead (1993) , Gevers (1993) or Van den Hof and
Schrama (1994) for 00- or 2-norm based minimiza­
tion.

In this paper t he normed space X is chosen to
be the space lR1i oo . The function J(P ,C) E lR1i oo
is taken to be a weigh ted form of the closed loop
dynamics described by the transfer function ma­
trix T(P , C ) E lR1i oo given in (1). In this way
J(P ,C) = WoT(P ,C)Wi E lR1i oo if Wo and Wi in
(5) ar e weighting filt ers satisfying Wo , Wi E lR1i oo ,

making

Proof: Vidyasagar (198 5) and Bongers (1994). 0
IIJ(P ,C)lIoo := II WoT(P, C)Wili oo (5)

3 Merging identification and control

3.1 Norm based control d esign

In t he analysis of feedback relevan t identification ,
t he characteriza t ion of a closed loop performan ce
criterio n plays an im por t ant role. This criteri­
on is usu ally characte rized by an objective func­
tion, which depen ds on a plant P and the con­
t ro ller C that asse mbie t he closed loop configuration
(Van den Hof and Schrama , 1994) .

D efinition 3 .1 Let X den ot e a complete norm ed s­
pace, where 11 . Ilx is th e norm funet io n defined on
X . Let a plant Pand a cont rolle r C f orm a well
pose d f eedback conneetion st ruc iure T(P , C) accord­
ing to figure 1, and let J (P , C) E X be a an y fu nc­
tio n depending on a plant Pand th e controlle r C .
T he n th e obj ective funetion is defin ed by th e norm

IIJ(P ,C)lIx

Unfortunately the plant Po under consideration
is unknown and the con trol design method will be
based on minimization of a closed loop performance
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The objective function given in (5) represents a
large class of oo-norm based control design schem es
and the usage of the weightings is inspired by
t he ability to create a trade off between confiict­
ing requirem ents and constraints always presen t
(Horowit z, 1963; Boyd and Barrat , 1991) . In case of
diagon al weigh ting filt ers, the weighting can be seen
as an additional loop-sh api ng in t he control des ign
(Bongers, 1994) .

3.2 A fe edback r elevant criterion

From an identi fication poi nt of view, a mod el P ca n
only be an approximation of t he real plant Po. The
qu ali ty of any ap proximative model dep ends on th e
in tended use of the model. In t his perspecti ve, t he
question wet her a mod el P is goo d for mod el based
control design gives rise to aso call ed feedback rele­
vant identification, sin ce the qu ality of the model P
should be evaluate d under feedback or closed loop
conditions (Schrama, 1992b).

A successful controller Cp, found by the norm
based minimization given in (3) and based on a



to tune the bias of the model ft in a feedback rele­
vant way (7). Additionally, an unifi ed approach to
handle the identification of both stabie and unsta­
bie plants Po, that are stabilized during t he closed
loop expe rime nts, is preferred . These deman ds ca n
be handled by usin g th e algebra ic t heo ry of fr acti on­
al representations and to est imate stabie (coprime)
factorization of th e plant Po. Several authors have
worked on t his topi c, see for exam ple Hansen ( 1989),
Van den Hof et al. (1993) or Lee et al. (1993).

To have access to a factoriz ation of th e plant Po,
th e following approach can be followed . Co ns id­
er th e closed loop data genera ting system given in
figur e 1 and define r := rl + C 1"2. With (2) thi s
yields

model P, gives rise to a value of objective function
IIJ(P , Cp) llx , whi ch is said to satisfy the control
objective (4) for t he nominal model P. From this
pe rspective, t he quality of t he model P can be e­
valuated by conside ring th e value of the objective
fun cti on IIJ (Po , Cp )llx when applying the cont ro ller
C p, to the real pl an t Po.

Unfort una te ly, t he real plant Po is unknown
and the following triangul ar inequalities (Schr a­
m a, 1992b) ca n be used to lower and upper bound

IIJ(Po , C p)llx .

IIJ(Po , C p)llx s
IIJ(P , C p)ll x + IIJ(Po , Cp ) - J (P, C p)llx

IIJ(Po , C p ) llx 2:
IIIJ( P , C p) lIx -IIJ (Po , Cp ) - J(p , Cp )llx I

r = rl +C r2 = u +C y

and (2) reduces to

(8)

From t he first inequ ali ty it can be seen that

II J(P, Cp )lI x + IIJ(Po , Cp ) - J(P ,Cp) lIx :s 'Y (6)
(9)

Corollary 4 .1 Let a plant Pand a controller C
create an internally stabie feedback syst em T(P , C)
then (PSi, Si) is a re] of P if and only ifC E IR1ioo .

Hence PoSi, Si can be considered to be a st a­
bie right, but not necessarily coprime, factorization
(No, Do) of th e plant Po, with No := PoSi and
Do := Si .

where Si := [1 + C Po]-1 is the in pu t sensitivity
fun cti on and So := [1 + poC]- l is the output sen­
sit ivity fun cti on . Sin ce t he cont ro ller C is used for
t he closed loop expe rime nts, t he closed loop system
T(Po , C) is assumed to be internally stabie. Wi th
theor em 2.2 this yields T(Po , C ) E IR1loo m aking
both PoSi , Si E IR1loo in (9) but not necessari­
ly coprime, which is summarized in the following
corollary.

4 .2 Identification of coprime faetorizations

To avoid the presence and est imat ion of unstable ze­
ros in the factorization (P Si, Si) , which gives rise to
hidden unstable modes in the representation of th e
plant Po, th e factoriz ation needs to be coprime . For
an unstable cont roller C, th e factorization (PSi , Si)
is not coprime , as mention ed in coro llary 4.1 , whil e
th e op eration given in (8) yields an unbounded sig­
nal. Furthermor e, a rcf is not unique and access
to factorizations different from (PoSi, Si ) would be
preferabie. In order to fulfil th ese requirem ents, an
additiona1 filt ering of th e signal r is introduced with
x := Fr, similar as in Van den Hof et al. (1993) or

oProof: See de Callafon (1994).

Approximate identification on the basis of closed
loop expe rime nts could easily be defective du e to
th e correlat ion between nois e v and input u, (Ljung,
1987). Moreover , an explicit expression for the ap­
proximation of the plant Po, ind ep end ent of th e
noise cont ribut ion during the expe rime nts, is needed

4.1 Identification of stabie factorizations

4 Closed loop identification

By minimizing (7) su ch th at (6) holds , th e current
contro ller C , applied to th e plant Po, is guaranteed
to give a similar performance when applying it to
t he m od el P(B) found by the minimization and th e
mod el P(B) ca n be used for subsequ ent cont rol de­
sign .

is a sufficient cond ition in order to have a mod ­
el based controller Cp whi ch satisfies the con tr ol
objective (4) on t he real plant Po. From an iden­
t ification point of view t he performance degrada­
t ion IIJ(Po , C p) - J(P ,C p )llx for the controller
C p should be minimized in order to find a model

P = P(B) such that (6) holds and can be seen as a
feedback relevant identification of the plant Po.

However , the model Pand thus the controller Cp
is not available (yet), whi ch give rise to an it erative
schem e wherein the controller C (from the pr evious
iteration) is used to evaluate II J (Po , C) llx. With
th e choi ce of the objective function given in (5),
th e minimization of the performance degradation
IIJ(Po , C ) - J(P ,C)llx then becomes

~in 11 Wo[T(Po, C) - T(P({}) , C)]Willoo- (7)
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de Callafon et al. (1994) . Wi th (2) and (8) th is
yields

and (2) now redue es to

With the result of lemma 4.2 th e following propo­
sit ion for th e open loop identification of a right co­
prime factor ean be given.

Proposition 4.4 Let the plant Po and a controller
C create a stabie f eedback syste m T(Po, C ), then the
closed loop data [y u]T in (2) can be reutritt en into

[ y] = [ PoSi~~ 1 ] X + [ s, ] He
u ~F -C~

(11)

where (Ps.r-» ,s.r-v, again is a (right) factoriza­
tion of th e plant Po,

In Van den Hof et al. (1993) the freedom in ehoos­
ing the filter F is found by restrieting both th e fae­
torization (PSiF-l ,SiF-l) and th e map F[C I) in
(10) to be stabie. However , stability of th e map
F [C I] is not necessary in genera!. In the case that
r2(t) = 0 Vt, x = Fr ç ; henee stability of F is re­
quired only. By restricting (P SiF- l , SiF- l) to be
a ref, st ability of. F[C I] is implied dir ectly and is
sum marized in th e following lemma.

Lemma 4.2 Let a plant Pand a controller C :=

b, -1 Ne, where ib. .Ne ) is a lef of C, f orm an in­
terna lly stabie f eedback syste m T(P , C) then the fol­
lowing condi tio ns are equivalent

(i) (PSiF- l,SJ- l) is a rcf.

(ii) F = W o. with W, W- l E !RH ""

and imp ly F [ C I] E IRH"" .

uihere x is given in (10), F is any filt er satisfying
lemma 4. 2 and (No, Do) is a re] ofthe plant Po given
by

[ ~: ] [ ~o ] s.r:' =

= [~o] [I + C Po)- l [I + C Px )Dx

(13)

Proof: By use of (11) with No := PoS jF- l and
Do := SiF- l and dir ect applieation of eorolla ry 4.3.
Equation (13) is found by subst it ut ing (12) . 0

The specific ref (No , Do) in (13) of the plant
Po to be identifi ed is rela ted to t he filter F since
No = PoS jF- l and Do = s. r:» . Wi th F given by
(12) in eorolla ry 4.3, the ref (No, Do) is rela ted to
th e rcf (Nx, Dx ) of the auxilia ry model Pç; used to
create the filter F an d is sum marized in t he follow­
ing corollary.

Proof: See Van den Hof et al. (1993) or de Callafon
(1994) . 0

satisfies the conditions of lemma 4.2 if and only if
T(Px , C ) E !RH "".

Corollary 4.3 Let a plant Pand a controller C
create an internally stabie f eedback system T(P, C )
and let (Nx , Dx) be any rcf of any auxiliary model
Px , th en

s.r:',
provin g e­

O

Corollary 4.5 Th e rcf(No, Do) ofthe plant Po giv­
en in proposition 4.4 and based on th e realization of
F given in corollary 4.3, satisfies

[Do+ C N o] = r :' = [Dx + CNx ) . (14)

Proof: With No = r.s.r-: and Do
[Do + CNo] = [I + C Po]Sj F - l = F - l

quation (14) , where F is given in (12) .

The transfer function matrix [Do + C N o] is un­
known , sinee it eontains th e specific ref (No, Do) of
the unknown plant Po, but (14) indieates that this
ean be replaeed by the filter operation r :' ,whieh is
eompletely known. From eorollary 4.5 it ean also be
seen that (No, Do) ean be of high ord er , eontaining
redundant dynamies. A sensible choiee of th e model
Px may lead to caneelling of redundant dynamies,
whieh is used in Van den Hof et al. (1993) to est i­
mate possibly low ord er (normalized) factorizations
of the plant Po.

The same approach of filtering signals present
during the closed loop experiments is also being used
in th e two stage method described in Van den Hofo

(12)

Proof: See Van den Hof et al. (1993) .

Lemma 4.2 is a generalisation of eorollary 4.1 and
eha raeterizes th e freedom in ehoosing th e filter F by
the choice of any st abie and stably invertible filter
W. The choice of W however can be related to th e
choice of an auxiliary model Px and an auxilia ry
cont roller C x with T(Px , Cx ) E !RH"" (de Callafon,
1994) . Sinee C x can be any controller , it ean be
ehosen to be equal to th e controller C that the eon­
t rols th e plant Po under eonsideration. In this way
the filter F in lemma 4.2 ean be eharacterized as
follows.
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and Schrama (1993). In this method the filter F
is given by an accurate estimate of the input sen­
sit ivity function S, = [1 + C Po]- l . The specific
factorization (No, Do) to be identified becom es ap­
proximately (Po, 1) and an est imate of Po is found
by est imat ing No only. lt should be noted that
F = [1 + CPo]-l does not satisfy the conditions
mentioned in lemma 4.2 and clearly, th e factoriza­
tion (Po, 1) is not coprime over IR.7-loo for an unsta­
bie plant Po. Moreover, if th e filter F is given by
an approximation of the input sensitivity function
[1+ C Po]- l, th e situation can become even worse
since both No := PoSjF- 1 and Do = SjF- 1 can
become unstable. This is due to th e fact that F- 1 ,

which is the inverse of the estimated input sensi­
t ivity function, can be unstable and the unstable
modes will not be cancelled com pletely in th e oper­
ation PoSi F- 1 or S, F - 1 .

T he est imate of the right coprime factorizati on
(No, Do) in Van den Hof et al. (1993) and de Calla­
fon et al. (1994) is found by a 2-norm minimiza­
t ion based on a pred ict ion erro r method with an OE
(output error) model st ructure (Lj ung, 1987) . How­
ever, for sa ke of ana lysis and to maint ain generality,
it is assumed here that an identification procedure
based on the data given in proposit ion 4.4 is abl e to
come up wit h an est imate êgiven by

where W 1 , W2 are arbit ra ry weighting functions and
11·llx is a norm fun ction to be specified. The role of
the weighting functions W1 , W2 , th e norm function
I1 . Ilx to be used and th e parametrization of th e
factorization (N(B), D(B)) will be scrutinized in th e
following section .

5 Estimation of coprime factors

5.1 Feedback relevant identification

In order to perform a feedback relevant identifi ca­
tion, th e norm of th e difference tlT(Po, P , C) :=
Wo[T(Po, C )- T (?, C)]Wj introduced in section 3.2,
needs to be minimized for a fix ed order model P.
Using th e filter F of corollary 4.3 th e mismatch
tlT(Po, P , C ) can be expressed in terms of the
weighted difference between th e ref (No, Do) and
(N,D) respectively of th e plant Po and the model
P , along with an additional const raint, depending
on th e filter F being used. This is summarized in
th e following lemma.

Lemma 5.1 Let the plant Po with rcf(No, Do) giv­
en in corollaru 4.5 and a controller C creaie an in­
ternal/y stabie f eedback syst em T(Po, C). Consider
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a model P with re] (N , ÎJ) and any filt er F satisf ying
lemma 4.2 then

srçr; P , C) = Wo[T(Po, C) - T(P , C )]W j

equals

Proof: With (No, Do) as rcf of Po th e matrix
T(Po , C) can be rewritten as

and using th e fact [Do + C No] = F- 1 from (14) in
corollary 4.5, this can be rewritten into

Wi th (N, ÎJ) as ref of P, the matrix T(P, C) equa ls

and und er the constraint [D+CN] = F - 1 this yields

T( P, C) = [ ~ ] F [ C 1]

making T(Po, C) - T(? , C ) equal to

o

Clearly, lemma 5.1 refiects an additional con­
straint on th e parametrized coprime factorization
(N(B) , D(B)) of th e model P to be identifi ed. In
case th e choice of the filter F is replaced by th e
choice of a rcf (Nx, Dx ) of an auxiliary model Px as
in corollary 4.3, the constraint equals

[D(O) + CN(O)] = F- 1 = [Dx + C Nx ] (16)

which has to be incorporated in the feedback rele­
vant identification of a model?

With the result of lemma 5.1 th e following obser­
vations can be made for th e weightings W 1 ) W2 and
the norm function 11 ,11,1' in (15) , in ord er to minimize
th e feedback relevant criterion given in (7).



5.2 Minimization with constraint

(18){~

such that det{ ËD } ::f 0 and

[ Nxi +1 ] = T (Px, C) [ N(~;) ]
DXi+1 D(Oi )

making D(êi)+ C N(êi ) = DXi+1 + C Nx i+1 and
Px = Nxi +IDxi;1 with T (Px, C) E IR1ioo re­
mains fixed for all i .

4. i := i + 1 and go to 1.

If th e iteration converges then D (ê;) + C N (()i) =
Dxi + CNxi is independent of i and the constra in­
t (16) has been satisfied, thus a feedback relevan t
est imate P of the plan t Po has been ob tai ned ac­
cording to proposition 5.2. A rigorous proof of the
convergence of the iteration is not available (yet)
but extensive simulations reveal promising resul ts.

[
f! (z) ] = [CiN] [zI _ Är 1Ë + [ ~N ]
D(z) CD ED

A A - - I
(ii) P := N D is given by the state space repre-

sentation [A,B,C, E] with

then

(i) det{ÎJ}~O

1. In step i , create F, from corollary 4.3 .

2. Estimate a rcf (N(ê;), D(êj )) based on a para­
metriz ation given in th eorem 5.4 and the min­
imization given in prop osition 5.2 without the
constraint (16) .

3. Update the rcf (Nx , D x ) with propositi on 5.3
according to

5.3 Parametrization

To control the McMillan degree of th e model ft =
P(O) = N(O)D(O)-I being estimated, th e factor­
ization (N (0), D(0)) has to be parametrized in a
special way and boils down to th e fact that both
N(O) and D(O) should have common stabIe mod es.
Furthermore, any common unstable zeros should be
avoided to ensure coprimeness of the factorization
(N(O), D(O)). The result has been stated in th e fol­
lowing theorem.

Theorem 5.4 Let (JÎI , ÎJ) E IR1l oo be given by a
minima/ and stabie stat e space representation

o

(17)

satisfies the constraint given in (16) .

Proof: Similar as in corollary 4.5.

min 11 Wo[T(Po, C) - T (P( O), C )]Wili x
8

Proposition 5.2 The f eedba ck relevant criterion of
(7) and the estimatio n problem of (15) can be made
compatible by taking W 1 = WOl W2 = F[C I]Wi ,
11 ·llx = 11 · 1100 and satisf ying the constraint given in
(16), which yields

Proof: With W 1 = Wo, W2 = F[C I]Wi th e argu­
ment of I1 ·llx in (15) equa ls th e argument of II . 11 00
in (7), by subst itut ing the results of lemma 5.1. S­
ince the argument i),T(Po , P,C) E IR1ioo , t he norm
fun ction I1 . Ilx in (15) can be chosen to be 11 . 11 00
and both (7) and (15) are equa l. 0

Clearly, the est imate of th e rcf (N(O), D(O)) in
proposit ion 5.3 is not available (yet). Taking any
rcf (Nx, Dx) such that Px := Nx Dx-I satisfi es
T( Px , C ) E IR1l oo , th is gives rise to an updat e algo­
rithm to handle the minimization given in (17) for
performing a feedback relevant identifi cation of th e
plant Po as indi cat ed in proposition 5.2 and can be
sum marized as follows.

According to proposition 5.2, th e minimization of

[
Nx ] [ N(O)]o, = T (Px , C) D(O)

for any norm function 11 . Ilx can be replaced by
the minimization given in (17) and involves basi cally
a non-linear minimization for a model P(O) with
a specified McMillan degree, even if th e mod el is
pa ramet rized linearly.

To avoid th e use of th e constraint (16) in th e
minimization, an it erative scheme of minimization
without th e const raint in step i-I and updating
th e constraint in st ep i was proposed in de Calla­
fon et al. (1994) and was based on th e estimation of
normalized coprime factors. However , updating the
constraint involves only th e update of the filter F,
used to create th e signal x in (10). In case th e filter
F is defined via a rcf (Nx , Dx ) of any auxiliary mod­
el Px as in corollary 4.3, (Nx, Dx) can be computed
direct ly and is given in th e following proposition.

Proposition 5.3 Let the filt er F in (10) be given
by corollary 4.3 then the rcf( Nx,Dx) given by
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(iii ) (N,ÎJ ) is a re] of P.

Proof: The factor ÎJ has a sta te space represen­
tat ion (Ä, 13 ,CD, ËD) and du e to th e non-singular
feedthrough matrix Ë D , ÎJ is always invertible hav­
ing a state sp ace representation given by (Ä ­
- - 1 - - - 1 - 1 - - 1
BED CD, BED ' -ED CD, ED ) which proves (i) .
N has a state space representation (Ä, E,CN , ËN ) .

Performing th e series conneetion of ÎJ -1 and N in

P = No', basic matrix manipulation yields an
extended state space representation , wherein n un­
controllabie states can be omitted , where n is the
dimension of Ä. This leads to th e state space rep­
resentation given in (18), which proves (ii). From
this , th e matrices Ä, s , CN, CD and ËN can be
found from (18) leading to

!0~ A - BK
B ËD
C - EI<

CD -K
EN EËD

m aking

N(z) ( [C - E K][z I - A + BK)-1 B + E) ED
N(z )ËD E IR1ioo

ÎJ(z) (-I<[zI - A + BI<) -1 B + I)ËD
D(z )ED E IR7-loo .

(19)
T he factoriz ation (N (z), D(z)) is proven to be a
right coprime factoriz ation in Nett et al. (1984).
Sin ce th e factorization (N (z) , D(z)) is post multi­
plied by a constant non- singular matrix Ë D only,
th e factorization (N(z) , ÎJ( z)) is a also a rcf', which
proves (iii ). 0

The result of theo rem 5.4 gives rise to a wide
class of parametriza tions needed to estimate a r­
cf (N(O), ÎJ(O)), since it involves t he par am etriza­
tion of a stabie, m ini mal state space repr esentation
[Ä,iJ ,ë] with CT = [C~ cb], wherein th e dir ect
feedthrough matrix of th e factor ÎJ is restricted to
be non-singular. Restricting th e est im ate to be sta­
bie and minimal can be enforced by using th e sp ecif­
ic parametrization of asymptotically stabie systems
as given in Ob er (1991) and further elaborated in
Chou (1994). This gives rise to an estimate of th e
factorization (N(O), b(O)) which is guaranteed to be
st abie, minimal and balanced .

Using prediction error methods (Ljung, 1987) to
est im ate the state space matrices in theorem 5.4 , a
st abi e and minimal state space estimate with non­
singular feedthrough matrix ËD is found in th e
generi c case, which is du e to the following fact­
s . Firstly, th e map from x onto [y uV is defined
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to be stabie, according to proposition 4.4. Sec­
ondly, th e map from x onto u is given by [I +
C Pot 1[I + CPx)Dx according to (13), which is non­
singular by definition. In this way th e matri ces are
parametrized by standard pseud o canonical (over­
lapping) farms (Gevers and Wertz , 1984) without
stability or non-singularity condition. Finally it
should be noted that th e matrix operations given
in (18) leads to model P with McMillan degree less
than or equal to n , where n is simply th e McMill an
degr ee of th e factorization (N, ÎJ) being est im ated .

Conclusions

In th is paper th e filtering and parametrization issues
involved in th e usag e of fractional repr esentations in
multivariable, approximate and feedback relevant i­
dentification of a possibly unstable plant operating
under closed loop conditions have been discussed. ft
has been shown that any stabie right coprime factor­
ization of th e plant can be accessed by the filterin g
of signals present in the closed loop sys tem . The
freedom in choosing th e filter has been char acter­
ized by employing th e knowledge of the cont roller
present during th e closed loop experiments.

Consequent ly, a stabie right coprime fra cti onal
representat ion generated by the closed loop syst ern
and the filterin g being used , can be est imated. In
order to have a model with a prefixed McMillan de­
gree, aspecific class of para metrizations with the
same McMill an degree can be used to esti mate a
stabie right coprime factorization of the mod el.

Finally, th e approximate and feedback relevan­
t est imat ion of a fixed ord er linear time invariant
model based on coprime factor identifi cation lead s
to an additional constraint . This const raint is in­
trinsic in many schemes on feedback relevant iden­
ti fication bu t can be written down explicit ly in case
of t he coprime factor identifi ca tion . T he eens t rain­
t boils down to a relation between the filt er used
to gain access to the coprime factors of th e plant
and model being est imated . A possibl e solut ion to
deal with th e const ra int by updating th e filtering is
presented here.
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An instrumental variabie procedure for the identifica­
tion of probabilistic frequency response uncertainty
regionsl
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Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Abstract. A procedure is developed to identify probabilistic frequency response system
uncertainty regions. The procedure utilizes time-domain measurement data and prior
information about the system and the noise. There are no restrictions on the input
signal, it may even be generated in closed loop. The system is assumed to be linear,
time invariant, and a bound is assumed on the system's (generalized) pulse response
parameters. The noise is assumed to be a realization of a stationary stochastic process,
and independent of the input signal (in open loop operation) or an external reference
signal (in closed loop operation). Frequency response confidence regions are constructed
by explicitly evaluating the bias and varianee errors of an instrumental variabie estimate.

Keywords. uncertainty bounding identification, probabilistic uncertainty regions, instru­
mental variabie model, bias and varianee expressions

1 Introduction

For robust controller analysis and synthesis it is nee­
essary to have available a bound on the model er­
ror, the difference between plant and nominal mod­
el. For example robust stability can be established
if frequency response uncertainty regions are avail­
able. Many authors have considered the problem
of deriving frequency response system uncertainty
regions on the basis of measurement data and pri­
or assumptions about system and noise. The two
main different uncertainty bounding approaches are
the deterministic and the stochastic approach.

Procedures to derive frequency response uncer­
tainty regions based on deterministic prior as­
sumptions are presented in, for example, De Vries
and Van den Hof (1992), Hakvoort (1993, 1994a),
Hakvoort and Van den Hof (1993), Lamaire et al.
(1991) and Wahlberg and Ljung (1992). In par­
ticular the noise is assumed to behave worst-case
detei ministic. The resulting uncertainty regions are

IThis paper is presented at the 33rd IEEE Conf. Decision
and Control, Lake Buena Vista, FL, December 14-16, 1994.
Copyright of this paper remains with IEEE.
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correct provided the prior information that is used is
correct . Unfortunately in practice it is often rather
difficult, if not impossible, to guarantee that the pri­
ors, such as assumed noise bounds, are correct.

The stochastic approach is represented by e.g. Ba­
yard (1992), De Vries and Van den Hof (1993) and
Ninness and Goodwin (1992). In this approach the
noise is assumed to behave noisy, i.e. random and
uncorrelated to the input signal. Besides that also
prior assumptions about the system are made, which
vary from deterministic, De Vries and Van den Hof
(1993), to stochastic, Ninness and Goodwin (1992).
Typically these procedures yield uncertainty regions
which are correct with a certain specified probabil­
ity, provided the prior assumptions that are made
are correct.

In this paper a new procedure is presented to i­
dentify probabilistic frequency response uncertain­
ty regions. The procedure involves the explicit cal­
culation of the bias and varianee errors of an IV
(Instrumental Variable) estimate. A linear model
parametrization in terms of general basis function­
s is used, see Heuberger et al. (1993) and Ninness



(1993 , Ch . 2) . In this way approximate knowledge
about pole locations of th e unknown system can be
incorporated by the choice of proper basis functions.
In fact th e present procedure is th e statistical coun­
terpart of the deterministie uncertainty bounding
procedure described in Hakvoort (1994a). There are
no restrictions on the input signal, it need for ex arn­

ple not be sinusoidal. The basic assumption about
th e noise process is that it is stationary and inde­
pend ent of the input signal in open loop, or an ex­
ternal reference signal in closed loop . The probabil­
ity density funetion of the noise process is arbitrary
and not assumed to be known. Instead asymptotic
results are derived with a central limit theorem .

The present approach is different from the one in
Bayard (1992), where a multisinusoidal input signal
is needed , and the noise is assumed gaussian with
known noise gen erating filter . Unlike in Ninness and
Goodwin (1992) no stochastic assumptions are made
about the undermodelling part. In the approach
of De Vries and Van den Hof (1993) a frequency
domain approach is taken , and also a periodic input
signa l is needed.

The outline of th e paper is as follows . In th e next
seetion th e identification setting is described. Sec­
tion 3 presents th e instrumental variabIe estimate.
In Secti on 4 th e frequ ency response error of th e IV
model is evaluate d, which leads to probabilistic fre­
quency response system unc ertainty regions. In Sec­
tion 5 th e results are discussed .

Becaus e of space limitati ons all proofs hav e been
omit ted . These can be found in Hakvoort (1994b).
In this reference also simulations and an application
of th e identification procedure to a multivariable in­
dustrial process can be found.

considered as generalized puls e response paramet er­
s of the system Go(z).

Consider given input data {u(t) h=1 ,...,N and mea­
sur ed output data {y(t)}t=1 .....N and th e following
input-output relation of th e data generating system ,

y(t) =Go(q)u(t) + eo(t ), t = 1, . . . , N, (1)

where N denotes the measurement time and {eo(t)}
is an unknown additive output noise. There are no
restrictions on th e input signal , basically it may be
determined in open loop as weIl as in closed loop .

It is assumed that a signal {r(t)}t=1 . ..,N is avail­
able, which is highly correlated with the input signal
{u(t)}, but independent ofthe noise process {eoCt)}.
Let by definition r(t) = 0 for t :::; O. Typically in
open loop operation th e signal {r( t)} is equal to th e
input {u(t)}. In a closed loop environme nt an exte r­
nal referenc e signal {f(t)} can be used, or a filtered
version of this signal, r(t) = F(q)f(t) .

The following assumptions are made about th e
noise process {eo(t)}.

Assumption 2.1 The noise pro cess {eo(t)} is s­
tationary with auto-covariance function Rea(r) =
E eo(t + r) eo(t) , and it satisfies eo(t ) = Ho(q)wo(t)
[or some e2 -stable Ho(q), and uiltere {wo(t)} is a
se que nce of independent random variables with ze­
ro mean values, varianees "\0, and bounded [ourili
mornents.

Not e that th e distribution of th e noise process is
arbitrary, and not assumed to be known. The fol­
lowing assumptions about {r( t)} are made.

Assumption 2.2 The signal {r(t)} is a bound­
ed deterministic quasi-stationary signal, hence its
auto-covariance function

gek) :::; Ml, V k > r .

1 N

Rr(r)= lim -Lr(t+r)r(t)
N-oo N

t=1

exists V r .

In ord er to cope with unknown initial condit ions
th e input signal in th e past is assumed to be bound­
ed by

for som e given Ü . This bound may result from ac­
tuator constraints and need not be very tight as its
infiuence on th e identification result is restrieted.

The coefficients go(k) are assumed to be bounded
by

Igo(k)1 :::; gek) , k = 0, ... , 00, (3)

for given g(k). Moreover it is assumed that th e
bound g(k) shows exponential decay rate for k larger
than some le" , i.e.

(2)lu(t)1 :::; ü , Vt :::; 0,

2 Identification Setting

00

for given and known scalar pulse response parame­
ters Pk(k'). These basis functions can for example
chosen to be the pulse funetions, or the Laguerre
functions, or general orthonormal basis function­
s, see Heuberger et al. (1993) and Ninness (1993,
Ch. 2) . The (unknown) coefficients go(k) can be

Go(z) = L gO(k)Pk(Z),
k=O

where {Pk(z)h=o .....oo i is some specified set of basis
funetions given by

00

Pk(Z) = L Pk(k') z-k' , k = 0, .. . ,00,
k'=O

Consider th e linear , time-invariant , discr et e time,
causal and eoo-stable SISO system Go(z) represent­
ed by
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for som e given M ~ °and p < 1. In Heuberger
et al. (1993) it is discussed that such a bound exists
when an arbi trary foo-stable system is expanded in
a general ort honormal basis.

T he identification obj ective is to derive prob a­
bilist ic un certainty regions for th e system 's frequen­
cy response,

00

Go(eiw
) = L gO(k)Pk(eiw

) .

k=O

The identification problem is tackled by splitting the
transfer function Go(z ) into two parts,

The model input-output relation is given by

y(t) G(q)u(t) + e(t) =
n

Lg(k)Pk(q)U(t)+ e(t) =
k=O

n

L g(k)Wk(t) + e(t ),
k=O

where e(t ) is th e output error, and

1-1

Wk(t) := L Pk(k')u(t - k'), k = 0, . . . , n . (5)
k'=O

n

Consider the par ametrized model

G(z ) =L g(k)Pk(z),
k=O

where {g(k)h=o ,...,n are th e model parameters. De­
fine th e model input signal u(t) as

Also denote

t -l

Vk(t ) := Pk(q)1'(t) = L Pk(k')1'(t - k') ,
k'=O

k = O, . . . ,n,
and the matrices

[

wo(t) ] [ vo(t) ]
W(t) := : ' V(t) := : .

W n (t) V n (t)

[

y(O) ] {N }
: = sol ~ L V(t) e(t) = 0 ,

~( ) N I-I9 n - •

Next define th e instrumental signals

which is given by

n

ê(z) = L y(k)Pk( Z).
k=O

This identified model is used to construct frequency
response uncertainty regions. This is done by ex­
plicitly calculating the bias and varianee errors of
the IV estimate.

N = N -t. + 1,

for some integer t , E [1, N), which is user-defined.
The integer i , represents the starting sample used
in the IV estimate, and can be used to reduce th e
influence of the unknown initial conditions, as will
become clear later .

Consider the basic IV estimate (Söderström and
Stoica, 1989, p. 262; Ljung, 1987, p. 192/193),

[
Y(:O) ] = [ ~ i: V(t)WT(t)] -1 ~ t V(t)y(t).
y(n) N 1=1 . N t = t.

(6)
Noti ce that in case of open loop operation , 1'(t ) =
u(t) , th is is just a FIR least squares est imate for
general basis fun ctions. The est imate d IV model is
given by

(4)Go(z) = Go(z) + Go(z),

u(t) := {OU'(t), i -: 0,
t = 1, . . . ,N.

3 The Instrumental Variabie Esti­
mate

n 00

Go(z) = L gO(k)Pk(Z), Go(z) = L go(k)Pk(z),
k=O k=n+l

for som e user-defined truncation valu e n.
Next deterministic uncertainty bounds will be de­

te rmined for the tail Go(eiw ) , using the det erminis­
ti c prior bounds g(k) given in (3). And probabilis­
ti c uncertainty bounds will be derived for Go(eiw ) ,

using varianee expressions of an instrumental vari­
abl e estimate. These varianee expressions are based
on th e stochastic noise assumption 2.1. In th e var i­
ance expressions th e influence of the undermodelling
part Go(z) is properly taken into account. The sum
of th e deterministic uncertainty bounds for Go(eiw )

and the probabilistic uncertainty bounds for Go(eiw )

provid es probabilistic uncertainty regions for the
system Go(eiw ) .

Not e that there generally is an optimal value for
n. If it is chosen too smalI , the resulting bounds will
be complete ly det ermined by the prior information
(3) , which is generally conservative. If it is chosen
too large, th e confidence regions for Go(z) will be
large as the vari ane e incr eases with th e number of
pa rame ters to be est imated. More will be said ab out
this lat er .
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4 Frequency Response Uncertainty
Regions

An an alysis is mad e of th e frequ eney response identi­
ficati on error of th e instrumental variabie estimate .
This th en leads to frequ eney response eonfidenee re­
gions for the system Go(z).

4.1 The Frequency Response Error of the
IV Model

Consider some frequ eney Wj ehosen arbitrarily in
·the interval [0 ,71"] . Substitution of th e parameter
estim ate (6) yields the frequeney response of th e IV
estim ate ,

n

ê (eiWi ) = Lg(k)Pk(eiWi) =
k=O

[Po(eiWi ) ... Pn(eiWi)] .

[

N ]-1 N.h~ V (t )wT(t ) h~ V (t )y(t ).(7)

Define for t = t . , ... , N the signals rl(t) and r2(t)
as

rl(t ) := [Re (Po(eiWi)) . . .Re (Pn(eiWi))] .

.[~ ,tVet)WT(tr' V( I) , (8)

r2(t) [Im (Po(eiWi)) .. -Irn (Pn(eiWi))] .

.[~ ,t V(I)WT(tJr Vet). (9)

These signals rp(t) , p = 1,2, ar e filtered versions of
th e signal r(t) , and th ey ean be eomputed , as th ey
only depend on known quantities . They play an es­
sential role throughout th e following derivation of
IV mod el error bounds. Note that th ey depend on
th e frequ eney Wj th at has been ehosen, but for nota­
tional eonvenienee this dependeney is not explieitly
mentioned all th e time.

Using (1) and (4) th e output y(t) ean be written
as

where Wk(t) is defined in (5) and

00 1- 1

a(t) L go(k) L Pk(k')u(t - k') , (10)
k=n+l k'=O
00 00

b(t) := L go(k) L pk(k')u(t - k'). (11 )
k=O k '=1

The signal a(t) represents th e response of th e tail
Go(q). The signal b(t) represents th e response du e
to past input signais, th e initial eonditions. Using
this th e following alternative expression ean be given
for ê(eiwi) given by (7),

~. 1 N
G(e'Wi) = -= L(rl(t)+ir2(t))y(t) =

N 1= 1,

1 N
-= L(rl(t )+ir2(t)) .
N 1=1 ,

. (~go(k)Wk(t) + a(t) + b(t) + eo (t )) .

The first term of this expression ean be work ed out
as follows,

Next define for p = 1,2,

N

d(p) := L rp(t)a(t) , (12)

ê(eiWi ) - Go(eiWi ) =
= ê(eiwi) _ Go(eiWi) - Go(eiWi) =

whieh depend on th e frequeney Wj as rp(t), p = 1,2,
depends on th e frequ eney Wj . Again using (4) this
fina lly gives th e following expression for th e identi­
fication error ,

y(t) Go(q)u(t) + eo (t ) =

Go(q)u(t ) + Go(q)u(t ) + eo (t ) =
n

L yo(k)Pdq)u(t) +
k=O

00

+ L YO(k)Pk(q)U(t) + eo(t ) =
k=n+l

n

Lgo(k)Wk(t) + a(t) + b(t) + eo(t ),
k=O
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N

f(p) := L rp(t)b(t) ,
1=1 ,

(13)



1
-;::c-(d(l) + id(2) + f(l) + if(2) +
N

N

+ L (r l(t) + ir'2 (t ))eo(t )) - Go(eiWi) . (14)
t=t ,

Basieally all terms at th e right-hand side of this ex­
pression are unknown . However , it appears possi­
bie to derive a probabilistie distribution for th e ter­
m containing eo(t ), using assumption 2.1. And th e
terms with d(p) , f(p) and Go(eiWi) ean be bounded
using th e prior information (2) and (3).

4.2 Auxiliary ResuIts

In th is subseetion th e various terms app earing in
(14) are evaluated . Consider any bounded signal
{rp(t)} and eonsider d(p), /(p) defined by (12) , (13)
respectively, with a(t), b(t) defined by (10), (11) re­
spectively. Making use of (2) and (3), the following
bounds can be derived,

Id(p)\ ::; d(p) :=

Note that 8(1) and 8(2) are finit e due to th e expo­
nential deeay rate of g(k). Computational asp eets of
the evaluat ion of th ese infini te sums are eonsidered
in Hakvoort (1994b ).

Next a key lemma is established with respect to
the asymptotie distribu tion of L:;:t, rp(t)eo( t) .

Lemma 4.1 Suppose that {eo(t)} and {r(t)} are
independent and that they satisfy the assump­
tions 2.1 and 2.2 respectively. Consider ilie
signals {rl(t)} and {r2(t)} , given by rl(t) =
F1(q)r(t ), r2(t) = F2(q)r(t ) [or any eoo-stable linear
filters F1(q) and F2(q). Denote

A
N

'= E~ [ft. rl(t)eo(t)
r,r, . ij N

L r2(t)eo(t)
t=t ,

.[ft. rl(t)eo(t) :t. r2(t)eo(t) ] ,

00 I N t-l I
k];.1g(k) t~ rp(t) k~ Pk(k')u(t - k') , (15)

and

Also denotefori,j= 1,2 ,

r=I , . .. ,N-t. ,

N-ITI R ( ).
...... eo T
N

(i)

(ii)

(iii)

and R;:-',(r) := R;:-',r , (r) , i = 1,2 . Then

N 1 N-T

Rr,r)r) := --- L ri(t + r)rj(t),
N - r t=t ,

r = -N + t., . . .,0,

1 N+T

R;:-',ri(r) := ---- L ri(t)rj(t - r ) ,
N + r t=t ,

whieh repr esents a eomputable bound for the tail
eont ribut ion. And,

00

< L g(k ) IRe(Pk(eiwi))I := 8(1) , (17)
k=n+l

00 OO I N IIf(p) I ::; /(p) := {; g(k) t~ ~ rp(t)Pk(t + t') ü ,

(16)
whieh repr esents a eomputable bound for the con­
t ribut ion of th e unknown initial eonditions. The
act ual eomput at ion of th e expressions involve the e­
valu ation ofinfinite sums. Due to the fact that g(k)
shows exponent ial deeay rate in k, and Pk (k') shows
exponent ial deeay rate in k' th e outeomes are finite.
Comput at ional asp eets are consid ered in Hakvoort
(1994b). Clea rly d(p) will be small if n is ehosen
large, and /(p) will be small if t , is ehosen large.

T he real and imaginary part of th e frequeney re­
sponse of the tai l, Go(éWi ), ean be bounded as fol­
lows,

00

< L g(k) IIm (Pk(eiWi)) I := 8(2).
k=n+l

(18) uihere N(O, Ar,r,) denotes the Multivariate Nor­
mal distribuiion with mean 0 and cocarianee matrix
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Ar,r,. Moreouer, ij A~r, is inuertible,

uihere X2(2) denot es th e Obi-square distribution with
2 degrees o] Jreedom.

The results given in (iii) and (iv) are asymptotic
results , est ablished using a cent ral limit th eorem.
For finite N the given distributions are approxima­
tions of th e true ones. However , extensive monte
carlo simulations show th at this approximation can
be very goo d for small N already, see Hakvoort
( I994b). Note that th e expression for th e covari ­
ance matrix in par t (i) is a non- asymptotic result ,
it is correct for any N .

4.3 Frequency R esporise Confidence Re-
groris

Using t he resul ts of the previous subsectio n a com­
putable bound for t he IV model error ê(eiwj

) ­

Go(eiWi ) is st raight forwardly obt ained. And as such
a confidence region for th e system 's frequency re­
spo nse Go(eiWi ) is obtained. The bound is given in
the followin g main th eorem.

Theorem 4.2 Co nsider th e IV estimate (6) with

Jrequency response ê (eiWi ) given by (7). Suppo se
that {eo(t)} and {r (t)} are independent and that
they satisJy th e assumptions 2.1 and 2.2 respeciiu e­
ly. Let d(p), p = 1, 2, and Ï(p), p = 1,2, be given
by (l5) and (l6) respeetive ly, with r l(t) and r2(t )
given by (8) and (9) respectively. Moreover. let
8(p) , p = 1, 2, be given by (17) and (l8) .

Let CN,a corres pond to a probabilit y 0' in the
stan derd No rma l distribution, such that , ij x E
N(O , I) => prob tje] ::; CN,a) = 0'. Let cx ,a cor­
reepond io a probabilit y 0' in the Chi-square dis­
tri bution with 2 degrees o] Jreedom , su ch that, ij
xE X2(2) => prob (x ::; cx,a) = 0' .

Den ot e matrix-elem ent (i , j) o] A~ r, as given in
part ( i) o] Lemma 4.1 by À~ri ' Moreover introduce

r =
[

"lI l "112 ] as th e square-root oJ the inv erse o]
"121 "122

A~r" provided this matrix is inv ertible, i.e. rTr =
( N )-1Ar 1r , . Th en, ij N -+ 00 ,

[

Re (~(e ~Wi) - Go(e
iWi»)

] T rT .
Im (G( e'Wi) - Go(e'Wi»)

. [Re ~ê( eiWj) - Go( eiWi)j ]r _ . . <
Im G( e'Wj) - Go( e'Wi) -

< (jeil' + J-rfl + '~1 (~+ LW + cS( I»)

+ J,r2 + '~2 (~+ ~ + cS(2») ) 2,
w.p. ~ 0',

(iii)

::; cN,a JÀ~r l +~ + lW + 8(1), W.p. ~ 0' ,

(ii) IIm ( ê (eiWi ) - Go(e iWi» ) I::;
::; cN,a J À~r, +~ +~ + 8(2), W.p. ~ 0' .

Atul, ij A~ r , is in vertible,

The parts (i) and (ii) of thi s th eorem provide prob­
abilistic bounds for the real and imaginary part­
s of the IV model error, and as such for th e fre­
quency response of th e system Go(z ). These may
be cornbjned into rectangular sys tem confidence re­
gions in th e complex plane using Bonferron i 's in­
equality (Manoukian , 1986 , p. 49) . In parti cular ,
if any complex-valued random variabie x has the
property that Re(x) ::; a, w.p . ~ 0', and Im( x) ::;
b, w.p . ~ {3, th en Re(x) ::; a 1\ Im (x) ::; b, W.p . ~
1 - (1 - 0') - (1 - {3).

Ellipsoidal system confidence regions are obtained
with part (iii) of th e above th eorem , provided th e
matrix A~r, is invertible. Not e that th is is genera lly
th e case, except for frequencies Wj = 0, 7L For th ese
frequ encies th e signa l {r 2(t)} is identically zero, as
Im (Pk(eiwi ») appearing in (9) is zero . This very
naturally means th at for frequencies 0 and 7r th ere
is no imaginary system un certain ty.

The first cont ribution to the frequency response
un certain ty regions as specified in Theorem 4.2, cor­
resp onds to th e vari an ee of the IV model, du e to the
noise {eo(t )} . The second contribution, with dep),
is due to the response of th e tail Go(q), and repre­
sents a bias cont ribution. T he t hird contribut ion,
with Ï(p ), is due to the unknown initial condit ions .
Finally, th e fourth cont ribution, with cS(p), corre­
sponds to th e frequency response of the tail Go(q),
and also represents a bias contribution.

The different error sourees in th e IV est imate can
be clearly distinguished and traded-off. In partic­
ular the truncation value n can be used to make a
trade-off between bias and variance. A larger val­
ue n means a smaller bias, but a larger variance.
By trying different values an optimal valu e can be(i)
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determined . Similarly the integer t. , offers the pos­
sibility to trade-off the inftuence of initial conditions
to th e variance. A larger value t, means a decrease
of the error contribution /(p) , but an increase of the
variance, due to a decreasing ij = N - L, + 1.

It is emphasized that th e identification of the IV
model is not a purpose in itself, but serves as a basis
for the construction of system uncertainty regions.
The design variables in the IV identification , such as
th e IV model order n, should not be used to obtain
a tractable (Iow-order) nominal model, but should
be tuned in such a way that the uncertainty regions
are as smal! as possible. The identification of a good
nominal model, suited for use in control design , is
not th e issue here.

Remark 4.3 Th e probabilisti c uncertainty regions
give n in Theorem 4. 2 correspond to an explicit fre­
quen cy domain variance and bias expression for an
instrument al var iabie est im ate G(éWi ) . In cas e of
open loop id entificat ion, if r(t) = u(t) , th e IV est i­
mate is identical t o a FIR least squares est im ate.
T he expressions ha ve been derived for any set of
basis f un ction s, {Pk( z)h=o,oo .,oo. A ls o ih e contri­
but ion of th e in itial con ditions and undermodelling
are properly taken into account.

In lit erature var iance expres s ions are given [or I V
and FI R esti m ates, how ever mainly with resp ect i o
th e param et er vari ance, assuming that th e sys te m
is in th e m odel se t , and n eglecting th e infiuen ce of
th e in itial con ditions, see for ex am ple Ljung (1987,
Ch. 9) and Söderström and Stoica (1989, Ch . 8).
S ome progress has been made in Hjalmarsson (1993)
and Hjalmarsson and Ljung (1993), uilt ere for a dif­
f erent id entification s etting a procedure is presented
io in corporate the infiuence of the bias uilten com­
puting th e variance.

Theorem 4.2 provides frequency response confidence
regions for t he unknown system Go(z). Howev­
er, it appears that th ese can only be calculated if
the auto-covarianee function of the noise process is
known , as A~r2 given in part (i) of Lemma 4.1 con­
tains Reo(r ) , r = -N + t., .. . , N - t•. In Hakvoort
et al. (1993) a procedure is described to estimate th e
aut o-covarianee function Reo(r) from measurement
data. In Hakvoort (1994b) it is shown, by means of
monte carlo simulations , that this estimate is quite
accurate, even if it is based on a smal! amount of
dat a .

5 Discussion

In this paper an identification procedure has been
develop ed which yields confidence regions for the
frequency response of some stabIe LTI system . The
procedure involves th e explicit calculation of bias
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and varianee errors of an IV or FIR least squares
estimate. Important features of th e identifi cation
procedure are:

• Essential!y th e procedure is stochastic. Proba­
bilistic uncertainty regions ar e calculated based
on data, deterministic system priors , and s­
tochastic noise priors.

• The actual computations can be perform ed
quite efficientiy. No nonlinear optimizations
are involved , as use is made of a linear system
parametrization , and consequently th ere is no
problem with local optima.

• The required prior information can be reliably
estimated from data.

• There are no restrictions on the input signal , it
need for example not be periodic. It is even not
necessary that th e input is generated in open
loop.

• No ord er assumption about th e system is made.

• The pro cedure is easily extendable to MIMO
systems .

• Rough prior knowledge about the system , or
more specifical!y pole-locations , can be incor­
por at ed by using generalized or thonormal basis
functions.

• Unkn own ini tial condit ions are properly taken
into account.

• The identifi cation pro cedure is robust for noise
outliers, and smal! errors in th e prior informa­
tion. This means for example that if the system
has a smal! nonlinearity (measured in terms of
its foo-induced norm), the resulting uncertainty
regions are just slightly errat ic, and hence are
stiJl (approximately) valid .

On the other hand sorne drawbacks of the proba­
bilistic uncertainty bounding identificiation proc e­
dure developed in this paper , are:

• Although al! computations can be carried out
efficient ly and accurately, the identification
procedure requires a lot of computations. This
means that on-line application of the procedure
seems infeasible.

• The procedure makes use of results which are
asymptotic in th e number of data. As in appli­
cations th ere are always finite-data records, the
results might not be valid in practice. On th e
other hand , monte carlo simulations (Hakvoort,
1994b) show that the error caused by th e finite­
ness of the number of data can be very smalI,
even for small values of N. The acccuracy of
the finite-data approximation dep ends on sev-



eral factors, su ch as th e length of th e pulse re­
sponse of the noise generating filter, and th e
actual distribution of the noise process .
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Abstract. A recently developed identification procedure is applied to measurement data
of a multivariabl e industrial glass tube manufacturing process. Both a nominal model and
probabili sti c frequency response model error bounds are identifi ed with this pro cedure.
The nominal model is used to design an Hoo-cont roller . The model error bounds are
used in a fl-an alysis to assess robust st ability of the designed cont roller before actu al
implementation.
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1 Introduction

In this paper th e problem is discussed of identifi­
cat ion and robust control design of a multivariable
industrial glass tube manufacturing process. Due
to increasing demands on the quality and quantity
of th e glass tubes a high performing controller has
to be designed for the production process. Besides ,
th e controlled system has to be robust against (se­
vere) fiuctuations of the dynamical behaviour of the
uncontrolled process. The design of a robust con­
troller requires th e specification of a nominal model
of the process dynamics and explicit error bounds on
the frequency response of this model , see for exam­
ple Maciejowski (1989) , Morari and Zafiriou (1989) .
T he modelling is done by using identification tech­
niqu es based on time-series of several process pa­
ram et ers. The industrial process puts th e following
requirem ents on th e identification procedure:

• The identification method has to be MIMO
(multi-input multi-output) applicable, as th e
pro cess is multivariable.

• The identification method has to be abl e to
handle arbitrary input sign ais , as there is no
com plete freedom to do experiment design .
During th e identifi cation experiments the pro­
du cti on is lost , and th erefore measurement time
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is very much restricted. In particular no sine­
sweep exp eriments could be carried out .

• If not clear from physical insights, all prior in­
formation required has to be gathered from da­
ta.

• Because of the subsequent control-design st ep,
and the necessity to implement a lew-order con­
troller, it is desirabie to identify a reasonably
lew-order nominal model.

In literature many identification procedures ar e
described which deliver a nominal model and ex­
plicit frequ ency response model error bounds, see
for example Bayard (1992) , De Vries (1992) , De
Vries (1993) , Hakvoort (1994) , Hakvoort and Van
den Hof (1994), Lamaire et al. (1991) , Ninness and
Goodwin (1992), Wahlberg and Ljung (1992). Most
of these methods appear not applicable to th e in­
dustrial process at hand, either because the input
signal is required to be sinusoidal , or because th e
procedure is int ended for SISO (single input singl e
output) systems .

In this paper the identification procedure de­
scribed in Hakvoort (1994) is applied to th e industri­
al glass tube manufacturing proc ess because it does
satisfy all of th e requirements list ed above. The pro­
cedure yields both probabilistic frequency response



2 Process Description

Fig. 1: Schematic overview of th e glass tube man­
ufacturing process.

The industrial process under considerat ion is a glass
tube manufacturing process, schematically depicted
in Figure 1. By dir ect elect ric heating, quartz sand

Shaping of th e tube takes place at, and just be­
low the end of th e mandrel. The longitudinal shape
of th e tube is characterized by two important di­
mensions , which will be taken as out puts to be con­
trolled: tube diameter (first output ) and tube wall­
thickness (second output) . Both outputs are influ­
enced by many process conditions such as :

• mandrel gas pressure,

• drawing speed,

• power applied to th e furnace (temperature of
the glass),

• melting vessel pressure,

• composition of raw materiais .

Some of these have a small bandwidth (pow er and
composition of raw materiais) , poorly influ ence th e
glass quality (composition of raw materiais) , or have
extremely large delay times involved (power , melt­
ing vessel pressure and composition of raw materi­
ais). Therefore th ese are not weIl suited for control
of the tube dimensions.

The mandrel pressure and th e drawing sp eed in­
fluence th e shaping of th e tube in a most dir ect way.
Transfers from th ese inputs to both wall-thickness
and diameter have th e larg est bandwidth , th e short­
est delay times and permit , to som e extent , ind epen­
dent manipulation of th e outputs. The permitted
ranges of th ese two pro cess inputs allow a control of
th e tube dimensions over th e full amplitude rang e
of output disturbances and enable th e production of
a larg e vari ety of different products. Consequ ently
these two are taken as controlling inputs. The draw­
ing speed will be denoted as th e first input, and th e
mandrel pressure as th e second input .

Shaping of th e glass tube clearly is a MIMO pro­
cess with a high degree of interaction. Increase
of th e mandrel pressure results in an incr ease of
the tube diameter and a decrease of th e tube wall­
thickness. Increase of th e dr awin g speed causes a
decrease of both diam et er and wall-thickness. A
physical model of th is shaping part has been ob­
tained by deriving th e physical laws of th e sh aping
process , describing th e shaping of th e tube in detail
and over the full range of possible op erating points ,
determined by various values of tube diameter and
wall-thickness. However, this physical model is very
complex and has physical parameters included with
numerical values that are unknown for the different
operating points. Therefore modelling is performed
by means of black-box identification.

Basically the process is nonlinear . However, one
operating point is considered. Stair-case experi­
ments, i.e. experiments with the inputs being ex­
cited by steps of different amplitudes , indicate that

Mandrel

Melt ed glass

Melting vessel

Shaping part

Drawing machine
yDrawing speed

Wall-thickness---'1

Power supply

Pressure
melting vessel

Glass tube ---j--b<

Mandrel pressure

is melted and flows down through a ring-shaped
hole along the accurately positioned mandrel. Un­
del' pressure, gas is led through the hollow mandrel.
The glass tube is pulled down due to gravity and
supported by a drawing machine.

system uncertainty regions, with th e procedure de­
scrib ed in Hakvoort and Van den Hof (1994), and
a nominal model, with th e cur ve fit procedure de­
scrib ed in Hakvoort (1993). These are used to de­
sign a robust Hco-cont roller . The glass tube manu­
facturing process has previously been considered in
Backx and Damen (1992), Falkus et al. (1993), Mu­
rad et al. (1993) , Overschee and De Moor (1993).
However , in these papers no model error bounds
hav e been identified or deriv ed in some ot her way,
and consequently no robust controllers could be de­
signed , which account for the model error .

The outline of the paper is as follows. In Section 2
a description is given of the glass tube manufactur­
ing process . In Section 3 the identification proce­
dure is shortly described , and the identification re­
sults ar e presented. Next in Section 4 the control
design pro cedure is described, and the resulting de­
sign is presented. Also a robust stability analysis
is performed. Finally in Section 4.3 conclusions are
drawn .
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th e pro cess can very weil be consid ered linear and
time-invariant in th e operating point, see for exam­
ple De Roov er (1993). Therefore there is no problem
with using linear identification and control design
techniques.

In th e sequel only scal ed data will be used, such
th at th e original process data cannot be retrieved.
This is because of the industrial confidentiality re­
quired.

3 Identification of a N ominal Model
and a Model Error Bound

3.1 The Identification Procedure

An identifi cation procedure is used that yields both
a nominal model and frequency response model er­
ror bounds. The nominal model is used for model­
based control design, and th e model error bounds
are used to assess robust stability before implemen­
tation of th e controller. Basically the identification
procedure consists of two st eps:

1. In th e first st ep probabilistic frequency re­
sponse un certainty regions are identifi ed with
the pro cedure describ ed in Hakvoort and Van
den Hof (1994). Consider th e linear , time­
invariant , cau sal and st abi e MIMO system de­
not ed by Go(z) . The ent ry of Go(z) corre­
sponding to input j' and output i' is represent­
ed by

00

G~j' (z ) = L.g~'j'(k) z-k ,

k=O

where ggi' (k) are th e (unknown) pulse response
coefficients . Consider given input data {u(t)}
and measured output data {y(t)} and th e fol­
lowing input-output relation of th e data gener­
at ing syst em,

y(t) = Go(q)u(t) + eo(t ), t = 1, .. . , N,

where q denotes th e forward time-shift oper­
ator , N signifi es the measurement time and
{eo(t)} is an unknown additive output noise.
In th e error bounding procedure knowledge is
required of th e auto-covarianee funetion of the
noise process. In Hakvoort (1994) a procedure
is presented to est imate this bound from mea­
sur ement data. Besides, a bound gi'j'(k) on th e

coefficients g~'j' (k),

In Hakvoort (1994) also a procedure is present­
ed to estimate this bound from measurement
data.
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Next for a specified set of frequencies
{Wj h=l ,....1 probabilistic confidence regions for

the system's frequency response G~'j' (eiWi ) are
derived for each ent ry i' , j'. This is performed
by explicit ly calculating th e bias and vari an ee
errors of an instrurnental variabie est imate, see
Hakvoort and Van den Hof (1994). Due to th e
fact that the real and imaginary part of th e fre­
quency response are considered separately, th e
resulting uncertainty regions ar e rectangular.
The centers of th ese uncertainty regions consti­
tu te a nonparametrie nominal estimate of th e
system 's frequency response.

2. In the second step of the identification pro ce­
dure a stabie parametrie nominal model is con­
strueted with th e frequency response curve fit
procedure described in Hakvoort (1993). The
curve fit problem concerns the minimization of

over stabie G(z) of som e specified ord er , i.e. th e
minimization of th e maximum amplitude of th e
weighted difference between a set of frequen­
cy response dat a and a parametrie (low-ord er)
model for a finit e number of frequencies. Here
{Gi'j' (Wj )}j= l ,... ,l are th e complex-valued fre­
quency response data , in particular th e cente rs
of th e frequency response un certainty regions
derived above. {Wi'j'(Wj)}j=l ,...,1 is a weight­
ing function, which can be used to tune th e
frequ ency distribution of the fit error.

To reduce numerical complexity the MIMO iden­
tification problem is split into two MISO identifi ca­
tion problems. Models are est imated for each output
separately, and at the end th ese are combined into
one MIM0 model. More details of th e identifi cation
proc edure are given in Hakvoort (1994).

3.2 Identification Results

For identification purposes th e following experi­
ments have been carried out on the glass tube pro­
duetion proc ess:

• A free-run experiment, i.e. output measure­
ments without input excit ation. This gives an
indication of the output noise, and can be used
to estimate the second order noise statistics ,
knowledge of which is required for the uncer­
tainty bounding identification procedure, see
Hakvoort and Van den Hof (1994) .

• Stepresponse experiments. These can be used
to accurately identify the low-frequent system
dynamics.



• A PRBS experime nt, i.e. th e input signals are
Pseud o Random Binary Sequ ences , and inde­
pendent of each other. This excites th e system
uniformly in the ent ire frequency range of in­
terest .

• An experime nt where th e input sign als are fil­
te red PRBS signa Is. T he filter is a bandpass
filter with high gain in th e medium frequency
range, which is considered importan t for th e
control applica tion .

• On e more unfiltered PRBS experiment, which
is not used for identification , but for validation
purposes.

The data have been preprocessed to make th em suit­
able for identification purposes, i.e. outIiers, tr ends
and offsets have been removed , and th e fast sam­
pled data have been decimated to a sampling rate
corres po nding to t he sampling rate for th e discret e
time controller.

The process contains large time delays , partly due
to the physical time it takes before th e glass tube
reaches th e measurem ent equipment. First th ese
time delays are est imated and removed from th e da­
ta. Due to the fact that MISO problems are consid­
ered, it is always possible to do th is by shifting both
input signals over the proper amount of samples. A
correla t ion analysis on th e basis of the white PRBS
experiments , is applied to est imate the time delays .
In Table 1 the delay times are given.
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Tab le 1: Time delays in number of samples.

Fig. 2: Bode plot of t he identi fied undelayed
nominal model ê(z) (solid ) and 99.8%­
confidence int ervals for the amp litude and
ph ase (dashed). T he ent ry in row i/ and
colum n j' corresponds to th e transfer func­
t ion from inp ut Uj' to output Yi' .

Next th e above sket ched identification pro cedure
has been carr ied out . The nominal model ê (z)
(wit hout delays) is shown in th e Bode plot of Fig­
ure 2.

Rect angul ar confidence regions hav e been der ived
using the PRBS and th e filtered PRBS experime nts
separately. Next the intersection of th ese confidence
regions has been calculated . The resulting un cer­
tainty regions are depi cted in th e Nyquist diagram
of Figure 3, with the delay s added , together with th e
frequ ency response of th e nominal model ê(z). The
confidence regions correspond to a 99.8%-confid ence
level. From th is Nyquist diagram it is straightfor­
ward to calculate upper and lower bounds on th e
amplitude and th e phase of th e system's frequen­
cy response. These bounds, corr esponding to th e
und elayed model , ar e depict ed in Figure 2 as weIl.
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From Figure 3 a frequ ency depend ent upper
bound on th e add itive model error is easily derived
as th e worst-case distance from th e nominal frequ en­
cy response ê(eiwi ) to th e rectangular un certainty
region for that frequency . In Figure 4 th is upper
bound on th e model error is shown for each en­
try i', i' , and corresponding to a confidence level
of 99.8%.

The undelayed MISO model for th e first output is
of order 9. The undelayed model for the secon d out­
put is also of ord er 9. The combined MIMO model
with delays is of ord er 35. Due to similar dynamics
for both outputs, th ere ar e redundant orders in this
MIMO model. As a lew-order model is desired for
the control design application, t his nominal model is
redu ced to order 15 with Hankel-norm model reduc­
tion, Glover (1984). This model redu ction st ep has
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s in Falkus et al. (1993) , Overschee and ·De Moor
(1993) . If an attempt is made to identify high -order
models with a prediction error method , th en eas­
ily numerical problems in the nonlinear optimiza­
tion occur because of th e bad signal-to-noise-ratio.
On the other hand, if a low-order model is identi­
fied, only the low-frequent dynamics are accurately
modelled. Application of a high-pass filter in or­
der to emphasize th e high-frequent dynamics , again
easily leads to numerical problems in a sens that
(non-linear) minimization rout ines get stuck to 10­
cal minima. The main reason for this fai lure is that
both prediction error methods and subspace meth­
ods use a time-domain criterion in their optimiza­
tion routines . In general for strictly proper systems
the contribution of high-frequent process dynamics
to a time series is only marginal and th erefore hardly
present in a time-domain based criterion. However
for control design, and especially robust control de­
sign, th ese high-frequent process dynamics can be
very important , and should therefore be accurate ly
est imated as weil.

Next the time-domain behaviour of th e nominal
model G(z) is evaluated. In Figure 5 th e measured
and simulated st ep responses are shown; not e th e
approximate linear behaviour of th e syst em in one
operating point. In Figure 6 measured and simu­
lated responses ar e shown for th e validation PRBS
experiment, which has not been used in the iden­
tification. The time-domain fit appears very good
both for th e st ep response experime nts as for th e val­
idation expe riments, which gives confide nce in the
nominal mo del.
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Fig. 3: Nyquist plot nominal model G(z) (solid,«)
and 99.8%-confid ence regions (rectangulars)
with th e delays being added. The ent ry
in row i' and column j' corresponds to th e
transfer function from ui' to Yi' ·

Fig . 4: Upper bound on the addit ive model er­
ror corresponding to a confidence level of
99.8%. T he ent ry in row i' and column j'
gives the additive model erro r bound for th e
t ransfer function from ui I to Yi' .

been carried out in such a way that no significant
dynamics ar e lost .

Notice from Figure 2 that also high-frequent dy­
namics present in the process can be accurately
modelled, this despite of the bad signal-to-noise­
ratio at these frequ encies . Other identificat ion
methods, such as standard predict ion erro r and sub­
space methods, appear not capable of modelling so
much detail in th e high-frequency range. Compare
Figure 2 for example with the identification resu lt -
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is designed for the standard configu ration depict ed
in Figure 7. In this figure u is the input signal, y
the (dist urbed) output signa l, r the ext ern al refer­
ence signal , and e the output noise. Note that in

Fig. 7: St andard closed loop configurat ion.
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Fig. 6: Measured (solid) and simulated (dashed) re­
sponses on PRBS-excitation of both inputs
for the validation experiment .

4 Robust Controller Design and
Analysis

4.1 The Contro1 Design Procedure

The H oe-control design method described in
Bongers (1994) , Bongers and Bosgra (1990), McFar­
lan e and Glover (1989) is used to design a mod el­
based controller. The reasons for using this control
design procedure are:

• The controller performance and robustness can
easily be tuned by the use of simple (constant,
diagonal) input and output weighting matrices.

• Low-order controllers can be designed, which is
important for th e implementation .

• Fast and reliable software is available to calcu­
late a discrete-time cont roller.

Let ê(z) be a nominal mod el, and W1(z) and W2 (z)
weighting matrices. Define G(z) as

T he cont rol prob lem concerns the minimization of

I1 [ G~z) ] (I + C( z)G( Z))-l [I C( z) ] I1
oe

over stabilizing C( z) of som e specified order. The
controller

stabilizes ê(z) and achieves a certain performance
and robustness , depend ent on th e choice of weight­
ing matrices W1(z) and W2( z). The controller C(z)
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th e control design only use is made of th e nomin al
mod el, and no direct use is made of the model error
bounds. These error bounds are used later for sta­
bility robustness analysis of th e resulting cont roller.
Of course indirect use is made of the mod el error
bounds in a sense that if no robust stability can be
proven , a new nominal cont rol design is performed ,
and in a sense that decisions upon t he choices of the
weighting matrices W1 (z) and W2 (z) ar e influenced
by th e error bounds.

4.2 The Resulting Controller

Wh en evaluating th e cont roller performan ce th e fol­
lowing it ems need to be considered.

• The controller has to be robustly stabie, both
with resp ect to model error in one operating
point, and to changing dynamics for a slightly
different operating point.

• The controller has to track setpoint changes
reasonably fast , with small overshoot , and
without stat ic error.

• Lew-frequ ent and very-low-frequ ent noise, such
as t rends, should be removed by the controller
as much as possible.

• High-frequ ent noise sho uld not be amplified too
much .

• The inpu t sign als to the syst em shou ld be as
smooth as poss ible, wit hout large overs hoots on
set point cha nges.

• Both outputs have to be statically and dyn arn­
ically decoupled as much as possible.

The items above const itute a rather qualitative mea­
sure for controller performance. Engineering inter­
pretation is required to actually const ruct a con­
troller which meet s th ese requirements.



In the Hoe-cont ro l design th e following input s­
caling matrix has been used ,

UJ 10-1

~ 10,'
..J

~ JO')

4.3 Jl-Stability Robustness Analysis

Before implem enting the cont roller on the system,
stability guarantees should be requ ired. T herefore a
robust stability analys is is performe d, usin g the fre­
quency depend ent mod el error bound. Consider the
closed loop configuration depi cted in Figure 10. For
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AmplitudeBode plot of th e output sensiti v­
ity function S(z) = (I - ê (z )C(Z)) -l. T he
ent ry in row i/ and column j' corresponds
to Si'j' (z) .
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0:' =0.014, (3 =25, ,= 1.2.

and th e ou tput sealing matrix

In Fig ure 8 an amplit ude Bode plot is shown of the
designe d cont ro ller C (z) , which is of order 12. In
Figure 9 an ampli tude Bod e plot is given of th e de­
signed out put sensitivity function . Clearly distur­
ban ce suppression is realized for frequencies up to
0.02 rad/sec.

T he pr esence of integr ators in the input sealing ma­
trix provides integrating act ion for both outputs,
which is necessary for both set po int-t racking, and
lew-fr equ ent noise redu cti on. The scalars 0:', (3 and
I are used to tune the controller, such th at accept­
ab le pe rformance and robustn ess are achieved, in
accordance with the item s list ed above. The pa­
rameter I is used to tune the rela tive impor tan ce of
each output. T he para meters 0:' and (3 are used to
tune the rela ti ve ïmpo rtance of each input , an d to
tune the bandwidth of t he closed loop syste m . A
larger value for 0:' and (3 generally me ans a higher
bandwidth. Fi nally th e following valu es ap peared
to give a proper t ra de-off for all t he requirem ents
listed above,

each frequency Wj th e weightings w i' j'(Wj) , i' ,j' =
1,2 , ar e chosen equal to the worst-case model error
bounds depicted in Figure 4. Hence th e perturba­
tions ~i'j'(Wj) are normalized to 1,

10-" 10·)
10-·' 10-1 10-1 10' 10' IQ -l 10" 10-1 10' 10 '

FREQUENCY (RADISEC) FREQUENCY (RADISEC)

10' 10'
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-c 10'
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FREQUENCY (RADISEC) FREQUENCY (RADISEC)

Fig. 10: Closed loop configuration with nominal
model ê"!', cont roller c '! ' and weighted
additive model error w i'j'~i'j'

Fig. 8: Amplitude Bode plot of the designed con­
troller C( z). The entry in row i/ and column
i ' corresponds to cr«(z). Straightforward manipulations show that th e closed

loop configuration of Figure 10 is stabie if and only
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frequencies Jl(M(wj)) is smaller than 1. Hence ro­
bust stability is conclude d, and it is considered safe
to actually implement the cont roller, as there is no
danger of closed loop instabili ty in th e spec ific op­
erat ing point of th e pro cess .

if the closed loop configur at ion of Figure 11 is stabie,

.6.11 0 0 0
0 .6. 12 0 0

r------+
0 0 .6. 2 1 0

'------

0 0 0 .6.22

M

Fig. 11: Standard un cer tainty configuration for Jl­
analysis
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where the m atrix M is given by:

[

F11 W1 1 F 11W12 F 12W21

M := F 21WIl F 21W 12 F 22W21

F 11W11 F 11W 12 F 12 W 21

F 21W Il F 21W 12 F 22 W 21

and Fi'j /, i/ ,j' = 1, 2, is defined by

The closed loop configurat ion of Figure 11 is th e s­
tandard one used in Jl-an alysis , see for exam ple Ma­
ciejowski (1989 ) , Morari and Zafiriou (1989) . As th e
.6.i' j l(Wj ) have been normalized to 1, th e closed loop
of Figure 11, and hence of Figure 10, is st abi e if and
only if t he st ruc t ured singular valu e of M is smaller
tha n 1,

Jl (M (w)) < 1, Vw E [0,'Il'].

For simplicity this requirement is replaced by th e
requirement,

Jl(M(Wj)) < 1, j = 1, ... .i.

assum ing that the frequ ency grid {Wj }j=1,...,1 has
been chosen sui tably, such that th e inter sample fre­
quency behaviour causes no problems. This simpli­
fication is also supported by Packard and Pandey
(1993) , where it is shown that the structured sin­
gular valu e is a cont inuous function of frequ ency in
case complex-valued perturbations are considered.

For each frequ ency Wj, j = 1, .. . ,1, separately,
Jl(M(wj)) has been calculated. In Figure 12 th e
resulting ti-curve is shown. lt appears that for all
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Fig. 12: Jl(M(wj» for i = 1, .. . .t .

Conclusions

The identification procedure develop ed in Hakv oor t
(1994) has been applied to measure ment data of an
industrial glass tube manufacturing process . lt ap­
pears possible to identify an accurate nominal model
with th e identification method applied . Mor eover ,
also reliable frequency response model error bounds
can be derived , which are not overly conservative.
An Hoe-controller has been design ed based on the
nominal model. With the mod el error bounds ro­
bust stability has been verified by means of a Jl­
analysis, which is needed before actua l implem enta­
tion of th e cont roller.

In fact two things hav e been achieved . First a ra­
bust controller has been designed for th e glass tube
manufacturing pro cess, yielding an acceptable and
guaranteed performance. Second it has been shown
that the newly develop ed identification procedure is
applicabl e to industrial processes, in th e sense that
robust controllers can be design ed on th e basis of
th e identification results.
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Closed loop system identification of an industrial wind
turbine system and a preliminary validation result
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Abstract . Reliable dyn amical simulation models of complete wind turbine systems ar e
expected to be of great importance for th e development of economically attractive wind
turbine systems. Reliability is closely related to validity, which is difficult to assess from
measurements and model simulation only. T his is mainly due to fluctuations of the wind
field corrupt ing th e measurements. Application of system identification solves this prob­
lem because th e noise model accounts for th e (wind induced) disturbances and attention
can be focuss ed to th e deterministic part describing the dynamics which are th e subject
of validation . An industrial full size wind turbine system is available for identification
experiments. This plant is a multivariable system. Experiments were restricted to a
closed loop situation with existing singl e loop PI controllers. Plant modeIs are identified
from th is closed loop data using a two st ep approach . In the preliminary validation stage
the resulting identifi ed model demonstrated qualitatively good agreement to the physical
model (DUWECS code) of the wind turbine.

Keywords. system identification, closed-loop experiments, wind power plants, model
validation

1 Introciuction

Unfortunate ly, still a lot offaillures occur with mod­
ern wind turbine systems. Underestimation of fa­
t igue problems is in many cases th e main cause of
demolished gears or broken rotor blades of a wind
t urbine system.

It is a generally accepted idea that th e quality
of dynamica/ si m u/ation mode/s used in the design
and development phase of the complete wind tur­
bine systems will play a cruc ial role in the improve­
me nt of wind turbine systems . For example, various
dy na mical load cases, which are expected to be crit­
ical for the system, ar e simulated with the model,
and th e simula t ion results ar e th en used to evaluate
whether or not the designed system has an accept­
able dynamical behavior.

Testing a design through evaluation of dynamical
load cases becom es increasingly important when th e
fatigue loading of th e wind turbine system is con­
sidered. Clearly, th e fatigue loading is related to
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the expected life time of the wind turbine system,
and therefore directly conn ected to the economie vi­
ablility of wind energy systems for electrical power
production, compared to conventional power pro­
duction exploiting (non-renewabl e) fossile fuels like
gas or coa!.

Obviously, reliability of th e design tools will depend
heavily on the extent to which the simulation model
has been va/idated. That is: How reliable and accu­
rate are th e models in their ability to simulate th e
phenomena that are expected to play an important
role on th e real system?

Since the dynamics of a wind turbine system are
complex, validation of th e physical modeIs will be
a complex and difficult problem. High validation
requirements usually can not be met by just eval­
uating a comparison of measured data and simula­
tions generated by the mode!. This is mainly due to
the disturbing influence of the unknown wind field
on th e measurements. Suppose a very important



asp ect of modeling has to be validated which on­
ly exhibits subtIe dynamical responses during th e
experime nt s, while th e wind induces large distur­
ban ces on th e measurement of this phenom enon. In
that case any comparison with simulation will fail
because th e human eye is unable to observe any de­
terministic match or mismatch between simulation
and measurem ent sirnply because this is drowned in
th e disturban ces.

To reduce the effect of disturban ces oft en a tech­
niqu e called azimutha l binning is applied . This av­
eraging technique obvi ously deteriorates th e dynam­
ical information in the measurement data, which we
would like to preserve if possibl e.

Sustem identijication can help to solve the validati on
problem for severa l reasons. The most impor tant
one is that it provides a separation of deterministic
and stoc hastic ph enom ena in the data . Therefore
th e wind induced disturbances need no longer to
be averaged out bu t can be captured by th e noise
model. This allows for undisturbed evalua t ion of the
quality of the identified deterministi c part compared
to noise-free simulation of the phys ical mo del.

Anoth er impor tan t reason is that th e result of i­
dentification is a mod el ra th er th an a particular time
series . For example, a decisive judgement about th e
mod el qu ality can be obtained by comparison of dy­
namical t ra nsfer fun ct ions of the experime ntal mod­
el and the simulation model (e.g. in the frequency
domai n).

Note that convent ional valid ation techniques
which exploit for exam ple azimuthal binning can­
not handle In th e case of closed loop measurements
convention al validation techniques are not abl e to
ext ract reliabl e open loop behavior of th e wind tur­
bin e system . Therefore validation can not be inves­
tigated properly . Several closed loop identification
methods exist to deal with this situation and pro­
vide reliable op en loop models.

Despite th ese reasons, application of system i­
dentification to wind turbine systems is, in gener­
al, not straightforward . However , previous research
based on data measured from small scale test fa­
cilit ies, each of th em emphas izing a sp ecific part of
th e wind turbine system, was succesful using this
approach (van Baars and Bongers ,1992 , van Baars
and Bong ers,1993) .

This paper will pursue extension of th e validation re­
sults of th e physical simula t ion model. To make sure
tha t t he valid ation resul ts are not system specific it
is desir abIe to investigate several wind turbine sys­
tems of different size and configurat ion . Besides in­
vesti gation of dedi cated experime ntal research test
facili ties it is therefore also important to consider
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full scal e industrial st ate of th e art wind turbine
sytems which are operating tod ay. Integration of
specific small scale experime ntal results and insigh ts
for a full scal e industrial wind turbine will be essen­
tial in determining th e value of th e simulation model
for practical situations (such as support of th e de­
sign process of modern wind turbine systems and
control systems) .

The paper presents a project , which has been s­
tarted recently, in th e r-wc wind farm located in
Friesland (The Netherlands) consisti ng of 18 indus­
trial wind turbines with rated power of310 kW each.
One of th e wind turbines is available for experimen­
tation. The wind turbine syst em can be influenced
by input excitat ion at the e!ect rical conversion sys­
tem and pitching of the rotor blades. T his means
th at valid a tion involves a system with mul t iple in­
puts and multiple out puts .

A series of system identifi cati on experime nts were
design ed and performed. During th e experiments
normal op eration of th e wind turbine was cont inued
with th e control and safety system un changed . T his
mean s th at identifi ca tion is based on closed loop da­
ta . However , the par am eters of the PI cont ro llers in
th e loop are known.

The organization of th is pap er is as follows: In Sec­
tion 2 a more detailed description will be given of
the tur bine and the data acquisition setup. Identi­
ficat ion of wind turbine systems is the topic of Sec­
t ion 3. At tention will be paid at the conseq uences
of th e presence of cont rolers in view of th e desire to
identify th e dynamics of th e turbine system itself.
In Section 4 validation of th e DUWECS simulation
model is bri efiy addressed . The paper ends with
conclusions in Secti on 4.

2 Wind turbine systems

This section introduces some aspects of th e wind
turbine simulation model that is the subj ect for
validation , and th e particular wind turbine system
which is used to obtain system identifi cation mea­
surem ents from.

2.1 Physical simulation model

The non linear simulation model that has to be val­
idated with respect to its dynamics is describ ed in
Bongers et al. (1993) , and Bongers (1990) . Before
its validity will be investig ated in Section 4 som e
comments will be given here on th e structure and
contents of th e model.

A modular structure has been chosen in which
each part of th e wind turbine system (rotor , trans­
mission , e!ectrical conversion system, and tower) ar e
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modelled separately, each having their own inputs
and outputs Fig. 1.

Fig. 1: modular structured simulation model

A model describing the dynamics of the complete
wind turbine is then realized by connecting these
submodels with each other. For each componen­
t different submodels are developed with modeling
complexity ranging from simple to extremely com­
plicated .

This setup allows for system case study with easy
switching between various submodels and parameter
varia tions. Evaluation of the differences th is makes
for th e behavior of the complete system conneet­
s perfectly with th e design supportive model useas
mentioned in Section 1.

2.2 Experimental set up

The industrial wind turbine which will be used to
validate the simulation model behavior with, is part
of th e rwc wind farm in Sexbi erum, Friesland (the
Netherlands). The wind turbines in this wind far­
m are industrial, variabie speed, 3-bladed, 310kW
machines.

The elect rical conversion system consists of a syn­
chronous generator with a rectifier, and inverter DC­
link. T he field exci tat ion volt age of th e synchronous
machine and t he delay angle of the rectifier can be
ut ilized for cont ro!. The rotor has full span blade
pitch cont ro!. A discussion ab out which signals can
be cons idered as inputs and outputs will be given in
Sect ion 3.

T he sys tem is cont rolled by 4 SISO PI controlers
(wit h known paramet ers) as can be seen from Fig . 2.
T he set point valu es for th e rotational speed of th e
genera to r sha ft are generated by block T , which has
only very slow dynamics. This closed loop structure
and declaration of th e signals will be discussed in
greate r detail in Section 3.

During th e experime nts normal operation of th e
wind turbine was continued with the control and
safety system unchanged.
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Fig. 2: present closed loop structure of wind tur­
bine system

2.3 Data acquisition

To facilitate the process of designing and performing
experiments a portable computer is equipped with
data acquisition hardware and software (A/D, D/A,
anti-aliasing filters with adj ustable cut-off frequen­
cy). A patch panel was also configured to customize
signals from the wind turbine system to make them
suitable for measurement by the PC.

With th is setup it is possible to generate test sig­
nals within MATLAB (1990) , feed th ese signals to
the system through D/A conversion, and measure
th e response of th e system through A/D conversion
with a specified sample frequency.

The measurements are directly available in th e
MATLAB environment. This allows for direct pre­
liminary data analysis and , if necesssary, adjust­
ments of th e test signais. Consequent ly, the time
span between th e actual experiment and th e evalu­
a tion of th e quality of th e measurements can be kep t
very short. The PC and data acquisit ion hardware
and software is discussed in Huisman (1994)

3 Identification of wind turbine sys­
tems

System identifi cation of th e wind turbine sys tem ,
introduced in th e previous sect ion, will now be ad­
dressed. The situation given in Fig. 2 will first be
translated in a general closed loop identification con­
figuration , which obviously involves th e selection of
inputs and outputs. A two st ep approach to th e
closed-loop identification problem at hand will be
commented upon. Attention will be given to ex­
periment design , and identification results will be
presented .



3.1 The closed loop identification problem

A to tal of 8 signals can be measured from th e wind
turbine system: (Idcset , Udcse t, ««. Ijs et, o.g , fg ,
Idc, Udc ), see Fig. 2. Two of th ese (Udcset and Udc)
are constant voltages and are not excited externally.
Therefore th ese variables ar e left outside the iden­
t i/kation problem . The block WTS (Fig. 2) is th e
wind turbine system we would like to identify.

The PI controllers PIl , PI3 , and PI4 , are dig ital
controllers from which the inp uts and outputs are
measurable (D and T are also digital) . However ,
P I2 is an anolog PI controller which is unaccessible
for the measurement equipment. T herefore this con­
troller is considered to be part of the wind turb ine
system (indicated by the dashed contour in Fig . 2) .

on measurements of th e input signals u , the output
signals y, which ar e excited by one of th e exte rnal
signals ru or T·y • The result is an identified model
ê of the plant . In th e next subsection a solu tion to
the identification problem will be presented .

3.2 Close d loop id en t ifi ca t io n approach

Several closed loop identification approaches are
prov ided in literat ure, for exam ple Söderström and
Stoica (1989), Schrama (1991) , Van den Hof and
Schrama (1993) . Some of th e approaches are aimed
at ident ificat ion of plant models suitable for con­
t roller design or controller enhancement. However ,
in this paper the purpose of identification is to es­
timate a reliable open loop model from closed loop
data.

In this paper the so called two stage identification
method (Van den Hof and Schrama,1993) is applied
to deal with the closed loop situation, which will
briefiy discussed .

Consider a data generating system that is defined
as :

vet) = Go(q)u(t) + Ho(q)e(t) (1)

with Ho(q)e(t) the weil known noise representation
as a filtered white noise. The input signal is deter­
mined according to:

u +~ u y
Go

-

+ + r y
C

r

This configuration is reformulated into the following
closed loop situation , depieted in Fig . 3.

Using To we can rewrite equations (1) , (2) :

u(t) To(q)ru(t) - To(q)C(q)Ho(q) e(t) (4)

vet) Go(q)u(t) + Ho(q)e(t) (5)

(2)

(9)

(6)

(7)

(8)

To(q)ru(t)

Go(q)ur(t) +
[I - Go(q)To(q)C(q)]Ho(q)e(t)

u(t) = ru(t) - C(q)y(t)

Let us consider the sensitivity funetion of th e closed
loop system (1) , (2),

To(q) = [1+ C(q)GO(q)]-l (3)

Since rand e are uncorrelated signaIs, and u and
rare available from measurements, it follows from
(4) that we can identify th e sensitivity funetion To in
an open loop way. By again manipulating equations
(4) , (5) , we can write:

Since ur and e are uncorrelated , it follows from
(8) that when u r would be avai lab le from measure­
ments, Go could be estimated in an open loop way,
using the common open-loop techniques. lnstead
of knowin g u" ; we have an est imate of this signal
availab le thro ugh

(

Idcset) : dir ect curreni setpoint
u = (Jae t : pitch angle setpoit

Ij set : f ield excitation curreni

Fig. 3: closed loop situation

The wind turbine system is from now on equiva­
lent to the system Go, also called the plant. The PI
cont rollers are lumped into the controller system C.
The input vector u and output vector y of the plant
are:

T he closed loop identification problem boils down to
identificat ion of a model of the the plant Go base d

(

o.g) : delay angle rectifier
y = fg : generator fr equency

Idc : dir ect current

The veetors r u and r y indicate th e external signals
that can be fed into th e loop , for example th e exci­
tation signals for identification experiments.

In case of a partialload operational condition the
blade pitch angle controller P I4 will be fixed and
therefore the number of inpu t variables redu ces to
2.
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Consider the model structure

y(t) = G(q, (J)û'N(t) + H(q, 7])€y(t) (10)

with G(q , (J) , H(q ,7]) parametrized independently.
It will be shown that th e estimate G(q, êN ) of Go(q)
in th e second st ep , determined by

und er weak conditions converges to Go(q) with
probability 1.

This result is formalized in Van den Hof and
Schram a (1993) which also gives th e proofs and
a cha racterisat ion of th e bias distribution of th e
asy mptotic model in case undermodelling is accept­
ed .

In both steps of the identificati on procedure MIMO
models will be est im ated using the weil known pre­
diction erro r meth od by Ljung (1987) as implement­
ed in the sys tem identification tooibox of MATLAB

3.3 Experiment design

Experiment design is aimed at gathering informa­
tive measurem ents from th e system . This mean s
th at th e data should provid e enough information to
identify accurate models which are suitable for the
int end ed model use.

Several choices need to be made, preferrably in a
way that they contribute as much as possible to th e
information contents in the measurements. How­
ever , some choices may be fixed due to practical
limitations. For exam ple, the available , measurable
signals are fixed. To guarantee an active safety sys­
tem , experiments ar e restricted to closed loop situ­
at ion with th e exist ing PI cont rollers.

Also th e op erational condition of the exp eriment
can not be governed by experiment design , because
it is just a function of the mean wind speed . We
t herefore can only hope for th e wind sp eed to have
th e desired valu e.

The sam ple rate and th e excitat ion signals r u

and r y ar e th e remaining experiment design choices,
which ar e not fixed yet. The sample rate was cho­
sen to be 100Hz , which should be enough to cover
the relevant dynamics (which are not expected to be
important beyond 50H z). The anti-aliasing fitlers
should hav e cut-off frequ ency of 50H z or lower .

Since there ar e no prior measurements available, and
exper imentat ion opportunities were scarce and had

67

to be finished within a short time span , th e input ex­
citation design followed a straightforward approach.
Pseudo Random Binary Sequ ence (PRBS ) test sig­
nals are generated along guidelin es found in Godfrey
(1993) for maximum length sequ ences. The design
variables determining th e signal ar e th e clock period
and th e values of th e two levels of the binary signa!.

The excitat ion signal for one input signal is con­
structed by repetition of th e same PRBS signal a
number of times with int ermediate intervals of rest
(constant input signai). This is preferred above one
very long PRBS sequence, because repetition allows
for averaging the responses to the repeated PRBS ,

which reduces th e noise. Besides, if the mean wind
speed changes during one PRBS repetition this inter­
val can be easily rejected and would be useless for
identification.

The int ervals with no excitation provide informa­
t ion about the free run closed loop dynamics and
dist ur bances, which m ay be a useful reference for e­
valuation of how effect ive th e input excitatio ns have
been .

The final input signal design shows 5 repeti tions
of a PRBS with a length of 51 , 2s and intermedi ate
intervals of zero input during lOs. This resul ts in
a typical identifi cation experiment which takes ap­
proximately 5 minutes. The PRBS for excitation of
Idc.et has a clock period of 0.05s and amplitude of
OAV while IJ . et was excited with an amplitude of
0.2V and clock period of 0.10s.

3.4 ResuIts

This subsection will present results which are ob­
tained following the experiment design and iden­
tification approach described in the previous sub­
sections. Attention will be focussed on only one
transfer function of the multivariable wind turbine
system. Similar results are obtained for the other
transfer functions of the MIMO plant.

The measurement presented here originated from a
partial load op erational condition. As mentioned
in Section 3.1 this means that the blade pitch con­
troller PI4 is saturated which cancels th e blade
pitch angl e as input for th e plan t.

A fragment of th e measurement data is given in
Fig . 4.

The 5 repetitions of PRBS excited int ervals in th e
measurem ent data ar e alr eady averaged .

The sample rate is reduced to 33H z by decima­
tion with a factor of 3. Therefore identified models
describ e dynamics up to 16H z .

With th e two st ep procedure th e quality of th e
final estim ate depends heavily on the accuracy of
th e first st ep. Sin ce no difficulties were encounte red



in the first step no resul ts of t his step are pr esen ted.
The second step estimates t he plan t transfer Iun c­

t ion . Accep tabl e mod els (2 inpu ts , 3 outputs) with
ARX structure of order 7 per ent ry have bee n iden­
tifi ed.

excitarion I dcset solld andI hel dasbed0.4

~

J
-UA

3 3.5 4.5 5.5

ümc lsec]

6.5 1.5

The transfer function from field exc itation curren­
t I J H t to generator frequ ency t, covers impor tant
dynamics of the generato r system and is th erefor e
very interest ing from validation poin t of view.

The iden tifica tion resul t for t his tr an sfer fun cti on
is given in Fig. 5.

This looks good enough to be confid ent th at t he
identified model represents th e real life r-wc wind
turbine with resp ect to this input-output behavior .
Therefore we can proceed and com pare t his mod el to
the same transfer function derived from the phy sical
model.

ûme [sec]

Fig . 4: measurem ent data: input excitation and
output resp onse

4 Validation of wind turbine system
models

Validation is conc ern ed with the question how weil
a physical model describes some aspec ts of the real
world process. These asp ects and th e desir ed ac­
cur acy depend st rongly on the applica tion of th e
model once it has been succesfully validated .

Clearly, validation can only be investigated if e­
nough information from th e process is available. Re­
ferring to the previous section this is not crit ica l here
because, in principle, the same requirement needs to
be satisfied in order to obtain reliable system iden­
tification results.

ldcnüfl caüon resuh : mcasuremcnt (sotid) vs. idcntified (dashed)

-Q.OO6

0.006

We would like to evalua te whether or not the phy s­
ical model is capable of reproducing essenti a lly the
same dynamics as identified from the expe rime ntal
set up. This means that we are satisfied, in first
instance, if bath mod els ex hibit the sa me structural
behavior in the frequ ency domain , with ou t de rnand­
ing a perfect match.

In other words the qu ali t ative valida tion comes
first . Such a structural resemblan ce affirms that t he
phy sical model provides proper mod eling of t he dy­
namical phenomena obs erved from t he process.

Only if t his stage is reached , it makes sense to
adj us t par ameter values (those whi ch were not corn­
pletely known or had to be guesse d) in t he equations
govern ing par ts of t he phy sical mod el. This is done
in order to close the gap between t he identifi ed and
the physical model. In ot her words th e quantitative
validation comes second.

time [sec]

0.004

0.002

O.OOR

Fig. 5: identificati on result : measured generato r
frequ ency vs. ident ified mod el resp ons e

In this section th e identified transfer function will
be compared with the transfer function derived by
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linearization of th e physical simulation model. In
Fig. 4 th e result is presented.

assess by straigthforward comparison of measure­
ments and model simulation.

Fig. 6: validation result: transfer IJs et to /g
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tified models with models obtained from physical
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frequency responses of both models show dir eetly
whether or not the physical model is capable of de­
scribing the same dynamics as identified from th e
plant .
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The cornparison is acceptable except for the very
low frequ enci es. The fundamental resonance of th e
t he dive train (2.6H z) as weil as the zero at 0.7 Hz
is modelled quite accurately.

The physical model seems to underestimate th e
low frequ ency gain, but despite this misfit no essen­
tial dynamics are missing in the physical model. It
remains an issue for further research to det ermine
whether parameter adjustment is able to bend th e
physical model towards th e identified model. On
the other hand it should be investigated how accu­
rat e th e identifi ed model is for the low frequencies
(for exam ple by evaluation of confidence intervals
around th e frequency response).

A stra tegy to pro ceed from here is twofold . The
first and most obvious st ep is to investigate how
sensitive th e outcome of th e simulation model is for
slight variations in the physical parameters that ar e
uncert.ain . The second st ep is to refine th e identifi ca­
t ion result by design of new closed loop experiments
bas ed on the knowl edge we have from our first at­
tempt. New exte rn al excitat ion signals could be ap­
plied which alows for em phasizing certain frequ ency
regions which are important for th e identifi ed mod el.
In principl e this could be repeated until th e identi­
fica tion result cannot be improved anymore.
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Conclusions

Valid physical models describing the dynamics of
complete wind turbine systems may be very impor­
tant . For example, in the design phase of the next
generation wind turbine systems.

Due to disturbances induced by the presence of
an unknown wind field, this validity is difficult to
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Closed-loop identification of a continuous
crystallization process
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Abstract. Experimental results reveal that open-loop identification of cont inuous crys­
tallization processes leads to poor results as the crystal size distribution (CSD) has a
tendency to oscillate. Improved experimental conditions are achi eved , using a simple
single loop feedback controller . Identification of low ord er modeis , on the basis of closed­
loop data, is studied using a nonlinear first principles (FP) model and linear multivariable
input-output modeis . Two closed-Ioop identifi ca tion methods are applied , one of which is
recently introduced to provide accurate approximate modeis. Using th e FP model, which
includes a population balance and a set of empirical relations related to crysta llizat ion
kin etics, a high ord er nonlinear model is obtained. A low order reduced and linearized
version of this model is considered as initial model for the estimation of input-output
modeis. Clos ed-loop identification and validation data is obtained from an evaporative
pilot crystallizer. Both identified and physical models are validated in terms of time and
frequency domain responses and ar e shown to provide accurate descriptions of the process
dynamics.

Keywords. System identification, orthonormal basis functions , closed-loop experiments,
crystallization.

1 Introduetion

Crystalliza t ion from solution is a weil established
industrial purification and separation process , in
which a solids fraction is derived from a solution. It
is applied in continuous op eration on a large scale,
with production rates exceeding 106 tons/year for
the production of bulk inorganic materials like sodi­
urn chloride, and ammonium-sulphate (a fertilizer) ,
and orga nic materials like adipic acid (a raw ma­
te rial for nylon) . On a sm all scale, crystallization
is ofte n applied batch wise to obtain high purity
fine chemieals or pharmaceuticals , e.g. asp artame
(a sweetener), and l-asc orbine (vitamin C).

A main cha racte rist ic of cryst alliz ation processes is
th a t a distribution of differently sized particles is
produced , whi ch is characterized by th e crystal si ze
distribution (CSD) . The CSD , is an important pa­
ram eter as it determines th e physical properties of
both the wet crysta l magma and th e dri ed crystal
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product in bulk. An inappropriate CSD may re­
sult in a reduced performance of down stream solid­
liquid separators and may cause caking of th e final
dri ed crystal product, yielding transportability and
storage problems. In many cases these problems oc­
cm when the mean crysta l size is low and when an
excessive number of small crystals (fin es) exists in
th e distribution .

Inappropriate CSD's may exist (t emporarily) due
to process disturbances , intrinsic physical feedback
mechanisms, which can cause cycling of th e CSD,
and during plant start-up and shutdown. For th ese
reasons th e derivation of accur ate (low order) dy­
namic models that can be used for CSD cont roller
design is a major issue.

In th e lit erature, experime nt al results on identifica­
tion and control of crystallizers are scarce. This is
mainly due to a lack of on-line measurement sys­
tems and the absence of reliable experimental e-



quipment , including sampling systems. In De Wolf
and Van den Hof (1992), system identification tech­
niq ues have been ap plied to est im ate low order lin­
ear mod els from crys tallization pro cess input-outpu t
da ta dir ectly. Miller and Rawlings (1992) present
resul ts on parameter est imat ion within a first prin­
cip les model struct ure, including a meth od for the
est imation of confidence inte rvals, based on batch
crystalliza tion experime nts. A review of recent re­
su lts on ident ification an d control of crystallizers is
given by Raw lings (1993) .
In earlier work (Ee k et al., 1995) , resul ts from first
principles mod ellin g of cont inuo us cryst alliz ers and
the estimation of empirical parameter valu es on the
bas is of start-up experiments are presented . T he
experimental data sets were obtained from the free
start-up responses of a pilot crystallizer. Start-up
responses are advantageous as t hey are readil y avail­
ab le in historical databases, and give excitation of
the process dynamics, with ou t requiring addit ional
exte rnal tes t signais. A m ain disadvantage, how­
ever, is that the result ing process response exhibits
only the slow process dynam ics wit hin a wide (non­
linear ) proces s output ran ge. In practi ce, knowledge
on th e fast er dynamics around th e bandwidth of th e
system is im portan t , as closed-Ioop st ability and th e
performance of the closed-Ioop syste m ar e st rongly
determined in this frequency rang e. Ano th er dis­
advantage is that th e data cont ains no information
on th e combined effect of simultaneous process in­
put disturban ces, which may be impor tant for mul­
ti vari abl e cont roller design .
Therefore, it is desirabie to perform multivariable
identification experime nts were th e control relevan­
t process dynamics are delib erately excited with
un correla ted , frequ ency rich, test signals (Ljung,
1987) , which are added to the different process in­
puts simultaneo usly.

cate th e necessity to perform identification in closed­
Ioop. Using a closed-loop cont roller, th at effectively
suppresses a prevailing oscillatory mode in the open­
loop process, improved experimenta! condit ions are
established , A method for consist ent mod el identifi­
cation in a closed-Ioop fashi on is described , and ap­
plied. Finally, est imated inpu t-ou tpu t models are
validated with an ind ependent data set and com­
pared to th e linearized and redu ced version of the
identified first principles model. On the basis of this,
conclusions are drawn with respect to the applied i­
dentification appro ach an d th e vali di ty of black-box
and first principles modeIs .

2 Process modelling

The main mod el assumpt ions are that the cryst.a l­
lizer is a sin gle st age crystallizer, whi ch is operated
cont inuously, at ideal mixed , and isothermal condi­
tions, and with a constant effect ive volume. Furt her
it is assumed that th e pro du ct slur ry is removed un­
classified , e.g. each partiele has the same probabili ty
to ente r the product discharge line, irrespective of
its size. A fines segregation and destruction system
is present for th e rem oval of fines from th e crystal­
lizer volume. A forward light scatte ring technique
is applied , on-line , to measure CSD dy namics in the
main crystallizer volume.
The CSD is characterised by a population density
function n(x , i) , which describ es th e number of par­
ticl es per unit of slurry and per crystal size as a
fun ction of time. The first principles model that
can be derived for this process comprises a first or­
der partial differential equat ion for th e CSD dynarn­
ics, an ordinary differential equa tion for the super­
saturation of th e mother liquor and severa l empiri­
cal relations for crystal1ization kineti cs and partiele
classifiers . For details on th e model and th e process
we refer to earlier work (Eek ei al., 1995) .

2 .1 The sensor model

Fraunhofer th eory is used to develop a mod el for th e
record ed scattered laser light energy as a fun ction
of th e CSD. The discreti zed version of this mod el is
written as :

with H th e sensor model m atrix , y t he sensor out­
put vector, which contains 31 values , e.g. Yi , i =
1" " ,31, for th e scattered laser light energy, and n
a discret e popul ation density, which is lumped on a
finite set of equidistant crystal sizes.
The po pulation density n(x , i ) contains inforrn a­
tion on both th e sh ap e of th e CSD, and th e solid­
s fract ion of th e produced crystal slurry : M, (t) =
Pckv fooo n(x, t )x3dx , where kv is a shape facto r and

T he pur pose of this pap er is to describ e a pro­
cedure for the identification of low ord er dynamic
models for th e dynamics of a cont inuous crysta l­
lization process on th e basis of experimental pro­
cess inpu t-ou tput da ta . T he intended use of th e re­
sult ing mod els is predictive cont ro!. As both input­
out put mod els and first principles models have sp e­
cific adva ntages and disadv antages , we will apply
both and discuss their respective merits . In parti c­
ular , a route will be out lined where a prior i, -first
principles- mod el knowledge is applied to obtain an
initia l estimate for the identification of inpu t-output
modeis .

The sequel of this pap er st arts with a short descrip ­
tio n of a fi rst pr incip les mode!. T he resul ts of an
open-loop identification experime nt are used to indi -
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u> Hn , (1)



2.2 Derivation of low order linear fiodels

with T43 a column vector containing th e eleme nts
{a1,a2, ·· ·,an}. given by:

(3)

(4)

(5)

(6)

Because only Yp is measurable we can calculate
.6.X43 , (using (1)) from:

.6.X43 = T43H-
1.6.yp = T.6.yp. (7)

Wh en only small perturbations arounel th e stat ion­
ary distribution are assumed, this relation can be
linearized, resulting in:

In summary, the (op en-loop) process, whi ch will be
considered for identification , has three inputs and
three outputs. A schematic overview is given by
Fig. 1. As inputs th e fines flow QJ, th e product
flow Qp and th e total heat input P, ar e taken . As
outputs, th e number density of fines Yrl , th e mean
crystal size X 43 and the solids fra ction M, are cho­
sen .

where m3. and m4. denote stationary moments .
Lumping gives:

To arrive at a low order linear model, th e non­
linear distributed parameter model is lumped, lin­
earized and reduced, consecutively. The reduced
linear models can be used for con trol directly, or

mines th e performance of downstream solid liquid
separators. This paramet er is calculated from th e
third and fourth moment of th e distribution [Ran­
dolph and Larson , 1988) :

The pseudo inverse H- 1 is approximated from th e
singular value decomposition H = UTE- 1V (Golub
and Van Loan, 1983), where the matrices U and V
contain the nu left, and n v right singular veetors of
the sensor model H, respectively, and E contains th e
corresponding singular values. As the matrix H is
ill conditioned only the first n r singular veetors are
used in the inversion, which gives the following ap­
proximation: T ~ T43UrE;lV7, with n r < n y. It is
found that n r should be chosen to obtain a trade-off
between bias and sensitivity to noise in th e recon­
st ru cted signal Yp'

In adclition to this signal th e mean crystal size is
chosen as an output parameter as it strongly deter-

Pc th e density of th e crystals. Multiplication of M,
with th e actual product flow gives th e yield of the
process in produced solids mass per second. It is
found that th e total sca t te red light energy: YT =
I:?~ 1 Yi , mainly corr elates with the slurry density,
for which acc urate measurem ents are obtained from
the ind ependent density indicator. Therefore, th e
measured output vector elem ents Yi , i = 1, '·· ,31 ,
were normalized by subdividing each element with
th e total scattered energy YT. The remaining vec­
tor , denoted as YP' thus solely bears information on
th e shape of the CSD.
For stabilizing control, which we further discuss be­
low, a sensitive paramet er is required that is relateel
to th e number of fines in th e CSD. Using th e cor­
relation matrix R. of th e sensor readings, which is
est imated from R = E{yTy}, where E denotes th e
expecte d value, and where Y contains np output
veetors Yp as its rows: yT = {YP1, Yp2 , .. " Ypn}, th e
major and minor dir ections in th e sensor readings
can be calculated from the eigenvalue decomposi­
t ion of th e correlation matrix. The following rela­
t ion holds:

k <I> = <I> A, (2)

where th e np columns of <I>: {4J1' 4J2 , . . " 4Jn p }

are th e non-zero normalized eigenveetors of k
and A contains the np corresponding eigenvalues
{À 1 , À2 , . . " Àn p } on its diagonal. Ir the eigenvee­
tors and eigenvalues are sorted, so as to obtain the
eigenvalues in decreasing order, the best linear com­
bination of elements in Yp, representing the largest
signal energy, is represented by the eigenvector 4J1,
anel th e corresponding eigenvalue À1 then represents
th e relative signal energy in this specific signal di­
rection . Clearly, th e least significant signal direc­
tion is represented by th e eigenvector 4Jn p and th e
eigenvalue Àn p . Omitting the least significant signal
dir ections , a redu ced representation of th e measured
out put pattern Yp is obtained .
T his decomposition is also known as th e discret e
version of th e Karhuenen-Loéve expansion (Fuku­
nage, 1972). Application to the measured light s­
cattering data reveals that already 99 .5 percent of
the signal energy is grasped by th e first 5 sign al di­
recti ons {4J 1, . . . , 4Js} . It is found that projection of
the signal Yp on th e first principal signal dir ection
{4Jd , resul ts in a signal (denoted as Yrt) , that is
st rongly related to th e number density of fines and
and has a low signal to noise ration. This signal is
chosen as process output parameter as it has excel­
lent properties to serve as an input for a stabilizing
cont ro ller that acts on the fines removal system.
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Fig. 1: Blo ck schem e of open-loop process .

serve as an initial model for system identification ,
as wilI be described below . As described in Eek ,
et al.(1995b) the lin earized m od el is a high order
linear continuous time state-space model, given by:

where .6. denotes a smalI perturbation around th e
stationary solution. For frequ ency domain analy­
sis and model reduction a 100th order lumped and
linearized model is used , whil e th e nonlinear sim­
ulation is performed aecurately with a 200th order
lumped population balance model.

Qj Yrl

Qp X43process
r, M t

Fig . 2: Comparison of Bod e amplitude plots for lin­
ear 100th order (solid) , and reduced 5t h or­
der model (dashed) with i- > j denotes t he
tranfer relationship of th e ith input to th e
jth output (see Fig. 1).

:~ESJBJtSJ
(~hl~

Il~LlJLlJL1J
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I to-s 10-4 10-3 10-5 10-4 1l~ 3 10-5 10-4 10-.1 IO-l

frequencyIlisJ(8)

Zo = Z.,F.6.z + C.6.u ,

.6.y = H.6. z ,

T- 1PT-T = T-1QT-T = ~, (9)

where ~ is a diagonal matrix, containing the so­
ealIed Hankel sin gul ar values in decreasing order ,
and P and Q represent th e controlIability and ob­
servability Gram ia n of the syst em {F,C , H} , given
by:

Reduction

A balanced model reduction method is applied to
approximate the 100th order linearized state-space
model with a low order linear model. The key prob­
lem with balaneed model reduction is to find a bal­
ancing transformation (Moore , 1981) . Assuming a
linear time invariant state-space model {F, C, H}, a
transformation {F, C, H} --+ {T- 1FT, T-1C, HT}
is a balancing transformation , if:

3 Op e n- lo op plant behaviour

Gramians. With this method t he fit of the reduced
model ean be favoured in th e frequ en cy ran ge , whi ch
is relevant for control. It was found that the method
is fast and robust, e.g, not sensitive to ilI condit ioned
models. Besid es , the algorithms ar e available as an
easy to use Matlab tooIbox , (Wortelboer , 1994).
It is found that 4th or 5th order models give good
approximations of th e process input output be­
haviour. In Fig . 2 a eomparison is made between
the Bod e amplitude plots of a reduced 5th order
and the fulI 100th order three input , three output
model. No frequ ency weighting is applied in this
exam ple.

At first , t he process dynamics were cons idered by
applying exc it ation signals directly onto t he pro ­
cess in pu ts , in an open- loop fashion . As test sig­
nals multi-sine sign als where chosen for t he fines re­
moval rate Q j, and the prod uct rem oval ra te Qp,
each containing 29 logari thmicalIy spaeed frequen­
cy com po nents, with phase angles chose n accord ing
to Schroeder (1970), in orde r to m inize t he signa l
am plit udes . For every frequ en cy in t he first signal
th e second signal has t he first har m oni e nex t to it to
obtain un correlated signaIs. In Fi g. 3 t he design ed
input signaIs , ar e depi cted . An 45 hours lasting ex­
periment, whi ch will be referred to as RUN35 , is
performed with th e pilot cryst a lIizer . In Fig. 4, the
first three signal modes, est im ate d according to (2) ,
representing already 97 .1 percent of the total signa l
energy, ar e given .

(10)P

Q = 100

expFTt HT H expFt dt (11)

A reduced orde r m odel {FR , CR, HR} is devised
by taking th e first n r columns of T denoted as
Land t he first n r rows of T - 1 denoted as R.
T he reduced model with orde r n r is then given by
{ FR ,CR,HR} = { LFR,LC ,HR}.
Several m ethods can be em ployed to solv e this prob­
Iem. We used a frequ ency weighted balanced re­
du etion method which em ploys a singular value de­
com posit ion of th e obs ervability and controlIab ility
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Fig . 3: Sinusoidal excitation signals used for open­
loop identification after t>6 hrs, for fines
flow Qf (upper) and product flow Qp '

Fig. 6: Closed- Ioop responses to setpoint changes
in Yrl. (dash-dotted): Yrl (upper) and Qf
(lower) at (A and B) .

4 Design of a stabilizing controller

Visual inspeetion of the data dir ectly reveals that
the process output response is strongly deminat­
ed by slow cycling behaviour of th e CSD with a
time period of approximately 6 hours. Similar ob­
servations ar e reported in (Eek et al. , 1995) . This
behaviour may have been invoked from th e non­
stationary initial state of th e process . From thi s
result it is concluded that for application of a s­
tandard linear time invariant approach for pro cess
ind entification , a c1osed-loop cont roller that effec­
tively stabilizes th e cycling behaviour is required .

Exercises with the nonlinear model revealed that
stability of the CSD can easi ly be obtained by ap­
plying a sing le inpu t single output (SISO) PI-control
loop, which uses the weighted number of fines Yrl as
its inpu t , and the fines removal rate Qf as its out­
put . T he resu lt ing closed- loop control configuration
is depicted in Fig . 5. Prior to the first closed-Ioop i­
dentification experiment , the ab ility ofthe controller
to stabilize the start-up response of the crystalliz­
er , and to follow step wise setpoint changes were
evaluated experimentally. In Fig. 6, the respons­
es of the controlled variable Yrl together with the
manipulated variable Qf' on the process start-up
and two setpoint changes at A and B to the con­
troller setpoint are given . Clearly, the system is
stabilized within approximately 5 hours after start­
up . Around 17 hours after start-up some unwant­
ed disturbances have occur red in the process, which
caused a gradually, ramp like, decrease of the rnanip­
ulated variable as a function of time. The controlled
variab le, however , remains on its setpoint . The re­
sults indicate that th is simpIe closed-loop configu­
ration effective ly dampens open-loop cycling of the
CSD. T he closed- loop process, which will be con-

~---X43ProeessQp -------+1

P, -------L --l-'---- M t

Fig. 5: Bloek seheme of c1osed-loo p system.

Fig . 4: Fi rst major three orthogonal signal compo­
nents, obtained with open- loop identifica­
tion; Yrl (upper), Yr2 (m iddle) , Yr3 (lower).

~:~I
~I~i
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o 5 10 15 20 25 30 35 40 45
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Yrl . Yrl
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An alternative way of parametrizing the mod els is
th e Output Error (OE) form in which th e noise mod­
el H(q) = I is not parametri zed. The input/ou tpu t
model can be represented by a quot ient of two poly­
nomials as ab ove, but can e.g . also be parametrized
in a FIR (finite impulse response) form:

I process outputs

cont roller setpoint, Yrl . number of fines, Yrl

product flow, Qp mean crystal size, X 43

heat input , P, solids fraction , M,

I disturbed inputs

Table 1: Process inputs and outputs.
n b

G(q,O) = L gkq-k

k=l

(15 )

where th e coefficients {gd k=l ,"', n b are collected in
a parameter vector, or in terms of th e state space
model :

sid ered for identification further, is summarized in
Table 4 (see also Fig. 5) . In addition , the controller
output Qf is measured to est im ate the open-loop
proc ess transfer-functions, following a method th at
is described in th e next section . The signal Yrl. is
th e setpoint for th e stabilizing controller, and v(t)
is a noise contribution.

x(t + 1)

y(t)

A(O)x(t) + B(O)u(t)

C(O)x(t) + D(O)u(t).

(16)

(17)

5.1 Model structures

5 Identification method

Following Ljung (1987) th e system to be identifi ed
is denoted as

In the latter form th e transfer function G(z) is given
by D+C(zI-A)-1 B . To obtain a unique represena­
tion of the transfer function within th e set of modeis ,
the state space model set is often parametrized in
an observable canonical (or pseudo-canonical) form ,
see e.g. Gevers (1986).
Both ARX and OE-FIR models have to advantage
that the resulting prediction error is linear in th e
unknown paramet ers, leading to a linear regression
identification problem. For a least squares identifi­
cation criterion,

(12)y(t) = Go(q)u(t) + v(t)

The system identification procedure includes the s­
elect ion of an appropriate model set and a criterion
of fit. On th e basis of an informative set of pro­
cess input-output data, th e best model within th e
set is th en searched for that minimizes the chosen
crite rion .

with u(t) , y(t) th e process input and output, Go
a linear time-invariant system represented by it­
s transfer function in th e shift op erator q, and
v(t ) a stationary stochastic process repr esented by
v(l ) = Ho(q)eo(t). Here Ho is the stabIe and sta­
bly invertible noise model , and eo is a white noise
process. A corres po nding mod el of this process is
represented by th e collect ion of t ra nsfer fun ction­
s (G(q,0), H (q,0)) , par am etrized by som e unknown
parameter 0, and th e corres po nding one st ep ahead
predi ction erro r is given by:

é:( t, O) = H (q,O)- l[y(t) - G(q,O)u(t)] . (13)

The parametrizati on of th e set of models consid ered
{(G(q ,0), Htq, 0)) , 0 E e} can be don e in several
ways , among whi ch th e popular ARX parametriza­
tion represented by G(q, 0) = A(q ,0)-1 B(q , 0) and
H(q,O) = A(q,O)-1 with A , B polynomials in th e
shift op erator «" , leading to the linear regression
form:

e(t,O) = A(q, O)y(t) - B(q, O)u(t). (14)

this implies that the estimated parameter can be an­
alytically determined, avoiding numerical non-Iinear
optimization procedures.
Output error model structures in either FIR or s­
tate space form hav e th e advantage th at th e in­
put/output part G(q) of th e mod el can be consis­
tently identified even if th e noise model part H (q)
is misspecified , (Ljung, 1987) .
However for FIR models th e number of parame­
ters to be estimated is generally large, espec ia lly
when th e und erlying syst em dyn ami cs is moderately
damped and when th e sampling rate is high in rela­
tion to th e fast est proc ess dynamics. Consequent ly,
th e varianee of th e est imated model parameters will
be large as weil. A state-space model parametriza­
tion does not suffer from th is problem, however , th e
output error to be minimized is a nonlinear fun ction
of th e model paramet ers and th e resulting param­
ete r est imate can th erefore only be obtained from
iterative numerical optimization procedures. Esp e­
cially for high ord er multivariable process and large
data sets the computatiorial burden can be severe ,
besides possible convergence problems.
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As an alternative, recently renewed interest has
risen for the use of more generalized (orthogonal)
basis functions in a FIR-type model structure:

6. 1 T h e t wo step approach

In a closed loop setting, additional to th e process
equation (12) we have th e controller relation:

6 Closed-lo op MIMü identification

App lication of the dir ect approac h is straigh tfor­
ward. T he TS approac h is shortly explained. We
refer to Van den Hof and Schram a (1993) for fur­
th er reading.

• The two st ep (TS) method as proposed by Van
den Hof and Schrama (1993). This approach ef­
fectively circumvents correlation problems, by
subdividing the problem int o two successive
open-loop identification steps.

• The dir ect ident ificat ion (DI) method . This
method fully ignores corr elation between inputs
and outputs and identifies directlyon th e bas is
of closed-loop process input and output data
(Söderström and Stoica, 1989).

(23)

(20)

Ûr(t) = S(q, t)r(t)

u(t) = r(t) - C(q)y(t )

u(t) = So(q)r(t) - C(q)So( q)v(t). (22)

it follows that

So(q) = [I + C(q)GO(q)]-l (21)

that is used in th e second step of th e procedure when
applying a model structure:

eit ;B) = y(t) - G(q, B)ûr(t) . (24)

It can be shown that, provided the first st ep in th e
procedure is performed sufficiently accurate, this
method can provide a consistent est imate of th e
plant dynamics in th e second step .
Application to a MIMO process is reported in Van
der Klauw et al., (1994) .

with r(t) an external reference signal , uncorrelat­
ed to the noise disturbance v(t), and C(q) th e con­
troller. Denoting the input sensitivity function

6 .2 D e sign of a closed-loop experiment

Two closed- loop experiments for identification and
successive mod el validation are performed with th e
pilot crystallizer. We refer to these experime nts as
RUN55 and RUN56. All three inputs of the closed­
loop process, e.g: Yrh , Qp , and P; (see also Fig. 5) ,
have been excited with generalized binary noise se­
quences (GBN) which ar e introduced by Tulleken
(1991) . These signals switch (pseudo-) randomly
between two fixed signal levels at discret e points
in time. Choosing a switching probability between
0.5 < P < 1 will provide more excitation in the low
frequency range, converse ly, choosing 0 < P < 0.5
wiII increase the signal energy in the high frequen­
cy range. An important advantage of binary noise
sequences is that th e energy is roughly evenly dis­
tributed over the frequency range of interest , hence
the maximu m signal amplit ude is lower . In addition,
plant operators are most famil iar wit h step wise or
pulse wise signals.
T he basic intervals for the GBN signals are chosen
20 minutes. T he switching probability was chosen

In the first step, using measurement data of r(t ) and
u(t) one identifies the transfer function Sa. This is
an ope n-loop type of problem as rand vare uncor­
related . Next the estimate S(q, t) is used to recon­
struct a noise-fr ee input signal:

(19)
n b

G(z) =L bk!k(z)
k=l

A main and weil known prob lem related to the iden­
ti/kation of a process in a closed-loop configuration
is that the noise on the outputs is correlated with
th e pro cess inputs due to the presence of a feedback
loop . This corr elation generally results in biased es­
timates for th e model, where th e bias distribution
depends on th e characteristics of th e noise. Two
possibl e approaches to this problem are employed
in this paper:

where {!k(Z)h=l .....OO reflect ort honormal bas is
functions as e.g. the classical Laguerre fun ct ions
(see e.g. Wa hlbe rg, 1991, and Finn et al., 1993) but
also mo re generalized fun ct ions generated by freely
chosen all-pass transfer functions (Heuberger et al.,
1992). In this lat ter ap proac h a pr ior knowledge of
the process dy na mics can be used to flexibly choose
the basis functions so as to increase the spee d of con­
vergen ce of the series expansion (19) . In th is way
th e number of pa rameters to be est imated can be
kept smalI , whi le retaining a high accuracy of the
identifi ed model (Van den Hof et al., 1993).
The model structure (19) will be denoted as ORT­
FIR. In this paper the choice of appropriate basis
functions will be based on both the linearized and
redu ced first principles model and estimated ARX
modeIs. For all est imated models the non linear OE
approach in state space form was applied in a final
st ep, using the ORTFIR estimated model as initial
est imate .
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process input I nominal valu e I amplitude

setp oint Yr l . 0.5 (RUN55) , 0.25 (RUN55) ,
0.5 (RUN56) , 0.20 (RUN56) ,

product flow 0.215, [I/s] 0.035, [I/s]
heat input 120, [KW] 30, [KW]

in terms of th e signal 2-norm , and th e sampling rate
is decimated with a fac tor 5, to 1 sample per 5 min­
ut es. The resulting set of 3 input and 3 out put sig­
nals , each containing 600 data poin ts , is describ ed
in Table 4.

Model verification

7.1 Results direct idenrification

7 Results and discussion

Three state-space models in canonical observability
form, with order 3, 4 and 5, were estimated dir ectly
on th e basis of th e input-output data from RUN56 .
Also an initial state and an offset were est im ated,

A model verification step is included to judge
whether the est im ated mod els are sufficiently ac­
cur ate. Mod el verification is don e in the t ime and
frequ ency domain on th e basis of th e ind ependent
data set (RUN55) . A scalar measure, denoted as
the relative mean square (RMS) valu e is eva lua t­
ed for assessing th e quality of fit. This measure is
calculated from :

L~-l(Yi(k) -Yi(k)) x (Yi(k) -Yi(k))

L~=l Yi(k)Yi(k)
RMSi =

(25)
with Y the noise free simulated output and Y th e
measured output.
In the frequency domain , models can be com pared
using th eir Bod e amplitude and phase plots. In ad­
dition , th e Bode plot may be compared to th e em pir­
ical transfer-function estimate (ETFE), which is es­
timated from the input-output data directly. As dis­
cussed by Ljung (1987) , interpretation of th e ETFE
should be don e with care . From a sirnula t ion exer­
cise we found that du e to a low number (600) of data
points in our input-output data set , a large bias in
th e low frequ ency range exists . This bias can be
reduced to a certain extent by applying a narrow
frequency window, however , at th e expense of an
increased varianee in th e estima te (see also Ljung,
1987) .

The excita t ion signals pr esented in th e pr evious sec­
tion were applied to identify the dynamics of th e
op en-loop process, on th e basis of closed-Ioop data .
The data from RUN56 will be used for identification
and of RUN55 for validation. During the validation
expe rime nt (RUN55) a relatively large densi ty of in­
ert gas bubbles were observed in th e solution , du e to
air leakage into th e (va cuum) crys ta llizer. As th ese
bubbles ar e observed as particles by th e sensor , th e
observed process tr ends are likely to be corru pted
by this non quantified disturbance.

Table 2: Nominal valu es and amplitudes of th e GB­
N test signais.

p = 0.7. The real nominal signal valu es and th eir
amplitudes are given in Table 6.2. From simulation
tests it was found that th e signal Qj saturates easily.
This problem is reduced by limiting the amplitude
of th e excitat ion signa!. Mor eover , this further le­
gitimates the use GBN signals instead of sinusoidal
excit a t ion , which were used for the open-loop exper­
iments.
The GBN signal for used for RUN55 was sufficient­
ly uncorrelated with the signal for RUN56 , while its
frequency contents ar e com parable. For both ex­
periments , a duration of 50 hours was chosen. This
valu e roughly equals 8 times th e dominant time con­
stant in th e system. The identification method is
evaluated with input-output data generated with a
low ord er linear model, which is derived from the
simula tion mode!. Using the designed input signals
for RUN55 , reveals that th e original model can be
recovered from th e simula tion data.

Data preprocessing

Proper tr eatment of the data, prior to th e est im a­
tion of paramet ers , is a necessity to obtain consis­
te nt iden tifi ca tion resul ts (Lj ung, 1987). The raw
process data consists of measured valu es for th e den­
sity recorded from th e indepe ndent density sensor,
with a sa m ple time of 10 seconds, and the scattered
light energy vect ors, whi ch ar e sampled with a fre­
quency of 1 minute. The raw scattered light intens i­
ty veetor s a re averaged valu es from batches of 1000
sweeps eac h, which are recorded from th e det ector
in approxim ate ly 5 seconds.
All scattered ligh t energy pat terns were correct ed
for th e signal background (Eek et a/., 1995). The
recorded light diffr action patterns ar e normalized by
subdividing each eleme nt by th e total scattered light
energy. Sign al outliers ar e removed by linear inter­
po lation between goo d measurem ents that neigh­
bour ou tli ers. The fines density Yl and th e mean
crysta l size X 4 3 ar e est imated from th e normalized
diffraction patterns , according to the method de­
scribed above . All input and output signals ar e de­
tr ended. Finally, all detrended input and output
signals ar e scaled to obtain an equal signal energy
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Fig. 7: Identification results of fourth order mod el
(solid) est imated with direct identification
method on data from RUN56 (dashed) ; fines
density Yrl (upper) , mean crystal size X 43

(middle) and solids fraction M, (lower).

while th e dir ect coupling matrix D in (17) was kept
zero , hence in total 24, 31, and 38 parameters were
est imated , respectively, on the basis of 600 input­
output samples. The RMS values of the estimated
modeis, for both the identification (denoted with
" idf ' ) and the validation (denoted as "val") experi­
ment, are given in Table 7.3. The consistency of the
mod el is checked by adding the (known) stabilizing
feedback controller again to the estimated open-loop
mod el and simulate the output response successive­
ly on the basis of the th ree (GBN) test signais. The
resulting RMS values (denoted as "cl" ) are also pro­
vided in Table 7.3.

Checking th e RMS values reveals that the fourth
order model gives th e best fit. In Fig . 7 and Fig . 8
the fit of th is model on both th e identification and
the validation data set are given , respectively. Note
that th e first portion of th e simulated signal tr end
in Fig. 8 is biased as the initial model state was kept
zero.

T he results show that reasonable fits are obtained.
However , in th e validation data set some larg e de­
viations are present. In particular in between 24
and 32 hours large deviations exist. As mentioned
above, thes e deviations may be due to process dis­
turbances, and th e non-stationary initial state as
weil.

79

_2L-~_~_~_~_~_~~~~_~_--l

4~,2 • ", •

~ 0 ''. . i'~. ,. ./ . " . :' .1 . '" ", :' : '.

:o 5 10 15 20 25 30 35 40 45 50
time [hour s]

Fig. 8: Validation resul ts of fourth order model
(solid ) , est imated with direct identification
on data from RUN56 (dashed), with uncor­
related da ta from RUN55; fines density Yrl

(upper), mean crystal size X 43 (middle) and
solids fra ction M, (lower).

7.2 Results two step identification

Application of th e first st ep of th e two st ep identifi­
cat ion procedure resulted in a 6th ord er state-space
model in canonical observability form, for th e input
sensitivity model (21) . Note that all three inputs of
the process (see Fig . 5) had to be used in this step
as all three affect the input QJ . The known val­
ue for the proportional action of the controller was
used to determine the coupling matrix D a priori.
Also an initial state is est imated. With the sensi­
tivity model a noise free output signal for th e st a­
bilizing controller is simulated . The measured and
reconstructed output signalof the controller are giv­
en in Fig . 9. The RMS value corresponding to th is
fit is 0.25. This plots elucida tes that th e difference
between the reconstructed and th e measured con­
troller output signal are smal!. This, however , does
not necessarily imply that th e result of th e second
step is equal to th e result of th e dir ect identifi cation
step . Below Bode plots of th e est imated tr ansfer
functions are used to explore th is difference further .

In the second step , again 3rd , 4th , and 5th order
state-space mod els in canonical observability form
were estimated in an open-loop fashion. However ,
for the controller output QJ' th e reconstructed con­
troller output ûc , which is obtained from th e first
st ep, is used . An initial state and an offset were
also est imated, while th e matrix D was kept zero.



Fig. 9: Measured (dashed) and reconstructed pro­
cess output sign al Qf (solid) of stabilizing
cont roller on th e basis of 6th ord er state s­
pace model.

Fig . 10: Validation results of fourth order model
(solid) est imate d with 2 st eps identification
method on data from RUN55 (dashed) ,
with uncorrelated data from RUN56; fines
density Yrl (upper), mean crystal size X 43

(middle) and solids fraction M, (Iower) .
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existence of a correlation in the noise between the
input-output signa ls used in t he DI approac h . T his
result confirms the importance of using the proposed
TS approa ch inst ead of th e DI approach .

Fig. 11: Bode amplit ude plots of fourth order mod­
els obtained from direct ap proac h (solid) ,
the two step approach (dashed) , and the
first prin ciples model (dotted) , with i- > j
denoting the t ranfer relationship of the ith
input to the j t h output (see Fig. 1).

::D,.,/I'~.I ESJ2:~1 ESj,3,::,:.
.-_ ..- .\. ....-...~....

II}I \...... \ •...

~ ~ \

c woL3I'~.:\ ESJ'" 2·>2 ESJ.... -.··.· 3.>2

':;j,1l}1 r-, --------" '- \. ••..••_•..•••

~ ,

,~~F:l
::~DLj
If)o-s Il}' W ·) ······· ···II~S II ~' II~) -IO'S w-' W -) w-2

frequency I lisI

7.3 Validation of the non-linear process
model

One of the reasons for application of system iden­
tification was to obtain data for the evaluat ion of
the nonlinear process model. The nonlinear pro cess
model was fitt ed on the data of RUN56 according
to a method described in Eek et al., (1995) . The re­
sults showed that th e mod el error was not sensitive
to th e model paramet ers PI, . . " PlO, except the pa­
ramet er P3 , which describ es th e constant nucleation
rate. This parameter was adapte d only slightly to
improve th e fit on th e data.
From th e nonlinear model 3rd , 4th and 5th order
mod els were derived , according to th e describ ed
method. The fits of the opt imized nonlinear model
and th e redu ced 4th order model on th e identifi ca­
tion data are given in Fig. 12 and on th e validation
data (RUN55) in Fig. 13. The RMS valu es of th e
output errors of th e different models are provided in
Table 7.3.
The fit on the output Yrl is better th en th e fit on
output X 43 . The latter exhibits a less regular re­
sponse on th e input excita t ion th en th e real process
tr end . Probably a disp ersion effect that smoothen­
s th e particIe waves when transported (by growth)
over th e crystal size dom ain is responsibl e for thi s.

10 15 20 25 30 35 40 45 50
time (hour s)

5

The RMS valu es of th e residu als of th e different
models for both data sets are given in Table 7.3 .
Also for this model th e estimated open-loop mod el
is simulate d in closed loop on th e basis of th e ex­
citation signais. The resulting RMS valu es are also
provi ded in Tabl e 7.3. Also for th is case a fourth
order model seems to pro vide th e best estimate of
th e open-loop process dyn amics. The fit on the i­
dentifi cation set st rongly resembles th e fit obtained
with the dir ect approac h. In Fig. 10, th e fits on th e
valid ation sets are given At first hand , th e RMS
valu es and the time domain fits reveal a sm all dif­
ference between th e DI and th e TS model. However ,
if we compare th e Bode plots of th ese mod els given
in Fig. 11, a c1ear difference is observed, mainly in
th e region of high frequ encies. The deviation of th e
DI model from th e TS model exist mainly due to the
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Fig. 13: Validation of full nonlinear process mod­
el (solid) on measured data of RUN 55
(dashed) ; fines density Yrl (upper) , mean
crystal size X 43 (middle) and solids frac­
tion M, (lower).
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The dynamics of th e solids fraction M , is describ ed
with approximately th e same accur acy as th e input­
output model. On the basis of th e identification
data set th e first principles model does not perform
significantly worse or better then th e identified mod­
el. However, on th e independent validation data set
the nonlinear model performs significantly better .

In Fig. 11 also th e Bode plot of a fourth order model
obtained by linearizing and reducing the nonlinear
model is added as a dotted line . As can be conclud­
ed also the linearized first principles model gives a
reasonable fit on the data. The dynamics are rea­
sonably comparable however the static gain differs
from th e identified modeis. It may be expected that
th e physical model gives a better description of the
low ord er dynamics in the system th en the black-box
model. However, it should be noted that a proper
est imate of the static gain is less important for most
control applications as most controllers will have in­
tegral action which tailors the process outputs to a
zero static deviation at infinite time.

As th e first principles model also contains signif­
icantly less unknown parameters, less informative
process data is needed , hence th e method suits th e
industrial requirements better. Further improve­
ment of th e first principles model can be attained
by incorporating models for mixing, and improved
models for forward light scattering.

RMSI RMS2 RMS3

DI TS FP DI TS FP DI TS FP
third order model

idf 0.52 0.54 1.08 0.59 0.56 1.00 0.28 0.28 0.42
cl 0.57 0.55 1.22 0.78 0.92 1.11 0.30 0.32 0.47
val 1.00 1.10 1.11 1.29 1.52 1.22 0.50 0.55 0.65

fourth order model
idf 0.52 0.47 1.16 0.51 0.52 0.92 0.20 0.28 0.46
cl 0.57 0.50 1.66 0.86 0.86 0.98 0.24 0.29 0.46
val 0.99 1.13 1.15 1.40 1.42 1.25 0.42 0.49 0.63

fifth order model
idf 0.45 0.45 1.14 0.51 0.46 1.06 0.29 0.27 0.43
cl 0.51 0.46 1.26 0.94 0.67 1.22 0.44 0.33 0.48
val 0.96 1.24 1.21 1.26 1.59 1.40 0.52 0.58 0.63

nonlinear mod el

idf 0.65 1.17 0.46
val 0.82 1.08 0.58

Table 3: RMS values for Yrl (RMSl) , X 43 (RM­
S2) and M, (RMS3) , of dir ectly est imated
models (DI) , th e two-step approach (TS)
and th e first principles model (FP) , on th e
basis of identification data (idf), identifi­
cation data with the model in closed-loop
(cl), and validation data (val).
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Conclusions

In this paper we have shown that low order linear
MIMO models give a sufficiently accurate descrip­
tion of the dynamics of a crystallization process,
provided that the process is operated close to its
stationary behaviour. The latter condition should
be imposed with a stabilizing feedback controller
that stabilizes the open-loop cycling behaviour of
the system . Low order models can be derived via
a linearization and reduction approach of a nonlin­
ear first principles model and via a system identi­
fication approach on the basis of measured closed­
loop process input-output data. Direct identifica­
tion of input-output models, on the basis of process
input-output data with correlated noise, shows that
a significant bias in the high frequency range of the
transfer-functions is introduced. This consistency
problem could be circumvented effect ively with a t­
wo step identification procedure.
Validation of the estimated models with an indepen­
dent data set , shows that the nonlinear first princi­
pIes model gives the best fit. The difference with
t he low order lin ear input-output models is , howev­
er, sm all.
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Inner loop design and analysis for hydraulic actuators,
with application to impedance cont.roll
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Abstract. The behaviour of manipulators equipped with hydraulic actuators is domi­
nated by the dynamics of the hydraulics. The aim of an inner/outer loop control structure
is to mask these hydraulic dynamics with an inner loop . Constructing the inner loop by
using the inverse of the actuator dynamics , or by placing the poles of the actuator system,
is fundamenrally different. An analysis of these two options concludes that a pole place­
ment is the best choice. First results of an actual implementation of a proposed method
on an industrial hydraulic drive system, shows the practical relevanee of this controller.

Keywords. hydraulic rotary servo system , cascade l:!.p control , theoretical analysis ,
impedance control, experimental application

1 Introduction

Although most industrial robots are equipped with
electrical actuators, in som e occasions it is prefer­
abi e to use hydraulic actuators. These are situations
in which big loads have to be handled and available
space for construction is limited (due to th e excel­
lent rate of dim ension to delivered torque) , or long
linear strokes have to be realis ed (flight simulator
systems). Generally speaking, th ese are direct drive
sit uations with severe specificat ions on load, speed
and /or accuracy.

An example is a Brick Laying Robot which is de­
veloped in cooperat ion with industry". Target spec­
ifications for th e design did include: a pay load of
100 kg, lar ge range of op eration (a circular sector of
1.4 rad with radius of 2.2 meters) , transportation of
the load within 3 seconds anywhere in th e range of
opera t ion with 2-3 mm position accuracy. In addi­
t ion th e manipulator has to operate on a platform
(diameter 2.8 meter) supported by a telescopic mas­
t . Therefore severe limitations in size and weight of
the manipulator where imposed.

IThis paper is also presented at the 4th IFAC Sympo­
sium on Robot Control, September 19-21, 1994, Capri, Italy.
Copyright of this paper remains with IFAC.

1Eureka EU 377 FAMOS SRICI<, Highly F lexible Auto­
mated and Integrated Brick Laying Systern.
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One of the main differences between electrically
driv en robots and hydraulically driven robots , and
subsequently th e applied model based control de­
sign , is the significant presence of the actuator dy­
namics. In most of the control lit erature on (elec­
trically driven) robots , actuator dynamics are not
taken into account , e.g. Khosla (1990) and Whit­
ney (1987) . Hydrauli c actuato rs do exhibit lightly
damped dynamics. As these dynamics oft en dom­
inat e th e behaviour of th e manipulator , special at­
tention for t he hydrauli c drive system is necessary
(Heintze et al. , 1993).

To perform model based control design for nonlin­
ear systems such as manipulat ors , techniques such
as feedback linearization are often used . For ex­
ample th e weil known Computed Torque technique
(e.g. An et al. (1,988)) is a feedback linearization
method . Such a feedback linearization technique us­
es in some sense th e inverse dynamics of th e system
(Slotine and Li, 1991) . In case the model used at
the control design is not an exact description of re­
ality, the method hardly gives a clue about robust­
ness . Especially in case of lightly damped systems
(as hydraulically driven manipulators are), robust­
ness problems can be expected (Boer, 1992).



(3)

The Brick Laying Robot in the hydraulic laboratory
of the Mechanical Engineering Systems and Control
Group, Delft University of Technology, is equipped
with standard industrial hydraulic actuators and
valves. This means: safety features in the hyd raulic
circuit, varying (Coulomb) friction due to industrial
seals, uncertain internal leakage flow due to limi t­
ed accuracy of construction and bearings, standard
quality valves with uncertain behaviour (dynamic as
weil as static) in the centre position (which is exact­
Iy the range of operation in case of high precision
positioning). Due to these difficu lt to describe phe­
nomena, it is hard to produce an accurate model,
which motivates the analysis in this paper.

In order to focus complete upon the dynamics of
a hydraulic actuator, the analysis is performed for
the one degree of freedom situation; an industrial
hydraulic rotary vane actuator with an attached in­
ertia.

First a short description of the model of the hy­
draulic system is given in section 2. In section 3
some comments are given regarding the division in
inner and outer loop contro!. Section 4 is the main
part of the paper, the theoretical analysis of the
inner loop. Preliminary experimental results in sec­
tion 5 will show the practical valid ity of a proposed
method. Conclusions will concl ude this paper .

2 Hydraulic actuator model .

A short summary of th e equations which describ e
a hydr auli c rotary vane act uator with valve will be
given. Detailed inform ation concern ing mod ellin g
and ide ntification of these ty pe of actuators can be
found in Hein tze et al. (1993).

T he equation that describes the dyna mic behaviour
of the hydraulics is (with 8 = ft):

!:lp is the pressure difference in the actuator, nor­
malized with respect to the supply pressure given
by the the pump, qa is the actuator position in [rad]
(the dot means the time der ivative), i. c is the valve
steering signal, normalized with respect to the max­
imum valve steering. k l = FW(qa), k2 = qmax kl,
k3 = LPvk2 (kl, k2 > 0, k3 ~ 0) . F is a con­
stant depending upon the oil compressib ility and
the pressure delivered by the pump, w(qa) is an po­
sition dependent parameter, qmax is t he maximum
achievable veloc ity of the actuator (reflecting th e
valvc dimension in rela tion to the dime nsio n of the
actuator), and LPv is a parameter concerning leak-

84

age flow inside the actuator. The position dep en­
dent para meters kl ,2,3 can be regarded as constants
in one ope rationa l point. The term VI ± !:lp is due
to the pressure dependency of the valve and can be
regar ded as an inpu t non linearity, the (±) sign being
opposite to the sign of i.c .

T he mechanica l part of the model due to the load
can be described by:

[ ~a ] = [0 _lw] [ ~a] +[ .. 0 ].6.7*[: ](Te+Tc)
qa 0 J. qa qmax J.

(2)
J a in [kgm2] is the inertia attached to the actua-

tor, w in [Nm8] is the viscous frict ion coefficient ,
iimax in [rad/ 82

] is the maximum achievable accel­
eration of the actuator and reflects the dimension of
the actuator in relat ion to the load attached to it ,
Te in [Nm] is the external torque, and Tc in [Nm]
is the Coulomb friction ancl/or stietion torque. The
friction torque Tc is modelled as a constant torque
during movement (opposing the direction of move­
ment), and a varying 'stiction torque' during stand­
still, similar as described in e.g. Southward et al.
(1991). The transfer function of only the mechani­
cal part of the actuator is then given by:

ga gmax

!:lp - 8(8 + 5~ )

Combining equations (1) and (2) the following de­
scription of the total actuator is obtained:

[
' ] [ " k ~±A ~ ] [ ' ]
qa 1 qmax ' 2 V " a; u p J. l.c

.6.p =OP (8+ ;' ) k2Vl±.6.p =f'::- Te +Tc

(4)

With OP = 8
2 + ( ;. + k3 ) 8 + ( ;. k3 + iimaxkl) '

t he ope n loop cha racteristic polynomia!. Taking qa
as output resul ts in a third orde r model from steer­
ing cur rent (i.c) to position (ga). T he dy nam ics are
then described by an integrator in series with a sec­
ond orde r system, well-n igh always badly damped.

In the modelling process, we have made the fol­
lowing assumptions: IJ symmetrical actuator, 2J
symmetrical critical-cent re valve wit h turbulent oil
flow and no valve dynamics, 3J laminar leakage flow,
and 4J the mean press ure in each compartment is
ha lf the supply press ure. These are quite standard
assumptions, see e.g. Viersma (1990) . When mod­
elling a linear hydr aulic actuator, angular position
and inerti a t ransform into distance and mass respec­
tive ly.

3 The inner/outer loop concept for
hydraulically driven man ip u la t or s

Feedback linear iza tion techniques, for example ap­
plied to non linea r systems as manipulators, often



(5)

2 A hydraulic actuator is primarily velocity driven , i.e.
a constant valve opening results in a constant (rotational)
velocity.

(7)
1

4 Inner loop analysis

The obj ective of th e first inn er loop (in th e remain­
der simply called th e inn er loop) is to track th e re­
quested !lPt as good as possibl e, such th at the dy­
namics of th e hydraulics will not disturb the overall
behaviour of the manipulator . Two options for this
problem will be tr eated.

One solution to this problem is to make th e hy­
draulic dynamics fast by means of a cascade !lp con­
troll er, another solution is using the inverse dynam­
ics of the hydraulics.

ability of the acceleration signalof the mechanical
system, which can be considered as a severe handi­
cap for practical application. However, th e !lp sig­
nal is easy to measure in a hydraulic actuator, and is
related to th e acceleration by equation (2). There­
fore the following target pressur e difference is pro­
posed :

where (Te + Tc) is the summation of a known or
measured external torque, and a measured or es­
timated friction torque (for friction compensation).
Although the non contact situation is examined, and
no attempt to friction compensation is made, this
term is included in the subsequent analysis to main­
tain a general setting. Equation (6) can be regarded
as a 'second inner loop' as introduced above. In th e
next section th e 'first inn er loop ' is introduced , fol­
lowed by th e main part of this paper: th e analysis
of this inner loop .

4.1 Introduction and first analysis of the in-
ner loop

Cascade !lp controller

The basic idea of cascade !lp cont rol is a dir ect feed­
back of (!lPt - !lp). In addition there is foreseen in
a compensat ion of the valve signal du e to the veloc­
ity present in th e system", giving a controller of th e
form

This basic scheme was already used in Sepehri et al.
(1990) (with K c and K v bath constants) , ' cascaded '
with a Self-Tuning Regulator.

The value for K v can be det ermined from equa­
tion (1) as:

K v = 1 ~
Jl ±!lpk2

.. Kt ( ) e, ( . ' ) T;nt
qt = J; qo - qa + J; qo - qa + h

where J t in [kgm2] is the target inertia , B, in
[kgm2/s] is the target damping, Kt in [kgm2/s2] is
th e target stiffness, qo,qo are the reference position
and velocity in [rad), [rad/sJ, qa, Qa are th e actua­
tor position and velocity, ijt in [rad/S2] is th e target
actuator-accelerat ion, and T;nt in [Nm] is the inter­
act ion torque. T;nt = 0 in this paper. The outcome
ijt of the outer loop (5) is the reference for an inner
loop.

result in a so called inner/outer controller scheme.
The inner loop used for the feedback linearization,
transforms th e dynamics of the manipulator to a set
of SISO not coupled integrators. The outer loop is
used to place th e poles of the linear system, such
that the desired controlled behaviour is obtained,
regardless of th e original manipulator dynamics (S­
lotine and Li, 1991). For example Computed Torque
cont rol (An et al. , 1988) is according to this concept.

With similar reasoning, an inner loop for hy­
draulic actuators can be used in order to mask the
dynamics due to th e hydraulic part of the system,
and then an outer loop can be used to control the dy­
namics due to th e mechanical part of the manipula­
tor . This outer loop itself is also possibly composed
of two parts: a (second inner) loop which for exam­
ple performs a feedback linearization of th e nonlin­
ear dyn amical behaviour of the mechanical part of
the manipulator , and a (lin ear) outer loop designed
such that aspecific required behaviour of th e by now
totally feedback linearized system is obtained.

Although th e primary interest is in the design and
analysis of an inn er loop specific for hydraulic actu­
ato rs, an outer loop need to be chosen in order to
have a fully controlled system when performing test ­
s. As th e inner/outer loop control strategy also fits
for impedanc e cont rol (Anderson and Spong, 1988),
the outer loop controller is chosen to be of this kind .

The above outer loop requires in principle the avail-

lm pedan ce cont rol as describ ed in Hogan (1985)
aims at realizing a behaviour at the end effector of a
manipulator su ch that this manipulator appears to
be a passive system , in case of int eraction of th e end
effecto r with an environment . Within a impedance
cont ra l design method , there are free to choose de­
sign parameters which ar e dir ectly characte rizing
the dyn amics of this passive 'system , th e so called
target impedan ce.

Op tin g for a simple linear second order target
impedan ce in th e non contact sit ua t ion only, i.e , an
inertia , rotary damper and spring syst em , gives th e
oute r loop control law:
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The position dependency of th e actuator completely
drops out. In addi tion to a constant gain we see a
cancellation for the input nonlinearity. The same
input nonlinearity cancellation will be used at th e
pressure feedback, leading to th e control law:

With:

[

iiTna:rk2KcVl ± 6.pc
[A]=

(s + ;.) kd{cVl ± 6..pc 5:- (VI ± 6.p u -1 )

Applying this controller to equation (4), th e fellow ­
ing description is obtain ed:

. [ " ~ ar k,Kc ~] [ ]

[
'l o ] = s+ JU;; )(s+k3+k ,Kc) s+ J': !:l.Pt

!:l.p k ,Kc 0 Te+Tc
s+ k 3+ k, K c

(9)
Due to th e velocity feedb ack K v, th e complex pole
pair of equa tion (4) is decoupled into two real poles:
one for the mechanical part and one for th e hy­
draulics, see en trY[l ,l] of (9). Sub sequently th e hy­
dr aulics can be m ad e fas t with gain K c (i.e. K c >
0). Note, for example in en trY[2,1] of (9), that th e
position of this fast pole, as weil as th e gain of th e
transfer ar e positi on dependent du e to k2 and k3 ·

Inverse controller

The solution, which com es more naturally forward
from th e point of feedback linearization, is to use
a cont roller which contains the inverse dynamics of
th e hydraulics:

Dir ect use of equation (1) gives the controllaw:

and ,

CP = (s + Y'.) (s + k3 + k2KcVl ± !:l.p
C

) +
qmaxkl (1- VI ± !:l.p")

The term VI ± !:l.p
c

results when th e input nonlin­
earity in th e pressur e loop is not com pensa ted for ,
i.e. using in equat ion (8) a constant K c instead

of K c (V1±!:l.pr1. Vl±!:l.p" has an equivalent
meaning for th e velocity loop.

The effect of omitting th e cancellat ion of th e input
nonlinearity in contr ol par ameter K c only, is t hat
th e position of th e fast pole, and the gains have be­
come a function of !:l.p , bu t th e deco up ling between
hydraulic- and load-system is still present . Using a
constant velocity compensation (i.e . VI ± 6...p" in­
st ead of 1) is destroyin g th is decoupling. T he two
real poles can transform into a complex conj ugate
pole pair , of which th e damping is un certain ; the
pressure dynamics has becom e dependent up on the
dynamics of th e mechanicalload. In addition , !:l.p
will now be influenced by exte rn al torques , by th e
non-zero valu e of en t r Y[2,2] of equat ion (12).

A similar analysis can be performed for the con­
troll er based on the inverse of actuator dynamics.

Effect of input nonlinearity cancellation

In case th at K v and K c are const ants th e following
equat ion results instead of equation (9):

[
ga ] [~ #y] [ !:l.Pt] (11)
!:l.p 1 0 Te+Tc

Not e that the velocity compensation and the cancel­
lation of the input non linearity are identical with
th e cascade !:l.pcontroller . Substitution of the above
equat ion into equat ion (4) gives:

!:l.p = !:l.Pt resul ts du e to th e control law (10): th e
dyn amics due to th e hydraulics are canc elled. Com­
pare also en t r Y(l ,1] of this matrix equation with e­
quation (3). Left over are th e dynamics due to th e
mechanica l system , which will be taken care of by
the second inner loop (see equation (15)).

(13)

Both controllers are utilizing exactly th e same com­
pensation for th e velocity present in th e system: a
cons tant gain depending on actu ator-valve charac­
teristics plus a compensation for th e input nonlin­
earity. For th e pressure dyn amics however , th e in­
verse controller is canc elling a pole whereas th e cas­
cade !:l.p controller is placing apoie.

This will make a sub stantial difference in th e
case of a non exact pole-zero cancella tion, espec ially
when th e location of such a pol e is near th e imagi­
nary axis. And this is likely to be th e case, as k3 is

s + k3 + k2Kc

In case of the cascade !:l.p cont roller the pressure
reference is tracked via first ord er dynamics , which
can be made fast with gain K c, and will have statie
gain equal to 1 for k3 = 0 or K c -+ 00. However ,
at first sight it seems that th e inverse controller is
doing th e best job.

A first comparison of the two options for the
inner loop

The first column of equations (9) and (11) differs
by:

(12)

(10)

[
ga] 1 [!:l.Pt]- -[A]
!:l.p - C P Te+Tc

. kl. (s+k3)!:l.pt

Zsc = k
2
V1 ± !:l.pqa + k2V1 ± !:l.p
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loop gives:

4 k3 is dependent upon the leakage over the vane , LPv­
This parameter will normally have a small value. k2 [(cis
d esigned to b e large , in or der to ob t ai n fast dynamics of the
hydraulic system, see (9).

(15)

i,«,
8 (8 + ka + k2 /(c )

1 ?
- ~ ---,_---,.e::---=-:--::-:--:-
8

[::] [ (. +k3)J; 1 ] [ .. ]C P I qt

( '+T.- )k2K c -~k2KcJ;1 Te+Tc
ijmarC P , qmarCPI

(14)

With CP1 = 8
2 + 8 (Y'. + ka + k2/(c)+ Y'. ka. T he

second inn er loop combination with th e inverse con­
troller (10) gives:

The resulting integrat or for the mechani cal part of
the syst em gives a perfect t racking of th e tar get ac­
celeration ijt.

Replacing k, K ç in equation
.2+.( ..!!!..+k3+k2K c )+ ..!!!.. k3Ja Ja

(14) by an int egrat or 8 - 1 gives equa tion (15), ex-
cept for en t r Y[1,2]' Assuming th at the viscose fric­
tion w (which is generally smalI) approac hes to zero ,
the examinat ion of the correspondence of th e resul t
using th e inverse dyn amics or the cascade D.p con-

?

troIIer is equivalent to th e questi on (~indicates th at
similarity is questioned):

For", ka ~ k2 /(c the right hand side of th e last e­
quation becomes an integrator in series with a first
order system. This first order system has a static
gain 1, and can be made fast by the design param­
eter /(c .

With the same assumptions , ent r Y[1,2] of equa­
tion (14) transforms to an integrator in series with
a first order lead/lag filter , with a static gain ~ 1:

t ~ (.+k 3)J; I

en rY[1,2] ~ . (.+k 2Kc)·

As th e inner loops (6) , (8) and (10) are based upon
model parameters , it is interesting to analyze th e
influence of paramet er un certainties upon th e dy­
namical behaviour of th e cont rolled system . Only
examination of th e paramet ers of th e hydraulic part
is presented , i.e. par ameter uncertainties in equa­
tions (8) and (10) , and not in th e second inn er loop
(6) . The uncertainties are assumed to be bounded
such that th e inequalities under equat ion (1) ar e not
violated , for example: é k 3 2: -ka . A correc t com­
pensation of th e input nonlinearity is assumed , as
th is influence is alr eady analyzed in (12) .

Closing th e second inn er loop (6) in combination
with the cascade D.p controller (8) as the first inner

dependent up on the leakage parameter LPv . This
leakage parameter is kept as small as possible by
design , and in addition , is hard to determine.

Fur t hermore, in th e event that th e velocity com­
pensation is not perfect , th e dynamics of the hy­
draulic and the mechanical part ar e not decoupl ed
complete ly (see (12)). The pole-zero cancellation ,
as designed for by means of th e inverse controller ,
will not take place => a zero near th e imaginary ax­
is and a rather undamped complex conjugate pole
pair may result .

Moreover, the only knowledge necessary to im­
plement th e cascade D.p cont roller is th e constant
qm ax a. K; can be adj usted eit her way, according to
model studies or right on th e spot! However for th e
impl ementation of the inverse cont roller knowledge
about the non constant par am eter ka is required ,
which essent ially contains th e com plete paramet er
set of the hydraulic act uator model.

Note also t hat t he inverse cont roller (10) is a non
pro per system . In case of practical implementation
at least a fast enough first ord er syst em has to be
added. (T his will result in an equivalent descrip tion
as (9), where equation (13) is replaced by the fast
first order system .)

Also remarkable is that th e inverse controller is
using th e D.p signal only for th e input nonlineari­
ty cancella t ion, and is not actual having D.p in a
feedback loop . The cascade D.p controller is using
th e D.p signal in th e feedback. One can say that th e
inverse cont roller relies more upon the model knowI­
edge, and th at th e cascade D.p controller is using the
actual process information to a larger extent.

4.2 Influences of parameter uncertainty

At thi s point a preferenee for the cascade D.p inner
loop controller is stated.

3rjma.r = ~. Vr , which reflects the size of the actuator,
is easy to m easure and a lways specified accurately by the
m anufacturer of hydraulic actuators. The nominal valve flow
<I>n is dependent upon the supply pressure p., the maximum
steering curren t ima.r, and the valve constant C. The supply
pressu re is give n by the pump a nd is easy t o verify. A m easure
for the va lve co nstan t is a lso given by the manufacturer of
hydraulic servo valves, a nd ca n b e m easured from quasi statie
experimen ts. But this " constant" ca n flu ctuate con sid era bly
aroun d the zero position of the valve (i . c = 0, regarding this
phen omena you ca n buy dilferent qualities of valves), and
te n ds to drop olf for i -+ ±ima.r . This drop olf d ep ends
up on resistance of the oil flow from the valve to the actuator.
In ever y co n t ro l problem, the valve a ppea rs to be a cr it ica l
su b ject.
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Parameter uncertainties in the inverse inner
loop controller

In cont rol law (10) th e parameters f; = q;;'~x , k2
and k3 have been used . As th e cascade D.p con­
tro ller only uses tÏmax , th e influence of an isolated
uncertainty up on th is parameter will be analyzed
first. Further , to gain some more insight , th e influ­
ence of an unc ertainty e for th e paramet ers k2 and
k3 separate is analyzed . Although it is clear that a
combination of uncertainties will give some additive
insights, the analysis mentioned above, is sufficient
to compar e the two options for the inner loop .

Suppose'' qmax,cntr = qmax +éq=u ' equat ion (11)
transforms into:

(stk3) J; 1 ] [A ]C P, isp,

-J;lk l <4mgr Te+Tc
CP,

(16)

Wi th C P2 = (8 + y:. ) (8 + k3 ) + iimaxkl é'J=u and

é~ = . q=o' . The in paragraph 4.1 men-
qmax qmax+eqma.r

tioned influence of a not correct velocity compen-
sat ion is recognized in equat ion (16). A zero due
to the cont roller is introduced , and the dynamics
of the hydraulic part is not decoupled from th e dy­
namics of the mechani cal pa rt . CP2 shows that this
effect is not significan t in case iimaxklé'J ~ 'f k3 .

However due to the fact that both , ;rand LPv

(k3 = LPvk2) can be smalI, it might be that ef-
t: . ianifi F w LP.q'Iect IS Slglll cant. <or é q' < - J " + L=por

. ,
m a r a lJ.na x w v q m ax

th e characteristic polynomi al C P2 wi l even have an
unstable pole.

A similar an alysis is done with th e second
inner loop (6) closed . Only th e first colum ­
n of (15) is influenced, ~ is transformed into

( ~ +k3) (q=ar +<q.!" gr) . For - qmax <
s(s+k3)(qmar +<q=ar)+q=ark l eq=ar
érj=u < 0 this system will have unstable poles . For
érjm ar > 0 th e signifi can ee of this term is dependent
upon th e relative size of ijmaxkl éq=ar '

Suppose k2,cntr = k2+ ék" equat ion (11) trans­
forms into:

. [ i;mar
k

, .i:': ]
[

ga ] = (s+;: )(k'+<k ,) s+3: [ D.Pt]
D.p _k~~ _ 0 Te+Tc

k,+<k,
(17)

The parametrie uncertainty ék, introduces a (rela­
tive harmiess) gain error in the first column of the

5The subscript 'c n t r ' id entifies the parameter used in t he
cont ro l la w, without a subscript is t he nominal va lue of t he
parameter. Just one parameteruncertainty at a ti m e is being
exa m ined . For the other control parameters is assumed that
they match the correct va lu es .
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matrix equation (11) (compare with equat ion (17)) .
After closing th e second inn er loop, th e eleme nts

of (15) have been multiplied by ( s k)' w •
S k,+<k, +J;<k,

The position of the pole of this first order system is
uncertain, and is even unstable for -k2 < ék, < O.
In case of zero viscose friction (w = 0) , th e influence
of ék, reduces to a static gain error. EntrY[l ,2] of

(15) becomes (k < k~ )a-I w , introducing a cou-
s ,+<k, +J;<k ,

pling between the exte rn al torques and the velocity .

Suppose k3, cntr = k3 + ék3, equat ion (11) trans­
forms into:

[

' ] [ q=U (S+k
3
+<k

3
) ~ ] [ ]ga = (s+;: )(s+k3) s+ i: D.Pt

D.p s+k3+< k3 0 Te+Tc
s+k3

(18)
In th is case th e ord er of th e system is increased:
closing the first inner loop results in th e addit ion of
a stabie first ord er lead/lag filter in th e first column
of matrix equation (18) (instead of just a gain as in
(17)). This is due to the fact that th e system pole
(8 + k3 ) is not cancelled correct ly by th e cont roller
zero (8 + k3 ,cntr) .

Wh en closing th e second inner loop th e same con­
troll er zero is introduced , and a second ord er char­
acterist ic polynomial results. This polynomial has
one unstable pole for all ék3 > O. Equivalent to
the uncertainty ék" en t r Y[l ,2] of (15) has become
nonzero .

Parameter uncertainties in the cascade D.p in­
ner lo o p controller

Control law (8) uses only th e model param et er
qmax. Suppose qmax,cntr = qmax + éq=ar ' equat ion
(9) tr ansforms into:

(stk a+k,KC)J ; ' ] [ A ]C P3 esp;

J- 1k <n- a 1 Omu Te+Tc
C P3

(19)
With
CP3 = (8 + y:.) (8 + k3 + k2J( c)+iimaxklé'J=u and

é'Jmar as at equation (16) . A comparison of this
situation with th e equivalent paramet er uncertain­
ty in the inverse controller (equation (16)) gives:
T here is not a zero, due to th e controller, intro­
duced in the first column of (19). The en t r ie 8[2,2]

are equivalent . And the zero which appears in
en t r Y[1,2] in both equations, is apparently not due
to a zero in the cont roller. Note that in the case of
the cascade t1p controller th e location of this zero
can be influenced. T he cha racteristic polynomial­
s CP2 and CP3 do have an equivalent structure,



and ,

(20)

s+ ;~ (s + k , K c)

~
s+ k, K c

th e following difference with the inverse controller:

k2[(~

s + k2[(c

6 Although ks, and consequently its uncertainty, is d epen­
dent upon 6 parameters, as eLP. solely depends upon LPv -

isc=~{[(c(Ó.Pt-Ó.P)+[(LP.Ó.P+~}
1±Ó.p qmax

(21)
With [(LP. = LPv in th e nominal case . Instead of
equat ions (9) and (14) th e control law with leakage
compensation results in:

The complete cascade ó.p cont roller inclusive leak­
age compensa t ion becom es:

The conclusion of thi s section is that leakage com­
pensation can increase the performance of th e cas­
cade ó.p controller at the expense of more model

J;I ] [ ]k::4

J ; 1 Te:Tc
QmarC P4

(23)

with CP4 = (s + 1. + k 2 ]{c). A full compensat ion

of the leakage dependent parameter k3 is realized.
An equivalent robustness analysis as in para­

graph 4.2 can be performed. The results in case
that qmax ,cntr = qmax + Egmar ar e similar to para­
graph 4.2, but without th e influence of k3 (i .e., tak­
ing k3 = 0 or LPv = 0 give th e equivalent equat ions
and stability conditions).

The situation LPv ,cntr = LPv + ELP. is of course
similar to na leakage compensation (ELP. = -LPv).

Therefore taking LPv = - ELP. and consequently
k3 = LPv k2 = -ELP.k2 in equat ions (9) and (14)
gives the equations concerning th e analysis of th e
parameter uncertainty EL P. of LPv. As stability
conditions we get : K c > EL P. for the firsf inner
loop , and EL P. < 0 due to th e seeond inner loop .
Because of the seeond condition , th e first eondit ion
will not be a problem as K c > 0, see under equa­
tion (9) . This st ability eondit ion is equivalent to the
case of the inverse controller'' ( Ek3 ) , but the effect
of a non zero EL P. will be a shift of pole locations in
st ead of adding uncertain dynamics. In general the
est imate d value of th e leakage eoefficient (LPv ,cn tr)

must have a value less than th e actual leakage coef­
ficient (LPv) , sueh th at EL P. < O.

Conclusions with respect to the parameter
uncertainty analysis

Conclusions due 'to the above analysis are:

• Three different kinds of parameter uncertain­
ti es can introduce instability in case of the in­
verse controller . For th e cascade ó.p controller
th is is just th e case for one paramet er uncer­
tainty.

• The conditions for stabIe behaviour are for the
cascade ó.p controller less severe .

but in case of th e cascad e ó.p controller the posi­
t ion of the poles can be influenced by control pa­
ram et er ]{c. Stability in spite of the parameter un­

certainty is det ermined by th e following inequality:
. > w( L P. + Kc) q;' ar Th c t bili

Eqmar J " + ( L P +K )' . ererore s a I I -
Q qrnQZ W ti C Qm 4 z

ty can be forced in case of certain bounded parame-
ter uncertainty, with respect to th e first inner loop.

Closing th e second inn er loop , only th e poles
of the characteristic polynomial have been dis­
tur bed (compared to (14), and th e numerator
of en t r Y[2,2) has been transformed to s k2]{c +
iim axkl EJ ' which is non-minimum phase for
Eqmar < à.arThis system will be stabIe for: €qmar >

w LP g' Th' diti I' I IJ " +. [p' . . IS con ition IS a itt e ess
a q m QX W "q ma z

restrictive as compared to th e case with the inverse
actuator dynamics controller.

• For both controllers it is advisable to use an
est imate d qm ax ,cnt r which is larger than th e real
one, such that Eqmar > O.

Note from equat ion (1) that th e parameters k1,2 ,3

are positi on depend ent. Therefore uncer tainties
Ek l " , 3 can also be due to th e op eration of th e ac­
tuator at a different position qa , as th e cont roller
was designed for.

4.3 Extension of the cascade ó.p inner loop

T he dynamics of a hydraulic actuator , cont rolled
with the cascade ó.p controller (8) or th e inverse
cont roller (10) differs by th e first order system of
equation (13). Not only th e pole of this system is
varying with th e position dependent parameters k2

and k3 , but also the static gain . This static gain is
approaching 1 for k3 ~ k2Kc .

Introducing a leakage compensation within th e
cascade ó.p structure, gives instead of equation (13)

• Paramet er uncertainty in case of the cascade
ó.p controller will not result in the addition of
(badly conditioned) dynamics after closing the
second inn er loop, as is the case with the invers e
actuator dynamics controller .
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This section presents the results of some pre!iminary
experiments , performed on an indust rial hyd raulic
rot ary actuator with load and standard valve. The
purpose is to show the practical applicability of the
chosen control configuration, rather than a complete
experiment al validation of th e proposed method.
More information about th e exp erimental setup , pa­
rameter est im at ion and model validation is reported
in Heintze et al. (1993) .

5 Exp erimental results

knowi edge, and th e introduetion of an extra stabil­
ity condit ion . The stability condition on gmax has
becom e a little more restrictive with ê qmax > 0

As a result of the an alyses only th e cascade tlp inn er
loop togeth er with th e impedance control outer loop
is selected for implem entation (i.e. equations (5) ,
(6) and (8) or (21)) .

First th e influence of th e cont rol parameter KLP.

is shown . In figure 1 a square wave reference is
added to the tlPt signa !. Given ar e the pressure
and th e target press ure signals (i.e. 'e nt rY[2,q' of e­
quation (9) or (22)), and the valve input. Along th e
Y-axis are scaled uni ts , equivalent to equat ion (1) .
To minimize th e influence of cont rol laws (5) and
(6) , th e am plitude of t he square wave is chosen such
tha t th e actuato r did not st art moving, du e to th e
fric tion inside th e actua to r. In figure la KLP. = 0
and in figure 1b K LP. is the est imate d leakage pa­
ramet er LPv. Due to th e leakage compensation a
statie gain of almost 1 for th e pressure loop is re­
alized, which does agree with equation (20). Note
that:

1. The statie error between tlp and tlPt is caused
du e to a statie position error , via equation (5) .

2. Esp ecially th e recorded valve inp ut signa l seems
ra ther noisy . But we are examining signals in
the orde r of 10

100 of the maximum value.

In figure 2 Kc is increased compared to figure 1. Ac­
cording to equation (13) the pressure loop is faster
than in figure 1, and the statie error in figure 2a is
smaller than in figure la. Addition of leakage com­
pensation as represented in figure 2b, resulted again
in a statie gain of 1 for th e pressure loop.

Figures 3 and 4 show that the cascade tlp controller
does function weil within the impedance control out­
er loop. Presented is th e response upon a step-size
input on qo (and go =0). The input go is the dot­
ted line in the left upper subfigure . For the exp er­
iment presented in figur e 3 is Kt =4460, B t =31.8

and Jt = 1 implemented as target impedance, and
for the experim ent presented in figure 4 the target
impedance was Kt =1225, B, =8.4 and J, =1. For
comparison, the simulated nominal response of th e
target impedance is given in th e right lower corn er .
T he th ree other subfigures represent measured data
from the actuator . The cascade tlp controller had
an identical adjustment for both experiments.

From these initial experiments is concluded that th e
position of the actuator is performing as requested
by the different target impedances. The cascade tlp
inne r loop controller is performing weIl.

Conclusions

Based upon the descr iption of a hydraulic actua­
to r, two inne r loop controllers have been formulated.
A theoret ica l ana lysis towards the robustness prop-
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Fig. 3: Response upon a step on reference qo , Kt =
4460 , B, =31.8 and Jt = 1. In left upp er
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Fig . 4: Response upon a st ep on reference qo, K t =
1225, B, = 8.4 and J t = 1. In left upp er plot ,
reference qo is "', actu al position qa is ­
. Right lower : simulated response of target
impedance.

erties of the proposed cont rollers, with respect to
model par ameter un certainties, is performed. Pre­
limi nary experime nts up on a actual hydrauli c actu­
ator have been executed . From th is resear ch it is
conclude d that :

• Inn er loop control based up on can cellat ion of
dynamics is sensit ive to an inaccurate model
used at the cont rol design . This is very likely
to result in poo r or even unstabl e behav iour of
the cont rolled syste m.

• The cascad e !:1p inn er loop controller, which is
placing th e poles of th e hydraulic system , is rel­
atively easy to design and has better robustness
properties than th e inverse controller .

• An inn er/outer loop control structure applied
to hydraulic actuators is able to separate th e
hydraulic dynamics from th e mechanical part.
This gives the opportunity to perform further
control design solely based upon the mechanical
st ruc ture of the manipulator .

• Practical application of th e cascade !:1p inn er
loop within an impedance outer loop structure,
does yield satisfactory behaviour.

Future research will include: a more elaborated
experimental validation of th e one degree of free­
dom situation , th e application of the cascade !:1p
controller in an inn er/outer structure to th e Brick
Laying Robot, th e controlled execution of a task in
which th e manipulator is in contact with an envi­
ronment , using the cascade !:1p - impedance control
combination.
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Abstract . In applications where high-performance cont rol of long-stroke hydraulic act u­
ato rs is required , such as in flight simulator mot ion systems , th e dyn amics of the trans­
mission lines between the servo-val ve and the actua tor are relevan t for cont rol design .
Insight into the coupled behaviour of the hydraulic cont rol system is obtained by means
of physi cal modelling of th e tr ansmission lines (by a modal appraximation technique) , th e
actuator and th e servo-valve, The valid at ed models lead to an explanation of pot ential
stability problems encounte red in a flight simulator motion system, namely that if the
reson an ce peaks of th e transmission line dyn amics int erfere with the phase shift of th e
valve dynamics, pressur e difference feedback may violate stability margins .

Keywords. Hydraulic servo cont ra l, transmission line modelling, servo-valve dynamics,
experimental validation.

1 Introduction

In a number of applications in the field of motion
cont rol, hydraulic actuators are preferred to elec­
trical actuators, especially when long-stroke linear
actuators ar e required. An application of these hy­
draulic actuators is the motion system of a flight
simulator (Advani, 1993), where the desired stroke
of th e actuators may vary from .5 m to 2 m.

In ord er to improve the performance (and hence
fidelity) offlight simulation , an increasing in the per­
formance of th e actuator control is also required , e­
specially in the control of th e actuator accelerations
cq. forces over wide frequency ranges. For th is rea­
son, th e actuator control will be based more and
more on (high-frequency) force cq. pressur e cont rol
loops , instead of th e usual (middle-frequ ency) po-

IThis work has been carr ied out in the scope of the
SIM ON A-Internation al Research Ce n t re at Delft University
of Technology. This paper was presented at the 3rd Interna­
ti onal Confere nce on Automation, Robotics and Computer
Vision , Sh a ngr i-La , Singapore, November 9-11, 1994. Copy­
r ight remains with School of EEE, Nanyang Technologi cal
Univer sity, Singapore .
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sition servo control loops (Merrit, 1967; Viersma,
1990) . Recent work in the area of hydraulic robot
control shows a similar shift in control strategy, in
the application of high-gain pressure feedback loops
(Heintze, 1994).

A consequence of this shift in control strate­
gy is, that high-frequency dynamics in th e actua­
tor behaviour become important where th ey were
irrelevant before . Besides that , the application
of long-stroke hydraulic actuators inh erently intro­
duces high -frequency dynamics , related to transmis­
sion line effects in th e conn eetion lines between valve
and actuator .

In literature, transmission line dynamics , elect ra­
hydraulic control systems and th e combination of
both have been extensively described . A clear his­
tori c overview of th e research on transmission line
dynamics, is given by Yang and Tobier (1991). They
also present a modelling technique, which approxi­
mates the transmission line dynamics by minimal
order linear modeis, in which the physical parame­
ters are preserved . This so called "modal approxi­
mation technique" pravides th e possibility to physi-



11 Par. I D escri ptio n I Value ; kceI I Value ; k=2 I Dim . 11

r. R ad iu s circular lin e 1 10 -~ 0 .8 10 -z [mI
A d' Line area ( 1IT~) 3.1410- 4 2. 01 10 - 4 [m~l p pressure [bar]

D n • D issip atio n number 6 .05 10-4 7 .631 0 - 4 [-] eI> flow [m' /sl [;J !g
E Effective bulk mod ulus of o il 1.3 1 0~ 1.3 1O~ [kg/m 2

] q positinn [m ]

L. Line length 1.3 1 1.0 6 [mI i control signa! lVI p.

ZO, Line im p ed a nce constant 3.4 1 109 5 .36 109 [Ns/m 5
]

p~ --,7 1<11: , <-Ot. 1 Frequency modif. facto r mo d e 1 1. 03 1.02 [-I p: ui

Ot. 2 Frequency modif. factor mode 2 1.03 1.02 H P ~ i l, $
{3. 1 Damping modif. factor mode 1 7.0 8 .0 H '!!Ji
{3. 2 Damping modif. fac t o r mode 2 6.5 8.0 [-] i ~ tl1P·

l1P" l q

À. 1 Norm . natural frequency mode 1 2.60 1 0~ 7.79 1 0~ [r ad]
- ol . I

>
À.2 Norm. natural frequency mode 2 2.06 1 0~ 6. 18 10~ [r ad] l:.:J $,2

IJ Kinematic viscosity 5 .5 10 - 5 5.5 10- 5 [m~ / s] R2
p Density of oil 900 900 [kg/ m3

]

~Wc, Viscosity frequency .55 .86 [1/ s] R)2- ~

PP2

Table 1: Transmission line parameters and values

ca lly interpret the dynamic effects int rod uced by the
tra nsm ission lines. This is impor t ant when these ef­
fects are inclu ded in the mod els of complete fluid
networks, or ot her dy namic syste ms, like hydraulic
control systems.

Concern ing th ese la t t er syste ms, dynamic (and
even non-linear ) characterist ics of hydraulic servo­
system s have been thoroughly investigated and de­
scrib ed by e.g. Merrit (1967), Viersma (1990) and
Walters (1991). Ap art from sp ecific resear ch on the
dynamics of th e elect ro-hydraulic servo-valve (Lin
and Akers , 1991 ; Lebrun et al. , 1978) , valve dy­
namics are ofte n neglect ed in practi cal applicat ion­
s (Viersma , 1990) , or approxim ated by low-order
(exp erimental) linear models (Feuser , 1984; Watton
and Tadmo ri, 1985; Watton, 1987) .

In some of th ese practical applications , th e com­
bination of transmission line effects and the dynam­
ics of hydraulic cont ro l systems is studied . For ex­
ample, Ham (1982) studies th e effect of supply line
dyn ami cs , whil e Wat ton and Tadmori (1985), and
Wat ton and Tadmori (1988) deal with transm ission
lines coupled to underl app ed servo-valves , and final­
ly the behavi our of a hydraulic drive with transmis­
sion line effects is considered by Wa t ton (1987) . In
the latter study, it is concluded that valve dynamics
provide damping of the (oscillatory) fluid transi ents
in hydr auli c cont ro l systems.

T he resu lts presented in liter ature sugges t no se­
vere problems with transmission lines in hydrauli c
contro l systems. The application of a long-stroke
actuator in a flight simulator motion sys tem how­
ever showed stability problems when applying weil
known pressure feedback techniques (Merr it, 1967 ;
Viersm a , 1990). In this pap er it will be shown
and exp lained that transmission line dynamics, cou­
pled to the hydraulic control syst em dynamics,
cause severe stability prob lems when aim ing at high­
performance control of long-str oke hydraulic actua-
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Fig. 1: Modelling of the servo-system setup

tors .
In Section 2, a review of th e relevan t sub-systems

models will be given, ending up with an integrated
model for the complete servo-sys te m. The val ida­
tion of this model with experime ntal resul ts will be
describ ed in Section 3. Based on this mod el , Secti on
4 discusses th e main issue, namely the stability of
th e complete hydraulic servo-system under pr essure
feedb ack on behalf of high-p erformance cont rol. Fi­
nally, Section 4.3 ends the pap er with conclusions .

2 Hydraulic servo-system model

For th e setup depicted in Figure 1, three sub­
systems can be distinguished : th e transmission
lines, the actuator and th e servo-valve. For eac h
of th ese, a model description will be given , provid­
ing some physical interpretation. These sub-system
models will be integrated into one mo del for th e
complete servo- systern. The model par amet ers for
this particular setup , ar e given in Table 1 and 2.

2.1 Transmission line model

For both tr ansmission lines , whi ch have differing ge­
om etries , linear models can be derived by a modal
approximation technique. Here, th e procedure de­
scribed by Yang and Tobier (1991) will be ado pted,
becaus e th e physical parameters ar e pr eserved in the
resul ting approxim at ing linear modeis. T he bas ic
idea is, that the (infinit e dimension al ) input/output
description of a t ra nsm ission line can be rep resented
as an infinite pro duct series of second order mod eis.
Each second order model th en represen ts a mode of
th e tran sm ission line dyn ami cs. T he modal approx­
im ation consists of a fini te dim ensi on al st ate-space
model, obtained by taking into acco unt a finite num­
ber of mo des only.

In th e approximation step, one essent ia l choice
has to be mad e, namely th e number of (resonance)



modes per transmission line to be taken into accoun­
t by th e model. Preliminary analysis of the infinite
dim ensional model in th e frequency domain showed
resonance frequencies at about 200, 600, 1000 H z
and higher. Given a digital controller sample fre­
quency of 5 kH z , and a servo-valve with relevant
dynamics up to 500 H z , it is assumed that first t­
wo modes (denoted by the index i, i = 1,2) may be
relevant for control design and analysis. With this
choice, the dynamics of the two transmission lines
(denoted by the index k, k = 1,2) can be described
by two fourth-order state-space modeIs of the form
(see Yang and Tobier, 1991):

and th e viscosity frequency for line k defined by
W ek = vl'T'~ (see Table 1).

Not e, th at th ere are two reasons for th e specific
choice of th e states Xk, th e inputs Uk and th e out­
puts Yk in equation (1). First , th e input-output de­
scription should be physically realiz abl e and causal,
which means th at it is incorr ect to choose both pres­
sure and flow at one line end as inputs. Secondly,
the transmission line models have to be integrat ed
with th e act ua tor and valve modeis , requiring this
spec ific choice, as argued in Section 2.4 .

The two most important line parameters in the
expressions above, th e dissipation number Dnk , and
th e line impedance constant Zak , are calculated as
follows:

(3)
k = 1,2
i = 1,2

The remaining parameters in th e state-sp ace
model (1) are obtained by calculat ing th e normal­
ized (by W ek) modal und amped natural frequencies:

Mpij = Ap (Pp1 - Pp2 ) - wpq - M pg (4)

while mass balances for the actuator compartments
give state equations for th e actuator pressur es:

2.2 Actuator model

When modelling the act uator, physi cal insight can
be preserved , like in the case of the transmi ssion
line dynamics, by stating a model based on physica l
laws . For th e symmetrie actu ator of Figure 1, with
th e variables defined in the Figure, the equation of
motion of the piston is:

For th ese frequencies Àk,/, th e factors CYk ,/ and 13k, /
can be determined from figures given in Yang and
Tobier (1991). These frequency-depend ent factors
are introduced by Yang and Tobi er (1991) to incor­
porate frequency-dep endent friction in th e model.
For the setup to be consid ered here , th ey are given
in Table 1.

Although equation (1) describes th e transient
properties of the transmission lines sufficiently ac­
curate, steady-state accuracy is lost in general by
modal approximations. In order to overcome thi s
inaccuracy, a steady-state correction is proposed by
Yang and Tobier (1991) , which is actually an input
modification that transforms the input matrix B k
in (1) into BkGk .

The correction matrix Gk , k = 1, 2 is found by
setting the st eady-state gain of th e (input modifi ed)
modal approximation (1) equal to th e steady-state
gain of the infinite dim ensional model. This can be
shown to result in (Yang and Tobier , 1991) :

G - H- 1 [1 8ZokDn k ] k = 1,2
k - kOl

Hk = - (Ak",iBk,l + Ak",~Bk ,2) k = 1,2

The procedure describ ed in this Section, provides
dynamic models of th e first sub-system to be mod­
elled , the transmission lines. Models for th e other
sub-systems, actuator and servo-valve, will be given
in the following Sections.

(1)

k = 1,2

k = 1,2

k = 1,2

k = 1,2
k = 1,2

k = 1,2
i = 1,2

k = 1,2

k = 1,2
i = 1,2

k = 1,2

1bu..]D nk

o

_1_ Xk = AkXk + BkUk
W ek

Yk = CkXk

where

(2)

with th e sound velocity 111 the oil: Co = I"f in

[mis].

(5)Z
_ pco

Ok --­
Adk

k = 1,2

. E .
Pp 1 = Ap(gmu+g) (<1>01 - Apq)
. E .

Pp2 = Ap(gmu-g) (<1>02 + Apq)

and modelling a turbulent in-Zoutlet restrietion for
both actuator compartments gives the following re­
lation:
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9 Gravity const a nt 10 [mi ? ]
qma% Half the actuator stroke .5 [m]

W p Viscous fric tion co eff . 500 [N./m]
A p Piston area 2.5 10 - 3 [m2 ]

Cm Manifold co nsta nt 1.3310 -12 [m"/N" ]
C. Valve const a nt 1.42 10 - 0 [m2 / V ]
Kp Prop. feedback gain valv e .7 H
Kv Velocity gain valv e 1100 [1/ . ]
Mp Mass of piston plus load 55 [kg]
p . Supply pressure 1.4 10 [N/ m 2 J
f3 v Damping co eff . valve .27 [ ]

wo. Natural fr eq . valv e 2.76103 [rad/ s]

" Par

Table 2: Actuator and valve parameters an d values

Fig. 2: Freq uency response valve dyn amics ItB.

2.3 Servo-valve model

<1> . = C Idl+d /2P, - PiJ _ C Idl- d
ti V 2 V P V2 P

<1> . = C Id l+d J 2fu _ C Idl- d 2 P , - P i2 (8)
,2 v 2 p v 2 P

p _ P <I>~k
ok - pk - -C k = 1, 2 (6)

m

The manifold constant Cm acts as a tuning pa­
ramet er , which was determined by model validation.
The numeri cal values for the parameters in equa­
tions (4) , (5) an d (6) are given in Table 2. It is
c1 ear , that t hese equations in fact constitute a dy­
namic state-space m od el of 4t h order.

Becau se t he valve dy namics modelling plays an im­
po rtant role in t he stability analys is of Section 4,
the first part of t he model va lidation cons ists of a
com parison of t he frequency response of the Iinea r
model for the valve dy namics (7) to t he measured
frequency resp onseé. See Figure 2. Despite a dis­
cre pa ncy in t he phase characteristic (possibly due
to non-linearit ies or senso r dyn ami cs) , the fit is sat­
isfactory, especially with respect to t he amplit ude .

3 Model validation

where the reader is referred to Figure 1 for the vari­
ab le definitions and to Table 2 for the parameter
definitions and values .

2 .4 Integration of the sub-system models

The sub-system models described in the pr evious
Sections can be integrated into a complete model
of the hydraul ic servo-system , because the princi­
ple of the bilatera l coupling in the physical systems
has been taken into account whil e stating the sub­
system modeIs. That is why th e actuator model ,
with an inertial character, has been defin ed with
flows as inpu ts and pressures as outputs (eq. (5)) .
T he valve flow relation (with a resistive character)
has been defined with flows as outputs and press ures
as inputs in order to avoid division by zero for zero
valve displacem ent . Together with t he spec ific in­
put/output relations of Sect ion 2. 1 for the transm is­
sion lin es , a correct ly stated mo del of t he complete
hydraulic servo-system is available, by combining e­
quations (1) - (8). See Oosterh ou t (1992) for a mo re
de tailed dis cussion of t he integration of t he trans­
mission line m od els and t he hydraulic servo-system
mo deIs .

(7)d(8
) _ --,-------,:-:".---r....--=---­

i(8) -
«,«;

+83 + ~s2 + 8 + J( J(
wo" Wo", p v

where the control signal i and t he spool pos it ion d
are both expressed in [V] accord ing to t he experi­
mental setup.

Assuming a critical centre , symmetrie va lve , wit h
turbu lent flows through the valve po rts, t he valve
flows ar e non-linearly related to the spool posit ion
and the pr essures at the valve ports by :

For the two-stage elect ro-hydraulic servo-valve ,
whi ch will be conside red here, a similar modelling
procedure as in t he pr evious Section can be carried
out . This results in a rather complex , non-linear
model. Dep endent on the sp ecific valve applied , the
dynamics of this model can be red uced to some spe­
cific t hird-order linear model structure (Schothorst
et al., 1994) . For t he Rexroth valvel with elect rical
feedback to be conside red here, the op en loop dy­
namics can be desc ribed by a seco nd order syste m
in ser ies with an integr a tor. Wi th the proportion a l
electrical feedback loop , t he following transfer fun c­
tion of t he closed loop servo -valve is obtained :

I Type no .: 4WS2EEIO-45/75B2ET210Z8EM
20btained with H P 3562 ADynamie Signal Analyzer ; for

a ll res p onses , an in put amplitude of 1 .5 % was applied
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3 Driftin g due to the integrating b ehaviour of the actuator
was a voide d by m anual offse t adj ustment

Fig. 4: T ime response pressure difference /:)'Pj on
open loop step of 1.5 % on input i.

Given th e validity of th e valve dynamics model,
the model of th e remaining dynamics may be vali­
da ted by comparing th e model responses ofthe com­
plete servo-system with experimental results. This
has been don e in both th e frequency domain and
in th e time dom ain . The experiments were per­
formed in ope n loop condit ions", with th e control
signa l i as input , and th e measured pressur e differ­
ence /:)'Pj = P il - P j 2 as out put.

Comparison of the frequency responses in Fig­
ure 3 shows a goo d agreement, indi cating that the
main dynami c effects are model!ed correct ly. T his
especial!y holds for the three resonan ce peaks: the
first one due to the natural frequency of th e actua­
tor , and the second and thi rd peaks originating from
transmission line 1 and 2 respecti vely.

T he validatio n of the time responses in Figure 4
also shows satisfac tory resul ts . Alt hough flow mea­
surements were not provided in the experimental
setup, the steady-state behaviour of the complete
model was validated by performing steady-state
pressure and velocity measurements , which agreed
with expectations .

In short, th e experimental validation yields suffi­
cient confidence in the model, so th at a further ana l­
ysis of th e system dynamics, based on th e model, is

justified.

4 Stability closed loop servo-system

Slightly dependin g on the control strategy applied
and the feedb ack signal used (Section 4.1), stabili­
ty problems may occur due to the combination of
transmission line dynamics and valve dynamics, as
wil! be discussed in Section 4.2. A number of poss i­
bie solutions to th is problem wil! be given in Sect ion
4.3.

4 .2 StabiIity problem

The stability problem encoutered in the pr act ical
situation of proportional feedback of th e pressur e
difference near th e valve, /:),Pi , is easily explained
by giving th e open-loop frequency response of the

4.1 Control strategy

In hydraulic servo control, the classical strat egy of
proportional actuator position feedback, plus some
feedback loop for damping is widely used (Merrit,
1967; Viersma, 1990). The damping loop may th en
consist of either a pressur e difference feedb ack loop,
or an acceleratio n feedback loop .

For more recent applications of hydraulic servo
control, high-performan ce force cq. pressure control
loops are requir ed (Sect ion 1). This means that the
gains for the pressure difference or acce!eration feed­
back loops are very high compared to the class ical
situation.

Usua l!y, press ure difference t ransducers are ap­
plied, because they are relati vely robust, while ac­
curate acce!eration sensors are expensive. In the
case of long-st roke actuators, the pressure difference
wil! ofte n be measured near the valve for practical
reasons, so /:), P i is used as a feedback signa!.

.1.08.04 .OG
IIme [sj
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mod el (d ash ed line in Figure 3) in a Nyquist plot
(solid line in Figure 5) . For small feedback gains
(> .2) the closed loop wil! already be uns table by
the encirclement of the point (-1,0). This unstabl e
behavio ur was observed in pr acti ce.

T he reason for this stabi lity problem is clear: the
com bination of transmission line dyn amics (reso­
nance peaks) and valve dy namics (1800 phase shift)
causes problems by pressure feedback. This is illus­
t rated by extracting the effect of the valve dynamics
model (7) from the model response, resulting in th e
dash ed line in Figure 5.

4 .3 Solutions to t he s t a b il i t y problem

With th e new insight obta ined into th e dynamic
properties of th e hydraulic servo-system under pres­
sur e feedback, a number of solutions to the stability
problem may be given:

• Choice of the most suitable f eedback signa /. In the
case that th e pressure difference at th e actuator
side of th e transmission lines, !:l.Po = Pol - Po2,
is measured , th e open loop model frequ ency re­
sponse is given in Figure 6. A similar plot would
be obtained for th e acceleration ij, which is direct­
Iy related to !:l.Po by th e inertia Mp in equation
(4) . Clearly, this type of response shows a high­
frequency roll-off of 20 dB/dec, yielding a large
amplitude margin and allowing for higher feed­
back gains. So , if it is possible, from a practical
point of view, to measure !:l.Po or ij , a higher over­
all performance can be achi eved than in case of
using !:l.Pi.

• Choice of ih e servo-valve. A high performance
valve will , in general, not solve th e stability prob­
lems du e to transmission line effects, as shown in
this paper . In some cases a valve with a smaller
bandwidth might yield wider stability margins, al­
lowing for larger feedback gains . But, in general,

valve dynamics are th e basi c limitation of th e al­
lowable pressure feedback gain, required for high ­
performance control , irr espective of transmission
line dynamics (Schothorst et al. , 1994) .

• Advanced control design for ih e preesure f eedback
loop. An effective solution to th e stability problem
is the design of (digital) filters for the feedback sig­
nal. In case a high-bandwidth valve is available,
it may even be possible to compensate exact ly for
the transmission line dynamics , e.g. by using th e
inverse model. Furthermore, by applying mod­
ern techniques, like robust control , a trade-off be­
tween stability robustness and performance can be
made .

• Application of short transmission lin es. During
th e design of (long-stroke) hydraulic actuators ,
the transmission lines should be kept as short as
possible. Thus, th e resonance modes are kep t in
th e (very) high-frequency range, so tha t interfer­
ence with th e high-performan ce actuator cont rol
loop may be avoided .

In order to achieve an optimal performan ce of the
hydraulic servo-system , the aforement ioned tech­
niques have to be comb ined .

Conclusions

In applications where long-str oke hydraulic actua­
tors are required , e.g. fligh t simulator motion sys­
tems, transmission line effects have to be taken into
account in the control design . The transmission line
dynamics can easily be incorporated in the model of
the hydraulic servo-system by means of th e modal
approximation techn ique as proposed by Yang and
Tob ier (1991). Hereby, physical insight in th e model
is preserved .

By modelling th e servo-system in this way, a good
ag reement with experime nts is obtained, providing
confidence in model based analysis and synthesis of
control design strategies.

Concerning th e design of high-performance pres­
sure cq . force control loops, stability problems may
be encountered for specific combinations of valve
and transmission line dynamics. Solutions to this
problem can be found in th e actuator design , th e
choice and placing of transducers and th e control
design .

Future work

Future research will focus on th e application of con­
trol techniques , which explicitly take the transmis­
sion line dynamics into account. Esp ecially, robust­
ness will be given more attention , as the resonance
freq uenc ies have been observed to vary with the ac­
tuator pos ition .
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Zero-ripple torque control in brushless De motors
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Abstract . The subject of zero-ripple torque control in Brushless DC Motors has gained
importance due to the growing popularity of smal! electric motors in consumer eiectronic
applications. A low numb er of phases and the occurrence of produetion toleranees give
rise to low-frequency torque errors, which manifest themselves as relatively large position
errors due to the low inertia of these smal! drives. With regard to the tight specifications
of the control!ed performance, reduction of these low frequent torque errors is desirabie.
In literature, two main approaches have been demonstrated for the analysis and mini­
mization of torque ripple. One approach is based on Fourier analysis , while the other
uses calculus of variations to find optimal current waveforms.
In this paper, a new approach is presented for the determination of optimal current wave­
forms. The approach is based on an analysis of the back-emf's in the angular domain,
and ean be used even in the case when both the baek-emf's and the stator resistances
show asymmetry.
The new approach is compared to the Fourier method in a test case , and shows significant
reduction in RMS and average values of the stator currents needed to generate a desired
torque.

Keywords. Brushless DC motors; eiectrical torque ripple; current contro!.

1 Introduction

Due to their favourable characteristics, Brushless
DC Motors (BLDCM's) are used more and more
in applications where until recently classical Brush
DC Motors (BDCM's) used to be common. Mostly,
three-phase BLDCM's are used, as these offer the
lowest complexity of the drive electronics.

BLDCM's are characterized by a trapezoidal back
emf and square wave stator currents, whereas Syn­
chronous Permanent Magnet Motors (SPMM's) fea­
ture sinusoidal back-ernf and currents. In the sequel
we wil! use BLDCM as a common denominator for
both motor types.

Ideal!y, the interaction of the waves of the back­
emf and the stator current in both cases leads to an
electromagnetic torque which is constant, irrespec­
tive of the actual position of the rotor. However,
these ideal wave shapes can not be realized in prae­
tice. On one side, a trapezoidal or sinusoidal back-
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emf is hard to realize with permanent magnets. Du­
al!y, ideal sinusoids or infinitely steep square wave
currents are impossible to generate with a power
converter with limited supply voltage and switching
frequency.

Compared to BDCM's, three-phase BLDCM 's of­
ten show a relatively large torque ripple . One
reason for this behaviour is that the underlying
assumptions of the motor behaviour (sine/sine or
square/trapezoid) are violated. This being the case,
the ripple is aggravated because of the relative­
Iy low number of phases compared to professional
BDCM's, which feature at least 5 rotor phases. As
a consequence of this torque ripple, a periodic posi­
tion error wil! result. As long as the torque ripple
has a relatively high frequency (large number of mo­
tor poles, and/or high rotation speed) and the driv­
en mechanical system is stiff and has a large inertia,
this position error wil! be smal! and can often be
neglected. However, in the presence of possibly res-



onant mechanical structures, with small inertias and
more stringent accuracy specifications, th e problem
of torque ripple gains relevance.

The reduction of to rque ripple has been th e sub­
ject of a number of recent papers , see Hanselman
et al. (1992) , Hung and Ding (1992) , Hung and
Ding (1993) , Kempkes and Sattler (1993) , Hansel­
man (1994). The dominant approach in these pa­
pers for th e analysis of th e problem has been to de­
velop the well-known torque equat ion for a BLDCM
in Fouri er components, and use numerical analysis
software to find the Fourier coefficients of the opti­
mal stator currents. An inverse Fourier transform
th en yields th e components of th e optimal stator
cur rents in the time domain .

A different approach has been advocated sorne­
what ea rlier in the Ge rman lit erature, see Grot­
stollen (1984), Schröder (1986) , Schröder (1988).
Here, an analyt ica l optimizat ion is mad e by means
of calc ulus of variations, in orde r to obtain the op­
t imal current wavefo rms. However , the derivati on
is somewhat more involved than the Fourier series
approach, espec ia lly in the case of delta-connected
wind ings . In t his paper we will concent rate on the
redu ction of to rque ripple due to an asymmetrical
configuration of the BLDCM . Such an asymmetry
could be caused by production to lera nces, which can
become a serious factor for miniature mot ors. It will
be shown that even in the presence of such asy rnrne­
tr ies, a constant torque can be generated if properly
sha ped asymmetrical curre nts are fed int o the stator
windings.

An important observat ion here is that the instan­
taneous value of th e opt imal stator currents is solely
dictated by th e ins tantaneous value of the derivative
of th e flux linkages. The actual spe ed of the motor ,
and th e mechanical trajectory to followare of no
importance in this resp ect .

This observation is used for an alternative method
to obtain the opt im al stator curre nts in th e time do­
main . This method is less complica ted mathemati­
cally, and yields stator currents with a lower RMS
valu e for th e same torque, compared to th e Fouri er
component approach.

The pap er is structured as follows : Section 2 in­
troduces a simplified model of th e BLDCM. The
most common sourees of torque ripple are shown ,
together with th eir consequences for the position er­
ror . The torque equat ion of th is model is th en used
in secti on 3 to deriv e optimal current waveforms.
The derivation for th e case of both asymmetrical
back-emf's and stator resistances is performed us­
ing th e computer algebra package Maple (Char et
al., 1991).
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Section 4 elaborates on th e tr eatment of relu c­
tance and cogging torque components .

Section 5 shows th e result of the applica tion of th e
new derivation to a test case which has been pre­
sented in recent lit erature (Hung and Ding , 1992) .
The cases of floating and non-floating neutral are
discussed separately. A comparison of th e results to
the cited test case shows that our derivation needs
ca . 10% lower average current, and 7% lower RMS
currents to obtain th e same torque. The same result
is obtained with th e Fouri er-based approach only if
a very large (infinite) number of harmonies is taken
into account, and this at th e expense of signifi cant
computational effort . Som e system aspects of th e
new derivation are discussed in section 6. The con­
clusions of this work ar e presented in section 6.

2 Model of the Brushless De Motor

A possible realization of a Brushl ess DC Motor has
been depicted in Fig. 1.

spindie rotor yoke

. hOusfng
rron care

Fig . 1: Construction of a small BLDC Motor (taken
from Nouws (1994))

The inn er part of th e construction shows th e fixed
stator windings . The outer part shows the cupped
rotor, consisting of a ring-shaped permanent mag­
net, which is supported by the yoke . The six stator
windings are pair-wise connected in series, and thus
combined in three phases. The equivalent e!ectrical
circuit has been depicted in Fig . 2.

The circuit shown in Fig. 2 consists of 3 identical
stator phases, each comprising a resistance R. i, and
self- and mutual inductances whi ch hav e been indi­
cated symbolically with Land M . The stator phases
each are powered by a voltage difference Uia - Uib .

The lower part of the circuit shows the rotor wind­
ing, which has symbolically been powered with an
ideal current souree ir. The rotor winding is cou-



(3)

(4)

~ R. I L,M
UIa~ v-,

i 2 R.2 L,M----U2a~ U2b

~ R.3 L,M
U3a~ U3b

i r
L,M- :Je

Fig . 2: Electrical circuit of a BLDC Motor

pled to the stator windings through th eir mutual
inductances.

The elect romagnetic torque in an e1ectrical ma­
chine is dependent on th e values of th e stator and
rotor cur rents. For a typical coil (pair) on stator
or rotor , th e following components can be distin­
guished :

• Cogging torque Tc, which depends on the
square of th e rotor current i r and on the varia­
tion of the rotor self-inductances Lr versus th e

. lOT. dL'2rotatien ang e : c = ~lr'

• Reluctance torque Tr , which depends on the
square of the stator current i. and on the var i­
ation of the stator self-inductances L. versus 0:
T. dL'2

r = ~l.,

• Direct torque Td , which depends on the product
of stator and rotor currents and on the variation
of the mutual inductance M versus 0: Td =
dM, .
ïi8l. lr ·

In a BLDCM, the coil carrying rotor current is re­
placed by the field of permanent magnets. Conse­
quently, the cogging torque will only depend on the
geometry of the magnetic circuit, and can not be
influenced once the motor has been realized. Re­
luctance torque can be influenced, but will often be
negligibly small because of the presence of a con­
stant differential permeability, due to the perma­
nent magnets , along the air gap. For simplicity we
will deal with the cogging and re1uctance torque lat­
er . The direct torque production in a three-phase
BLDCM can than be written as follows:

(1)

where the i i denote the three stator currents, i r the
equivalent rotor current (modeled by a single wind-
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ing), and the Mi denote the mutual inductances be­
tween the equivalent rotor winding and the th ree
stator windings, respectively. Rewriting (1) leads
to the following well-known equation for th e direct
torque:

(2)

where n = ~~ denotes the mechanical angular fre­
quency of the rotor , and th e e i represent th e so
called back-emf's , given by:

. dMi
ei = lr&

Note that the back-emf's have the dimension of a
voltage. These voltages can be measured across the
stator windings if the motor is rotating and the sta­
tor curr ents are zero.

The magnitude of th e back-emf is proportiona!
to the rotational speed , while th e shape is deter­
mined by th e angular derivative of th e magn etiz a­
tion . For th e common case where th e back-emf's
have a trapezoidal shape and th e cur rents consist of
120 deg. square waves, a constant torque results. If,
however, th e shape of th e back-emf 's approaches a
sine wave, or if a phase shift or amplitude error is
present , significant torque ripple results.

3 Derivation of optima1 current
waveforms

In this section, we will assume that th e position of
the rotor axis 0 is available with sufficient accuracy,
either by direct measurement or by means of a state
observer (see for example Brunsbach et al. (1993)).

For simplicity of notation, we will first introduce
the shape functions Ei for the back-emf's as follows:

E-(O) _ ei(O) _ . dMi
• - n - lr dO

Note that the Ei are only dependent on 0, i.e. th e
mechanical position of the rotor. Substitution of (4)
in (1) yie1ds:

(5)

Clearly, if a desired value of Td is known , it is pos­
sible to obtain this value through an appropriate
choice of the stator currents ii as long as at least
one of the Ei is nonz ero, i.e. if a change in th e
magnetic field is linked to at least one of the stator
coils.

Ir the three stator currents can be controlled inde­
pendently, and all the Ei are nonzero, we can freely
piek two of the ii and then use (5) to compute th e
third current. Thus, in this case we have two degrees
of freedom while selecting the currents.



Another case exists where th e three stator phases
are Wye-connect ed , and th e sum of the three stator
curre nt s is for ced to be zero:

where th e R; denote the (not necessarily equal) re­
sistances of the sta tor windings. The optimal stator
curre nts for a certain torque can now be expressed
as:

i; = arg(min( P/os s(i;)) 1(5)) (8)

Still , in this case we can piek one of the currents, and
use (5) and (6) to compute th e third. Thus, in th is
case we have one degree of freedom. The freedom for
picking one or two of th e stator cur rents can be used
to advant age to minimize th e losses in the stator
windings. These losses (Ploss) can be expressed as
follows:

(12)F.(B) = dLs ;
l dO

from computation with for example a finite eleme nt
program, then th e total elect romagnet ic torque T
can be made constant by subtracting Tc from th e
setpoint of Td. A circuit to implem ent this idea has
been proposed in Hung and Ding (1993).

For th e compensation of relu ctance torque corn­
ponents (Tr ) , th e situation is more complex . We wil!
only deal here with parasitic reluctance torques , i.e .
we will assume that th e motor has been design ed
such that th e relu ctance torque is only a smal! frac­
tion of the total electromagneti c torque at fullioad .
Furthermore, we will assume that th e magnetic cir­
cuit is linear, i.e. that Ls (0) is independ ent of the
stator cur rents i; . Only an outline of th e proposed
method wil! be given here , as th e method is very
similar to the one used to obtain (10) and (11).

Again , for br evity of no tat ion , we start with defin­
ing shape functions F; to represent the vari atien in
th e stator induetances:

(6)

(9)

(7)

i l + iz + i 3 = 0

i; = arg(min(P/os s(i;))1(5)1(6))
or

For the W ye-connected stator the current in ph ase
1 is expressed by :

respectively. Afte r some elementary algeb ra, which
is performed in the appendix, t he solutions to these
equations can be found. For the case where no re­
strictions exist to the sum of the three currents we
obtain for i 1 :

4 Cogging and Reluctance Torque

So far , only the direct torque component of th e
BLD CM has been treated . If parasitic cogging and
relu ctance torque components ar e present, adjust­
ments are needed.

Cogging torque Tc in a BLDCM depends only on
th e actual rotor position . Assuming that th e val­
ue of TeU)) is known , eit her from measurements or

i; = a7'g(m in(P/oss(i ;) )1(13)) (14)

i; = arg(min(P/oss(i;))1(1 3)1(6)) (15)

which are only depend ent on O. T he sum of direct
and relu ct an ce to rque can then be notated as fol­
lows:

for the case where th e three stato r curre nts can be
cont rolled ind epend ently, or

Td + T; = E1i1 + F1iî + E2i 2 + F2i~ + E3 i 3 + F3 i5
(13)

T he optimal cur rents for this situation are given by

5 Comparison and Extensions

It is worthwhile to compare th e computation effort
of (10) and (11) to th e approach pr esented in Hung
and Ding (1993), where quite sophisticated matrix
calculations are used to obtain almost th e same re­
sult. With our method , th e table for values of th e i;
can be computed dir ectly from th e measured valu es
of th e stator resistances and th e back-emf.

It can be shown that th e solution via the Fourier
approach is an approximation of th e optimal wave­
forms as described by (10) or (11) . Only when an
infinite number of harmonies is taken into account,
th e Fourier solution converges to th e same resu!t . As

for th e Wye-connected stator. The actual computa­
tion of (14) and (15) is quite more involved , because
of th e quadratic terms in (13). We wil! not go into
the intricacies here, but intend to deal with th em in
a future paper.

(10)
. _ T R s2Rs3 E l

II - d R S2Rs3E r+ Rs3RslE~ + Rs1Rs2 E "#,

In both cases th e equa tions for th e ot her two cur­
rents can be found by simple rotation of indices.
Clearly, th ese equat ions can be simplified consider­
ably if equal stator resistan ces are assumed.

For an implem entation, th e shape functions E;
need to be measured , and th e shapes of th e stator
curre nts i;/Td can be com puted off-line and stored
in a prom mem ory. Aft er mu!tiplication with Td

th e setpoint s for th e three currents ar e th en avail­
able. Examples of such systems have been given in
Schröder (1988) , Han selman (1994) .
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an example, we have taken the test case from Hung
and Ding (1993), and computed the RMS and aver­
age currents obtained through the Fourier method.
The results are shown in Fig. 3 and in Table 1.

6 Discussion

With regard to th e mat erial presented ab ove, sever­
al questions and crosslinks come to mind . We will
deal with th em in a som ewhat loose manner , the
intention being more to draw at tention to related
topics and unsol ved questions than to provide ex­
plicit solutions.

Fig. 3: Waveforms of el, ilF (Fourier method) and
ilopt (new method)

Limited supply voltage

One of the problems associated with current con­
trolled PM machines is that at the end of the speed
or torque range th e curre nt cont rollers will saturat e
due to th e limited supply voltage.

It has been suggest ed in lit erature (Hanselman ,
1994) that keeping the range of harmonies used in
th e stator cur rents low will resuit in iower consum p­
tion of th e supply voltage range. Our work shows
that selective addition of higher harmonies can be
used to obtain a lower overa ll RMS content . We con­
clude th at the best way to control the stator cur rents
depends on the operating spee d and to rque load on
th e motor:

• As long as the supply voltage is not a lim iti ng
factor , use (10) or (11) to compute the optimal
currents,

76234 5
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Quantity Fourier New
method method

il average [A] 0.6481 0.5820
il rms [A] 0.7232 0.6725

Table 1: Com parison of average and rms currents
for both methods

Clearly, our simple calculation generates bet ter
cur rents with respect to the loading of the semi con­
du ctors and to losses.

More fundamentally, we have shown here that th e
optimal value for the stator currents can be obtained
from 'local' data: for a certain rotor position only
the valu es of th e shape functions E i at this partic­
ular position are relevant to the computation of th e
st ator currents. Therefore, using data from all mea­
sured rotor positions for every sample of the opti­
mal stator current seems to be a waste of effort .
Inspeetion of th e waveforms in Fig. 3 shows that
the waveforms computed with the Fourier method
in this exam ple actually generate a negative torque
around th e zero crossing at. e = 1r . To obtain the
sa me net torque production, the other two stator
ph ases will need more current: this is the main rea­
son for th e diminished efficiency.

• If only one of the three current controllers sat­
urates , compute the ot her two currents, using
(5) and (6) , to generate zero torqu e rippl e,

• If two or more current cont rollers saturate,
ripple-free generation of the desired torque is
no longer possible.

lt can be concluded that if lowest torque ripple is at
a premium, it is worthwhile to design the mot or such
th at the voltage limit is reached at th e same speed
or torque for all stator positions. In this way the
torque rippie can be kept small up to th e maximum
design speed , and the magneti c circuit will be used
to th e fullest.

In practical applications, it will oft en be the case
that torque ripple and th e associated position error
will be less important at high speeds than around
standstill. One reason is that th e frequency of the
torque ripple will be mu ch higher , resulting in lower
position errors due to th e integrating properties of
the mechanicalload. Furthermore, high ripple fre­
quencies will ofte n lie outside the bandwidth of th e
controlled system.

Optimum power factor

We like to point out here that th e problem of find­
ing optimal stator currents for a BLDCM is strong­
ly related to determining cur rents which optimize
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the power factor in multiphase power grids (Fisch­
er, 1985a; Fischer, 1985b; Huisman and Haan , 1987).
In fact, viewing the BLDCM as a generator of (neg­
ative) electrical power makes th is relation quite ob­
VIOUS.

Now substit ute this value for i 2 in (17), and set the
derivative to i l to zero, to obtain the desired result
(10) .

Maple fil e for non-Wye con nected windings

by substitution in (7) we obtain:

Using (5) i 2 can be expressed as:

(20)

(19)

(21)

Pm :=omega*T;
Pe :=e1*i1+e2*i2+e3*i3;
Ploss:=Rs1*i1-2+Rs2*i2-2+Rs3*i3-2;
i3:=solve(Pm=Pe,i3) ;
dPloss2:=diff(Ploss,i2);
i2:=simplify(solve(dPloss2=O,i2)) ;
dPloss1:=diff(Ploss,i1);
i1 :=simplify(solve(dPloss1=O,i1));
i2:=simplify(i2);
i3 :=simplify(i3) ;

Substitution of th is value in (20), and computation
of the extreme for i i produ ces the desired resul t
(11).

Wye connected win d in gs

Using (6) i3 can be expressed as:

With today's availability of fast cur rent control at
substantial power levels, the to rque prod uction in
BLDCM's can be precisely set to any desired level.
In pa rticular, constant torque operation, irrespec­
tive of the actual rotor pos ition, is possible. In this
paper, a simple method has been presented which
permits to compute the optimal stator cur rents to
ach ieve this. The computation method is based on
calculus, and assumes that the waveforms of the
back-emf's are known.

The method applies both to Wye-connected and
independently excited motors. No assumptions are
made regarding the symmetry of the three back-ernf
waveforms or the stator resistances, and therefore
the method is especial!y suited for the computation
of optimal currents for smal! motors which are more
likely to showasymmetries due to production toler­
ances.

In an example, it is shown that the waveforms ob­
tained with the new method have better properties
with regard to power losses and semiconductor load­
ing than the waveforms obtained through a Fourier
series approach.

C on cl u sion s

Appendix

In this append ix we wil! comp ute th e optimal valu es
for the stator currents bo th for the non-Wye (8)
and Wye-connected (9) stator windings. For the
computation, the symbolic package Mapl e (Char et
al., 1991) has been used. T he relevant parts of th e
text files used in this package are shown after the
actual equations.

n on-Wye con nected windings

Using (5) i 3 can be expressed as:

Td - Eli l - E2i2
l3 = E

3
(16)

Maple file for Wye co n nected windings

Pm: =omega*T;
Pe :=e1*i1+e2*i2+e3*i3;
Ploss:=Rs1*i1-2+Rs2*i2-2+Rs3*i3 -2;
Sigmai:=i1+i2+i3;
i3:=solve(Sigmai=O,i3);
i2:=solve(Pm=Pe ,i2) ;
dPloss :=diff(Ploss,i1);
i1:=simplify(solve(dPloss=O,i1)) ;
i2:=simplify(i2);
i3:=simplify(i3);

by substitution in (7) we obtain:

.2 .2 (Td - Eli l - E2i2 )2
Pi;s s = Rll l + R 2l 2 + R 3 E

3

(17)
To obtain an extreme, we set the derivative of Pi;ss

to i 2 to zero, obtaining:
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Abstract. This paper consid ers th e servo problem of tracking a known reference t rajec­
tory in th e presence of (deterministic) disturban ces. Solving thi s problem by designing
a suitable feedforward signal is favourable, as this leaves th e closed loop dyn amics un­
altered. An algorithm is developed which not only solves this problem , bu t also yields
an opt imal solut ion under constraints on th e input and output signaIs. Pr ediction of
th e out put signal is used to calculate an opt imal feedforward signal th at minimizes th e
difference between this prediction and th e desired reference trajectory according to some
crit erion. A simulation example explains th e ability of the method , which easily trades-off
const raint handling against performance specifications.

Keywords. Trajeetory tracking; disturban ce rejection ; prediction ; optimal feedforward ;
constraint handling.

1 Introduetion

In this paper the classical servo problem is consid­
ered: tracking a known reference trajectory in the
presence of (deterministic) disturbances. It is weIl
recognized that the influence of deterministie dis­
turbances can only be eliminated effectively if the
cont roller encloses a model of these disturbances , as
stated by the interna/ model principle. During th e
past decades numerous techniques have been devel­
oped which ar e based upon this principle, e.g. th e
well-known servo compensator, developed by Davi­
son (1972) and formalized by Francis and Wonham
(1976). If an exact model of the reference- and/or
disturbanc e dynamics is included , th e servo com­
pensa tor provides both asymptotic tracking of the
reference signal and asymptotic rejection of th e dis­
turbance signa!. The disability of this method is
th e non-robustness of th e compensator in the face
of modeling errors. Besides, the order of th e com­
pensator increases rapidly with each mode of the in­
cluded model, which limits its practical pertinence.

In th e late seventies, Richalet et al. (1978) and
Cut ier and Ramaker (1980) simultaneously intro­
du ced th e concept of model based predictive control,
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developed in indus try, which turned out to be ex­
tremely powerful in a sense that tracking perfor­
mance was optimized in the presence of (determin­
istic) disturbances by means of easily tunable algo­
rithms. Moreover constraints on input and output
signals could easily be handled. Since then the num­
ber of applications and th e number of papers on this
subject have increased rapidly though th e basi c ele­
ments of each 'new' algorithm remained unaltered ,
see for example Clarke et al. (1985) , De Keyser and
Van Cauwenberghe (1985) and Richalet and Papon
(1985). The main inutility of this approach is its
computationally involveness, because at each sam­
pling instant a (constrained) opt imizat ion problem
has to be solved .

Halfway the eighties two related control strategies
were develop ed, known as learning and repet itive
control , which focussed on th e suppression of purely
periodic disturbances, by adding a filtered version
of th e servo error to th e control loop ; an intern al
model of th e periodic disturbance is used to proper­
ly design the learning/repetitive controllers, see e.g.
Arimoto et al. (1984), Kavli (1992), Moor e et al.
(1992) , Tomizuka (1987) and Chew and Tomizuka
(1990) . The main difference between these two tech-



2 Formulation of the Servo Problem

Assume that the true process output Yo is generated
by:

Assumption 2.3 A (d esired) rejerence trajeetory
Yr(t+k) , k= 1, .. . ,N , is available.

1 No te tha t n ot only p ulse response m o d eIs will do b u t a ny
model (like state space), as long as it can be used to compute
predictions

(1)

Yo(t ) = Po(q) u(t) + d(t),

t = -00, ... ,-1, 0, 1, .. . ,00,

2. IJ d( t) is a deterministie process, it is assumed
to be generated by a kn own autonomous system
d(t) = Cd n (t ), n (t + 1) = Ad n(t ), n(O) = no,
uiltere n(t) is a state-vecto r at time t wi th initial
state no ; A d and Cd are app ropriat e state -s paee
matrices, with ih e eigenvalues o] Ad on or out ­
si de th e un it circle in th e z -p lane.

1. IJd(t ) is a stoe hastie process, it is ass umed to be
generated by d(t ) = H (q)n (t ), uihere H(q) is a
known sta bie, LTI, monie transfer Jun ct ion and
n(t) is white noise wi th zero mean and fi nite
eovananee.

Assumption 2.4 Depending on th e eliara et er oJ
the disturbonee d(t), one o] the Jol/owing assump­
tions is made:

The remain der of this paper consists of a math­
ematical descri ption of the problem and a for mal
derivation of the forem entioned algorit hm. T he pro­
cedure is illustr ated wit h a simulation example. Fi­
nally some concl usions are drawn.

Assumption 2.2 A model o] the tru e process
Fo(q) = L~o po(k)q -k, uihere po(k), k = 0, . . . , M
are ih e pulse response eoeffieients o] th e model" , is
available.

where Po(q) is the t ransfer function from u to Yo
with q being the forward time shift operator, u(t) is
an input signal applied to th e process, and d(t) is an
(unknown) disturbance signal acting on th e pr ocess.
Furthermore th e following assumptions are made:

Assu mption 2.1 A set o] sampled measurem ents
{Ym(t - k), um(t - k)}, k = 0, . . . , M , is available.

The serve problem that is considered here is the
minimization of the difference between the refer­
ence t rajeetory Yr( t + k) and the output of the true
process Yo(t + k ) in the presence of the dist ur ban ce
d( t +k) over the interval {t+ k},k = 1, ... ,N, by

niques is that a learning cont ro ller is impleme nted
off-line by iteratively updating a feedforward sig­
nal over a finite time horizon (extern al model tech­
nique) while a repetitive controller is placed inside
the loop, hence constituting an extension of the con­
troller dynamics (internal model technique). Both
techniques provide asymptotic tracking and distur­
bance rejection . The most important limitation of
learning control is that it is restricted to a repeated
reference traj ectory requiring initial conditions to be
th e same during each cycle . lts main advantage is
th e idea of gen erating near to optimal feedfo rward
signaIs, which leave th e closed loop dynamics unal­
tered . The main shortcoming of a repetitive con­
troller equals that of a servo compensator, namely
th e non-robustness against errors in the modelling
of periodic disturbances.

From a com pletely different point of view, input
shaping tec hniques have been developed which de­
sign optimal poin t- to-point trajectories for aservo
mechanism , based on an accurate model of th is sys­
tem ; only th e steering of the servo mechanism from
one position to another is considered without tak­
ing exte rn a l disturbances acting on th e system in­
to account , see e.g. Singer and Seering (1989) and
Bhat and Miu (1990 ,1991) . The begin - and end­
position are assumed to be given in this case, while
the designer has th e freedom to choose th e inter­
medi a te t rajectory. In genera l this freedom is used
to su ppress residu al vibra tions , caused by excitat ion
of flexi ble system mod es. In la Bastide (1994) it is
shown that learning and repetitive control can be
regarded as a kind of iterative input shaping tech­
niques where th e reference signal is adj usted such
that th e output of the system equals the des ired
output asymptotically.

In this paper an algorit hm is deve loped which
combines several aspects of the previously men­
tioned methods. Ir an arbitrary reference trajec­
tory, a model of the system and a model of the
disturbance affecting the system are given , an opti­
mal feedforwar d signal is computed which mi nimizes
the differe nce between the given reference t rajectory
and a pred ict ion of the output of the sys te m, acco rd­
ing to some criterion . The pred iction is based on a
nominal model of the system and a model of the
disturbance. Ir th e disturbance is a stochastic pro­
cess, k-st ep-ahead prediction of the noise is used. Ir
on th e other hand th e disturbance is deterministic,
a Kalman filt er is used to reconstruct the distur­
bance. Mor eover , du e to its finite t ime nature, the
procedure is ab le to handle constraints on input and
output signals in a natural way, which cont rib utes
to its practical pertinence; actuator constraints and
performance asp ects can easily be specified in this
way.
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choosing a suitable input signal u(t + k). More for­
mally th e following obj ective function has to be min­
imiz ed :

N •

Jp = 11 Yr - Yo II~ =L I Yr (t + k) - Yo (t + k) lP,
k=!

(2)
where 11 . lip denotes th e signal p-norm. The feed­
forward signal that minimizes (2) is given by:

u/ / = min Jp, k = 1, .. . , N
u(t+ k )

subj ect to: (3)

over k st eps , th e filter H(q) needs to be split
up into a part Ek(q) that convolutes over th e
interval {t+l ,t+k} and apart Fk(q) that con­
volutes over the interval {-(X) , t}. The polyno­
mials Ek(q) and Fk(q) can be found by solving
th e following Diophantine equat ion:

C(q) = Ek(q)D(q) + q-k Fk(q).

Substituting this in d(t) = C( q)/ D(q)n(t)
glves:

d(t) = Ek(q)n(t) + q-k ;(~i n(t) ,

Au( ·) ~ b,

where A and b are respectively a matrix and a vector
specifying the constraints on u and Yo ; const raints
on u can be dir ectly specified , while contstraints on
Yo can ente r indirectly via equat ion (1) by choosing
A = ±Po. .

Note that in principle any norm can be used
in (2), but in most cases th e 2-norm is used which
measures th e energy of th e difference between th e
desired and the true output signal .

3 Derivation of the Predietive Feed­
forward Controller

Though equations (2) and (3) allow a clear forrnu­
lation of the problem, it can never be solved in this
way because the true output signal Yo is unknown
for future time instants. The best that can be done
is to make a prediction of the output over the time
int erval {t + k}, k = 1, . . . , N, using knowledge of
th e system and the disturbance signal. According
to (1) future values of Yo consist of 2 parts namely
a cont rolled response Yc(t + k) = Po(q)u(t + k) and
a free response y/(t + k) = d(t + k) . Aprediction
of th e cont rolled response is easily obtained by ap­
plying th e future input signal u (t o be computed)
to the model Po(q) of th e true process:

Yc(t+k) = Po(q)u(t+k) , k=I , .. . ,N, (4)

where Yc denot es a predi ction of Yc·
A predi cti on of th e free response is somewhat

more com plicated and depends on th e nature of th e
disturbance. As becomes clear above, two situations
can be dis tinguished:

1. d(t) is a st ochastic pro cess, generated by d(t) =
H(q)n(t) where n(t) is zero-mean white noise
with fini te covariance. A fairly general descrip­
ti on for H(q) is th e ARMA model H(q) =
C(q)/ D(q), with C(q) and D(q) polynornial­
s in q. In ord er to make a predi ction of d(t)
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or :

d(t + k) = Ek(q)n(t + k) + ~(~i d(t). (5)

Hence a k-step ahea d prediction of th e free re­
sponse is given by:

y/ (t + k) =d(t + kit) = ~(:} d(t),

k = 1, .. . ,N. (6)

Equation (6) can be computed if there is know­
ledge of d(t - k) , k = 0, . . . , M but in general
this will not be the case. However , we can make
an estimate of it by using th e measured data­
set:

d(t - k) = Ym(t - k) - Po(q)u(t - k) ,
k = 0, .. . , M . (7)

If there is no measurement noise and if the mod­
el Po(q) equals the true system Po, d(t - k) wil!
equal d(t-k). Else these corruptions should be
regarded as noise contributions, and the predi c­
tion will be affect ed.

2. d(t) is a det erministic pro cess, generated by th e
autonomous system d(t) = Cdn(t ), n(t + 1) =
Adn(t) , n(O) = no. Because of the det er­
ministic nature of th e noise, a Kalman filter
can be used to est imate th e state n(t - k) for
k = 0, ... , M from th e measured data-set :

n(t - k + 1) = Adn(t - k) + K[d(t - k) ­

Cdn(t - k)], k = 0, ... , M, (8)

where K is the Kalman ga in, and d(t - k ) IS

obtained from equa tion (7).

Now the est imate d st ate at time t(k = 0) is
used as initial condit ion for th e predi ction of the
state over th e future time interval {t + k} , k =
1, .. . , N :

n(t +k I t) = n(t +k) = A~n (t ) , k = 1, . .. ,N.



Yo (t + k) =Ye(t + k )+ Yj (t + k ), k = 1, . . . , N. (10)

T he pro blem defined by (2) and (3) can now be re­
cas ted into a solvab le one:

Fin ally , th e prediction of th e free response IS

obtained by:

( 14)

I. IJ Ye(t + k) = Ye(t + k) \:Ik = 1, . . . , N, and
Yj(t + k) = YJ(t + k) \:Ik = 1, ... , N , then:

Theorem 3.4 Given a process according to equa­
tion (1) and suppose the assumptions 2.1,.. .,2 .4 are
satisfied. A/so given a predietion o] the process out­
put according to equations (4),(6) , (9) and (l0) .
Consider the criteria Jp and lp given by reepectine­
/y equations (2) and (11). Now the Jol/owing ho/ds
tru e:

Remark 3 .2 Th e resu/t stated in proposition 3.1
cannot be ca/cu/ated a priori because the va/ue of
Yo is unknown. However, it can be used to check af­
ter imp/ementation o] the [eedjoruiard signa/ whether
the optimization based on the predietion was close to
the optimization oJ the 'real ' criterion. ft can a/so
be used io check convergence o] lp to Jp in case an
it erativ e procedure o] refining the f eedforward sig­
na/ is Jol/owed, where refining can be obtain ed e.g.
by increasing the numb er oJ measurement s used [or
predietion after each it eration.

The following lemma states under what condi tion
l pconverges to th e crite rion Jp:
Lemma 3.3 Given a process according to equation
(1) and a predietion oJ the process output according
to equation (10). Consider the cri teria Jp and J~

given by respective/y equati ons (2) and (11) . Then:

Proof: This follows immediately from prop ostion
3.1 by taking the limi ts of th e lower- and upper­
bound for II Yo - Yo lip--+ O. 0

This result is rather trivial , but it can be used to
specify convergence for a number of spec ific situ­
ations as consid ered in th is pap er. The followin g
th eorem formalizes this result :

(12)

Au(-) ::; b,

subject to :

ÛJJ = min lp, k = 1, . .. , N
u(t+k )

Add ing the prediction of the cont rolled response (4)
and th e predi cti on of th e free response (6) or (9)
gives a prediction of Yo:

Yj (t + k ) = d(t + kit ) = Cdn(t + kit)

CdA~7Î( t ), k = 1, ... , N (9)

N

lp = II Yr - Yo I I ~ =L IYr(t + k) - Yo (t + k) lP.
k =1

(11)
T he feedforward signal th at m inimizes (11) is then
given by :

Tw o impor tant poin ts should be noted here.
First , th e computed feedforward signal is optimal
for th e ' real' system if th e predicted output of th e
syst em equals th e real system output. This st ern­
s from th e fact that th e optimization is performed
for th e prediction and th e outcome is implemented
on th e real process. However, the question remains
how good or how bad the calculated feedforward is
in case th e pr edicted output does not match the real
system output, or under what condtions the predict­
ed output will equal th e realoutput. The following
proposition , bas ed on th e triangular inequality for
signal norms , formalizes th e first question :

where: I1 Yo - Y lip denot es the p-n orm oJ the predie­
tion error.

Proposition 3.1 Given a process according to e­
quation (1) and aprediction oJ the process output
according to equatio n (10). Consider the criteria Jp

and lp given by respeetive/y equations (2) and (11) .
Then a /ower- and an upper bound [or Jp are given
by:

11. IJ:3 k E (1, .. . ,N ], s.t . Ye (t + k) t- Ye(t + k)
and YJ(t + k) = Yj(t + k) \:Ik = 1, . .. , N, then:

(15)

(16)lim lp = Jp,
lI~ o ullp- O

with .6.0 = Po - Po.

lll. IJ Ye(t + k) = Ye(t + k) \:Ik = 1, . . . , N , and :3
kE[I , . . . , N] s.t. YJ(t + k ) t- Yj (t + k ), then:

a. ij d(t) = H(q)n(t) according to assumption
2.4.1, then:

(13)

((J~)*- II Yo - Yo lipr::; i, ::;

( (l p) *+ 11 Yo - YO li p)p,

Proof: See ap pendix o
(17)
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lim lp = Jp. (19)
lI~ oullp .IIE.nllp '~NO

lim lp = i; (20)
lI~oullp .II (Ad-KCd )'ii ollp'~NO

b. if d(t ) = Gdn(t ), n(t + 1) = Adn(t) , n(O) =
na, according to assumption 2.4.2, and n(t)
is reconstructed using the J(alman filt er given
in equatio n (8), then:

2Note that in model-based-predictive con t ro l a s tochas­
tic setting will cause less problems because in that case
each sampling instant the optimization is p erforrned, and at
each sampling instant the prediction is corrected with new
measurements.

4 Simulation Example

In th is secti on a simulation example is given based
on the th eory of th e foregoing sect ions. From re­
marks 3.5 and 3.6 it is clear that a t this mom ent
app!ica tion of the developed algorithm in case of un­
dermodeling and/or stochastic disturbances is lim­
ited. Hence to show the applicab i!ity of the method
we consider in this sim ula tion exa m ple case iii .b.
of th eorem 3.4 . T he true system is considered to
be a SISO double int egrator : Po(s) = l/s2

. Af­
te r discretizing thi s sys tem the 'bang-bang' ty pe
of input signal shown in figur e 1 is applied to the
undisturbed syste rn resu1tin g in a 3rd order sm ooth
polyn omial , which wil! be taken as the desired ref­
erence trajectory Yr(t + k), k = 1, . . . , 61. The con­
straints on th e actuator output u are assumed to be

convenient to use conditional expectations inst ead
of norms. In that case the conditio ns in parts iii. a.
and iV.a. of theorem 3.4 can also be loosened. How­
ever, such a stochastic setting seems to be less useju l
in praeti ce, because k-step ahead predicti on [or large
k is rather inaccurate as a stochastic process inno­
vates each tim e sample. This lim its the applicatio n
o] the developed algorithm in such a stochastic set­
ting 2 .

Remark 3.7 Th e condition stated in parts iii. band
ivob of th eerem 3.4 depends on the choice of ihe
J(alman gain K, 1f K is chosen such that ihe eigen­
values of Ad - K Cd are inside the unit circle (i .e.
Ad - f<Gd is siable}, e.g. by solving K from an al­
gebraic Riccati equation, then convergence will take
place, and the speed of convergence depends on the
position o] the eigenvalues inside the unit circle.

The second comment on th e developed algori thm
is that th e optimization of th e feedforward signa l
should be performed each time either th e reference
trajectory or th e disturbance signal changes. For
examp1e as mentioned in remark 3.5 most learning
contro1 schemes assume a fixed reference trajectory
and a fixed disturbance signa! during each cycle. In
that case under certain convergence condt ions, op­
timality of th e feedforward signal is reached asymp­
totical!y (i.e. with th e nu mb er of cycles tending to
infinity) , whi!e th e newly developed algorithm needs
only one cycle to reach th e optima! feedforward sig­
na!. Note again that in case n(t) is a stochastic pro­
cess the disturbance signal changes every sampling
instant, which means that th e optimization has to
be performed each cycle.

oProof: See appendix

Remark 3.6 In assumption 2.4.1 it is assum ed
that n(t) has zero mean, which is more realistic than
requiring the norm of n to tend to zero which means
that n should tend to zero. Hence in the stochas­
tic setting of assumption 2.4 .1, it seems to be more

b. if d(t) = Cdn(t), n(t + 1) = Adn(t), n(O) =
na, according to assumption 2.4.2, and n(t)
is reconstrucied using ih e J(alman filt er given
in equation (8) , th en:

R emark 3.5 Th e conditions stated in part ii. and
ivo of theorem 3. 4 are rather stringent and not very
usejul in practice. However, there are situation­
s where these conditions can be loosened. For ex­
ampl e in learning conirol, where a rejerence irajee­
tory is repeated a numb er of tim es, one of the ba­
sic assumptions is that the initial conditions are the
same at the start of each new cycle. This means that
the contribution of the und ermod eling (i .e. the mis­
mat ch between the model Po and the syst em Po) to
the servo- error has to be the same each new cycle.
This in fa et means that , consi dered over a number
oJ cycles, the contribution of the modeling error be­
comes periodic with period-t im e equal to the period­
tim e of the cycle. In that case this part of the error
due to undermodeling Julfills assumption 2.4.2 which
means that it can be regarded as a part of the [ree­
response, ins tead of a deterioration of the controlled
respons e. Hence the proposed procedure should fol­
low an it erati ve scheme of updating the prediction
over a numb er of cycles, and hence impro ving upon
the computed feedforward signa/.

with na = n(t) = n(t) - n(t) , (k = 0).

IV. If3 k E [1, .. .,N] s.t. fMt+k):f yc(t+k) and
"3 IE [1, . . . , N) s.t . [h(t + I) =I- Yf(t + I) , then:

a. if d(t) = H(q)n(t) according to assumption
2.4. 1, then:
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Fig. 1: Applied input signal u(t + k) Fig. 3: Spectrum of the disturbance signal

a limitation of its amplit ude of ± 300 and let's spec­
ify that the system output may deviate only ±le-3

in amplitude over the las t 10 samples of the refer­
ence trajectory, i.e. Yr(t + k) - le-3 :s Yo(t + k ):S
Yr(t +k)+le-3

, k=52 , . . . ,61. Moreovertheout­
put of th e system is corrupted wit h a mixed de­
terministic/stochastic disturbance shown in figure
2. The det erministic part of th e disturbance con-

2e- 5 •

In order to simu late a real-time application , th e
disturbance signal is generated over a number I of
cycles, I = 1, . . . , 10) , and the optimization of th e
feedforward signal is perfo rmed a number of times,
each time taking a new disturbance realization into
account, and also trying to improve the prediction
of th e disturbance by taking form er disturbance re­
alizations into account , compare remark 3.5.

According to sect ion 2 th e following assumptions
are made:

0.0 15r--~-~--~-~-~-~---'

-<l.01

• In the first iteration the set of measurem ents
are taken to be {Ym(t - k) ,u(t - k)}, k
0, ,60 to be {Yo(t - k), u(t - k)}, k =
0, , 60.

• As mentioned above, a model of th e true system
is taken to be the system its elf, i.e. Po(q) =
Po(q).

• As stated above, th e desired reference trajecto­
ry is taken to be th e one shown in figure 2.

• According to assumption 2.4 .2, the disturbance
is assumed to be generated by the following
(cont inuo us) autonomous system:

Fig . 2: Disturbance signa l d(t + k)

sists of two sinusoids with frequencies 17 and 40 Hz.
respect ively, and a steady state error. The stochas­
tic part constitutes normally distributed white noise
with zero mean and covariance (T~ = Ie - 5. A spec­
t rum of the composite dist urbance is shown in figure
3; indeed the th ree determinist ic peaks can clearly
be distinguished from the random pa rt . The level of
th e spect rum of the random part is approximately

~ 00
0

- ai 0 0 0 0

n
00 [;] 0 n(t)

o 0 -a~ 0 0

o 0 o 0 [Q]

d(t) = [ 1 0 1 0 1 ] n(t),

where: al and a 2 constitute the frequencies
271" 17 and 271"40 respectively. Hence 2 states for
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each sinusoid and 1 state for th e st eady state
error'' ar e needed to model th e disturbance.

·2

-3

After discretization , this dis turbance model is used
to compute a Kalman filter by solving an algebraic
Riccati equat ion. In turn this Kalman filter is used
to reconstruct th e disturbance state n(t - k), k =
0, ... , 60 from th e set of measurements. Thereafter,
the state n at time t is used to predict the values
of d(t + k), k = 1, . .. ,61. Using this prediction,
th e reference trajectory Yr (t + k), k = 1, . . . , 61 and
th e model Po(q) a feedforward signal is computed
according to formulas (11) and (12) by solving:

1 f)

61

Ûjj = min L I Yr(t + k) - iJo(t + k) 1
2

, (21)
u(t+k) k=1

subject to :
A u(-) ::; b

Fig. 5: Simulated difference between Yr (t + k) and
iJo(t + k)

Fig. 4: Com pute d optimal feedforward signal vu :
l st it eration

with A and b a matrix and a vector specifying the
appropriate constraints on u(t+k) and Yo(t+k) , k =
1, . .. , 61. This problem can be solved numerically
using quadratic programming techniques. Ir a solu­
t ion exist s it is always optimal due to th e convexity
of the problem . Figure 4 shows this computed op-

with the computed feedforward signal and th e pre­
dicted disturbance signa!. Wee see that this outpu t
perfectly matches its specifications.The const raints
on the last 10 samples of the reference trajectory ar e
perfectly fulfilled .

However , in practice th e predicted output will
not exactly match th e true output. This is sim­
ulated by also showing th e difference between th e
reference signal and th e true output induced by th e
feedforward signal and th e iru e disturbance sign al
including th e stochastic part and th e predi ction er­
ror . This difference is shown in figure 6. Though

10605040302010

v V
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A
·200

200
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· 100
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t imal feedforward signa!. It is seen that th e input
signal bumps against its constraints several times.
A spectrum of this signal also shows emphasis on
th e frequencies of th e disturbance signal (not shown
here) . Figure 5 shows the difference between the
reference trajectory Yr and th e output iJo , simulated

·'0

Fig. 6: True difference between Yr (t +k) and Yo(t +
k)

3Not ice that this state is precisely the model of an inte­
grator which agrees with the weil known fact that a con t roller
shou ld inhibit an integrator in order to cancel steady state
disturbances

this difference is not as small as the simulated differ­
ence , the influence of the deterministic components
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has tremend ously decreased (about 100 times small­
er) . This becom es more clear from figure 7 where

3 .5

2.5

1.5

90 100

Fig. 7: Sp ectrum of th e true difference between
Yr(t + k ) and Yo(t + k) ; lst it eration

th e spect ru m of th e true difference between Yr and
Yo is shown. It is seen that after only one iteration ,
th e residual disturbance has almost reduced within
th e level of th e stochastic part of th e original dis­
turbance.

This succes is only due to th e fact that the pre­
diction of the deterministic part of the disturbance
matches the true deterministic disturbance, as was
shown in section 3. Figure 8 shows the true distur-

0.Q15r--~--~--~--~--~---'

Fig . 8: Real disturban ce(-) , det erministic part(- · ·)
and predi cted one(- -); l st iteration

ban ce, it s deterministi c component and th e predie­
t ion of th e deterministic part . It is seen that th e
prediction is a rath er good description of th e true
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disturbance, despite th e influence of th e sto chas ti c
part. However , by using more iterations , th e predic­
t ion might be bet te r as the est imation has not con­
verged comp lete ly yet. After 2 itera tions the predic­
t ion almos t equals the t rue deterministi c par t of the
disturban ce (not shown) . It is seen that the est irna­
t ion has converged within very acceptable bounds .
This is em phas ized by figure 9 where th e spectrum of

1.4

1.2

Fig . 9: Spectrum of th e true difference between
Yr(t + k) and Yo(t + k) ; 2nd iteration

th e true difference between th e reference trajectory
and th e true output signal is shown. The determin­
istic components have vanished almost complet ely.
Further iterations give only marginal improvement
upon this result .

Conclusions

In th is paper th e classi cal servo problem is con­
sidered , namely th e tracking of a known reference
trajectory in th e presence of deterministic distur­
ban ces. It might be favourable to solve thi s pro b­
lem by designing a suitable feedforward signal th at
leaves the closed loop system dynamics un altered.
Given this problem an algorithm has been devel­
oped which not only solves the problem but also op­
ti mizes the problem under const ra ints of both input
and output signa is. Prediction of the deterministi c
components of the disturban ce is used to design a
feedforwar d signa l that min imizes the difference be­
tween a desired reference signa l and a predi cti on of
the system output according to some crite rion. A
simula tion example showed the action of th e pro ce­
dure in case of deterministic disturbances and with­
out taking und ermodelling into account .

Compared with th e classi cal 'servo-compensator '
and th e ' repet it ive cont roller' in case periodic dis-



turbances ar e considered , th e newly developed al­
gorit hm differs in implem entation asp ects. Where­
as th e former two techniques exte nd th e closed loop
dynamics, th e latter one yields only th e implem enta­
t ion of a feedforward signa/ . Com pared with learn­
ing and repetitive control techniques , th e newly pro­
posed technique is able to handle not only periodic
disturbances (with period-time equal to th e cycle
time) , but also a general class of disturbances ac­
cording to assumption 2.4, though in case ofstochas­
tic disturbances its application is limited as th e pre­
diction of stochastic disturbances over large inter­
vals is not very good in genera!. Moreover an opti­
mal feedforward signal is computed at on ce, whil e
optimality in case of learning con trol is obtained
asymptotical!y. Like model-based-predictive control
techniques , the proposed algorithm can easily han­
dle const raints on input- and output signais. Thus
it can be an easy tooi for trading-off constraints
and performance specifications , always computing
an optimal solu"tÏon. Whether th e optimal solution
based on a pr ediction of th e system output is an
opt im al solution in practice, heavily depends on th e
quality of the pr ediction . If th e prediction matches
th e true output signal, th e calculated optimal solu­
tion is also optimal for th e true output signa!. If
th e prediction do es not complet ely match th e true
signal, stil! an exte nsive reduction of the determin­
isti c part of th e disturbance signal can be obtained .
Formal results on th e influ ence of the pr ediction er­
ror on the true optimization are derived , and also
condit ions under which th e criterion based on pr e­
dictions converges to the criterion based on the true
signals are stated. It was also shown that in case of
undermodelJing the method has limited valu e. Only
in situations where undermodelling can be predict­
ed weil th e m ethod can be su ccesfully applied; this
is e.g . the case under th e assumptions stated in
learning control techniques.

Appendix

Proof of proposition 3.1

Co nside r th e crite rion lp given by equation (11):

Now raising both sid es to th e power lip and using
the triangular inequality gives:

(lp) {; :::; II Yr - Yo lip + 11 Yo - Yo lip

= (Jp ) ~ + I1 Yo - Yo IIp .

Rearranging this equat ion and raising both sides to
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th e power p gives th e lowerbound for Jp :

The upperbound on l p can be obtained likewise:

lp II u- - Yo 11: = II Yr - Yo + Yo - Yo 11:

< (11 Yr - Yo lip + Ilyo - Yo lipr
( (lp) {; + Ilyo - Yo lip) p

Using the fact that Ilyo - Yo lip = 11 Yo - YO lip com­
pletes th e proof of th e resuJt stated in equ ation (13) .

Proof of theorem 3.4

This part is rather trivial and can be ob­
tained by substituting equation (10) into equa­
tion (11):

lp = 11 Yr - Yo 11: = I1 Yr -Ye -YJ 11:·

Now using the fact that Ye(t + k) = Ye(t + k)
and YJ(t + k) = YJ(t + k) "Ik E [1, ... , N] yields
the result stated in equat ion (15):

11 Yr - Ye - YJ 11: = I1 v- - Yo 11: = lp.

ZZ'/Ye # Ye, YJ =YJ =} limll~ollp_olp = JpI
Substituting equation (10) in th e expression for
the prediction error gives:

11 Yo - Yo lip = II Ye + YJ -Ye -YJ lip

iÎ!=Y/ I -= IYe-Yellp'

Substituting equat ion (4) and using th e fact
that Po and Po ar e linear gives:

11 Yo -Yo lip = II Pou - Pou lip

= 1I (Po - Po)u lip = 11 ~ou lip'

Now using lemma 3.3 complet es th e proof of th e
resuJt stated in equat ion (16):

lim i, = lim l p= l p.
IIYo-!Îollp-o lI~ollp-o

Ye = Ye, YJ # YJ =} a.lim k=l ..N lp = lp
IIEknllp - 0

lZl. b.limIlCAd _K Cd)krioll/ ':.::';No lp = Jp



a. Substituting equation (10) in the expression
for the prediction error and using the fact
that iJc = Yc, gives:

II Yo - iJo lip = II Yc +Yj - iJc - iJj lip
Yc~y c 11 Yj - iJj lip' (22)

Substituting equat ion (6) in equation (22)
gives:

11 Yo - iJo II k=J=.N II d - Fk do 11
p C P

k=J= .N II d - d + e.« lip k=J= .N II Ek n lip,

with: do = d(t) (k = 0). Again using lemma
3.3 gives th e result stated in equat ion (17) :

l!m l p= lim lp = Jp.
lIyo-yoll p-O IIEknll/=~· No

b. From equa t ion (9) it follows that:

Substituting this expression in equation (22)
and denoting n(t + k) = n(t + k) - iz(t + k),
gives:

11 Yo - iJo lip = II Cdn lip '
Using equation (8) it follows that:

11 Yo - iJo lip k=J= .N II Cd(A d - KCd)k no lip

where na = n(t) (k = 0). Finally using
lemma 3.3 the desired resu lt of equation (18)
is obtained:

iJc :f. Yc, iJj :f. Yj :::}

a.limll~ ollp ,IIEknll/~ No lp = i,

w. b.lim k-l N lp = Jp
lI~ ollpll (Ad-KCd )knolip ~ 0

a., b. This proof can easily be constructed by
combining the proofs of part ii. and part iii ..
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