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Editorial

This is the seventh volume in the series Selected
Topics in Identification, Modelling, and Conirol re-
porting on current, research projects in the Mechani-
cal Engineering Systems and Control Group at Delft
University of Technology, Delft, The Netherlands.
This volume contains 13 papers, of which 6 address
engineering modelling and control problems and the
other 7 consider methods and techniques for control
design and system identification. This reflects the
general pattern of activity in our group, where the
research is both addressing theoretical issues in con-
trol theory and system identification, as well as con-
trol engineering issues in the fields of process control
and motion servo systems.

An industrial glass fube manufacuring process is
considered in the paper by Richard Hakvoort
and Dick de Roover, where issues of system
identification-based model uncertainty are studied
in their relevance to robust control. A full scale
wind turbine power generating system is considered
by Gregor van Baars, where the validation of dy-
namic system models on the basis of closed-loop
system identification experiments is discussed. A
large pilot-scale industrial crystallizer is considered
in the paper by Rob Eek, Jaap Both and Paul Van
den Hof. The research reported here is part of a col-
laborative project, jointly with the Particle Technol-
ogy, Process Equipment, and Crystallization groups
at Delft University, and co-sponsored by European
and US industrial process industries. Here, system
identification experiments are used not only to ab-
tain dynamic models for control purposes, but the
experimental evidence also reveals important infor-
mation on the actual physical mechanisms taking
place in a continuous crystallizer.

The paper by Hans Heinize and Ton Van der Wei-
den considers the feedback design of impedance con-
trol for a hydraulically actuated robot. The project
is part of a collaborative effort with industry to de-
velop a brick-laying robol. The experimental work
reported has been performed on a large scale proto-
type 3-DOF SCARA robot available in our laboratoe-
ry. The paper by Gert van Schothorst, Piel Teerhuis
and Ton van der Weiden considers a hydraulic servo
system which is designed as an actuation mechanis-
m for the SIMONA Flight Simulator to be locat-
ed at the Simona Research Center operated by the
Department of Aerospace Engineering at Delft U-
niversity. This simulator is a large 6-DOF Stewart
platform, now under construction and planned to be
available by the end of 1995. The re-

vi

search project is a collaborative effort between three
university research groups of Delft University, indus-
try and the national aerospace research laboratory
NLR. Finally, the paper by Henk Huisman discuss-
es a new approach to torque ripple minimization
in brushless DC motors. In precision drive systems
such as video scanners, it is of utmost importance to
have mass produced, cheap motors displaying high
servo control performance.

Robust control issues are discussed in several paper-
s. Some preliminary results on an uncompromised
Ha/Hoo optimal control problem are given in the
paper by Maarten Steinbuch and Okko Bosgra. As
a contribution to the recent interest in LMI-based
robust control problem formulations, the paper by
Carsten Scherer has results on the solvability of
Lyapunov inequalities. The issue of model reduc-
tion for control design is considered in the paper
by Pepijn Wortelboer and Okko Bosgra, where fre-
quency weighted versions of the H, optimal reduc-
tion problem are studied. Some unifications of ro-
bust stability theory for fractional uncertainty mod-
els are presented in the paper by Raymond de Calla-
fon, Paul Van den Hof and Peter Bongers. Finally,
in the paper by Dick de Roover the servomechanis-
m problem with finite horizon is considered, using
an approach in which ideas of feedforward three-
degrees-of-freedom control, predictive control, the
internal model principle, and repetitive control, are
combined.

In the present issue there finally are two contribu-
tions on the methodology of system identification.
The paper by Ramond de Callafon and Paul Van
den Hof discusses a feedback relevant identification
approach using coprime fractional model represen-
tations. The assessment of frequency domain un-
certainty bounds from system identification experi-
ments is discussed in the paper by Richard Hakvoort
and Paul Van den Hof.

We wish to acknowledge the important contribu-
tions to the work in the group made by colleagues
from industry. In this issue we have contributions
by Maarten Steinbuch and Pepijn Wortelboer from
Philips Research, and by Peter Bongers from U-
nilever Research.

If you wish to react to any of the papers in this vol-
ume, please do not hesitate to contact us.

Okko Bosgra
Paul Van den Hof
Editors

bosgra@tudw03.tudelft.nl
vdhof@tudw03.tudelft.nl
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Robust performance Hy/H,, optimal control}

Maarten Steinbuch ! and Okko H. Bosgra

§ Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
¥ Mechanical Engineering Systems and Control Group,
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Abstract. This paper considers the robust performance mixed Hy/H, optimal control
problem formulation. An explicit parametrization of H., norm bounded, causal, real-
rational uncertainties is used, based on LMIs. This leads to a constrained Hs optimal
control problem. In case the uncertainty can be considered to lie on its bound, a new
parametrization for lossless bounded real functions can be used. Using this parametriza-
tion, it is possible to formulate an unconstrained optimization problem for the solution of
the robust performance mixed Hs/Hs optimal control problem. The theory is applied
to a Compact Disc robust control problem.

Keywords. Ha/H, control; optimal control; robust control; compact disc player; uncer-
tainty; optimization.

1 Introduction performance and robustness objectives in both the
Hy and H,, framework has recently been stated by

In the sixties the optimal LQG control approach several authors, see Bernstein and Haddad (1989),

provided a systematic solution to the control de- Doyle ef al. (1989), Mustafa (1989), Rotea and
sign problem of multivariable systems, see for in- Khargonekar (1991), Scherer (1995), Steinbuch and
sta.nce. Anderson and Moo_re (1971), Kwakernaak Bosgra (1991a, 1991b), Stoorvogel (1993), Paganini
and Sivan (1972) and Levine and Athans (1970). ef al. (1994), Yeh et al. (1992), Zhou et al. (1994).

Despite of its relevance in the formulation of perfor-
mance requirements, LQ optimal control was shown
to possess no guaranteed robustness margins if ap-
plied in conjunction with an observer or Kalman
filter, see Doyle and Stein (1981). The robustness
issue has attracted a lot of attention during the last
decade, resulting in the development of H., con-
trol theory, see for instance Francis (1987), Doyle

In general one can define the problem as follows.
Suppose the plant is given by its transfer function
G( s) with three sets of inputs and outputs.

and Glover (1988), Maciejowski (1989) and Doyle wa Za
et al. (1989). Robust control based on the Hu T | 56 adis Bhtine sk
norm of a weighted closed-loop transfer function is T T G(s) T S TR - J
capable of handling the design problem for systems u y

with uncertainties. However, the use of one single
number, albeit frequency dependent, to address ro-
bustness and performance for multivariable systems F(s)
1s rather restrictive. The design problem of stating

! This paper is presented at the 33rd IEEE Conference on
Decision and Control, Orlando, FL, USA, December 14-186,
1994. Copyright of this paper remains with IEEE.

Fig. 1: Standard Hy/H., control problem




The manipulated variables are u, the measured
outputs are y. The signal sets (wy,z) are re-
lated to Hs or LQ type of performance criteria,
whereas (wg, z9) are related to H., norm require-
ments. Doyle and Zhou (1989) and Zhou et al.
(1994) posed the problem zy = 29, wy # ws and gave
a very nice interpretation for an induced semi-norm
on the transfer function. Their work showed that
the Hy/Hq, control problem definition can be stated
precisely in terms of signal sets. Bernstein and Had-
dad (1989) have considered the dual mixed Hs/H
problem for the situation where wy = ws, 21 # 2z3.
They used a performance criterion relating w(=
w; = wy) with z;, under the constraint of an H_,
norm bound on the transfer function from w to zs.
They derived necessary conditions for reduced order
controllers and necessary and sufficient conditions
for the full order case. Mustafa (1989) showed that
if wy = ws and z; = z» the auxiliary performance
index of Bernstein and Haddad can be interpreted
nicely as an entropy expression, yielding the central
H s, controller for the full order case.

In all these cases, the problem solved does not
address the true robust performance control prob-
lem relevant in practical applications: only a very
restricted class of problems do have the same inputs
(or dually outputs) for the Hs performance mea-
sures as for the H,, norm-bounded uncertainties.

The mixed Hs/Ho, problem with minimizing the
transfer function in the Hs sense from w; to zi,
while constraining the H., norm of the transfer
function from wsy to zy to some bound is unsolved.
However, this problem does not address robust Hs
performance.

In contrast to the aforementioned results, in this
paper a robust performance mixed Hs/Hq, optimal
control problem (or ‘robust H, problem’ as called
by Stoorvogel (1993) and Paganini el al. (1994)) is
considered including a parametrization of the worst
case H., norm bounded uncertainty relating the sig-
nals wy and zp (Steinbuch and Bosgra (1991b)), see
Fig. 2.

In this problem, the worst-case norm-bounded un-
certainty represents unmodeled dynamics of the sys-
tem for which we are able to formulate both their
magnitude bound and their structural interconnec-
tion with the system dynamies.

The robust performance mixed Hs/H control
problem is to minimize the H; norm of the trans-
fer function from w; to z; using the feedback K(s),
while maximizing the H, norm of the same transfer
function over the allowable uncertainties:

sup min || Ty —z, (K, A) ||, (1)
1Al < Kis)

In the literature there exist various formulations

for performance optimization problems involving
worst-case disturbances, resulting in a minimax
formulation, e.g. Mills and Bryson (1994) and
Sweriduk and Calise (1993).

From an application point of view this robust per-
formanee mixed Hs/H control problem addresses
many design problems in which H, performance is
the optimization criterion, subject to (un)structured
Ho, norm-bounded uncertainties. This problem is
hard to solve, but because of the possible impli-
cations for use in practice, it seems worthwhile to
further investigate the problem. Note also the in-
teresting work of Paganini et al. (1994) in which
the behavioral framework is used to asymptotically
calculate the worst-case uncertainty for the robust
performance Hy/H ., control problem. In this paper
we will explore the validity and usefulness of this
mixed H,/H,., problem formulation using numeri-
cal tools. In earlier work we considered the caleu-
lation of the worst-case uncertainty, see Steinbuch
and Bosgra (1994). In this paper we will extend
the calculation of the worst case uncertainty and in-
vestigate the related control design. A numerical
approach will be presented and applied to a mixed
Hy/Ho, Compact Disc control problem.

- Als)
wWa Z9
Mo S s R G(s) #1
u i y
. K(s)

Fig. 2: Robust performance Hs/H, control prob-
lem.

2 Preliminaries

Given a stable strictly proper transfer function ma-
trix G(s) with state space realization C(sI—A)~ !B,
then the following performance measures can be de-
fined.




Definition 2.1 The Hs norm of a transfer function
Gi(s) s defined as:

ncnf=@§jjfﬂcﬂ—wxanmjugw)

with tr(.) the trace matriz operator.

The 2-norm can be computed with Lyapunov equa-
tions:

| G ||, = tr(SCTC) = tr(PBBT) (3)

where S is the controllability Gramian and P is the

observability Gramian solving:

ATP+PA+CTC=0
(4)

Definition 2.2 The Ho, norm of a transfer func-
tion G(s) 1s defined as:

AS+SAT 4+ BBT =0

1G [l = maxa (G(jw)) (5)
u.rER
with & the mazimum singular value.

3 Parametrization of H_
bounded transfer functions

norm

In Steinbuch and Bosgra (1991b) a parametrization
was introduced for stable strictly proper H., norm-
bounded uncertainty models. In this paper we will
extend this parametrization to proper H., norm-
bounded uncertainties using Linear Matrix Inequal-
ities (LMIs), see Section 3.1. Based on numerical ex-
periences with this parametrization it seems worth-
while to exploit the boundary conditions, i.e. when
the worst-case perturbation is lossless bounded real,
see Section 3.2.

3.1 Imequality formulation

Theorem 3.1 Let (F,G,H,J) be an asymptot:-
cally stable minimal realization of the transfer func-
tion A(s) = H(sI — F)~'G+J. Then the following
statements are equivalent.

L. Al <1 (6)
2. 3xX>0 such that (7)
PEX L XP XGoHT
GTX -I J¥ | <o (8)
H J =1
3. X >0 such that (9)

T-
() FTX+ XF+ [ X6 HT | g~} [G & ] <0

H
(10)
(i1) T >0 (11)
with %
il [_{} —f ] (12)

Proof: Follows directly from the Bounded Real
Lemma as formulated in Petersen et al. (1991). O

In the sequel we will denote the set of all transfer
functions A(s) with || A ||, <1 as D.

This result directly leads to the following
parametrization which characterizes all real ratio-
nal causal stable transfer functions A(s) of order n
having || A ||, < L

1. Choose J such that

J >0 (13)

2. Let G and H be matrices of appropriate di-
mensions containing free parameters, and let F' =
Fy + Fi with F, = F;r and Fj = —FE‘, such that

F, <—5[G HE ) g3 & (14)
8 2 H

and
. 0 —a; FO L s l
Fk_dmg[u.; 0 ], ?.—1,,&,...,2!;
(15)

for n even, and

. 0 —a;
Fpl | g [a.- 0 ] L SO R
0 0 4
(16)
for n uneven.

These equations follow from the theorem above by
selecting a coordinate frame such that X = I and
by utilizing an additional orthogonal transformation
that brings Fj into modal from.

3.2 Lossless bounded real formulation

When the inequality constraints stated in the previ-
ous section are all active then the worst-case pertur-
bation is lossless bounded real (all-pass property).
This means that the perturbation is on its bound
at all frequencies and for all its singular values. In
order to investigate the mixed Hq/H, problem also
for this case, we develop a suitable parametrization.
Let us first consider lossless positive real and lossless
bounded real transfer functions, see also Anderson
and Vongpanitlerd (1973).




Definition 3.2 The real rational function I'(s), s €
@, s lossless positive real if T'(s) + I'Ti—s) =0,

Definition 3.3 The real rational function A(s),
s € ©, s lossless bounded real if AT(—s)A(s) = 1.
The set of all such A(s) is denoted D,.

Lemma 3.4 Let A(s) = (I-T(s))(1+T(s))"!, then
Als) 1s lossless bounded real iff I'(s) is lossless posi-
tive real.

Proof: AT(—s)A(s) =

I+ T (=)~ 1A =TT (—))(I = T + ()~ =
(I+IT(—)" (I + IT(—s)I(@)I + I'())~! = (I+
I'7(—s) "1 (I4+IT(—))(I+ () (A+T(s))"! =1, and
conversely. ]

Lemma 3.5 Let T'(s) = H(sl = F)~'G + J, with
F4+FT =0, G = HT and J + JT = 0, with
F € R and J € R™*™, and with H and G
of compatible dimensions. Then the real matrices
F, H and J parametrizes all lossless positive real
transfer functions I' with state dimension n.

Proof: follows by direct application of Defini-
tion 3.2. m}

Lemma 3.6 Let A(s) = (I —I(s))(1+ I'(s))~! with
I'(s) = H(sl — F)"'G + J, with F, H and J as
defined in the previous lemma. Then a state space
realization for A(s) = H(sl — F)~'G + J is given
by:

=
Il

P—HY(M+J) '8

G = —V2ATA+J) 2 (17)
V2(14 J)'H

= (I-J)I+J)!

S
-~ =
I8 sl il

And this 1s a parametrization for all stable lossless
bounded real A(s).

Proof: follows by some matrix manipulations and
is omitted here, O

Since matrices F and J are defined as skew-
symmetfric (see Lemma 3.5), we further reduce the
number of free variables and end this section with
the main result.

Theorem 3.7 Define the matrices 8 and ¢ as up-
per triangular real malrices, with zero on their di-
agonal, and with appropriate dimensions, such that
F=0-0" and J = ¢ — ¢*, then the triple (0,
¢, H) parametrizes all stable lossless bounded real
transfer functions A(s) = H(sl — F)7'G + J, with
H,F,G and J defined by (17).

4 Worst case perturbations

Consider Fig. 3. The noise disturbances w; have
unit noise intensity, and the uncertainty A(s) rep-
resents unstructured H., norm bounded perturba-
tions of the nominal closed-loop system (M(s) in-
cludes G(s) and K(s)).

A(s)

wa <2

i

M(s) -

Fig. 3: H, worst case uncertainty.

In contrast to Stoorvogel (1993), causality of the
perturbation is assumed as an implicit and neces-
sary ingredient to pose the true problem. Thus we
consider a set D of real-rational causal stable trans-
fer function matrices A(s) satisfying || A || < 1,
and P, if AT(—s)A(s) = I. As performance indica-
tor we use the variance of the signal z;, i.e. the H,
norm of the closed-loop fransfer function from w
to z;. Let M(s) have the state space realization

¢ = Az 4 Biwi + Baws
znn = Ciz+ Dyows (18)
Zg = C.l-J;l,' -+ D:gl (I5

and let A(s) = H(sl— F)~'G+J. Then the closed-
loop system is:

z o, A4 ByJCy BoH ) ( T +
P - GOy F p

By + BsJ Dgy ) E
G Dy ]

z1 = (Ci+ D12JCy; DyaH ) (;) (19)

denoted as [A], [B], [C]. Notice that Dy3J Dy = 0
for || Tw,—2,(A) ||y < oo.

Let the system (19) be stable and consider the
constrained optimization problem

Sup || Ty =z, (A) |l = sup tr[CTT[C]S  (20)
A€D AED

or

tr[C]7[C]S (21)

~ max
(Fe,Fy,G,H,J)




with Fy, Fy., G, H, J according to (13)-(16), and with
the state-variance matrix S = ST the solution to:

[A]S + S[A]" + [B][B]" = (22)
In case of A being lossless bounded real, i.e.

A € D, the optimization problem can be reformu-

lated as an unconstrained optimization problem:

max tr[C]T[C]S
i N r[C]"[C]

with S the solution to (22), and with (F,G, H,J)
defined by (17), where F =0 — 607, J = ¢ — ¢”.

(23)

5 Numerical exploration of the con-
trol design problem

In the preceding section we have considered worst-
case perturbations A(s) for the fixed system M(s).
As M(s) includes the feedback controller K(s), we
have to investigate how A(s) and K(s) are related.

Recall the set P of all stable norm-bounded un-
certainties. Let Ax(s) € P be the worst-case distur-
bance, i.e. a disturbance attaining

SUp || Tioy s (K, A) [ (24)
AED

for a certain feedback controller K'(s). Although
the underlying problem may show a much more
complicated structure, we assume here that (at least
locally) there exists a unique maximizing Ax(s).
Now consider all such Ag(s), and determine the feed-
back law K* that would be Hs-optimalin case Ag(s)
indeed would qualify as worst-case uncertainty. By
assigning an Hg-optimal K* to each Ar(s), we iter-
ate over Ap(s) until it satisfies the conditions for
a worst-case disturbance, i.e. the gradients with
respect to its parameters are zero for a fixed Hjp-
optimal K*.

Using the parametrization of the worst case un-
certainty we are now able to rewrite the control de-
sign problem in a numerically tractable way. Con-
sider Fig. 2, with the noise disturbances w; having
unit noise intensity and uncertainty A(s) € D or
A(s) € D, respectively. The design problem is

sup mln” Twy—2. (K, A) |, (25)
AED(qy K(s)
Let G(s) have the state space realization
& = Az + Biwy + Bawsy + Bau
2 = Cl:L‘ + Dlng -+ Dmi.‘. (26)
zg = Cha + Dyywy + Dagu
y = Czz+ Daywy + Dasws

5

and let A(s) = H(sl — F)~'G + J, then the per-
turbed system is given by:

&, = Apzp+ Bpiywy + Bpu
o — Cplzf? =4 Dpiu (27)
y = CPIP —+ Dlpwl

with
t
®= (p)

e A+ ByJCy ByH
Gl GCy B

e By + B2 J Day
i GD3

s ( Bs + By.J Dy )

Cp1 = ( Cr + D12JCy Dy2H )

Dyy = ( Diz+ Di2J Dog )

CP ot ( Cs + D33 JCy DgoH )

Dyp = ( D3y + DaaJ Doy )

Notice that DysJ Doy = 0 for || Toy,—2, (A) ||, <
co and that D3yJ Doz = 0 is assumed for simplicity.
The feedback controller K(s) connects the measured
variables y with the inputs u.

Let the system (27) be stable and assume
for the moment that the uncertainty parameters
(F,G, H,J) are fixed. Then the optimization prob-
lem

min || Tu,—z, (u = Ks)y) |l (28)

can be solved as a standard H; or LQG type of
problem:

(AT — CT, D) BY)X + X(4p — BPD;Cpl) -
XB, BT X + CL(I — Dpy D3, )Cp1 = 0(29)

(Ap — Bpi DT, Cp)Y + Y(AT CTD“, Bj) —
YCIC,Y + Bpy(I — D{,D1p) By, = 0(30)

and the Hs optimal control law u = K*(s)y is
defined by




|

(Ap — By(B, X + DF,Cpy))v +
(YCT + Bp1 DLy (31)
u = —(B; X + DJ,Cp1)v

The optimization problem including the uncer-
tainty A € D can now be formulated as a con-
strained optimization problem over a standard H,
optimal control problem:

(F'..gll,%?fﬂ.u” Ty—zi(u= K"(9)y) |l (32)

with K* the solution to (29) - (31), and
Fy, Fyx, G, H, J according to (13) - (16).

If A € D, the optimization problem can be for-
mulated as an unconstrained optimization problem:

x| Tz, (= K*609) [l (33)

with K™ the solution to (29)-(31).

6 Example: Compact Disc player ro-
bust control problem

In Fig.4 a schematic view of a Compact Disc mech-
anism is shown. The mechanism is composed of a
turn-table DC-motor, and a balanced radial arm for
track-following. An optical element is mounted aft
the end of the radial arm. A diode located in this el-
ement generates a laser beam that passes through a
series of optical lenses to give a spot on the informa-
tion layer of the disc. An objective lens, suspended
by two parallel leaf springs, can be actuated verti-
cally for focussing.

C

Fig. 4: Schematic view of a rotating arm Compact
Disc mechanism.

Both the radial and the vertical (focus) position
of the laser spot, relative to the track of the dise,
have to be controlled actively. To accomplish this,

the controller uses position-error information pro-
vided by four photo diodes. As input to the system
the controller generates control currents to the ra-
dial and focus actuator, which both are permanent-
magnet /coil systems.

€rad 'ir'm!
€foc ?j oe

track © G(s)

Fig. 5: Configuration of the CD MIMO control
loop.

In Fig.5 a block-diagram of the control loop is
shown. The difference between the radial (2,,4) and
vertical (24,.) spot position and the reference track
is detected by an optical pick-up which generates
a radial error signal (e.,q) and a focus error sig-
nal (e70:). A controller K(s) feeds the system with
the currents #,,4 and iy,., see also Steinbuch et al.
(1994).

In the numerical experiments a MIMO 2% 2 model
(G) of order 10 is used. We will consider two types
of uncertainties. The first is a multiplicafive output
uncertainty. The uncertainty A is 50 %. The noise
disturbances w; acting on the multivariable control
loop enter the loop at the input of the system and
measurement noise act on the feedback loop. The
performance measures z; are the input to the plant
and the output of the plant (‘spot’). Our interest is
in how the uncertainty A(s) can disturb the Hs per-
formance from w; to z, and how the H, optimal
controller K(s) counteracts this. By using a gen-
eral purpose optimization program the results are
obtained, using the formulation of the previous sec-
tion. The inputs wy and ws have been scaled such
that the nominal performance equals 1 and such
that || A ||, = 1 corresponds to 50 % model uncer-
tainty. The results are presented in the table below,
and have been obtained with a first order (2 x 2)
uncertainty; see Steinbuch and Bosgra (1994) for
investigations with respect to the number of states
in a worst-case A. The results obtained using the
LMI formulation showed that all the boundary con-
ditions were met, and after application of the lossless
bounded real formulation it appeared that identical
solutions were obtained. It should be noted that this
result holds for this example. It is not clear whether
more general statements can be made. This is sub-
ject of future research.

The results are summarized in Table 1. In the Ta-
ble the column ‘nominal, K, 5m, A = 0’ denotes the
value of the objective function for the unperturbed




| Twy =z |l
nominal: Knom, A=0 1.00
nominal: K*, A=0 1.06
perturbed: K*, A} 1.38
perturbed: K,om, AL 1.48

Table 1: H, performance for CD player with output
uncertainty

case with the standard H, optimal control Ky .m-
The second column ‘nominal, K*, A = (0’ means
the robust performance optimal controller solving
(32) or (33) and with which the Hy performance is
evaluated without a perturbation. The third col-
umn ‘perturbed , K*, A}’ means the robust perfor-
mance optimal controller solving (32) or (33) and
with which the Hj performance is evaluated with
the worst case perturbation, i.e. this number is the
value of (32) or (33). Finally, the last column ‘per-
turbed , K,;om, A}’ means the nominal performance
optimal controller K., for which the Hy perfor-
mance is evaluated for the worst case perturbation,
i.e. this number is the value of (32) or (33) with
K= Knom: Iixed.

The results shown in the Table indicate that the
worst case variance of the performance variables z;
increases with a factor 1.48 if the nominal optimal
H controller is used. In case of the optimized con-
troller for the uncertainty, the nominal performance
degrades with 6%. The worst-case performance is
1.38, which is about 10% better than with the nom-
inal feedback. In the following figure the nominal
and perturbed transfer functions are shown from the
input i,4q to the radial spot position.
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Fig. 6: Nominal (=) and worst case perturbed (- -,
... ) transfer function from w; to z;

The second example considers the same Compact

Disc player MIMO control loop, but now with an
uncertainty affecting the resonance at 860 Hz. The
uncertainty perturbs especially the damping of the
resonance, with an amount almost equal to 100% *.
Again, the noise disturbances w,; acting on the mul-
tivariable control loop enter the loop at the input of
the system and measurement noise act on the feed-
back loop. The performance measures z; are the
input to the plant and the output of the plant. The
results of the calculations are presented in Table 2.

” Twl—'31 “2
nominal: K,om, A =0 1.00
nominal: K*, A=0 1.01
perturbed: K*;, A} 1.01
perturbed: Kpom, Aj 17.90

Table 2: Hs performance for CD player with reso-
nance uncerfainty

The variance of the performance variables z; in-
creases with a factor of almost 18 (!) if the nominal
optimal Hs controller is used, while in case of the
optimized controller for the uncertainty, the robust
performance is only 1% less than the nominal per-
formance. Analysis of the worst-case uncertainty
revealed that it is equal to a proportional term (J)
driving the damping of the system close to zero.
The Hy/H,, optimal controller counteracts this ef-
fectively. In the following figure the nominal and
perturbed transfer functions are shown.

102 £
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pltE3 {13 (1]
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Fig. 7: Nominal (-) and worst case perturbed (- -,
...) transfer function from w; to z;

! Although this can be described as a parametric un-
certainty (real-valued) it is treated here as a complex
uncertainty.




Conclusions

A new formulation of the robust performance
Hy/H., optimal control problem has been pro-
posed in this paper, and an explicit parametriza-
tion for a worst-case norm-bounded uncertainty has
been used, yielding an (un)constrained optimization
problem. A Compact Disc system with an unstruc-
tured uncertainty has been discussed. Using a nu-
merical algorithm we have shown that it is possible
to calculate worst case uncertainties and to robus-
tify the controller to counteract with the worst case
perturbation. The robust performance obtained in
these examples shows that it is worthwhile to fur-
ther explore the theory of the robust performance
mixed Hy/H, control problem.
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Abstract.

The powerful standard representation for uncertainty descriptions in a basic

perturbation model as introduced by Doyle can be used to attain necessary and sufficient
conditions for stability robustness within various uncertainty descriptions. In this paper
these results are employed to formulate necessary and sufficient conditions for stability
robustness of several uncertainty sets based on simple additive coprime factor uncertainty,
gap-metric uncertainty as well as the recently introduced and less conservative A-gap
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1 Introduction

In a model-based control design paradigm, the de-
sign is based on a (necessarily) approximative model
P of a plant to be controlled. An apparently suc-
cessful control design leads to a controller C, having
some desired closed loop properties for the feedback
controlled model P, but due to the possible mis-
match between the actual plant P, and the model
P, a verification of these desired closed loop proper-
ties is preferred before implementing the controller
C' on the actual plant P,. In this paper the discus-
sion is directed towards the verification of one of the
most important closed loop properties: stability.

To evaluate stability when the controller C is being
applied to the plant P,, a characterization of the
discrepancy between the plant P, and the model P
can be used (Doyle, 1982; Francis, 1987; Doyle et
al., 1992). Since the real plant P, is unknown, the
discrepancy in general is characterized by a so called
uncertainty set, denoted with P. Typically an un-
certainty set P is defined by the (nominal) model
P, which is found by physical modelling or identifi-

{The work of Raymond de Callafon is sponsored by the
Dutch Systems and Control Theory Network.

§Now with Unilever Research, Technical Application Unit,
Vlaardingen, The Netherlands.

cation techniques, and some bounded ‘area’ around
it (Doyle et al., 1992). The uncertainty set P itself
reflects all possible perturbations of the (nominal)
model P that may occur. Some typical examples of
commonly used unstructured uncertainty sets that
are norm-bounded by using an H.,-norm can for
example be found in Doyle and Stein (1981),Doyle
el al. (1992):

e Additive uncertainty set:

PA(P,V,W,7):={P | P=P+ Ay,
with [[VAAW|lo <7} (1)

¢ Multiplicative (output) uncertainty set:

Pu(P,V,W,7)={P | P=[I+Au]P,
with |[VAMW]||le <7} (2)

e Additive (right) coprime fractional uncertainty
set;, where P has been factorized first in a right

\ ) ] = s =1
coprime factorization P := ND  and the set

is defined as
PC.F'(Nt -'Ds VD! VN»W! 7) 5=
(P|P=[N+AnN|[D+Ap]~", with

1'% wll&]w]_<n o




Clearly, by defining the uncertainty set in such a
way that at least the plant P, € P, stability ro-
bustness results for the set P will reflect sufficient
conditions under which the plant P, will be stabi-
lized by C, (Doyle et al., 1992). In this perspective,
special attention will be given in this paper to an
uncertainty set Py which is characterized by per-
turbations on an additive coprime factor description
of the nominal model P, like in (3). The specif-
ic application of the uncertainty set description of
(3) will be motivated by the favourable properties
it has over a standard additive (1) or multiplicative
(2) uncertainty set description.

Stability robustness results for uncertainty sets em-
ploying weighted and unstructured additive pertur-
bations on a coprime factorization, gap-metic based
uncertainty sets and the recently introduced A-gap
uncertainty sets will be shown to be closely related
to each other. The contribution of this paper is in
the unified treatment of the situations of the dif-
ferent uncertainty sets, by employing the weighting
and the factorization used in an uncertainty Pep
as given in (3). While stability robustness results
for uncertainty sets using additive perturbations on
normalized (left) coprime factorizations (Glover and
McFarlane, 1989) and gap-metric based uncertainty
sets (Georgiou and Smith, 1990a) have separately
been derived before, this paper amplifies their rela-
tion, as well as the extension to a less conservative
A-gap (Bongers, 1991; Bongers, 1994) uncertainty
set. description.

The outline of this paper will be as follows. In
section 2 some preliminary notations and definitions
will be given, while in section 3 the basic stability
robustness result using the powerful perturbation
model (Doyle, 1982) will be summarized. This per-
turbation model gives rise to an unified approach to
handle stability robustness for various uncertainty
descriptions, including additive weighted perturba-
tions on a coprime factorization. Section 4 contains
the results of applying this unified approach to ad-
ditive uncertainty descriptions on fractional model
representations like in (3) and favourable properties
are illuminated. The link with gap and A-gap based
stability robustness results is discussed in sections
5 and 6, the latter one being less conservative than
the former one, as shown in section 7. The paper
ends with some concluding remarks.

2 Preliminaries

Throughout this paper, the feedback configuration
of a plant P and a controller C' is denoted by
T(P,C) and defined by the feedback connection
structure depicted in figure 1.

P and C' are represented by real rational (discrete

10

o §

Fig. 1: Feedback connection structure 7 (P, C) of a
plant P and a controller C

time) transfer function matrices, and it will be as-
sumed that the feedback connection is well-posed,
i.e. that det[l 4 C'P] # 0.

In figure 1 the signals u and y reflect respectively
the inputs and outputs of the plant P. The signals
u. and y. are respectively the inputs and outputs
of the controller C's, and r; and ry are external
reference signals. The feedback system 7 (P, () is
defined to be internally stable if the mapping from
col(ra, r1) to col(u.,u) is BIBO stable, i.e. if the
corresponding transfer function is in IRH ., being
the Hardy space of real rational transfer function
matrices with bounded H..-norm (Francis, 1987):

|Gl = sup #{G(e™))
welD,m)

(4)

with & the maximum singular value.

The dynamics of the closed loop system 7 (P, C) will
also be described by the mapping from col(rs, ry)
to col(y,u) which is given by the transfer function
matrix 7'(P, C):

P

T(P,C) = [ ;

] (I CEJTHIC 4 ]+ (5)
Using the theory of fractional representations, as
e.g. presented in Vidyasagar (1985), a plant P is
expressed as a ratio of two stable transfer functions
N and D. For two transfer functions N, D € IRH .,
the pair (N, D) is called right coprime over IRH ., if
there exist X,Y € IRH . such that XN +Y D = 1.
The pair (N, D) is a right coprime factorization (rcf)
of P if additionally det{D} # 0 and P = ND~'. A
right coprime factorization (IV, D) is called normal-
ized (nref) if it satisfies N°N + D*D = I, where *
denotes complex conjugate transpose. For (normal-
ized) left coprime factorizations (lef) dual definition-
s exist. With respect to internal stability of the
feedback system 7(P,C) the following lemma will
be used.

Lemma 2.1 Let P have ref (N, D) and !c,f(f), N),
and let C' have rcf (Ng, D.) and lef (D., N.). The

following statements are equivalent




i. the feedback system T (P,C) given in figure 1 1s
internally stable

. T(P,C) € RHoo, with T(P,C) defined in (5).

iti. A=' € RHoo, with A:=[ D, N. ] [ﬁ]

. A € RHeo, withA:=[D N ] [?f]
e

Proof: i< ii: From figure 1 and lemma 2.1 it can
be seen that
[ I

B
- |3

= (P

O |

10243
e lz][:]
/)

f‘z
L ™1

Hence T'(P,C) € RHoo if and only if H(P,C) €
IRHoo which is equivalent to 7 (P, C) being inter-
nally stable.

i & iii,iv: See Vidyasagar (1985), Bongers (1994)
or Schrama (1992). o

Fractional representations have a close relation with
approximation in the graph topology. The graph
topology is the weakest topology® in which a varia-
tion of the elements of a stable feedback configura-
tion around their nominal values, preserves stability
of that closed loop system (Vidyasagar et al., 1982).
The graph topology is known to be induced by sev-
eral metrics, as e.g. the graph metric introduced
in Vidyasagar (1984) or the gap metric introduced
in Zames and El-Sakkary (1980), being expressed in
the following way (Georgiou, 1988).

Definition 2.2 Consider the two plants Py, P wilh
nref’s (N1, D) of Py and (N2, D3) of Ps. Then the
gap between Py and Py is ezpressed by
(P, Ps) = max{é Py, P3),8(P , with
8(Pi,P;) =  inf

i EEat

3 Stability robustness in standard
form

oa

For describing the stability robustness of several un-
certainty sets based on fractional model representa-
tions, the standard results on stability robustness
for a general situation as depicted in Figure 2 will
be used.

! Given two topologies @ and @3, O, is said to be weaker
than O if @y is a subcollection of 3, see also Vidyasagar
et al. (1982)
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Fig. 2: (a) Feedback connection structure of a
perturbed plant Pa and a controller C}
(b) general feedback connection structure
K(M,A).

It is well known that the feedback system depicted in
Figure 2(a) can be recasted into the situation given
in Figure 2(b), where the uncertainty A has been
pulled out (Doyle et al., 1992) using the artificial
signals d and z. Provided that the transfer M is
BIBO stable, internal stability of the configuration
in Figure 2(a) is equivalent to BIBO stability of the
feedback system K(M, A)in Figure 2(b), where My,
will denote the map from from d onfo z only.

The small gain theorem can now be applied to char-
acterize stability results for the connection structure
of Figure 2(b) and has been summarized in the fol-
lowing lemma.

Lemma 3.1 Let the stable {iransfer funclions
M,A € IRH. construct a feedback connection
K(M,A). Then

(a) A sufficient condition for BIBO stability of
K(M,A) 1s given by

[M11A]leo < 1 (6)

() K(M,A) is BIBO stable for all A with ||A]|e <
v if and only if

IM11)|oo <772 (M)




A proof of this lemma can be found in Doyle et al.
(1992) and Maciejowski (1989).

4 Stability robustness for uncertain-
ty descriptions based on fractional
model representations

The result of section 3 on stability robustness can be
applied to various H.,-norm bounded uncertainty
sets by rewriting the uncertainty description into the
basic perturbation model K(M,A). In this section
this is done for uncertainty sets based on coprime
factor uncertainties.

A crucial aspect in the result of lemma 3.1 is the
assumption that A € IRH,. In case of an addi-
tive (1) or multiplicative (2) uncertainty set in the
basic perturbation model, this assumption implies
the condition that the location of all unstable poles
of P are assumed to be fixed. Additive perturba-
tions on coprime factorizations (3) are more flexi-
ble and allow changes in both the number and the
locations of poles and zeros anywhere in @ (Chen
and Desoer, 1982). Moreover, fractional represen-
tations have a close relation with approximation in
the graph topology. Distance measures (or metrics)
like the graph and gap metric given in definition 2.2
induce this same graph topology and can also be
used to evaluate stability robustness properties of a
closed loop system (Vidyasagar, 1984; El-Sakkary,
1985; Vidyasagar and Kimura, 1985).

Firstly, the uncertainty set Peop (3), as mentioned
in the introduction, will be discussed.

Corollary 4.1 Consider a plant P with rcf (N, D)
stabilized by a given controller C', and consider the
uncertainty set

'P[;'P(N. D, VD, VN, {;V‘ ‘T] =T
{P | P=[N+Apy][D+Ap]~*, with

Vb 0 Ap
vV
1% s llaz]: l. .
for stable and stably invertible filters Vp, Vv, W.

Then the feedback system T(P,C) is internally sta-
ble for all P € Pcr if and only if
I

Vb 0 Ap
A = 4 2=
A= [ 0 Vn ] [ = ] W, such that ||Alle <7,
(9)

the basic perturbation structure of the uncertain-
ty set Peop can be written into a form that cor-
responds to K(M,A) for a specific form of M.

<ot}

e

s Er
O

W' D+CNIT' [ I C] [

Proof: Defining
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Denoting col(dy,d2) = Az with the appropriate
signals defined as indicated in figure 3, the cor-
responding stable transfer function M, satisfying
z = Mjycol(dy,ds) can be written as

A
22 R el T Wi f e i 1
! — VAS Axy :
i Vb 1% Vi .'
etk i dnd g Yk e Al
dI Z ﬂ'}
V! w1 Vy'!
—~ e Ly
Fr+o P N R

Fig. 3: Additive perturbations on a right coprime
factorization

;. [ I,f-l
My = -W-UD4+CNI™ [ 1 c.'][ Dl ]

0w Vet

Vigou 10

= —W AL [ D, N. ] [
with A = [D.D + N.N] and (D, N.) a lef of C. As
the weighting functions are stable and stably invert-
ible, and A~! is stable according to Lemma 2.1 it
follows that M;, is stable. Application of Lemma
3.1 then proves the result. ]

In the next section it will be shown how these re-
sults can be exploited to derive stability robustness
conditions for gap-metric uncertainty sets as well as
for uncertainty sets based on further generalizations
of the gap-metric. To this end, the result on the e-
quivalence between several formulations of the same
uncertainty sets will be presented first.

Proposition 4.2 _
The uncertainty set Pep(N, D, Vp, Vv, W, ) as de-
fined in Corollary 4.1 can alternatively be written in
the following equivalent forms:

(a) Pcr(N,D,Vn,Vp, W,7) = {P |

P=(NW +Vg'AN)(DW + V5 'AD)"!,




[ o

(b) PCF{N|D| VN!VD!W!T) =
{P | P = N,D;!, (Nn,D,) nrcf, and there
ezists a Q) € IRH oo such that
‘ o0

¥ |57l le

D Dy,
Proof: Part (a) follows by simple calculation. The
proof of part (b) is more involved. In this derivation
the freedom in (11) is used to denote:

<7}

(NW + Vy'AN) = N,.Q
(DW + V5 'AD) = D,Q

with (N, D,) a nref and @ € IRH . Such factors
can always be found. It follows then that

AN = VN[N.Q—- NW]
AD = Vp[D.Q — DW].

which proves the result. Note that the factor @
cancels in the representation of P. 5]

5 Stability robustness based on dis-
tance measures

In this section stability robustness results for gap-
metric uncertainty sets are formulated. The main
result of this section is not new, but already proven
separately in Georgiou and Smith (1990a). The
close relation of the stability robustness result here
with the formulation in the previous section con-
cerning general coprime factor uncertainty sets will
be illuminated. This relation will be employed in the
next section to formulate similar results for uncer-
tainty sets based on the so-called A-gap, as recently
introduced in Bongers (1991) and Bongers (1994).

The following uncertainty sets are being considered

Ps(P,y) = {P|6(P,P) <y}  (13)
Ps(P,7) = {P|8P,P)<}, (14)

for which the following relation with the coprime
factor uncertainty sets can be shown, as presented
before.

Lemma 5.1 Let a plant P and a controller
C  constitute an internally stable feedback sys-
tem T(P,C). Consider the wuncertainty set
Pep(N,D,VN,Vp,W,v) under the additional con-
ditions that (N, D) is a nref of P, and Vp = I,
Vw=1I, and W = I. Then

(a) Per(N,D,Vn,Vp,W,7) = P3(P,7);

(b) Forvy < 1, Pz(P,7) = Ps(P,v).

Proof: Part (a). According to Proposition 4.2(b)
and taking into account the specific choice of weight-
ing functions in the lemma, it follows that
Per(N,D,Vn,Vp,W,7) =

{P | P= NnD;;l, (Nn, Dp) nref,

and there exists a @ € IRH,, such that

-[3]a

Since (N, D) is chosen to be a nref of P it is straight-
forward to verify that Peop = Pj.

Part (b) is proven in Georgiou and Smith (1990a).
The restriction to v < 1 is caused by the fact that
these sets with ¥ > 1 can not be stabilized by a
single controller. =]

N

D <7} (15)

oo

Lemma 5.1 relates the set defined by a gap metric
bound with the set of coprime factor purturbations
by a special choice of the weighting functions Vp,
Vi, W and the coprime factorization (N, D) of the
model P. This gives rise to an unified approach
to handle sets of plants that are bounded by a gap
metric, and the stability robustness result for these
sets follows now directly from Corollary 4.1.

Corollary 5.2

Consider the situation of Lemma 5.1 with v < 1.
Then for each of the three sets of plants Pcr, Py
and Ps, T(P,C) 1s internally stable for all P € P
if and only if

7 < [IT(P,C)||="- (16)

Proof: The proof follows simply by substituting
the specific weightings in the result of Corollary 4.1,
employing the fact that premultiplication of the ex-

5 it o
pression within the norm by [N° D" ]7 leaves the
norm invariant, due to the normalization of the rcf.
(8]

Note that the result of this corollary is not new. It
was shown already in Georgiou and Smith (1990a),
where a complete proof of the stability robustness
result is given. It has been shown here that the
stability robustness results in the standard form
has simply be exploited, as formulated in section
section 3. Restricting attention to the situation that
v < 1 is natural, as Bode’s sensitivity integral shows
that ||T(P,C)|le > 1, (Maciejowski, 1989), show-
ing that stability robustness can only be achieved
for sets with v < 1.




[inally it should be noted that the gap and graph
metric are induced by the same topology and are
uniformly equivalent (Georgiou, 1988; Packard and
Helwig, 1989). Therefore stability robustness in the
graph metric yields a similar result as mentioned in
corollary 5.2.

6 Stability robustness in the A-gap

The results obtained in the previous section for gap-
based stability robustness can be further extended
for uncertainty sets based on the recently introduced
A-gap, (Bongers, 1991; Bongers, 1994).

Definition 6.1 Lel two plants Py, Py have nrcf’s
(N1, Dq), (N2, Ds) respectively. Let C' be a con-
troller with nlef (Dr_, Nfc) such that T(Py,C) is in-
ternally stable. Then the A-gap between the plants
Py, P is defined to be expressed by

|7 ][]l
@elRHoo || L N2 No -

Sa(Py, P) =  inf

with A = [DCDl - f\}c Nl:[_

The difference between 6( Py, P») and 85(Py, Ps) is
the additional shaping of the nref of Py with A~!
into a ref (N, f))‘ In this way A= ﬁrb+f€’,N —i
with N = N;A-!, D = D;A-! which is used
to consider the closed loop operation of P; in-
duced by the controller C' being employed. This
makes the distance between P; and P, dependen-
t on the nref of the controller C'. Nofe that the
distance measure gf\(PI,P;}) is not a metric since
S'A(P, + By o &(Pg, P1) due to the influence of the
controller C' (Bongers, 1994).

Accordingly, an uncertainty set based on A-gap un-
certainty can be defined as:

P; (P,) = {P | 65(P, P) < 7}.

This uncertainty set can also be shown to be equiv-
alent to an uncertainty set of coprime factor uncer-
tainties, provided appropriate weighting functions
are chosen.

Lemma 6.2 Let a plant P and a controller C with
nlecf (]"),_,!C’._._) constitute an internally stable feed-
back system T(P,C'). Consider the uncertainty set
Per(N,D,Vn,Vp, W,v) under the additional con-
ditions that (N, D) is a nref of P, and Vp = 8
Vv =1, and W = A~! with A = [D.D + N.N].
Then

(a) Pcr(N,D,Vy,Vp,W,7) = P; (P,7);

(b) T(P,C) is internally stable for all P € Pep if
and only if v < 1.
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Proof: The proof of (a) is straightforward, along
the same lines as the proof of Lemma 5.1(a). Re-
sult (b) then follows directly from Corollary 4.1, em-
ploying the fact that A[D + CN]='[I C] = [D. N,]
having an co-norm of 1 due to the fact that it is a
normalized left coprime factorization. O

As said before, in case of the A-gap, the uncertainty
set defined accordingly considers perturbations of
the nominal plant P that are controller dependent.
The introduction of weightings in the gap met-
ric has also been studied in Geddes and Postleth-
waite (1992), Georgiou and Smith (19906) or Qui
and Davidson (1992). In Geddes and Postlethwait-
e (1992) a multiplicative uncertainty deseription on
the nref (N, D) of the model P is being used, leading
to an uncertainty structure A having a diagonal for-
m. Due to the diagonal form only necessary and suf-
ficient conditions based on the structured singular
value p{-} can be obtained. The weightings in the
weighted gap of Georgiou and Smith (19906) have
to be defined a posterior: which makes the choice
of the weighting functions, to access robustness is-
sues on the basis of a weighted gap, not a trivial
task. Information on the size of the coprime factor
perturbations can be used in the weighted pointwise
gap metric defined in Qui and Davidson (1992), but
still an efficient computational method for pointwise
gap metric is not available yet.

7 Conservatism issues

All stability robustness results in this paper reflect
necessary and sufficient conditions of an uncertain-
ty set to be stabilized by a single controller. As
such no conservatism is introduced in the test for
checking stability robustness itself. However, for a
single given controller, different of such uncertain-
ty sets contain a different portion of the set of all
systems that is stabilized by the controller. In this
perspective the concept of conservatism is an intrin-
sic property of the uncertainty set being used. As a
result an uncertainty set will be called more conser-
vative than another if one controller stabilizes both
sets, while the former set is contained in the latter.

Theorem 7.1 (Bongers, 1991) Consider a plant
P and a stabilizing controller C with nlcf (D, N.).
Consider the following two uncertainty sets resulting
from the stabilily robusiness results in the previous
seclions:

Ss(P,C) = {U Ps(P,b), b< ||T(P,C)||Z})
83,(P,C) == {UPz(P,c), c< 1}
then

Ss(P,C) C 8 (P, C). (17)




Proof: The following implication will be proven:
P € 8s(P,C)= P € S; (P,C). (18)

As P e S.g{f’, C) there exists a U € IRH,, such that

D DT - 1
10 s —[ —]U”,:.og-—j-:——-———-. (19)
Ny N [1T(P, C)|lso
This implies that
D By g A" |loo
n[ \. ]—[ 7 | Gl Ao < e
(20)

As ||IT(P, C)||o = ||A~"{|co, this implies that

Il D

‘N.n

Lower bounding the left hand term of this expression
implies that

b - =
= =g M <ils 21

578 1.5 e
”[N,,]"‘ [F]oa st @
which proves the result. . O

The result shows the the A-gap uncertainty set is
less conservative than the gap uncertainty set. In-
tuitively this is also clear, since the gap metric does
not take into account the closed loop operation of
the plants P in the set, induced by the controller C'
being used, see e.g. also Hsieh and Safonov (1993).
This drawback has been rectified by the use of the

A-gap.

Conclusions

The powerful standard representation for uncertain-
ty descriptions in a basic perturbation model as
introduced in Doyle (1982) can be used to attain
necessary and sufficient conditions for stability ro-
bustness within various uncertainty descriptions. In
this paper these results are applied to uncertainty
descriptions based on fractional model representa-
tions, leading to necessary and sufficient conditions
for stability robustness in case of additive coprime
factor uncertainties.

In this way a unified approach to handle addi-
tive coprime factor perturbations can be derived
which yields a manageable and comprehensive way
to relate gap and A-gap based uncertainty sets to
(weighted) additive coprime factor perturbations.
Based on this framework necessary and sufficient
conditions for gap and A-gap based uncertainty sets
are presented and it is shown that in terms of sta-
bility robustness, the A-gap uncertainty set is less
conservative than the gap uncertainty set.
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Solvability tests for the Lyapunov inequality*
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Abstract. For arbitrary complex A and @ (@ Hermitian), this paper provides an alge-
braic test for verifying the existence of a Hermitian solution X of the nonstrict Lyapunov

inequality

A' X+ XA+Q>0.

If existing we exhibit how to construct a solution. Moreover, a necessary condition for the
existence of a positive definite solution is presented which is most likely to be sufficient
as well. Our approach involves the validation problem for the linear matrix inequality

k
> (A;X;B; + B; X A;) + Q@ > 0

j=1

in X; for which we provide a (constructive) algebraic solvability test if the kernels of 4;
or, dually, those of B; form an isotonic sequence.

Keywords. Lyaf mov inequality, linear matrix inequality, Riccati inequality.

Notation. C = C~ UC° U Ct is the complex plane,
the open left-half plane, the imaginary axis and the
open right-half plane. For A € C"*™, A™"S denotes
the preimage {z € C™ | A’z € §} of S C C" under
AY, For a Hermitian @ € C"*", @s denotes the
sesquilinear form S x § 3 (z,y) — 2" Qy € C. Then
Qs > 0 (Q is positive definite on §) iff 2*Qz > 0
for z € 8§\ {0}, Qs > 0 (Q is positive semidefinite
on 8) iff z*Qz > 0 for € S, and ker(Qs) = {z €
S : £*Qz = 0} (the annihilating set of @ on ).

1 Introduction

The Lyapunov equation and inequality is one of the
most studied objects in the control literature. In
particular, it arises in stability theory where the in-
terest is on inertia relations rather than on solvabili-
ty questions. The present work is mainly motivated

{This paper is presented at the 33rd IEEE Conf. Decision
and Control, Lake Buena Vista, FL, December 14-16, 1994,
Copyright of this paper remains with IEEE.

Ssupported by Deutsche Forschungsgemeinschaft, grant
Wi 1219/1-1.

by state-space H.,-theory (Petersen (1989), Doyle
et al. (1989), Scherer (1994)). It has been shown in
Scherer (1994) that the optimal value in the general
state-feedback H.,-problem is attained iff a certain
algebraic Riccati inequality has a positive definite
solution. In Scherer (1993,1994) we present a tech-
nique which reduces this problem, under a mild reg-
ularity assumption, to the solvability problem for a
nonstrict Lyapunov inequality (LI)

AX+XA+Q>0

where A and ) can be computed from the system’s
state-space representation. Here @) is generally in-
definite and the eigenvalues of A correspond to in-
variant system zeros in C° U C*. Hence eigenvalues
in C° can only be excluded by assuming the absence
of system zeros on the imaginary axis.

If A has no eigenvalues in C° then it is a conse-
quence of the reduction principles in Scherer (1993,
1994) (but easily proved directly) that the LI is al-
ways solvable, although the corresponding equation
might not have a solution. Hence the main difficul-




ties arise if A indeed has eigenvalues in C°. If the
C°-Jordan blocks of A with respect to C° are diago-
nal, it has been pointed out that the LI is solvable iff
Qxer(a—ar) = 0 for each A € C° (Scherer (1994)). If
the C%-eigenstructure of A is nonderogatory, solv-
abilty tests have been obtain in Scherer (1995a).
However, the general case with an unrestricted i
Jordan structure is considerably more difficult to
handle. In this paper we extend results from Scher-
er (1993) and show how to verify the solvability of
the LI in complete generality. In view of the recen-
t progress in solving more general strict linear ma-
trix inequalities (Nesterov, Nemirovsky (1994)), our
work is intended to clarify, for a specific inequality
of independent importance, that the algebraic ap-
proach leads to deep insights into the structure of
the solution set and into the possibly tremendous
difference between sirict and nonstrict inequalities.
We work throughout with complex matrices and s-
paces. If A and @ are real symmetric, our results
allow to verify the existence and to construct a com-
plex Hermitian solution X. Then %(X+)E’] is a real
symmetric solution of the LI. Hence the present re-
sults apply to real data as well.

The paper is structured as follows. In Section 2 we
present some auxiliary results of independent inter-
est.
solvability characterization, and in Section 4 it is
shown how to construct a solution. For reasons of
space the proofs are given in the full version of the
paper which will appear elsewhere.

In Section 3 we motivate and formulate the

2 Auxiliary Linear Matrix Inequali-
ties

We first recall a key result in Scherer (1992) for the
strict Lyapunov inequality (SLI)

A*X +XA+Q > 0.

Theorem 2.1 The SLI has a Hermitian solution
if Quer(a-ary > 0 for all A € C°. If solvable, the
SLI has arbitrarily large (and thus positive definite)
solutions iff o(A) c C°UCT.

Remark. In Scherer (1995b), the last part has been
generalized to the nonstrict Lyapunov inequality:
The LI has arbitrarily large solutions iff a(A) C
C® U Ct, Quer(a-xry = 0 and ker(Qer(a-an) 0
im(A — AI) = {0} for all X € C°.

If we drop the structural constraint X = X*, we
can even consider the more general inequality

A'XB+ B " X"A+Q >0 (1)

which has recently proved important in the H-
problem and variations thereof (Gahinet, Apkarian
(1994), Iwasaki, Skelton (1994)).
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Theorem 2.2 The inequality (1) is (constructive-
ly) solvable iff Quer(a) > 0 and Qyuer(py > 0.

In this paper we need a generalization to the LMI

{
> (A5X;Bj + B; X; A4;)+Q > 0

j=1

(2)

for which we can indeed give an algebraic solvability
test and a procedure to construct a solution if the
kernels of A; form a nondecreasing sequence.

Theorem 2.3 Suppose ker(A;) C --- C ker(Ag).
Then the LMI (2) is (constructively) solvable iff Q
is positive definite on

Fa
m ker(B,) Nker(A;)
=0

forallj = 1,...,k+ 1 where setting Bp = 0 and
.4k+1 = 0‘

Jlearly, a dual result holds if the kernels of B; form
a nondecreasing sequence and, by reordering, one
can easily translate all this to nonincreasing kernel
sequences as well.

3 The Lyapunov Inequality

A key step will consist of identifying the largest sub-
space on which A*X + XA + @ vanishes for every
X in the solution set

A =N = X A X+ XA+ @ >0}

of the LI. It will turn out that we can indeed com-
pute
K= ﬂ ker(A*X + XA+ Q)
XeXx

(3)

on the basis of the data matrices A and ) without
having a solution available! The space K will be
shown to be A-invariant. Moreover, it might happen
that for each individual X € A" the kernel of A*X +
XA+ Q@ is larger than K. Luckily enough this is not
the case since we are able to prove the existence of
an X € X with ker(A*X + XA + Q) = K. All this
will be essential for the test whether A" is empty or
not.

For formulating the main result we need the follow-
ing notations. For any A € C® define

Ay = A—- A1
and the linear map

1Q) =) (1) (A3~ Q4A5.

v=0




Note that £3(Q) = Q and that £ is just the j-fold
composition of £,(Q) = A5Q — QAx. We exploit
A € CY to infer A*X + XA = A} X + XA which
implies £ (A* X + X A) = (A3 P X +(-1Y XA
For any j = 0,1, ..., this shows that A*X 4+ XA +
) = P implies

(AP FX + (~1Y XA + £4(Q) = L(P). (4)

Let us now motivate the computation of (3) under
the hypothesis X # 0. Choose X € X, A € C°Na(A)
and define the positive semidefinite P :(= A X +
XA+ Q.

Look at (4) for j = 0. Axz = 0 yields 2*Qz =
z* Pz > 0. If, in addition, *Qz = 0 then 2* Pz = (
and thus Pz = 0. Hence @ is positive semidefinite
on A;'{0} and A} = {z € A0} : z*Qz = 0}
is a subspace with A C ker(P). We proceed with
K = {0} + AN = N}

To increase the space N7, the central trick is to
exploit (4) for j = 2 which leads to

[(A3)PX+XA3)+L3(Q) = (A3)°*P— A3 PA+PA3.

If z satisfies A2z € K7 then A3z = 0 (since A\K{ =
{0}) and PAZz = 0 (since PK} = {0}). We infer

' L3(Q)z = —z" A\ PA)z.

Hence —£3(Q) is positive semidefinite on ASEKL
Moreover, the annihilating set N3 = {z € A5°K7 :
2*£3(Q)x = 0} is a subspace with AyN3 C ker(P).
We proceed with K3 = K7 + AN3.

Now we can turn to a formal definition of this al-
gorithm. Since we do not require the LI to have a
solution, certain positivity conditions (as appearing
in the above motivation) need not be verified. If
they are not true, we allow the algorithm to stop
irregularly since then, as can be proved, the LI has
no solution.

Definition 3.1 Fiz A € C° and K3 := {0}. Sup-
pose K3 has been canstrucied.‘ Then the algorith-
m stops irregularly if (—1)5£i3(Q) is not positive
semidefinite on A;("‘“)!C?. Otheruise define the
neutralizing subspace

Ny = {2 € A7979K) | 2 £ (Q)z = 0}
and iterate with

Ky o= K} + AN

Remark. To clarify the behavior of K} under
transformations of (A, Q) we will sometimes stress
the dependence on the data by writing KJ)-‘(A,Q)

and AG-’“(A,Q).

The inclusion K3 C K7}, is obvious. If the algorith-
m does not stop irregularly then IC;‘ is well-defined

for all j = 0,1,... and there exists a (smallest) k
with K3, = K3 which implies K§ C K? C -+ C
!Cﬁ = KTQH = K:!):+2 = ..., The limiting subspace

K3 is denoted by K2.

Definition 3.2 We say that K exzists iff the algo-
rithm does not stop irreqularly for . We say that
K. ezists iff K ezists for each A € C°, and define

K= Z ¥ g

AECO
Remarks.

o If existing, all K;-‘ and hence also K. are A-
invariant.

e For A € C°\ o(A) it is clear that K} exists
and equals {0}. Only if A is an eigenvalue of
A on the imaginary azis, the space K} might
not exist or might be nontrivial. However, if
Qker(4,) > 0 (as appearing in Theorem 2.1)
then, again, K2 = {0}.

We can now state in generality what has been mo-
tivated above.

Lemma 3.3 If X # 0 then K. exists and satisfies
(A*X + XA+ Q)K. = {0} forall X € X.

Hence the existence of K, and of some Hermitian X
with (A* X+ XA+Q)K. = {0} are necessary condi-
tions for the solvability of the L1. The first condition
amounts to the algorithm not stopping irregularly
for each A € a(A) N C° and the second is a vali-
dation problem for a linear equation whose solution
can be constructed if existing - both conditions are
algebraically verifiable.

It is the new core result of the present paper that
these conditions are also sufficient for the existence
of solutions of the LI. As an important structural
result we prove that not only K, C K but in fac-
t equality holds. Hence the subspace K is exact-
ly computable without having a solution of the LI
available.

Theorem 3.4 The Lyapunov inequality A*X +
XA+ @ > 0 has a solution iff K. exists and there
is a Hermitian X with (A*X + XA + Q)K, = {0}.
Suppose X # 0. Then K. C ker(A*X + XA+Q) for
all X € X and there exists a special solution such
that equality holds.

For testing the existence of a positive definite ele-
ment in & we try to find a large subspace on which
the quadratic form z* Xz remains fixed if X varies
in X. The following can be shown to be a candidate.




Definition 3.5 For each A € C° define the subspace

Pl = ker(A])nim(A]) N K2

j=1
and then
Pei= Z P,
Aec?
Theorem 3.6 If the Hermitian Xy, X, satisfy

(A*X;+X; A+ Q). = {0}, 5 = 1,2, thenz* Xz =
" Xox holds for all 2 € Pu. If X conlains posilive
definite elements then one/all Hermitian X satisfy-
ing (A*X+XA+Q)K. = {0} is/are positive definite

on P,.

Remarks. This necessary condition for the exis-
tence of positive definite solutions to the LI is veri-
fiable. It can be shown constructively that it is al-
so sufficient if A has precisely one Jordan block for
each C’-eigenvalue. We conjecture that sufficiency
also holds for a general A.

4 Construction of Solutions

From now on we assume that K, exists and that we
have found an X with ker(A* X + X A+Q)K. = {0}.
To prove sufficiency in Theorem 3.4, we intend to
construct an X = X* with

A*X+XA+Q > 0,ker(A* X+ X A+Q) = K.. (5)

With Q := A* X +X A+Q, we can instead determine
a Hermitian solution of A*Z + ZA + Q > 0 with
ker(A*Z + ZA + Q) = K. since then X = Z +
X satisfies (5). It is not_difficulty to prove that
K.(A, Q) exists iff K,(A4,Q) exists, and that both
spaces coincide. Hence we can work w.l.o.g. with
the hypotheses that

K. exists and QK. = {0}. (6)

By changing coordinates, we can also assume A in
the shape

A = diag(Ap Ay -~ Ap)

with (T(;'{i_]} (& (1_ UC+. I'T(Ar,) = {Ay} C C{}. /\p ‘-}6
Ay for vyp = 1,...,1, v # p and partition X, @
accordingly. Noting Af\uk";" = {0}, it is very simple
to see that E;“(A,Q} exists iff KZ;\“(A,, Q) exists
and

K}(A,Q)= {2, € K}*(Ay,Qun) zu = 0, p # v},

Hence K2 (Ay,,Quw) = K24, — A1, Qy.) exists
and satisfies @,,K2(4, — A\ 1,Q..) = {0}. Note
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that these are just the properties (6) for the nilpo-
tent matrix A, — Ayl and @,,. Suppose that,
under the assumption (6) with A being nilpoten-
t, we can construct an X satisfying (5). Then one
can compute X, for v = 1,...,l with AJX,, +
XopAu+Quy >0 and ker(A X, )+ X, Ap+Quy) =
K%(Ay — A1, Quy). Let us choose Xog as A5 Xoo +
XooAo + Qoo > 0. For all other indices we take
X, as the solution of A} X, + X, A, + Qv =10
(which exists by a(A}) N o(—A4,) = 0). Then
A* X+ XA+ Q =diag(A; X, + XAy + Quy) im-
plies that X € A'. Moreover, ker(A*X +XA+Q) =
{2 ¢ (AT Xow + Xndy +Quu)a,. = 0} = {2 ap's
0, z, € KYA, = A 1,Qu)} = Ku(A, Q) finishes the
proof.

We have reduced the general problem to the case
that

A is nilpotent.

From now on we drop the index A = 0 in Definition
3.1. After a further coordinate change we assume

w.l.o.g.
- Iy
a\,. = { o I s = 0}

to obtain (recalling AK. C K, and QK. = {0})

A:(K M) andQ:(g E’)

0 L
where K and L are in Jordan canonical form parti-
tioned as

(7)

K = diag(Ko, K1, . .., Km),

: 8
L = diag(L1,- -+, Lm, Lm41) ()

and
e all blocks in Ky are smaller than those in L,

e all blocks in K} and L have the same size my,
k=1,...,m, with mp. < mpyy,

e all blocks in K are smaller than those in Lyaq.

We stress that extreme cases are not excluded: Ky
or Liypyq orall Ky, ..., Ky might be empty matrices!
We also need notations for the refinement of this
partition into

Ky = diag(K} -+ Kf*), )
L; = diag(L} --- LY) '
with single upper Jordan blocks K77, L;\. This in-
duces on a vector z compatible to the size of K,
a vector y compatible to the size of L, and on
any matrix Z of the same size as M the partitions
¢ = (zk)k, ¥y = (W, 2 = (Zra)r according to (8)
and zp = (28)s, vt = (W )ry Zit = (Z5)xa accord-
ing to (9).




Indeed we will fulfill (5) with X structured as

( }9, ; ) such that A*X + XA + @ equals

0 K*Y+YL (10)
*x L*Z+ZL+Y*M+ MY +P )

In the remainder of this section we clarify how to

computeaY € Y :={Y: K*Y+YL =0}
for which L* Z+ZL+Y*M+M*"Y+P > 0
has a Hermitian solution 2.

By Theorem 2.1, we hence need to guarantee, for
any basis matrix E of the kernel of L, the existence
of Y € Y with E*(Y*M + M*Y + P)E >0 or

(YE)"(ME) + (ME)*(YE)+E*PE >0. (11)

Note that this is a linear matrix inequality with a
structural constraint on Y and hence generally very
difficult to handle. Luckily enough the present case
is indeed tractable.

We choose E (in our coordinates) as simple as pos-
sible. With e} := (10 --- 0)7 of length equal to the
size of L}, E; := diag(e] -+ e?') is a basis matrix
of ker(L;) and hence E := diag(B1 -+ Em Em41)
is one of L.

If we partition Y as M, we now intend to identify
the structure of (M E)*(YE) for Y € Y. Clearly

Ye)yiff
Y e Y = {W : (KF)'W + WL} =0}

for all indices. For our purposes it suffices to find
YEpe} which is pretty simple since the structure of
Y5* € Vg is easily described explicitly (Gantmach-
er (1986)) (with d(.) denoting the size of a square
matrix):

0

e T chati0) yi free , d(KF) > d(L})
A
Yri

(12)
As for Y e} we introduce a notation for the last
element in Mfe} = (¥ --- * mf})T and collect
as My = (mEN)ex, M = (M), Yer .= (UE])ea,
Y := (Yi)i:. Because of the leading zeros in (12),
we infer for any Y € Y that

(ME)*(YE)= M*Y. (13)

Here is the reason for introducing the partitions (8):
By (12), if Y varies in J then Yj; vanishes identi-
cally if k < I and Yy; is a free full block for k > L.

Therefore (M E)*(Y E) equals

-

Mo ... ﬂ?fn,mﬂ PE= kg
My ... M Vi b gt
Mm,l Mm,m+l }’,ml Ymm 0

where
Y1 is free for k& > [.

With P := E*PE, we hence need to prove that the
constraint LMI

MY +Y*M+P>0, Yiu=0fork<! (14)

is solvable. Here is the point where we apply Theo-
rem 2, With

Mjy - Mjmp Yis
AJ e - E ) ‘X'J = i

Mmy -+ Mpmss Yin;

and
Bj:=(0:-010---0)
j—1 blocks

(whose columns are partitioned as those of A;),
the LMI (14) is equivalent to Z?LI(A;Xij +
B} X;A;) + P > 0 with free X;. Since Aj4 re-
sults from A; by canceling a block row, we have
ker(A;) C ker(Aj4+1). For applying Theorem 2,
we hence need to show for j = 1,...,m -+ 1 (with
Am41 = 0) that

Ajz=0,51=0, ..., _1=0, ££0=>2P2>0.

A pretty involved chain of arguments reveals that
this is a consequence of the existence of K, and the
resulting nonnegativity conditions in Definition 3.1.
We conclude that we can determine a solution Y of
(14). Then it is possible to compute a Y € Y with
(13). Hence (11) holds and implies that L*Z -+ Z L +
Y*M 4+ M*Y + P > 0 is solvable what finishes the
construction.
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Abstract. The Hp-norm frequency-weighted optimal model reduction problem is anal-
ysed. Necessary optimality conditions are derived for the general case with input and
output weights. For non-dynamic weights the optimal reduction problem is reformulated
as a specific projection of dynamics problem which is solved numerically by a new algo-
rithm that forces each new iterate to be a balanced approximation. The paper shows the
difficulty with formulating the dynamically weighted problem as a direct projection prob-
lem. The proposed algorithm shows remarkably fast convergence for the non-dynamic
case. Convergence and global optimality are not analysed analytically. This paper also
derives a method to create a central approximation within a set of models. The fixed-order
central approximation requires the solution of an optimal order reduction problem. Opti-
mal centering and reduction play an important role in the design process of a limited-order
controller yielding well-specified performance and robustness properties. The algorithm
is tested on two examples, one of which shows the existence of a non-global minimum.

Keywords. Model reduction; Hy-norm optimal; frequency-weighted reduction; nominal
modelling; optimal central approximation; numerical algorithm.

1 Introduction

Order reduction is an important issue in model-
based control design, both for deriving manageable
plant models that can be used in computer pro-
grams for controller computation, and for reducing
the resulting controller for reasons of implementa-
tion, robustness and cost. In order to avoid lengthy
or non-converging iterations in the design process
of high-performance controllers, order reduction is
often used to diminish these numerical problems.
When and where order reduction should be applied
depends highly on the defined control problem and
the properties of the available model. Answers to
these questions only arise in the course of the de-
sign. This means that order reduction is not a well-
defined stand-alone problem and it explains the ef-
fort to limit the amount of work (and time) involved
in reduction steps.

Existing model reduction methods can be very
valuable, but each has to be tested in an appropri-
ate framework. Modal reduction and balanced re-
duction (Moore, 1981) don’t need any further intro-
duction nowadays since these methods have gained a
firm position in today’s control design education and
practice. These simple and very direct methods can
be tried a number of times without wasting much
time. Optimal Hankel-norm reduction (see Glover
1984) is considered computationally more demand-
ing, yet it is the only method that provides a s-
traightforward construction of a reduced-order mod-
el that in fact is optimal in a sense (the Hankel-norm
is the maximum Hankel singular value of a system).

The search for a construction of the H,-norm op-
timal approximation is ongoing (Kavranoglu, 1994)
and is most wanted in relation with H.;-control de-
sign. Optimal reduction in Hs-norm has been stud-
ied in many areas. One of the first applications was




in the area of network synthesis to approximate de-
sired transient response (Aigrain & Williams, 1949).
The transfer function necessary conditions were gen-
eralized to the multivariable case by Krajewski et al.
(1993). State-space necessary conditions can be
found in Wilson (1970). These conditions were
transformed into the optimal projection equations
by Hyland & Bernstein (1985). The solution of these
conditions is difficult. A large effort is directed to-
wards homotopy solution of the optimal projection
equations (see for instance Zigié¢ et al., 1992). There
does not yet exist a complete theory that charac-
terizes the existence, uniqueness and properties of
the optimal solution (Baratchart el al., 1992). Es-
pecially the solutions to the necessary conditions for
an optimum are not completely understood. These
equations may well have multiple solutions and it
is not clear how to characterize the global optimum
analytically. Thus one has to rely on numerical ap-
proaches. Current algorithms to solve the necessary
conditions seem to be little used in practice, which is
probably due to the computational complexity (ho-
motopy methods) or the strong dependence on good
initial approximations (for iterative methods).

This paper contributes a relatively simple itera-
tive algorithm to solve the necessary conditions. Al-
though we cannot prove any convergence properties,
only a few iterations suffice to find solutions of the
optimal projection equations in the majority of test
cases considered. The consistent usage of projec-
tions that are factored such that the reduced-order
models are balanced in each step, are believed to be
crucial for convergence.

It is important to realize that these optimal solu-
tions are not directly relevant in feedback system-
s: these require the solution of so-called frequency
weighted closed-loop reduction problems. One of
the first extensions of order reduction to controlled
systems was due to Enns (1984), who developed fre-
quency weighted balanced reduction, and who ap-
plied it to closed-loop systems.

Other extensions of the balancing idea to closed-
loop relevant reduction problems are Graph or frac-
tional balanced reduction (Meyer, 1988) and LQG-
balanced reduction (Jonckheere & Silverman, 1983).
Two other methods that embed order reduction in
a relevant way in the control design process are de-
scribed in Villemagne & Skelton (1988) and Wortel-
boer & Bosgra (1994). In the last method, iterations
with model and controller reduction are exploit-
ed based on closed-loop balanced reduction, which
generalizes frequency-weighted balanced reduction.
Non of these methods is optimal however.

A first step to optimality was the solution of spe-
cific frequency-weighted optimal Hankel-norm re-
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duction problems (Latham & Anderson 1985, An-
derson & Liu 1989, and Zhou 1993). The objec-
tive has always been to get close to the frequency-
weighted optimal solution in Ho-norm. As Zhou
(1993) remarks, the optimal Hankel-norm solution
is no guarantee for small weighted H..,-norm errors.
Another approach to limit these errors could be the
development of weighted Hs-norm optimal reduc-
tion. There has not been much interest in such
a form of Hg-norm optimal reduction. In Halevi
(1992) the minimization of a squared single-sided
frequency-weighted error is addressed. This is e-
quivalent to Hs-norm optimal reduction with either
input weight or output weight. The general case of
input and output weight is treated in Wortelboer
(1994). This paper tries to present a full and trans-
parent derivation of the coupled equations that the
optimal solution has to satisfy. It will be shown
that the nice structure that exists for unweighted
Hs-norm optimal solutions is corrupted by dynamic
frequency weights. This has severe implications for
the implementation of numerical algorithms.

Once we have an efficient algorithm for Hs-norm
optimal reduction, we can sharpen many result-
s that have previously been obtained by balanced
reduction: the reduction errors are always smaller
measured in Hs-norm, and often also smaller mea-
sured in H.,-norm.

An important issue in robust control is the char-
acterization of the robustness objective. In other
words, what variations are to be coped with by the
controller? A mathematical elegant objective is to
meet well-defined closed-loop specifications for a set
of models using a constant feedback controller. This
set may consist of a finite number of models, it can
also be defined as a ‘ball’ around a central model.
In robust control the central model is often called
‘nominal model’, and the ball represents the uncer-
tainty. The issue here is to find an appropriate nom-
inal model based on a discrete set of models. This
paper contributes the following: a specific central
approximation is the best nominal model from both
an Hy-norm and an H.,-norm point of view and lim-
itation of the order of the nominal model requires
the solution of an Hs-norm optimal reduction and
an H.,-norm optimal reduction problem respective-
ly. This also holds in the frequency-weighted case.

The organisation of this paper is as follows. First,
some preliminaries are summarized (Section 2).
These include properties of projections, Hs-norm,
Hoo-norm, and Lagrange functions. Section 3 de-
rives the conditions for the Hs-norm optimal solu-
tion in the frequency-weighted case and links these
conditions to the optimal projection equations for




the unweighted case. The new algorithms are pre-
sented in Section 4. Section 5 describes the optimal
fixed-order central approximation of a model set. In
Section 6 numerical examples is given, and a discus-
sion is given in Section 7.

2 Preliminaries

Let G = (A, B, C, D) represent a minimal real-
ization of a linear stable finite-dimensional system,
& = Az + Bu, y = Cz + Du. The associated trans-
fer function matrix is G(s) = C(sI — A)™ B + D.
We use G = (A, B, C, D) to denote a specific real-
ization, not the associated transfer function matrix
G(s). The order of G (the McMillan degree of G(s))
is the size of A and will be denoted by n. A minimal
n*"_order realization can be written in the following
form b
o= [A12]

Reduction can be achieved by operating on the row
and column dimension of the state-space matrices.
Let L., R, € R™™" with 0 < r < n. We define

LYAR,. | L; B
CRy D
If Lt R, = I, then the reduction is in fact governed
by a projection of dynamics with projection matrix
I, = R,L:. We refer to Wortelboer (1994) for a
detailed description and analysis of the projection
of dynamics principle. Here we just state that any
projection matrix has a factorization IT = RL" of
which the factors satisfy L*R = I. The property
I1? = IT can also be used as a definition of a projec-
tion matrix. The matrix pair [L,, R,] fully defines
the projection of dynamics. In the sequel we will
often use the term ‘projection’ when we mean ‘pro-

jection of dynamics’.

Ge = 2 Rip,. m(Gn) . (1)

Definition 2.1 (H;-norm of Gn(s))
The Ho-norm of a strictly stable and strictly proper
system G,(s) is

1

B9 2
IGll2 = (Lf tr(G,(jw)Gn(jw)) dw) 2)
2m e

with G2 (jw) = GE(—jw).

With H(t) = Ce?'B the impulse response of G,
we also have due to Parseval’s relation (see for in-
stance Rudin 1966)

1
S 2
G|z = (f tr(H* (WH®)) dt)
0

The Hy-norm of a SISO system can be interpreted as
the square root of the energy of the output due to an

impulsive input. For MIMO systems a similar inter-
pretation requires the notion of an impulse with ran-
dom input direction (Zhou et al. 1993), w(t) = nd(t)
satisfying E(nn*) = I,, where E(:) the expectation
operation. Then the Hj-norm is the expectation of
the output energy.

Lemma 2.2 (Properties of the Hy-norm) Let
G(s) and H(s) be strictly stable and strictly proper
square transfer function matrices. Then the follow-
ing two properties hold:

2

ite mE=[5]],

= |GII3 + 1513 (3)

IG + Hl3 +IG - HIl3
=2Gl; +21Hl; (4

Proof: We can prove (3) by exploiting the fact that
G - - e -
tr(| 5 [G* H*])=tx(GG*)+ tr(HH").

Property (4) is also known as the ‘parallelogram law’
in an inner product space (Luenberger 1984). To
prove (4) we first introduce the inner product un-
derlying the Hs-norm:

(G,H):_ZLW/ tr(G G HGw)) dw  (5)

o

Then the following is immediate

IX + Y3 =
z%f tr((X(w) + Y ()" (X (w) + Y (jw))) dw =

(X, X) + {Y,Y) + 2Re (X,Y) =
IX13 + IY]}3 + 2 Re (X, Y)

If we take —Y(s) instead of Y(s), the last term
changes sign and disappears in the addition. a

Notice that the above lemma does not hold for the
Ho,-norm. The Hs-norm can be computed as

IGll2 = V/tx(CPC*) (6)

with P the controllability Gramian of G solved from
the linear matrix equation (the controllability Lya-
punov equation)

AP + PA® + BB* = 0. (7)

We can also use (6, 7) as the definition of the Ho-
norm. This definition will prove convenient in es-
tablishing the dependence of [|G]|z on state-space




parameters of G(s). We remind that ||G||» does not
depend on the realization that is used to compute
the Hy-norm. To find stationary values of the Ho-
norm of G/(s) with respect to varying system param-
eters in (A, B, C, O) we want to express the vari-
ation of [|G||2 in terms of variations in A, B, and
C'. In the sequel we will take the squared Ho-norm
as a starting point in order to get rid of the square
root in (6). The way in which variations in A, B,
and C affect 1||G||3 cannot be determined directly
since we cannot explicitly express the variation of P
in terms of variations in A and B; this is due to the
fact that we cannot solve the linear matrix equation
(7) for P explicitly. From the variational theory of
Lagrange we know that we can incorporate the set
of $n(n+ 1) independent constraint equations from
(7) into the scalar function }||G|]3 = itr(CPC”)
using a Lagrange multiplier vector in an inner prod-
uct (Luenberger 1984). We define the so-called La-
grangian in matrix form:

£(4,B,C,P,Q)% Ltr(CPC*)+
;tr(Q(AP + PA* + BB*))
(8)
with @ a matrix of Lagrange multipliers. The in-
ner product in this matrix formulation is represent-
ed by the trace operation on the product between
@ and AP + PA* + BB*. The Lagrange formu-
lation is based on the assumption that a local ex-
tremum point (fi, ﬁ', é, ﬁ’) of ;tr(CPC*) satisfying
(7) is a regular point (Luenberger 1984). For our s-
mooth problem, this regularity condition is satisfied
for (A, B) a strictly stable controllable pair *. Now,
first-order necessary conditions for an Ho-norm min-
imum can be derived from £(A, B, C, P, Q). Instead
of looking for AO,LD?,(E' that can be varied infinitesi-
mally without causing a change in 1||G||3, we are
now looking for A, B, €', P, Q for which infinitesimal
variations do not change the Lagrangian £. The
idea is that we can allow independent variations of
P and @ in (8) as long as we are looking for 6 £ = 0:
the constraint equations for P and @ result from the
requirement that neither § P nor Q) may change £.
We rewrite (8) using standard trace operations to
obtain

£=L1tr(CPC*+QBB* +2QPA%). (9)

Next consider (independent) first-order variations
6A, 6B, 6C, §P, and 6Q. We then find
0L = tr(CP6C™ 4+ QBSB* +QPSA"
+36P(A*'Q+ QA+ C*C)
+ 3 0Q(AP + PA* + BB*)). (10)

'the authors thank an anonymous referee for pointing to
the importance of this condition.
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We see that the introduction of Lagrange multiplier
matrix @ allows independent variations in P and
returns a new constraint equation resulting from the
required invariability of £ for §P:

A'Q+QA+CC=0 (11)

This is precisely the observability Lyapunov equa-
tion and thus @ can be identified as the observability
Gramian.

From now on we identify P and @ as the con-
trollability and observability Gramian of G =
(A, B, C, D). This simplifies (10) to

§£ =tr(CPSC* + QBSB* +QPSA*)  (12)

Finally we give the definition of the H,-norm of a
transfer function matrix. The H..-norm of G(s) is

”G”DO = sup ‘\max(c;ljwrc(jw})% (13)

3 Necessary conditions for Hj;-norm
optimal weighted reduction

This section is concerned with the construction of
G, that achieves a minimum of |W(Gn — G)V||2.
Transfer function matrices V(s) and W(s) play the
role of frequency weights. Model reduction in a
weighted setting can be very effective to simpli-
fy models that intend fo describe the transition
from (V(s)-)filtered signals to new signals (that may
be filtered additionally by Wi(s)). In Wortelboer
(1994), the derivation of necessary conditions to
solve the Hy-norm optimal frequency-weighted re-
duction problem

n&in”W(G — Gr)V||2

has been given for the first time. This section gives
a more detailed derivation and besides, shows that
in the unweighted case the optimum is governed by
projection of dynamics.

3.1 The square weighted case

Let W = (Aw, Bw,Cw,Dy) be any mini-
mal realization of Wi(s) and similarly let V =
(Av, By, Cy, D) be any minimal realization of
Vi(s). We consider G, = (4, By, Cr, D), i.e. we
do not allow the D-term to change in the reduction.
This presupposes that Dy, and D, satisfy certain
rank conditions (Halevi 1992), and in case both D,
and D, are square, this presupposes that D, and
Dy, are invertible, which does not imply a severe
practical restriction. Next, define

A2 W(G—-G,)V =

Qb | =p
(o3




Following the convention of Wortelboer (1994) we
have (empty entries refer to zero matrices)

Aw BWC —BWC:,-

A BC\ BD,
A= .4, Brcv BrDv
A\( BV

Corn i B Gk =Gl I

Let the controllability Gramian of A be partitioned
as

Py "Pus Por Pouv

P ol x rn sy

P)‘W PY'G Pf' Pf'—’

PV'IrV PVG' PVT PV

The same partitioning is applied to the observability
Gramian 63 Further let

A
P =

(0] 0
A 0 & 0]
1 (@

-

(@) Iy

(14)
We can also partition matrix products. A similar
notation is used. The following matrix product part-
s will be needed in the sequel:
- Fa
E
ray
Ey
A

]
T

—

-
-

"UD 0

i, Q
c?a

b b Ob Ob O
o W toe up op
2
1 * E T )
Qb

=1

el E—l — —
Qb = Eb:p = =

—

J

=
.‘

The only possible variations in ?1, §, and C are due
to 6A,, 6B, and 6C;:

64 = B.64.B, + B.6B,0.E, — B\wBywéC. B,

(15.a)
§B = E.5B,Dy (15.b)
68 = —D,6CE, (15.¢)

Substitution of (15) in (12) gives

a

§8 = w(EPsC +8B 6B +QPsA)

= t((E,QPE,)sA%) +
tw((B.OBD: + E.QPE,Cy)6B]) +
te((—D:, BB, — BY B, OPE,)sC)

For G, = (A,, By, C,, D) to be the minimizing so-

.
lution we need to have § £ = 0. This means that the
following matrix equations have to be satisfied:

0B, = 0  (16.a)

GB).D;, +[0P,vC; = 0 (16
DL[CP), + BLIOP)Ww, = O  (16)

Il

The matrices P, and @, are symmetric positive def-
inite if W, G,V and G, are all strictly stable and G,
is minimal. We define

[ Ry Py,

B wh Bi ] = [ Bis ] P (1T:a)
| Ry Pyy
i LW } |: Qwr

e = bl == Qs 103 azh)
L LV er ]

such that (16.a) can be rewritten as
Lty = Ir. (18)

To derive compact formulas for A,, B,, and C,, we
introduce

Cov = CED D (19.a)
By, = DDz*B.. (19.b)

Then (16.b) can be rewritten as

B, = (L:vav—Prv)év“}-[L; L}, ] x
B PGV -
(AR

Similarly, (16.¢) yields

Cr - BW(QWVRV—I—QW!')-'-([ Dy_vlCW C]+
Bl Qe Quis 1)[%]. (21)

As derived in the previous section, the necessary
conditions also include the following two Lyapunov
equations

B =o0 (22.2)
& = o (22.b)

We use these to derive an implicit solution for A,.
Premultiplying (22.a) by [ L}, L; —I, L} ] and
postmultiplying by [0 O P! O ]* yields

A = LEALR, P AR S LLA RS
12 B (O~ U} + (5B IR\ Re.
(23)

The result given in (23) can also be derived by
premultiplication of (22.b) by [0 O @' O] and
postmultiplication by [ R}, Ry I, R} ]*.
Summarizing, the necessary conditions for an op-
timum are given by (18, 20, 21, 22). These equa-
tions are strongly coupled. Once they are solved,




the reduced order model follows from (23, 20, 21).
It remains to be checked if this reduced order model
is a minimum. In order to find solution strategies,
we first study the easiest case in which the weights
are all static.

3.2 Static weights and optimal projections

For W(s) = Dy, and V(s) = D, (18) and (23, 20,
21) specialize to

LiR, = I, (24)
and
A, = TTAR (25.a)
By B=WEEB (25.b)
G = Giltt: (25.c)

respectively. This means that a necessary condition
for statically weighted Hs-norm optimal reduction
is that the reduced-order model is a projection of
the full-order model. The projection is governed by
the projection matrix /7. = R,.L}. Notice that the
reduced-order model depends on Dy, and D, (which
cannot be concluded from (25) directly), due to the
fact that the optimal projection solution also has
to satisfy the two Lyapunov equations for P and Cj
which include both Dy, and D, .

For the constant weighting case, the Lyapunov
equations for P and Q& can be divided into three
parts each: a part associated with GG, a part asso-
ciated with G, and a part in which the coupling is
expressed. The coupling equations form the crucial
part:

APay + Poy A2 + BB: = O
A'er = QGI"AI’ s C‘mcr =)

Substituting Ps, = R.P, and Qor = —L,Q, (see
(17)), we obtain

AR.P.+ R.P,A. + BB, = O (26.a)

AL Qr + Ly Q- A, + C*C; = 0. (26.b)

Note that P. and @, are the Gramians of G,.
Without loss of generality, we may assume that
the optimal reduced-order approximation G, is in
balanced coordinates. Thus we can always ensure
that P. = Q. = diag(e,). Similarly, we can as-
sume that G is a balanced realization such that
Ps = Qs = diaglogy). Notice that the optimal pro-
jection matrix /7, only defines the transfer function
matrix Cor',ts), the realization emerges after a factor-
ization: with II, = f%,f,: we find the realization
(o}', = (i,.Afﬂ,.. f,,.B, Cﬁﬂ,-, D). In order to arrive
at a balanced optimal approximation we thus need
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a ‘balancing factorization’ of the optimal projection
matrix: I, = R, L} with (L AR,, I*B, CR,, 0) a
balanced optimal rt"-order realization.

In this context it is also interesting to analyse
the influence of the original realization on the pro-
jection matrix. In Wortelboer (1994) it was shown
that there exists a realization of G(s) such that the
optimal reduction is a mere truncation. Then the
associated optimal projection is orthogonal. This
contrasts with Hyland & Bernstein who character-
ize their optimal projection as ‘oblique’.

3.3 Reexamination of the weighted case

At this point we can explain the main difference
between the weighted and unweighted (or statically
weighted) case. The absence of states xy and z, in
the statically weighted case enabled the reformula-
tion of the necessary conditions into the projection
form. We cannot prove that the optimal solution in
the dynamically weighted case can also be obtained
by a projection.

4 Algorithms

In this section we describe the algorithmic approach
to find Hs-norm optimal approximations. The idea
was first infroduced in Wortelboer (1994) and the
computer code developed by the author is freely
available in the form of a toolbox for use with
MATLAB™ (version 4). The so-called Wor-toolbox
for Weighted Order Reduction can be obtained by
anonymous ftp?.

In this section we first give the algorithm for the
unweighted case. The succes of this algorithm s-
timulated the search for a similar algorithm for the
weighted case, but the absence of a projection foun-
dation seems to hamper a reliable implementation.
Nevertheless, solutions for weighted problems with
smooth weights are numerous.

4.1 The unweighted case

The main idea is to use an iterative scheme in which
current reduced-order matrices A,, B,, and C\. (to-
gether with P. and @), ) are substituted in (26) which
is solved subsequently for L. and R, after which
new A,., B,, and C, can be computed (25). The
key modification to this rather simple scheme is a
(minor) adjustment of R, such that L,, R, forms
a projection (i.e. satisfy (24)). A further modifi-
cation is that instead of arbitrary realizations, all
intermediate results are rewritten in balanced form.

2ftp: ftp-mr.wbmt.tudelft.nl
username: anonymous
password: your e-mail address
directory: /pub/wortelboer




Now suppose we have preliminary L,(-m‘RED) sat-
isfying (24) and a preliminary approximation Gl
For k > 0, we can solve for Lf-k), RS-H from

ARPIEE1) 4 pOSE-1 JE-0" 4 gD’ = 0
A LOFE=D | pRIFk=-1) 2(k=1) L o 5k=1) _
Only when the solution has converged L,(-k)*RE.k) =
I, holds. The crucial step in the algorithm is to
adjust the pair L., R, such that

o M R® =1,
o Gs-k) is balanced

The following approach is a slight modification of
the approach proposed in Wortelboer (1994).

Proposition 4.1 (Reorthonormalization) Let
R, € R™™" and L, € R"™" then

A M i
fi’,,- — RT(L:R?‘]wle‘

satisfy L; R, = I, while T can be chosen such that

G, = (L*AR,, L*B, CR., D) is an r*"-order bal-
anced realization.

In the iteration we can replace ¥ by g (and
R® by R.{-Hl)), but this is not very robust. Espe-
cially in the first iterations it is better to use part
of the previous solutions (0 € a < 1)

LE+D) = o L) 4 (1—a) L) (27.9)

*

RO+ 2 o RED 4 (1-a) B, @7

Of course we have to adjust ﬂs.k“) and REHI) again
such that E,(-H” and RQ“H) define a new balanced
approximation (see (1))

é,(.kHJ = R[LE."“).RE-H”](G)’

with LD R+ — 1 If this iteration converges
then this 7*"-order balanced realization will eventu-
ally satisfy the necessary conditions. There is not
(yet) a formal proof of convergence, but the remark-
able results obtained so far suggest that the formula-
tion of the problem in terms of balancing projections
avoids most of the numerical problems encountered
in alternative algorithms. Again it is stressed that
convergence does not imply that the global mini-
mum is found.

4.2 The dynamically weighted case

This scheme can also be extended for weighted op-
timal Hs-norm reduction (see Section 3). In each

; i A o ,
iteration step we compute P and @) for a given Gy,

calculate Ry and Ly and apply a small modification
to get R and Ly that satisfy (18). With this pro-
jection pair and current values for Py, Pryv, Poy,
Py Qwv, Qwr, Qws, and Qw, new B, C; and A,
can be computed. Similarly as in the unweighted
case (27), the modification of Ry and Ly is damped.
This is also done for the updates of B, and/or C,.
The toolbox function weigH2R applies to optimal
Hy-norm frequency-weighted reduction. For the un-
weighted case we have optproj. Both functions
have restart facilities. To check the optimality we
can use gradH2R for both cases: it computes the
derivatives 0£/0A,, 0L/8B,, and §£/3C,.

It is also straightforward to apply optimal
Ho-norm reduction to the Graph of a system
(Vidyasagar 1985). Recall that balanced reduc-
tion of the Graph of a system is used to define
Graph-balanced reduction. The corresponding tool-
box functions are goptH2R, and gbalR.

5 Reduced-order central approxima-
tion

Here we discuss a method to obtain a nominal mod-
el from a discrete set of models. As we have said
in the infroduction, robust control is often pursued
by deriving a controller with a guaranteed perfor-
mance level on a set of models around a nominal
model. The variations that the controller can cope
with are often characterized by an H,-norm dis-
tance measure with respect to the nominal model
and a maximum distance value. In the ideal sit-
uation for robust H.,-control design the centering
should be performed in an H.-norm setting. Let
the H.-norm distance measure be

500 (g: Gnom) = m'.a'x”G(i} == Gnom”m (28)

for G(iy € G any model from the discrete model
set G. The best nominal model then minimizes
5m(g.Gnom). This minimization problem cannot
yet be solved in a structured way.

We can also adopt the point of view of Miyazawa
& Dowell (1989) and cast the problem in an H-
norm setting. Then we use the following distance
measure

G e I

Gnom
G(i+1)

6'.! (g: Gnom) =

2

First we consider the simplest case with two models:
G = {Gq4,Gs}. We are interested in constructing a
third model that is close to both G, and G;. More




precisely we look for a new model Gy, that mini-
mizes 6.0(G,Gm) or 62(G,Gr,). A straightforward
centering, G,, = (G, + G}) achieves

|Ga —= Gm”.ﬂ = |Gy - Gm”n = %”Ga = Gb”.ﬂ

with p any system norm. This means 590(6, )=
311Ga — Gil|oo, whereas 60o(G,Ga) = 600(G,Gh) =
[|Ga — Gb||oo- Similarly we have

62(G,Gm) = £V2||Ga — G2
which is an improvement compared to
62(G, Ga) = 62(G, Gy) = ||Ga — Gp|2-

The price we pay is an increased order. For simula-
tion and control design, we want to have a low-order
model G, with small distance measures 65(G, G, )
and 6.0(G, G,). We formulate the following fixed-
order centering problems (p € {2,00}):

min 8,(G, Gr) (29)

with

6(G,Gr) = “ [ gb] = [}r]c (30)

The minimization problem (29, 30) can be reformu-
lated as an optimal reduction problem. Therefore
we write

P

with

C"m ] '21'(60 &3 Gb)

First consider p = 2. The following expression can
be derived straightforwardly:

< 3
62(6:G1) 2 1Ga—GH2 + IGs—~Cil 2
D) 112G, - Gy) - A2+
13(Gs — Ga)— All2

D 111G - Gills + 21411
Since G, and G are given, optimal centering implies
a minimization of [|A[|s. The optimal centering so-
lution with unconstrained order is G, = G,,. For
fixed-order centering, the optimal G, can be solved
from the following optimal reduetion problem

min ||Gm — Gr||2-
Gr

Note that a similar derivation can be given for prob-
lem (29, 30) with p = co. This will be shown next
for the three model case: G = {G,4, Gy, G.}. We
make G, = %[(_';Q+Gg,+(}'c) and set G, = G, + A.
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The centering objective is the same as in (29, 30),
but here we formulate it as a search for the mini-
mizing A:

nl‘in 0p(G,Gm + A)

Let
Ga (i
H(G, A)=T || Gyl = | & [ A (32)
G I
and S i 1
5-1' —gf —JI
= —% 3 —%I \
=gl gk wal

then 8,(G,Gm + Q) = ||H(G, Q)||p- A crucial prop-
erty of ' is

bl sy o 2 S (33)
Using (33) we can derive

H(G,A)H(G,A) = S(G,A)'S(G,4) (34)

I

C;a . Gm
G — G
5(G,4) = {,_f_G . (35)

V3A

From the definition of ||H||2 (2) and ||H || (13), we
see that both norms have a kernel H* H. Using (34)
we conclude that || H(G, A)||, = ||S(G, 4)||p for both
p = 2 and p = co. Since the only free parameters
for minimizing these norms are within A, we can
conclude that the central full-order approximation
G, is optimal in both Ha-norm sense (62(G,G ),
and H.-norm sense (6.(G,Gm)). If the approxi-
mation has to be of a fixed order, we have to find a
A = G, — Gy, with minimum [|A[|, such that » does
not exceed the maximum allowable value. Thus the
best fixed-order central approximations are optimal
reduced-order approximations of Gp,.

For the general case of centering an arbitrary
number of models we state the following.

Proposition 5.1 (Center of k models)

Let Gy, i € [1,...,k], form a model set G with
strictly stable and strictly proper models, and let
G, be an r**-order strictly stable and strictly prop-
er model. The r**-order solution to the following
nominal modelling problem,

Gy I
min : =\

: (36)
GU;) )T

r

P
for p € {2, 00}, is the solution of the optimal model
reduction problem

min [|Gm — Grlp (37)




with

k
hd l il
Crm — ; ._E . G(,‘]. (38)

Proof: Let G, = G + A, substititute this in the
p-norm expression of (36), giving

G(” d g
13 R A e B, (39)
Gy | I 4
with
[ T T
1
1= 7 — =
. k . .
| Iyl el

For p € {2, 00}, we can invoke the I'-property
[; [][‘: (O .- o]

and rewrite (39) as

Gy = Gm Ga)
: B e - (40)
Gy = Gm Gr)
VE A 5 vk A :

Minimization of (40) implies minimization of || A[[p.
0

The optimal solution can be interpreted as the opti-
mal reduced-order approximation of the mean mod-
el G. The result of Miyazawa & Dowell (1989) is
covered for p = 2. Note that the ultimate goal in
centering for robust H., control design is the min-
imization of 8o0(G, Gy) (28) which is different from
the minimization of 6. (G, G,) treated in the propo-
sition above. Notice that the centering is restricted
to stable models.

The centering problem can also be posed n a
frequency-weighted setting. It can be shown easi-
ly that the full-order central approximation (38) is
also the minimizing solution of

WGy w
: V-1 ¢ | GnV
WG(;,:) W 5
with Wi(s) an output weight and V(s) an input
weight. The difference with the unweighted case is

that the fixed-order central approximation has to be
solved from a weighted optimal reduction problem:

rgin”W(Gm -G )Vl|2

6 Numerical examples

First we test our algorithm for weighted reduction
on a test problem defined in literature, and second
we look at the problem of finding a single nominal
model from two slightly different models of the same
order.

6.1 Frequency weighted reduction of a
sixth-order filter

As a first example we take the system and weights
as in Latham & Anderson (1985). G(s) is a sixth-
order Butherworth filter with 3dB point at w =1
(low-pass filter).
1
Gg(s5) = s

s + 3.8637s° + 7.46415% +
9.1416s> + 7.46415% + 3.8637s + 1

1l

n(s)

To have a good approximation for frequencies
around w =1, Latham & Anderson proposed a
frequency-weighted optimal Hankel-norm reduction
technique using the following type of second-order
weighting functions

(s +1)?

Wi(s) = —————
®) s2+2as+1

with 0 < @ < 1. Primarily it was their objec-
tive to make ||W(Gs — G4)||lcw as small as possi-
ble for G4(s) a stable fourth-order approximation.
Here we also take ||W(Gg — G4)||2 in consideration.
We take o« = 0.1. For this case, Latham & Ander-
son found a weighted Hankel-norm optimum (Ga(s))
with ||W(Gs — Ga)|le = 0.031. The authors did
not provide the model data nor the Hy-norm of the
weighted error. For this weighted reduction prob-
lem we have computed the following fourth-order
approximations (see Wortelboer 1994 for a full ac-
count of the notation):

balR4(Gs) = G4
balRs(WGe) = Ga
H, optimal:  optH,R4(Gs) = G4

weighted H; optimal: optH,R4(WGs) = G4

balanced:
weighted balanced:

The computational cost to find

—0.0474s% 4+ 0.1591s% — 0.3339s 4 0.3749
51+ 1.3834s% + 1.792652 + 1.0764s + 0.3891

&y =

was considerable compared to the others. The con-
vergence to the (unweighted and weighted) optimal
solutions G4 and Gy is shown in Fig 1. Table 6.1
shows that the weighted solutions (underlined) are
indeed better than the unweighted ones and that
the H,-norm optimal solutions are better than the
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Fig. 1: Convergence to optimal solutions

| G TnAlz 1Al |
balR4(Gs) || 0.064 | 0.209
balR4(WGs) (| 0.037 | 0.050
optH,R4(Gs) || 0.058 | 0.182
optH,R4(WGe) || 0.034 | 0.040

Table 1: Frequency-weighted reduction errors:

A=W(Gs — Gy)

balanced solutions. Finally it is remarked that the
weighted reduction error measured in H.,-norm can
be reduced by exploiting the freedom in the D-term
of the reduced model. This is common practice in
frequency-weighted optimal Hankel-norm reduction,
but should not be recommended in case the weight-
ed Hs-norm is of concern.

6.2 In between two second-order models

Here we introduce the problem of finding a single
model that is close to two other models with the re-
striction that all three models have the same order.
Let

. ko ,

G, 3 §2 + 2Bawas + w? (ela)
k

Gs - (41.b)

52 + 20wy s + wi

with, kal = 0., ky =210 B =1000500r =2 0102,
wa = 1.1, and wp = 0.9. Let d = [|3(G4 — Gy)|j2- In
this example we have d = 4.9291. The objective is
to find a second-order GG such that

J(G,G) = 6:(6,G)/d (42)

is minimal. We also define
7u(G,G) = ||G=Gall/d  (43.8)
TG, G) = [|G— Gyl|2/d. (43.b)
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The optimal full-order central solution G,, =
3(Ga+Ghy) gives T(G,Gm) = V2 and J.(G, Gn) =
TI(G,Gn) = 1. We compare two methods to con-
struct a line of second-order models in between G,
and G. The first is a mere linear parameter vector
interpolation:

- k‘?
Tl | 52 £t 2,@9‘-‘&?5 + L.:J:}!

with kg = (1—q) ka+q ks, By = (1—¢) Ba+ q Ps, and
wy = (1—q)wa + qwp. The second method is the one
advocated in this paper: centering followed by opti-
mal reduction. In order fo visualize the optimality
of this solution, we first derive a line of second-order
approximations

(44)

G‘"u'i = optHyR2(Gm g) (45)

with
Gm,g = (1—¢) Ga +q Gs. (46)

The central solution (¢ = 0.5) is the optimal one.
Figure 2.a shows that G,—¢ and G,=; are the

[76.6) _][76.6) -] [%6.6) ]

3 3

2 T e =y k 2 u
/ * s, o = =
f i

1 1 ;

g 1 00 = 0.5 £
0 0.5 q ; q 1

Fig. 2: Scaled distance measures for two interpo-

lation methods
aiG= (}r,q h:iGh= é,_q

best approximations for the parameter interpolation
method, meaning that interpolation in this way does
not give a clue for decreasing J(G, ). Figure 2.b
shows that the optimum on the line of approxima-
tions is indeed (E;'..IFO_;;. Moreover J({},é‘,‘q) <9
for all 0 < ¢ < 1, whereas for ¢ = 0 and ¢ = 1 the
maximum value 2 is attained which means that the
trivial fixed-order solutions G, and Gy are worst.

This example also exhibits an important phe-
nomenon in reduction problems. From Fig 2.b

we see that for increasing values of g, j,,(g’,é‘,.rq)

increases and :fﬁ((},é,_q) decreases; the steepest
change occurs at

g~ q=0.62.

This proved to be due to the fact that G,, ; has two
resonance peaks of approximately the same magni-

tude. The Hankel singular values of G, - are:




25.18
25.03
23.156
22.70

G(Gm,ﬁ) = (47)

This suggests that reduction is not appropriate, and
indeed balanced reduction gives bad results. S-
tarting from the balanced approximation, G, =
balR2(G,, ;), our optimal Hp-norm reduction algo-
rithm converges to

x _ —0.04161s+0.3096
"4 T g2 4+ 0.005707 s + 1.2109

with &, = 1.1004, and ,é,. = 0.0025932. Since W, ~
wa = 1.1 and f, ~ fa = 0.002, G, ; essentially fits
the resonance of (1—§)Ga4. Since we know that for
q — 1 the resonance of Gj becomes the dominant
one, there has to be a switch point for some ¢q. To
see if there exists another extremum that essentially
fits the resonance of ¢G4, we restarted the iteration
from §Gjy. After a few iteration steps we found

_ 0.05439s +0.7484 (49)
~ 524 0.01821 s + 0.8090
with w, = 0.89942, and B, = 0.010125 which is

indeed close to wy = 0.9 and B = 0.01. rJLeL

(48)

[}
r_*
g

A= by ek é,.j, A= g s ér.i’ and A =
Gy — G, z. Since [|A||2 = 5.1808, || 4[] = 4.3481

and ||.Zs||g =.2.6272, Cx:',j can only be a local min-
imum. Figure 3 compares the square reduction er-
rors A*(jw)A(jw) as a function of frequency. The
scales are linear in Fig 3, such that the enclosed

area of the curves is proportional to ||A||3. We see

3000 : ————— ‘
| — H,—norm optimal (global)
2500+ --- balanced 1
| ===+ H,-norm extremal (local)
o
2000} i i ;
i | |
1500} il : |
‘1 : l
i :
1000} il 5
i z
500} [\ |
Ry | k
0 ..--'/' 4 \"0-. A
0.8 0.9 1 11

frequency [rad/s]

Fig. 3: Squared reduction errors for ¢ = ¢ = 0.62

that the global optimum fits the w, = 0.9-resonance,
the balanced approximation fits neither of the two
resonances, and the local optimum fits the w, = 1.1-
resonance. Summarizing, the reduction of a fourth-
order model to an optimal second-order model is
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not completely characterized by the necessary opti-
mality conditions: at least two local minima of the
Hs-norm reduction error exist.

Finally we pose the following question: are the re-
duction errors involved in the second-order approx-
imation of G,, » truly larger than the reduction er-
rors involved in the second-order approximation of
G,z with ¢ = 0.5? The answer is no, and this con-
tradicts the common confidence in the importance
of Hankel singular values. The Hankel singular val-
ues of Gy, gy are

33.11
32.95
18.67
18.30

o(Gm7) = (50)

Comparison with (47) usually leads to the conclu-
sion that it is more appropriate to reduce G,, 7 to
order two than to reduce G, » to order two. Table 2
shows that in fact G,  can be reduced at the cost
of a lower error than G,, j, provided we use optimal

Hs-norm reduction instead of balanced reduction.

¢ |IGm.all2 || IGm.g — Grall2 | IGm,e — é",q||2
0.5 4.943 3.507 3.511
0.62| 5.098 2.627 5.181

Table 2: Optimal and balanced reduction errors for
two 4**-order systems Gy, ; and G, s

7 Discussion of usage

The algorithm for optimal Hs-norm reduction
proved very powerful in the unweighted case. The
choice of the initial projection of G, is very impor-
tant. In most cases a balanced projection will give
good convergence. As we have seen, there exist ex-
amples for which balanced reduction does not give
good reduction results, and precisely in these cas-
es optimal Hy-norm reduction should be preferred.
The difficulty then is to construct a good initial
projection. In this respect the interactive tool in-
troduced in Wortelboer (1994) to monitor frequen-
cy response changes as a function of user supplied
interval-based frequency penalty functions is cru-
cial to initialize a promising projection. The us-
er iterates towards a ‘visually’ good approximation
and the algorithm discussed here iterates from there
to the optimal approximation. The weighted case
is considerably harder to solve numerically. The
main advantage above balanced reduction is the op-
timality. Yet balanced reduction remains a valuable
method since it is computationally less demanding




and often achieves both small Hs-norm and H..-
norm errors. As we have said before, such simple
reduction methods are very appropriate in iterative
control design procedures.

8 Conclusion

Necessary conditions have been derived for obtain-
ing a reduced-order model that minimizes a frequen-
cy weighted reduction error measured in Ha-norm
(both input and output weights are allowed). This
new derivation has been specialized to a known re-
sult for unweighted optimal Hy reduction, resulting
in the optimal projection formulation and a new nu-
merical algorithm. Results for unweighted optimal
reduction are often close to balanced approximation-
s and can be obtained in only a few iterations. The
weighted case is considerably harder fo solve numer-
ically. Existence of multiple local minima for our
non convex minimization problem has been shown
in an example. The proposed solutions can play a
role in model-based control design. A special appli-
cation of optimal reduction is the straightforward
construction of a fixed-order central approximation
of multiple models. This central approximation can
be used as a nominal model for controller design,
and the minimized distance to all other models al-
lows a formal robustification of this controller.
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representations
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Abstract. This paper discusses filtering and parametrization issues involved in the usage
of fractional representations in multivariable, approximate and feedback relevant identifi-
cation of a possibly unstable plant operating under closed loop conditions. The knowledge
of the controller is used to access any stable right coprime factorization of the plant by
measuring and filtering the signals present in the closed loop system. By exploiting a spe-
cific class of parametrizations in the estimation of the stable coprime factorization with
a prespecified McMillan degree, a linear time invariant model having the same McMillan
degree will be obtained. In addition the approximate and feedback relevant estimation
of a fized order linear time invariant model based on coprime factor identification leads
to an additional constraint, which can be written down explicitly as a relation between
the filtering of the signals present in the closed loop system and the coprime factors of
the model being estimated. A possible solution to deal with this constraint based on an
update algorithm is presented.

Keywords. System identification; robust control; coprime factors; filtering; parametri-
zation,

ed in order to design enhanced controllers (Gevers,
1993; Van den Hof and Schrama, 1994).

1 Introduction

Induced by the fact that dynamical models ob-

tained from system identification are used as a basis
for model based control design, there is a growing
interest in merging the problems of identification
and control. Models found by system identification
techniques are necessarily approximative since exact
modelling can be impossible or too costly to perfor-
m. The validity of any approximative model hinges
on the intended use of the model and therefore the i-
dentification procedure being used, will be subjected
to several requirements to estimate a model suitable
for control design thoughtfully. This has been the
motivation to develop methods for a feedback rele-
vant identification, which implies that the feedback
relevant dynamical behaviour of a plant operating
in a closed loop configuration has to be estimat-

!The work of Raymond de Callafon is sponsored by the
Dutch Systems and Control Theory Network

To perform a feedback relevant identification, ex-
periments from the real plant, denoted with P,,
operating in a closed configuration are needed to
come up with a model, denoted with P, suitable
for control design (Lee et al., 1992; Hakvoort et al.,
1994; Hjalmarsson et al, 1994a). Since the con-
troller to create the closed loop configuration can
(yet) be unknown, a simultaneous optimization of
identification and control design has been proposed
in Bayard et al. (1992) or Hjalmarsson et al. (1994b).
Furthermore, it has been widely motivated to sepa-
rate the two stages of identification and control de-
sign and to use an iterative scheme of identification
and model based control design (Schrama, 1992a).
One of the first papers using this separation can be
found in Farison et al. (1967) or Schwartz and Stei-
glitz (1971) and more recent examples of iterative




schemes can be found in Zang et al. (1992), Rivera
and Bhatnagar (1993), Bitmead (1993) or Lee et al.
(1993). In such an iterative scheme the controller of
step 2—1, is used to perform closed loop experiments
with the plant P, and to estimate a feedback rele-
vant model P. The model P is used to design an
improved model based controller, denoted by Cp,
again to perform closed loop experiments with in
step 1.

In this paper the identification stage in such an
iterative scheme will be discussed. The identifica-
tion is based on the algebraic theory of fraction-
al representations (Vidyasagar, 1985) and involves
the feedback relevant identification of a coprime fac-
tor realization of a model P based on closed-loop
observations of the plant P, using a controller C
from the previous iteration (Hansen, 1989; Schra-
ma, 1992b; Van den Hof et al., 1993). In order to
control the MecMillan degree of the linear time in-
variant model P, a specific class of parametrizations
is used to parametrize the coprime factorization be-
ing estimated. Furthermore, the approximate and
feedback relevant estimation of a fized order linear
time invariant model gives rise to an additional con-
straint, which can be written down explicitly in case
of the coprime factor identification.

The outline of this paper is as follows. In section 2
some preliminary notations and definitions used in
the sequel will be given. Section 3 discusses the re-
lation between identification and control design. To
deal with the closed loop identification problem, in
section 4 the framework of equivalent open-loop i-
dentification of a coprime factor representation of
the plant P, will be summarized. Section 5 con-
tains the parametrization aspects on the identifica-
tion of a coprime factorization itself and the results
of performing the identification in a feedback rele-
vant way, leading to an additional parametrization
constraint. Possible solutions to cope with this pa-
rametrization constraint are summarized. Finally,
section 6 contains some concluding remarks.

2 Preliminaries
2.1 Feedback configuration

Throughout this paper the feedback configuration
of a plant P and a controller C' is denoted with
T(P,C) and defined as the connection structure de-
picted in figure 1.

In figure 1 the signals u and y reflect respective-
ly the inputs and outputs of the plant P, where v
is an additive noise on the output y of the plant.
The signals u. and y. are respectively the inputs
and outputs of the controller €', and r; and ro are
external reference signal that are uncorrelated with

v
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Fig. 1: feedback connection structure 7 (P, C)

the additive noise v. From an identification point
of view the signals v and y are being measured, v
is unknown and 7y, 7 (and consequently u., y.) are
possibly at our disposal.

It is assumed that the feedback connection struc-
ture is well posed, that is det[I 4 C'P] # 0. In this
way the closed loop dynamics of the closed loop sys-
tem 7(P,C) can be described by the mapping of
[r2 m]7 to [y u]T which is given by the transfer
function matrix 7'(P, C):

TP, 0= [f] (I+cPr-t[Cc I]. (1)

and describing the data coming from the closed loop
system 7 (P, C') in the following way

[:] :T(P,C)[:] + [_{?J [I+PCI™ ' (2)

where the additive noise v := He can be mod-
elled by a monic, stable and stably invertible noise
filter H having a white noise input e (Ljung,
1987). In case of an inlernally stable closed loop
system 7(P,C), all four transfer function matri-
ces in T(P,C) will be stable (Desoer and Chan,
1975; Schrama, 1992b; Bongers, 1994) which implies
T(P,C) € IRH, where IRH ., denotes the set of all
rational stable transfer functions.

The controller C' will be applied to both the real
plant P, and the model P, according to the feedback
connection structure given in figure 1. The corre-
sponding closed loop dynamics of the two different
feedback configurations will be described respective-
ly by the two transfer function matrices 7'(P,, C)
and T(P,C).

2.2 Coprimeness and stability

Using the theory of fractional representations, an
arbitrary plant P is expressed as a ratio of two
stable mappings N and D. Following Vidyasagar
(1985) the following definitions for coprimeness and
coprime factorization will be used, where IRH ., de-
notes the set of all rational stable transfer functions.




Definition 2.1 Let N,D € IRH., then the pair
(N, D) is called right coprime over IRH o if there
ezist right Bezout factors X,Y € RHo such that

XN+YD=1

The pair (N, D) is a right coprime factorization (r-
¢f) of P if det{D} # 0 and P = ND~" and (N, D)

is right coprime over IRH .

Based on the theory of fractional representations
and the usage of left and right coprime factoriza-
tions given in definition 2.1 the following result for
internal stability of a closed loop system 7 (P,C)
can be derived.

Theorem 2.2 Let P = _ND“1 = D'N where
(N,D) is a ref and (D,N) a lcf of P. Let C =
N.D.”* = D,”'N. where (N, D) is a rcf and
(De,N.) a lef of C. Now the following statements
are equivalent

i. the feedback system T (P,C) given in figure 1 is
internally stable

ii. T(P,C) € RHs

iii. A~1 € RHoo, with A:=[ D, N ] [ﬁ]

iv. A1 € RHoo, with A:=[ D ﬁ’][fﬁ]

Proof: Vidyasagar (1985) and Bongers (1994). O

3 Merging identification and control
3.1 Norm based control design

In the analysis of feedback relevant identification,
the characterization of a closed loop performance
criterion plays an important role. This criteri-
on is usually characterized by an objective func-
tion, which depends on a plant P and the con-
troller C' that assemble the closed loop configuration
(Van den Hof and Schrama, 1994).

Definition 3.1 Lel X' denote a complete normed s-
pace, where || - ||x is the norm funclion defined on
X. Let a plant P and a controller C' form a well
posed feedback connection structure T (P, C) accord-
ing to figure 1, and let J(P,C) € X' be a any func-
tion depending on a plant P and the controller C.
Then the objective function 1s defined by the norm

17(P, O)llx

Unfortunately the plant P, under consideration
is unknown and the control design method will be
based on minimization of a closed loop performance

criterion ||J(P,C)||x using a model P. In this way
the control design will be model based and can be
interpreted by the computation of a so called model
based controller, denoted with Cp, such that

Cp = arg mc}n“J(P,C-')HA-. (3)

This minimization gives rise to a value of the ob-
jective function given by ||J(P,Cp)||x and can be
classified as the design cost (Gevers, 1993). Apply-
ing the model based controller C's to the real plant
P, gives rise to the value ||J(P,,Cp)||lx which is
characterized as the achieved cost. In this perspec-
tive the controller C'ps is said to satisfy the design

objective for the corresponding model P if
17(P,Cp)llx <7, withy >0 (4)

holds, which is a nominal performance specification.
Related examples can for example be found in Bit-
mead (1993), Gevers (1993) or Van den Hof and
Schrama (1994) for co- or 2-norm based minimiza-
tion.

In this paper the normed space A" is chosen to
be the space IRHo,. The function J(P,C) € IRH o
is taken to be a weighted form of the closed loop
dynamics described by the transfer function ma-
trix T'(P,C) € IRHs given in (1). In this way
J(P,C) = W,T(P,C)W; € RH if W, and W; in
(5) are weighting filters satisfying W,, W; € IRH,

making
I7(P, C)lleo := IWoT'(P, C)Willoo (5)

The objective function given in (5) represents a
large class of co-norm based confrol design schemes
and the usage of the weightings is inspired by
the ability to create a trade off between conflict-
ing requirements and constraints always present
(Horowitz, 1963; Boyd and Barrat, 1991). In case of
diagonal weighting filters, the weighting can be seen
as an additional loop-shaping in the control design
(Bongers, 1994).

3.2 A feedback relevant criterion

From an identification point of view, a model P can
only be an approximation of the real plant P,. The
quality of any approximative model depends on the
intended use of the model. In this perspective, the
question wether a model P is good for model based
control design gives rise to a so called feedback rele-
vant identification, since the quality of the model P
should be evaluated under feedback or closed loop
conditions (Schrama, 1992).

A successful controller Cp, found by the norm
based minimization given in (3) and based on a




model P, gives rise to a value of objective function
||J(f’,Cp)|]X, which is said to satisfy the control
objective (4) for the nominal model P. From this
perspective, the quality of the model P can be e-
valuated by considering the value of the objective
function ||J(P,, C'p)||x when applying the controller
Cp, to the real plant P,.

Unfortunately, the real plant P, is unknown
and the following triangular inequalities (Schra-
ma, 19926) can be used to lower and upper bound
17(Ps, C )l -

|17(Po, Cp)llx <
([7(P, Cp)llx + || J(Po, Cp) — J(P,Cp)||x

_ V(P Cplllx 2
(P, Cp)llx = ||I(Po, Cp) — J(P,Cp)||x

From the first inequality it can be seen that
17(2, Cp)lla + 1 (Po, Cp) = J(P, Cp)lla < v (6)

is a sufficient condition in order to have a mod-
el based controller C' which satisfies the control
objective (4) on the real plant P,. From an iden-
tification point of view the performance degrada-
tion ||J(P,,Cp) — J(P,Cp)|lx for the controller
Cp should be minimized in order to find a model
P = P(0) such that (6) holds and can be seen as a
feedback relevant identification of the plant P.

However, the model P and thus the controller C's
is not available (yet), which give rise fo an iterative
scheme wherein the controller C (from the previous
iteration) is used to evaluate ||J(P,, C)|lx. With
the choice of the objective function given in (5),
the minimization of the performance degradation
[|J(Ps, C) — J(P,C)||x then becomes

min||W, [T(P,, C) — T(P(0), C)Willes:  (7)

By minimizing (7) such that (6) holds, the current
controller C', applied to the plant P,, is guaranteed
to give a similar performance when applying it to
the model P(#) found by the minimization and the
model P(é) can be used for subsequent control de-
sign.

4 Closed loop identification

4.1 Identification of stable factorizations

Approximate identification on the basis of closed
loop experiments could easily be defective due to
the correlation between noise v and input u, (Ljung,
1987). Moreover, an explicit expression for the ap-
proximation of the plant P,, independent of the
noise contribution during the experiments, is needed
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to tune the bias of the model P in a feedback rele-
vant way (7). Additionally, an unified approach to
handle the identification of both stable and unsta-
ble plants P,, that are stabilized during the closed
loop experiments, is preferred. These demands can
be handled by using the algebraic theory of fraction-
al representations and to estimate stable (coprime)
factorization of the plant P,. Several authors have
worked on this topic, see for example Hansen (1989),
Van den Hof et al. (1993) or Lee et al. (1993).

To have access to a factorization of the plant P,,
the following approach can be followed. Consid-
er the closed loop data generating system given in

figure 1 and define » := r; + Cro. With (2) this
yields
r=r1 +0rs =u+Cy (8)
and (2) reduces to
Y P(JSi Sr_l
= " F C
2[5 e e

where S; := [I + CP,]™! is the input sensitivity
function and S, := [I + P,C]~! is the output sen-
sitivity function. Since the confroller C' is used for
the closed loop experiments, the closed loop system
T(P,,C) is assumed to be internally stable. With
theorem 2.2 this yields T'(P,,C) € IRH making
both P,S;, S; € RH . in (9) but not necessari-
ly coprime, which is summarized in the following
corollary.

Corollary 4.1 Let a plant P and a controller C
create an internally stable feedback system T(P,C)
then (PS;, S;) 1s a rcf of P if and only if C € IRH .

Proof: See de Callafon (1994). O

Hence P,S;, S; can be considered to be a sta-
ble right, but not necessarily coprime, factorization
(No, D,) of the plant P,, with N, := P,S; and
Do = S,'.

4,2 Identification of coprime factorizations

To avoid the presence and estimation of unstable ze-
ros in the factorization (PS;, S;), which gives rise to
hidden unstable modes in the representation of the
plant P,, the factorization needs to be coprime. For
an unstable controller C', the factorization (PSj, 5;)
is not coprime, as mentioned in corollary 4.1, while
the operation given in (8) yields an unbounded sig-
nal. Furthermore, a rcf is not unique and access
to factorizations different from (P,S;, S;) would be
preferable. In order to fulfil these requirements, an
additional filtering of the signal r is introduced with
z ;= F'r, similar as in Van den Hof et al. (1993) or




de Callafon el al. (1994). With (2) and (8) this
yields

e=F[C I] [H:F[c I] [:] (10)

and (2) now reduces to

=1 4
[ﬂ = [PQSF’: ]z+[_é‘:s,o]f{e (11)
where (PS;F~!,8;F~') again is a (right) factoriza-
tion of the plant P,.

In Van den Hof et al. (1993) the freedom in choos-
ing the filter F is found by restricting both the fac-
torization (P.S; F~1, S;F~') and the map F[C I] in
(10) to be stable. However, stability of the map
F[C I] is not necessary in general. In the case that
ro(t) = 0 Vi, # = Fry, hence stability of F is re-
quired only. By restricting (PS;F'=%, S;F~1) to be
a rcf, stability of F[C I] is implied directly and is
summarized in the following lemma.

Lemma 4.2 Let a plant P and a controller C :=
f)c']Nc, where (D., N.) is a lef of C, form an in-
ternally stable feedback system T (P, C) then the fol-
lowing conditions are equivalent

() (PS;F~Y,8;F~) is a rcf.
(i) F = WD, with W, W=! € RH
and imply F [ C' I | € RHco.

Proof: See Van den Hof et al. (1993) or de Callafon
(1994). 0

Lemma 4.2 is a generalisation of corollary 4.1 and
characterizes the freedom in choosing the filter I by
the choice of any stable and stably invertible filter
. The choice of W however can be related to the
choice of an auxiliary model P, and an auxiliary
controller Cp with T'(Pz, Cy) € IRHo (de Callafon,
1994). Since C, can be any controller, it can be
chosen to be equal to the controller C' that the con-
trols the plant P, under consideration. In this way
the filter F' in lemma 4.2 can be characterized as
follows.

Corollary 4.3 Let a plant P and a controller C
create an internally stable feedback system T(P,C)
and let (N, D) be any rcf of any auzriliary model
P., then

F = [D; +CN,]™! (12)

satisfies the conditions of lemma 4.2 if and only if
T(Py,C) € RH -

Proof: See Van den Hof et al. (1993). o

With the result of lemma 4.2 the following propo-
sition for the open loop identification of a right co-
prime factor can be given.

Proposition 4.4 Let the plant P, and a controller
C creale a stable feedback system T (P,,C'), then the
closed loop data [y u]T in (2) can be rewritten into

(4] = 3c] e+ L Ju+mars

where x s given in (10), F is any filter satisfying
lemma 4.2 and (N,, D,) 1s a ref of the plant P, given
by

i

QS;'F_‘i =

U~

Il

N ] [I+CP,)~[I + CP,]D;
(13)

Proof: By use of (11) with N, := P,S;F~! and

D, := S; F~1 and direct application of corollary 4.3.
Equation (13) is found by substituting (12). O

—

The specific ref (N,,D,) in (13) of the plant
P, to be identified is related to the filter F' since
N, = P,S;F~* and D, = S; F~'. With F given by
(12) in corollary 4.3, the rcf (N,, D,) is related to
the ref (N, D;) of the auxiliary model P, used to
create the filter F' and is summarized in the follow-
ing corollary.

Corollary 4.5 The rcf(N,, D,) of the plant P, giv-
en in proposition 4.4 and based on the realization of
F given in corollary 4.3, salisfies

[Do+CN,]=F ' =[D: +CNz]. (14)

Proof: With N, = P,S;F~! and D, = S;F~1,
[D, + CN,] = [I 4+ CP,)S;F~! = F~! proving e-
quation (14), where F is given in (12). O

The transfer function matrix [D, + C'N,] is un-
known, since it contains the specific ref (N,, D,) of
the unknown plant P,, but (14) indicates that this
can be replaced by the filter operation F'~!, which is
completely known. From corollary 4.5 it can also be
seen that (N,, D,) can be of high order, containing
redundant dynamics. A sensible choice of the model
P, may lead to cancelling of redundant dynamics,
which is used in Van den Hof et al. (1993) to esti-
mate possibly low order (normalized) factorizations
of the plant P,.

The same approach of filtering signals present
during the closed loop experiments is also being used
in the two stage method described in Van den Hof




and Schrama (1993). In this method the filter F
is given by an accurate estimate of the input sen-
sitivity function S; = [I + CP,]~!. The specific
factorization (N,, D,) to be identified becomes ap-
proximately (P,, I) and an estimate of P, is found
by estimating N, only. It should be noted that
F = [I + CP,)~! does not satisfy the conditions
mentioned in lemma 4.2 and clearly, the factoriza-
tion (P,, I) is not coprime over IRH,, for an unsta-
ble plant P,. Moreover, if the filter F' is given by
an approzimation of the input sensitivity function
[I + CP,]~", the situation can become even worse
since both N, = P,S;F~! and D, = S;F~! can
become unstable. This is due to the fact that F~—1,
which is the inverse of the estimated input sensi-
tivity function, can be unstable and the unstable
modes will not be cancelled completely in the oper-
ation P,S:F~! or S;F~L.

The estimate of the right coprime factorization
(N,, D,) in Van den Hof et al. (1993) and de Calla-
fon et al. (1994) is found by a 2-norm minimiza-
tion based on a prediction error method with an OE
(output error) model structure (Ljung, 1987). How-
ever, for sake of analysis and to maintain generality,
it is assumed here that an identification procedure
based on the data given in proposition 4.4 is able to
come up with an estimate 0 given by

N, N(0)
& ([ Do] [ ) | )"
where Wy, W are arbitrary weighting functions and
[|- ||l is a norm function to be specified. The role of
the weighting functions Wy, Wa, the norm function
|| - [lx to be used and the parametrization of the

factorization (N (0), D(@)) will be serutinized in the
following section.

(15)

&

f = arg mﬂin

5 Estimation of coprime factors

5.1 Feedback relevant identification

In order to perform a feedback relevant identifica-
tion, the norm of the difference AT(P,, P,C) :=
W, [T(P,, C)-T(P,C)]W; introduced in section 3.2,
needs to be minimized for a fized order model P.
Using the filter F' of corollary 4.3 the mismatch
AT(P,, P,C) can be expressed in terms of the
weighted difference between the ref (N,, D,) and
(N, D) respectively of the plant P, and the model
f’, along with an additional constraint, depending
on the filter F' being used. This is summarized in
the following lemma.

Lemma 5.1 Let the plant P, with ref (N,, D,) giv-
en tn corollary 4.5 and a controller C create an in-
ternally stable feedback system T(P,,C). Consider
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a model P with rcf (N, D) and any filter F' satisfying
lemma 4.2 then

AT(P,, P,C) = W,[T(P,,C) - T(P, C)|W;
equals
N

D

)F[C 1w

DyeN=F-!

Proof: With (N,,D,) as ref of P, the matrix
T(P,,C) can be rewritten as

T(P,,C) = [g ] [Do+CNJ*[C 1]
and using the fact [D, + CN,] = F~! from (14) in
corollary 4.5, this can be rewritten into

T(PO.C)z[N"]F[CI].

D,
With (N, D) as ref of P, the matrix T(P, C) equals

N

b [D+CN]7 [ C 1]

and under the constraint [D+CN] = F~! this yields

T(P,C):[g}l?[c 1]

making T(P,, C) — T(P, C) equal to
N1 |
B, D

Clearly, lemma 5.1 reflects an additional con-
straint on the parametrized coprime factorization
(N(8),D(8)) of the model P to be identified. In
case the choice of the filter F' is replaced by the
choice of a ref (N, D;) of an auxiliary model P, as
in corollary 4.3, the constraint equals

)F[C 1]

D+CN=F-1
]

[D(0) +CN(0)] = F~' =[D; +CN:]  (16)
which has to be incorporated in the feedback rele-
vant identification of a model P.

With the result of lemma 5.1 the following obser-
vations can be made for the weightings W;, Ws and
the norm function ||:||x in (15), in order to minimize
the feedback relevant criterion given in (7).




Proposition 5.2 The feedback relevant criterion of
(7) and the estimation problem of (15) can be made
compalible by taking Wy = W,, Wo = F[C IIW;,
[|“llx = || |leo and satisfying the constraint given in

(16), which yields
N, N(8)
([ 2:]-15w 1)

Fl[C 1]W;

{n o]

0 = arg ming

(17)

D4+CN=F-1

Proof: With W, = W,, Wy, = F[C I]W; the argu-
ment of || - ||x in (15) equals the argument of || - ||«
in (7), by substituting the results of lemma 5.1. 5-
ince the argument AT(P,, P,C) € IR, the norm
function || - || in (15) can be chosen to be || - ||
and both (7) and (15) are equal. a

5.2 Minimization with constraint
According to proposition 5.2, the minimization of

min | Wo[T(Ps, C) — T(P(6), C)IWillx

for any norm function || - ||x can be replaced by
the minimization given in (17) and involves basically
a non-linear minimization for a model P(#) with
a specified McMillan degree, even if the model is
parametrized linearly.

To avoid the use of the constraint (16) in the
minimization, an iterative scheme of minimization
without the constraint in step ¢ — 1 and updating
the constraint in step ¢ was proposed in de Calla-
fon et al. (1994) and was based on the estimation of
normalized coprime factors. However, updating the
constraint involves only the update of the filter F,
used fo create the signal z in (10). In case the filter
F is defined via a ref (N, D) of any auxiliary mod-
el P as in corollary 4.3, (N, D, ) can be computed
directly and is given in the following proposition.

Proposition 5.3 Lel the filter F in (10) be given
by corollary 4.3 then the ref (Ny, Dy) given by

][ 50]

D(0)
satisfies the constraint given in (16).

Proof: Similar as in corollary 4.5. o

Clearly, the estimate of the ref (N (), D(€)) in
proposition 5.3 is not available (yet). Taking any
ref (Nz, D) such that P, = N.D,~! satisfies
T(Py,C) € IRHo, this gives rise to an update algo-
rithm to handle the minimization given in (17) for
performing a feedback relevant identification of the
plant P, as indicated in proposition 5.2 and can be
summarized as follows.
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1. In step i, create F; from corollary 4.3.

2. Estimate a ref (N(8;), D(6;)) based on a para-
metrization given in theorem 5.4 and the min-
imization given in proposition 5.2 without the
constraint (16).

3. Update the rcf (N, D) with proposition 5.3
according to

[Nri+1
Dm‘+1

. W | N ()
] i Al ) l D(6;)
making D(H;',')+C‘*\’(t§‘-) = Dziy1+CNyziyy and
Py = Ngiy1 D7y with T(P;,C) € RHoo te-
mains fixed for all 7.

4. i:=1+1 and go to 1.

If the iteration converges then D(6;) + CN(6;) =
D,; + CN,; is independent of i and the constrain-
t (16) has been satisfied, thus a feedback relevant
estimate P of the plant P, has been obtained ac-
cording to proposition 5.2. A rigorous proof of the
convergence of the iteration is not available (yet)
but extensive simulations reveal promising results.

5.3 Parametrization

To control the McMillan degree of the model P =
P(#) = N(0)D(0)~! being estimated, the factor-
ization (N (@), D(f)) has to be parametrized in a
special way and boils down to the fact that both
N(8) and D(8) should have common stable modes.
Furthermore, any common unstable zeros should be
avoided to ensure coprimeness of the factorization
(N(8), D(8)). The result has been stated in the fol-
lowing theorem.

Theorem 5.4 Let (N, D) € RHo be given by a
minimal and stable state space representation

- = [Cn En
(125 [z ))
such that det{Ep} # 0 and

N(z) | _ [gg][zf—f{]'19+[gg]

D(z)

then
(i) det{D} #0

! LG
(ii) P := ND  is given by the state space repre-
sentation [A, B, C, E] with

A = A-BE;'0p

B =" BE}"

C = Cny—ENER'C (8)
= E‘NEal




(iii) (N, D) is a ref of P.

Proof: The factor D has a state space represen-
tation (4 B,Cp, ED) and due to the non-singular
feedthrough matrix Ep, D is always invertible hav-
ing a state space representatlon given by (A —
BFD C'D,BEE y—FEp A T "D ) which proves (i).
N has a state space representation (A4, B, Cx, Exn).
Performmg the series connection of D ey and N in

P=ND" , basic matrix manipulation yields an
extended st.ate space representation, wherein n un-
controllable states can be omitted, where n is the
dimension of A. This leads to the state space rep-
resentation given in (18] which proves (ii). From
this, the matrices A, B, Cn, Cp and En can be
found from (18) leading t.o

A = A-BK
B = BEp
Cre. =o€ — EX
Up, = =K
Enx = EEp
making
N(z) = ([C - EK][z]I- A+ BK]"'B+ E)Ep
‘ = N(z)Ep € RH
D(z) = (=K[zI-A+ B;'\] 1B+ DEp

D(2)Ep € RHos

(19)
The factorization (N(z), D(z)) is proven to be a
right coprime factorization in Nett et al. (1984).
Since the factorization (N(z), D(z)) is post multi-
plied by a constant non-singular matrix Ep only,
the factorization (N (z), D(z)) is a also a ref, which
proves (1ii). o

The result of theorem 5.4 gives rise to a wide
class of parametrizations needed to estimate a r-
cf (N(8), D(0)), since it involves the parametriza-
tion of a stable, minimal state space representation
[4,B,C] with CT = [C% CF), wherein the direct
feedthrough matrix of the factor D is restricted to
be non-singular. Restricting the estimate to be sta-
ble and minimal can be enforced by using the specif-
ic parametrization of asymptotically stable systems
as given in Ober (1991) and further elaborated in
Chou (1994). This gives rise to an estimate of the
factorization (N (@), D(0)) which is guaranteed to be
stable, minimal and balanced.

Using prediction error methods (Ljung, 1987) to
estimate the state space matrices in theorem 5.4, a
stable and minimal state space estimate with non-
singular feedthrough matrix Ep is found in the
generic case, which is due to the following fact-
s. Firstly, the map from 2 onto [y u]” is defined
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to be stable, according to proposition 4.4. Sec-
ondly, the map from z onto u is given by [I +
CP,]"'[I+CP;] D, according to (13), which is non-
singular by definition. In this way the matrices are
parametrized by standard pseudo canonical (over-
lapping) forms (Gevers and Wertz, 1984) without
stability or non-singularity condition. Finally it
should be noted that the matrix operations given
in (18) leads to model P with McMillan degree less
than or equal to n, where n is simply the McMillan
degree of the factorization (N, D) being estimated.

Conclusions

In this paper the filtering and parametrization issues
involved in the usage of fractional representations in
multivariable, approximate and feedback relevant i-
dentification of a possibly unstable plant operating
under closed loop conditions have been discussed. It
has been shown that any stable right coprime factor-
ization of the plant can be accessed by the filtering
of signals present in the closed loop system. The
freedom in choosing the filter has been character-
ized by employing the knowledge of the controller
present during the closed loop experiments.

Consequently, a stable right coprime fractional
representation generated by the closed loop system
and the filtering being used, can be estimated. In
order to have a model with a prefixed McMillan de-
gree, a specific class of parametrizations with the
same McMillan degree can be used to estimate a
stable right coprime factorization of the model.

Finally, the approximate and feedback relevan-
t estimation of a fixed order linear time invariant
model based on coprime factor identification leads
to an additional constraint. This constraint is in-
trinsic in many schemes on feedback relevant iden-
tification but can be written down explicitly in case
of the coprime factor identification. The constrain-
t boils down to a relation between the filter used
to gain access to the coprime factors of the plant
and model being estimated. A possible solution to
deal with the constraint by updating the filtering is
presented here.
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An instrumental variable procedure for the identifica-
tion of probabilistic frequency response uncertainty
regions?

Richard G. Hakvoort and Paul M.J. Van den Hof
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Abstract. A procedure is developed to identify probabilistic frequency response system
uncertainty regions., The procedure utilizes time-domain measurement data and prior
information about the system and the noise. There are no restrictions on the input
signal, it may even be generated in closed loop. The system is assumed to be linear,
time invariant, and a bound is assumed on the system’s (generalized) pulse response
parameters. The noise is assumed to be a realization of a stationary stochastic process,
and independent of the input signal (in open loop operation) or an external reference
signal (in closed loop operation). Frequency response confidence regions are constructed
by explicitly evaluating the bias and variance errors of an instrumental variable estimate.

Keywords. uncertainty bounding identification, probabilistic uncertainty regions, instru-
mental variable model, bias and variance expressions

1 Introduction

For robust controller analysis and synthesis it is nec-
essary to have available a bound on the model er-
ror, the difference between plant and nominal mod-
el. For example robust stability can be established
if frequency response uncertainty regions are avail-
able. Many authors have considered the problem
of deriving frequency response system uncertainty
regions on the basis of measurement data and pri-
or assumptions about system and noise. The two
main different uncertainty bounding approaches are
the deterministic and the stochastic approach.
Procedures to derive frequency response uncer-
tainty regions based on deterministic prior as-
sumptions are presented in, for example, De Vries
and Van den Hof (1992), Hakvoort (1993, 1994a),
Hakvoort and Van den Hof (1993), Lamaire et al.
(1991) and Wahlberg and Ljung (1992). In par-
ticular the noise is assumed to behave worst-case
deterministic. The resulting uncertainty regions are

{This paper is presented at the 33rd IEEE Conf. Decision
and Control, Lake Buena Vista, FL, December 14-16, 1994.
Copyright of this paper remains with IEEE.
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correct provided the prior information that is used is
correct. Unfortunately in practice it is often rather
difficult, if not impossible, to guarantee that the pri-
ors, such as assumed noise bounds, are correct.

The stochastic approach is represented by e.g. Ba-
yard (1992), De Vries and Van den Hof (1993) and
Ninness and Goodwin (1992). In this approach the
noise is assumed to behave noisy, i.e. random and
uncorrelated to the input signal. Besides that also
prior assumptions about the system are made, which
vary from deterministic, De Vries and Van den Hof
(1993), to stochastic, Ninness and Goodwin (1992).
Typically these procedures yield uncertainty regions
which are correct with a certain specified probabil-
ity, provided the prior assumptions that are made
are correct.

In this paper a new procedure is presented to i-
dentify probabilistic frequency response uncertain-
ty regions. The procedure involves the explicit cal-
culation of the bias and variance errors of an IV
(Instrumental Variable) estimate. A linear model
parametrization in terms of general basis function-
s is used, see Heuberger et al. (1993) and Ninness




(1993, Ch. 2). In this way approximate knowledge
about pole locations of the unknown system can be
incorporated by the choice of proper basis functions.
In fact the present procedure is the statistical coun-
terpart of the deterministic uncertainty bounding
procedure described in Hakvoort (1994a). There are
no restrictions on the input signal, it need for exam-
ple not be sinusoidal. The basic assumption about
the noise process is that it is stationary and inde-
pendent of the input signal in open loop, or an ex-
ternal reference signal in closed loop. The probabil-
ity density function of the noise process is arbitrary
and not assumed to be known. Instead asymptotic
results are derived with a central limit theorem.

The present approach is different from the one in
Bayard (1992), where a multisinusoidal input signal
is needed, and the noise is assumed gaussian with
known noise generating filter. Unlike in Ninness and
Goodwin (1992) no stochastic assumptions are made
about the undermodelling part. In the approach
of De Vries and Van den Hof (1993) a frequency
domain approach is taken, and also a periodic input
signal is needed.

The outline of the paper is as follows. In the next
section the identification setting is described. Sec-
tion 3 presents the instrumental variable estimate.
In Section 4 the frequency response error of the IV
model is evaluated, which leads to probabilistic fre-
quency response system uncertainty regions. In Sec-
tion 5 the results are discussed.

Because of space limitations all proofs have been
omitted. These can be found in Hakvoort (1994b).
In this reference also simulations and an application
of the identification procedure to a multivariable in-
dustrial process can be found.

2 Identification Setting

Consider the linear, time-invariant, discrete time,
causal and £ -stable SISO system Go(z) represent-
ed by

Go(z) = Y _ go(k)Pe(2),
k=0
where { Pi(2)}k=0,...,00, is some specified set of basis
functions given by

Piz) =Y pi(K)z", k=0;:::500;

ki=0

for given and known scalar pulse response parame-
ters pp(k'). These basis functions can for example
chosen to be the pulse functions, or the Laguerre
functions, or general orthonormal basis function-
s, see Heuberger et al. (1993) and Ninness (1993,
Ch. 2). The (unknown) coefficients go(k) can be
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considered as generalized pulse response parameter-
s of the system Gy(z).

Consider given input data {u({)};=1,. ~ and mea-
sured output data {y(1)}:=1,.. ~ and the following
input-output relation of the data generating system,

y(t) = Gg(q)u[ﬂ —I—ﬁg(i), f] o kN (1)

where N denotes the measurement time and {eg(?)}
is an unknown additive output noise. There are no
restrictions on the input signal, basically it may be
determined in open loop as well as in closed loop.

It is assumed that a signal {r(t)}:=1,  n is avail-
able, which is highly correlated with the input signal
{u(t)}, but independent of the noise process {eg(t)}.
Let by definition »() = 0 for ¢ < 0. Typically in
open loop operation the signal {r(¢)} is equal to the
input {u(¢)}. In a closed loop environment an exter-
nal reference signal {7(¢)} can be used, or a filtered
version of this signal, r(t) = F(q)7(1).

The following assumptions are made about the
noise process {eo(t)}.

Assumption 2.1 The noise process {eg(t)} s s-
tationary with auto-covariance function R..(7) =
Eeo(t + 7)ea(t), and it satisfies eq(t) = Ho(q)wo(t)
for some {3-stable Ho(q), and where {wo(t)} 5 a
sequence of independent random variables with ze-
ro mean values, variances Ay, and bounded fourth
moments.

Note that the distribution of the noise process is
arbitrary, and not assumed to be known. The fol-
lowing assumptions about {r(¢)} are made.

Assumption 2.2 The signal {r(t)} s a bound-
ed deterministic quasi-stationary signal, hence its
auto-covariance funclion

N
Ry(r)= lim ‘1;\? >t +1)r(t)
=]

erists V.

In order to cope with unknown initial conditions
the input signal in the past is assumed to be bound-

ed by
() < & Vi <0, 2)

for some given #. This bound may result from ac-
tuator constraints and need not be very tight as its
influence on the identification result is restricted.
The coefficients go(k) are assumed to be bounded
by
lgo(k)| < g(k), k=0,...,00, (3)

for given g(k). Moreover it is assumed that the
bound g(k) shows exponential decay rate for k larger
than some k*, i.e.

(k) < Mp*, Vi > &,




for some given M > 0 and p < 1. In Heuberger
et al. (1993) it is discussed that such a bound exists
when an arbitrary £ -stable system is expanded in
a general orthonormal basis.

The identification objective is to derive proba-
bilistic uncertainty regions for the system’s frequen-
¢y response,

Go(e™) =) _ go(k)Pe(e™).
k=0

The identification problem is tackled by splitting the
transfer function Gy(z) into two parts,

Go(z) = én(z)-!-éa(z), (4)
Go(2) = Y go(k)Pe(2), Go(2) = Y go(k)Pe(2),
k=0 k=n+1

for some user-defined truncation value n.

Next deterministic uncertainty bounds will be de-
termined for the tail Go(e™), using the determinis-
tic prior bounds g(k) given in (3). And probabilis-
tic uncertainty bounds will be derived for én(ei“’),
using variance expressions of an instrumental vari-
able estimate. These variance expressions are based
on the stochastic noise assumption 2.1. In the vari-
ance expressions the influence of the undermodelling
part Go(z) is properly taken into account. The sum
of the deterministic uncertainty bounds for Go(e*)
and the probabilistic uncertainty bounds for Go(e™)
provides probabilistic uncertainty regions for the
system Go(e™).

Note that there generally is an optimal value for
n. If it is chosen too small, the resulting bounds will
be completely determined by the prior information
(3), which is generally conservative. If it is chosen
too large, the confidence regions for ég(z) will be
large as the variance increases with the number of
parameters to be estimated. More will be said about
this later.

3 The Instrumental Variable Esti-

mate

Consider the parametrized model

n

G(z) =Y g(k)Pu(2),

k=0

where {g(k)}r=0,.n are the model parameters. De-
fine the model input signal (%) as

- 0, F<;
alfe { () L = e AN
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The model input-output relation is given by
y(t) = Glg)u(t) + e(t) =

> 9(k)Pe(@)u(t) + e(t) =
k=0

Il

Il

> g(k)ywi(t) + e(t),

el
where e(t) is the output error, and

t—1

wi(t) := ) pr(K)u(t = k'), k=0,...,n. (5)

k'=0
Next define the instrumental signals

-1

ve(t) = Pe(g)r(t) = > pe(k'yr(t — k),

Ere=0
=i,

and the matrices

wo (1) vo(t)

W(t) := s V@)= :

wn(t) vﬂ(t}
Also denote B

N=N-1t,+1,

for some integer {; € [1, N), which is user-defined.
The integer t; represents the starting sample used
in the IV estimate, and can be used to reduce the
influence of the unknown initial conditions, as will
become clear later.

Consider the basic IV estimate (Soderstrom and
Stoica, 1989, p. 262; Ljung, 1987, p. 192/193),

9(0) N
=sol{ = a(t)=
i {ﬁ;rx(z)(z) 0},
g(n) e
which is given by
9(0)

=1

1 N
= h{- Y vayw'(t)

] 4

1 N
= =Z V(t)y(t).

(6)
Notice that in case of open loop operation, r(t) =
u(t), this is just a FIR least squares estimate for
general basis functions. The estimated IV model is
given by

3(r)

n
G(z) = 3 G(k)Pi(2).
k=0
This identified model is used to construct frequency
response uncertainty regions. This is done by ex-
plicitly calculating the bias and variance errors of
the IV estimate.




4 TFrequency Response Uncertainty
Regions

An analysis is made of the frequency response identi-
fication error of the instrumental variable estimate.
This then leads to frequency response confidence re-
gions for the system Gy(z).

4.1 The Frequency Response Error of the
IV Model

Consider some frequency w; chosen arbitrarily in
the interval [0,n]. Substitution of the parameter
estimate (6) yields the frequency response of the IV
estimate,

n

G(es) = 3 k) Pu(e) =
= [Pu(e*t; -+ Po(e®9)] -1
{ vaww)y ;;v )y(1)-(7)
Define for t = t;,..., N the signals r1(t) and ra(t)
as
m(t) = [Re Po(e‘““ )---Re (PT(e"“*))]-
- ZV(f)WT(t) ; Ve, (8
ra(t) = [{n (;’ t('e“”’n ~-Im (Pn(e‘“'-fJ)] :
F—Li (z)w?‘(:)-_lvu)‘ (9)

These signals r,(t), p= 1,2, are filtered versions of
the signal r(¢), and they can be computed, as they
only depend on known quantities. They play an es-
sential role throughout the following derivation of
[V model error bounds. Note that they depend on
the frequency w; that has been chosen, but for nota-
tional convenience this dependency is not explicitly
mentioned all the time.

Using (1) and (4) the output y(¢) can be written
as

y(t) Go(q)u(t) + eo(t) =

Go(q)u(t) + Gol(q)u(t) + eo(t) =

= Zgu

+ Z go(k)Pi(g)u(t) + eo(t) =
k=n+1

> go(k)wi(t) + a(t) + b(t) + eo(t),

k=0

)P (q)u(t) +
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where wy.(t) is defined in (5) and

0o t—-1
a(t) = Y go(k) Y pe(K)u(t k'), (10)
k=n+1 k=0
bt) = S go(k) S pe(K)u(t— ). (11)
k=0 R

The signal a(t) represents the response of the fail
Go(g). The signal b(t) represents the response due
to past input signals, the initial conditions. Using
this the following alternative expression can be given

for (j‘(e"‘"'i) given by (7),

N

l’ Z(?l( + ra(1))y(t) =

t=t,

N
- -&;{—Zn(t)—}—rr, (1)) -

a(el'wj) - -

¢ ( go(k)we(t) + alt) + b(t) + "-’u{_"-)) :
k=0

The first term of this expression can be worked out
as follows,

N n
TV: Z ry(t) + ira(t)) Zf}n(k]wk(” =

k=0

-1
Z V(tywT z)]

[Po(e’?) -+ - Pale™)] - l

90(0)
-—Z viowrT@) | : | =
t iy gu(ﬂ)
‘ 90(0)
= [Po(e?) -+ Pa(e™i))] = Go(e'?).
Hu(_ﬂ)
Next define for p= 1,2,
N
d(p) = ) rp(t)a(t), (12)
t1='\:.
fo) = Y rp()b(t), (13)
i=t;

which depend on the frequency w; asrp(t), p= 1,2,
depends on the frequency w;. Again using (4) this
finally gives the following expression for the identi-
fication error,

E::f( xw_,)
= G(e:u,

Go(e™7) =
CJU(CWJ) . G

iu_,] - el




. }%(d(l)+z‘d(2)+f(l]+ff(2)+

N
+ 3 (r(t) + ira(t))eo(t)) — Go(e™7). (14)

L

Basically all terms at the right-hand side of this ex-
pression are unknown. However, it appears possi-
ble to derive a probabilistic distribution for the ter-
m containing eq(t), using assumption 2.1. And the
terms with d(p), f(p) and G(¢"“7) can be bounded
using the prior information (2) and (3).

4.2 Auxiliary Results

In this subsection the various terms appearing in
(14) are evaluated. Consider any bounded signal
{rp(t)} and consider d(p), f(p) defined by (12), (13)
respectively, with a(t), b(t) defined by (10), (11) re-
spectively. Making use of (2) and (3), the following
bounds can be derived,

ld(p)| < d(p) =
oo N t—1
S ak) D) D ek )ult — k)|, (15)
k=n+1 =1, k'=0

which represents a computable bound for the tail
contribution. And,

o0 fos) N

1f(R)] < f(p) :=D_a(k) D | D2 ra@pe(t +1)| @,
k=0 t'=0 |t=i,

(16)

which represents a computable bound for the con-
tribution of the unknown initial conditions. The
actual computation of the expressions involve the e-
valuation of infinite sums. Due to the fact that (k)
shows exponential decay rate in k, and p; (k") shows
exponential decay rate in k' the outcomes are finite.
Computational aspects are considered in Hakvoort
(1994b). Clearly d(p) will be small if n is chosen
large, and f(p) will be small if ¢, is chosen large.

The real and imaginary part of the frequency re-
sponse of the tail, Gy(e“7), can be bounded as fol-
lows,

[Re (Go(e™1))| = Re( > QO(k)Pfc(eiw’)) <
k=n+1
< g(k) |Re (Pe(e“)| :=6(1),  (17)
k=n+41
|Im (Go(ei))| <
< Y g(k)|Im (Pe(e™))| :=6(2).  (18)
k=n+1
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Note that §(1) and §(2) are finite due to the expo-
nential decay rate of g(k). Computational aspects of
the evaluation of these infinite sums are considered
in Hakvoort (1994b).

Next a key lemma is established with respect to
the asymptotic distribution of Z;N::, rp(t)eo(t).

Lemma 4.1 Suppose that {eo(t)} and {r(t)} are
independent and that they satisfy the assump-
tions 2.1 and 2.2 respectively. Consider the
signals {ri(t)} and {rs(t)}, given by ri(t) =
Fi(q)r(t), ra(t) = Fa(q)r(t) for any £ -stable linear
filters Fi(q) and F5(q). Denote

AI'
1 > ri(t)eo(t)
Al{\:r: = Eﬁ t?\:'

3 rat)eo(t)

: v

N N
- { Z r1(t)eo(t) Z ra(t)eo(t) |,

t=t, T=iy

and
N

Af‘ll’? = 1\}-1-11(10 AT;I“;’

Also denote fori,j = 1,2,

] Ntr
BNy e g ri(t)r; (t — 1),
T=—-N+1t,,...,0,
1 N=7
R,".V‘_,.j (= -}-V;_—T ; ri(t + 7)r;(t),
=L N =1y

and RN(7) := RN, (7), i=1,2. Then

N—t, 3=
(i) Av}};r-; = Z = :1T] Reo(r)'
r=—N+t, N
RY(7) Riu(r)
VR R
¥ o Rr (1) Rrira(1)
{1]) Ar]‘-,’— Z Reu(r)[erm{r) Rrg(‘l") ]
N
Zr;(t}eo(t}
ait)y —= [ = etV 7 W

—~ N
vV > ra(t)ea(t)

where N(0,Ar,r,) denotes the Mullivariate Nor-
mal distribution with mean 0 and covariance matriz




Apyrs. Moreover, if AN is invertible,
N N
(v) = | D rit)eot) D ra(t)eo(t)
=1 =i,
N
> mi(t)eo(t)
-1 =i, N—oco
( ru‘;) EN: i (2)
Z (t)ealt)

where x*(2) denotes the Chi-square disiribution with
2 degrees of freedom.

The results given in (iii) and (iv) are asymptotic
results, established using a central limit theorem.
For finite N the given distributions are approxima-
tions of the true ones. However, extensive monte
carlo simulations show that this approximation can
be very good for small N already, see Hakvoort
(1994b). Note that the expression for the covari-
ance matrix in part (i) is a non-asymptotic result,
it is correct for any N.

4.3 TFrequency Response Confidence Re-
gions

Using the results of the previous subsection a com-
putable bound for the IV model error G(e™s) —
Go(e™) is straightforwardly obtained. And as such
a confidence region for the system’s frequency re-
sponse Gg(e'“1) is obtained. The bound is given in
the following main theorem.

Theorem 4.2 Consider the IV estimatle (6) with
[frequency response @'(e“‘”i) given by (7). Suppose
that {eo(t)} and {r(t)} are independent and that
they satisfy the assumptions 2.1 and 2.2 respective-
ly. Let d(p), p=1,2, and f(p), p = 1,2, be given
by (15) and (16) respectively, with ri(t) and ra(t)
given by (8) and (9) respectively. Moreover, let
8(p), p=1,2, be given by (17) and (18).

Let cxr o correspond to a probability o in the
standard Normal distribution, such that, if z €
N(0,1) = prob(|z| € exa) = @ Let cy,a cor-
respond to a probability o in the Chi-square dis-
iribution with 2 degrees of freedom, such that, if
z € x%(2) = prob(z < ¢y,a) = .

Denote matriz-element (i, ) of Aﬁ,! as given in
part (i) of Lemma 4.1 by )\,".\':,.), Moreover introduce

{:;: Ii: ] as the square-root of the inverse of
AN ., provided this matriz is invertible, i.e. I'T =
(A,".\':,.n)_l. Then, if N — o0,

@) |Re (é(e"w:') —Go(e‘“’i))| <
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N ! -
S CNa\/ —}{* e d—f-—\;) = ’-r%l +6(1), w.p. > «,

’Im (C’;‘(ei“’fj — Go(e™ ))‘ <

AN Fie :
<enayf 2+ ‘-f% + f—‘;fi +6(2), w.p. > a.

And, if AN,

is tnvertible,
Re (G(e'“?) = Go(e'9)
Im (G(e™?) — Go(e')

Re (G(e"9) = Go(e™s 3

(1i1) P

Im G'(e""J)— Jo(e
(\/—'!‘ Vi + 15 (d_ _{q—“*‘ (1))

2 2 (2)
VAL TE (B + L4 6))

w.p. 2 @,

The parts (i) and (ii) of this theorem provide prob-
abilistic bounds for the real and imaginary part-
s of the IV model error, and as such for the fre-
quency response of the system Gg(z). These may
be combined into rectangular system confidence re-
gions in the complex plane using Bonferroni’s in-
equality (Manoukian, 1986, p. 49). In particular,
if any complex-valued random variable z has the
property that Re(z) < a, w.p. > «, and Im(z) <
b, w.p. > B, then Re(z) < a Alm(z) < b, w.p. >
fer(l—a) (1.

Ellipsoidal system confidence regions are obtained
with part (iii) of the above theorem, provided the
matrix AY . isinvertible. Note that this is generally
the case, except for frequencies w; = 0, 7. For these
frequencies the signal {rs(f)} is identically zero, as
Im (Py(e'“?)) appearing in (9) is zero. This very
naturally means that for frequencies 0 and 7 there
is no imaginary system uncertainty.

The first contribution to the frequency response
uncertainty regions as specified in Theorem 4.2, cor-
responds to the variance of the IV model, due to the
noise {eg(t)}. The second contribution, with d(p),
is due to the response of the tail Go(g), and repre-
sents a bias contribution. The third contribution,
with f(p), is due to the unknown initial conditions.
Finally, the fourth contribution, with §(p), corre-
sponds to the frequency response of the tail Go(g),
and also represents a bias contribution.

The different error sources in the IV estimate can
be clearly distinguished and traded-off. In partic-
ular the truncation value n can be used to make a
trade-off between bias and variance. A larger val-
ue n means a smaller bias, but a larger variance.
By trying different values an optimal value can be




determined. Similarly the integer t, offers the pos-
sibility to trade-off the influence of initial conditions
to the variance. A larger value £, means a decrease
of the error contribution f(p), but an increase of the
variance, due to a decreasing N=N—-t,+1.

It is emphasized that the identification of the IV
model is not, a purpose in itself, but serves as a basis
for the construction of system uncertainty regions.
The design variables in the IV identification, such as
the IV model order n, should not be used to obtain
a tractable (low-order) nominal model, but should
be tuned in such a way that the uncertainty regions
are as small as possible. The identification of a good
nominal model, suited for use in control design, is
not the issue here.

Remark 4.3 The probabilistic uncertainty regions
given in Theorem 4.2 correspond to an explicit fre-
quency domain variance and bias expression for an
instrumental variable estimate é(ei“”). In case of
open loop identification, if v(t) = u(t), the IV esti-
mate is identical to a FIR least squares estimate.
The expressions have been derived for any set of
basis functions, {Pr(2)}r=0,. 00. Also the contri-
bution of the initial conditions and undermodelling
are properly taken into account.

In lilerature variance expressions are gien for [V
and FIR estimates, however mainly with respect to
the parameter variance, assuming that the system
is in the model set, and neglecting the influence of
the initial conditions, see for example Ljung (1987,
Ch. 9) and Siderstrém and Stoica (1989, Ch. 8).
Some progress has been made in Hjalmarsson (1993)
and Hjalmarsson and Ljung (1993), where for a dif-
ferent identification setting a procedure is presented
to incorporate the influence of the bias when com-
puting the variance.

Theorem 4.2 provides frequency response confidence
regions for the unknown system Gg(z). Howev-
er, it appears that these can only be calculated if
the auto-covariance function of the noise process is
known, as AN . given in part (i) of Lemma 4.1 con-
tains R,(r), 7= =N +t,,...,N —t,. In Hakvoort
et al. (1993) a procedure is described to estimate the
auto-covariance function Re,(7) from measurement
data. In Hakvoort (1994b) it is shown, by means of
monte carlo simulations, that this estimate is quite
accurate, even if it is based on a small amount of
data.

5 Discussion

In this paper an identification procedure has been
developed which yields confidence regions for the
frequency response of some stable LTI system. The
procedure involves the explicit calculation of bias
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and variance errors of an IV or FIR least squares
estimate. Important features of the identification
procedure are:

e Essentially the procedure is stochastic. Proba-
bilistic uncertainty regions are calculated based
on data, deterministic system priors, and s-
tochastic noise priors.

e The actual computations can be performed
quite efficiently. No mnonlinear optimizations
are involved, as use is made of a linear system
parametrization, and consequently there is no
problem with local optima.

e The required prior information can be reliably
estimated from data.

There are no restrictions on the input signal, it
need for example not be periodic. It is even not
necessary that the input is generated in open
loop.

¢ No order assumption about the system is made.

e The procedure is easily extendable to MIMO
systems.

e Rough prior knowledge about the system, or
more specifically pole-locations, can be incor-
porated by using generalized orthonormal basis
functions.

e Unknown initial conditions are properly taken
into account.

The identification procedure is robust for noise
outliers, and small errors in the prior informa-
tion. This means for example that if the system
has a small nonlinearity (measured in terms of
its £oo-induced norm), the resulting uncertainty
regions are just slightly erratic, and hence are
still (approximately) valid.

On the other hand some drawbacks of the proba-
bilistic uncertainty bounding identificiation proce-
dure developed in this paper, are:

o Although all computations can be carried out
efficiently and accurately, the identification
procedure requires a lot of computations. This
means that on-line application of the procedure
seems infeasible.

e The procedure makes use of results which are
asymptotic in the number of data. As in appli-
cations there are always finite-data records, the
results might not be valid in practice. On the
other hand, monte carlo simulations (Hakvoort,
1994b) show that the error caused by the finite-
ness of the number of data can be very small,
even for small values of N. The acccuracy of
the finite-data approximation depends on sev-




eral factors, such as the length of the pulse re-
sponse of the noise generating filter, and the
actual distribution of the noise process.
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Abstract.

A recently developed identification procedure is applied to measurement data

of a multivariable industrial glass tube manufacturing process. Both a nominal model and
probabilistic frequency response model error bounds are identified with this procedure.
The nominal model is used to design an H.-controller. The model error bounds are
used in a p-analysis to assess robust stability of the designed controller before actual
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1 Introduction

In this paper the problem is discussed of identifi-
cation and robust control design of a multivariable
industrial glass tube manufacturing process. Due
to increasing demands on the quality and quantity
of the glass tubes a high performing controller has
to be designed for the production process. Besides,
the controlled system has to be robust against (se-
vere) fluctuations of the dynamical behaviour of the
uncontrolled process. The design of a robust con-
troller requires the specification of a nominal model
of the process dynamics and explicit error bounds on
the frequency response of this model, see for exam-
ple Maciejowski (1989), Morari and Zafiriou (1989).
The modelling is done by using identification tech-
niques based on time-series of several process pa-
rameters. The industrial process puts the following
requirements on the identification procedure:

e The identification method has to be MIMO
(multi-input multi-output) applicable, as the
process is multivariable.

e The identification method has to be able to
handle arbitrary input signals, as there is no
complete freedom to do experiment design.
During the identification experiments the pro-
duction is lost, and therefore measurement time
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Industrial application, probabilistic uncertainty bounding identification, ro-

is very much restricted. In particular no sine-
sweep experiments could be carried out.

e If not clear from physical insights, all prior in-
formation required has to be gathered from da-
ta.

e Because of the subsequent control-design step,
and the necessity to implement a low-order con-
troller, it is desirable to identify a reasonably
low-order nominal model.

In literature many identification procedures are
described which deliver a nominal model and ex-
plicit frequency response model error bounds, see
for example Bayard (1992), De Vries (1992), De
Vries (1993), Hakvoort (1994), Hakvoort and Van
den Hof (1994), Lamaire et al. (1991), Ninness and
Goodwin (1992), Wahlberg and Ljung (1992). Most
of these methods appear not applicable to the in-
dustrial process at hand, either because the input
signal is required to be sinusoidal, or because the
procedure is intended for SISO (single input single
output) systems.

In this paper the identification procedure de-
scribed in Hakvoort (1994) is applied to the industri-
al glass tube manufacturing process because it does
satisfy all of the requirements listed above. The pro-
cedure yields both probabilistic frequency response




system uncertainty regions, with the procedure de-
scribed in Hakvoort and Van den Hof (1994), and
a nominal model, with the curve fit procedure de-
scribed in Hakvoort (1993). These are used to de-
sign a robust H.,-controller. The glass tube manu-
facturing process has previously been considered in
Backx and Damen (1992), Falkus et al. (1993), Mu-
rad et al. (1993), Overschee and De Moor (1993).
However, in these papers no model error bounds
have been identified or derived in some other way,
and consequently no robust controllers could be de-
signed, which account for the model error.

The outline of the paper is as follows. In Section 2
a description is given of the glass tube manufactur-
ing process. In Section 3 the identification proce-
dure is shortly described, and the identification re-
sults are presented. Next in Section 4 the control
design procedure is described, and the resulfing de-
sign is presented. Also a robust stability analysis
is performed. Finally in Section 4.3 conclusions are
drawn.

2 Process Description

The industrial process under consideration is a glass
tube manufacturing process, schematically depicted
in Figure 1. By direct electric heating, quartz sand

Reservoir

Mandrel pressure

»
Power supply ~ |
Pressure /
melting vessel

Glass tube "<, Diameter
o
)=

- Mandrel

| Melting vessel

/Meli.ed glass

|_Shaping part

Wall-thickness —1

Drawing machine
@{Jl@//Drawing speed

Fig. 1: Schematic overview of the glass tube man-
ufacturing process.

is melted and flows down through a ring-shaped
hole along the accurately positioned mandrel. Un-
der pressure, gas is led through the hollow mandrel.
The glass tube is pulled down due to gravity and
supported by a drawing machine.
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Shaping of the tube takes place at, and just be-
low the end of the mandrel. The longitudinal shape
of the tube is characterized by two important di-
mensions, which will be taken as outputs to be con-
trolled: tube diameter (first output) and tube wall-
thickness (second output). Both outputs are influ-
enced by many process conditions such as:

e mandrel gas pressure,

e drawing speed,

power applied to the furnace (temperature of
the glass),

melting vessel pressure,
e composition of raw materials.

Some of these have a small bandwidth (power and
composition of raw materials), poorly influence the
glass quality (composition of raw materials), or have
extremely large delay times involved (power, melt-
ing vessel pressure and composition of raw materi-
als). Therefore these are not well suited for control
of the tube dimensions.

The mandrel pressure and the drawing speed in-
fluence the shaping of the tube in a most direct way.
Transfers from these inputs to both wall-thickness
and diameter have the largest bandwidth, the short-
est delay times and permit, to some extent, indepen-
dent manipulation of the outputs. The permitted
ranges of these two process inputs allow a control of
the tube dimensions over the full amplitude range
of output disturbances and enable the production of
a large variety of different products. Consequently
these two are taken as controlling inputs. The draw-
ing speed will be denoted as the first input, and the
mandrel pressure as the second input.

Shaping of the glass tube clearly is a MIMO pro-
cess with a high degree of interaction. Increase
of the mandrel pressure results in an increase of
the tube diameter and a decrease of the tube wall-
thickness. Increase of the drawing speed causes a
decrease of both diameter and wall-thickness. A
physical model of this shaping part has been ob-
tained by deriving the physical laws of the shaping
process, describing the shaping of the tube in detail
and over the full range of possible operating points,
determined by various values of tube diameter and
wall-thickness. However, this physical model is very
complex and has physical parameters included with
numerical values that are unknown for the different
operating points. Therefore modelling is performed
by means of black-box identification.

Basically the process is nonlinear. However, one
operating point is considered. Stair-case experi-
ments, i.e. experiments with the inputs being ex-
cited by steps of different amplitudes, indicate that




the process can very well be considered linear and
time-invariant in the operating point, see for exam-
ple De Roover (1993). Therefore there is no problem
with using linear identification and control design
techniques,

In the sequel only scaled data will be used, such
that the original process data cannot be retrieved.
This is because of the industrial confidentiality re-
quired.

3 Identification of a Nominal Model
and a Model Error Bound

3.1 The Identification Procedure

An identification procedure is used that yields both
a nominal model and frequency response model er-
ror bounds. The nominal model is used for model-
based control design, and the model error bounds
are used to assess robust stability before implemen-
tation of the controller. Basically the identification
procedure consists of two steps:

1. In the first step probabilistic frequency re-
sponse uncertainty regions are identified with
the procedure deseribed in Hakvoort and Van
den Hof (1994). Consider the linear, time-
invariant, causal and stable MIMO system de-
noted by Go(z). The entry of Go(z) corre-
sponding to input j* and output ¢’ is represent-
ed by

00

‘-J'J' af =/ —k

Git'(ey = Sk k),
k=0

where g:;j’(k'] are the (unknown) pulse response
coefficients. Consider given input data {u(t)}
and measured output data {y(t)} and the fol-
lowing input-output relation of the data gener-
ating system,

y“) = GU(Q’}HU) + 80“.], t = 1!' DR N:

where ¢ denotes the forward time-shift oper-
ator, N signifies the measurement time and
{eo(t)} is an unknown additive output noise.
In the error bounding procedure knowledge is
required of the auto-covariance function of the
noise process. In Hakvoort (1994) a procedure
is presented to estimate this bound from mea-
surement data. Besides, a bound §*7' (k) on the

coefficients g-7 (k),

g7 (B)] < 89" (k), 1,4, k=0, p00.

In Hakvoort (1994) also a procedure is present-
ed to estimate this bound from measurement
data.
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Next for a specified set of frequencies
{uJ- }_,vzl.___.; probabilistic conﬁclence} regions for
the system’s frequency response G‘f]j;(e"“’i) are
derived for each entry i', j'. This is performed
by explicitly caleulating the bias and variance
errors of an instrumental variable estimate, see
Hakvoort and Van den Hof (1994). Due to the
fact that the real and imaginary part of the fre-
quency response are considered separately, the
resulting uncertainty regions are rectangular.
The centers of these uncertainty regions consti-
tute a nonparametric nominal estimate of the
system’s frequency response,

2. In the second step of the identification proce-
dure a stable parametric nominal model is con-
structed with the frequency response curve fit
procedure described in Hakvoort (1993). The
curve fit problem concerns the minimization of

max | (G (wy) = G (e9)) W9 (wy)],
over stable C?(::) of some specified order, i.e. the
minimization of the maximum amplitude of the
weighted difference between a set of frequen-
¢y response data and a parametric (low-order)
model for a finite number of frequencies. Here
{G"’j‘(wj)}j=1l___.; are the complex-valued fre-
quency response data, in particular the centers
of the frequency response uncertainty regions
derived above. {W’d-f’(w_f}}jzll_wg is a weight-
ing function, which can be used to tune the
frequency distribution of the fit error.

To reduce numerical complexity the MIMO iden-
tification problem is split into two MISO identifica-
tion problems. Models are estimated for each output
separately, and at the end these are combined into
one MIMO model. More details of the identification
procedure are given in Hakvoort (1994).

3.2 Identification Results

For identification purposes the following experi-
ments have been carried out on the glass tube pro-
duction process:

e A free-run experiment, i.e. output measure-
ments without input excitation. This gives an
indication of the output noise, and can be used
to estimate the second order noise statistics,
knowledge of which is required for the uncer-
tainty bounding identification procedure, see
Hakvoort and Van den Hof (1994).

e Stepresponse experiments. These can be used
to accurately identify the low-frequent system
dynamics.




¢ A PRBS experiment, i.e. the input signals are
Pseudo Random Binary Sequences, and inde-
pendent of each other. This excites the system
uniformly in the entire frequency range of in-
terest.

e An experiment where the input signals are fil-
tered PRBS signals. The filter is a bandpass
filter with high gain in the medium frequency
range, which is considered important for the
control application.

¢ One more unfiltered PRBS experiment, which
is not used for identification, but for validation
purposes.

The data have been preprocessed to make them suit-
able for identification purposes, i.e. outliers, trends
and offsets have been removed, and the fast sam-
pled data have been decimated to a sampling rate
corresponding to the sampling rate for the discrete
time confroller.

The process contains large time delays, partly due
to the physical time it takes before the glass tube
reaches the measurement equipment. First these
time delays are estimated and removed from the da-
ta. Due to the fact that MISO problems are consid-
ered, it is always possible to do this by shifting both
input signals over the proper amount of samples. A
correlation analysis on the basis of the white PRBS
experiments, is applied to estimate the time delays.
In Table 1 the delay times are given.

input 1 | input 2
output 1 5 7
output 2 10 12

Table 1: Time delays in number of samples.

Next the above sketched identification procedure
has been carried out. The nominal model G(z)
(without delays) is shown in the Bode plot of Fig-
ure 2.

Rectangular confidence regions have been derived
using the PRBS and the filtered PRBS experiments
separately. Next the intersection of these confidence
regions has been calculated. The resulting uncer-
tainty regions are depicted in the Nyquist diagram
of Figure 3, with the delays added, together with the
frequency response of the nominal model G(z). The
confidence regions correspond to a 99.8%-confidence
level. From this Nyquist diagram it is straightfor-
ward to calculate upper and lower bounds on the
amplitude and the phase of the system’s frequen-
cy response. These bounds, corresponding to the
undelayed model, are depicted in Figure 2 as well.
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Fig. 2: Bode plot of the identified undelayed
nominal model G(z) (solid) and 99.8%-
confidence intervals for the amplitude and
phase (dashed). The entry in row ' and
column j’ corresponds to the transfer func-

tion from input ;s to output ;..

From Figure 3 a frequency dependent upper
bound on the additive model error is easily derived
as the worst-case distance from the nominal frequen-
cy response G(e'“i) to the rectangular uncertainty
region for that frequency. In Figure 4 this upper
bound on the model error is shown for each en-
try #,j’, and corresponding to a confidence level
of 99.8%.

The undelayed MISO model for the first output is
of order 9. The undelayed model for the second out-
put is also of order 9. The combined MIMO model
with delays is of order 35. Due to similar dynamics
for both outputs, there are redundant orders in this
MIMO model. As a low-order model is desired for
the control design application, this nominal model is
reduced to order 15 with Hankel-norm model reduc-
tion, Glover (1984). This model reduction step has
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Fig. 3: Nyquist plot nominal model G(z) (solid,*)
and 99.8%-confidence regions (rectangulars)
with the delays being added. The entry
in row ¢ and column j' corresponds to the
transfer function from uj: to yjr.
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Fig. 4: Upper bound on the additive model er-

ror corresponding to a confidence level of
99.8%. The entry in row #' and column j'
gives the additive model error bound for the
transfer function from u;: to yir.

been carried out in such a way that no significant
dynamics are lost.

Notice from Figure 2 that also high-frequent dy-
namics present in the process can be accurately
modelled, this despite of the bad signal-to-noise-
ratio at these frequencies. Other identification
methods, such as standard prediction error and sub-
space methods, appear not. capable of modelling so
much detail in the high-frequency range. Compare
Figure 2 for example with the identification result-
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s in Falkus et al. (1993), Overschee and De Moor
(1993). If an attempt is made to identify high-order
models with a prediction error method, then eas-
ily numerical problems in the nonlinear optimiza-
tion occur because of the bad signal-to-noise-ratio.
On the other hand, if a low-order model is identi-
fied, only the low-frequent dynamics are accurately
modelled. Application of a high-pass filter in or-
der to emphasize the high-frequent dynamics, again
easily leads to numerical problems in a sens that
(non-linear) minimization routines get stuck to lo-
cal minima, The main reason for this failure is that
both prediction error methods and subspace meth-
ods use a time-domain criterion in their optimiza-
tion routines. In general for strictly proper systems
the contribution of high-frequent process dynamics
to a time series is only marginal and therefore hardly
present in a time-domain based criterion. However
for control design, and especially robust control de-
sign, these high-frequent process dynamics can be
very important, and should therefore be accurately
estimated as well.

Next the time-domain behaviour of the nominal
model G(z) is evaluated. In Figure 5 the measured
and simulated step responses are shown; note the
approximate linear behaviour of the system in one
operating point. In Figure 6 measured and simu-
lated responses are shown for the validation PRBS
experiment, which has not been used in the iden-
tification. The time-domain fit appears very good
both for the step response experiments as for the val-
idation experiments, which gives confidence in the
nominal model.
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Fig. 5: Measured (solid) and simulated (dashed)

stepresponses. The entry in row ¢’ and col-
umn j' corresponds to the response of out-
put y;r to step-excitation of input u;:.
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Fig. 6: Measured (solid) and simulated (dashed) re-
sponses on PRBS-excitation of both inputs
for the validation experiment.

4 Robust Controller Design and
Analysis
4.1 The Control Design Procedure

The H.-control design method described in
Bongers (1994), Bongers and Bosgra (1990), McFar-
lane and Glover (1989) is used to design a model-
based controller. The reasons for using this control
design procedure are:

e The controller performance and robustness can
easily be tuned by the use of simple (constant,
diagonal) input and output weighting matrices.

e Low-order controllers can be designed, which is
important for the implementation.

e Fast and reliable software is available to caleu-
late a discrete-time controller.

Let @(z) be a nominal model, and W;(z) and W5(z)
weighting matrices. Define G(z) as

G(z) i= Wi(2)G(2)Wa(z).

The control problem concerns the minimization of

over stabilizing C(z) of some specified order. The
controller

[éfz) } (I +C(2)G(z)) [I O(z) ]Hm

C(z) := Wa(2)C(2)Wi(z)

stabilizes @(z) and achieves a certain performance
and robustness, dependent on the choice of weight-
ing matrices Wy (z) and Wy(z). The controller C(z)
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is designed for the standard configuration depicted
in Figure 7. In this figure » is the input signal, y
the (disturbed) output signal, r the external refer-
ence signal, and e the output noise. Note that in

el
r | o Y
@ &

Fig. 7: Standard closed loop configuration.

the control design only use is made of the nominal
model, and no direct use is made of the model error
bounds. These error bounds are used later for sta-
bility robustness analysis of the resulting controller.
Of course indirect use is made of the model error
bounds in a sense that if no robust stability can be
proven, a new nominal control design is performed,
and in a sense that decisions upon the choices of the
weighting matrices Wi (z) and Wy (z) are influenced
by the error bounds.

4.2 The Resulting Controller

When evaluating the controller performance the fol-
lowing items need to be considered.

e The controller has to be robustly stable, both
with respect to model error in one operating
point, and to changing dynamics for a slightly
different operating point.

e The controller has to track setpoint changes
reasonably fast, with small overshoot, and
without static error.

e Low-frequent and very-low-frequent noise, such
as trends, should be removed by the controller
as much as possible.

e High-frequent noise should not be amplified too
much.

e The input signals to the system should be as
smooth as possible, without large overshoots on
setpoint changes.

e Both outputs have to be statically and dynam-
ically decoupled as much as possible.

The items above constitute a rather qualitative mea-
sure for controller performance. Engineering inter-
pretation is required to actually construct a con-
troller which meets these requirements.




In the H..-control design the following input s-
caling matrix has been used,
az 0
WE(Z) = " z )
0 =2

and the output scaling matrix
]
W]_(Z) = [ 01 ] .

The presence of integrators in the input scaling ma-
trix provides integrating action for both outputs,
which is necessary for both setpoint-tracking, and
low-frequent noise reduction. The scalars @, # and
v are used to tune the controller, such that accept-
able performance and robustness are achieved, in
accordance with the items listed above. The pa-
rameter v is used to tune the relative importance of
each output. The parameters o and 3 are used to
tune the relative importance of each input, and to
tune the bandwidth of the closed loop system. A
larger value for @ and B generally means a higher
bandwidth. Finally the following values appeared
to give a proper trade-off for all the requirements
listed above,

a=0.014, =25 y=12.

In Pigure 8 an amplitude Bode plot is shown of the
designed controller C(z), which is of order 12. In
Figure 9 an amplitude Bode plot is given of the de-
signed output sensitivity function. Clearly distur-
bance suppression is realized for frequencies up to
0.02 rad/sec.
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Fig. 8: Amplitude Bode plot of the designed con-
troller C'(z). The entry in row ¢/ and column
j' corresponds to C*7 (z).
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Fig. 9: Amplitude'Bode plot of the output sensitiv-
ity function S(z) = (I — G(2)C(z))~'. The
entry in row ' and column j’ corresponds
to 5%7'(z).

4.3 p-Stability Robustness Analysis

Before implementing the controller on the system,
stability guarantees should be required. Therefore a
robust stability analysis is performed, using the fre-
quency dependent model error bound. Consider the
closed loop configuration depicted in Figure 10. For

WllAll
Wa1As

G
G

Cn
Coy

Fig. 10: Closed _}qq conﬁguratiqp_’with nominal
model G*7 | controller C*? and weighted
additive model error W4’ A¥Y’

each frequency w; the weightings W“}j'(wj), Y —
1,2, are chosen equal to the worst-case model error
bounds depicted in Figure 4. Hence the perturba-
tions Ai'j’(w_,') are normalized to 1,

A (wy)] <1, ¥ =1,2, §'=1,2, Yw;.

Straightforward manipulations show that the closed
loop configuration of Figure 10 is stable if and only




if the closed loop configuration of Figure 11 is stable,

=
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M

Fig. 11: Standard uncertainty configuration for p-
analysis

where the matrix M is given by:

FiuWy FiuWis FiaWsy FiaWas
M o= FoaWiy ForWig FaoWay FaaWas
| Fy Wiy FinWha FiaWay FiaWas |

Foy Wiy FouWis FaaWsy FaoWas

and F'i' i, j' = 1,2, is defined by

{ i
F’.Zi
The closed loop configuration of Figure 11 is the s-
tandard one used in p-analysis, see for example Ma-
ciejowski (1989), Morari and Zafiriou (1989). As the
A"J“f‘(wj) have been normalized to 1, the closed loop
of Figure 11, and hence of Figure 10, is stable if and

only if the structured singular value of M is smaller
than 1,

Fyg

e ~1-1c
FQE] = —[I+CGI*C.

p(M(w)) <1, Yw € [0,7].

For simplicity this requirement is replaced by the
requirement,

p(Mw;)) <1, i=1,...,1

assuming that the frequency grid {w;};=1,. has
been chosen suitably, such that the inter sample fre-
quency behaviour causes no problems. This simpli-
fication is also supported by Packard and Pandey
(1993), where it is shown that the structured sin-
gular value is a continuous function of frequency in
case complex-valued perturbations are considered.
For each frequency wj, j = 1,...,1, separately,
p#(M(w;)) has been calculated. In Figure 12 the
resulting p-curve is shown. It appears that for all
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frequencies p(M(w;)) is smaller than 1. Hence ro-
bust stability is concluded, and it is considered safe
to actually implement the controller, as there is no
danger of closed loop instability in the specific op-
erating point of the process.
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Fig. 12: p(M(w;)) for j=1,...,L

Conclusions

The identification procedure developed in Hakvoort
(1994) has been applied to measurement data of an
industrial glass tube manufacturing process. It ap-
pears possible to identify an accurate nominal model
with the identification method applied. Moreover,
also reliable frequency response model error bounds
can be derived, which are not overly conservative.
An H.,-controller has been designed based on the
nominal model. With the model error bounds ro-
bust stability has been verified by means of a u-
analysis, which is needed before actual implementa-
tion of the controller.

In fact two things have been achieved. First a ro-
bust controller has been designed for the glass tube
manufacturing process, yielding an acceptable and
guaranteed performance. Second it has been shown
that the newly developed identification procedure is
applicable to industrial processes, in the sense that
robust controllers can be designed on the basis of
the identification results.
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Closed loop system identification of an industrial wind
turbine system and a preliminary validation result
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Abstract. Reliable dynamical simulation models of complete wind turbine systems are
expected to be of great importance for the development of economically attractive wind
turbine systems. Reliability is closely related to validity, which is difficult to assess from
measurements and model simulation only. This is mainly due to fluctnations of the wind
field corrupting the measurements. Application of system identification solves this prob-
lem because the noise model accounts for the (wind induced) disturbances and attention
can be focussed to the deterministic part describing the dynamics which are the subject
of validation. An industrial full size wind turbine system is available for identification
experiments. This plant is a multivariable system. Experiments were restricted to a
closed loop situation with existing single loop PI controllers. Plant models are identified
from this closed loop data using a two step approach. In the preliminary validation stage
the resulting identified model demonstrated qualitatively good agreement to the physical

model (DuwEgcs code) of the wind turbine.

Keywords.
validation

1 Introduction

Unfortunately, still a lot of faillures occur with mod-
ern wind turbine systems. Underestimation of fa-
tigue problems is in many cases the main cause of
demolished gears or broken rotor blades of a wind
turbine system.

It is a generally accepted idea that the quality
of dynamical simulation models used in the design
and development phase of the complete wind tur-
bine systems will play a crucial role in the improve-
ment of wind turbine systems. For example, various
dynamical load cases, which are expected to be crit-
ical for the system, are simulated with the model,
and the simulation results are then used to evaluate
whether or not the designed system has an accept-
able dynamical behavior.

Testing a design through evaluation of dynamical
load cases becomes increasingly important when the
fatigue loading of the wind turbine system is con-
sidered. Clearly, the fatigue loading is related to
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system identification, closed-loop experiments, wind power plants, model

the expected life time of the wind turbine system,
and therefore directly connected to the economic vi-
ablility of wind energy systems for electrical power
production, compared to conventional power pro-
duction exploiting (non-renewable) fossile fuels like
gas or coal.

Obviously, reliability of the design tools will depend
heavily on the extent to which the simulation model
has been validated. That is: How reliable and accu-
rate are the models in their ability to simulate the
phenomena that are expected to play an important
role on the real system?

Since the dynamics of a wind turbine system are
complex, validation of the physical models will be
a complex and difficult problem. High validation
requirements usually can not be met by just eval-
uating a comparison of measured data and simula-
tions generated by the model. This is mainly due to
the disturbing influence of the unknown wind field
on the measurements. Suppose a very important




aspect of modeling has to be validated which on-
ly exhibits subtle dynamical responses during the
experiments, while the wind induces large distur-
bances on the measurement of this phenomenon. In
that case any comparison with simulation will fail
because the human eye is unable to observe any de-
terministic match or mismatch between simulation
and measurement simply because this is drowned in
the disturbances.

To reduce the effect of disturbances often a tech-
nique called azimuthal binning is applied. This av-
eraging technique obviously deteriorates the dynam-
ical information in the measurement data, which we
would like to preserve if possible.

System identification can help to solve the validation
problem for several reasons. The most important
one is that it provides a separation of deferministic
and stochastic phenomena in the data. Therefore
the wind induced disturbances need no longer to
be averaged out but can be captured by the noise
model. This allows for undisturbed evaluation of the
quality of the identified deterministic part compared
to noise-free simulation of the physical model.

Another important reason is that the result of i-
dentification is a model rather than a particular time
series. For example, a decisive judgement about the
model quality can be obtained by comparison of dy-
namical transfer functions of the experimental mod-
el and the simulation model (e.g. in the frequency
domain).

Note that conventional validation techniques
which exploit for example azimuthal binning can-
not handle In the case of closed loop measurements
conventional validation techniques are not able to
extract reliable open loop behavior of the wind tur-
bine system. Therefore validation can not be inves-
tigated properly. Several closed loop identification
methods exist to deal with this situation and pro-
vide reliable open loop models.

Despite these reasons, application of system i-
dentification to wind turbine systems is, in gener-
al, not straightforward. However, previous research
based on data measured from small scale test fa-
cilities, each of them emphasizing a specific part of
the wind turbine system, was succesful using this
approach (van Baars and Bongers,1992, van Baars
and Bongers,1993).

This paper will pursue extension of the validation re-
sults of the physical simulation model. To make sure
that the validation results are not system specific it
is desirable to investigate several wind turbine sys-
tems of different size and configuration. Besides in-
vestigation of dedicated experimental research test
facilities it is therefore also important to consider
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full scale industrial state of the art wind turbine
sytems which are operating today. Integration of
specific small scale experimental results and insights
for a full scale industrial wind turbine will be essen-
tial in determining the value of the simulation model
for practical situations (such as support of the de-
sign process of modern wind turbine systems and
control systems).

The paper presents a project, which has been s-
tarted recently, in the pwc wind farm located in
Friesland (The Netherlands) consisting of 18 indus-
trial wind turbines with rated power of 310 kW each.
One of the wind turbines is available for experimen-
tation. The wind turbine system can be influenced
by input excitation at the electrical conversion sys-
tem and pitching of the rotor blades. This means
that validation involves a system with multiple in-
puts and multiple outputs.

A series of system identification experiments were
designed and performed. During the experiments
normal operation of the wind turbine was continued
with the control and safety system unchanged. This
means that identification is based on closed loop da-
ta. However, the parameters of the PI controllers in
the loop are known.

The organization of this paper is as follows: In Sec-
tion 2 a more detailed description will be given of
the turbine and the data acquisition setup. Identi-
fication of wind turbine systems is the topic of Sec-
tion 3. Attention will be paid at the consequences
of the presence of controlers in view of the desire to
identify the dynamics of the turbine system itself.
In Section 4 validation of the DuwEcs simulation
model is briefly addressed. The paper ends with
conclusions in Section 4.

2 Wind turbine systems

This section introduces some aspects of the wind
turbine simulation model that is the subject for
validation, and the particular wind turbine system
which is used to obtain system identification mea-
surements from.

2.1 Physical simulation model

The non linear simulation model that has to be val-
idated with respect to its dynamics is described in
Bongers et al. (1993), and Bongers (1990). Before
its validity will be investigated in Section 4 some
comments will be given here on the structure and
contents of the model.

A modular structure has been chosen in which
each part of the wind turbine system (rotor, trans-
mission, electrical conversion system, and tower) are




modelled separately, each having their own inputs
and outputs Fig. 1.
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Fig. 1: modular structured simulation model

A model describing the dynamics of the complete
wind furbine is then realized by connecting these
submodels with each other. For each componen-
t different submodels are developed with modeling
complexity ranging from simple to extremely com-
plicated.

This setup allows for system case study with easy
switching between various submodels and parameter
variations. Evaluation of the differences this makes
for the behavior of the complete system connect-
s perfectly with the design supportive model useas
mentioned in Section 1.

2.2 Experimental set up

The industrial wind turbine which will be used to
validate the simulation model behavior with, is part
of the pwc wind farm in Sexbierum, Friesland (the
Netherlands). The wind turbines in this wind far-
m are industrial, variable speed, 3-bladed, 310kW
machines.

The electrical conversion system consists of a syn-
chronous generator with a rectifier, and inverter DC-
link. The field excitation voltage of the synchronous
machine and the delay angle of the rectifier can be
utilized for control. The rotor has full span blade
pitch control. A discussion about which signals can
be considered as inputs and outputs will be given in
Section 3.

The system is controlled by 4 SISO PI controlers
(with known parameters) as can be seen from Fig. 2.
The setpoint values for the rotational speed of the
generator shaft are generated by block T, which has
only very slow dynamics. This closed loop structure
and declaration of the signals will be discussed in
greater detail in Section 3.

During the experiments normal operation of the
wind turbine was continued with the control and
safety system unchanged.
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Fig. 2: present closed loop structure of wind tur-
bine system

2.3 Data acquisition

To facilitate the process of designing and performing
experiments a portable computer is equipped with
data acquisition hardware and software (A/D, D/A,
anti-aliasing filters with adjustable cut-off frequen-
cy). A patch panel was also configured to customize
signals from the wind turbine system to make them
suitable for measurement by the PC.

With this setup it is possible to generate test sig-
nals within MATLAB (1990), feed these signals to
the system through D/A conversion, and measure
the response of the system through A /D conversion
with a specified sample frequency.

The measurements are directly available in the
MATLAB environment. This allows for direct pre-
liminary data analysis and, if necesssary, adjust-
ments of the test signals. Consequently, the time
span between the actual experiment and the evalu-
ation of the quality of the measurements can be kept
very short. The PC and data acquisition hardware
and software is discussed in Huisman (1994)

3 Identification of wind turbine sys-
tems

System identification of the wind turbine system,
introduced in the previous section, will now be ad-
dressed. The situation given in Fig. 2 will first be
translated in a general closed loop identification con-
figuration, which obviously involves the selection of
inputs and outputs. A two step approach to the
closed-loop identification problem at hand will be
commented upon. Attention will be given to ex-
periment design, and identification results will be
presented.




3.1 The closed loop identification problem

A total of 8 signals can be measured from the wind
turbine system: (Igcset, Udcsets Osety Iyset, @g, fo,
Lge, Ude), see Fig. 2. Two of these (Ugeser and Uy,)
are constant voltages and are not excited externally.
Therefore these variables are left outside the iden-
tification problem. The block WTS (Fig. 2) is the
wind turbine system we would like to identify.

The PI controllers PI1, PI3, and PI4, are digital
controllers from which the inputs and outputs are
measurable (D and T are also digital). However,
P12 is an anolog PI controller which is unaccessible
for the measurement equipment. Therefore this con-
troller is considered to be part of the wind turbine
system (indicated by the dashed contour in Fig. 2).

This configuration is reformulated into the following
closed loop situation, depicted in Fig. 3.

Go

Fig. 3: closed loop situation

The wind turbine system is from now on equiva-
lent to the system Gy, also called the plant. The PI
controllers are lumped into the controller system C.
The input vector u and output vector y of the plant
are:

Tdisnt : direct current setpoint
Hi= B4 : pitch angle setpoit
T2 : field excitation current
@, : delay angle rectifier
JE=r [ : generator frequency
Tae : direct current

The vectors r, and r, indicate the external signals
that can be fed into the loop, for example the exci-
tation signals for identification experiments.

In case of a partial load operational condition the
blade pitch angle controller PI4 will be fixed and
therefore the number of input variables reduces to
2

The closed loop identification problem boils down to
identification of a model of the the plant Gy based
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on measurements of the input signals u, the output
signals y, which are excited by one of the external
signals r, or ry. The result is an identified model
G of the plant. In the next subsection a solution to
the identification problem will be presented.

3.2 Closed loop identification approach

Several closed loop identification approaches are
provided in literature, for example Soderstrom and
Stoica (1989), Schrama (1991), Van den Hof and
Schrama (1993). Some of the approaches are aimed
at identification of plant models suitable for con-
troller design or controller enhancement. However,
in this paper the purpose of identification is to es-
timate a reliable open loop model from closed loop
data.

In this paper the so called two stage identification
method (Van den Hof and Schrama,1993) is applied
to deal with the closed loop situation, which will
briefly discussed.

Consider a data generating system that is defined
as:

Y(t) = Go(q)u(t) + Ho(g)e(t) (1)
with Ho(g)e(t) the well known noise representation
as a filtered white noise. The input signal is deter-
mined according to:

u(t) = ru(t) — Clq)u(t) (2)

Let us consider the sensitivity funection of the closed
loop system (1), (2),

To(q) = [1 + C(g)Go(g)] ™

Using Ty we can rewrite equations (1), (2):

u(t) = To(g)ru(t) — To(q)C(g)Ho(q)e(t) (4)
y(?) Go(q)u(t) + Ho(q)e(t) (5)

Since r and e are uncorrelated signals, and u and
r are available from measurements, it follows from
(4) that we can identify the sensitivity function Tj in
an open loop way. By again manipulating equations
(4), (B), we can write:

(3)

Il

u'(t) = To(q)ru(?) (6)
y(t) = Golgu'(¢) + (7)
[1 = Go(9)To(9)C(9) Ho(g)e(t) (8)

Since u” and e are uncorrelated, it follows from
(8) that when «" would be available from measure-
ments, Gy could be estimated in an open loop way,
using the common open-loop techniques. Instead
of knowing u", we have an estimate of this signal
available through

afy(t) = To(q)ru(t) (9)




Consider the model structure

y(t) = G(q,0)iN(t) + H(g,n)ey(t)  (10)
with G(q,0), H(q,n) parametrized independently.
It will be shown that the estimate G(q,0n) of Go(q)
in the second step, determined by

N
; 1
Oy = arg 1}1lqn—-h—r ;s;(t)sy(!] (11)

under weak conditions converges to Go(gq) with
probability 1.

This result is formalized in Van den Hof and
Schrama (1993) which also gives the proofs and
a characterisation of the bias distribution of the
asymptotic model in case undermodelling is accept-
ed.

In both steps of the identification procedure MIMO
models will be estimated using the well known pre-
diction error method by Ljung (1987) as implement-
ed in the system identification toolbox of MATLAB

3.3 Experiment design

Experiment design is aimed at gathering informa-
tive measurements from the system. This means
that the data should provide enough information to
identify accurate models which are suitable for the
intended model use.

Several choices need to be made, preferrably in a
way that they contribute as much as possible to the
information contents in the measurements. How-
ever, some choices may be fixed due to practical
limitations. For example, the available, measurable
signals are fixed. To guarantee an active safety sys-
tem, experiments are restricted to closed loop situ-
ation with the existing PI controllers.

Also the operational condition of the experiment
can not be governed by experiment design, because
it is just a function of the mean wind speed. We
therefore can only hope for the wind speed to have
the desired value.

The sample rate and the excitation signals ry
and r, are the remaining experiment design choices,
which are not fixed yet. The sample rate was cho-
sen to be 100H z, which should be enough to cover
the relevant dynamics (which are not expected to be
important beyond 50Hz). The anti-aliasing fitlers
should have cut-off frequency of 50H z or lower.

Since there are no prior measurements available, and
experimentation opportunities were scarce and had
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to be finished within a short time span, the input ex-
citation design followed a straightforward approach.
Pseudo Random Binary Sequence (PRBS ) test sig-
nals are generated along guidelines found in Godfrey
(1993) for maximum length sequences. The design
variables determining the signal are the clock period
and the values of the two levels of the binary signal.

The excitation signal for one input signal is con-
structed by repetition of the same PRBS signal a
number of times with intermediate intervals of rest
(constant input signal). This is preferred above one
very long PRBS sequence, because repetition allows
for averaging the responses to the repeated PRBS ,
which reduces the noise. Besides, if the mean wind
speed changes during one PRBS repetition this inter-
val can be easily rejected and would be useless for
identification.

The intervals with no excitation provide informa-
tion about the free run closed loop dynamics and
disturbances, which may be a useful reference for e-
valuation of how effective the input excitations have
been.

The final input signal design shows 5 repetitions
of a PrRBS with a length of 51, 2s and intermediate
intervals of zero input during 10s. This results in
a typical identification experiment which takes ap-
proximately 5 minutes. The PRBS for excitation of
Ticset has a clock period of 0.05s and amplitude of
0.4V while I;,.; was excited with an amplitude of
0.2V and clock period of 0.10s.

3.4 Results

This subsection will present results which are ob-
tained following the experiment design and iden-
tification approach described in the previous sub-
sections. Attention will be focussed on only one
transfer function of the multivariable wind turbine
system. Similar results are obtained for the other
transfer functions of the MIMO plant.

The measurement presented here originated from a
partial load operational condition. As mentioned
in Section 3.1 this means that the blade pitch con-
troller PI4 is saturated which cancels the blade
pitch angle as input for the plant.

A fragment of the measurement data is given in
Fig. 4.

The 5 repetitions of PRBS excited intervals in the
measurement data are already averaged.

The sample rate is reduced to 33Hz by decima-
tion with a factor of 3. Therefore identified models
describe dynamics up to 16H z.

With the two step procedure the quality of the
final estimate depends heavily on the accuracy of
the first step. Since no difficulties were encountered
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in the first step no results of this step are presented.

The second step estimates the plant transfer func-
tion. Acceptable models (2 inputs, 3 outputs) with
ARX structure of order 7 per entry have been iden-

tified.

The transfer function from field excifation curren-
t Iyeer to generator frequency f, covers important
dynamics of the generator system and is therefore
very interesting from validation point of view.

The identification result for this transfer function
is given in Fig. 5.

This looks good enough to be confident that the
identified model represents the real life pwec wind
turbine with respect to this input-output behavior.
Therefore we can proceed and compare this model to
the same transfer function derived from the physical
model.

4 Validation of wind turbine system
models

Validation is concerned with the question how well
a physical model describes some aspects of the real
world process. These aspects and the desired ac-
curacy depend strongly on the application of the
model once it has been succesfully validated.

Clearly, validation can only be investigated if e-
nough information from the process is available. Re-
ferring to the previous section this is not critical here
because, in principle, the same requirement needs to
be satisfied in order to obtain reliable system iden-
tification results.

We would like to evaluate whether or not the phys-
ical model is capable of reproducing essentially the
same dynamics as identified from the experimental
set up. This means that we are satisfied, in first
instance, if both models exhibit the same structural
behavior in the frequency domain, without demand-
ing a perfect match.

In other words the qualitative validation comes
first. Such a structural resemblance affirms that the
physical model provides proper modeling of the dy-
namical phenomena observed from the process.

Only if this stage is reached, it makes sense fo
adjust parameter values (those which were not com-
pletely known or had to be guessed) in the equations
governing parts of the physical model. This is done
in order to close the gap between the identified and
the physical model. In other words the quantitative
validation comes second.

In this section the identified transfer function will
be compared with the transfer function derived by




linearization of the physical simulation model. In
Fig. 4 the result is presented.
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The comparison is acceptable except for the very
low frequencies. The fundamental resonance of the
the dive train (2.6Hz) as well as the zero at 0.7THz
is modelled quite accurately.

The physical model seems to underestimate the
low frequency gain, but despite this misfit no essen-
tial dynamics are missing in the physical model. It
remains an issue for further research to determine
whether parameter adjustment is able to bend the
physical model towards the identified model. On
the other hand it should be investigated how accu-
rate the identified model is for the low frequencies
(for example by evaluation of confidence intervals
around the frequency response).

A strategy to proceed from here is twofold. The
first and most obvious step is to investigate how
sensitive the outcome of the simulation model is for
slight variations in the physical parameters that are
uncertain. The second step is to refine the identifica-
tion result by design of new closed loop experiments
based on the knowledge we have from our first at-
tempt. New external excitation signals could be ap-
plied which alows for emphasizing certain frequency
regions which are important for the identified model.
In principle this could be repeated until the identi-
fication result cannot be improved anymore.

Conclusions

Valid physical models describing the dynamics of
complete wind turbine systems may be very impor-
tant. For example, in the design phase of the next
generation wind turbine systems.

Due to disturbances induced by the presence of
an unknown wind field, this validity is difficult to
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assess by straigthforward comparison of measure-
ments and model simulation.

System identification helps in splitting the stochas-
tic disturbances from deterministic data revealing
dynamics from the process to be validated. In this
way, a platform is created for comparison of iden-
tified models with models obtained from physical
modelling.

This comparison of models allows for decisive
answers to the validation problem. For example,
frequency responses of both models show directly
whether or not the physical model is capable of de-
scribing the same dynamics as identified from the
plant.

This approach is applied to the identification of an
industrial, full scale, wind turbine located in the
northern part of the Netherlands.

Due to safety regulations, experiments were re-
stricted to a closed loop situation with existing sin-
gle loop PI controllers.

The identification followed a two step approach
which successfully extracted accurate models of the
process from the closed loop data.

Conventional model validation techniques which
for example exploit azimuthal binning cannot han-
dle closed loop data and do not result in reliable
open loop behavior of the wind turbine system to
be validated.

It is demonstrated that the physical model ex-
hibits the same structural behavior as the dynam-
ics which were identified from the wind turbine sys-
tem. This preliminary validation results encourages
to proceed with this approach.
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Closed-loop identification of a continuous
crystallization process
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Abstract. Experimental results reveal that open-loop identification of continuous crys-
tallization processes leads to poor results as the crystal size distribution (CSD) has a
tendency to oscillate. Improved experimental conditions are achieved, using a simple
single loop feedback controller. Identification of low order models, on the basis of closed-
loop data, is studied using a nonlinear first principles (FP) model and linear multivariable
input-output models. Two closed-loop identification methods are applied, one of which is
recently introduced to provide accurate approximate models. Using the FP model, which
includes a population balance and a set of empirical relations related to crystallization
kinetics, a high order nonlinear model is obtained. A low order reduced and linearized
version of this model is considered as initial model for the estimation of input-output
models. Closed-loop identification and validation data is obtained from an evaporative
pilot crystallizer. Both identified and physical models are validated in terms of time and
frequency domain responses and are shown to provide accurate descriptions of the process

dynamics.
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1 Introduction

Crystallization from solution is a well established
industrial purification and separation process, in
which a solids fraction is derived from a solufion. It
is applied in continuous operation on a large scale,
with production rates exceeding 10° tons/year for
the production of bulk inorganic materials like sodi-
um chloride, and ammonium-sulphate (a fertilizer),
and organic materials like adipic acid (a raw ma-
terial for nylon). On a small scale, crystallization
is often applied batch wise to obtain high purity
fine chemicals or pharmaceuticals, e.g. aspartame
(a sweetener), and l-ascorbine (vitamin C).

A main characteristic of crystallization processes is
that a distribution of differently sized particles is
produced, which is characterized by the crystal size
distribution (CSD). The CSD, is an important pa-
rameter as it determines the physical properties of
both the wet crystal magma and the dried crystal
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product in bulk. An inappropriate CSD may re-
sult in a reduced performance of down stream solid-
liquid separators and may cause caking of the final
dried crystal product, yielding transportability and
storage problems. In many cases these problems oc-
cur when the mean crystal size is low and when an
excessive number of small crystals (fines) exists in
the distribution.

Inappropriate CSD’s may exist (temporarily) due
to process disturbances, intrinsic physical feedback
mechanisms, which can cause cycling of the CSD,
and during plant start-up and shutdown. For these
reasons the derivation of accurate (low order) dy-
namic models that can be used for CSD controller
design is a major issue.

In the literature, experimental results on identifica-
tion and control of crystallizers are scarce. This is
mainly due to a lack of on-line measurement sys-
tems and the absence of reliable experimental e-




quipment, including sampling systems. In De Wolf
and Van den Hof (1992), system identification tech-
niques have been applied to estimate low order lin-
ear models from erystallization process input-output
data directly. Miller and Rawlings (1992) present
results on parameter estimation within a first prin-
ciples model structure, including a method for the
estimation of confidence intervals, based on batch
crystallization experiments. A review of recent re-
sults on identification and control of crystallizers is
given by Rawlings (1993).

In earlier work (Eek et al., 1995), results from first
principles modelling of continuous crystallizers and
the estimation of empirical parameter values on the
basis of start-up experiments are presented. The
experimental data sets were obtained from the free
start-up responses of a pilot crystallizer. Start-up
responses are advantageous as they are readily avail-
able in historical databases, and give excitation of
the process dynamics, without requiring additional
external test signals. A main disadvantage, how-
ever, is that the resulting process response exhibits
only the slow process dynamics within a wide (non-
linear) process output range. In practice, knowledge
on the faster dynamics around the bandwidth of the
system is important, as closed-loop stability and the
performance of the closed-loop system are strongly
determined in this frequency range. Another dis-
advantage is that the data contains no information
on the combined effect of simultaneous process in-
put disturbances, which may be important for mul-
tivariable controller design.

Therefore, it is desirable to perform multivariable
identification experiments were the control relevan-
t process dynamics are deliberately excited with
uncorrelated, frequency rich, test signals (Ljung,
1087), which are added to the different process in-
puts simultaneously.

The purpose of this paper is to describe a pro-
cedure for the identification of low order dynamic
models for the dynamics of a continuous crystal-
lization process on the basis of experimental pro-
cess input-output data. The intended use of the re-
sulting models is predictive control. As both input-
output models and first principles models have spe-
cific advantages and disadvantages, we will apply
both and discuss their respective merits. In partic-
ular, a route will be outlined where a priori, -first
principles- model knowledge is applied to obtain an
initial estimate for the identification of input-output
models,

The sequel of this paper starts with a short descrip-
tion of a first principles model. The results of an
open-loop identification experiment are used to indi-
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cate the necessity to perform identification in closed-
loop. Using a closed-loop controller, that effectively
suppresses a prevailing oscillatory mode in the open-
loop process, improved experimental conditions are
established, A method for consistent model identifi-
cation in a closed-loop fashion is described, and ap-
plied. Finally, estimated input-output models are
validated with an independent data set and com-
pared to the linearized and reduced version of the
identified first principles model. On the basis of this,
conclusions are drawn with respect to the applied i-
dentification approach and the validity of black-box
and first principles models.

2 Process modelling

The main model assumptions are that the crystal-
lizer is a single stage crystallizer, which is operated
continuously, at ideal mixed, and isothermal condi-
tions, and with a constant effective volume. Further
it is assumed that the product slurry is removed un-
classified, e.g. each particle has the same probability
to enter the product discharge line, irrespective of
its size. A fines segregation and destruction system
is present for the removal of fines from the crystal-
lizer volume. A forward light scattering technique
is applied, on-line, to measure CSD dynamics in the
main crystallizer volume.

The CSD is characterised by a population density
function n(a,t), which describes the number of par-
ticles per unit of slurry and per crystal size as a
function of time. The first principles model that
can be derived for this process comprises a first or-
der partial differential equation for the CSD dynam-
ics, an ordinary differential equation for the super-
saturation of the mother liquor and several empiri-
cal relations for crystallization kinetics and particle
classifiers. For details on the model and the process
we refer to earlier work (Eek et al., 1995).

2.1 The sensor model

Fraunhofer theory is used to develop a model for the
recorded scattered laser light energy as a function
of the CSD. The discretized version of this model is
written as:

(1)

with H the sensor model matrix, y the sensor out-
put vector, which contains 31 values, e.g. v, 1 =
1,---,31, for the scattered laser light energy, and n
a discrete population density, which is lumped on a
finite set of equidistant crystal sizes.

The population density n(z,t) contains informa-
tion on both the shape of the CSD, and the solid-
s fraction of the produced crystal slurry: My(t) =
peky [y n(z, t)e>dz, where k, is a shape factor and

y=1Hn,




p. the density of the crystals. Multiplication of M,
with the actual product flow gives the yield of the
process in produced solids mass per second. If is
found that the total scattered light energy: yr =
S L, yi, mainly correlates with the slurry density,
for which accurate measurements are obtained from
the independent density indicator. Therefore, the
measured output vector elements y;, ¢t = 1,---,31,
were normalized by subdividing each element with
the total scattered energy yr. The remaining vec-
tor, denoted as y,, thus solely bears information on
the shape of the CSD.

For stabilizing control, which we further discuss be-
low, a sensitive parameter is required that is related
to the number of fines in the CSD. Using the cor-
relation matrix R of the sensor readings, which is
estimated from R = E{YTY}, where E denotes the
expected value, and where Y contains n, output
vectors yy as its rows: YT = {yp1, ¥p2,° ", Ypn }, the
major and minor directions in the sensor readings
can be calculated from the eigenvalue decomposi-
tion of the correlation matrix, The following rela-

tion holds:
R®=2aA, (2)

':d’np}

{#1,02,

are the non-zero normalized eigenvectors of R
and A contains the n, corresponding eigenvalues
{A1,A2,-++,An,} on its diagonal. If the eigenvec-
tors and eigenvalues are sorted, so as fo obtain the
eigenvalues in decreasing order, the best linear com-
bination of elements in y,, representing the largest
signal energy, is represented by the eigenvector ¢,,
and the corresponding eigenvalue A; then represents
the relative signal energy in this specific signal di-
rection. Clearly, the least significant signal direc-
tion is represented by the eigenvector ¢, and the
eigenvalue ), . Omitting the least significant signal
directions, a reduced representation of the measured
output pattern y, is obtained.

This decomposition is also known as the discrete
version of the Karhuenen-Loéve expansion (Fuku-
nage, 1972). Application to the measured light s-
cattering data reveals that already 99.5 percent of
the signal energy is grasped by the first 5 signal di-
rections {¢y,---, ¢s}. It is found that projection of
the signal y, on the first principal signal direction
{#1}, results in a signal (denoted as y.;), that is
strongly related to the number density of fines and
and has a low signal to noise ration. This signal is
chosen as process output parameter as it has excel-
lent properties to serve as an input for a stabilizing
controller that acts on the fines removal system.

where the n, columns of &:

In addition to this signal the mean crystal size is
chosen as an output parameter as it strongly deter-
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mines the performance of downstream solid liquid
separators. This parameter is calculated from the
third and fourth moment of the distribution (Ran-
dolph and Larson, 1988):

- [ n(z)atde

My
X4z = e

fow n(z)r3de (3)

mga

When only small perturbations around the station-
ary distribution are assumed, this relation can be
linearized, resulting in:

m Mas

45
Amq — 2
mas mz,

A"Y‘13 =

(4)

Amag,

where mg, and ma, denote stationary moments.
Lumping gives:
Aqus = T43Aﬂ (5)

with T43 a column vector containing the elements

{ay,as,-++,a,}. given by:
My my
ol i, ;zf]m (6)
m3as M3z,

Because only y, is measurable we can calculate
A X3, (using (1)) from:

ana = T43If”1Ayp = TAyp. (7)
The pseudo inverse H~! is approximated from the
singular value decomposition H = UTS~1V (Golub
and Van Loan, 1983), where the matrices U/ and V
contain the n, left, and n, right singular vectors of
the sensor model H, respectively, and ¥ contains the
corresponding singular values. As the matrix H is
ill conditioned only the first n, singular vectors are
used in the inversion, which gives the following ap-
proximation: T & TyslU, 7 'V,T | with n, < ny. It is
found that n, should be chosen to obtain a trade-off
between bias and sensitivity to noise in the recon-
structed signal y,.

In summary, the (open-loop) process, which will be
considered for identification, has three inputs and
three outputs. A schematic overview is given by
Fig. 1. As inputs the fines flow @y, the product
flow @p and the total heat input P; are taken. As
outputs, the number density of fines y,;, the mean
crystal size X453 and the solids fraction M, are cho-
sen.

2.2 Derivation of low order linear models

To arrive at a low order linear model, the non-
linear distributed parameter model is lumped, lin-
earized and reduced, consecutively. The reduced
linear models can be used for control directly, or
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Fig. 1: Block scheme of open-loop process.

serve as an initial model for system identification,
as will be described below. As described in Eek,
et al.(1995b) the linearized model is a high order
linear continuous time state-space model, given by:

Az = FAz+ GAu,

20 = 24,

Ay = HAz, (8)

where A denotes a small perturbation around the
stationary solution. For frequency domain analy-
sis and model reduction a 100th order lumped and
linearized model is used, while the nonlinear sim-
ulation is performed accurately with a 200th order
lumped population balance model.

Reduction

A balanced model reduction method is applied to
approximate the 100th order linearized state-space
model with a low order linear model. The key prob-
lem with balanced model reduction is to find a bal-
ancing transformation (Moore, 1981). Assuming a
linear time invariant state-space model {F,G, H}, a
transformation {F,G, H} — {T-'FT,T-'G,HT}
is a balancing transformation, if:

F=pp=d —qelge=Tciw (9)

where X is a diagonal matrix, containing the so-
called Hankel singular values in decreasing order,
and P and @ represent the controllability and ob-
servability Gramian of the system {F, G, H}, given
by:

P = / exp™t GGT exp™ ! dt (10)
0

A / eprT'HTchpF' dt (11)
0

A reduced order model {Fg,Ggr, Hg} is devised
by taking the first n, columns of 7' denoted as
L and the first n, rows of T~! denoted as R.
The reduced model with order n, is then given by
{FR,GR,HR} = {LFR,LG,HR}.

Several methods can be employed to solve this prob-
lem. We used a frequency weighted balanced re-
duction method which employs a singular value de-
composition of the observability and controllability
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Fig. 2: Comparison of Bode amplitude plots for lin-
ear 100th order (solid), and reduced 5th or-
der model (dashed) with i— >j denotes the
tranfer relationship of the ith input to the
jth output (see Fig. 1).

Gramians. With this method the fit of the reduced
model can be favoured in the frequency range, which
is relevant for control. It was found that the method
is fast and robust, e.g, not sensitive to ill conditioned
models. Besides, the algorithms are available as an
easy to use Matlab toolbox, (Wortelboer, 1994).

It is found that 4th or 5th order models give good
approximations of the process input output be-
haviour. In Fig. 2 a comparison is made between
the Bode amplitude plots of a reduced 5th order
and the full 100th order three input, three output
model. No frequency weighting is applied in this
example.

3 Open-loop plant behaviour

At first, the process dynamics were considered by
applying excitation signals directly onto the pro-
cess inputs, in an open-loop fashion. As test sig-
nals multi-sine signals where chosen for the fines re-
moval rate @y, and the product removal rate @Q,,
each containing 29 logarithmically spaced frequen-
cy components, with phase angles chosen according
to Schroeder (1970), in order to minize the signal
amplitudes. For every frequency in the first signal
the second signal has the first harmonic next to it to
obtain uncorrelated signals. In Fig. 3 the designed
input signals, are depicted. An 45 hours lasting ex-
periment, which will be referred to as RUN35, is
performed with the pilot crystallizer. In Fig. 4, the
first three signal modes, estimated according to (2),
representing already 97.1 percent of the total signal
energy, are given.
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Fig. 5: Block scheme of closed-loop system.
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Fig. 6: Closed-loop responses to setpoint changes
in yr1s (dash-dotted): y.1 (upper) and Q¢
(lower) at (A and B).

Visual inspection of the data directly reveals that
the process output response is strongly dominat-
ed by slow cycling behaviour of the CSD with a
time period of approximately 6 hours. Similar ob-
servations are reported in (Eek et al, 1995). This
behaviour may have been invoked from the non-
stationary initial state of the process. From this
result it is concluded that for application of a s-
tandard linear time invariant approach for process
indentification, a closed-loop controller that effec-
tively stabilizes the cycling behaviour is required.

4 Design of a stabilizing controller

Exercises with the nonlinear model revealed that
stability of the CSD can easily be obtained by ap-
plying a single input single output (SISO) PI-control
loop, which uses the weighted number of fines y,; as
its input, and the fines removal rate Qs as its out-
put. The resulting closed-loop control configuration
is depicted in Fig. 5. Prior to the first closed-loop i-
dentification experiment, the ability of the controller
to stabilize the start-up response of the crystalliz-
er, and to follow step wise setpoint changes were
evaluated experimentally. In Fig. 6, the respons-
es of the controlled variable y.; together with the
manipulated variable @, on the process start-up
and two setpoint changes at A and B to the con-
troller setpoint are given. Clearly, the system is
stabilized within approximately 5 hours after start-
up. Around 17 hours after start-up some unwant-
ed disturbances have occurred in the process, which
caused a gradually, ramp like, decrease of the manip-
ulated variable as a function of time. The controlled
variable, however, remains on its setpoint. The re-
sults indicate that this simple closed-loop configu-
ration effectively dampens open-loop cycling of the
CSD. The closed-loop process, which will be con-




l disturbed inputs | process outputs |

number of fines, vy,
mean crystal size, X3
solids fraction, M,

controller setpoint, g1,

product flow, @,
heat input, P

Table 1: Process inputs and outputs.

sidered for identification further, is summarized in
Table 4 (see also Fig. 5). In addition, the controller
output () is measured to estimate the open-loop
process transfer-functions, following a method that
is described in the next section. The signal y,, is
the setpoint for the stabilizing controller, and v(%)
is a noise contribution.

5 Identification method

The system identification procedure includes the s-
election of an appropriate model set and a criterion
of fit. On the basis of an informative set of pro-
cess input-output data, the best model within the
set 1s then searched for that minimizes the chosen
criterion.

5.1 Model structures

Following Ljung (1987) the system to be identified
is denoted as

y(t) = Go(q)u(t) + v(t) (12)
with u(t), y(t) the process input and output, Gy
a linear time-invariant system represented by it-
s transfer function in the shift operator ¢, and
v(f) a stationary stochastic process represented by
v(t) = Hp(q)eo(t). Here Hy is the stable and sta-
bly invertible noise model, and ey is a white noise
process. A corresponding model of this process is
represented by the collection of transfer function-
s (G(q,0), H(q,0)), parametrized by some unknown
parameter @, and the corresponding one step ahead
prediction error is given by:

e(t,0) = H(q,0) '[y(t) — G(g,0)u(t)].  (13)

The parametrization of the set of models considered
{(G(q,0), H(q,0)), 0 € O} can be done in several
ways, among which the popular ARX parametriza-
tion represented by G(q,0) = A(q,0)"*B(q,0) and
H(q,0) = A(q,0)~" with A, B polynomials in the
shift operator ¢~!, leading to the linear regression
form:

&(t,0) = A(q, 0)y(t) — B(q, O)u(t). (14)
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An alternative way of parametrizing the models is
the Output Error (OE) form in which the noise mod-
el H(q) = I is not parametrized. The input/output
model can be represented by a quotient of two poly-
nomials as above, but can e.g. also be parametrized
in a FIR (finite impulse response) form:

G(9,0) =) ora™* (15)
k=1

where the coefficients {gk}r=1,..n, are collected in
a parameter vector, or in terms of the state space
model:

e(t+1) = A(@)z(t) + B(O)u(t) (16)

Il

y(t) C(0)x(t) + D(0)u(t). (17)
In the latter form the transfer function G(z) is given
by D+C(21—A)~! B. To obtain a unique represena-
tion of the transfer function within the set of models,
the state space model set is often parametrized in
an observable canonical (or pseudo-canonical) form,
see e.g. Gevers (1986).

Both ARX and OE-FIR models have to advantage
that the resulting prediction error is linear in the
unknown parameters, leading to a linear regression
identification problem. For a least squares identifi-

cation criterion,

N
s ke e
ﬁN—arggl‘élgN;v (t,0)e(t,0)  (18)

this implies that the estimated parameter can be an-
alytically determined, avoiding numerical non-linear
optimization procedures.

Output error model structures in either FIR or s-
tate space form have the advantage that the in-
put/output part G(q) of the model can be consis-
tently identified even if the noise model part H(q)
is misspecified, (Ljung, 1987).

However for FIR models the number of parame-
ters fo be estimated is generally large, especially
when the underlying system dynamics is moderately
damped and when the sampling rate is high in rela-
tion to the fastest process dynamics. Consequently,
the variance of the estimated model parameters will
be large as well. A state-space model parametriza-
tion does not suffer from this problem, however, the
output error to be minimized is a nonlinear function
of the model parameters and the resulting param-
eter estimate can therefore only be obtained from
iterative numerical optimization procedures. Espe-
cially for high order multivariable process and large
data sets the computational burden can be severe,
besides possible convergence problems.




As an alternative, recently renewed interest has
risen for the use of more generalized (orthogonal)
basis functions in a FIR-type model structure:

G(z) =Y befe(2) (19)
k=1

where {fi(2)}k=1..co reflect orthonormal basis
functions as e.g. the classical Laguerre functions
(see e.g. Wahlberg, 1991, and Finn et al., 1993) but
also more generalized functions generated by freely
chosen all-pass transfer functions (Heuberger et al.,
1992). In this latter approach a prior knowledge of
the process dynamics can be used to flexibly choose
the basis functions so as to increase the speed of con-
vergence of the series expansion (19). In this way
the number of parameters to be estimated can be
kept small, while retaining a high accuracy of the
identified model (Van den Hof et al., 1993).

The model structure (19) will be denoted as ORT-
FIR. In this paper the choice of appropriate basis
functions will be based on both the linearized and
reduced first principles model and estimated ARX
models. For all estimated models the nonlinear OE
approach in state space form was applied in a final
step, using the ORTFIR estimated model as initial
estimate.

6 Closed-loop MIMO identification

A main and well known problem related to the iden-
tification of a process in a closed-loop configuration
is that the noise on the outputs is correlated with
the process inputs due to the presence of a feedback
loop. This correlation generally results in biased es-
timates for the model, where the bias distribution
depends on the characteristics of the noise. Two
possible approaches to this problem are employed
in this paper:

e The direct identification (DI) method. This
method fully ignores correlation between inputs
and outputs and identifies directly on the basis
of closed-loop process input and output data

(Soderstrom and Stoica, 1989).

e The two step (TS) method as proposed by Van
den Hof and Schrama (1993). This approach ef-
fectively circumvents correlation problems, by
subdividing the problem into two successive
open-loop identification steps.

Application of the direct approach is straightfor-
ward. The TS approach is shortly explained. We
refer to Van den Hof and Schrama (1993) for fur-
ther reading.
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6.1 The two step approach

In a closed loop setting, additional to the process
equation (12) we have the controller relation:

u(t) = r(t) — Clq)y(t)

with r(t) an external reference signal, uncorrelat-
ed to the noise disturbance v(t), and C(gq) the con-
troller. Denoting the input sensitivity function

(20)

So(q) = [I+C(q)Go(g)] ™" (21)
it follows that
u(t) = So(g)r(t) — C(g)So(g)v(t)- (22)

In the first step, using measurement data of r(¢) and
u(t) one identifies the transfer function So. This is
an open-loop type of problem as r and v are uncor-
related. Next the estimate S(g, ) is used to recon-
struct a noise-free input signal:

i (t) = S(q, B)r(t)

that is used in the second step of the procedure when
applying a model structure:

e(t, 0) = y(t) — G(q, 0)ur(t).

It can be shown that, provided the first step in the
procedure is performed sufficiently accurate, this
method can provide a consistent estimate of the
plant dynamics in the second step.

Application to a MIMO process is reported in Van
der Klauw et al., (1994).

(23)

(24)

6.2 Design of a closed-loop experiment

Two closed-loop experiments for identification and
successive model validation are performed with the
pilot crystallizer. We refer to these experiments as
RUNB5 and RUNS6. All three inputs of the closed-
loop process, e.g: Yr1s, @p, and P; (see also Fig. 5),
have been excited with generalized binary noise se-
quences (GBN) which are introduced by Tulleken
(1991). These signals switch (pseudo-) randomly
between two fixed signal levels at discrete points
in time. Choosing a switching probability between
0.5 < p < 1 will provide more excitation in the low
frequency range, conversely, choosing 0 < p < 0.5
will increase the signal energy in the high frequen-
cy range. An important advantage of binary noise
sequences is that the energy is roughly evenly dis-
tributed over the frequency range of interest, hence
the maximumsignal amplitude is lower. In addition,
plant operators are most familiar with step wise or
pulse wise signals.

The basic intervals for the GBN signals are chosen
20 minutes. The switching probability was chosen




amplitude I
0.25 (RUNBSH),
0.20 (RUN56),
0.035, [1/s]
30, [ KW]

process input | nominal value |
0.5 (RUNB5),
0.5 (RUNS6),
0.215, [1/s]
120, [KW]

sefpoint 414

product flow

heat input

Table 2: Nominal values and amplitudes of the GB-
N test signals.

p = 0.7. The real nominal signal values and their
amplitudes are given in Table 6.2. From simulation
tests it was found that the signal @y saturates easily.
This problem is reduced by limiting the amplitude
of the excitation signal. Moreover, this further le-
gitimates the use GBN signals instead of sinusoidal
excitation, which were used for the open-loop exper-
iments.

The GBN signal for used for RUN55 was sufficient-
ly uncorrelated with the signal for RUN56, while its
frequency contents are comparable. For both ex-
periments, a duration of 50 hours was chosen. This
value roughly equals 8 times the dominant time con-
stant in the system. The identification method is
evaluated with input-output data generated with a
low order linear model, which is derived from the
simulation model. Using the designed input signals
for RUNSS, reveals that the original model can be
recovered from the simulation data.

Data preprocessing

Proper treatment of the data, prior to the estima-
tion of parameters, is a necessity to obtain consis-
tent identification results (Ljung, 1987). The raw
process data consists of measured values for the den-
sity recorded from the independent density sensor,
with a sample time of 10 seconds, and the scattered
light energy vectors, which are sampled with a fre-
quency of 1 minute. The raw scattered light intensi-
ty vectors are averaged values from batches of 1000
sweeps each, which are recorded from the detector
in approximately 5 seconds.

All scattered light energy patterns were corrected
for the signal background (Eek et al., 1995). The
recorded light diffraction patterns are normalized by
subdividing each element by the total scattered light
energy. Signal outliers are removed by linear inter-
polation between good measurements that neigh-
bour outliers. The fines density y; and the mean
crystal size X4a are estimated from the normalized
diffraction patterns, according to the method de-
scribed above. All input and output signals are de-
trended. Finally, all detrended input and output
signals are scaled to obtain an equal signal energy
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in terms of the signal 2-norm, and the sampling rate
is decimated with a factor 5, to 1 sample per 5 min-
utes. The resulting set of 3 input and 3 output sig-
nals, each containing 600 data points, is described
in Table 4.

Model verification

A model verification step is included to judge
whether the estimated models are sufficiently ac-
curate. Model verification is done in the time and
frequency domain on the basis of the independent
data set (RUNB5). A scalar measure, denoted as
the relative mean square (RMS) value is evaluat-
ed for assessing the quality of fit. This measure is
calculated from:

SN (k) = (k) x (wi(k) — 9 (k)
Yoney yi(k)yi(k)

BMS; =

(25)
with ¢ the noise free simulated output and y the
measured output.

In the frequency domain, models can be compared
using their Bode amplitude and phase plots. In ad-
dition, the Bode plot may be compared to the empir-
ical transfer-function estimate (ETFE), which is es-
timated from the input-ontput data directly. As dis-
cussed by Ljung (1987), interpretation of the ETFE
should be done with care. From a simulation exer-
cise we found that due to a low number (600) of data
points in our input-output data set, a large bias in
the low frequency range exists. This bias can be
reduced to a certain extent by applying a narrow
frequency window, however, at the expense of an
increased variance in the estimate (see also Ljung,

1987).

7 Results and discussion

The excitation signals presented in the previous sec-
tion were applied to identify the dynamics of the
open-loop process, on the basis of closed-loop data.
The data from RUNS6 will be used for identification
and of RUNB5 for validation. During the validation
experiment (RUNS5) a relatively large density of in-
ert gas bubbles were observed in the solution, due to
air leakage into the (vacuum) crystallizer. As these
bubbles are observed as particles by the sensor, the
observed process trends are likely to be corrupted
by this non quantified disturbance.

7.1 Results direct identification

Three state-space models in canonical observability
form, with order 3, 4 and 5, were estimated directly
on the basis of the input-output data from RUNBS6.
Also an initial state and an offset were estimated,
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Fig. 7: Identification results of fourth order model

(solid) estimated with direct identification

method on data from RUNS6 (dashed); fines

density yr1 (upper), mean crystal size X3

(middle) and solids fraction M; (lower).

while the direct coupling matrix D in (17) was kept
zero, hence in total 24, 31, and 38 parameters were
estimated, respectively, on the basis of 600 input-
output samples. The RMS values of the estimated
models, for both the identification (denoted with
?idf”) and the validation (denoted as ”val”) experi-
ment, are given in Table 7.3. The consistency of the
model is checked by adding the (known) stabilizing
feedback controller again to the estimated open-loop
model and simulate the output response successive-
ly on the basis of the three (GBN) test signals. The
resulting RMS values (denoted as ”cl”) are also pro-
vided in Table 7.3.

Checking the RMS values reveals that the fourth
order model gives the best fit. In Fig. 7 and Fig. 8
the fit of this model on both the identification and
the validation data set are given, respectively. Note
that the first portion of the simulated signal trend
in Fig. 8 is biased as the initial model state was kept
Zero.

The results show that reasonable fits are obtained.
However, in the validation data set some large de-
viations are present. In particular in between 24
and 32 hours large deviations exist. As mentioned
above, these deviations may be due to process dis-
turbances, and the non-stationary inifial state as
well.
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Fig. 8: Validation results of fourth order model
(solid), estimated with direct identification
on data from RUNb6 (dashed), with uncor-
related data from RUNSS; fines density y
(upper), mean crystal size X43 (middle) and
solids fraction My (lower).

7.2 Results two step identification

Application of the first step of the two step identifi-
cation procedure resulted in a 6th order state-space
model in canonical observability form, for the input
sensitivity model (21). Note that all three inputs of
the process (see Fig. 5) had to be used in this step
as all three affect the input Q;. The known val-
ue for the proportional action of the controller was
used to determine the coupling matrix D a priori.
Also an initial state is estimated. With the sensi-
tivity model a noise free output signal for the sta-
bilizing controller is simulated. The measured and
reconstructed output signal of the controller are giv-
en in Fig. 9. The RMS value corresponding to this
fit is 0.25. This plots elucidates that the difference
between the reconstructed and the measured con-
troller output signal are small. This, however, does
not necessarily imply that the result of the second
step is equal to the result of the direct identification
step. Below Bode plots of the estimated transfer
functions are used to explore this difference further.

In the second step, again 3rd, 4th, and 5th order
state-space models in canonical observability form
were estimated in an open-loop fashion. However,
for the controller output @y, the reconstructed con-
troller output ., which is obtained from the first
step, is used. An initial state and an offset were
also estimated, while the matrix D was kept zero.
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Fig. 9: Measured (dashed) and reconstructed pro-
cess output signal Q; (solid) of stabilizing
controller on the basis of 6th order state s-
pace model.
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Fig. 10: Validation results of fourth order model
(solid) estimated with 2 steps identification
method on data from RUNbH5 (dashed),
with uncorrelated data from RUNS6; fines
density yr1 (upper), mean crystal size X3
(middle) and solids fraction M, (lower).

The RMS values of the residuals of the different
models for both data sets are given in Table 7.3.
Also for this model the estimated open-loop model
is simulated in closed loop on the basis of the ex-
citation signals. The resulting RMS values are also
provided in Table 7.3. Also for this case a fourth
order model seems to provide the best estimate of
the open-loop process dynamics. The fit on the i-
dentification set strongly resembles the fit obtained
with the direct approach. In Fig. 10, the fits on the
validation sets are given At first hand, the RMS
values and the time domain fits reveal a small dif-
ference between the DI and the TS model. However,
if we compare the Bode plots of these models given
in Fig. 11, a clear difference is observed, mainly in
the region of high frequencies. The deviation of the
DI model from the TS model exist mainly due to the
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Fig. 11: Bode amplitude plots of fourth order mod-
els obtained from direct approach (solid),
the two step approach (dashed), and the
first principles model (dotted), with i— >]
denoting the tranfer relationship of the ith
input to the jth output (see Fig. 1).

existence of a correlation in the noise between the
input-output signals used in the DI approach. This
result confirms the importance of using the proposed
TS approach instead of the DI approach.

7.3 Validation of the non-linear process
model

One of the reasons for application of system iden-
tification was to obtain data for the evaluation of
the nonlinear process model. The nonlinear process
model was fitted on the data of RUN56 according
to a method described in Eek et al., (1995). The re-
sults showed that the model error was not sensitive
to the model parameters py, - -, p1o, except the pa-
rameter p3, which describes the constant nucleation
rate. This parameter was adapted only slightly to
improve the fit on the data.

From the nonlinear model 3rd, 4th and 5th order
models were derived, according to the described
method. The fits of the optimized nonlinear model
and the reduced 4th order model on the identifica-
tion data are given in Fig. 12 and on the validation
data (RUNS5) in Fig. 13. The RMS values of the
output errors of the different models are provided in
Table 7.3.

The fit on the output .1 is better then the fit on
output X43. The latter exhibits a less regular re-
sponse on the input excitation then the real process
trend. Probably a dispersion effect that smoothen-
s the particle waves when transported (by growth)
over the crystal size domain is responsible for this.
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Fig. 12: Fit of nonlinear process model (solid) on
measured data of RUNS6 (dashed); fines
density y-1 (upper), mean crystal size X3
(middle) and solids fraction M, (lower).

The dynamics of the solids fraction M; is described
with approximately the same accuracy as the input-
output model. On the basis of the identification
data set the first principles model does not perform
significantly worse or better then the identified mod-
el. However, on the independent validation data set
the nonlinear model performs significantly better.

In Iig. 11 also the Bode plot of a fourth order model
obtained by linearizing and reducing the nonlinear
model is added as a dotted line. As can be conclud-
ed also the linearized first principles model gives a
reasonable fit on the data. The dynamics are rea-
sonably comparable however the static gain differs
from the identified models. It may be expected that
the physical model gives a better description of the
low order dynamics in the system then the black-box
model. However, it should be noted that a proper
estimate of the static gain is less important for most
control applications as most controllers will have in-
tegral action which tailors the process outputs to a
zero static deviation at infinite time.

As the first principles model also contains signif-
icantly less unknown parameters, less informative
process data is needed, hence the method suits the
industrial requirements better. Further improve-
ment of the first principles model can be attained
by incorporating models for mixing, and improved
models for forward light scattering.
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Fig. 13: Validation of full nonlinear process mod-

el (solid) on measured data of RUNS55

(dashed); fines density y.q (upper), mean

crystal size X43 (middle) and solids frac-

tion M; (lower).

RMS3
S EE

RMS1 RMS2
DI TS EP [EDEecESL BE; [pb)
third order model
0.59 0.56 1.00
1.2210.78 0.92 1.11(0.30
1.1111.29 1.52 1.22|0.50
fourth order model
1.16 | 0.51 0.52 0.92]0.20
1.66 (0.86 0.86 0.980.24
1.1511.40 1.42 1.25)|0.42
fifth order model
0.51 0.46 1.06
0.94 0.67 1.22
1.26 1.59 1.40
nonlinear model
1.17
1.08

idf | 0.52 0.54
cl |0.57 0.55
val [1,00 1.10

0.28
0.32
0.55

0.42
0.47
0.65

1.08 0.28

0.28
0.29
0.49

idf | 0.52
cl |0.57
val | 0.99

0.47
0.50
1.13

0.46
0.46
0.63

idf [0.45
el |0.51
val | 0.96

0.45
0.46
1.24

1.14
1.26
1.21

0.29
0.44
0.52

0.27
0.33
0.58

0.43
0.48
0.63

0.46
0.58

idf

val

0.65
0.82

Table 3: RMS values for y,; (RMS1), X435 (RM-
S2) and M; (RMS3), of directly estimated
models (DI), the two-step approach (TS)
and the first principles model (FP), on the
basis of identification data (idf), identifi-
cation data with the model in closed-loop
(cl), and validation data (val).




Conclusions

In this paper we have shown that low order linear
MIMO models give a sufficiently accurate descrip-
tion of the dynamics of a crystallization process,
provided that the process is operated close to its
stationary behaviour. The latter condition should
be imposed with a stabilizing feedback controller
that stabilizes the open-loop cycling behaviour of
the system. Low order models can be derived via
a linearization and reduction approach of a nonlin-
ear first principles model and via a system identi-
fication approach on the basis of measured closed-
loop process input-output data. Direct identifica-
tion of input-output models, on the basis of process
input-output data with correlated noise, shows that
a significant bias in the high frequency range of the
transfer-functions is introduced. This consistency
problem could be circumvented effectively with a t-
wo step identification procedure.

Validation of the estimated models with an indepen-
dent data set, shows that the nonlinear first princi-
ples model gives the best fit. The difference with
the low order linear input-output models is, howev-
er, small.
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Abstract,

The behaviour of manipulators equipped with hydraulic actuators is domi-

nated by the dynamics of the hydraulics. The aim of an inner/outer loop control structure
is to mask these hydraulic dynamics with an inner loop. Constructing the inner loop by
using the inverse of the actuator dynamics, or by placing the poles of the actuator system,
is fundamentally different. An analysis of these two options concludes that a pole place-
ment is the best choice. First results of an actual implementation of a proposed method
on an industrial hydraulic drive system, shows the practical relevance of this controller.

Keywords.

impedance control, experimental application

1 Introduction

Although most industrial robots are equipped with
electrical actuators, in some occasions it is prefer-
able to use hydraulic actuators. These are situations
in which big loads have to be handled and available
space for construction is limited (due to the excel-
lent rate of dimension to delivered torque), or long
linear strokes have to be realised (flight simulator
systems). Generally speaking, these are direct drive
situations with severe specifications on load, speed
and/or accuracy.

An example is a Brick Laying Robot which is de-
veloped in cooperation with industry®. Target spec-
ifications for the design did include: a pay load of
100 kg, large range of operation (a circular sector of
1.4 rad with radius of 2.2 meters), transportation of
the load within 3 seconds anywhere in the range of
operation with 2-3 mm position accuracy. In addi-
tion the manipulator has to operate on a platform
(diameter 2.8 meter) supported by a telescopic mas-
t. Therefore severe limitations in size and weight of
the manipulator where imposed.

!This paper is also presented at the 4th IFAC Sympo-
sium on Robot Control, September 19-21, 1994, Capri, Italy.
Copyright of this paper remains with IFAC,

!Eureka EU 377 FAMOS BRICK, Highly Flexible Auto-
mated and Integrated Brick Laying System.
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One of the main differences between electrically
driven robots and hydraulically driven robots, and
subsequently the applied model based control de-
sign, is the significant presence of the actuator dy-
namics. In most of the control literature on (elec-
trically driven) robots, actuator dynamics are not
taken into account, e.g. Khosla (1990) and Whit-
ney (1987). Hydraulic actuators do exhibit lightly
damped dynamics. As these dynamics often dom-
inate the behaviour of the manipulator, special at-
tention for the hydraulic drive system is necessary
(Heintze et al., 1993).

To perform model based control design for nonlin-
ear systems such as manipulators, techniques such
as feedback linearization are often used. For ex-
ample the well known Computed Torque technique
(e.g. An et al. (1988)) is a feedback linearization
method. Such a feedback linearization technique us-
es in some sense the inverse dynamics of the system
(Slotine and Li, 1991). In case the model used at
the control design is not an exact description of re-
ality, the method hardly gives a clue about robust-
ness. Especially in case of lightly damped systems
(as hydraulically driven manipulators are), robust-
ness problems can be expected (Boer, 1992).




The Brick Laying Robot in the hydraulic laboratory
of the Mechanical Engineering Systems and Control
Group, Delft University of Technology, is equipped
with standard industrial hydraulic actuators and
valves, This means: safety features in the hydraulic
circuit, varying (Coulomb) friction due to industrial
seals, uncertain internal leakage flow due to limit-
ed accuracy of construction and bearings, standard
quality valves with uncertain behaviour (dynamic as
well as static) in the centre position (which is exact-
ly the range of operation in case of high precision
positioning). Due to these difficult to describe phe-
nomena, it is hard to produce an accurate model,
which motivates the analysis in this paper.

In order to focus complete upon the dynamics of
a hydraulic actuator, the analysis is performed for
the one degree of freedom situation; an industrial
hydraulic rotary vane actuator with an attached in-
ertia.

First a short description of the model of the hy-
draulic system 1s given in section 2. In section 3
some comments are given regarding the division in
inner and outer loop control. Section 4 is the main
part of the paper, the theoretical analysis of the
inner loop. Preliminary experimental results in sec-
tion 5 will show the practical validity of a proposed
method. Conclusions will conclude this paper.

2 Hydraulic actuator model

A short summary of the equations which describe
a hydraulic rotary vane actuator with valve will be
given. Detailed information concerning modelling
and identification of these type of actuators can be
found in Heintze et al. (1993).

The equation that describes the dynamic behaviour
of the hydraulics is (with s = £):

—kltja -+ kgf-,c\f 14+ Ap

Ap is the pressure difference in the actuator, nor-
malized with respect to the supply pressure given
by the the pump, g, is the actuator position in [rad]
(the dot means the time derivative), i, is the valve
steering signal, normalized with respect to the max-
imum valve steering. ky = F¥(qa), k2 = Gmazki,
ks = LPykoy (ki k2 > 0, k3 > 0). F is a con=
stant depending upon the oil compressibility and
the pressure delivered by the pump, ¥(q,) is an po-
sition dependent parameter, ¢mqr is the maximum
achievable velocity of the actuator (reflecting the
valve dimension in relation to the dimension of the
actuator), and LP, is a parameter concerning leak-

Ap(s+ k3) = (1)

84

age flow inside the actuator. The position depen-
dent parameters k; 5 3 can be regarded as constants
in one operational point. The term /T &+ Ap is due
to the pressure dependency of the valve and can be
regarded as an input nonlinearity, the (+) sign being
opposite to the sign of i,,.

The mechanical part of the model due to the load
can be described by:

da ¢ 11 el 0 0
= 3 Ny Apt| (Te+T2)
Ja 0 _jf‘ fa fmazx T

(2)

Jo in [kgm?] is the inertia attached to the actua-
tor, w in [Nms] is the viscous friction coefficient,
§maz in [rad/s?] is the maximum achievable accel-
eration of the actuator and reflects the dimension of
the actuator in relation to the load attached to it,
T. in [Nm] is the external torque, and T, in [Nm]
is the Coulomb friction and/or stiction torque. The
friction torque T, is modelled as a constant torque
during movement (opposing the direction of move-
ment), and a varying ‘stiction torque’ during stand-
still, similar as described in e.g. Southward et al.
(1991). The transfer function of only the mechani-
cal part of the actuator is then given by:

ay - Gmaz
A - w
p & (S + x)

Combining equations (1) and (2) the following de-
scription of the total actuator is obtained:

q.a 1 é‘mcu: kZ\a‘ 1k AP i‘j—:l 1sc
Ap| OFP| (s+ &) bvTER; =2 || 4T
With OP = s + (£ + ks) 5 + (ks + dimask1),

(4)
the open loop characteristic polynomial. Taking g,
as output results in a third order model from steer-
ing current (iyc) to position (g,). The dynamics are
then described by an integrator in series with a sec-
ond order system, well-nigh always badly damped.
In the modelling process, we have made the fol-
lowing assumptions: 1| symmetrical actuator, 2|
symmetrical critical-centre valve with turbulent oil
flow and no valve dynamics, 3| laminar leakage flow,
and 4| the mean pressure in each compartment is
half the supply pressure. These are quite standard
assumptions, see e.g. Viersma (1990). When mod-
elling a linear hydraulic actuator, angular position
and inertia transform into distance and mass respec-
tively.

(3)

3 The inner/outer loop concept for
hydraulically driven manipulators

Feedback linearization techniques, for example ap-
plied to nonlinear systems as manipulators, often




result in a so called inner/outer controller scheme.
The inner loop used for the feedback linearization,
transforms the dynamics of the manipulator to a set
of SISO not coupled integrators. The outer loop is
used to place the poles of the linear system, such
that the desired controlled behaviour is obtained,
regardless of the original manipulator dynamics (S-
lotine and Li, 1991). For example Computed Torque
control (An et al., 1988) is according to this concept.
With similar reasoning, an inner loop for hy-
draulic actuators can be used in order to mask the
dynamics due to the hydraulic part of the system,
and then an outer loop can be used to control the dy-
namics due to the mechanical part of the manipula-
tor. This outer loop itself is also possibly composed
of two parts: a (second inner) loop which for exam-
ple performs a feedback linearization of the nonlin-
ear dynamical behaviour of the mechanical part of
the manipulator, and a (linear) outer loop designed
such that a specific required behaviour of the by now
totally feedback linearized system is obtained.
Although the primary interest is in the design and
analysis of an inner loop specific for hydraulic actu-
ators, an outer loop need to be chosen in order to
have a fully controlled system when performing test-
s. As the inner/outer loop control strategy also fits
for impedance control (Anderson and Spong, 1988),
the outer loop controller is chosen to be of this kind.

Impedance control as described in Hogan (1985)
aims at realizing a behaviour at the end effector of a
manipulator such that this manipulator appears to
be a passive system, in case of interaction of the end
effector with an environment. Within a impedance
control design method, there are free to choose de-
sign parameters which are directly characterizing
the dynamics of this passive system, the so called
target impedance.

Opting for a simple linear second order target
impedance in the non contact situation only, i.e. an
inertia, rotary damper and spring system, gives the
outer loop control law:

T:n!

¢ gl oo
0= 7, (q0 Qn)+J:(QD da) + 7,

(5)

where J; in [kgm?] is the target inertia, B; in
[kgm? /5] is the target damping, K, in [kgm?/s?] is
the target stiffness, ¢o, go are the reference position
and velocity in [rad], [rad/s], qa,qa are the actua-
tor position and velocity, §; in [rad/s?] is the target
actuator-acceleration, and T, in [Nm] is the inter-
action torque. 7j,; = 0 in this paper. The outcome
gy of the outer loop (5) is the reference for an inner
loop.

The above outer loop requires in principle the avail-
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ability of the acceleration signal of the mechanical
system, which can be considered as a severe handi-
cap for practical application. However, the Ap sig-
nal is easy to measure in a hydraulic actuator, and is
related to the acceleration by equation (2). There-
fore the following target pressure difference is pro-
posed:

@it Frda— 7o (Te + To)

Apy (6)

é‘nlﬂl'
where (7, + 7.) is the summation of a known or
measured external torque, and a measured or es-
timated friction torque (for friction compensation).
Although the non contact situation is examined, and
no attempt to friction compensation is made, this
term is included in the subsequent analysis to main-
tain a general setting. Equation (6) can be regarded
as a ‘second inner loop’ as introduced above. In the
next section the ‘first inner loop’ is introduced, fol-
lowed by the main part of this paper: the analysis
of this inner loop.

4 Inner loop analysis

The objective of the first inner loop (in the remain-
der simply called the inner loop) is to track the re-
quested Ap; as good as possible, such that the dy-
namics of the hydraulics will not disturb the overall
behaviour of the manipulator. Two options for this
problem will be treated.

One solution to this problem is to make the hy-
draulic dynamics fast by means of a cascade Ap con-
troller, another solution is using the inverse dynam-
ics of the hydraulics.

4.1 Introduction and first analysis of the in-
ner loop

Cascade Ap controller

The basic idea of cascade Ap control is a direct feed-
back of (Ap; — Ap). In addition there is foreseen in
a compensation of the valve signal due to the veloc-
ity present in the system?, giving a controller of the
form

13e = K: (AP: = AP) + Kyqa

This basic scheme was already used in Sepehri et al.
(1990) (with K. and K, both constants), ‘cascaded’
with a Self-Tuning Regulator.

The value for K, can be determined from equa-
tion (1) as:

Vs by 1
I{ = =—
T VIEApks  GmazV/1EAp

?A hydraulic actuator is primarily velocity driven, i.e.
a constant valve opening results in a constant (rotational)
velocity.

(7)




The position dependency of the actuator completely
drops out. In addition to a constant gain we see a
cancellation for the input nonlinearity. The same
input nonlinearity cancellation will be used at the
pressure feedback, leading to the control law:

1 1
.'rr‘:___ I.‘r A — A s 'a
Tsc liAp{ Lo (Ape P)+qmuq } (8)

Applying this controller to equation (4), the follow-
ing description is obtained:

; imazkaKe Izt
qa (s+3& ) (s+katkaKe) 477 a2
Ap koK 0 Te+T:

(9)
Due to the velocity feedback K,, the complex pole
pair of equation (4) is decoupled into two real poles:
one for the mechanical part and one for the hy-
draulics, see entryp 1) of (9). Subsequently the hy-
draulics can be made fast with gain K, (i.e. K. >
0). Note, for example in eniryp ;) of (9), that the
position of this fast pole, as well as the gain of the
transfer are position dependent due to ks and k3.

Inverse controller

The solution, which comes more naturally forward
from the point of feedback linearization, is to use
a controller which contains the inverse dynamics of
the hydraulics:

Direct use of equation (1) gives the control law:

s kl ¢ (S—I-k';) Apt
S AT A Tl EAp

(10)

Note that the velocity compensation and the cancel-
lation of the input non linearity are identical with
the cascade Ap controller. Substitution of the above
equation into equation (4) gives:

. o gt
[qn = s+f s+ l: Ap; :‘ (11)
Ap 1 0 Te+1%

Ap = Ap; results due to the control law (10): the
dynamics due to the hydraulics are cancelled. Com-
pare also entryp 1) of this matrix equation with e-
quation (3). Left over are the dynamics due to the
mechanical system, which will be taken care of by
the second inner loop (see equation (15)).

Effect of input nonlinearity cancellation

In case that K, and K. are constants the following
equation results instead of equation (9):

Apg
Te+Te

q.‘ﬂ
Ap

1
= =p Al (12)
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With:

FrL stkatkale\/1EAD"
(o] s TR ER o  E
(s+ %) kK yTEBRp %+ (VIEDP —1)

and,
CP= (s5+%) (s+ ks + ks Ko TEDD) +

dmazk1 (1 — /1 £ Ap

The term /T =+ Ap’ results when the input nonlin-
earity in the pressure loop is not compensated for,
i.e. using in equation (8) a constant K. instead
of K. (\/l-:i:Tp)_l. VIEAp" has an equivalent
meaning for the velocity loop.

The effect of omitting the cancellation of the input
nonlinearity in control parameter K. only, is that
the position of the fast pole, and the gains have be-
come a function of Ap, but the decoupling between
hydraulic- and load-system is still present. Using a
constant velocity compensation (i.e. /1£ Ap in-
stead of 1) is destroying this decoupling. The two
real poles can transform into a complex conjugate
pole pair, of which the damping is uncertain; the
pressure dynamics has become dependent upon the
dynamics of the mechanical load. In addition, Ap
will now be influenced by external torques, by the
non-zero value of entrypz s of equation (12).

A similar analysis can be performed for the con-
troller based on the inverse of actuator dynamics.

A first comparison of the two options for the
inner loop

The first column of equations (9) and (11) differs
by:
koK.

54 k3 ~+ kgﬁ'c
In case of the cascade Ap controller the pressure
reference is tracked via first order dynamics, which
can be made fast with gain K., and will have static
gain equal to 1 for k3 = 0 or K, — co. However,
at first sight it seems that the inverse controller is
doing the best job.

(13)

Both controllers are utilizing exactly the same com-
pensation for the velocity present in the system: a
constant gain depending on actuator-valve charac-
teristics plus a compensation for the input nonlin-
earity. For the pressure dynamics however, the in-
verse controller is cancelling a pole whereas the cas-
cade Ap controller is placing a pole.

This will make a substantial difference in the
case of a non exact pole-zero cancellation, especially
when the location of such a pole is near the imagi-
nary axis. And this is likely to be the case, as k3 is




dependent upon the leakage parameter LP,. This
leakage parameter is kept as small as possible by
design, and in addition, is hard to determine.

Furthermore, in the event that the velocity com-
pensation is not perfect, the dynamics of the hy-
draulic and the mechanical part are not decoupled
completely (see (12)). The pole-zero cancellation,
as designed for by means of the inverse controller,
will not take place = a zero near the imaginary ax-
is and a rather undamped complex conjugate pole
pair may result.

Moreover, the only knowledge necessary to im-
plement the cascade Ap controller is the constant
Gmaz>. K. can be adjusted either way, according to
model studies or right on the spot! However for the
implementation of the inverse controller knowledge
about the non constant parameter ks is required,
which essentially contains the complete parameter
set of the hydraulic actuator model.

Note also that the inverse controller (10) is a non
proper system. In case of practical implementation
at least a fast enough first order system has to be
added. (This will result in an equivalent description
as (9), where equation (13) is replaced by the fast
first order system.)

Also remarkable is that the inverse controller is
using the Ap signal only for the input nonlineari-
ty cancellation, and is not actual having Ap in a
feedback loop. The cascade Ap controller is using
the Ap signal in the feedback. One can say that the
inverse controller relies more upon the model knowl-
edge, and that the cascade Ap controller is using the
actual process information to a larger extent.

At this point a preference for the cascade Ap inner
loop controller 1s stated.
4.2 Influences of parameter uncertainty

Closing the second inner loop (6) in combination
with the cascade Ap controller (8) as the first inner

B o= %}. Vi, which reflects the size of the actuator,
is easy to measure and always specified accurately by the
manufacturer of hydraulic actuators. The nominal valve flow
®y, is dependent upon the supply pressure Ps, the maximum
steering current i;nqz, and the valve constant C. The supply
pressure is given by the pump and is easy to verify. A measure
for the valve constant is also given by the manufacturer of
hydraulic servo valves, and can be measured from quasi static
experiments. But this "constant” can fluctuate considerably
around the zero position of the valve (i.c = 0, regarding this
phenomena you can buy different qualities of valves), and
tends to drop off for i — +imaxz. This drop off depends
upon resistance of the oil flow from the valve to the actuator.
In every control problem, the valve appears to be a critical
subject.
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loop gives:
; Y. (s+ks)J? i
qa CP, CPy qt
Ap (495 )kaKe  —skakoIZ' | | TL+T,

qmuchl q"muxcpl

(14)
With CP, = s+ s (_%— + k3 + kgh'c) + J-ks. The
second inner loop combination with the inverse con-
troller (10) gives:

Ga s~ 0 gt
N o da)
Ap E‘m—uﬂ? T Te+T.

The resulting integrator for the mechanical part of
the system gives a perfect tracking of the target ac-
celeration ;.

Replacing koK

s2s( ks koK )+ ks
(14) by an integrator s=' gives equation (15), ex-
cept for entryp 7). Assuming that the viscose fric-
tion w (which is generally small) approaches to zero,
the examination of the correspondence of the result
using the inverse dynamics or the cascade Ap con-

in equation

troller is equivalent to the question (= indicates that
similarity is questioned):

ka K.
s (S -+ ka - kgf\"c)

Q=

:
s

For®, ks < koK. the right hand side of the last e-
quation becomes an integrator in series with a first
order system. This first order system has a static
gain 1, and can be made fast by the design param-
eter K.

With the same assumptions, entryp g of equa-
tion (14) transforms to an integrator in series with

a first order lead/lag filter, with a static gain < 1:
!8+k3 !J;l

Ty, 2 N JLTkKo)

As the inner loops (6), (8) and (10) are based upon
model parameters, it is interesting to analyze the
influence of parameter uncertainties upon the dy-
namical behaviour of the controlled system. Only
examination of the parameters of the hydraulic part
is presented, i.e. parameter uncertainties in equa-
tions (8) and (10), and not in the second inner loop
(6). The uncertainties are assumed to be bounded
such that the inequalities under equation (1) are not
violated, for example: €r, > —k3. A correct com-
pensation of the input nonlinearity is assumed, as
this influence is already analyzed in (12).

*ka is dependent upon the leakage over the vane, LP,.
This parameter will normally have a small value. kK, is
designed to be large, in order to obtain fast dynamics of the
hydraulic system, see (9).




Parameter uncertainties in the inverse inner
loop controller

In control law (10) the parameters %ﬁ =ogatobiby
and k3 have been used. As the cascade Ap con-
troller only uses ¢maqz, the influence of an isolated
uncertainty upon this parameter will be analyzed
first. Further, to gain some more insight, the influ-
ence of an uncertainty ¢ for the parameters k; and
ks separate is analyzed. Although it is clear that a
combination of uncertainties will give some additive
insights, the analysis mentioned above, is sufficient
to compare the two options for the inner loop.

Suppose5 fjma:,cntr = ‘jma:; i Edman 1 equation (11)
transforms into:

(stka)J !

- "“1".‘{5‘%.
(a g C P, ) CP; AP(
Ap T ()t =ITker | | LT
C P, C
(16)

and

Jmazx

With CP; = (5 + _,—) Pt Y S

gh = ——f9max £q
“fmax Untac Fodman.
tioned influence of a not correct velocity compen-
sation is recognized in equation (16). A zero due
to the controller is introduced, and the dynamics
of the hydraulic part is not decoupled from the dy-
namics of the mechanical part. C'Ps shows that this
effect is not significant in case gmazk1€3, . < -j‘%-.(:;;.
However due to the fact that both, w and LP,

(ks = LP,ks) can be small, it might be that ef-

ok i8 signs o W LPyimay
fect is significant. For &4,,. < —7- "'ﬁ"+"‘ P
1

the characteristic polynomial C'Ps; will even have an
unstable pole.

A similar analysis is done with the second
inner loop (6) closed. Only the first colum-
n of (15) is influenced, % is transformed into

(5+k31('jma1: +€d'm;u:)
3[5+kan.émqr+f-fm,|, }+‘.}-ma.r'klf(}mﬂ: .
Eimar < 0 this system will have unstable poles. For

Eimax > 0 the significance of this term is dependent
upon the relative size of Gmazk1€j,,,. -

The in paragraph 4.1 men-

For _‘jmar <

Suppose kg cnir = ko + €x,, equation (11) trans-
forms into:

Y Freon k% gt

Ga (435 ) (kateny) S+ Apy ]

AP h:-;k, 0 i
(17)

The parametric uncertainty £y, introduces a (rela-
tive harmless) gain error in the first column of the

*The subscript ‘entr’ identifies the parameter used in the
control law, without a subscript is the nominal value of the
parameter. Just one parameter uncertainty at a time is being
examined. For the other control parameters is assumed that
they match the correct values.
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matrix equation (11) (compare with equation (17)).
After closing the second inner loop, the elements

of (15) have been multiplied by (LT”):-“‘_
S\ F2TERy )T, Cka

The position of the pole of this first order system is
uncertain, and is even unstable for —ks < g, < 0.
In case of zero viscose friction (w = (), the influence
of g, reduces to a static gain error. Entryp, z) of
Epad A
s(k;+£k2.}+-}"ﬂ—sk3
pling between the external torques and the velocity.

(15) becomes , introducing a cou-

Suppose k3 cntr = k3 + €r,, equation (11) trans-
forms into:

Gmaz(stksteny) Jo!

Ga | _ | (rE)rh) FE an
Ap stkstery 0 To+T.
a+ka

(18)
In this case the order of the system is increased:
closing the first inner loop results in the addition of
a stable first order lead/lag filter in the first column
of matrix equation (18) (instead of just a gain as in
(17)). This is due to the fact that the system pole
(s + k3) is not cancelled correctly by the controller
zero (s + k3 entr)-

When closing the second inner loop the same con-
troller zero is introduced, and a second order char-
acteristic polynomial results. This polynomial has
one unstable pole for all g, > 0. Equivalent to
the uncertainty eg.,, entryp, 2] of (15) has become
NONZEro.

Parameter uncertainties in the cascade Ap in-
ner loop controller

Control law (8) uses only the model parameter
Gmaz- SUPPOSE Gmaz.cntr = Gmar + Ejmaex €QUation
(9) transforms into:

(sHeatha Ko )JI T

da gm(;;‘);hc CPs Apy
Ap (s+3=)kaKe —J7lkyel i Bl
CPs C Ps
(19)
With
CPs= (s + T) (s + ks + ks Ko)+Gmackic? . and

€7 .. as at equation (16). A comparison of this
situation with the equivalent parameter uncertain-
ty in the inverse controller (equation (16)) gives:
There is not a zero, due to the controller, intro-
duced in the first column of (19). The entriesys g
are equivalent. And the zero which appears in
entry(; o) in both equations, is apparently not due
to a zero in the controller. Note that in the case of
the cascade Ap controller the location of this zero
can be influenced. The characteristic polynomial-
s CP, and CP; do have an equivalent structure,




but in case of the cascade Ap controller the posi-
tion of the poles can be influenced by control pa-
rameter K. Stability in spite of the parameter un-
certainty is determined by the following inequality:

£ 'U(LP“ +’K\‘.‘)ég“": o
Ehmer > ~TimetuiP a5 Therefore stabili-

ty can be forced in case of certain bounded parame-
ter uncertainty, with respect to the first inner loop.

Closing the second inner loop, only the poles
of the characteristic polynomial have been dis-
turbed (compared to (14), and the numerator
of entryp 2 has been transformed to skoK. +
Gmarki1€}  , which is non-minimum phase for
€jmee < 0. This system will be stable for: ;... >

wLPu? .. . e .
;P T 8 N e This condition is a little less

restrictive as compared to the case with the inverse
actuator dynamics controller.

Conclusions with respect to the parameter
uncertainty analysis

Conclusions due to the above analysis are:

e Three different kinds of parameter uncertain-
ties can introduce instability in case of the in-
verse confroller. For the cascade Ap controller
this is just the case for one parameter uncer-
tainty.

e The conditions for stable behaviour are for the
cascade Ap controller less severe.

e Parameter uncertainty in case of the cascade
Ap controller will not result in the addition of
(badly conditioned) dynamics after closing the
second inner loop, as is the case with the inverse
actuator dynamics controller.

e For both controllers it is advisable to use an
estimated ¢maz cntr Which is larger than the real
one, such that g;,.,. > 0.

Note from equation (1) that the parameters ky 53
are position dependent. Therefore uncertainties
€k, 45 can also be due to the operation of the ac-
tuator at a different position ¢,, as the controller
was designed for.

4.3 Extension of the cascade Ap inner loop

The dynamics of a hydraulic actuator, controlled
with the cascade Ap controller (8) or the inverse
controller (10) differs by the first order system of
equation (13). Not only the pole of this system is
varying with the position dependent parameters ko
and kg, but also the static gain. This static gain is
approaching 1 for ks < ka2 K.

Introducing a leakage compensation within the
cascade Ap structure, gives instead of equation (13)
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the following difference with the inverse controller:

koK. ,
s+ k2K, (20)

The complete cascade Ap controller inclusive leak-
age compensation becomes:

: 1 . : da
se=——< K. (Ap:—A I A :

o= s { Kl A9 + Ko Ap 2|

(21)

With Kpp, = LP, in the nominal case. Instead of

equations (9) and (14) the control law with leakage

compensation results in:

. r;'lmu:k'JK‘-‘ Ju_l
9 e (s4+9%)(s+kaKo) 3+37 =
Ap ..J_c.ﬁi:_. 0 Te +TC
s+kaKc
(22)
and,
. kK, o i
Ja s CPy EﬂE e
Ap (kKo kakIZt || T.4+T.
é‘mnrs CPO 'i'.""“’cp‘
(23)

with CP; = (s + 3+ szcc). A full compensation
of the leakage dependent parameter k3 is realized.

An equivalent robustness analysis as in para-
graph 4.2 can be performed. The results in case
that Gmaz,entr = Gmaz + Ejn.. are similar to para-
graph 4.2, but without the influence of k3 (i.e., tak-
ing k3 = 0 or LP, = ( give the equivalent equations
and stability conditions).

The situation LP, cntr = LP, + €Lp, is of course
similar to no leakage compensation (epp, = —LP,).
Therefore taking LP, = —erp, and consequently
ks = LP,ky = —epp, ko in equations (9) and (14)
gives the equations concerning the analysis of the
parameter uncertainty erp, of LP,. As stability
conditions we get: K. > epp, for the first inner
loop, and €7p, < 0 due to the second inner loop.
Because of the second condition, the first condition
will not be a problem as K. > 0, see under equa-
tion (9). This stability condition is equivalent to the
case of the inverse controller® (g,), but the effect
of a nonzero er p, will be a shift of pole locations in
stead of adding uncertain dynamics. In general the
estimated value of the leakage coefficient (LPy cntr)
must have a value less than the actual leakage coef-
ficient (LP,), such that erp, < 0.

The conclusion of this section is that leakage com-
pensation can increase the performance of the cas-
cade Ap controller at the expense of more model

S Although ki, and consequently its uncertainty, is depen-
dent upon 6 parameters, as £ p, solely depends upon LF,.




knowledge, and the introduction of an extra stabil-
ity condition. The stability condition on ¢4 has
become a little more restrictive with g;,... > 0

5 Experimental results

This section presents the results of some preliminary
experiments, performed on an industrial hydraulic
rotary actuator with load and standard valve. The
purpose is to show the practical applicability of the
chosen control configuration, rather than a complete
experimental validation of the proposed method.
More information about the experimental setup, pa-
rameter estimation and model validation is reported
in Heintze et al. (1993).

As a result of the analyses only the cascade Ap inner
loop together with the impedance control outer loop
is selected for implementation (i.e. equations (5),
(6) and (8) or (21)).

First the influence of the control parameter Kpp,
is shown. In figure 1 a square wave reference is
added to the Ap; signal. Given are the pressure
and the target pressure signals (i.e. ‘entryp )’ of e-
quation (9) or (22)), and the valve input. Along the
Y-axis are scaled units, equivalent to equation (1).
To minimize the influence of control laws (5) and
(6), the amplitude of the square wave is chosen such
that the actuator did not start moving, due to the
friction inside the actuator. In figure la Kpp, =0
and in figure 1b Kpp, is the estimated leakage pa-
rameter LP,. Due to the leakage compensation a
static gain of almost 1 for the pressure loop is re-
alized, which does agree with equation (20). Note
that:

1. The static error between Ap and Ap, is caused
due to a static position error, via equation (5).

2. Especially the recorded valve input signal seems
rather noisy. But we are examining signals in

the order of o= of the maximum value.

In figure 2 K, is increased compared to figure 1, Ac-
cording fo equation (13) the pressure loop is faster
than in figure 1, and the static error in figure 2a is
smaller than in figure la. Addifion of leakage com-
pensation as represented in figure 2b, resulted again
in a static gain of 1 for the pressure loop.

Figures 3 and 4 show that the cascade Ap controller
does function well within the impedance control out-
er loop. Presented is the response upon a step-size
input on ¢p (and go =0). The input gg is the dot-
ted line in the left upper subfigure. For the exper-
iment presented in figure 3 is K; =4460, B, = 31.8
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Response of Ap upon a square wave on Ap;,
‘fast pressure loop’. Upper: Krp, =0, low-
er;: ‘Krp, = DFy wntr.

and J; = 1 implemented as target impedance, and
for the experiment presented in figure 4 the target
impedance was K; = 1225, B, =8.4 and J;,=1. For
comparison, the simulated nominal response of the
target impedance is given in the right lower corner.
The three other subfigures represent measured data
from the actuator. The cascade Ap controller had
an identical adjustment for both experiments.

From these initial experiments is concluded that the
position of the actuator is performing as requested
by the different target impedances. The cascade Ap
inner loop controller is performing well.

Conclusions

Based upon the description of a hydraulic actua-
tor, two inner loop controllers have been formulated.
A theoretical analysis towards the robustness prop-
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Fig. 3: Response upon a step on reference qo, Ky =
4460, B, = 31.8 and J; = 1. In left upper

plot, reference qq 1s - - -, actual position g, is
—. Right lower: simulated response of target
impedance.

erties of the proposed controllers, with respect to
model parameter uncertainties, is performed. Pre-
liminary experiments upon a actual hydraulic actu-
ator have been executed. From this research it is
concluded that:

e Inner loop control based upon cancellation of
dynamics is sensitive to an inaccurate model
used at the control design. This is very likely
to result in poor or even unstable behaviour of
the controlled system.

e The cascade Ap inner loop controller, which is
placing the poles of the hydraulic system, is rel-
atively easy to design and has better robustness
properties than the inverse controller.

e An inner/outer loop control structure applied
to hydraulic actuators is able to separate the
hydraulic dynamics from the mechanical part.
This gives the opportunity to perform further
control design solely based upon the mechanical
structure of the manipulator.

e Practical application of the cascade Ap inner
loop within an impedance outer loop structure,
does yield satisfactory behaviour.

Future research will include: a more elaborated
experimental validation of the one degree of free-
dom situation, the application of the cascade Ap
controller in an inner/outer structure to the Brick
Laying Robot, the controlled execution of a task in
which the manipulator is in contact with an envi-
ronment, using the cascade Ap - impedance control
combination.
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impedance.
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Abstract. In applications where high-performance control of long-stroke hydraulic actu-
ators is required, such as in flight simulator motion systems, the dynamics of the trans-
mission lines between the servo-valve and the actuator are relevant for control design.
Insight into the coupled behaviour of the hydraulic control system is obtained by means
of physical modelling of the transmission lines (by a modal approximation technique), the
actuator and the servo-valve. The validated models lead to an explanation of potential
stability problems encountered in a flight simulator motion system, namely that if the
resonance peaks of the transmission line dynamics interfere with the phase shift of the

valve dynamics, pressure difference feedback may violate stability margins.

Keywords.
experimental validation.

1 Introduction

In a number of applications in the field of motion
control, hydraulic actuators are preferred to elec-
trical actuators, especially when long-stroke linear
actuators are required. An application of these hy-
draulic actuators is the motion system of a flight
simulator (Advani, 1993), where the desired stroke
of the actuators may vary from .5 m to 2 m.

In order to improve the performance (and hence
fidelity) of flight simulation, an increasing in the per-
formance of the actuator control is also required, e-
specially in the control of the actuator accelerations
cq. forces over wide frequency ranges. For this rea-
son, the actuator control will be based more and
more on (high-frequency) force cq. pressure control
loops, instead of the usual (middle-frequency) po-

{This work has been carried out in the scope of the
SIMONA-International Research Centre at Delft University
of Technology. This paper was presented at the 3rd Interna-
tional Conference on Automation, Robotics and Computer
Vision, Shangri-La, Singapore, November 9-11, 1994. Copy-
right remains with School of EEE, Nanyang Technological
University, Singapore.
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sition servo control loops (Merrit, 1967; Viersma,
1990). Recent work in the area of hydraulic robot
control shows a similar shift in control strategy, in
the application of high-gain pressure feedback loops
(Heintze, 1994).

A consequence of this shift in control strate-
gy is, that high-frequency dynamics in the actua-
tor behaviour become important where they were
irrelevant before. Besides that, the application
of long-stroke hydraulic actuators inherently intro-
duces high-frequency dynamics, related to transmis-
sion line effects in the connection lines between valve
and actuator.

In literature, transmission line dynamics, electro-
hydraulic control systems and the combination of
both have been extensively described. A clear his-
toric overview of the research on transmission line
dynamies, is given by Yang and Tobler (1991). They
also present a modelling technique, which approxi-
mates the transmission line dynamics by minimal
order linear models, in which the physical parame-
ters are preserved. This so called "modal approxi-
mation technique” provides the possibility to physi-




|| Par. | Description | Value; k=1 | Value; k=2 | Dim. ||
Tk Radius circular line 110™7 0.810~° [m]
Aax | Line area (wrf) sagitart | 2iora0=" [m*] T
Dok Dissipation number 6.05 10~ % 7.6310~*% [=] @& fow [m/s) load g
E | Effective bulk modulus of oil 1.3 10° 1.3 107 [kg/m~] q position  [m] ¥
Ly Line length 1.31 1.06 [m] i_control signal [V] | B
Zox Line impedance constant 3.41 107 5.36 10° [Na,l’msj —
O 1 Frequency modif. factor mode 1 1.03 1.02 -
.2 | Frequency modif. factor mode 2 1.03 1.02 —
Br.1 Damping modif, factor mode 1 7.0 8.0 -
Px2 | Damping modif. factor mode 2 6.5 8.0 = tq
A1 Norm. natural frequency mode 1 2.60 10° 7.79 10° [rad] It
Ay Norm. natural frequency mode 2 2.06 107 6.18 107 [rad]
v Kinematic viscosity 5.5 107 5.5 10~° [m? /s]
P Density of il 800 900 [kg/m”]
Wk Viscosity frequency .55 .86 [1/5] —

Table 1: Transmission line parameters and values

cally interpret the dynamic effects introduced by the
transmission lines. This is important when these ef-
fects are included in the models of complete fluid
networks, or other dynamic systems, like hydraulic
control systems.

Concerning these latter systems, dynamic (and
even non-linear) characteristics of hydraulic servo-
systems have been thoroughly investigated and de-
scribed by e.g. Merrit (1967), Viersma (1990) and
Walters (1991). Apart from specific research on the
dynamics of the electro-hydraulic servo-valve (Lin
and Akers, 1991; Lebrun ef al., 1978), valve dy-
namics are often neglected in practical application-
s (Viersma, 1990), or approximated by low-order
(experimental) linear models (Feuser, 1984; Watton
and Tadmori, 1985; Watton, 1987).

In some of these practical applications, the com-
bination of transmission line effects and the dynam-
ics of hydraulic control systems is studied. For ex-
ample, Ham (1982) studies the effect of supply line
dynamics, while Watton and Tadmeori (1985), and
Watton and Tadmori (1988) deal with transmission
lines coupled to underlapped servo-valves, and final-
ly the behaviour of a hydraulic drive with transmis-
sion line effects is considered by Watton (1987). In
the latter study, it is concluded that valve dynamics
provide damping of the (oscillatory) fluid transients
in hydraulic control systems.

The results presented in literature suggest no se-
vere problems with transmission lines in hydraulic
control systems. The application of a long-stroke
actuator in a flight simulator motion system how-
ever showed stability problems when applying well
known pressure feedback techniques (Merrit, 1967;
Viersma, 1990). In this paper it will be shown
and explained that transmission line dynamics, cou-
pled to the hydraulic control system dynamics,
cause severe stability problems when aiming at high-
performance control of long-stroke hydraulic actua-
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Fig. 1: Modelling of the servo-system setup

tors.

In Section 2, a review of the relevant sub-systems
models will be given, ending up with an integrated
model for the complete servo-system. The valida-
tion of this model with experimental results will be
described in Section 3. Based on this model, Section
4 discusses the main issue, namely the stability of
the complete hydraulic servo-system under pressure
feedback on behalf of high-performance control. I'i-
nally, Section 4.3 ends the paper with conclusions.

2 Hydraulic servo-system model

For the setup depicted in Figure 1, three sub-
systems can be distinguished: the transmission
lines, the actuator and the servo-valve. For each
of these, a model description will be given, provid-
ing some physical interpretation. These sub-system
models will be integrated into one model for the
complete servo-system. The model parameters for
this particular setup, are given in Table 1 and 2.

2.1 Transmission line model

For both transmission lines, which have differing ge-
ometries, linear models can be derived by a modal
approximation technique. Here, the procedure de-
scribed by Yang and Tobler (1991) will be adopted,
because the physical parameters are preserved in the
resulting approximating linear models. The basic
idea is, that the (infinite dimensional) input/output
description of a transmission line can be represented
as an infinite product series of second order models.
Fach second order model then represents a mode of
the transmission line dynamics, The modal approx-
imation consists of a finite dimensional state-space
model, obtained by taking into account a finite num-
ber of modes only.

In the approximation step, one essential choice
has to be made, namely the number of (resonance)




modes per transmission line to be taken into accoun-
t by the model. Preliminary analysis of the infinite
dimensional model in the frequency domain showed
resonance frequencies at about 200, 600, 1000 Hz
and higher. Given a digital controller sample fre-
quency of b kHz, and a servo-valve with relevant
dynamics up to 500 Hz, it is assumed that first t-
wo modes (denoted by the index [, | = 1,2) may be
relevant for control design and analysis. With this
choice, the dynamics of the two transmission lines
(denoted by the index k, k = 1,2) can be described
by two fourth-order state-space models of the form
(see Yang and Tobler, 1991):

z = Agzg + Brug

S G (1)
where
T
Tk = [ Poky ®Piky Poko ik | k=1,2
‘h‘.;_.:[Pok (I’ik]T .‘.‘,‘—1,2
ve = P Pok | kiz=lpd
4L=dmg[A“ Ag2 | k=1,2
0 ()" Zor Ak | k=12
Ap = (29 e VS 8Bk 1=1,2
i Zukak‘ T ek i
Bk—_-[ k1 .8] 27 k=1,2
ALink
=12
By = —2___ o ‘
Zoankﬂ’k; 0 & 1,2
SRS N T svonk
C""_[OIUIJ k=1,2

and the viscosity frequency for line k defined by
wek = v/ri (see Table 1).

Note, that there are two reasons for the specific
choice of the states z, the inputs u; and the out-
puts yx in equation (1). First, the input-output de-
scription should be physically realizable and causal,
which means that it is incorrect to choose both pres-
sure and flow at one line end as inputs. Secondly,
the transmission line models have to be integrated
with the actuator and valve models, requiring this
specific choice, as argued in Section 2.4.

The two most important line parameters in the
expressions above, the dissipation number Dy, and
the line impedance constant Zyi, are calculated as
follows:

Ly _ Pco
Dy = =),

pEy
cory ~ Au

(2)

with the sound velocity in the oil: ¢o = \/: in

[m/s].
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The remaining parameters in the state-space
model (1) are obtained by calculating the normal-
ized (by wqr) modal undamped natural frequencies:

TIT(I‘— ) k: ‘

pesis, L)

For these frequencies A 1, the factors oy ; and Gy
can be determined from figures given in Yang and
Tobler (1991). These frequency-dependent factors
are introduced by Yang and Tobler (1991) to incor-
porate frequency-dependent friction in the model.
For the setup to be considered here, they are given
in Table 1.

Although equation (1) describes the transient
properties of the transmission lines sufficiently ac-
curate, steady-state accuracy is lost in general by
modal approximations. In order to overcome this
inaccuracy, a steady-state correction is proposed by
Yang and Tobler (1991), which is actually an input
modification that transforms the input matrix Bj
in (1) into BpGy.

The correction matrix Gy, k = 1,2 is found by
setting the steady-state gain of the (input modified)
modal approximation (1) equal to the steady-state
gain of the infinite dimensional model. This can be
shown to result in (Yang and Tobler, 1991):

1 8ZorDni
0 1

Hy = — (ApABiy + AT} Bra) k=12

Gk:H;l[ ] k=1,2

The procedure described in this Section, provides
dynamic models of the first sub-system to be mod-
elled, the transmission lines. Models for the other
sub-systems, actuator and servo-valve, will be given
in the following Sections.

2.2 Actuator model

When modelling the actuator, physical insight can
be preserved, like in the case of the transmission
line dynamics, by stating a model based on physical
laws. For the symmetric actuator of Figure 1, with
the variables defined in the Figure, the equation of
motion of the piston is:

Mpé‘ = Ap (Ppl =7 Pp?) o wp‘j’ = Mpg (4)
while mass balances for the actuator compartments
give state equations for the actuator pressures:

) (q)oi

FPI = p(qm,-!-q Apq)
Fpz = p(q....: =5y (Bo2 + Apd)

and modelling a turbulent in-/outlet restriction for
both actuator compartments gives the following re-
lation:

(®)




[[ Par. | Description | Value | Dim.
g Gravity constant 10 [m/s?]
{max Half the actuator stroke 5 [m]
Wy Viscous friction coeff. 500 [Ns/m]
A, Piston area 2.510=9 [m?]
C,n | Manifold constant 1.3310 12 | [m®/Ns2]
Cy Valve constant 1.4210~° [m?/V]
K, Prop. feedback gain valve T [-]
K, Velocity gain valve 1100 [1/s]
M, Mass of piston plus load 55 [kq]
Fa Supply pressure 1.4 107 [N,fmz]
By Damping coeff. valve 327 [=]
Wow Natural freq. valve 2.76 10° [rad/s]

Table 2: Actuator and valve parameters and values

e

Pr)k " PP g C:m.

The manifold constant C),; acts as a tuning pa-
rameter, which was determined by model validation.
The numerical values for the parameters in equa-
tions (4), (5) and (6) are given in Table 2. It is
clear, that these equations in fact constitute a dy-
namic state-space model of 4** order.

k=1,2 (6)

2.3 Servo-valve model

For the two-stage electro-hydraulic servo-valve,
which will be considered here, a similar modelling
procedure as in the previous Section can be carried
out. This results in a rather complex, non-linear
model. Dependent on the specific valve applied, the
dynamics of this model can be reduced to some spe-
cific third-order linear model structure (Schothorst
et al., 1994). For the Rexroth valve! with electrical
feedback to be considered here, the open loop dy-
namics can be described by a second order system
in series with an integrator. With the proportional
electrical feedback loop, the following transfer func-
tion of the closed loop servo-valve is obtained:

d(s) _ K, K, (7)
i) 515—33 + r—i%is'-’- +5+ KKy
Ow »

where the control signal 2 and the spool position d
are both expressed in [V] according to the experi-
mental setup.

Assuming a critical centre, symmetric valve, with
turbulent flows through the valve ports, the valve
flows are non-linearly related to the spool position
and the pressures at the valve ports by:

'Type no.: AWS2EE10-45/75B2ET210Z8EM
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Fig. 2: Frequency response valve dynamics

where the reader is referred to Figure 1 for the vari-
able definitions and to Table 2 for the parameter
definitions and values.

2.4 Integration of the sub-system models

The sub-system models described in the previous
Sections can be integrated into a complete model
of the hydraulic servo-system, because the princi-
ple of the bilateral coupling in the physical systems
has been taken into account while stating the sub-
system models. That is why the actuator model,
with an inertial character, has been defined with
flows as inputs and pressures as outputs (eq. (5)).
The valve flow relation (with a resistive character)
has been defined with flows as outputs and pressures
as inputs in order to avoid division by zero for zero
valve displacement. Together with the specific in-
put/output relations of Section 2.1 for the transmis-
sion lines, a correctly stated model of the complete
hydraulic servo-system is available, by combining e-
quations (1) - (8). See Oosterhout (1992) for a more
detailed discussion of the integration of the trans-
mission line models and the hydraulic servo-system
models.

3 Model validation

Because the valve dynamics modelling plays an im-
portant role in the stability analysis of Section 4,
the first part of the model validation consists of a
comparison of the frequency response of the linear
model for the valve dynamics (7) to the measured
frequency response®. See Figure 2. Despite a dis-
crepancy in the phase characteristic (possibly due
to non-linearities or sensor dynamics), the fit is sat-
isfactory, especially with respect to the amplitude.

?0Obtained with HP 3562 A Dynamic Signal Analyzer; for
all responses, an input amplitude of 1.5 % was applied
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open loop step of 1.5 % on input 1.

Given the validity of the valve dynamics model,
the model of the remaining dynamics may be vali-
dated by comparing the model responses of the com-
plete servo-system with experimental results. This
has been done in both the frequency domain and
in the time domain. The experiments were per-
formed in open loop conditions®, with the control
signal 7 as input, and the measured pressure differ-
ence AP; = P;; — P;s as output.

Comparison of the frequency responses in Fig-
ure 3 shows a good agreement, indicating that the
main dynamic effects are modelled correctly. This
especially holds for the three resonance peaks: the
first one due to the natural frequency of the actua-
tor, and the second and third peaks originating from
transmission line 1 and 2 respectively.

The validation of the time responses in Figure 4
also shows satisfactory results. Although flow mea-
surements were not provided in the experimental
setup, the steady-state behaviour of the complete
model was validated by performing steady-state
pressure and velocity measurements, which agreed
with expectations.

In short, the experimental validation yields suffi-
cient confidence in the model, so that a further anal-
ysis of the system dynamics, based on the model, is

*Drifting due to the integrating behaviour of the actuator
was avoided by manual offset adjustment
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gain), with and without valve dynamics in
the model.

Justified.

4 Stability closed loop servo-system

Slightly depending on the control strategy applied
and the feedback signal used (Section 4.1), stabili-
ty problems may occur due to the combination of
transmission line dynamics and valve dynamics, as
will be discussed in Section 4.2. A number of possi-
ble solutions to this problem will be given in Section
4.3.

4.1 Control strategy

In hydraulic servo control, the classical strategy of
proportional actuator position feedback, plus some
feedback loop for damping is widely used (Merrit,
1967; Viersma, 1990). The damping loop may then
consist of either a pressure difference feedback loop,
or an acceleration feedback loop.

For more recent applications of hydraulic servo
control, high-performance force cq. pressure control
loops are required (Section 1). This means that the
gains for the pressure difference or acceleration feed-
back loops are very high compared to the classical
situation.

Usually, pressure difference transducers are ap-
plied, because they are relatively robust, while ac-
curate acceleration sensors are expensive. In the
case of long-stroke actuators, the pressure difference
will often be measured near the valve for practical
reasons, so AF; is used as a feedback signal.

4.2 Stability problem

The stability problem encoutered in the practical
situation of proporfional feedback of the pressure
difference near the valve, AP;, is easily explained
by giving the open-loop frequency response of the
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model (dashed line in Figure 3) in a Nyquist plot
(solid line in Figure 5). For small feedback gains
(> .2) the closed loop will already be unstable by
the encirclement of the point (-1,0). This unstable
behaviour was observed in practice.

The reason for this stability problem is clear: the
combination of transmission line dynamics (reso-
nance peaks) and valve dynamics (180° phase shift)
causes problems by pressure feedback. This is illus-
trated by extracting the effect of the valve dynamies
model (7) from the model response, resulting in the
dashed line in Figure 5.

4.3 Solutions to the stability problem

With the new insight obtained into the dynamic
properties of the hydraulic servo-system under pres-
sure feedback, a number of solutions to the stability
problem may be given:

o Choice of the most suitable feedback signal. In the
case that the pressure difference at the actuator
side of the transmission lines, AP, = P,3 — P,g,
is measured, the open loop model frequency re-
sponse is given in Figure 6. A similar plot would
be obtained for the acceleration g, which is direct-
ly related to AP, by the inertia M, in equation
(4). Clearly, this type of response shows a high-
frequency roll-off of 20 dB/dee, yielding a large
amplitude margin and allowing for higher feed-
back gains. So, if it is possible, from a practical
point of view, to measure AP, or §, a higher over-
all performance can be achieved than in case of
using APF;.

e Choice of the servo-valve. A high performance
valve will, in general, not solve the stability prob-
lems due to transmission line effects, as shown in
this paper. In some cases a valve with a smaller
bandwidth might yield wider stability margins, al-
lowing for larger feedback gains. But, in general,
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o Application of short transmission lines.

valve dynamics are the basic limitation of the al-
lowable pressure feedback gain, required for high-
performance control, irrespective of transmission
line dynamics (Schothorst et al., 1994).

e Advanced control design for the pressure feedback

loop. An effective solution to the stability problem
is the design of (digital) filters for the feedback sig-
nal. In case a high-bandwidth valve is available,
it may even be possible to compensate exactly for
the transmission line dynamics, e.g. by using the
inverse model. Furthermore, by applying mod-
ern techniques, like robust control, a trade-off be-
tween stability robustness and performance can be
made.

During
the design of (long-stroke) hydraulic actuators,
the transmission lines should be kept as short as
possible. Thus, the resonance modes are kept in
the (very) high-frequency range, so that interfer-
ence with the high-performance actuator control
loop may be avoided.

In order to achieve an optimal performance of the
hydraulic servo-system, the aforementioned tech-
niques have to be combined.

Conclusions

In applications where long-stroke hydraulic actua-
tors are required, e.g. flight simulator motion sys-
tems, transmission line effects have to be taken into
account in the control design. The transmission line
dynamics can easily be incorporated in the model of
the hydraulic servo-system by means of the modal
approximation technique as proposed by Yang and
Tobler (1991). Hereby, physical insight in the model
is preserved.

By modelling the servo-system in this way, a good
agreement with experiments is obtained, providing
confidence in model based analysis and synthesis of
control design strategies.

Concerning the design of high-performance pres-
sure cq. force control loops, stability problems may
be encountered for specific combinations of valve
and transmission line dynamics. Solutions to this
problem can be found in the actuator design, the
choice and placing of transducers and the control
design.

Future work

Future research will focus on the application of con-
trol techniques, which explicitly take the transmis-
sion line dynamics into account. Especially, robust-
ness will be given more attention, as the resonance
frequencies have been observed to vary with the ac-
tuator position.
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Abstract. The subject of zero-ripple torque control in Brushless DC Motors has gained
importance due to the growing popularity of small electric motors in consumer electronic
applications. A low number of phases and the occurrence of production tolerances give
rise to low-frequency torque errors, which manifest themselves as relatively large position
errors due to the low inertia of these small drives. With regard to the tight specifications
of the controlled performance, reduction of these low frequent torque errors is desirable.
In literature, two main approaches have been demonstrated for the analysis and mini-
mization of torque ripple. One approach is based on Fourier analysis, while the other
uses calculus of variations to find optimal current waveforms.

In this paper, a new approach is presented for the determination of optimal current wave-
forms. The approach is based on an analysis of the back-emf’s in the angular domain,
and can be used even in the case when both the back-emf’s and the stator resistances
show asymmetry.

The new approach is compared to the Fourier method in a test case, and shows significant
reduction in RMS and average values of the stator currents needed to generate a desired
torque.

Keywords. Brushless DC motors; electrical torque ripple; current control.

1 Introduction emf is hard to realize with permanent magnets. Du-

ally, ideal sinusoids or infinitely steep square wave

Due to their favourable characteristics, Brushless
DC Motors (BLDCM’s) are used more and more
in applications where until recently classical Brush
DC Motors (BDCM’s) used to be common. Mostly,
three-phase BLDCM'’s are used, as these offer the
lowest complexity of the drive electronics.

BLDCM'’s are characterized by a trapezoidal back
emf and square wave stator currents, whereas Syn-
chronous Permanent Magnet Motors (SPMM’s) fea-
ture sinusoidal back-emf and currents. In the sequel
we will use BLDCM as a common denominator for
both motor types.

Ideally, the interaction of the waves of the back-
emf and the stator current in both cases leads to an
electromagnetic torque which is constant, irrespec-
tive of the actual position of the rotor. However,
these ideal wave shapes can not be realized in prac-
tice. On one side, a trapezoidal or sinusoidal back-
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currents are impossible to generate with a power
converter with limited supply voltage and switching
frequency.

Compared to BDCM’s, three-phase BLDCM s of-
ten show a relatively large torque ripple. One
reason for this behaviour is that the underlying
assumptions of the motor behaviour (sine/sine or
square/trapezoid) are violated. This being the case,
the ripple is aggravated because of the relative-
ly low number of phases compared to professional
BDCM'’s, which feature at least 5 rotor phases. As
a consequence of this torque ripple, a periodic posi-
tion error will result. As long as the torque ripple
has a relatively high frequency (large number of mo-
tor poles, and/or high rotation speed) and the driv-
en mechanical system is stiff and has a large inertia,
this position error will be small and can often be
neglected. However, in the presence of possibly res-




onant mechanical structures, with small inertias and
more stringent accuracy specifications, the problem
of torque ripple gains relevance.

The reduction of torque ripple has been the sub-
ject of a number of recent papers, see Hanselman
et al. (1992), Hung and Ding (1992), Hung and
Ding (1993), Kempkes and Sattler (1993), Hansel-
man (1994). The dominant approach in these pa-
pers for the analysis of the problem has been to de-
velop the well-known torque equation for a BLDCM
in Fourier components, and use numerical analysis
software to find the Fourier coefficients of the opti-
mal stator currents. An inverse Fourier transform
then yields the components of the optimal stator
currents in the time domain.

A different approach has been advocated some-
what earlier in the German literature, see Grot-
stollen (1984), Schroder (1986), Schroder (1988).
Here, an analytical optimization is made by means
of calculus of variations, in order to obtain the op-
timal current waveforms. However, the derivation
is somewhat more involved than the Fourier series
approach, especially in the case of delta-connected
windings. In this paper we will concentrate on the
reduction of torque ripple due to an asymmetrical
configuration of the BLDCM. Such an asymmetry
could be caused by production tolerances, which can
become a serious factor for miniature motors. It will
be shown that even in the presence of such asymme-
tries, a constant torque can be generated if properly
shaped asymmetrical currents are fed into the stator
windings.

An important observation here is that the instan-
taneous value of the optimal stator currents is solely
dictated by the instantaneous value of the derivative
of the flux linkages. The actual speed of the motor,
and the mechanical trajectory to follow are of no
importance in this respect.

This observation is used for an alternative method
to obtain the optimal stator currents in the time do-
main. This method is less complicated mathemati-
cally, and yields stator currents with a lower RMS
value for the same torque, compared to the Fourier
component approach.

The paper is structured as follows: Section 2 in-
troduces a simplified model of the BLDCM. The
most common sources of torque ripple are shown,
together with their consequences for the position er-
ror. The torque equation of this model is then used
in section 3 to derive optimal current waveforms.
The derivation for the case of both asymmetrical
back-emf’s and stator resistances is performed us-
ing the computer algebra package Maple (Char et
al., 1991).
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Section 4 elaborates on the treatment of reluc-
tance and cogging torque components.

Section 5 shows the result of the application of the
new derivation to a test case which has been pre-
sented in recent literature (Hung and Ding, 1992).
The cases of floating and non-floating neutral are
discussed separately, A comparison of the results to
the cited test case shows that our derivation needs
ca. 10% lower average current, and 7% lower RMS
currents to obtain the same torque. The same result
is obtained with the Fourier-based approach only if
a very large (infinite) number of harmonics is taken
into account, and this at the expense of significant
computational effort. Some system aspects of the
new derivation are discussed in section 6. The con-
clusions of this work are presented in section 6.

2 Model of the Brushless DC Motor

A possible realization of a Brushless DC Motor has
been depicted in Fig. 1.

spindie

rotor yoke

Fig. 1: Construction of a small BLDC Motor (taken
from Nouws (1994))

The inner part of the construction shows the fixed
stator windings. The outer part shows the cupped
rotor, consisting of a ring-shaped permanent mag-
net, which is supported by the yoke. The six stator
windings are pair-wise connected in series, and thus
combined in three phases. The equivalent electrical
circuit has been depicted in Fig. 2.

The circuit shown in Fig. 2 consists of 3 identical
stator phases, each comprising a resistance R,;, and
self- and mutual inductances which have been indi-
cated symbolically with L and M. The stator phases
each are powered by a voltage difference U;q — Uy.
The lower part of the circuit shows the rotor wind-
ing, which has symbolically been powered with an
ideal current source i.. The rotor winding is cou-




Fig. 2: Electrical circuit of a BLDC Motor

pled to the stator windings through their mutual
inductances.

The electromagnetic torque in an electrical ma-
chine is dependent on the values of the stator and
rotor currents. For a typical coil (pair) on stator
or rotor, the following components can be distin-
guished:

e Cogging torque 7., which depends on the
square of the rotor current 7, and on the varia-
tion of the rotor self-inductances L, versus the

rotation angle 0: T, = 4=i2,

e Reluctance torque 7)., which depends on the
square of the stator current i, and on the vari-
ation of the stator self-inductances L, versus 8:
T, = 842,

e Direct torque Ty, which depends on the product
of stator and rotor currents and on the variation

of the mutual inductance M versus 0: Ty =
dM

i,
In a BLDCM, the coil carrying rotor current is re-
placed by the field of permanent magnets. Conse-
quently, the cogging torque will only depend on the
geometry of the magnetic circuit, and can not be
influenced once the motor has been realized. Re-
luctance torque can be influenced, but will often be
negligibly small because of the presence of a con-
stant differential permeability, due to the perma-
nent magnets, along the air gap. For simplicity we
will deal with the cogging and reluctance torque lat-
er. The direct torque production in a three-phase
BLDCM can than be written as follows:

dMs

where the #; denote the three stator currents, i, the
equivalent rotor current (modeled by a single wind-

. . dM k0 s
ot i £ dgl + 121, d92 + 131,
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ing), and the M; denote the mutual inductances be-
tween the equivalent rotor winding and the three
stator windings, respectively. Rewriting (1) leads
to the following well-known equation for the direct

torque:
e11 + eatp + e3ia

2 (2)

where Q = %% denotes the mechanical angular fre-
quency of the rotor, and the e; represent the so
called back-emf’s, given by:

dM;
dt

o=

e =ilr (3)
Note that the back-emf’s have the dimension of a
voltage. These voltages can be measured across the
stator windings if the motor is rotating and the sta-
tor currents are zero.

The magnitude of the back-emf is proportional
to the rotational speed, while the shape is deter-
mined by the angular derivative of the magnetiza-
tion. For the common case where the back-emf’s
have a trapezoidal shape and the currents consist of
120 deg. square waves, a constant torque results. If,
however, the shape of the back-emf’s approaches a
sine wave, or if a phase shift or amplitude error is
present, significant torque ripple results.

3 Derivation of optimal current

waveforms

In this section, we will assume that the position of
the rotor axis @ is available with sufficient accuracy,
either by direct measurement or by means of a state
observer (see for example Brunsbach et al. (1993)).

For simplicity of notation, we will first introduce
the shape functions E; for the back-emf’s as follows:

ei(0) ; dM;
D dadey 400
Note that the E; are only dependent on #, i.e. the

mechanical position of the rotor. Substitution of (4)
in (1) yields:

Ei(9) =

(4)

Td' = Elil + Eg?:z + E3i3 (5)
Clearly, if a desired value of T, is known, it is pos-
sible to obtain this value through an appropriate
choice of the stator currents #; as long as at least
one of the E; is nonzero, i.e. if a change in the
magnetic field is linked to at least one of the stator
coils.

If the three stator currents can be controlled inde-
pendently, and all the E; are nonzero, we can freely
pick two of the ¢; and then use (5) to compute the
third current. Thus, in this case we have two degrees
of freedom while selecting the currents.




Another case exists where the three stator phases
are Wye-connected, and the sum of the three stator
currents is forced to be zero:

iy +ia+i3=0 (6)
Still, in this case we can pick one of the currents, and
use (5) and (6) to compute the third. Thus, in this
case we have one degree of freedom. The freedom for
picking one or two of the stator currents can be used
to advantage to minimize the losses in the stator
windings. These losses (Pjys5) can be expressed as
follows:

Pfo.ss = R'Ilrf =} RZE% -+ R3?.?5 (7}

where the R; denote the (not necessarily equal) re-
sistances of the stator windings. The optimal stator
currents for a certain forque can now be expressed
as.

i; = arg(min(Pss(1:))[(5)) (8)

or

b= "-’-T."}{Tnin(P!oss('ii))l(s)l(ﬁ}) (9]

respectively. After some elementary algebra, which
1s performed in the appendix, the solutions to these
equations can be found. For the case where no re-
strictions exist to the sum of the three currents we
obtain for #;:

RJ:’,RS:}E‘I
RaR3 B3 + Raafﬂnf'j;’f S H.«leﬁE:‘}}’

(10)

=Ly
For the Wye-connected stator the current in phase
1 is expressed by:

T (Rya+Rs3)E1—(RsaBa+RezEs) .r]l}
d R (Ba—E3)  +Re2(Es—E1 )2+ Res(B1—E2)2\

iy =

In both cases the equations for the other two cur-
rents can be found by simple rotation of indices.
Clearly, these equations can be simplified consider-
ably if equal stator resistances are assumed.

For an implementation, the shape functions F£;
need to be measured, and the shapes of the stator
currents 4; /Ty can be computed off-line and stored
in a prom memory. After multiplication with Ty
the setpoints for the three currents are then avail-
able. Examples of such systems have been given in
Schroder (1988), Hanselman (1994).

4 Cogging and Reluctance Torque

So far, only the direct torque component of the
BLDCM has been treated. If parasitic cogging and
reluctance torque components are present, adjust-
ments are needed.

Cogging torque 7, in a BLDCM depends only on
the actual rotor position. Assuming that the val-
ue of 7,.(0) is known, either from measurements or
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from computation with for example a finite element
program, then the total electromagnetic torque T
can be made constant by subtracting 7. from the
setpoint of Tj;. A circuit to implement this idea has
been proposed in Hung and Ding (1993).

For the compensation of reluctance torque com-
ponents (7}.), the situation is more complex. We will
only deal here with parasitic reluctance torques, i.e.
we will assume that the motor has been designed
such that the reluctance torque is only a small frac-
tion of the total electromagnetic torque at full load.
Furthermore, we will assume that the magnetic cir-
cuit is linear, i.e. that L,(@) is independent of the
stator currents 7;. Only an outline of the proposed
method will be given here, as the method is very
similar to the one used to obtain (10) and (11).

Again, for brevity of notation, we start with defin-
ing shape functions F; to represent the variation in
the stator inductances:

dLgs;

Fy(0) = 0

(12)
which are only dependent on #. The sum of direct
and reluctance torque can then be notated as fol-
lows:

Ty + T, = Eyiy + Fyi} + Eqia + Fai3 + Eaia + Fai3
(13)
The optimal currents for this situation are given by

i; = arg(min(Pross (4:))](13)) (14)

for the case where the three stator currents can be
controlled independently, or

ii = arg(min(Prss ()| (13)[(6))  (15)

for the Wye-connected stator. The actual computa-
tion of (14) and (15) is quite more involved, because
of the quadratic terms in (13). We will not go into
the intricacies here, but intend to deal with them in
a future paper.

5 Comparison and Extensions

It is worthwhile to compare the computation effort
of (10) and (11) to the approach presented in Hung
and Ding (1993), where quite sophisticated matrix
calculations are used to obtain almost the same re-
sult. With our method, the table for values of the i;
can be computed directly from the measured values
of the stator resistances and the back-emf,

It can be shown that the solution via the Fourier
approach is an approximation of the optimal wave-
forms as described by (10) or (11). Only when an
infinite number of harmonics is taken into account,
the Fourier solution converges to the same result. As




an example, we have taken the test case from Hung
and Ding (1993), and computed the RMS and aver-
age currents obtained through the Fourier method.
The results are shown in Fig. 3 and in Table 1.

Back-emf and optimal stator currents in phase 1 in BLDC molor
2.5 T T T T T

o1, I1F, iopt

2 3 4 5
Electrical Angle (radlans)

Fig. 3: Waveforms of ey, i; " (Fourier method) and
iy0pt (new method)

Quantity Fourier New
method | method

iy average [A] | 0.6481 | 0.5820

1y rms [A] 0.7232 | 0.6725

Table 1: Comparison of average and rms currents
for both methods

Clearly, our simple calculation generates better
currents with respect to the loading of the semicon-
ductors and to losses.

More fundamentally, we have shown here that the
optimal value for the stator currents can be obtained
from ‘local’ data: for a certain rotor position only
the values of the shape functions E; at this partic-
ular position are relevant to the computation of the
stator currents. Therefore, using data from all mea-
sured rotor positions for every sample of the opti-
mal stator current seems to be a waste of effort.
Inspection of the waveforms in Fig. 3 shows that
the waveforms computed with the Fourier method
in this example actually generate a negative torque
around the zero crossing at.¢ = w. To obtain the
same net torque production, the other two stator
phases will need more current: this is the main rea-
son for the diminished efficiency.
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6 Discussion

With regard to the material presented above, sever-
al questions and crosslinks come to mind. We will
deal with them in a somewhat loose manner, the
intention being more to draw attention to related
topics and unsolved questions than to provide ex-
plicit solutions.

Limited supply voltage

One of the problems associated with current con-
trolled PM machines is that at the end of the speed
or torque range the current controllers will saturate
due to the limited supply voltage.

It has been suggested in literature (Hanselman,
1994) that keeping the range of harmonics used in
the stator currents low will result in lower consump-
tion of the supply voltage range. Our work shows
that selective addition of higher harmonics can be
used to obtain a lower overall RMS content. We con-
clude that the best way to control the stator currents
depends on the operating speed and torque load on
the motor:

e As long as the supply voltage is not a limiting
factor, use (10) or (11) to compute the optimal
currents,

e If only one of the three current controllers saf-
urates, compute the other two currents, using
(5) and (6), to generate zero torque ripple,

e If two or more current controllers saturate,
ripple-free generation of the desired torque is
no longer possible.

It can be concluded that if lowest torque ripple is at
a premium, it is worthwhile to design the motor such
that the voltage limit is reached at the same speed
or torque for all stator positions. In this way the
torque ripple can be kept small up to the maximum
design speed, and the magnetic circuit will be used
to the fullest.

In practical applications, it will often be the case
that torque ripple and the associated position error
will be less important at high speeds than around
standstill. One reason is that the frequency of the
torque ripple will be much higher, resulting in lower
position errors due to the integrating properties of
the mechanical load. Furthermore, high ripple fre-
quencies will often lie outside the bandwidth of the
controlled system.

Optimum power factor

We like to point out here that the problem of find-
ing optimal stator currents for a BLDCM is strong-
ly related to determining currents which optimize




the power factor in multiphase power grids (Fisch-
er, 1985 a; Fischer, 19856; Huisman and Haan, 1987).
In fact, viewing the BLDCM as a generator of (neg-
ative) electrical power makes this relation quite ob-
vious.

Conclusions

With today’s availability of fast current control at
substantial power levels, the torque production in
BLDCM’s can be precisely set to any desired level.
In particular, constant torque operation, irrespec-
tive of the actual rotor position, is possible. In this
paper, a simple method has been presented which
permits to compute the optimal stator currents to
achieve this. The computation method is based on
caleulus, and assumes that the waveforms of the
back-emf’s are known.

The method applies both to Wye-connected and
independently excited motors. No assumptions are
made regarding the symmetry of the three back-emf
waveforms or the stator resistances, and therefore
the method is especially suited for the computation
of optimal currents for small motors which are more
likely to show asymmetries due to production toler-
ances.

In an example, it is shown that the waveforms ob-
tained with the new method have better properties
with regard to power losses and semiconductor load-
ing than the waveforms obtained through a Fourier
series approach.

Appendix

In this appendix we will compute the optimal values
for the stator currents both for the non-Wye (8)
and Wye-connected (9) stator windings. For the
computation, the symbolic package Maple (Char et
al., 1991) has been used. The relevant parts of the
text files used in this package are shown after the
actual equations.

non-Wye connected windings

Using (5) i3 can be expressed as:
g P
o da—FEyiy — Fats
?.3 — =
Es

by substitution in (7) we obtain:

(16)

o e il
Ta — Eriy — Egig
Es

= Rl.’:% -+ Hgf% + Ra (

(17)

To obtain an extreme, we set the derivative of Pj,ss
to 15 to zero, obtaining:

R Ey (=T + Eriy)

; 7 (18)
Ra E§ + a3 E-}'

i‘.? =
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Now substitute this value for 45 in (17), and set the
derivative to i; to zero, to obtain the desired result
(10).

Maple file for non-Wye connected windings

Pm:=omega*T;
Pe:=el*il+e2%i2+e3%*i3;
Ploss:=Rsi*i1"2+Rs2%i2"2+Rs3*%i3°2;
13:=solve(Pm=Pe,i3);
dPloss2:=diff(Ploss,i2);
i2:=simplify(solve(dPloss2=0,i2));
dPlossi:=diff(Ploss,il);
il:=simplify(solve(dPloss1=0,i1));
i2:=simplify(i2);
i3:=simplify(i3);

Wye connected windings

Using (6) 3 can be expressed as:

?:3 = —2.-1 = '1.2 (19)
by substitution in (7) we obtain:
Pioss = Rii3 + Rai3 + Ra(—iy — i2)? (20)
Using (5) 2 can be expressed as:
Ta— Eyiy — Egi
ip = — d 111 3% (21)

Fs— Ey

Substitution of this value in (20), and computation
of the extreme for #; produces the desired result

(11).

Maple file for Wye connected windings

Pm:=omega*T;
Pe:=el*il+e2%i2+e3%1i3;
Ploss:=Rs1*i1”"2+Rs2*%i2°2+Rs3%i3"2;
Sigmai:=il1+i2+i3;
i3:=solve(Sigmai=0,i3);
i2:=solve(Pm=Pe,i2);
dPloss:=diff(Ploss,il);
il:=simplify(solve(dPloss=0,1i1));

i2:=gimplify(i2);
i3:=simplify(i3);
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Abstract.

This paper considers the servo problem of tracking a known reference trajec-

tory in the presence of (deterministic) disturbances. Solving this problem by designing
a suitable feedforward signal is favourable, as this leaves the closed loop dynamics un-
altered. An algorithm is developed which not only solves this problem, but also yields
an optimal solution under constraints on the input and output signals. Prediction of
the output signal is used to calculate an optimal feedforward signal that minimizes the
difference between this prediction and the desired reference trajectory according to some
criterion. A simulation example explains the ability of the method, which easily trades-off
constraint handling against performance specifications.

Keywords.
constraint handling.

1 Introduction

In this paper the classical servo problem is consid-
ered: tracking a known reference trajectory in the
presence of (deterministic) disturbances. It is well
recognized that the influence of deterministic dis-
turbances can only be eliminated effectively if the
controller encloses a model of these disturbances, as
stated by the internal model principle. During the
past decades numerous techniques have been devel-
oped which are based upon this principle, e.g. the
well-known servo compensator, developed by Davi-
son (1972) and formalized by Francis and Wonham
(1976). If an exact model of the reference- and/or
disturbance dynamics is included, the servo com-
pensator provides both asymptotic tracking of the
reference signal and asymptotic rejection of the dis-
turbance signal. The disability of this method is
the non-robustness of the compensator in the face
of modeling errors. Besides, the order of the com-
pensator increases rapidly with each mode of the in-
cluded model, which limits its practical pertinence.

In the late seventies, Richalet el al. (1978) and
Cutler and Ramaker (1980) simultaneously intro-
duced the concept of model based predictive conlrol,
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developed in industry, which turned out to be ex-
tremely powerful in a sense that tracking perfor-
mance was optimized in the presence of (determin-
istic) disturbances by means of easily tunable algo-
rithms. Moreover constraints on input and output
signals could easily be handled. Since then the num-
ber of applications and the number of papers on this
subject have increased rapidly though the basic ele-
ments of each ‘new’ algorithm remained unaltered,
see for example Clarke et al. (1985), De Keyser and
Van Cauwenberghe (1985) and Richalet and Papon
(1985). The main inutility of this approach is its
computationally involveness, because at each sam-
pling instant a (constrained) optimization problem
has to be solved.

Halfway the eighties two related control strategies
were developed, known as learning and repetitive
control, which focussed on the suppression of purely
periodic disturbances, by adding a filtered version
of the servo error to the control loop; an internal
model of the periodic disturbance is used to proper-
ly design the learning/repetitive controllers, see e.g.
Arimoto et al. (1984), Kavli (1992), Moore et al.
(1992), Tomizuka (1987) and Chew and Tomizuka
(1990). The main difference between these two tech-




niques is that a learning controller is implemented
off-line by iteratively updating a feedforward sig-
nal over a finite time horizon (external model tech-
nique) while a repetitive controller is placed inside
the loop, hence constituting an extension of the con-
troller dynamics (internal model technique). Both
techniques provide asymptotic tracking and distur-
bance rejection. The most important limitation of
learning control is that it is restricted to a repeated
reference frajectory requiring initial conditions to be
the same during each cycle. Its main advantage is
the idea of generating near to optimal feedforward
signals, which leave the closed loop dynamics unal-
tered. The main shortcoming of a repetitive con-
troller equals that of a servo compensator, namely
the non-robustness against errors in the modelling
of periodic disturbances.

From a completely different point of view, input
shaping techniques have been developed which de-
sign optimal point-to-point trajectories for a servo
mechanism, based on an accurate model of this sys-
tem; only the steering of the servo mechanism from
one position to another is considered without tak-
ing external disturbances acting on the system in-
to account, see e.g. Singer and Seering (1989) and
Bhat and Miu (1990,1991). The begin- and end-
position are assumed to be given in this case, while
the designer has the freedom to choose the inter-
mediate trajectory. In general this freedom is used
to suppress residual vibrations, caused by excitation
of flexible system modes. In la Bastide (1994) it is
shown that learning and repetitive control can be
regarded as a kind of iterative input shaping tech-
niques where the reference signal is adjusted such
that the output of the system equals the desired
output asymptotically.

In this paper an algorithm is developed which
combines several aspects of the previously men-
tioned methods. If an arbitrary reference trajec-
tory, a model of the system and a model of the
disturbance affecting the system are given, an opti-
mal feedforward signal is computed which minimizes
the difference between the given reference trajectory
and a prediction of the output of the system, accord-
ing to some criterion. The prediction is based on a
nominal model of the system and a model of the
disturbance. If the disturbance is a stochastic pro-
cess, k-step-ahead prediction of the noise is used. If
on the other hand the disturbance is deterministic,
a Kalman filter is used to reconstruct the distur-
bance. Moreover, due to its finite time nature, the
procedure is able to handle constraints on input and
output signals in a natural way, which contributes
to its practical pertinence; actuator constraints and
performance aspects can easily be specified in this
way.
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The remainder of this paper consists of a math-
ematical description of the problem and a formal
derivation of the forementioned algorithm. The pro-
cedure is illustrated with a simulation example. Fi-
nally some conclusions are drawn.

2 Formulation of the Servo Problem

Assume that the true process output yp is generated

by:

yo(t) = Po(g)u(t) + d(t),
F=ren, = Bl A 00 (1)
where Py(q) is the transfer function from u to yg
with ¢ being the forward time shift operator, u(t) is
an input signal applied to the process, and d(t) is an
(unknown) disturbance signal acting on the process.
Furthermore the following assumptions are made:

Assumption 2.1 A set of sampled measurements
{ym(t — k), um(t—k)}, k=0,..., M, is available.

Assumption 2.2 A model of the lrue process
Py(q) = Zz’in;’:g(k}q"", where po(k),k=0,...,M
are the pulse response coefficients of the model', is
available.

Assumption 2.3 A (desired) reference trajectory
vt + k), k=1,...,N, is available.

Assumption 2.4 Depending on the character of
the disturbance d(t), one of the following assump-
tions is made:

1. Ifd(t) is a stochastic process, it is assumed to be
generated by d(t) = H(q)n(t), where H(q) is a
known stable, LTI, monic transfer function and
n(t) ts white noise with zero mean and finite
covariance.

2. If d(t) is a determinisiic process, it is assumed
to be generaled by a known autonomous system
d(t) = Can(t),n(t + 1) = Agn(t), n(0) = nyg,
where n(t) s a state-vector al time t with initial
state ng; Ag and Cy are appropriale state-space
matrices, with the eigenvalues of Ay on or out-
side the unit cirele in the z-plane.

The servo problem that is considered here is the
minimization of the difference between the refer-
ence trajectory y. (£ + k) and the output of the true
process yo(t + k) in the presence of the disturbance
d(t + k) over the interval {t + k},k=1,..., N, by

INote that not only pulse response models will do but any
model (like state space), as long as it can be used to compute
predictions




choosing a suitable input signal u(t + k). More for-
mally the following objective function has to be min-
imized:

) N %
To=llyr—wo |f =D |9-(t+k)—yolt+F) P,
k=1

(2)
where || - [|, denotes the signal p—norm. The feed-
forward signal that minimizes (2) is given by:

= mingsfie=a 200N
i u](-[tl-:-!}:] &
subject to: (3)
Au(-) <b,

where A and b are respectively a matrix and a vector
specifying the constraints on u and yp; constraints
on u can be directly specified, while contstraints on
yo can enter indirectly via equation (1) by choosing
A=l

Note that in principle any norm can be used
in (2), but in most cases the 2-norm is used which
measures the energy of the difference between the
desired and the true output signal.

3 Derivation of the Predictive Feed-
forward Controller

Though equations (2) and (3) allow a clear formu-
lation of the problem, it can never be solved in this
way because the true output signal yp is unknown
for future time instants. The best that can be done
is to make a prediction of the output over the time
interval {t + k}, & = 1,..., N, using knowledge of
the system and the disturbance signal. According
to (1) future values of yp consist of 2 parts namely
a controlled response y.(t + k) = Po(q)u(t + k) and
a free response yy(t + k) = d(t + k). A prediction
of the controlled response is easily obtained by ap-
plying the future input signal u (to be computed)
to the model Py(q) of the true process:

Je(t + k) = Po(Qu(t + k), k=1,...,N, (4

where 1. denotes a prediction of y..

A prediction of the free response is somewhat
more complicated and depends on the nature of the
disturbance. As becomes clear above, two situations
can be distinguished:

1. d(t) is a stochastic process, generated by d(t) =
H(q)n(t) where n(t) is zero-mean white noise
with finite covariance. A fairly general descrip-
tion for H(q) is the ARMA model H(q) =
C(q)/D(q), with C(q) and D(g) polynomial-
s in ¢g. In order to make a prediction of d(t)
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over k steps, the filter H(q) needs to be split
up into a part Ei(g) that convolutes over the
interval {¢+1,f+k} and a part Fi(q) that con-
volutes over the interval {—oo,t}. The polyno-
mials E¢(g) and Fi(gq) can be found by solving
the following Diophantine equation:

C(q) = Ex(q)D(q) + ¢~ * Fi(q).

Substituting this in d(t) = C(q)/D(q)n(t)
gives:
d(t) = Ex(q)n(t) +q¢7* f;((;")) n(t),

or:

Fi(q)
d(t + k) = Ex L+ k)+ d(t). (5
(t+ ) = Bul@n(t + 1) + G 5d). (6)
Hence a k-step ahead prediction of the free re-
sponse is given by:

dr(t+k) = d(t+k | £) = Bd(2),
= 1N, (6)

Equation (6) can be computed if there is know-
ledge of d(t — k), k = 0,..., M but in general
this will not be the case. However, we can make
an estimate of it by using the measured data-
set:

d(t — k) = ym(t — k) — Po(g)ult — k),
k=0,...,M. (7)

If there is no measurement noise and if the mod-
el Py(q) equals the true system Py, d(t — k) will
equal d(t—k). Else these corruptions should be
regarded as noise contributions, and the predic-
tion will be affected.

. d(t) is a deterministic process, generated by the

autonomous system d(t) = Can(t),n(t + 1) =
Agn(t), n(0) = ng. Because of the deter-
ministic nature of the noise, a Kalman filter
can be used to estimate the state n(t — k) for
k=0,..., M from the measured data-set:

At —k+1)= Agn(t — k) + K[d(t — k) -
Can(t — k), k=0,..., M, (8)

where K is the Kalman gain, and d(t — k) is
obtained from equation (7).

Now the estimated state at time {(k = 0) is
used as initial condition for the prediction of the

state over the future time interval {t + k}, k =
| L

n(t+k|t)=n(t+k) =A%), k=1,...,N.




Finally, the prediction of the free response is
obtained by:

yr(t+ k)= d(t+k [st)i= Can(t +k | 1)

= GaASH), F=S0: N (9)
Adding the prediction of the controlled response (4)
and the prediction of the free response (6) or (9)
gives a prediction of yg:

do(t+k) = ge(t+k)+ 9, (t+k), k=1,...,N. (10)

The problem defined by (2) and (3) can now be re-
casted into a solvable one:

JI\I’
Jo=llwr =0 |l =D | we(t + k) — dio(t + k) .
k=1

(11)
The feedforward signal that minimizes (11) is then
given by:

U= min)fp. k=1,....N

u(t4k

subject to: (12)

Au(-) < b,

Two important points should be noted here.
First, the computed feedforward signal is optimal
for the ‘real” system if the predicted output of the
system equals the real system output. This stem-
s from the fact that the optimization is performed
for the prediction and the outcome is implemented
on the real process. However, the question remains
how good or how bad the calculated feedforward is
in case the predicted output does not match the real
system output, or under what condtions the predict-
ed output will equal the real output. The following
proposition, based on the triangular inequality for
signal norms, formalizes the first question:

Proposition 3.1 Given a process according lo e-
quation (1) and a prediction of the process outpul
according to equation (10). Consider the criteria J,
and J, given by respectively equations (2) and (11).
Then a lower- and an upper bound for J, are given

by:
- l P
(%) = wo=dolly) <<

((}‘,‘)% + || %o — %o ”p)pr

where: || yo — ¥ ||P denotes the p-norm of the predic-
lion error,

(13)

Proof: See appendix a
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Remark 3.2 The result stated in proposition 3.1
cannol be calculated a prior: because the value of
Yo s unknown. However, il can be used to check af-
ter implementation of the feedforward signal whether
the optimizalion based on the prediction was close to
the optimization of the ‘real’ criterion. It can also
be used to check convergence of J, to J, in case an
iterative procedure of refining the feedforward sig-
nal is followed, where refining can be obtained e.g.
by increasing the number of measurements used for
prediction after each iteration.

The following lemma states under what condition
Jp converges to the criterion J,:

Lemma 3.3 Given a process according to equation
(1) and a prediction of the process outpul according
to equation (10). Consider the criteria J, and .f,,
given by respectively equations (2) and (11). Then:

FE g s i (14)

flyn~5'r::l1,,—‘”

Proof: This follows immediately from propostion
3.1 by taking the limits of the lower- and upper-
bound for || yo — go ||, — 0. O

This result is rather trivial, but it can be used to
specify convergence for a number of specific situ-
ations as considered in this paper. The following
theorem formalizes this result:

Theorem 3.4 Given a process according to equa-
tion (1) and suppose the assumptions 2.1,...,2.4 are
satisfied. Also given a prediction of the process out-
put according to equations (4),(6), (9) and (10).
Consider the criteria J, and J, given by respective-
ly equations (2) and (11). Now the following holds

lrue:

i TFgt k)= et L B) VE = 1N and
yr(t+k)=ys(t+k)VYk=1,...,N, then:

Jg =gt (15)
i, IfAk€L,...,N], s.t. Gt +k) # ye(t + k)
and ys(t+ k) =y (L -+ k)Vk=1,..., N, then:

”-".‘onlticll-ln-—o J‘" = J:" (16)

with Ag = Py — Py.

If §e(t + k) = ye(t + k) Yk = 1,...,N, and 3
kell,... N] st gp(t+k) # ye(t + k), then:

a. if d(t) = H(q)n(t) according to assumption
2.4.1, then:

111.

liny o andyes i (17)
Zxnil, " =="0




b. if d(t) = Cyn(t),n(t + 1) = Agn(t), n(0) =
ng, according to assumption 2.4.2, and n(t)
s reconstructed using the Kalman filter given
in equation (8), then:

Fo sk /(18)

lim
lI(Aa—K Ca)*siall,“=="0

with ng = a(t) = n(t) — a(t), (k=0).

w. If3ke(l,...,N]st g(t+k)#y(t+k) and
Jle(l,...,N] st ge(t+1)# ys(t + 1), then:

a. if d(t) = H(q)n(t) according to assumplion
2.4.1, then:
lim Jp= (19)
llaoull,, llBxn],*=="0

b. if d(t) = Cyn(t),n(t +1) = Adn(t), n(O) =
ng, according lo assumption 2.4.2, and n(t)
18 reconsiructed using the Kalman filter given
in equation (8), then:

lim Jol=5w1(20)
1 8oull, lI(Aa=K Ca)*sioll,"=="0

Proof: See appendix o

Remark 3.5 The conditions stated in part ii. and
w. of theorem 8.4 are rather stringent and not very
useful in practice. However, there are siluation-
s where these conditions can be loosened. For ex-
ample in learning control, where a reference trajec-
tory is repeated a number of times, one of the ba-
sic assumpiions is that the initial conditions are the
same at the start of each new cycle. This means that
the contribution of the undermodeling (i.e. the mis-
match between the model Py and the system Py) to
the servo- error has to be the same each new cycle.
This in fact means that, considered over a number
of cycles, the contribution of the modeling error be-
comes periodic with period-time equal to the period-
time of the cycle. In that case this part of the error
due to undermodeling fulfills assumption 2.4.2 which
means that it can be regarded as a part of the free-
response, instead of a deterioration of the controlled
response. Hence the proposed procedure should fol-
low an iterative scheme of updating the prediction
over a number of cycles, and hence tmproving upon
the computed feedforward signal.

Remark 3.6 In assumption 2.4.1 it is assumed
that n(t) has zero mean, which is more realistic than
requiring the norm of n to tend to zero which means
that n should tend to zero. Hence in the stochas-
tic setling of assumplion 2.4.1, it seems to be more
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convenient to use conditional expectations instead
of norms. In that case the condilions in parts iii.a.
and v.a. of theorem 3.4 can also be loosened. How-
ever, such a stochastic setling seems to be less useful
in practice, because k-step ahead prediction for large
k is rather inaccurate as a stochastic process inno-
vates each time sample. This limits the application
of the developed algorithm in such a stochastic set-
ting 2.

Remark 3.7 The condition stated in parts 112.b and
w.b of theorem 3.4 depends on the choice of the
Kalman gain K. If K is chosen such that the eigen-
values of Ag — KCy are inside the unit circle (i.e.
Ag— KCjy is stable), e.g. by solving K from an al-
gebraic Riccati equation, then convergence will take
place, and the speed of convergence depends on the
position of the eigenvalues inside the unit circle.

The second comment on the developed algorithm
is that the optimization of the feedforward signal
should be performed each time either the reference
trajectory or the disturbance signal changes. For
example as mentioned in remark 3.5 most learning
control schemes assume a fixed reference trajectory
and a fixed disturbance signal during each cycle. In
that case under certain convergence condtions, op-
timality of the feedforward signal is reached asymp-
totically (i.e. with the number of cycles tending to
infinity), while the newly developed algorithm needs
only one cycle to reach the optimal feedforward sig-
nal. Note again that in case n(t) is a stochastic pro-
cess the disturbance signal changes every sampling
instant, which means that the optimization has to
be performed each cycle.

4 Simulation Example

In this section a simulation example is given based
on the theory of the foregoing sections. From re-
marks 3.5 and 3.6 it is clear that at this moment
application of the developed algorithm in case of un-
dermodeling and/or stochastic disturbances is lim-
ited. Hence to show the applicability of the method
we consider in this simulation example case 2i2.b.
of theorem 3.4. The true system is considered to
be a SISO double integrator: Py(s) = 1/s%. Af-
ter discretizing this system the ‘bang-bang’ type
of input signal shown in figure 1 is applied to the
undisturbed system resulting in a 3rd order smooth
polynomial, which will be taken as the desired ref-
erence trajectory y-(t + k), k=1,...,61. The con-
straints on the actuator output u are assumed to be

2Note that in model-based-predictive control a stochas-
tic setting will cause less problems because in that case
each sampling instant the optimization is performed, and at
each sampling instant the prediction is corrected with new
measurements.
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Fig. 1: Applied input signal u(t + k)

a limitation of its amplitude of 4300 and let’s spec-
ify that the system output may deviate only +le=3
in amplitude over the last 10 samples of the refer-
ence trajectory, i.e. yr(t + k) —1le™3 < yo(t + k) <
yr(t+ k) +1e=3, k=52,...,61. Moreover the out-
put of the system is corrupted with a mixed de-
terministic/stochastic disturbance shown in figure
2. The deterministic part of the disturbance con-

0.015

0.005

dftak)
o

-0.005

Fig. 2: Disturbance signal d(t + k)

sists of two sinusoids with frequencies 17 and 40 Hz.
respectively, and a steady state error. The stochas-
tic part constitutes normally distributed white noise
with zero mean and covariance o2 = le—5. A spec-
trum of the composite disturbance is shown in figure
3; indeed the three deterministic peaks can clearly
be distinguished from the random part. The level of
the spectrum of the random part is approximately
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Fig. 3: Spectrum of the disturbance signal

267,

In order to simulate a real-time application, the
disturbance signal is generated over a number [ of
cycles, I = 1,...,10), and the optimization of the
feedforward signal is performed a number of times,
each time taking a new disturbance realization into
account, and also trying to improve the prediction
of the disturbance by taking former disturbance re-
alizations into account, compare remark 3.5.

According to section 2 the following assumptions
are made:

e In the first iteration the set of measurements
are taken to be {ym(t — k), u(t — k)}, k =
0,...,60 to be {yo(t — k),u(t — k)}, k& =
() oy B

 As mentioned above, a model of the true system
is taken to be the system itself, i.e. Py(q) =
Po(q).

e As stated above, the desired reference trajecto-
ry is taken to be the one shown in figure 2.

e According to assumption 2.4.2, the disturbance
is assumed to be generated by the following
(continuous) autonomous system:

( 0 1 O Disstea 0ol
—a? 0 00 0
n o= 00 0 1| o |n@®)
00 —az 0| 0

00 00

d(t)

(1010 1]n(),

where: a; and as constitute the frequencies
2w17 and 2740 respectively. Hence 2 states for




each sinusoid and 1 state for the steady state
error® are needed to model the disturbance.

After discretization, this disturbance model is used
to compute a Kalman filter by solving an algebraic
Riccati equation. In turn this Kalman filter is used
to reconstruct the disturbance state n(t — k), k =
0,...,60 from the set of measurements. Thereafter,
the state n at time ¢ is used to predict the values
of d(t + k), £k = 1,...,61. Using this prediction,
the reference trajectory y,(t+k), k=1,...,61 and
the model Py(q) a feedforward signal is computed
according to formulas (11) and (12) by solving:

61
iy ol P+ k) —do(t+R) 1, (21
gy uﬁﬂ)kﬂly( + k) —yo(t+ k) | (21)
subject to:
Au() < b

with A and b a matrix and a vector specifying the
appropriate constraints on u(t+k) and yo(t+k), k =
1,...,61. This problem can be solved numerically
using quadratic programming techniques. If a solu-
tion exists it is always optimal due to the convexity
of the problem. Figure 4 shows this computed op-

v : . -
200,
100F
x
7
£
.
2
100| A
200
mﬂ 10 20 an 40 50 60 70

Fig. 4: Computed optimal feedforward signal wuyy;
Ist iteration

timal feedforward signal. It is seen that the input
signal bumps against its constraints several times.
A spectrum of this signal also shows emphasis on
the frequencies of the disturbance signal (not shown
here). Figure 5 shows the difference between the
reference trajectory y, and the output g, simulated

#Notice that this state is precisely the model of an inte-
grator which agrees with the well known fact that a controller
should inhibit an integrator in order to cancel steady state
disturbances
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Fig. 5: Simulated difference between y,. (1 4+ k) and
Yo(t + k)

with the computed feedforward signal and the pre-
dicted disturbance signal. Wee see that this output
perfectly matches its specifications.The constraints
on the last 10 samples of the reference trajectory are
perfectly fulfilled.

However, in practice the predicted output will
not exactly match the true output. This is sim-
ulated by also showing the difference between the
reference signal and the true output induced by the
feedforward signal and the {rue disturbance signal
including the stochastic part and the prediction er-
ror. This difference is shown in figure 6. Though

x10°

Y_rit#k) - y_Of1+k)

Fig. 6: True difference between y, (t+ &) and yo(t+
k)

this difference is not as small as the simulated differ-
ence, the influence of the deterministic components




has tremendously decreased (about 100 times small-
er). This becomes more clear from figure 7 where

%10

40 50 60
fraquency [Hz]

Fig. 7: Spectrum of the true difference between
yr(t + k) and yo(t + k); Lst iteration

the spectrum of the true difference between ¥, and
Yo is shown. It is seen that after only one iteration,
the residual disturbance has almost reduced within
the level of the stochastic part of the original dis-
turbance.

This succes is only due to the fact that the pre-
diction of the deterministic part of the disturbance
matches the true deterministic disturbance, as was
shown in section 3. Figure 8 shows the true distur-

0015

001

0.005]

ditek) and d¥{i+k)
o

0,005

0.25 03

Fig. 8: Real disturbance(-), deterministic part(:--)
and predicted one(- -); 1st iteration

bance, its deterministic component and the predic-
tion of the deterministic part. It is seen that the
prediction is a rather good description of the true
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disturbance, despite the influence of the stochastic
part. However, by using more iterations, the predic-
tion might be better as the estimation has not con-
verged completely yet. After 2 iterations the predic-
tion almost equals the true deterministic part of the
disturbance (not shown). It is seen that the estima-
tion has converged within very acceptable bounds.
This is emphasized by figure 9 where the spectrum of

x 10

40 50 60 o0 BO =11 100
fraquancy [Hz]

Fig. 9: Spectrum of the true difference between
yr(t + k) and yo(¢ + k); 2nd iteration

the true difference between the reference trajectory
and the true output signal is shown. The determin-
istic components have vanished almost completely.
Further iterations give only marginal improvement
upon this resulf.

Conclusions

In this paper the classical servo problem is con-
sidered, namely the tracking of a known reference
trajectory in the presence of deterministic distur-
bances. It might be favourable to solve this prob-
lem by designing a suitable feedforward signal that
leaves the closed loop system dynamics unaltered.
Given this problem an algorithm has been devel-
oped which not only solves the problem but also op-
timizes the problem under constraints of both input
and output signals. Prediction of the deterministic
components of the disturbance is used to design a
feedforward signal that minimizes the difference be-
tween a desired reference signal and a prediction of
the system output according to some criterion. A
simulation example showed the action of the proce-
dure in case of deterministic disturbances and with-
out taking undermodelling into account.

Compared with the classical ‘servo-compensator’
and the ‘repetitive controller’ in case periodic dis-




turbances are considered, the newly developed al-
gorithm differs in implementation aspects. Where-
as the former two techniques extend the closed loop
dynamaics, the latter one yields only the implementa-
tion of a feedforward signal. Compared with learn-
ing and repetitive control techniques, the newly pro-
posed technique is able to handle not only periodic
disturbances (with period-time equal to the cycle
time), but also a general class of disturbances ac-
cording to assumption 2.4, though in case of stochas-
tic disturbances its application is limited as the pre-
diction of stochastic disturbances over large inter-
vals is not very good in general. Moreover an opti-
mal feedforward signal is computed at once, while
optimality in case of learning control is obtained
asymptotically. Like model-based-predictive control
techniques, the proposed algorithm can easily han-
dle constraints on input- and output signals. Thus
it can be an easy tool for trading-off constraints
and performance specifications, always compufing
an optimal solution. Whether the optimal solution
based on a prediction of the system output is an
optimal solution in practice, heavily depends on the
quality of the prediction. If the prediction matches
the true output signal, the calculated optimal solu-
tion is also optimal for the true output signal. If
the prediction does not completely match the true
signal, still an extensive reduction of the determin-
istic part of the disturbance signal can be obtained.
Formal results on the influence of the prediction er-
ror on the true optimization are derived, and also
conditions under which the criterion based on pre-
dictions converges to the criterion based on the true
signals are stated. It was also shown that in case of
undermodelling the method has limited value. Only
in situations where undermodelling can be predict-
ed well the method can be succesfully applied; this
is e.g. the case under the assumptions stated in
learning control techniques.

Appendix
Proof of proposition 3.1
Consider the criterion J’}, given by equation (11):

Il>-

Now raising both sides to the power 1/p and using
the triangular inequality gives:

Jo =l 9 — 9o 15 =1l 4 = %o+ %0 — %0

1

(%)™ <lwe—wollp+ 10— o ll,
2 ~
= (Jp)* + |l yo = 9o ||,,-

Rearranging this equation and raising both sides to
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the power p gives the lowerbound for J:

()

1 i
P -
~llw=inll,) <
The upperbound on J, can be obtained likewise:
Jp = v —w Il =l v — 0+ 30 — vo [}

(| yr =0 ll, + Il 90 — vo II,J)p

(@) +to-w1,)"

Using the fact that || go — o ||, = || yo — 9o ||, com-
pletes the proof of the result stated in equation (13).

IA

ll

Proof of theorem 3.4

i |Je =YYt =y 2T =Jp

This part is rather trivial and can be ob-
tained by substituting equation (10) into equa-
tion (11):

Jp =l yr — B0 ||; =y — ¥ — Ur ”i:

Now using the fact that g.(t + k) = y.(t + k)
and gy (t+k) = ys(t +k) Vk € [1,..., N] yields
the result stated in equation (15):

¥ —ye—us ll; =l wr —wo [l = Jp-

. | Ge # Yo, Uy = yyp = limya,) o dp = Jy

Substituting equation (10) in the expression for
the prediction error gives:

l vo —do ll, = | ¥e +yr — de — 3y I,

yr=ur

F= “ Ye — E:'c ”p

Substituting equation (4) and using the fact
that Py and Py are linear gives:

Il vo— o ll, = || Pou— Pou Il,
=11 (B = Poyu, = | Ao,

Now using lemma 3.3 completes the proof of the
result stated in equation (16):

J;, =, JP = Jp:

lim
[lyo—goll ,—0 [[20]f,—0

Ve = Yo, Uy # Yy = a.lim u=1..~ﬂjp:Jp

|Exnll, —

b. lim 5i=ds

111, oo
[I{Aa—KCa)*noll,,

k=1.. N
=




a. Substituting equation (10) in the expression
for the prediction error and using the fact
that g. = y., gives:

Il %o =20 ll, =l e+ v — e — 37 I,
Ye=Ye -~ ‘

= Ny —vr ll,- (22)
Substituting equation (6) in equation (22)
gives:

. k=L.N F
lyo—doll, =" [ld- Yol ||P

k=

=V | d—d+ Egn |, = || Bin |),,

with: do = d(t) (k = 0). Again using lemma
3.3 gives the result stated in equation (17):

im  Jo= lm J,=1,.

lyo—goll ,—0 I Eanll ==k N
P

b. From equation (9) it follows that:
yr(t+k)—g(t+k) = Can(t+k)—Can(t+k).
Substituting this expression in equation (22)
and denoting n(t + k) = n(t + k) — n(t + k),
gives:

l %o — o ll, = I| Cati ||,

Using equation (8) it follows that:

. k=1..N 3 =
llwo—doll, =" || Ca(Aa — KCa)*iio ||,

where ng = n(t) (k = 0). Finally using
lemma 3.3 the desired result of equation (18)
is obtained:

N

1m
—dall.—0 ’ - k=1..
o !r‘ﬂllp Il{Ad_ch)knaup =0

Ye ?"‘ yc;.ﬂ'f 96 Yy =

k=1..N [IE— JP

a.lim
l[aall, | Benll, — 0

w. [b.li

2 =1.. j =
[Iann,i[[ztd-f(cd)*ﬁu1IP*;Ng P P

a., b. This proof can easily be constructed by
combining the proofs of part #. and part ..
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