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Abstract

The share of electricity generated by (offshore) wind turbines has increased considerably in the
previous decade(s). Due to this increase in market share, more stringent power requirements
have been established to ensure a stable electrical grid. An important requirement is the low-
voltage ride-through requirement that states that the wind turbine must remain connected
to the electrical grid after a short intermittent grid fault. This requirement calls for new
(optimal) grid fault controllers that minimise the impact of the requirement on the turbine
structure. During this thesis, an optimal grid fault controller has been synthesised.

Grid fault controllers found in industry and academia are mostly aimed at reducing the
imbalance between the rotor torque and electrical torque output and do not explicitly consider
other objectives such as mechanical loading. Additionally, current state of the art controllers
often require large amounts of system knowledge or are only tested on low-fidelity models.
To address these issues, a new type of grid fault controller has been presented and tested, an
Iterative Learning Control (ILC) controller. One of the major contributions of this work lies
in applying an ILC controller for grid fault control on wind turbines.

The ILC controller is a feedforward controller that employs model-free learning based on
iterations, where here PID-type ILC and norm-optimal ILC variants have been used. PID-
type ILC applies learning by combining the previous input with a weighted proportional,
integral, and derivative terms of the output error to calculate the input for the next iteration.
The norm-optimal ILC looks for the feedforward input that minimises a weighted quadratic
cost function of the error and input. It is shown that both of these controllers can reduce the
output error to (near) zero if no input constraints are considered. For a more realistic scenario
with input constraints, both ILC controllers manage a reduction in output error compared to
the baseline feedback controller. Here specifically the optimisation based norm-optimal ILC
controller achieves the highest performance which can largely be credited to the controllers
ability to fully saturate the actuator for longer with accurate placement of the switching
times between full positive and negative actuator saturation. The optimisation based norm-
optimal ILC controller is an extension over the state of the art and as such the second major
contribution of this work.

Both ILC controllers have been tested on a high-fidelity wind turbine model. These tests
show that the optimisation based constrained norm-optimal ILC with the objective to reduce
the rotor speed error works best, yielding a 30% improvement in the 2-norm of the output
error compared to the baseline controller. For the objective of reducing mechanical loading,
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ii Abstract

the constrained PID-type ILC performs best with a 70% improvement in the 2-norm of the
output error compared to the baseline controller. Recommendations for future work include
investigating why dependent on the objective function a different ILC controller yields the
best performance, and investigating the effects of stochastic grid faults on the ILC controllers
performance.
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Chapter 1

Introduction to wind turbines

In recent years, the urgency to pursue more renewable energy sources has become increasingly
clear. There is not only a climate crisis, but also a growing realisation that the European
Union (EU) needs more independence from the global energy market. The energy market has
been heavily affected by the ongoing war in Ukraine and the aftermath of the global pandemic.
As a result, more energy is imported from outside the EU, often in the form of liquefied natural
gas [1, 2]. Importing energy is not without consequences, as not all of the major exporters
conform to the same values as the EU. This, among other things, leads to the EU goal of 45%
renewable energy use in 2030 compared to 22% in 2020 [3, 4]. The achievement of this goal
can be done in part by increasing the use of (offshore) wind turbine (WT). Growth in WTs
is not only limited to the EU, as other markets have also increased wind energy production
in recent years [5] and are committed to continue to do so in the following years [6, 7].

The main goal of this thesis is to further increase the knowledge base on the control of
(offshore) wind turbines during grid faults. This chapter starts with a short summary of
nominal WT control, followed by an introduction to the thesis topic and research question.

1-1 Actuators available for control

Wind turbines are controlled using the following actuators, the (individual) blade pitch, the
generator converter, and a yaw motor [8]. The yaw motor is typically only used to align the
nacelle with the predominant wind direction due to its limited bandwidth of less than 1°/s
9, 8].

Blade pitch control is used to alter the lift and drag forces of the blades, resulting in a change
in aerodynamic efficiency/torque. Depending on the angle of the blade pitch 5 and the tip
speed ratio A = w, R /v, there is an optimal value A* that maximises the aerodynamic efficiency
Cp, = P/ Pying for a given wind speed, and thus yielding the highest power output P for that
wind speed, with w; the rotor angular velocity, R the rotor radius, v the wind speed, P the
turbine power, and Pyinq the power available in the wind [8, 10]. The blade pith actuator
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2 Introduction to wind turbines
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Figure 1-1: Depiction of available wind power and the WT's nominal output power as a function
of wind speed, separated in four distinct regions. In region 1 the available power is insufficient to
start the WT. In region 2, below-rated, the power output is increased with the wind power, up
to the rated power. In region 3, above-rated, the WT's power output is at rated power. Region
4 is not shown, but starts right of region 3, at the cut-out wind speed. In region 4 there is zero
power output to prevent damage to the WT in the high wind speeds [8].

has a speed of around 8°/s for 5-MW WTs [8], but as turbines get larger the speed usually
decreases.

The generator is controlled through a power electronics converter [11] which can control the
generator torque (power output) and the output frequency and phase, all with a bandwidth
of 0.5-1 ms [9, 11]. The power converter decouples the generator speed from the frequency
of the electrical grid by converting the generators output from Alternating current (AC) to
Direct current (DC) and back to AC [12]. The input and output of the power converter have
separate controllers [13], where here the focus is on the input side that controls the generator
torque. Setting the generator torque higher or lower than the aerodynamic torque results in
a respective deceleration or acceleration of the rotor [9].

1-2 Nominal control of wind turbines

Under nominal, non faulty, operating conditions, WT control is divided into four distinct
operating regions [9, 8, 14], as shown in Figure 1-1. In region one the mean wind velocity is
below a cut-in velocity, and the WT is kept idling until higher wind speeds arise. In region
two, below-rated, the mean wind velocity is between the cut-in and rated velocity, where the
power production increases in proportion with the wind speed. In region 3, above-rated, the
mean wind velocity is between the rated and cut-out velocity, where a constant power output
is maintained. In region 4 the mean wind velocity is above the cut-out velocity, and the WT
is brought to a standstill for safety reasons.

Control in region 2 usually employs a fixed blade pitch such that the most energy is extracted
from the available wind by regulating the rotor speed. The rotor speed is regulated using the
generator torque, to operate near \* for maximum aerodynamic efficiency. The regulation in
classic control is done using a PI or PID controller with as input the generator speed error
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1-3 Transmission System Operator requirements 3

and as output the desired generator torque. In [14] speed exclusion zones are added in which
they will increase the tip speed ratio above the optimal A* at specific wind speeds to increase
tower damping and decreased fatigue loading. An alternative approach can be seen in the
work of [15] that claims to give a more insightful trade-off between power maximisation and
fatigue load minimisation by employing a model predictive control based scheme.

In region 3, the control objective is to keep the power output and the rotor speed constant
by regulating the aerodynamic toque. In classical designs, this is done using a PI or PID
controller. The input of this controller is the error of the desired rotor speed, with the output
being the desired pitch angle which can alter the aerodynamic torque.

1-3 Transmission System Operator requirements

The control schemes as presented above are primarily focused on maximising energy produc-
tion. However, in reality also objectives such as improving safety, decreasing mechanical loads
or increasing fatigue life are considered [9]. Control objectives can also originate from external
parties such as the Transmission System Operator (TSO). The TSO is the link between the
WT (park) and the high-voltage electrical grid, where most nations have a single TSO in
charge of maintaining said electrical grid [16]. In this section there is an elaboration on one
of the TSO requirements that is motivating the research in this thesis.

To ensure stable operation of the network i.e., the electrical grid, the TSOs will set require-
ments on the operations of WT (parks). For the EU these requirements are summarised in
[17], wherein the local TSOs can still enforce some input within the limits of the document.
One challenging type of requirement for WT operators is low-voltage ride-through (LVRT)
requirements, also known as fault ride-through in the literature. The LVRT requirements
define how the WT must operate during and after intermittent drop(s) of the grid voltage.
Such an event is denoted as an LVRT event or a grid fault during this report.

During an LVRT event the maximum generator torque output is reduced proportional to the
reduction in grid voltage. If the output torque, and in turn power, were not to be limited,
the output current could exceed current ratings of components such as the generator and
transmission cables. Due to the sudden decrease in generator torque during LVRT events,
the generator and rotor torque are not in balance causing the rotor to speed up. Without
intervention this could lead to the rotor speed exceeding an overspeed limit, triggering a
disconnect from the grid. If this were to happen for many turbines at the same time, this
could lead to a cascade in power generating components disconnecting, leading to a network
wide blackout [18]. To prevent such an event from happening, the LVRT requirements are in
place.

The LVRT requirements specify, for example, what are tolerable power outputs after an LVRT
event, and under which conditions a WT must stay connected to the grid [19, 20]. To comply
with these LVRT requirements, special LVRT control schemes are in place, as is discussed in
more detail further in the report. A summary of the most important LVRT requirements as
specified by the TSOs can be seen below, with Pp.x the maximum rated power output and
@ the reactive power output [17, 21].

Master of Science Thesis D. Spijkerman
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Figure 1-2: A lower limit for the grid voltage over time during which the WT's grid connection
is required. If the grid voltage is below the specified level, the WT may disconnect from the grid,
otherwise it has to stay connected to prevent cascading failures on the grid. The voltage levels
and time points are TSO/country specific. Image by [17].

Grid requirements related to LVRT:

1. Voltage-against-time diagram depicting a lower limit for actual network voltages during
which the connection must be maintained; see Figure 1-2 for an example by [17].

2. The system operator has the right to specify the reactive power capability for below
maximum power capacity (P-Q/Ppax -profile).

3. After a step change in voltage the (reactive) power has to settle within specified times.

4. Tt must be possible to ride through an arbitrary sequence of grid faults (Germany).

1-4 State of the art in grid fault control

With an increasing number of W'Ts connected to the grid, TSOs have had to expand the
LVRT requirements to ensure stable grid operation during grid events [22], with the relevant
grid LVRT requirements discussed in the previous section. The main causes of these grid
events are investigated in [23]. To facilitate grid requirements, new LVRT control strategies
have been developed. In this section the state of art in grid fault control, focused on LVRT,
is discussed. For this, first patents are investigated, as most of the industry is not keen on
publishing much information, followed by a study of academic papers.

1-4-1 State of art in patents

In this section, a number of patents related to control of the WT during LVRT events is
discussed. The focus is on novelty and implications rather than technical implementation.

In the patents of [24, 25] a controller is described that calculates a corrective term f*(z)
that is added to the nominal blade pitch controller f(z) during a LVRT event, with = the
WT’s state. This results in the following blade pitch set point during LVRT events fget =
f(x)+ f*(x). In [24] the corrective term is added to df/dt, and in [25] to 3 itself. The function
in the corrective terms f*(x) is a P, PI, or PID controller with as input the difference in the
expected and real power output in [24] and the generator torque in [25].

D. Spijkerman Master of Science Thesis



1-4 State of the art in grid fault control 5

An important novelty of these patents lies in the simple integration with existing blade pitch
controllers by introducing the correction term f*(x). This correction term is only added
during a grid fault, keeping the nominal controller intact. Other faults, such as a defect in
the main converter, are also claimed to be reacted to with this method in [25]. Missing from
the patent is if additional objectives such as reducing mechanical loads is also addressed by
the scheme, or whether the controller is only tuned to minimize the power error.

In the patent of [20] a method is described to disconnect noncritical components during
LVRT, and to power selected critical components using an Uninterruptible power supply
(UPS). The UPS powered components, turbine controller, pitch motor, and rotor system,
can monitor and prevent overspeed conditions. After switching power, the patent describes
two steps of overspeed mitigation: (1) pitch the blades to feather to limit aerodynamic torque
and, (2) use a current-limiting circuit connected to the rotor side of the inverter to dissipate
part of the excess power if the current rises above a threshold.

The LVRT scheme presented in this patent is simple in implementation, as it contains only
two steps and a single additional controller for the current-limiting circuit. The additional
current-limiting circuit has the advantage of being faster than the blade pitch, allowing better
control during an abrupt LVRT event [26]. This comes with the extra cost of more hardware,
which will have to increase as the WTs get bigger. The need for additional hardware seems
to be the biggest disadvantage, even though it does add an additional control input to the
system giving more freedom in designing a controller.

In the patents of [27, 28] a zero-voltage ride-through (ZVRT) scheme is described, which
is effectively an extension of the LVRT to facilitate a drop to zero volt. The patent describes
a method in which, based on measurement of the voltages of the three individual phases,
a phase error is calculated. The phase error is fed into an Pl-controller with anti-windup
scheme. The output of the Pl-controller is integrated and saturated before being sent to
the converter controller which sets the output current, aiming to set the highest back EMF
to keep the rotor speed in an acceptable range. This scheme is in the art also known as a
Phase-Locked Loop (PLL) regulator [29].

The novelty of the patent lies in the inclusion of a state machine that sets the PI-controller
gains and saturation limits. The state machine switches depending on parameters such as
grid voltage level and frequency, and can switch between either one of the four following
states: (0) startup, (1) phase synchronisation, (2) nominal conditions, (3) ZVRT conditions.
In the patent, it is claimed that using this scheme ZVRT is possible. However, in the author’s
opinion, using only this scheme will most likely be insufficient to act on ZVRT events, and
requires additional control for the blade pitch to prevent overspeeding.

In the patent of [19] a method of reducing mechanical loading during a LVRT is described.
In the patent the blades are pitched to feather once a grid fault occurs, where after recovery of
the grid voltage a pitch reference signal is calculated using the nominal control scheme. The
converter output power reference signal is also calculated using the nominal control scheme,
but gets limited to allow some headroom such that an additional a drive train damper signal
can be added to the power reference. This drive train damper signal has the objective to
minimises the transient torque overshoot by enhancing the damping of the oscillations.

The patent claims that the inclusion of the drive train damper signal reduces the power
overshoot with more than 50%. The calculation of the drive train damper signal is however
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6 Introduction to wind turbines

not described in the patent. There are however papers such as [30] describing drive train
damping in non faulty conditions indicating that this method can indeed yield positive results.

1-4-2 State of art in papers

In this section, a quick overview of papers describing solutions for LVRT events is presented.
An interesting, but less relevant, field has also been found during this survey in which addi-
tional hardware is used to improve LVRT, with the following being some interesting surveys
[31, 32, 33]. The additional hardware used in these papers include a crowbar, a method to
dissipate current to generate a back EMF on the rotor, and an energy storage system to
store some of the excess DC power in the generator converter. Though these are interesting
techniques, the focus during this paper is to make control schemes in which no additional
hardware is required.

The remainder of this section is based on the literature survey of [34]. In this survey, multiple
hardware free solutions for LVRT are referenced, a few of which are highlighted in the following
paragraphs. More information on LVRT controllers can be seen in the work of [34]. The first
reference to be made is to the work of [35] as this is the only paper that includes a feedforward
control strategy. However, it is designed for a hybrid system with a fuel cell and battery
storage, decreasing its relevance. The feedforward control is used to calculate a reference
current output of the grid side converter for the individual electrical phases. Since there are
energy storage elements in this system, controllers can direct the power that would normally
go to the grid to these storage systems during LVRT events. However, this is not possible
in the scenario considered in this literature survey. Additionally, the work only considers
maximising power output and does not have any objective of reducing structural loading on
the WT.

In the work of [36] a grid fault controller is presented that acts on the converters output
current using multiple Pl-controllers. The Pl-controller parameters are tuned using parti-
cle swarm optimisation, with the goal of maximising power output, based on the work of
[37]. The particle swarm optimization tries to minimise the following cost function J =
1/l max;=1.13{Re(\i)}| + fp, where \; are the eigenvalues of matrix A of the linearised sys-
tem and f, a barrier function to keep the eigenvalues strictly negative. This cost function
effectively tries to find the controller parameters that result in the fastest stable system dy-
namics. A simulation shows that the controller can successfully perform LVRT for a 50%
drop in the grid voltage. The paper further presents a computationally light model useful
for faster learning of data driven controllers. Since the presented model only outputs the
converter’s grid current, no analysis on turbine loading is included in this work. Additionally,
the cost function used in this paper puts emphasis on controller speed, which could come at
the expense of large overshoots of output current and or other variables such as tower loading.

In the work of [38] a Model Predictive Control (MPC) based controller is presented to be
used on the generator side of the converter. The grid side of the converter is controlled using
vector control based on the grid voltage. The blade pitch, controlled by a Pl-controller, is
reduced once a voltage drop is detected to reduce the rotor speed. The interesting part of
the paper is the MPC-controller on the generator side of the converter. This MPC based
controller uses a quadratic cost function on the difference between a reference output voltage
and predicted next output voltage, aimed to provide fast current tracking. Using the cost
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1-4 State of the art in grid fault control 7

function, an optimal output current is calculated and used to control the generator side of
the converter. Simulations show that successful LVRT to approximately 0.2 V/pu is possible,
and only small fluctuations in the grid current and converter DC-voltage are present. The
controller presented in this paper does not explicitly include tower dynamics, but does try to
reduce the deviation of the output current. This in term could lead to reduced tower loading,
as no large power oscillations are visible in the presented simulations.

In the work of [39] a sliding mode controller is implemented with the sliding surface being
the error of real and reactive power. The controller will try to steer the systems state to
a manifold with zero power error, so with perfect tracking of the reference of the real and
reactive powers. In the paper, tests were performed using a small test setup, which showed
that LVRT with a grid voltage drop of up to 0.35 pu is possible. However, the results showed
quite high amounts of oscillations or chattering in the reactive power output. Chattering is
then also a known disadvantage of the sliding mode controller [40]. The claimed advantages
of this type of controller are the high robustness for disturbances and the relative simplicity
of the controller. However, high amounts of chatter could result in increased mechanical
loading of the WT, making this approach less attractive compared to previously mentioned
controllers.

1-4-3 Conclusion of state of the art survey

In the previous two subsections the state of the art in LVRT control for WTs has been
investigated both for the industry by patents and for academia by papers. This survey has
shown that the industry uses mainly PI(D)-based controllers on both the blade pitch to reduce
the incoming generator torque and on the generator converter to control the current of the
system. These controllers usually include some switching behaviour that reconfigures the
PI(D)-controller gains based on the state of the LVRT event. However, most patents lack
actual or simulated results of the proposed controllers, making judgement of their effectiveness
difficult. In addition, no details of how the controller gains are tuned are present in the patents,
making it difficult to see if any mechanical load reduction objectives are considered or whether
only rotor overspeed prevention and output power tracking requirements as defined by the
TSOs were considered.

The state of the art in papers has revealed more diverse control solutions for LVRT events
compared to the patent survey. Work found includes a switching mode controller and a
controller with multiple PI-controllers tuned by an optimisation algorithm. One of the more
promising controllers found is an MPC based controller that is used to control the current of
the generator side converter. This MPC controller provided an excellent reduction of power
fluctuations compared to other works. All of these works, however, only have objectives to
track a reference power output by some means, and did not consider turbine load reduction
objectives. The works found did not even model turbine loading. Although some of the works
managed to perform LVRT with a small amount of fluctuation in power, it was not clear what
the effects of the mechanical load of the WT are.
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8 Introduction to wind turbines

1-5 Research question

The state of the art survey from the previous section has shown that there is room for further
research in the field of optimal LVRT controllers. The survey has shown that there are
numerous works on optimal controllers for LVRT events, but the objective functions of these
controllers only aim at reducing the power tracking error. Work to reduce the mechanical
loads of the WT during LVRT events has not been found. Furthermore, the works found
do not include the dynamics of the mechanical loads in their models, making these models
unsuitable to properly evaluate load reduction strategies during LVRT events. This has lead
to the formulation of the following research question and sub-questions.

How can data-driven algorithm(s) be used to learn the optimal (feedfor-
ward) control signal to resume regular operation after a predefined low-
voltage ride-through scenario?

Which data-driven optimal algorithm(s) can be used for low-voltage ride-through?
Following a review of the state of the art, multiple potential control algorithms have been
identified. For this question it will have to be identified which algorithm is most suitable for
the application of LVRT in wind turbines.

Which costs or signals should be taken into account in the design of an cost or
objective function for the optimal controller? In the state of the art often only rotor
speed objectives are considered. Here it remains however unclear what the effects are on
different objectives, and if perhaps completely different (multi-objective) cost functions will
have to be designed.

What type of unconstrained algorithm or configuration achieves the best perfor-
mance? What is the best performing configuration of the found controllers of sub-question
one e.g. how should constraints be handled or which algorithm is easiest to tune.

What is the performance impact of including input constraints to the optimisation
problem for adhering to actuation limits? Do the control algorithms need or benefit
from inclusion of constraints, or is this not needed?

During this thesis the WTs considered are (direct drive) pitch-regulated multi-MW turbines
which are variable-speed with a Permanent Magnet Synchronous Generator (PMSG). This
turbines type is currently used by the industry due to the superior performance over older
WT types [9, 8]. Additionally, these WTs offer superior control in high winds [9] enabling
compliance with stringent standards of power quality [41]. It is assumed that the WTs have
no supplemental actuators such as an active crowbar or energy storage system as in [26]. The
focus of this report is on individual turbine control, and not on wind farm control.

1-6 Organisation

The structure of this thesis is as following. In Chapter 2 the control methodologies used
throughout this study are presented. In Chapter 3 the grid fault scenario, control objectives
and models that are used in this study are presented. In Chapter 4 results of the aforemen-
tioned methodologies and grid fault are presented. Lastly in Chapter 5 the conclusions of the
thesis work and is made, including a reflection back on the research questions.
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Chapter 2

Methodology

In the introductory chapter the state of the art in LVRT control for WTs has been investigated.
This survey concluded that the optimal controllers found focus exclusively on tracking a
reference power output and do not include any objectives for load reduction. The most
promising work was based on an MPC controller that also showed a reduction in power
output fluctuations. That said, there are still control methods for which no work has been
found. One such control method is the Iterative Learning Control (ILC) algorithm. In the
ILC algorithm, an optimal feedforward signal is learnt iteratively with the goal of minimising
a (multi-)objective function.

A valid question at this point would be why are ILC algorithms attractive for the application
of LVRT control and how does it compare to other control methods. One of the main differ-
entiators ILC has from other widely used controllers is that ILC is an algorithm that finds
the optimal feedforward signal according to a user-specified objective function, with emphasis
here on feedforward. Feedforward controllers do not base their input actions on the currently
measured state of the system, but instead compute this based on known system dynamics.
Such feedforward controllers are generally known to have a higher bandwidth than feedback
controllers as they do not first need to wait on measurements but instead use prior or system
knowledge.

An important implicit assumption made in the previous paragraph is that the feedforward
controller operates in a deterministic setting with known dynamics. If there would be any
deviation from the assumed system dynamics, then the feedforward controller would not be
able to take appropriate actions since no data from this region are used or available. For this
reason, a feedforward controller can be combined with a less aggressive feedback controller
that can take care of any stochasticity or model uncertainty. In such a setting, the feedforward
controller can provide the speed, and the feedback controller the robustness [42, 43, 44].

Thus, to use a feedforward ILC algorithm robustly, a combination with a feedback controller
might have to be made. This could be done in multiple ways, but as an illustration of how
this could be done, one possible control scheme is presented here. Consider a known grid
fault scenario in which the ILC algorithm is used to calculate the optimal feedforward signal.
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Figure 2-1: An exemplary learning of a first-order ILC system. For each iteration a control signal
is applied and an output error w.r.t. a desired output calculated. The error is filtered by L and
added to the previous control input, and than multiplied by Q to calculate a new control signal.
This signal is than fed into the plant P, and the process gets repeated for the next iteration.
Figure by [45].

Now take the difference between the optimally calculated output of the ILC algorithm and
the output the original /nominal feedback controller during said grid event. In theory, if this
exact grid event would now occur at a later stage, the previously calculated difference in
output could be added to the feedback controller as a feedforward term, and again an optimal
controller would be recreated. Of course, if the conditions during the actual grid fault do
not exactly match the conditions used while synthesising the feedforward signal with the ILC
algorithm, the results can be different. Now that the use of ILC is explained, a more in depth
evaluation of the ILC algorithm is made in the rest of this chapter.

2-1 Iterative Learning Control introduction

ILC is a technique that is used mainly to control the transient response of a system that
operates repetitively. Or, in the words of Ahn et al., "an approach for improving the tran-
sient performance of systems that operate repetitively over a fixed time interval" [46]. This
technique could be used, for example, to control a manufacturing robot or an autonomous
vehicle that performs a repeating task. There are also ILC algorithms made for when the
task does not have perfect repetition due to a changing starting position or a nonequal task
length [47, 48].

In the ILC framework, the goal is to learn an optimal feedforward signal that can direct the
system to a user-defined reference output signal. The creation of this optimal feedforward
signal is done on the basis of the knowledge of previous attempts, which are more formally
known as iterations. After each iteration j, an error e;j[n] is calculated between the measured
output y;[n] and the desired reference output yq[n] for each point in the iteration. This is
formulated as e;[n] = y;[n] — ya[n]Vn € [0, N], with j being the iteration number, n the nth
sample in the iteration, and N the number of samples in a single iteration.

Based on the error e; of the previous iteration, a new control signal is calculated using a
learning rule. There are multiple types of learning rules, and even some ILC variants that
rewrite the problem to a general optimisation problem, but this is discussed in the following
subsections. To illustrate the working of ILC, one can see a commonly used update rule
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2-2 lterative Learning Control algorithms 11

in Figure 2-1. The learning rule shown in this figure has the form u;1; = Q (u; + Le;)
and can be used for both Multiple Input Multiple Output (MIMO) and Single Input Single
Output (SISO) systems, with @ and L being appropriately sized matrices for MIMO or
scalars for SISO systems [45]. The Q-matrix is also called the Q-filter, and the L-matrix is
called the learning algorithm. What this learning rule does is use a linear combination of
the input previously used u; and the additional input for the next iteration Le;, and filter
this with the Q-filter to calculate the input signal for the next iteration. Since the @) and L
matrices are synthesised model-free, as is elaborated upon later, this method is a model-free
learning algorithm. For many learning rules, there are proofs of asymptotic and or monotonic
convergence of the error to zero under some basic conditions [45].

2-2 lterative Learning Control algorithms

As was mentioned in the previous section, there are different types of ILC algorithms that all
use different updating rules, and are designed for different types of systems. In this thesis,
the focus is on two types of learning rules, namely a classical PID-type learning rule and a
norm-optimal learning rule. The PID-type learning rule is often used in the literature and can
almost be viewed as an equivalent to a time-domain PID controller but in two dimensions,
namely the iteration- and time-domains. The norm-optimal ILC has a different approach to
the PID-type learning rule in that it embodies the use of a (multi-objective) cost function for
which, under specific conditions, an analytical solution exists. This approach can roughly be
considered equivalent to a data-driven LQR control [49], but then again in a two-dimensional
domain.

An overview of different ILC algorithms and a discussion on why the PID-type and norm-
optimal ILC have been chosen can be found in Appendix A. In the remainder of this section,
the aforementioned ILC algorithms are introduced including how constraints can be handled.

2-2-1 PID-type lterative Learning Control

The first ILC algorithms that is presented is the PID-type ILC [45, 46, 50]. This learning rule
exists for continuous-time and discrete-time systems, but the focus here is on the discrete time
case. Consider the following linear time-invariant discrete-time system with state dynamics
zj[n + 1] = Ax;[n] + Buj[n] and output dynamics y;[n] = Cxz;[n| where j is the iteration
index and n the discrete-time index.

For this learning rule, it is assumed that; (1) every iteration has a fixed duration time, (2)
the initial conditions of each iteration are equal, and (3) the system dynamics is invariant
over the iterations [46]. The first assumption is reasonable for grid fault controllers, as the
aim is to only help reduce negative transient effects after a grid fault. This means that we
only need to assist the nominal controller for a fixed period after the fault, after which the
nominal controller can again take over. The second assumption, equal initial conditions, is
considered to be true for now since here simulations are used. If however real-world data
is used, some further investigation into this assumption will have to be made. The third
condition, invariance of the system over iterations, is also assumed to be adhered to, since
wind turbines during normal operation are not expected to change dynamics for the same
wind speed.
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Now that we have made plausible that the assumptions needed for the PID-type ILC hold,
the actual learning rule can be introduced, and states as following:
i=n
wj1[n] = uln] + kpej[n] + ki Y ejli] + ka(ejln + 1] — ¢[n]) (2-1)
i=0
with kp, ki and kq the respective proportional, integral and derivative gains. Using this
learning rule in a system as previously described, it is possible to guarantee the following
convergence lim; o y;(n) — ya(n)Vn € [0, N] for specific values of ky,, ki and kq. For the
interested reader on how this can be proven, see Appendix A. This proof can also, for linear
systems, help in tuning the controller gains and has also been used to determine optimal gains
that guarantee the fastest convergence as can be seen in [50].

The PID-learning rule is often used on linear systems, but it is also indicated to work for many
nonlinear systems [45]. It is, however, not clear which types of nonlinear systems suitable to
be used in concurrence with the PID-type learning rule. For certain nonlinear systems, there
do, however, exist proofs of convergence, as can be seen in the works of [51, 52, 53].

2-2-2 Norm-optimal Iterative Learning Control

The second ILC algorithm to be presented and used throughout the thesis is the norm-optimal
ILC by [54]. The approach of this ILC learning rule is different from that of the PID-type ILC
presented above. Where the PID-type ILC is a pure feedforward controller, the norm-optimal
ILC uses a combination of a feedback and feedforward control loop, see Figure 2-2. The
combination of both of these controller types should increase robustness of the controller,
whilst still having the benefits of the increased speed that is usually associated with ILC
algorithms.

In contrast to the PID-type controller mentioned above, the norm-optimal ILC does not start
with a learning rule but instead with a cost function that gets minimised. Again, a linear
time-invariant discrete-time system is assumed, with extension of the algorithm to linear
time-varying systems also existing in the works of [55]. The cost function proposed to be
minimised is as follows:

1 1 1
J(fj41) = 5!\Weej+1H§ + §|!Wffj+1|!§ + QHWAf(fjH —1£)[3 (2-2)
fj
r S — | Wi u; _ Yi
C » G

Figure 2-2: Block diagram of the norm-optimal ILC where C is a feedback controller, G a
systems input-output description, u; g, the feedback input, f; the learnt feedforward input and
u; the combined feedback and feedforward input signal.
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with for a SISO system e; € RY a vector with the output error at every time step of iteration
i, fj € RN a vector with the feedforward input at every time step of iteration j, W, a matrix
penalising the output error, W; a matrix penalising the feedforward input signal and War a
matrix penalising the learning speed over the iteration domain aimed at reducing the iteration-
varying disturbances. For MIMO systems the respective sizes of e; and f; will have to be
changed accordingly. For this cost function, an analytical solution of the learning rule can be
obtained. This analytical solution is of the form f;;1 = Qf; + Le; with

Q = (J"Wed + Wi+ Wag) " (JTWed + Wag) € RV,
L= (JIWeJ + Wi + Wag) LJTW, € RV,

as per [54, p.4], where J is a convolution matrix of the impulse response of the closed-loop
system as collected by experiments. The inclusion of this impulse-response leads to an up
to one-step convergence of the learning rule. This one-step convergence can, for example, be
realised on linear systems with Way = 0. The fast convergence is also one of main advantages
claimed by the author of the norm-optimal ILC.

In the same way as for the PID-type ILC, the norm-optimal ILC is constructed for linear
systems. However, during direct conversations with the author of [54], it was pointed out
that the norm-optimal ILC framework should also work for nonlinear systems [56]. In such a
case a slower convergence might be expected, but most of the results should remain equal.

2-3 Handling constraints

Up to this point, two ILC algorithms have been introduced, PID-type ILC and norm-optimal
ILC. For both of these methods, no way of including time-domain constraints has been dis-
cussed. During this thesis, mainly input constraints are concerned. With the main input
being the blade pitch, there are two types of constraints of concern, a constraint on the direct
value of the input, and a constraint on the rate of change of the input. Both are needed to
keep the requested blade pitch in a feasible region. In this section, the inclusion of constraints
in the PID-type and norm-optimal learning controllers are discussed.

2-3-1 Constrained PID-type lterative Learning Control

Handling constraints for the PID-type ILC can be done in quite a rudimentary way, namely
by using input clipping. With this method, the input is basically processed before entering the
controllable system, as can be seen in Figure 2-3. As the systems here considered are discrete-
time, the clipping will also be done in discrete time. The clipping is done in two stages,
in the first stage the zeroth order of the input is constrained by the inequality constraint
Umin < 4[] < Umax VR € [0, N] with u;[n] the input at time step n and wmin and Umax
the respective lower and upper limit. Using this constrained input, the rate of change, or
the inputs’ first-order difference, is constrained in the second block. This is done using
UAmin < uj[n] —uj[n — 1] < uamax Yn € [0, N] with uamin and uamax the respective lower
and upper bounds on the rate of change. In practise, the minimum and maximum rates of
change are often equally spaced around zero.
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A problem that can occur with this setup is windup on the input, similar to integral windup
in regular PID-controllers. This windup can occur when the PID-type ILC keeps requesting
more input from the system whilst the input constraints are already violated. This leads to
an increasing demand for the input signal, with no actual change in the used or realised input
and resulting output signal. This windup is a result of the discrete-time integrating action
that is inherent to the PID-type ILC learning rule. A solution for this problem is to feed back
the constrained input signal to the learning rule in favour of the previously requested input
signal. This will prevent windup on the input and makes reaching some steady-state value of
the requested input possible, given that the learning rule itself is stable. An example of this
anti-windup scheme can be seen in Figure 2-4 which demonstrates what the output does with
and without this scheme whilst controlling a wind turbine rotor speed using the blade pitch.

2-3-2 Constrained Norm-optimal Iterative Learning Control

Constraints for the norm-optimal ILC work slightly different to those in the PID-type ILC.
In principle, one could use the same scheme as presented above that clips the requested
input signal, but this is a bit more involved due to the split feedback and feedforward parts
of the norm-optimal ILC. Where in the PID-type learning rule the clipping could be done
beforehand for all time steps, the norm-optimal ILC has to apply clipping to the combination
of the feedback controller input together with the learnt feedforward input signal. This would
require the need to read the requested input signal in real-time, after which the clipping can
be done, and the requested input has to be fed back to the system. There are however also
alternative strategies as described below.

The first, and perhaps most obvious, way of limiting the input value is to adjust the weight
on the feedforward input by changing matrix W¢ in cost function J(f;j11) of Equation 2-2.
By increasing the magnitude of the matrix elements, the feedforward input should decrease.
This does however not guarantee any bounds on the input, but should in general decrease the
magnitude of the feedforward input. Besides changing the magnitude of the matrix elements,
also the form of the matrix Wy can be changed. For normal use, the choice of Wy = wyl is
recommended with I an identity matrix of appropriate dimensions and w¢ € R [55], but other
forms can also be used. One could use, for example, the matrices as can be seen in Equation
2-3 where Wt 1o aims to penalise the rate of change of the input and Wk tya, is a time-varying

limited u
S ¥ :
etpoint PID-t ul
— > -type | | : N A
learning rule limit u; ] > limit (uj[n] —u;[n —1]) —>

A G Y

exogenous inputs —|

Memory [«

Figure 2-3: Input constraints for PID-type ILC using clipping on the zeroth and first-order
difference of the requested input signal. The limited input signal is fed back to the PID-type
learning rule to prevent integral windup of the input. Here G is the controlled system, u the
requested system-input by the PID-type learning rule and y the output(s) of the system.
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Figure 2-4: Requested input of the PID-type ILC after convergence of the output error to a non-
zero value due to input constraints. In (a) the requested system input without an anti-windup
scheme keeps on growing for higher iterations due to windup. In (b) the anti-windup scheme
makes sure the requested input matches the input constraints, the maximum power the system
can deliver, and prevents windup in the requested input of the controller.

penalty where the first inputs are penalised more than the final inputs aimed at limiting the
initial peak of input usage with 6 = 1/N with N the number of time steps in the iteration.

20

Two ways of dealing with (input) constraints have been presented, however both methods
still have some limitations. In the first method, the constraints are handled outside of the
controller which leads to extra non-linear dynamics in the system that the controller has to
deal with. This could, in the worst-case scenario, lead to unstable nonconverging solutions.
The second method can be seen as a type of soft-constraints where the use of high inputs
is penalised. There are no guarantees on how well these constraints work. This lack of
guarantee could lead to the use of an overly aggressive weighting matrix W, for which the
input constraints, under testing, are still met. The use of such aggressive penalising of the
input signal could lead to an under-performing system.

Therefore a third method is presented in which the ILC formulation is considered as an
optimisation problem enabling the inclusion of hard constraints on the input and or the
output. This method is effectively an extension of the vanilla method presented in Section
2-2-2, where the cost function J(fj41) as defined in Equation 2-2 is still minimised but now
with additional constraints. An embodiment of the proposed method can be formulated as
follows:

£, =arg lglilll J(£+1) (2-4)
s.t. g(fj—H) <0

with £}, the optimal feedforward input and g(-) some function. In this formulation, the same
objective function is minimised, but now some constraints on the feedforward control signal
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can be imposed. These constraints could, for example, be limiting the value of f;; itself
or the rate of change of f;,1. In principle, since the norm-optimal framework uses a linear
approximation of the output error, limits could also be imposed on the estimated output error
ejr1 =e€; — J(fj11 — £;) with J the convolution matrix of the closed-loop impulse response
[57]. Note that for nonlinear systems the convolution matrix J is only an approximation,
and as such only an estimate of e;; is available. Note that this approximation is also one
of the main reasons that convergence for non-linear systems is expected to be slower. As a
last step, the minimisation problem of Equation 2-4 using the cost function of Equation 2-2
can be rewritten into all known parts with only f; 1 as an unknown that has to be found as
follows:

f11 = argming (f:1)
Jj+1

1
= arg mm§HWe(ej — J(£i41 — £))13 (2-5)

£

1 1
+ §|!Wffj+1|!§ + §\|WAf(fj+1 B

For this last method, the proposed inequality constraint g(fj4+1) < 0 can achieve different
results depending on the exact form of g(-). An example of limiting the absolute value by
function ¢; and the input rate of change by function go can be seen in Equation 2-6. Of
course one could also implement different constraint functions, for example a time-varying
constraint on the input.

[ fj+1[0] = fmax (fi+1[0] = fi+1[1]) — famax

fj+1[N] - fmax

& (fj+1) - fmin - fj-i-l[o] (fj+1[N - 1] y fj+1[N]) \ fmax =0

<0, ga(fj1) = famax — (fi+1[0] = fi+1[1])

| fmin — fj+1[N]_ | fAmax — (fj+1[N — 1] = fj11[N])]

2-4 Control objective for Iterative Learning Control

In this chapter two ILC methods have been presented, the PID-type ILC and the norm-
optimal ILC. For both of these methods, the aim is to reduce some objective or cost function.
For the PID-type ILC this is an output error, and for the norm-optimal ILC this is a quadratic
cost function that includes a term for the output error. So, in general, the aim of these ILC
is to minimise an output error function. Thus resides the question; how should this output
error be defined? Or, an alternative formulation; what is a suitable reference signal to define
the error function against? The answer to this question is highly dependent on the specific
aim of the controller. One could aim to tune the controller so that the TSO requirements are
satisfied, or perhaps one would like to make lighter and cheaper wind turbines by reducing
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certain mechanical loadings on the wind turbine. For each of these situations, a different
reference or objective might have to be defined, but more on this is presented in the following
chapters. For now, it is important to know that the methodologies presented in this chapter
could have a wide applicability, depending on the specific goal and choice of reference signal.

2-5 Conclusion methodology

In this section it has been reasoned why the use of ILC is valid for the application of optimal
grid fault control of wind turbines. It has been concluded that two ILC methods are of
particular interest, the PID-type ILC and the norm-optimal ILC. Both of these ILC aim to
follow a reference output signal and minimise the associated output error, but the way they
do this is different. The PID-type ILC is model-free and rather simple in its setup. The norm-
optimal adds a bit more complexity, but has the claimed benefit of faster convergence. For
both methods there are ways to add system input constraints, where again the norm-optimal
ILC has more advanced and complex solutions also as an option. Due to the increased
complexity of the norm-optimal ILC, the results are expected to be superior to those of
the more simplistic PID-type ILC. This also provides a choice between two ILC methods, a
relatively simple to use PID-type ILC or a more advanced norm-optimal ILC. In the following
chapters, implementation and testing using both ILC methods is presented, where one can
also see if the claimed difference between both methods holds true in practise.
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Chapter 3

Grid fault control introduction

In the previous chapter, the methodology used for controllers during this thesis has been
presented. In this chapter that work is used to move from a general methodology, to a
specific methodology for grid fault controllers. The chapter will start with an introduction
of what the grid fault is and how it is used throughout the rest of the thesis starting with a
short section on controller objectives and finishing with the introduction of the wind turbine
models used.

3-1 Grid fault scenario definition

Before testing any grid fault controller, a definition of this grid fault is stated. As already
discussed in Section 1-3, the TSO requirements form the primary foundation of the need for a
grid fault controller. However, so as to not dilute the focus of thesis to much into regulatory
requirements, it has been chosen to define a single grid fault and benchmark the controller
based on that. As already concluded, the low-voltage ride-through (LVRT) requirement is
one with high impact on the wind turbine and, as such, is the basis of the grid fault scenario.

The LVRT requirement defines that a wind turbine must remain connected to the grid during
abrupt intermittent drops in line voltage. For the actual TSO requirements, these grid faults
can lie in an envelope of shapes, but for now a single shape has been chosen. The shape of
the grid fault can be seen in Figure 3-1 and is used for all the results in Chapter 4. As one
can see in the figure, the grid fault starts with a quick linear decrease of the line voltage from
1 v/p.u. to 0.2 v/p.u. followed by a short time at 0.2 v/p.u. and finally a linear increase to
1v/p.u.. The fault time, the time at 0.2 v/p.u., has been chosen to be 0.3 seconds, as this is
still short enough to qualify within the LVRT requirements and long enough to properly see
the negative effects on the wind turbine. The fault slopes have been matched to the nominal
LVRT tests done internally by Siemens Gamesa and are 1700% / sec for the downward slope
and 400% / sec for the upward slope.
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Figure 3-1: The low-voltage ride-through profile, or grid fault profile, during which the wind
turbine needs to stay operational and connected to the electrical grid, that is used during the
thesis. The voltage level is measured relative to the nominal voltage. The ramp-down and ramp-
up rates are compliant with internal Siemens Gamesa testing with a fault time of 0.3 seconds.

3-2 Grid fault controller objectives

The subject of this thesis is creating optimal grid fault controllers, but before we can talk
about optimality, an objective must be defined. As discussed in the previous section, the
scenario considered during this thesis is a short intermittent fault on the voltage of the grid.
Due to this grid fault, the wind turbine will start overspeeding and certain turbine loading
channels might increase. After the fault is over, these unwanted effects still influence dynamic
turbine behaviour until the system reaches normal operation again.

If one wants to minimise the total impact of the grid fault on the wind turbine, it would be
logical to look at the minimisation of the {?> norm of some output errors. Minimising an {2
norm is also the basis of the PID-type ILC and the norm-optimal ILC. However, one could
also define an objective function to reduce the [*° norm of a channel, which corresponds to the
largest absolute error. This extension with the [°*° norm could be done with the constrained
norm-optimal ILC framework that was presented in Chapter 2-3-2. However, this extension
will increase complexity and necessitate the need for an optimisation framework. Therefore,
it is also recommended to only use the [°° norm if there is a valid reason to do so.

The definition of a relevant output channel or reference signal is still missing. This reference
signal is the baseline towards which the controller tries to steer the system. If one thinks
about what could happen during a grid fault, then two reference channels come to mind. The
first being a reference signal on the rotor speed, since it is expected that the rotor will start
overspeeding during the fault and show oscillations in the transient after the fault. The second
reference signal is a turbine loading channel, as one would expect that the abrupt change in
rotor speed would also translate into mechanical loading on the WT structure. A suitable
mechanical WT loading channel is the tower-bottom moment, the bending moment that is
in line with the dominant wind direction. It is expected that the tower-bottom moment will
increase after the grid fault, and undergo oscillatory transients that decay back to nominal
behaviour after the grid fault.
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3-3 Wind turbine model

To demonstrate and test the controllers presented in this thesis, simulations are used. Simu-
lations are used in preference to using real WT’s since testing using real turbines can be slow,
expensive, or in the worst case, impose risks to the (expensive) turbine. During this thesis,
two models are used. The first model is a simplified WT model used to develop and test the
proposed models, and the second model is a higher fidelity model that can also be used to
validate the results. Both models are discussed in more detail below.

3-3-1 Low-fidelity wind turbine model

The first model mentioned here is the NREL 5-MW reference WT widely used in the literature,
as described in [58]. The model is based on the following first-order differential equation,

Je () = To(t) — Ty, (3-1)

where w, is the speed of the rotor, T, the torque of the rotor, T, the generator torque, J;
the rotational inertia of the rotor. This equation is then converted to discrete time using
zero-order hold that results in the following formulation as used in the model.

wr[n] = w[0] + (Tr[i] — Tg[i])ts Jr_l’
=1
Tyjn] = ;pARIWV[n]Q. (3-2)

Where tg is a sufficiently small sampling time, n the discrete time index, w,[0] the initial
rotor speed, p the air density, A the area swept by the rotor, 8 the pitch angle of the rotor
blades, R the rotor radius, Cp,(A, 3) the nonlinear power coefficient, A = w,R/V the tip speed
ratio and V' the wind speed. Using the rotor speed and the generator torque, the output
power P of the WT can be calculated simply by taking the product as follows P, (t) = w,Ty.
In the following sections, this model is denoted by G, a transfer function that outputs the
rotor speed, generator power output and tip speed ratio based on the incoming wind speed ,
generator torque and reference blade pitch.

The model of equation 3-2 does not have any blade pitch actuator dynamics, thus an extension
of the model with the blade pitch actuator dynamics is considered. Such pitch actuator
dynamics are, in some literature, modelled by a first-order low-pass filter of the form G, (s) =
(7as + 1)~ with 7, € RT the actuator time constant [59, 60]. Such a model is easy to
implement, but finding the appropriate time constant for the NREL 5-MW reference W'T has
proven to be difficult. However, what is known is the equivalent spring and damping constant
of the pitch actuator as defined by the NREL itself [58]. This leads to the following model of
the blade pitch actuator;

1

B = Gal(s)Bsets Gals) = Mas? + bas + ky

(3-3)
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Wind turbine model
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Figure 3-2: Block diagram of the WT model used during testing based on [58]. The transfer
function G is a low-fidelity nonlinear wind turbine model which outputs the rotor speed, power
output and tip-speed ratio based on the incoming wind speed, generator torque output and
reference blade pitch. The blade pitch 3 is calculated by firs limiting 8 and its first derivative,
and then calculate the response of the blade pitch actuator by transfer function G,.

where [s¢; is the pitch setpoint as indicated by a controller and m,, b, ks are the blade mass,
the equivalent linear damping constant, and the equivalent linear spring constant, respectively.
For the implementation of Equation 3-3 with the previous equations of motion, the transfer
function will need to be converted from the Laplace domain to the Z domain to convert it to
discrete time. The last step in modelling the blade pitch actuator is to include some physical
constraints on the motion. Constraints are as per the WT definition in [58] and are as follows:

d
0° < B <90°, ’df < 8. (3-4)

These two constraints limit the absolute angle of the blade pitch and the blade pitch speed,
respectively. A block diagram of the resulting model can be seen in Figure 3-2.

3-3-2 High fidelity wind turbine model

During this thesis, the model described in the previous subsection is used to develop and
test controllers. The advantage of that model is the relative simplicity, allowing for fast
simulations, and thus faster evolution of the controller during the initial testing phases. The
model does, however, assume a completely fixed and rigid WT structure, while one of the
objectives of this thesis is to reduce such structural loads. In addition, a more accurate
higher-fidelity model could be more challenging to control due to higher-order models and
disturbances, giving a more accurate insight into the performance of the proposed models.

This high-fidelity wind turbine model is based on a 15 MW commercially-designed turbine,
and is modeled in Bonus Horizontal axis wind turbine simulation Code (BHawC), a nonlinear
aeroelastic software tool developed by Siemens Gamesa. Studies of the BHawC software and
models show that the simulation results agree with the widely used and validated FAST v8
software and with the experimental data collected from field tests [61, 62]. The BHawC soft-
ware also includes field-deployed controllers, which could serve as a performance benchmark
for the controllers developed here.
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In the following chapter the here presented low-fidelity and high-fidelity wind turbine models
is used to test and implement the ILC algorithms. In these test, the wind turbine models will
experience a grid fault as also specified also in this chapter.
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Chapter 4

Grid fault controller results

In the previous chapters, the control methodology, the grid fault scenario, and the wind
turbine models are introduced. In this chapter, results are presented from the controllers
tested on the two different wind turbine models, the low-fidelity and the high-fidelity. For
this chapter, it is assumed that the shape of the fault is known and equal throughout learning.
The eventual goal of this learning is to find an optimal feedforward signal that minimises a
particular cost function. Once this signal is found, it could, in theory, be used on a real wind
turbine if such a fault were to occur.

In this chapter, learned input signals as generated by PID-type ILC and the norm-optimal
ILC are evaluated. For these two controllers multiple configurations have be implemented
and tested, such as an unconstrained version, multiple constrained versions, and a causal
versions. The unconstrained ILC algorithm show the theoretical maximum performance of
the ILC but does not provide a realistic scenario, as actual wind turbines usually have (rate-
)limited actuator dynamics. The final results is a causal constrained controller, which provides
the most realistic indication of real-life performance gains that are possible. In this chapter all
tests are performed with the objective of reducing rotor speed error, where in Appendix 4-7
the effects of this objective function on mechanical loading are investigated. Additionally, the
direct objective to reduce the mechanical loading has also been documented in this appendix.

4-1 Baseline controller

Before any results are made using an ILC algorithm, it is useful to define some baseline
controller to compare the results against. This baseline controller provides comparison on
how well the ILC performs. Since there are two models used during this thesis, a low-fidelity
and high-fidelity model, two baseline controllers will also have to be used. For the high-
fidelity model, a Siemens Gamesa field-deployed controller already exists and is available for
this thesis. This is then also the absolute performance of the currently field-deployed wind
turbines and, as such, is the perfect candidate as a baseline controller.
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Figure 4-1: Bode Diagram of the baseline PID-controller applied on the low-fidelity wind turbine
model, constructed around a linearisation point matching the conditions used during testing. So
here visible is the bode diagram of the transfer function of the loop gain L = GK with G defined
in Chapter 3 and K the PID-controller.

For the low-fidelity model, no baseline controller has been provided. As such, this controller is
designed as part of this thesis. As was already concluded during the literature review, many
wind turbines make use of PID controllers, so this is the controller of choice that will serve
as a baseline controller for the low-fidelity model. Since the creation of a baseline controller
serves a comparative function during this thesis, the option of more complex and possibly
better performing controllers has been dismissed in favour of the speed and ease of use of the
PID controller.

The baseline PID-controller has been tuned by making use of the Bode plot of the open-loop
system. To do this, a linearisation point has been employed since the low-fidelity model is
also non-linear. This linearisation is done with the wind speed in steady state of 20 m/s with
maximum power point tracking, and the blade also in steady state for this situation. The
resulting PID controller has a gain margin of 9.44 dB and a phase margin of 95.2 degrees
with a proportional gain of 10, integral gain of 1 and derivative gain of 0.4, as can be seen in
Figure 4-1. This controller has a control bandwidth of 6 rad/s, which is on the high side and
may cause problems in actuating high-frequency noise, where a more desirable is a control
frequency around 1 rad/s. To do this properly, however, first the resonance frequency around
1 rad/s is decreased by including a notch filter around this frequency. The resulting bode
plot can be seen in Figure 4-2, where the proportional gain is also reduced to two. This gives
the final values of K, = 2, K; = 1, and K4 = 0.4. This gives a gain-margin of 12.9 dB and a
phase-margin of 74.3 degrees.

The actual results from the baseline controllers can be seen in Appendix C. Here, the time-
domain performance of both controllers is tested on a grid fault.
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Figure 4-2: Bode Diagram of the baseline PID-controller with notch filer applied on the low-
fidelity wind turbine model, constructed around a linearisation point matching the conditions used
during testing. So here visible is the bode diagram of the transfer function GK with G defined
in Chapter 3 and K the PID-controller. This controller will serve as a baseline controller.

4-2 Unconstrained controllers results

In this section, the unconstrained controller performance is presented. These results show
a hypothetical case in which actuator constraints do not impede the controller design, and
correspond to the block diagram of Figure 3-3-1 with the limits on § and limits on |d3/dt|
blocks removed. The main purpose of this unconstrained controller structure is to show
the best-case scenario without any input constraints. This unconstrained controller result is
presented for the low-fidelity model as a demonstration.

4-2-1 Unconstrained PID-type ILC on low-fidelity model

The first ILC algorithm that is used is the PID-type ILC. Since the low-fidelity model only
has a limited number of outputs, the objective function is also limited. Of the available
outputs, power, rotor speed and tip speed ratio, the rotor speed is minimised. Since no input
constraints are used, the anti-windup scheme of Section 2-3-1 will not be used.

The aim of the PID-type ILC is to reduce the 2-norm of the output error, where this is
preferably done in the least number of iterations. Also, instability of the learning rule is
undesirable, where stability is defined as boundedness of the 2-norm of the output error.
The tuning of the PID-type controller could be done using an analytical model, but looking
towards implementation on the high-fidelity model, this is undesirable as its analytical model
is not available. Additionally, this method would require linearising the models which can,
especially during the grid faults, give unrealistic results. Instead, the tuning of the controllers
is done by looking at the time-domain results of the controller parameters used.
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K, K; Kq | Istiter < 0.01 mean 2-norm max 2-norm final iter 2-norm
0.1 0 0 n.a. 0.8575 1.0000 0.7928
0.1 0 1 7 0.0346 1.0000 0.0000
01 001 1 n.a. 9-10% 3-10%8 3-10%8
0.1 0.001 1 15 0.6301 7.0740 0.0000
0.1 0.0001 1 7 0.0337 1.0000 0.0000

Table 4-1: Tuning of the non-causal unconstrained PID-type ILC. Shown are the mean, max,
and final value of the 2-norm of the controller captured after each ILC iteration. The 2-norm is
normalised with respect to the baseline PID controller. Desirable is a controller tuning that has
a zero 2-norm in the final iteration with a maximum 2-norm equal to 1, indicating no decrease
in performance w.r.t. the baseline controller after any iteration. The mean 2-norm can give a
secondary indication to the convergence speed.

The tuning of the PID-type ILC needs to find three values, a value for the proportional gain
K, the integral gain Kj, and the derivative gain Kq4. First, the process has started by finding
values for which the learning is stable, so where the solution converges to some value lower
than that of the baseline PID controller, where convergence is defined as boundedness of the
2-norm of the output error. The tuning process can be seen in Table 4-1, with the final values
K,=01, Ki=1- 10~* and K4 = 1, as this has a fast convergence in seven steps, has no
diminished performance for any intermediate iteration, max 2-norm = 1, and has the lowest
mean 2-norm.

Since no input constraints are applied in this scenario, the output error decreases to zero as
expected. The results can be seen in Figure 4-3. The starting blade pitch input that the
PID-type ILC will supply is equal to the one of the baseline PID controller. This then also
causes the 2-norm of the output to be equal for the first iteration. After each iteration, the
2-norm of the output error decreases, where after seven iterations the 2-norm has decreased
to only 1% of the original value.

Rotor speed Normalised 2-norm rotor speed error
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Figure 4-3: Non-causal unconstrained PID-type ILC compared with the baseline PID on the
low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid
fault, not shown in figure, as defined in Section 3-1.
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In the bottom right of Figure 4-3, one can see the blade pitch input requested from the PID-
type ILC over the iterations. One can see that the shape of the blade pitch signal changes
drastically over the iterations. In the first iteration the blade pitch is quite smooth, but for
the final iteration there appear to be distinct transitions in the blade pitch signal. Up to the
time of the fault, the blade pitch is constant and equal to the baseline PID controller. Once
the fault starts, the PID-type ILC starts pitching the blades with a constant speed up to a
steady-state value. After the fault, the blades are pitched with a constant speed back to the
initial steady state blade pitch value. Close inspection of the shape of the blade pitch in the
final iteration shows that it is, in fact, a linear copy of the grid fault even though the model
is nonlinear. Since the controller manages to keep the rotor speed constant, the system is
evidently ‘pushed’ into a linear region by the ILC algorithms. This then also explains why
the shape of the blade pitch is a linear copy of that of the grid fault itself.

4-2-2 Unconstrained norm-optimal ILC on low-fidelity model

A norm-optimal ILC is also employed on the low-fidelity model without input constraints
for reasons of comparison to the performance of the PID-type ILC. The tuning of the norm-
optimal ILC is a bit different from the PID-type ILC. There are three parameters that need
tuning, the weight on the output error W,, the weight on the input signal W and a weight on
the learning speed Wa¢. Inside of the norm-optimal ILC the J matrix as described in Section
2-3-2 is used, where in Appendix D the calculation of the J matrix is shown in more detail.
It has already been clearly indicated in the literature that Wy is only needed when using
noisy data, which is not the case here, so this value is chosen to be zero. The weight on the
input Wt has to be nonzero to prevent near singular matrix inversion in Matlab. Since the
aim is to minimise a cost function, the exact values of the weight do not matter as much as
the ratio between the two weights.

To start the tuning process, both the weight on the output error and feedforward input are
set to identity. The results of this process can be seen in Table 4-2. Note that depending

We Wi Whas | 1st iter < 0.01 mean 2-norm max 2-norm final iter 2-norm
1 1 0 n.a. 0.9840 1.0000 0.9836
1 0.1 0 n.a. 0.8617 1.0000 0.8584
1 0.01 0 n.a. 0.4082 1.0000 0.3878
10 0.01 0 n.a. 0.1027 1.0000 0.0655
100 0.01 0 10 0.0486 1.0000 0.0077
1000 0.01 0 n.a. 0.2909 1.0000 0.5706
120 0.01 0 10 0.0474 1.0000 0.0064
140 0.01 0 9 0.0468 1.0000 0.0063
160 0.01 0 9 0.0484 1.0000 0.0156

Table 4-2: Tuning of the non-causal unconstrained norm-optimal ILC. Shown are the mean, max,
and final value of the 2-norm of the controller captured after each ILC iteration. The 2-norm is
normalised with respect to the baseline PID controller. Desirable is a controller tuning which has
a zero 2-norm in the final iteration with a maximum 2-norm equal to 1, indicating no decrease
in performance w.r.t. the baseline controller after any iteration. The mean 2-norm can give a
secondary indication to the convergence speed.
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on the controller tuning, the resulting 2-norm of the output error can change vastly. Take,
for example, W, = 1 and W; = 0.01, where in the 2-norm it only decreases to 39% of the
original value. This does not indicate that the norm-optimal ILC is not working properly,
but instead that given the weighting matrices, the internally used cost function J(fj41) of
Equation 2-2 is minimised. Evidently, a minimised cost function cost function here does not
indicate a near-zero output error. If however Wy = 0, and W = 0 would be chosen, a zero
output error could be expected [54, 56]. However, for the formulation of the learning rule
used throughout this thesis, as defined in [54], the matrix L is singular to working precision
when run in Matlab. To counteract this matrix singularity W will have to be chosen unequal
to zero. That said, the best performing controller gains here are W, = 140, Wy = 0.01, and
Was = 0 as this controller setting yields the lowest final 2-norm 0.6% of the original value
with fast convergence.

A more detailed plot of the results from the tuned norm-optimal ILC can be seen in Figure
4-4. In this plot one can see that the norm-optimal ILC also manages to get the output
error to near enough zero, but not completely zero. For linear systems it is claimed that
the norm-optimal ILC manages to get convergence to zero, but evidently this does not hold
extend for this nonlinear system. The maximum absolute output error is however very small
at only 4.5 - 10~ rpm, but still noteworthy none the less.

Comparing the evolution of the blade pitch signal over iterations with that of the PID-type
ILC of Figure 4-3, one can see that the input signal changes in a more gradual way with
no ’overshoot’ in the evolution of the input signal. Instead, it creeps more towards the final
solution in a more gradual matter. This might be more desirable for real-life systems as the
input signal does not change shape massively over the iterations, whilst still converging to
approximately the same solution.
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Figure 4-4: Non-causal unconstrained norm-optimal ILC compared with the baseline PID on the
low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid
fault, not shown in figure, as defined in Section 3-1.
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4-2-3 Comparison and conclusion of unconstrained ILC on low-fidelity model

Using the results of this subsection, a comparison can be made between the unconstrained
PID-type ILC and the unconstrained norm-optimal ILC. In Figure 4-5 one can see a compar-
ison plot of the output error, the 2-norm of the output error and the blade pitch and blade
pitch rate. In the figure one can also see that the norm-optimal ILC still has a small rotor
speed error as caused by the need for a non-zero zero penalty on the feedforward signal to pre-
vent singular matrix inversion, where the PID-type ILC manages a zero output error. When
inspecting the blade pitch signal, one can also see that the transitions of the norm-optimal
ILC are not as crisp as those of the PID-type ILC, giving an indication of the worse output
error of the norm-optimal ILC.

Though the norm-optimal ILC claims to have superior convergence speed for linear systems, it
does, however, perform worse than the PID-type ILC with consistently slower convergence for
the here considered nonlinear scenario and tuning. However, the way in which the controller
inputs converge to that of the final iteration is different. For the here chosen tuning the
PID-type ILC has some overshoot in the input signal, see Figure 4-3, where the norm-optimal
ILC has a more gradual convergence towards the final feedforward input applied, see Figure
4-4. This difference is not relevant for this application, but for different systems or tunings
one should be alert for this behaviour.

Both controllers in this section have shown that a near-zero output error is possible during
a known grid fault when no constraints are applied. This does, however, require blade pitch
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Figure 4-5: Comparison of the non-causal unconstrained PID-type ILC with the non-causal
unconstrained norm-optimal ILC. Shown are the rotor speed error, blade pitch and blade pitch
rate of the final iterations. Also, the progression of the 2-norm of the output error is shown. In
the blade pitch rate plot the hardware limits are shown, but were not used at this point.
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rates of almost 80 deg/s, which is tenfold the actual actuator capabilities. In addition, this
result is only possible when the controller starts deploying the optimal feedforward signal
from the beginning of the actual grid fault, something that would not be possible in real life
due to causality violation. The causality problem has been addressed in the next section,
where the effects of delayed learning is investigated.

4-3 Unconstrained controllers with causal learning

In the previous section, unconstrained ILC algorithms have been presented. This has been
extended to a more realistic scenario with causal learning such that learning occurs only after
the fault has started. This implies that one could detect the fault and fault magnitude, and
then apply the learnt optimal feedforward signal. Since the learnt feedforward signal does not
start before the grid fault has occurred, the wind turbine will have a non-zero rotor speed
error, in contrast to the non-causal case where a zero rotor speed error for every time step
could be reached. During this test it is investigated how this non-zero rotor speed error will
effect the optimal learnt feedforward signal. These results can be seen in Appendix E. Later
in this chapter, causal constrained controllers will also be introduced.

4-4 Constrained controllers on low-fidelity model results

Up to this point, only unconstrained controller results have been shown. Although this does
give some insight into how the ILC algorithms work in the best-case scenario, it does not
provide results that can be expected in the real world. Take, for example, the causal norm-
optimal ILC of the previous section that used almost 1000 deg/s blade pitch rate, while the
actuator is rate-limited to 8 deg/s. Therefore, there is the need to add input constraints in
the controllers. This is first tested on the low-fidelity wind turbine model, and in the next
section also on the high-fidelity model.

4-4-1 Constrained PID-type ILC on low-fidelity model

The first constrained controller shown here is the PID-type ILC. Here, constraints are handled
by employing saturation on the input and the input rate of change, as described in Section 2-
3-1. For the unconstrained case, the PID-type ILC manages to completely reduce the output
error to zero. Doing this does, however, require large amounts of input, and more importantly
an extremely high blade input rate of change. This is not feasible for real-life systems, and
as such, here a constrained PID-type ILC is presented.

This time the controller tuning is started with the controller parameters found for the causal
unconstrained controller. It is expected that the 2-norm of the output error will not reduce
completely to zero for this case, but instead to a nonzero steady-state value. Therefore, an
important tuning parameter to look at is the output error 2-norm in the final iteration. What
will also be looked at is that there is no big increase in 2-norm in any intermediate iterations
of the ILC algorithms. This can be indicated by a maximum 2-norm equal to one and by
looking at the individual rotor speed error 2-norm for every iteration.
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K, K; K4 | mean 2-norm max 2-norm final iter 2-norm
040 1-10=° 0.30 0.7932 1.0000 0.7866
0.50 1-107° 0.30 0.7674 1.0000 0.7565
0.60 1-107° 0.30 0.7971 1.2018 0.7429
0.50 1-107° 0.40 0.8057 1.0000 0.7902
0.50 1-107° 0.20 0.7397 1.0000 0.7258
0.50 1-107° 0.10 0.7828 1.0000 0.7564
0.50 1-107° 0.15 0.7379 1.0000 0.7180
0.50 1-107%* 0.15 0.7505 1.0000 0.7191
050 1-107% 0.15 0.7374 1.0000 0.7180

Table 4-3: Tuning of the causal constrained PID-type ILC. Shown are the mean, max, and final
value of the 2-norm of the controller captured after each ILC iteration. The 2-norm is normalised
with respect to the baseline PID controller. Desirable is a low final 2-norm with a max 2-norm
equal to one.

The results of the tuning can be seen in Figure 4-6 and Table 4-3. First, one can see that, in
general, it takes a few more iterations to converge to the final solution compared to the uncon-
strained version in Figure 4-3 where full convergence was already achieved in approximately 8
iterations. That said, there are quite some variations in between the different controller tun-
ings, where many of the used values have large intermediate peaks in the 2-norm, indicating
that the performance after certain iterations deteriorates compared to the respective proceed-
ing iteration. However, this is not the case for the controller values K, = 0.5, K; =1 - 1075,
and Kgq = 0.15, which also yields the lowest final 2-norm value. This tuning does not have
the fastest convergence in the first few iterations, this is reserved for K, = 0.5, K; =1-107°
and K43 = 0.2, but it does have a lower final 2-norm. Since here simulations are used, the
preference is to the lowest final 2-norm, but when using field data, one might prefer the second
tuning with a faster convergence and slightly higher final 2-norm.

The time domain results of the tuned constrained PID-type ILC can be seen in Figure 4-7.
One can see that the maximum rotor overspeeding is reduced compared to the baseline PID

1k
Kp: 0.4 Kd: 0.3 Ki: 1e-05
0.95 - Kp: 0.5 Kd: 0.3 Ki: 1e-05
’ Kp: 0.6 Kd: 0.3 Ki: 1e-05
Kp: 0.5 Kd: 0.4 Ki: 1e-05
09 F Kp: 0.5 Kd: 0.2 Ki: 16-05
Kp: 0.5 Kd: 0.1 Ki: 1e-05
0.85 Kp: 0.5 Kd: 0.15 Ki: 1e-05
Kp: 0.5 Kd: 0.15 Ki: 0.0001
0.8 - Kp: 0.5 Kd: 0.15 Ki: 1e-06
0.75 -~
07 1 1 1 1 1 1 1 1 1 1

1
0 2 4 6 8 10 12 14 16 18 20 22
Iteration

Figure 4-6: The 2-norm of the output error for the causal constrained PID-type ILC shown
for different controller settings. Shown is the progression of the 2-norm, for different controller
settings, after each ILC iteration.
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Figure 4-7: Causal constrained PID-type ILC compared with the baseline PID on the low-fidelity
wind turbine model. Controller objective, reduce rotor overspeeding caused by grid fault, not
shown in figure, as defined in Section 3-1

controller. In addition, the recovery speed of the rotor speed back to the reference signal is
much higher, which is where the greatest improvement lies in this controller. When inspecting
the blade pitch input signal used, one can see that the PID-type ILC continues to use more
of the blade input right up to the point where the rotor speed error is significantly reduced,
where the baseline controller fails to completely saturate the controller input signal.

4-4-2 Constrained norm-optimal ILC using saturation on low-fidelity model

The constrained norm-optimal ILC will also make use of the saturation block, as was the case
for the PID-type ILC. In principle, one could also use an increasingly higher input penalty,
and as such decrease the input signal used, but this did not yield enough of a reduction in
input rate of change used. The results of this method can be seen in Appendix F, but for the
remainder of this section the saturation method is used. An implementation of constrained

We  W; War | mean 2-norm  max 2-norm final iter 2-norm
300 0.01 0 0.7476 1.0000 0.6750
100 0.01 0 0.7030 1.0000 0.6106
10 0.01 0 0.5832 1.0000 0.4888
1.00 0.01 0 0.3898 1.0000 0.2454
1.00 0.10 0 0.5222 1.0000 0.4385
2.00 0.01 0 0.4945 1.0000 0.4206
0.50 0.01 0 0.3449 1.0000 0.2214
0.40 0.01 0 0.3553 1.0000 0.2383

Table 4-4: Tuning of the non-causal constrained norm-optimal ILC using saturation. Shown are
the mean, max, and final value of the 2-norm of the controller captured after each ILC iteration.
The 2-norm is normalised with respect to the baseline PID controller. Desirable is a low final
2-norm with a max 2-norm equal to one.

D. Spijkerman Master of Science Thesis



4-4 Constrained controllers on low-fidelity model results 35

Rotor speed Normalised 2-norm rotor speed error

12251 R I D DD I I L T D R T DR T T D DT DT D)
E PID O PID
oc 122 Norm-optimal ILC 0.8r ) Norm-optimal ILC
o — — —Reference
S 12.15 06
Q N A
3 \
S 121 - — 0.4r
o
o - s s s
12.05 . . . . , 0.2 U U U U U U U U U
5 55 6 6.5 7 0 10 20 30 40 50
Iteration
Blade pitch Final iteration Blade pitch norm-optimal ILC over iterations
20 PID 20
= Norm-optimal IL = 13
S191 orm-optimal ILC S1g
S ke 21
218 18
2 4 34
<17t <17
16 16 %0
5 55 6 6.5 7 5 55 6 6.5 7
Time [s] Time [s]

Figure 4-8: Non-causal constrained norm-optimal ILC using saturation compared with the base-
line PID on the low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding
caused by grid fault, not shown in figure, as defined in Section 3-1

norm-optimal ILC using optimisation can be seen in Section 4-4-3

The tuning method for the constrained norm-optimal ILC is similar to that of the constrained
PID-type ILC of the previous section. Here, one wants the lowest 2-norm in the final iteration,
and also no intermediate loss in performance indicated by a peak in the 2-norm or a maximum
2-norm greater than one. The results of the tuning can be seen in Table 4-4. One can see
that the values W, = 0.5, Wy = 0.01 and Wa¢ = 0 produce the lowest final 2-norm of only
0.22 times that of the baseline PID controller. This controller tuning also has monotonic
convergence for this scenario, indicating that after every iteration the performance is equal
or better in terms of the 2-norm of the output error.

The time domain results of the constrained norm-optimal ILC can be seen in Figure 4-8. Here,
one can see that the norm-optimal ILC starts pitching the blades before the fault has even
occurred. This tactic results in a lower peak overshoot compared to the baseline controller,
and in term results in a significant improvement of the output 2-norm.

4-4-3 Constrained norm-optimal ILC using optimisation on low-fidelity model

The constrained norm-optimal ILC as presented above yields satisfactory results in that it is
able to lower the 2-norm of the output error. It is however not clear if the found solution is
optimal since the input constraints are handled outside of the controller, raising the question
whether the found solution is actually an optimal solution. From one viewpoint, one could
consider the saturation block outside the controller part of the nonlinear system dynamics,
and as such accept that the found solution is optimal. However, from a second viewpoint, one
could say that the handling of the constraints should be done inside of the controller using the
limited system knowledge that is available. To investigate this phenomenon, an optimisation
based constrained norm-optimal ILC is presented in which the minimisation and constraint
handling are handled all inside of the controller structure.
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Way of handling constraints

In Chapter 2 the constrained norm-optimal ILC has been introduced, but with one important
omission in the shown constraints. Namely, all the constraints shown are on f; 1, the feedfor-
ward input, and not on the combined feedforward and feedback input signals. In practise, this
is a substantial difference, as only limiting the feedforward signal can still result in a violation
of the input constraints for the combined feedforward and feedback signal. Therefore, a new
formulation will have to be made in which the feedforward input combined with the feedback
input is penalised. Or in other words, an estimate for the combined feedforward and feedback
input signals will have to be made. The following approximation is proposed for the input
signal.

Wiy = +ujn (4-1)

Here 1141 is the estimated total input for the next iteration, f; 1 is the feedforward input
for the next iteration, and u; g, the feedback input used in the previous iteration. Following
is the intuition of why this input estimate could work. First, notice that the real next input
u;41 can be described as w11 = fj 11 +u;11  and, thus, the task can be reduced to finding a
proper estimate for the feedback input term. Now, since after every iteration the feedforward
input should steer the system to a lower output error, it seems reasonable to assume that
w1, < ujgm. Additionally, the norm-optimal ILC usually reaches some steady-state value
after some iterations, meaning that in this case u;j;1 a1, = u;p, holds true. For these reasons,
this input estimate is used to define the input constraints.

The input constraints are the same as in the previous sections, with a constraint on the
value of the input itself and one on the rate of change of the input. The one difference is
that here the input u;; will not be used, but instead ;41 as defined in Equation 4-1. The
complete optimisation formulation can be seen below. Other variants of the formulation of
the optimisation problem have also been tried and can be seen in Appendix G, but with less
successful results.

fi 1 = argmin J (f541)
J £t

s.t.

~2:N ~1:N—1
Uy — Uy H /Ts < UAmax;

lAlj—&—l < Umax;
W11 > Umin- (4-2)

With J(fj41) as in equation 2-5,T; the sampling time, uamax the maximum rate of change
of the input, umax the maximum input and i, the minimum input. The superscript x?:b
indicates that the samples a to b of iteration j are used in the vector x. For more details on
the terms in the above equation, see Section 2-3-2. To solve the above minimisation problem,
Yalmip [63] is used from within MATLAB. An important notion for this constraint to work is
that the feedback input term should not be to dominant or otherwise the performance of the
combined controller will suffer, which is also demonstrated in Appendix G. If this is not done,
than the feedback controller will react too aggressively on the added feedforward contribution

resulting in oscillations in the blade pitch signal causing a violation of the input constraints.
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Tuning the controller

As mentioned before, the optimisation based constrained norm-optimal ILC works best when
used with a less aggressive feedback controller. Therefore, the feedback controller values
K, = 0.5, K; = 0 and K4q = 0.023 have been used, which are different from those of Section
4-1. Also, for the ILC algorithms, the controller variables will have to be tuned. The results
of this tuning can be seen in Table 4-5. Unlike the tuning of previous controllers, here the
maximum 2-norm is higher than one due to the tuned-down PID feedback controller that
is dominant for the first iteration. That said, there is little to no difference in the tuning
values of the optimisation based constrained norm-optimal ILC in terms of the mean and
final 2-norm. Only when the error weight is set extremely low, the final 2-norm of the output
error starts to increase.

Looking at the progression of the output errors 2-norm, one can see that there is quick con-
vergence already in the third step, that is, only two iterations including an active feedforward
signal have been used. This is then also one of the claimed strengths of this controller, the
fast convergence to the optimal feedforward signal.

The time domain results of this optimisation based constrained norm-optimal ILC can be
seen in Figure 4-9. Directly one can see that the ILC algorithm starts to adjust the blade
pitch already before the grid fault has begun, and as such builds a sort of buffer in the rotor
speed error. This is compared to the baseline PID controller, which only starts taking action
after the actual grid fault has occurred. Also visible in the bottom-right of the plot is the
composition of the ILC input signal from the feedforward and feedback parts. Here one can
see that before at certain times the feedforward signal is even greater than the blade pitch rate
of change constraint allows, but that once the feedback signal is added, an exact saturation
of the input is achieved. This ability of the norm-optimal ILC to fully saturate the actuator
at the right times leads to the dramatic decrease of rotor speed error observed here.

4-4-4 Comparison and conclusion of constrained ILC on low-fidelity model

In Figure 4-10 a comparison can be seen between the constrained PID-type ILC, the saturation
based constrained norm-optimal ILC and the optimisation based constrained norm-optimal
ILCs. The first observation one can make is that the norm-optimal ILCs perform significantly
better than the PID-type ILC with a final 2-norm with approximately 0.2 for the saturation

We Wi  Was | mean 2-norm  max 2-norm final iter 2-norm
300 0.01 0 0.5071 1.9579 0.1365

100 0.01 0 0.5071 1.9579 0.1365

10 0.01 0 0.5076 1.9579 0.1372

1 0.01 0 0.5713 1.9579 0.2055
1000 0.01 0 0.5071 1.9579 0.1365

Table 4-5: Tuning of the non-causal optimisation based constrained norm-optimal ILC. Shown
are the mean, max, and final value of the 2-norm of the controller captured after each ILC
iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable is a
low final 2-norm with a low max 2-norm.
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Figure 4-9: Non-causal optimisation based constrained norm-optimal ILC compared with the
baseline PID on the low-fidelity wind turbine model. Controller objective, reduce rotor overspeed-
ing caused by grid fault, not shown in figure, as defined in Section 3-1. The bottom right plot
shows the blade input rate of change of the baseline PID controller and the ILC, where the ILC
is split in the feedforward, ff, and feedback, fb, parts respectively.

based and 0.14 for the optimisation based norm-optimal ILC compared to the 0.8 of the PID-
type ILC. In other words, the norm-optimal ILCs have around a four times lower final 2-norm
compared to the PID-type ILC, with the optimisation based norm-optimal ILC having the
lowest final 2-norm.

A contributor to the lower 2-norm for the norm-optimal ILC is its ability to anticipate the
effects of a feedforward input in the future by means of the J-matrix, enabling it to take
relevant actions even before the fault occurs. Both versions of the norm-optimal ILC start
pitching the blades before the five second mark, where the fault starts, resulting in a negative
rotor speed error at the time the grid fault starts. This negative rotor speed error then acts as
a sort of buffer on the rotor speed error once the actual grid fault begins. This tactic makes
the norm-optimal ILC much more effective in reducing the output error 2-norm.

Comparing both norm-optimal ILCs, one can see that the optimisation based norm-optimal
ILC manages to get a lower final 2-norm of the output error, and also faster convergence in
three steps. This faster convergence does come at the expense of higher computation cost,
but for the scope of this thesis, the computation cost is considered cheap compared to the
cost of data, so this is not a big problem. That said, the optimisation based norm-optimal
ILC also has a slightly different control approach compared to the saturated norm-optimal
ILC. The optimisation based ILC starts pitching to the other direction from 4.5 to around
4.7 seconds, causing a positive rotor speed error. Additionally, the optimisation based ILC
starts even earlier with pitching the blades compared to the saturated norm-optimal ILC.

All three controllers manage to achieve a performance gain compared to the baseline PID
controller, but the norm-optimal ILCs do a better job of this. These controllers manage to
anticipate the grid fault, resulting in a four-time lower 2-norm compared to the PID-type
ILC. Therefore, the norm-optimal ILC would also be preferred in this situation. Within the
norm-optimal ILCs, the optimisation based one works better than the saturation based with a
lower final 2-norm of the output error, and faster convergence. Additionally, the optimisation
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based norm-optimal ILCs performance is not that dependent on the specific controller tuning
and could thus be easier to implement due to its simpler tuning. Note, however, that for all
of these controllers the unrealistic assumption of knowing the exact grid fault characteristics
is made, including when the fault is going to occur. For this reason, causal constrained ILC
algorithms will also be constructed in section 4-6, where the optimal feedforward signal is
only added after the fault has occurred.

4-5 Constrained controllers on high-fidelity model results

In the previous section the non-causal constrained ILC algorithms on the low-fidelity wind
turbine model have been presented. These controllers will in this section also be applied on
the high-fidelity wind turbine model.
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Figure 4-10: Comparison of the constrained non-causal PID-type ILC with the non-causal sat-
uration based- and optimisation based constrained norm-optimal ILC, denoted as 'Saturation
norm-optimal ILC’ and '"Optimal norm-optimal ILC’ respectively. This all on the low-fidelity wind
turbine model. Shown are the rotor speed error, blade pitch and blade pitch rate of the final
iterations. Also, the progression of the 2-norm of the output error is shown. Visible in the plots is
that both controller fully utilise the actuator limits. A major difference is that the norm-optimal
ILC already starts decreasing the rotor speed before the grid fault has started, resulting in a lower
maximum rotor speed error compared to the PID-type ILC.
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4-5-1 Constrained PID-type ILC on high-fidelity model

In the previous subsections, constrained ILC algorithms on the low-fidelity model were pre-
sented, where the norm-optimal controller showed far superior performance compared to the
PID-type ILC. This was, however, done on the low-fidelity model, and is validated on the
high-fidelity model in the following few subsections. Due to a higher computational effort
for each simulated iteration, most of the results presented here are for a lower number of
iterations. That said, the data should still be rich enough to provide sufficient insight into
the performance of each individual ILC.

The first controller tested is the constrained PID-type ILC. The tuning of this controller can
be seen in Table 4-6. The best found controller tuning uses K, = 0.15, K; = 0, K4 = 0.01 and
a cut-off frequency of 2 Hz for the low-pass filter that is applied after the output of the ILC
algorithm. This configuration yields a reduction of the 2-norm to 0.906 after ten iterations.
The reason that the 2-norm of the output error starts at a value unequal to one is because the
ILC starts with constant initial condition and not the input used by the baseline controller.

The time domain results of this controller can be seen in Figure 4-11. From the results one
can see that there remain quite some oscillations in the output of the rotor speed. However,
the PID-type ILC manages to reduce the 2-norm of the rotor speed error to around 0.85 times
that of the baseline controller.

K, K; K4  filter cut-off | mean 2-norm max 2-norm final iter 2-norm
0.05 0.0001 0.005 10 0.9728 1.0698 0.9073
0.05 0 0.005 10 1.0521 1.0698 1.0160
0.15 0 0.010 10 1.0296 1.0779 0.9219
0.05 0 0.005 30 1.0909 1.1302 1.1302
0.15 0 0.010 5 0.9794 1.0698 0.9054
0.15 0 0.010 2 0.9696 1.0698 0.9063

Table 4-6: Tuning of the non-causal constrained PID-type ILC on high-fidelity wind turbine
model. The filter cut-off is the cut off frequency for a low pass filter that is applied directly on
the output of the ILC algorithm. Shown are the mean, max, and final value of the 2-norm of
the controller captured after each ILC iteration. The 2-norm is normalised with respect to the
baseline PID controller. Desirable is a low final 2-norm and a low max 2-norm.
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Figure 4-11: Non-causal constrained PID-type ILC compared with the baseline PID on the high-
fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid fault,
not shown in figure, as defined in Section 3-1

4-5-2 Constrained norm-optimal ILC using saturation on high-fidelity model

In addition to the PID-type ILC, also the constrained norm-optimal ILC using saturation is
tested on the high-fidelity model. Again, the controller structure is equal to that used on the
low-fidelity wind turbine model. The tuning results of this controller can be seen in Table 4-7.
From the tuning process, one can see that the best performance was with W, =1, Wy = 1 and
War = 0. Somewhat counter intuitive, for lower penalties on the feedforward input signal, the
controller performs worse. A possible explanation is that the lower penalties in combination
with the external saturation block drastically changes the form of the feedforward input,
which in terms leads to negative effects for the 2-norm of the output error.

In Figure 4-12 one can see the time-domain results of this controller. One can see that the
controller successfully decreases the magnitude of the output error oscillations, but does not
completely remove them. There is, however, an observable reduction of the 2-norm to 0.82
times that of the baseline controller.

We Wi  War | mean 2-norm  max 2-norm final iter 2-norm
10 0.01 0 6.5646 14.900 14.900

1 0.01 0 2.5069 5.9973 5.6273

1 0.1 0 0.9225 1.0000 0.8707

1 1 0 0.8703 1.0000 0.8288

1 10 0 0.9702 1.0000 0.9620

Table 4-7: Tuning of the non-causal constrained norm-optimal ILC on high-fidelity wind turbine
model with the objective to reduce the rotor speed error. Shown are the mean, max, and final
value of the 2-norm of the controller captured after each ILC iteration. The 2-norm is normalised
with respect to the baseline PID controller. Desirable is a low final 2-norm with a max 2-norm
equal to one. For low values of W the controller becomes unstable, which might be a result
of the saturation-based constraint implementation which can significantly alter the shape of the
learnt feedforward signal outside the controller.
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Figure 4-12: Non-causal constrained norm-optimal ILC compared with the baseline PID on the
high-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid
fault, not shown in figure, as defined in Section 3-1

4-5-3 Constrained norm-optimal ILC using optimisation on high-fidelity model

The optimisation based constrained norm-optimal ILC will not be presented in this section,
but is instead presented in Section H-6. This has been done since the optimisation step
is otherwise too big to fit into memory, and sometimes times-out using a high-performance
virtual machine with multiple Intel Xeon Platinum 8268 CPU’s with 48 threads, and 24.0 GB
for each client. Some effort has been made to reduce the control frequency, but with moderate
success. Therefore, only the more relevant causal version is presented in Section H-6.
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4-5-4 Comparison and conclusion of constrained ILC on high-fidelity model

In this section, non-causal constrained PID-type ILC and norm-optimal ILC are compared
and a conclusion is made. First of all, due to technical limitations the optimisation based
constrained norm-optimal ILC has not been presented in this section, ruling this controller out
as a recommendation. This is due to the sheer magnitude of the optimisation problem that
needs to be solved to calculate the optimal feedforward signal. It was already concluded that
if this solution is truly desirable, more efficient solvers or perhaps other optimisation methods
will have to be investigated further. That said, this causal variant of the optimisation based
constrained norm-optimal ILC is more attractive a solution for this thesis, and as such the
non-causal optimisation based constrained norm-optimal ILC is not recommended to be used
for this use case.

The two successfully implemented controllers, the constrained PID-type ILC and saturation
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Figure 4-13: Comparison of the non-causal constrained PID-type ILC with the non-causal sat-
uration based constrained norm-optimal ILC on the high-fidelity wind turbine model. Shown are
the rotor speed error, blade pitch and blade pitch rate of the final iterations. Also, the progression
of the 2-norm of the output error is shown. Visible in the plots is that both controller fully utilise
the actuator limits. A major difference is that the norm-optimal ILC already starts decreasing
the rotor speed before the grid fault has started, resulting in a lower maximum rotor speed error
compared to the PID-type ILC.
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based constrained norm-optimal ILC are compared in Figure 4-13. From this time-domain
comparison, one can see that both controllers use significantly different blade pitch signals.
This also results in a large difference between the resulting rotor speed errors. The rotor
speed error of both controllers has large amounts of oscillations present, but the magnitude
of these oscillations is smaller for the norm-optimal ILC, and after approximately 25 seconds
almost completely gone. To do this, the norm-optimal ILC also employs a blade pitch signal
that changes much more compared to the PID-type ILC.

From the results, one can see that the 2-norm of the output error is lower for the norm-optimal
ILC compared to the PID-type ILC. That said, both ILC algorithms have large transients
in the 2-norm and do not settle to a steady-state value even after 50 iterations. This in
comparison to the non-causal constrained ILC algorithms on the low-fidelity model, which
had a steady 2-norm of the output error within ten iterations or less. This difference compared
to the low-fidelity model can most likely be attributed to the fact that the high-fidelity model
has a limited bandwidth of the pitch actuator compared to that of the low-fidelity model and
that there are more nonlinearities present that conflict with the linearity assumptions used
in the ILC models.

Overall, one can conclude that the saturation based constrained norm-optimal ILC is the
better ILC algorithm when used on the high-fidelity wind turbine model. Using this controller,
a reduction of the output error oscillations can be observed 20 to 25 seconds after the grid
fault. Additionally, this controller has the quickest converging and lowest 2-norm of the
output error. Even though the 2-norm of the output error does not settle as quickly as was
the case for the low-fidelity model, the norm-optimal ILC still provides a 10% reduction of
the 2-norm after the first iteration and a 25% reduction after 50 iterations. However, for this
approach, it is best to gather the optimal feedforward signals using simulations, and not just
using real-life data due to the relatively slow convergence. To further improve these results,
causal constrained ILC algorithms are tested in the next section. These controllers will only
be activated after a grid fault has actually started where, assuming that the form of the grid
fault is known, causality is regained for the controllers.
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4-6 Constrained controllers with causal learning

In this section, the constrained controller is extended to also be causal with respect to the
grid fault. This means that the (supplemental) ILC feedforward signal will only be introduced
into the system after the fault has occurred. This section should give more information about
how much real-life performance could be expected to be gained compared to the baseline
controllers. In this section the comparison and conclusions is shown for both the low-fidelity
and high-fidelity models, where the tuning and some additional time-domain results are shown
in Appendix H.

4-6-1 Comparison and conclusion of causal constrained ILC on low-fidelity model

In Figure 4-14 a comparison between the causal constrained PID-type ILC, the causal sat-
uration based constrained norm-optimal ILC and the causal optimisation based constrained
norm-optimal ILC applied on the low-fidelity wind turbine model can be seen. A first obser-
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Figure 4-14: Comparison of the causal constrained PID-type ILC with the causal saturation
based- and optimisation based constrained norm-optimal ILC, denoted as 'Saturation norm-
optimal ILC' and 'Optimal norm-optimal ILC' respectively. This all on the low-fidelity wind
turbine model. Shown are the rotor speed error, blade pitch and blade pitch rate of the final
iterations. Also, the progression of the 2-norm of the output error is shown. Visible in the plots is
that both controllers fully utilise the actuator limits. A major difference is that the norm-optimal
ILC already starts decreasing the rotor speed before the grid fault has started, resulting in a lower
maximum rotor speed error compared to the PID-type ILC.
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vation of these results is that the actual improvement over the baseline is significantly smaller
compared to the non-causal controllers. This is also to be expected, since no preemptive
compensation of the rotor speed can be applied before the grid fault has occurred. That said,
still all three controllers managed to decrease the 2-norm of the output error to around 0.8
times that of the baseline controller.

The biggest improvement for causal ILC algorithms compared to the baseline controller lies in
higher utilisation of the input combined with more accurate placement of the switching points
of the controller input. This combined increases the speed with which the rotor speed error
recovers to zero. When comparing the actual rotor speed error of the three ILC algorithms,
one can see that the PID-type ILC has high amounts of damping, resulting in only a small
overshoot after the rotor speed error first crosses zero. Both of the norm-optimal ILCs have
higher overshoots in the rotor speed error, where the saturation based norm-optimal ILC
struggles to fully recover to a zero rotor speed error after the grid fault.

When looking at the difference between the blade pitch signals of the ILC algorithms, the
PID-type ILC is the first controller to start reducing the blade pitch after the fault, with the
optimisation based norm-optimal controller the last. This is also reflected in the optimisation
based norm-optimal ILC having the largest positive rotor speed error after the fault. When
looking at the blade pitch signal after around 5.8 seconds, the PID-type ILC quickly returns
to the steady-state blade pitch signal, where the two norm-optimal ILCs have some sort of
overshoot in the blade pitch signal. Looking from the outside, it is not clear why the norm-
optimal ILC has this overshoot in the blade pitch signal. This also happens since the PID-type
ILC has a much smaller overshoot in the rotor speed error compared to the norm-optimal
ILCs.

Based on the comparison made in this section, one can conclude that the PID-type ILC
manages to yield the lowest 2-norm of the output error and is thus the preferred method for
situations where the absolute lowest 2-norm is wanted. That said, the optimisation based
norm-optimal ILC has a faster convergence of the 2-norm to its final value, meaning that it is
probably more suitable when used in combination with hard to acquire real-world data. This
does come at the cost of absolute performance after some number of iterations.

4-6-2 Comparison and conclusion of causal constrained ILC on high-fidelity model

In Figure 4-15 the comparison between the three different causal constrained ILC algorithms
can be seen. Immediately clear when looking at the 2-norm of the output error is that the
PID-type controller underperforms compared to the norm-optimal ILCs. The norm-optimal
ILCs have a significantly lower final 2-norm with in addition also a fast decrease of the 2-norm
in the first few iterations.

Comparing the 2-norms of the norm-optimal ILCs, one can see that the optimal norm-optimal
ILC manages to keep on decreasing the 2-norm of the output error, whilst the saturated norm-
optimal ILC does not do this. This leads to favourable performance for the optimisation based
constrained norm-optimal ILC.

Looking at the resulting rotor speed errors, it is also clear why the different 2-norms of
the output error occur. The PID-type ILC has relatively speaking the higher magnitude of
oscillations, with second the saturation based norm-optimal ILC and the best performing
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Figure 4-15: Comparison of the causal constrained PID-type ILC with the causal saturation
based- and optimisation based constrained norm-optimal ILC, denoted as 'Saturation norm-
optimal ILC’ and 'Optimal norm-optimal ILC' respectively. This all on the high-fidelity wind
turbine model. Shown are the rotor speed error, blade pitch and blade pitch rate of the final
iterations. Also, the progression of the 2-norm of the output error is shown.

the optimisation based norm-optimal ILC. Especially when looking from around six to eight
seconds, it is clear how the different ILC algorithms manage to better reduce the magnitude
of the rotor speed oscillations. Also, when one starts to look at the blade pitch signal, this
effect is clear, but then in reverse. The optimisation based norm-optimal ILC has the largest
swing in blade pitch, with the PID-type ILC having the least amount of movement in the
blade pitch signal. This phenomenon can also be seen well between the 5.5 and 7 second
marks in Figure 4-16, where a detailed view of the blade pitch rate after the grid fault can
be seen.

Overall, the norm-optimal ILC have better performance with regard to the 2-norm of the
output error, with especially the optimisation based ILC performing best. In addition, the
PID-type ILC is quite tricky to tune properly as has been shown in section H-4, whilst the
norm-optimal ILCs are relatively easy to tune. One disadvantage that pairs with the superior
performance of the optimisation based norm-optimal ILC is the additional computation time,
making it for these experiments around three times slower to run a single iteration. That said,
implementation of the optimisation based norm-optimal ILC within the nominal controller
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Figure 4-16: Detailed view of the blade pitch rate, comparison of the causal constrained PID-
type ILC with the causal saturation based- and optimisation based constrained norm-optimal ILC,
denoted as 'Saturation norm-optimal ILC' and 'Optimal norm-optimal ILC’ respectively. Visible
is that the optimisation based norm-optimal ILC uses less switching compared to the other ILC
methods shown and additionally uses more of the available blade pitch rate for a longer period of
time.

should be relatively easy, since in its current form it already only supplements an additional
feedforward signal for seven seconds after the fault, after which the baseline controller takes
over. This is in line with current field deployed grid fault controllers that switch to a separate
controller only for a short period of time after a grid fault.

4-7 Grid fault controller further testing

Up to this point of this chapter, grid fault controllers with the objective to reduce the ro-
tor speed error and its associated 2-norm have been shown. However, what has not been
discussed is the effect on the rest of the turbine or what the effects are of other objective
functions. Therefore, in this section a more detailed overview of the effects of the controllers
on mechanical loading is discussed. To limit the scope somewhat, a more detailed analysis on
the tower-bottom moment is made. Here, the tower-bottom moment is the moment at the
lowest point of the tower structure, just above the water line, with the moment perpendicular
to the rotor blades. This channel gets loaded significantly after a grid fault, and has been
pointed out by Siemens Gamesa engineers to be an interesting channel to minimise loading
where in the best case scenario these load reductions could lead to a lighter tower structure
or a longer lifespan of the tower.

4-7-1 Effects of tower-bottom moment using rotor speed objective on high-
fidelity model with causal learning

for this first subsection, a deeper dive is made in how the tower-bottom moment is affected
for the causal constrained ILC algorithms on the high-fidelity model with the objective of
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reducing the rotor speed error. Or, in other words, how the final controllers presented in
Section 4-6-2 effect the mechanical loading of the wind turbine structure itself. In Figure
4-17 one can see the 2-norm of the rotor speed error, but also from the tower-bottom moment
error and the actual tower-bottom moment. The first observation to be made is that for
all ILC algorithms the 2-norm of the tower-bottom moment is below one for every iteration,
indicating that at each time point the energy in the tower-bottom moment has been reduced
compared to the baseline PID controller. This is good news, as this means that the ILC
algorithms found during this thesis at least do not increase the mechanical loading of the
wind turbine structure on this important channel.

Although all of the ILC algorithms lower the 2-norm of the tower-bottom moment error, the
effectiveness of each controller to do so is different. For the PID-type ILC the 2-norm of
the tower-bottom moment stays at an equal level, as is the 2-norm of the linked rotor speed
error. However, when looking at the optimisation based norm-optimal ILC, it is clear that the
reduction in tower-bottom moment error might not remain for higher number of iterations,
as indicated by the increase of its 2-norm after the fifth iteration up to the 20th iteration.
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Figure 4-17: Causal constrained ILC on high-fidelity model with objective to reduce the rotor
speed error. Shown are how the objective of reducing the rotor speed error effects the tower-
bottom moment, an important mechanical loading channel. Shown are the progression of the
2-norm of said channels, and a plot of the tower-bottom moment itself. From the plot one can
see that though reducing the tower-bottom moment is not the objective, it is still accomplished
up to some degree.
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4-7-2 Dedicated tower-bottom moment objective on high-fidelity model with
non-causal learning

In the previous subsection, the tower-bottom moment norm was shown for the ILC algorithms
with the rotor speed objective function. However, as has been touched upon multiple times in
the report, the ILC algorithms can work with different types of objective functions. Therefore,
here a dedicated ILC algorithms with the objective of reducing the tower-bottom moment
error is presented.

As is also the case for the rotor speed error objective function, the optimisation based norm-
optimal ILC does only work for short periods of time due to technical limitations, see Section
4-5, and as such will only be included for the causal variant. A overview of how the controllers
are tuned can be seen in Tables 4-8 and 4-9. Based on this tuning, the best performing
controller tunings have compared, as can be seen in Figure 4-18. This comparison gives some
interesting and perhaps unexpected results based on the knowledge gained on the rotor speed
error objective function. For the tower-bottom moment objective function, the PID-type ILC
has the lowest 2-norm during every iteration. Also, when investigating the actual tower-
bottom moment signal, a clear difference between the two ILC algorithms is visible. The
PID-type ILC does not drastically change the tower-bottom moment error before the grid
fault has occurred, but the saturated norm-optimal ILC actually decreases the performance
with respect to the objective function before the grid fault has occurred. Also, after the grid
fault has started, the norm-optimal ILC has larger peak errors at the tower-bottom moment
compared to the PID-type ILC.

The finding of this objective function is that the PID-type ILC performs better than the
saturation based constrained norm-optimal ILC. This conclusion is opposite to that of the
rotor speed error objective function, where the norm-optimal ILC manages to yield a lower
final 2-norm. That said, the norm-optimal ILC does yield a lower 2-norm on the rotor speed
error compared to the PID-type ILC, but this is not the objective function. Therefore, the
data suggest that based on the objective function, either the non-causal constrained PID-
type ILC or the non-causal saturation based constrained norm-optimal ILC works best. This

K, K; Ky filter cut-off | mean 2-norm max 2-norm final iter 2-norm
1-1078 0 5-10=6 1.5 0.80184 1 0.65252
1-1077 0 51076 1.5 0.80019 1 0.64921
1-1076 0 5-1076 1.5 0.78542 1 0.61971
1-107° 0 51076 1.5 0.85362 1 0.78420
1-10-6 0 1-10-6 1.5 0.83605 1 0.69609
1-106 0 1-1077 1.5 0.85330 1 0.72635
1-107% 1.107° 5.106 1.5 0.78531 1 0.61925
1-.107% 1.107® 5.10° 1.5 0.81747 1 0.66601

Table 4-8: Tuning of the non-causal constrained PID-type ILC on the high-fidelity wind turbine
model with the objective to reduce the tower-bottom moment error. The filter cut-off corre-
sponds to the cut-off frequency off the low-pass filter after the ILC algorithms output, where Inf
corresponds to a disabled cut-off filter. Shown are the mean, max, and final value of the 2-norm
of the controller captured after each ILC iteration. The 2-norm is normalised with respect to the
baseline PID controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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We Wi  Was | mean 2-norm  max 2-norm final iter 2-norm
1-10° 1 0 1.2980 1.5607 1.5607
1-1072 1 0 1.0824 1.1648 1.1648
1-107° 1 0 0.9612 1.0000 0.9251
1-1076 1 0 0.9787 1.0000 0.9594
1-1077 1 0 1.7974 2.5949 2.5949

Table 4-9: Tuning of the non-causal saturation based constrained norm-optimal ILC on the
high-fidelity wind turbine model with the objective to reduce the tower-bottom moment error.
Shown are the mean, max, and final value of the 2-norm of the controller captured after each
ILC iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable is
a low final 2-norm with a max 2-norm equal to one.

finding then also makes generalising the conclusion harder, as the results are mixed between
the two tested objective functions.

Although the final 2-norm of the PID-type ILC is lower for this test, it does not mean that it
could not be improved any further. The author suspects that changing the baseline feedback
controller that is operational within the norm-optimal ILC could help its performance. In
the here presented implementation, the same baseline feedback controller has been used, but
as one might remember, the baseline controller is made to reduce the rotor overspeeding,
and not to reduce the tower-bottom moment. Perhaps if the feedback controller used within
the norm-optimal ILC were to be redesigned to prioritise the reduction of the tower-bottom
moment error, the results would shift in favour of the norm-optimal ILC. The fact that the
norm-optimal controller has the integrated feedback controller aimed at reducing the rotor
overspeeding possibly also explains why the norm-optimal ILC has a lower 2-norm on the
rotor speed error.
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Figure 4-18: Non-causal constrained ILC on high-fidelity wind turbine model with objective to
reduce tower-bottom moment error on the PID-type ILC and the saturation based norm-optimal
ILC. Shown are the progression of the 2-norm for the rotor speed error, not the main objective,
the tower-bottom moment error, main objective, and the actual tower-bottom moment. Visible
in the results is that the norm-optimal ILC increases the tower-bottom moment error before the
grid fault which partially explains the higher 2-norm w.r.t. the PID-type ILC.

4-7-3 Dedicated tower-bottom moment objective on high-fidelity model with
causal learning

To expand the applicability of the controller designed in above subsection, a causal variant
has also been designed, which only starts the learning after the grid fault has started. For this
variant, the PID-type ILC and the saturation based norm-optimal ILC have been designed.
Unfortunately, the optimisation based norm-optimal ILC has not yielded any positive results,
as can be seen in Table 4-10. In this table, one can see that for low values of W, the ILC
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We Wi Was | mean 2-norm max 2-norm final iter 2-norm
11078 1 0 1 1.0000 1.0000
11076 1 0 1 1.0000 1.0000
1-107° 1 0 1.1802 1.3234 1.3234
1-107% 1 0 1.1096 1.2193 1.2193

1 1 0 1.2021 1.4041 1.4041

Table 4-10: Tuning of the causal optimisation based constrained norm-optimal ILC on the high-
fidelity wind turbine model with the objective to reduce the tower-bottom moment error. Shown
are the mean, max, and final value of the 2-norm of the controller captured after each ILC
iteration. The 2-norm is normalised with respect to the baseline PID controller. Visible from the
results is that low values of W, lead to no additional feedforward input, and higher values of W,
lead to solutions with a higher 2-norm of the tower-bottom moment error. As such, the controller
in this configuration is unable to fulfil its objective of reducing the 2-norm.

algorithm did not apply any feedforward signal due to the small weight on the error. However,
if the value of W, was increased, the ILC algorithm was unable to lower the 2-norm of the
tower-bottom moment and instead only increase it. No middle ground has been found in
which the controller worked. Why these results are as such is unclear, as the saturation
based norm-optimal ILC that shares a great deal of the underlying mechanisms and code did
work as intended. Also here the suspicion is that the feedback controller present inside the
optimisation based norm-optimal ILC should be redesigned to work on lowering the tower-
bottom moment.

Due to the issues with the causal optimisation based constrained norm-optimal ILC, this
controller will not be used for the remainder of this section. This then leaves the PID-type
ILC and the saturation based norm-optimal ILCs. The tuning of these two controllers can be
seen in Tables 4-11 and 4-12. As one can see, for both of these controllers there are controller
settings for which the 2-norm of the output error decreases indicating that these controllers
are successful in fulfilling their objective functions.

K, K; Ky filter cut-off | mean 2-norm max 2-norm final iter 2-norm
1-1077 0 5107 1.5 0.79897 1 0.64737
1-1076 0 5106 1.5 0.78464 1 0.61877
1-107° 0 51076 1.5 0.89041 1 0.78081
1-107 0 1.106 1.5 0.90613 1 0.81226
1-1076 0 1-107° 1.5 0.84694 1 0.69387
1-.107% 110719 5.10°6 1.5 0.86768 1 0.73536

Table 4-11: Tuning of the causal constrained PID-type ILC on the high-fidelity wind turbine
model with the objective to reduce the tower-bottom moment error. The filter cut-off corre-
sponds to the cut-off frequency off the low-pass filter after the ILC algorithms output, where Inf
corresponds to a disabled cut-off filter. Shown are the mean, max, and final value of the 2-norm
of the controller captured after each ILC iteration. The 2-norm is normalised with respect to the
baseline PID controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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We Wi Wag | mean 2-norm  max 2-norm final iter 2-norm
1-10710 1 0 1.0062" 1.0125 1.01250
1-10712 1 0 0.98369 1.0000 0.98103
1-107% 1 0 0.99992 1.0000 0.99983
1-107% 1 0 1.0831" 1.1662 1.16620
1-107% 1 0 1.1469" 1.2938 1.29380
.10~ 1 0 0.93372 1.0000 0.89900
1-10713 1 0 0.99868 1.0000 0.99839

Table 4-12: Tuning of the causal saturation based constrained norm-optimal ILC on the high-
fidelity wind turbine model with the objective to reduce the tower-bottom moment error. Shown
are the mean, max, and final value of the 2-norm of the controller captured after each ILC
iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable is a
low final 2-norm with a max 2-norm equal to one.

In Figure 4-19 one can see the comparison between the two causal ILC algorithms with the
objective of reducing the tower-bottom moment error. A first observation that can be made
from the results is that the PID-type ILC is significantly more successful in reducing the tower-
bottom moment error, with a final 2-norm of around 0.3. This in contrast to the saturation
based norm-optimal ILC that only manages to get a final 2-norm of around 0.9. This then
also means that even though the PID-type ILC was the lowest performing ILC algorithm that
has been tested on the rotor speed error objective function, the algorithm itself can perform
significantly better for the right objective function.

As was the case for the non-causal variant, also here the PID-type ILC significantly alters the
shape of the blade pitch input signal. This while the final blade pitch signal from the norm-
optimal ILCs resembles more that of the original controller, as can also be seen in Figure 4-19.
Here again, the suspicion is that if the feedback controller within the norm-optimal ILC were
to be reconfigured to focus more on the tower-bottom moment error, then the norm-optimal
ILC would perform better. This theory should, however, still be tested to either confirm or
deny its premises. However, this difference does indicate a more flexible structure within the
PID-type ILC which is not bounded by a, possibly externally designed, feedback controller.
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Figure 4-19: Causal constrained ILC on high-fidelity wind turbine model with objective to reduce
tower-bottom moment error on the PID-type ILC and the saturation based norm-optimal ILC.
Shown are the progression of the 2-norm for the rotor speed error, not the main objective, the
tower-bottom moment error, main objective, and the actual tower-bottom moment. Visible in
the results is that the norm-optimal ILC increases the tower-bottom moment error before the grid

fault which partially explains the higher 2-norm w.r.t. the PID-type ILC.

4-8 Conclusion and reflection

The non-causal unconstrained ILC algorithms have shown that it is possible to get a (near)
zero output error with a limited number of iterations for both the PID-type ILC and norm-
optimal ILC on a nonlinear system. Expanding on these results, causal unconstrained ILC
algorithms have been made where learning only starts after the fault has occurred. The results
of these controllers have shown the first noticeable difference between the PID-type and the
norm-optimal ILC. The norm-optimal ILC starts with a large spike in the blade pitch that
quickly causes the output error to reduce to zero. However, the PID-type ILC does not do
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this, leading to a slower transient of the output error to zero. The norm-optimal ILC than
also has a significantly lower 2-norm compared to the PID-type ILC. This difference can be
contributed to the data-driven system knowledge that is used in the norm-optimal ILC, and
not in the PID-type ILC.

The non-causal and causal unconstrained ILC algorithms have also been implemented on the
high-fidelity wind turbine model. The results have shown that in general the norm-optimal
ILC with especially the optimisation based norm-optimal ILC performs best. The PID-type
ILC did manage to compare on the causal constrained test using the low-fidelity model, but
once the switch to the high-fidelity model was made it performed much worse. The PID-type
ILC has a higher final 2-norm, and additionally has proven to be quite challenging to tune.
Another possible disadvantage of the PID-type ILC is the lack of feedback within the iteration.
Only after a full iteration measurements are again processed and used to improve the output
response, this in comparison to the norm-optimal ILCs which employ a combination of the
baseline feedback controller with a supplemental learnt optimal feedforward signal. This setup
of the norm-optimal ILC of still using the baseline feedback controller also makes it quite easy
to actually implement, as all that needs to be done is to add a supplemental input signal after
a grid fault has occurred.

When looking at ILC algorithms with the objective of reducing the mechanical loading in the
high-fidelity model, the norm-optimal ILC suddenly does not perform best, but instead the
PID-type ILC does. This discrepancy in conclusion compared to that made from the results of
the ILC schemes with the objective of reducing the rotor speed is suspected to originate from
the unchanged baseline controller that is used as a feedback controller within the norm-optimal
ILC. Since the baseline controller of the high-fidelity model has been tuned to reduce rotor
speed and not the mechanical loading channel considered here, it is likely that the objectives
of this feedback controller react too aggressively on the actions of the feedforward signal that
aims to accomplish a different objective. To, however, fully understand this behaviour more
research will have to be done, where for now the PID-type ILC can still be used on the load
reduction objective function.

The final conclusion and recommendation of this chapter is to use the causal optimisation
based constrained norm-optimal ILC on the high-fidelity wind turbine model, or an actual
wind turbine. Granted that the optimisation based norm-optimal ILC does take more time
to run due to the additional optimisation scheme that needs to be solved, this controller does
yield the lower final 2-norm of the output error and has fast convergence. If load reduction
is the main objective, then the PID-type ILC can be used.
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Conclusion

The field of (offshore) wind turbine control has many challenges not only through internal
interactions, but also from regulatory bodies. A prime example of this is the relatively new
low-voltage ride-through (LVRT) requirements imposed by the Transmission System Operator
(TSO). These LVRT requirements are established to ensure a stable electrical grid during
short intermittent local failures within the electrical grid that can cause a near-instantaneous
drop in the grid voltage. The LVRT regulation effects how the physical wind turbine structure
shall react during grid faults, necessitating new control schemes to be developed. Currently,
control schemes used for such grid faults are quite rudimentary, causing higher wear on the
physical turbine structure.

During the LVRT event, a lower grid voltage is present, reducing the wind turbines’ ability
to ‘slow down’ the rotor by releasing energy to the grid, or more correctly a loss of counter
torque. Due to this loss in torque output, the wind turbines rotor will start to accelerate,
potentially triggering the overspeed limit if no sufficient control action is taken. The effects
of the LVRT event are not limited to the rotor speed, but will also cause changes in the
structural loading of the wind turbine.

Scientific contributions of the thesis. The two most important contributions of this thesis
to the state of the art is applying ILC to wind turbines during a grid fault, and expanding the
norm-optimal ILC to work with an optimisation framework that also takes input constraints
into account using an estimate of the next combined feedforward and feedback input. This
has been done whilst answering the following research question:

How can data-driven algorithm(s) be used to learn the optimal (feedfor-
ward) control signal to resume regular operation after a predefined low-
voltage ride-through scenario?

With the following sub-questions:

1. Which data-driven optimal algorithm(s) can be used for low-voltage ride-through?

2. Which costs or signals should be taken into account in the design of a cost or objective
function for the optimal controller?
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3. What type of unconstrained algorithm or configuration achieves the best performance?

4. What is the performance impact of including input constraints to the optimisation
problem for adhering to actuation limits?

First sub-question

The literature research has concluded that the industry still largely relies on (gain-scheduled)
PI(D) controllers. How these controllers are precisely tuned is unclear, but usually with rotor
overspeed prevention as the main goal of said controller. These controllers do not include
any optimality and might leave much performance measures out of consideration. Academic
solutions are more advanced, with examples such as MPC. Most of these controllers are, how-
ever, not strictly data-driven and require large amounts of system knowledge. Additionally,
no feedforward grid fault controller was found even though the conditions of the grid fault are
quite well known through the LVRT regulations. Using a feedforward controller in combina-
tion with the knowledge of how the grid fault will look like could bring large improvements
over only using a traditional feedback controller. During literature research, Iterative Learn-
ing Control (ILC) has been found to be a possible candidate feedforward controller. These
ILC algorithms learn an optimal feedforward signal based on iterations or repetition. As no
literature has been found on ILC for wind turbine grid fault controllers, the primary focus of
this thesis was making the ILC algorithms work for grid fault control. These ILC algorithms
have been concluded to improve the response of wind turbines after a fault in the grid. This
has been tested for multiple ILC algorithm variants, as is discussed for the third sub-question.

Second sub-question

The literature research has concluded that the state of the art grid fault control in industry
and academia is primarily aimed at reducing the imbalance between the rotor torque and
electrical torque output. However, this leaves out an important objective, namely, reducing
the mechanical load on the wind turbine structure. Although the main focus of this thesis
has also been to minimise rotor speed error, there was an interest in investigating the effects
on the mechanical structure of the wind turbine. One of the main results of this thesis are the
causal constrained ILC algorithms in the high-fidelity wind turbine model with the objective
of reducing the rotor speed error. Although these controllers have only been tuned with the
aim of lowering the 2-norm of the output error, it has been concluded that these controllers
do not increase the tower-bottom moment, an important indicator of the mechanical loading
after a grid fault. In fact, these controllers have even lowered the 2-norm of the tower-bottom
moment after a grid fault, even though this was not the explicit objective. This then also
shows that reducing the rotor speed error can help reduce other important output channels
of the wind turbine. That said, tests have also been performed with only the tower-bottom
moment as an objective function. Using the reduction of the mechanical loading as the main
objective function has then also reduced the 2-norm of this output error even more than
was the case when using the rotor speed objective function. Although the objective function
of the tower-bottom moment reduced the mechanical load, it did increase the rotor speed
error 2-norm. Thus, one should always carefully consider which objective function should be
used. The results from the thesis indicate that using the rotor speed objective function does
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not harm the mechanical loading and, in fact, improves upon it, but the reverse is not true.
Therefore, either the rotor speed objective or some multi-objective cost functions should be
among the top objective functions to be considered when using an ILC grid fault controller.

Third sub-question

During this thesis two important classes of ILC have been used, the PID-type ILC and the
norm-optimal ILC. Both of these controllers have been tested in an unconstrained case, but
only on the low-fidelity model. Results of a non-causal unconstrained ILC on the low-fidelity
model have shown what the (theoretical) best-case performance of the ILC algorithms is.
It has been shown that both the PID-type ILC and the norm-optimal ILC are capable of
bringing the 2-norm of the output error to (near) zero within a limited number of iterations.
This has proven that these ILC algorithms are, in fact, capable of controlling a nonlinear
system to zero output error.

Expanding on the results of the non-causal unconstrained ILC, a causal version has been
made. Here, learning has only started after the fault has occurred, preventing controllers
from preemptively starting to compensate for the upcoming grid fault. Instead, controllers
can only start to adjust the input signal after the grid fault is up to a certain level. This
resulted in, as expected, higher output errors. However, this is the first time that a proper
distinction between the PID-type ILC and norm-optimal ILC can be seen with the later
performing better. Where the PID-type ILC algorithms’ input signal is almost a carbon copy
of that of the non-causal controller after the grid fault has occurred, the norm-optimal ILC
algorithm is better able to handle this scenario. The causal norm-optimal ILC starts with
an immediate spike in the blade pitch once its learning starts, causing the rotor speed error
to effectively reduce to zero near instantaneously. This in term also results in a significantly
lower final 2-norm of the output error for the norm-optimal ILC of only 0.043 times that
of the baseline controller, where the PID-type ILC has a final 2-norm of 0.17 times that of
the baseline controller. This means that both controllers have significant reductions of their
respective 2-norms, but the causal unconstrained norm-optimal ILC performs significantly
better in this regard.

Though results have shown that the causal unconstrained ILC algorithm is highly effective
in reducing the 2-norm of the output error, these are not greatly effective controllers for
any real-world applications as the actuator constraints have been exceeded multifold and as
such can never be implemented on actual wind turbines. These tests have however shown
the potential effectiveness of the ILC algorithms and show that a great potential is available
within the ILC framework. That said, more effort and importance should be focused on the
constrained and or causal variants, as is discussed for the fourth sub-question.

Fourth sub-question

As has quickly been discovered during this thesis, the inclusion of input constraint is fun-
damental in gaining representable results for the ILC algorithms. This mainly due to the
significant input constraint violations of the unconstrained ILC algorithms, making them un-
suitable for real-life wind turbines. To add constraints to the PID-type ILC a saturation
scheme has been employed, which saturates the input, and the inputs first derivative. For
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the norm-optimal ILC two versions have been used, the first uses saturation based constraint
similar as in the constrained PID-type ILC. The second alterations is an optimisation based
constrained norm-optimal ILC in which the objective function together with input constraints
are input to an optimisation problem.

First results on the non-causal constrained ILC algorithms show some interesting results,
especially on the low-fidelity wind turbine model. Using the low-fidelity wind turbine model
the norm-optimal ILC algorithms start to adjust the blade pitch signal some time before the
actual grid fault occurs, leading to a negative rotor speed error before the grid fault. This
negative rotor speed error built up before the grid fault leads to a lower peak rotor speed
error after the actual grid fault, and in fact to a lower 2-norm of the output error. This is
in contrast to the PID-type ILC, which does not start adjusting the pitch signal before the
fault has occurred. This difference is also understandable when one looks at how these ILC
algorithms work. The PID-type ILC only looks at the grid fault at data from same time
instance but from the previous iteration. This stands in contrast to the norm-optimal ILC,
which uses the behaviour of an impulse response on the system to calculate what the effect
of a specific input signal on the output over the whole time range. Using this information
of the system, the norm-optimal ILC manages to preemptively correct for the upcoming grid
fault and, as such, has significantly lower final 2-norm of the output error. Although this
behaviour is clearly seen on the low-fidelity wind turbine model, it is less so observed for the
high-fidelity model. Still, also on the high-fidelity model the norm-optimal ILC manages to
yield a lower 2-norm of the output error.

To combine the results of the previous ILC algorithms, lastly a causal constrained ILC has
been presented. These controllers adhere to the input constraints of the respective systems,
while at the same time having causal learning, only learning after the grid fault has started.
This would then also be the variant that could be implemented in real-life wind turbines.
As was already expected, the effectiveness of the ILC algorithms to lower the 2-norm of the
output error has been diminished for this variant, as the learning and use of input has been
constrained the most. That said, the PID-type ILC, the saturation based norm-optimal ILC
and the optimisation based norm-optimal ILC all managed to lower the 2-norm of the output
error on both the low-fidelity and the high-fidelity models.

On the low-fidelity model, for the first time, the PID-type ILC manages to outperform the
norm-optimal ILCs in terms of the final 2-norm. However, this result does not align with
those of the high-fidelity model, in which the PID-type ILC performs the worst in terms of
the final 2-norm. This difference in the conclusion of which ILC performs best is most likely
due to the much higher complexity of the high-fidelity wind turbine model compared to the
low-fidelity wind turbine model. Where for the low-fidelity wind turbine model the input
and output still relate in a close to linear fashion under certain conditions, this is not the
case for the high-fidelity wind turbine model after a grid fault. Comparing the norm-optimal
ILCs on the high-fidelity model, it has been observed that the optimisation based controller
performs better, with a lower final 2-norm of the output error. This is also reflected in the
way the requested input signal of the optimisation based norm-optimal controller has much
less switching compared to the saturation based norm-optimal ILC, and also utilises more of
the available input with higher blade pitch rates for longer periods of time.

For a changed objective function, reducing the tower-bottom moment error, the conclusion
completely changes. For this scenario the PID-type ILC manages to yield a significantly lower
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final 2-norm of the output error compared to the saturation based norm-optimal ILC. More
S0, no suitable tuning for the optimisation based norm-optimal ILC has been found in which
the 2-norm is lowered. Even though the controller structure and use of the impulse response
is identical to that of the rotor speed error objective function, here the norm-optimal ILCs
perform significantly worse. This is then also a curious conclusion of this thesis, where for
one of the objective functions the optimisation based norm-optimal ILC performs best, and
for the other the PID-type ILC. Although no proper conclusion can be made on why this
discrepancy exists, the author does have some suggestions. Note that the norm-optimal ILC
makes use of the baseline controller which has been tuned to reduce rotor speed error. It is
possible that since the feedback controller inside the norm-optimal ILC tries to counteract the
rotor speed error, and the overall norm-optimal ILCs objective is to reduce the tower-bottom
moment error, these interests collide in such a significant manner that the performance of
the norm-optimal ILC suffers. If this were to be true, then a differently configured feedback
controller would have to be used within the norm-optimal ILC on the high-fidelity model. To,
however, fully understand this problem, more research should be done. The recommendation
for now is to always try both ILC algorithms when significantly changing the controllers
objective function, where for the current configuration of the controllers in the high-fidelity
model, the causal optimisation based constrained norm-optimal ILC should be used for the
rotor speed error objective and the PID-type ILC for the tower-bottom moment objective
function.

Future work

Following the completion of the thesis work there are multiple recommendations for future
work that can improve or expand on the already acquired results.

o Investigate in more detail the difference between the rotor speed error and tower-bottom
moment objective functions. When switching between these two objective functions,
either the PID-type ILC or the norm-optimal ILC performs best. There is the suspicion
that this difference could be explained by the non-changing feedback controller present
within the norm-optimal ILC, and that perhaps for different objective functions the
norm-optimal ILC should also get different feedback controller configurations.

e During this thesis, it has always been assumed that the grid fault characteristics are
known and deterministic. This could, however, be expanded to consider stochastic
grid fault characteristics, so changing shapes of the grid fault, with a fault detection
algorithm that can detect when a grid fault is occurring and which type of grid fault it
is.

o Instead of using a single objective function, multi-objective cost functions can be im-
plemented. It could be investigated if a multi-objective cost function can successfully
provide the operator a trade-off between different objectives, since preliminary results
show that the objectives are not decoupled. Additionally, it could be investigated how
these types of controller can be tuned; for example, should the feedback controller within
the norm-optimal ILC be adjusted, are time-varying objective functions a viable option,
or other considerations.
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o Based on the best-case load reduction prognoses as simulated during this thesis, a
prognosis on the benefits of the ILC algorithms developed here could be made. Here
the benefits imply for example a life expectancy improvement and or a steel reduction
due to the decrease in overspeeding and or mechanical loading.
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Appendix A

A broad overview of lterative Learning
Control algorithms

Though one might associate Iterative Learning Control (ILC) with a singular control algo-
rithm, it is in fact a class of controllers that all work in different ways. Roughly speaking, ILC
algorithms can be classified into classical, nonlinear, constrained, and other. The classical
ILC is focused on linear systems, but is claimed to also work for some nonlinear systems [45],
as the WT is. The nonlinear ILC is directly designed for nonlinear systems and could there-
fore yield better results for the nonlinear event of LVRT in a WT compared to the classical
ILC. Constrained ILC is often an extension of the previously ILC algorithms, where state
and/or input constraints are considered. The last category, other, contains ILC algorithms
who do not clearly fit in the for-mentioned categories. An example of such an algorithm is
a stochastic ILC that allows the modelling of an uncertain signal or event. In this chapter,
multiple algorithms are discussed, followed by a brief discussion on which algorithms could
be used during this thesis.

A-1 Classical lterative Learning Control algorithms

Classical ILC is designed for discrete- or continuous-time linear time-invariant systems with
state dynamics 4 ;(n) = Az;(n)+ Bu;(n) and output dynamic y;(n) = Cz;j(n). It is assumed
that; (1) every iteration has a fixed duration time, (2) the initial conditions of each iteration
are equal, and (3) the system dynamics is invariant over the iterations [46].

A simple classical learning rule is one of the Arimoto type described by ujy1 = u; +I'¢;, with
I' being a diagonal matrix. This learning rule is suitable for systems with a relative degree
of one or less [46]. The Arimoto-type learning rule guarantees the following convergence
limj o0 yj(n) — ya(n)Vn € [0,N] if ||[I — CBI||; < 1 for i € Z" [46] with || - ||; an operator
norm. For more general systems, PID-type learning rules are suggested. This PID-type
learning rule is expressed by w1 = u; + ®Pe; +T'é; + ¥ [e;dt. Asymptotic convergence of
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the PID-type learning rule can also be proven for linear systems, as can be seen in Appendix
B.

The above-mentioned classical learning rules use only the information from one previous
iteration. There exist also higher-order ILC learning rules that use more than one previous
iteration, as is done in the flowing P-type learning rule u; 1 = u; +ZZ§4 I';e;. However, the
effectiveness of these higher-order learning rules is still unclear, as stated by [64], although
a more recent study suggested that theoretically the convergence property of higher-order
learning rules is better [65]. However, the increased complexity of the higher-order learning
rule does not seem to outweigh the benefit of a theoretically better convergence.

A-2 Nonlinear lterative Learning Control algorithms

The classical ILC described above is designed for linear systems. It is suggested that these
also work for many nonlinear systems [45], but it is not clear under which conditions this is.
Therefore, a special nonlinear ILC has been made. One of such nonlinear ILC is presented
in the work of [66] which considers a wide class of nonlinear systems where some bounded
uncertainties are allowed. In this paper, a scheme is presented that combines a high-gain
state feedback controller to ensure stability and a learnt feedforward controller for tracking.
The feedforward controller is learnt using a linear update rule based on previous feedback
and feedforward control inputs u. The feedback controller uses knowledge of the eigenvalues
and eigenvectors of the system, which might be problematic for unknown or uncertain system
models. It is stated that large uncertainties in the system model can prevent the learning
rule from working as intended. More recent papers related to nonlinear ILC are published in
[46].

A new type of nonlinear ILC algorithm is gradient-based ILC. Gradient-based ILC has become
popular due to well-defined convergence and robustness properties [67]. However, it does need
a model since it is gradient based. The construction of a sufficiently rich nonlinear model
can, however, be time consuming and expensive. Therefore, a model-free gradient-based ILC
for nonlinear systems is presented in the work of [68]. In the paper, the output data are
used to estimate the gradient of the state function. The authors claim to achieve similar
results as in model-based gradient ILC, and better tracking compared to using a model-free
gradient ILC for linear systems. More gradient-based model-free ILC algorithms can be found
in [67, 69, 70, 71].

A-3 Constrained lterative Learning Control algorithms

In an industrial application such as WT control, there are often limits and constraints imposed
on the system. These constraints can be in terms of the (internal) state(s), but also on the
control input(s) and or system output(s). For these applications, there are constrained ILC
algorithms. In [72] a constrained ILC for linear systems is presented. In this work the ILC
is rewritten as a quadratic optimisation problem, and solved using a barrier function and
Newton’s method to allow for inequality constraints on the input. The work of [73] uses a
similar optimisation based approach in which ILC is used for linear systems with input and
state constraints. In the work of [74] ILC for linear systems with input, input rate of change
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and soft output constraints is presented, and also solved using a optimisation based method.
In the work of [75] a model-free ILC is presented for Single Input Single Output (SISO) linear
systems with input constraints. In the paper, they reformulate the problem as an optimisation
problem where the new input, or learning rule, is acquired by calculating the coefficients of a
causal finite impulse response filter that minimises the next output error. It is claimed that
learning is complete in a single step if the output measurements are noise free and if some
simple constraints hold.

The work of [76] presents ILC for nonlinear systems modelled by Lagrange’s formulation with
constraints on the state, first derivative of the state, and input. The work of [77] presents an
ILC for more general nonlinear systems with state constraints, and the work of [78] presents
an ILC for nonlinear systems with input constraints. The work of [79] presents a model-free
ILC for nonlinear systems with output, input, and change rate of input constraints, but only
for SISO systems. No ILC has been found for nonlinear MIMO systems with both input and
state constraints.

A-4 Other lterative Learning Control variations

In addition to the ILC algorithms described above, there are many variations that use some
form of ILC. These algorithms often aim to solve a specific task that was not yet possible
with other ILC algorithms. The paper of [80] presents a fault-tolerant fuzzy ILC method.
In the paper, the system is represented using a fuzzy T-S model, which also includes fault
dynamics. In this fuzzy model, ILC is used to learn the optimal control, which is also claimed
to be valid during faulty conditions. In the work of [54] a norm-optimal ILC is presented. In
this work, a feedback and feedforward ILC algorithm are combined, in which the feedforward
controller tries to minimise a cost function. In solving this problem, an impulse response of
the closed-loop system is used, which enables one-step convergence for linear systems, under
some conditions, by effectively employing model inversion. Additionally, the work allows for
easy expansion of hard constraints by rewriting the problem as an optimisation problem.
Main advantages claimed by the author are fast convergence, robustness, and intuitive tuning
abilities. In [81] an ILC using neural networks is presented. The authors claim that this
provides a more flexible solution that can adapt to changing working conditions. In [82] a
survey is conducted on stochastic ILC. In stochastic ILC, the system model includes a signal
described by a random variable, allowing uncertainty to be taken into account. This random
variable could, for instance, be used to capture the uncertain dynamics of a grid voltage drop.

A-5 Discussion Iterative Learning Control algorithms for grid faults

In this chapter ILC algorithm classified as classical, nonlinear, constrained and other have
have been presented. The presented classical ILC algorithms are simple in implementation
and do not require any system knowledge. Still, it is claimed that the classical ILC can be
used for some nonlinear systems. The nonlinear ILC algorithms presented are either gradient
based, a technique in which system knowledge is exploited, or a combination of feedback
and feedforward control. These controllers are claimed to be more robust compared to the
classical controllers but at the expense of additional complexity in the controller structure. To
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formally add constraints to the problem, the constrained ILC algorithms provide a solution.
Such algorithms exist for linear and nonlinear systems and usually employ a technique in which
the ILC problem gets rewritten as an optimisation problem, but also model-free versions exist.
In the last category, other, multiple ILC algorithms have been presented. Here, especially
noteworthy are the norm-optimal ILC that has similarities with the nonlinear and constrained
ILC algorithms algorithms presented before, but in a more modular framework, and the
stochastic ILC that can include signals modelled by a random variable, e.g. the grid voltage.

Since not all algorithms can be implemented, a selection has to be made. As is common
practise, start simple, then add complexity if needed. In that spirit, the PID-type learning
rule, under the classical ILC category, is recommended as a first algorithm to test. It is simple
in implementation and should work for many systems. Constraints can be added after the
controller itself, so that they effectively become part of the system dynamics, see Chapter
2-3-1. As a second algorithm, the norm-optimal ILC is appealing due to its modular struc-
ture. The algorithm uses system knowledge by including an impulse response, which should
result in higher performance while still remaining model-free. For unconstrained problems,
an analytical solution is available, and for constrained problems, it should be relatively easy
to convert the problem to an optimisation problem. A more elaborate discussion of the inner
workings of these algorithms can be seen in Chapter 2.
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Linear ILC convergence proof

Asymptotic convergence of the learning process can be proven for the linear PID-type Iterative
Learning Control (ILC) algorithm on a Single Input Single Output (SISO) discrete-time
system can be proven. More specifically, it can be proven that the output error goes to zero.
This proof is based on the work of [50] where convergence of PD-type ILC is considered.
The results of the proof can be used to tune the ILC algorithm gains but do require a linear
system with full knowledge of the dynamics. For this proof, the subscript j denotes the
iteration index and the time step is indicated by n € [0, N]. The dynamics of the known
system can be described as xj(n + 1) = Az;(n) + Buj(n) and yj(n) = Czj(n). The system
output error with respect to the reference signal y4(n) can be noted as e;(n) = y;(n) —ya(n).
Converting the system dynamics to supervector notation results in

Y; = HpUj. (B-1)

Where H), are the Markov parameters, Y; the system output and U; the system input de-
scribed by:

CAB 0 0
CA’B  CAB 0
p: : .. : )
CANB CAN-'B ... CAB
T
Y=y, 52 o oy,
T
U = [u;0), (1) -~ w(N-1)] . (B-2)

For PID-based linear ILC the learning rule [83] is described by uji1(n) = u;j(n) + kpe;(n +
1)+ & S0 ej(m) 4+ ka(ej(n+1) —ej(n)), which converted to supervector notation becomes
Ujt1 =Uj + kpl Ej + KTV Ej + kq(I — 1) E; with the following definitions.
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T

Ej=lej(1), e5(2) -+ e(N)]
1 0 0 0 0 0 0 0
1 1 0 0 10 0 0
y={11 - 00 1,=]01 00
1 1 10 0 0 1 0

Now the difference in the error of the current and next iteration is described by
Ejw — Ej = HpUj — HpUj
= Hp(U;j — (Uj + (kpl + kiTy + ka(I — T)) Ej) (B-3)
Which can be rewritten to get to the recursion function of the error function
Ej+1 = (I — (k‘p + k‘d)HpI — kinTl + k‘deTg)Ej
= HeEj (B'4)

The definition of the error dynamics by matrix H, allows for a simple check of convergence.
If the inequality ||He||; < 1 for i = 1,2,00 holds, not only asymptotic but also monotonic
convergence of the output error is guaranteed [50, 83].
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Baseline controller on grid fault results

For comparison purposes, two baseline controllers have been defined. The controllers are for
the low-fidelity model, and the high-fidelity model as described in Section 3-3. The baseline
controllers used here are PID-based for the low-fidelity, and the field deployed controller for
the high-fidelity model, with more information about the controllers can be seen in Section
4-1. In this Chapter the performance of both controllers for a grid fault is shown, with a
static nominal wind speed of 20m/s, and the grid fault as defined in 3-1.

The actual results of the controllers can be seen in Figure C-1 and C-2 for the low- and high-
fidelity models respectively. The 5MW low-fidelity model manages to return to oscillation free
nominal conditions after only an approximate seven seconds. Comparing this to the 15MW
high-fidelity model, one can see that after 30 seconds the system still has oscillations in the
rotor speed. This might partially be due to the slower system and blade dynamics that come
with the larger-scale wind turbine of 15 MW compared to 5 MW for the low-fidelity model,
but could also be due to a more conservative controller setup. One can also see that the high-
fidelity controller does not saturate its inputs, meaning that there could still be performance
to be gained.

When looking closely at the blade pitch plot of the high-fidelity model, one can see that there
is poor tracking of the blade pitch setpoint. This even occurs when actuator constraints are
not violated. Since the actual control of the blade pitch is considered a black-box for the
intents of this thesis, one can only speculate on why this is. It could be that the actuator
blade pitch limits are a low lower, but more likely it seems that the blade pitch controller
used does not prioritise following the setpoint and instead tries to the wear of the hardware.
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Figure C-1: Results of the baseline PID-controller on the 5 MW low-fidelity wind turbine model
with phisical actuator constraints. Control objective is to follow the reference rotor speed signal,
with an external disturbance on the line voltage. Blade pitch is limited by actuator constraints
with the actual blade pitch and the controllers blade pitch setpoint both shown.
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Figure C-2: Results of the baseline field-deployed controller on the 15 MW high-fidelity wind
turbine model. Control objective is to follow the reference rotor speed signal, with an external
disturbance on the line voltage. Blade pitch is limited by actuator constraints with the actual

blade pitch and the controllers blade pitch setpoint both shown.
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Appendix D

Calculation of J matrix for low-fidelity
wind turbine model

In this chapter the calculation of the J matrix, as defined in Section 2-3-2, is shown in
more detail for the low-fidelity wind turbine model with rotor speed objective function. The
principles shown here also apply for the high-fidelity wind turbine model and other objective
functions.

The J matrix captures data from an impulse response into the systems input, that is the input
that the norm-optimal ILC uses to minimise the output error. In this case this input is the
blade pitch. As such, an impulse on the blade pitch signal will have to be simulated. However,

Rotor speed used for calculation of J matrix

1.27 -
Around steady state
Impulse response [~
— 1.265 |-
=
o
o,
O
& 126
Q
w
S
&
1.255 |
1 25 | | | | | |
0 1 2 3 4 5 6

Time [s]

Figure D-1: Rotor speed output as results of an impulse response on the blade pitch input
as indicated by 'Impulse response’, and the rotor speed output without the impulse response as
indicated by 'Around steady state’. Notice that the impulse response right after time is zero
decreases the rotor speed and gradually returns to the steady state value
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Figure D-2: The resulting J matrix used inside of the norm-optimal ILC. On the x-axis is the
input time steps and on the y-axis the output time steps. The J matrix shows how an input signal
for any time step effects the output signal for any time step.

since the blade pitch signal used here is not centered around zero, but instead around a sort of
linearisation point, two simulations are done. One for the turbine with no impulse response,
and a second with an impulse response applied. Out of these simulations, here the rotor speed
is saved since the objective is to reduce the rotor speed and as such the J matrix will capture
how the blade pitch input reflects on the rotor speed output. The results of these simulations
can be seen in Figure D-1.

Using this two simulations as shown the previous figure, now the difference between the two
is taken which gives a plot that effectively shows the effect an impulse response has around
the linearisation point. Using this vector, the convolution matrix J is calculated. Now matrix
J effectively shows the effect of applying an input at any time-step to the output at all time-
steps. Note that any and all time-steps refers to time-steps inside the simulation time of the
simulation, which in this case is 30 seconds.
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Appendix E

Unconstrained ILC with causal learning

In chapter 4-2 the unconstrained ILC is presented. These controllers have had the unrealistic
approach of starting the ILC learning before the fault has started. For real-world applications,
this would imply that you know exactly when the grid fault starts happening. As this is an
unrealistic assumption, the previous controllers are extended to be causal learning controllers,
where learning only starts after the full fault magnitude is present. This still leaves the
assumption of known fault length and shape intact, but should provide a more implementable
scenario. That said, still the unconstrained controller is used, where later in this chapter input
constraints are included.

E-1 Causal unconstrained PID-type ILC on low-fidelity model

Implementing a causal PID-type ILC learning is not complicated, as there is no fundamental
change to the learning structure. One only needs to determine at which point the learning
should start, and before this point change the learning rule to uj;1[n] = w;[n| so that the
learning is effectively turned off. The point at which learning will start is one step after the
full fault magnitude has been reached.

The tuning criterion is slightly changed compared to the non-causal controllers, as a non-zero
output error is to be expected due to the later start of the learning controller. Therefore, the
main tuning criteria is the magnitude of the 2-norm at the end of the learning. In addition, it
is still desirable to not get any deteriorating performance in intermediate iterations, meaning
that it is desirable to have the maximum of the 2-norm equal to one.

The results of the tuning can be seen in Figure E-1 and Table E-1. Here one can see that if the
same tuning value as in the non-causal learning were to be used, the 2-norm only decreases
to about 0.6. The best results acquired here are with K, = 0.4, K; =1- 1075 and K4 = 0.3
producing a final 2-norm of only 0.17, a significant improvement compared to the 0.6 with
the tuning of the previous section.

The time domain results of the tuned controller can be seen in Figure E-2. As expected, one
can see that the rotor speed error is not equal to zero due to the causal learning. Only after

Master of Science Thesis D. Spijkerman



76 Unconstrained ILC with causal learning

K, K; K4 | mean 2-norm max 2-norm final iter 2-norm
0.1 1-100% 1.00 0.6027 1.0000 0.5903
0.2 1-107* 1.00 0.4594 1.0000 0.4439
0.3 1-107* 1.00 0.3859 1.0000 0.3675
04 1-107* 1.00 0.3801 1.0000 0.3204
0.3 1-107* 0.50 0.2825 1.0000 0.2637
0.3 1-107* 0.40 0.2600 1.0000 0.2368
0.3 1-107* 0.30 0.2372 1.0000 0.2060
04 1-107% 0.30 0.2158 1.0000 0.1794
05 1-107*% 0.30 0.2594 1.0000 0.1612
04 1-107* 0.35 0.2239 1.0000 0.1931
04 1-107% 0.30 3.1282 40.358 0.1799
04 1-107° 0.30 0.2129 1.0000 0.1797
0.4 0 0.30 0.2130 1.0000 0.1799

Table E-1: Tuning of the causal unconstrained PID-type ILC on the low-fidelity wind turbine
model. Shown are the mean, max and final value of the 2-norm of the controller captured after
each ILC iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable
is a low final 2-norm with a max 2-norm equal to one.

the learning starts, one can see a decrease in the rotor speed happening. Interesting to see is
that the shape of the input matches that of one of the non-causal PID-type ILCs, where here
off course the beginning of the input signal is different due to the later starting of learning.

E-2 Causal unconstrained norm-optimal ILC on low-fidelity model

Delaying the learning in the norm-optimal ILC can be done by changing the J matrix of
Equation 2-5 to have zero entries at the times when one does not want learning to occur.
Alternatively, one could define Equation 2-2 only in the domain where learning must occur.

Kp: 0.1 Kd: 1 Ki: 0.0001
Kp: 0.2 Kd: 1 Ki: 0.0001
Kp: 0.3 Kd: 1 Ki: 0.0001
Kp: 0.4 Kd: 1 Ki: 0.0001
Kp: 0.3 Kd: 0.5 Ki: 0.0001
Kp: 0.3 Kd: 0.4 Ki: 0.0001

\ Kp: 0.3 Kd: 0.3 Ki: 0.0001

Kp: 0.4 Kd: 0.3 Ki: 0.0001
\/%y\/\A_ Kp: 0.5 Kd: 0.3 Ki: 0.0001

Kp: 0.4 Kd: 0.35 Ki: 0.0001
Kp: 0.4 Kd: 0.3 Ki: 0.001
Kp: 0.4 Kd: 0.3 Ki: 1e-05
Kp: 0.4 Kd: 0.3 Ki: 0
I I

O 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Iteration

Figure E-1: The 2-norm of the output error for the causal unconstrained PID-type ILC on the
low-fidelity wind turbine model shown for different controller settings. Shown is the progression
of the 2-norm, for different controller settings, after each ILC iteration.
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Figure E-2: Causal unconstrained PID-type ILC compared with the baseline PID on the low-
fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid fault,
not shown in figure, as defined in Section 3-1

Just as in the PID-type ILC, this means that the baseline PID controller will control the wind
turbine before the feedforward learning starts.

The tuning of the causal norm-optimal ILC can be seen in Figure E-3 and Table E-2. One can
see that changing the tuning parameters does not have a huge effect on the optimal solutions,
as indicated in all nearly identical shapes in Figure E-3. Still, there was some slight difference
in the magnitude of the 2-norm of the final iteration, with the best tuning values found being
We = 300, W = 0.01, and Way = 0. This yielded a 2-norm for the final iteration of only
4.3% of the baseline controller.

In Figure E-4 one can see the time-domain results of the causal norm-optimal ILC. Here,
one can see that the causal norm-optimal ILC manages to almost immediately decrease the
output error to near zero after the learning has started. This is indicated by the sharp drop
in the rotor speed to the reference in the figure. To do this, the norm-optimal ILC uses large
amounts of input directly after the learning has started.

— We: 140 Wf: 0.01
0.8 —— We: 100 Wf: 0.01
We: 10 Wf: 0.01
0.6 — We: 200 Wf: 0.01
——— We: 300 Wf: 0.01
04r We: 400 Wf: 0.01
— We: 500 Wf: 0.01
0.2
O Il Il Il Il Il Il Il Il Il |
0 5 10 15 20 25 30 35 40 45 50

lteration

Figure E-3: The 2-norm of the output error for the causal unconstrained norm-optimal ILC on the
low-fidelity wind turbine model shown for different controller settings. Shown is the progression
of the 2-norm, for different controller settings, after each ILC iteration.
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78 Unconstrained ILC with causal learning

We Wy  Was | mean 2-norm max 2-norm final iter 2-norm
140 0.01 0 0.0755 1.0000 0.0429
100 0.01 0 0.0757 1.0000 0.0431
10 0.01 0 0.0817 1.0000 0.0492
200 0.01 0 0.0753 1.0000 0.0427
300 0.01 0 0.0752 1.0000 0.0426
400 0.01 0 0.0754 1.0000 0.0434
500 0.01 0 0.0762 1.0000 0.0460

Table E-2: Tuning of the causal unconstrained norm-optimal ILC on the low-fidelity wind turbine
model. Shown are the mean, max and final value of the 2-norm of the controller captured after
each ILC iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable
is a low final 2-norm with a max 2-norm equal to one.

E-3 Comparison and conclusion of causal unconstrained ILC on
low-fidelity model

Both the PID-type ILC and the norm-optimal ILC provided significant improvements com-
pared to the baseline controller for grid fault control, as can be seen in Figure E-5. Where for
the non-causal case the difference between the two controllers was quite small, there one can
see that the norm-optimal ILC manages to perform significantly better than the PID-type
ILC. The PID-type ILC converges to an input signal quite similar in shape as in the non-
causal case, as can be seen in Figure 4-5. This, however, does not yield as fast a convergence
to zero output error as the norm-optimal ILC manages to accomplish. Once the learning
starts, the norm-optimal ILC gives a high spike in the blade pitch signal, steering the rotor
speed error to near zero immediately.

Even though both controllers have quite different approaches and accompanying results, for
both controllers, the rotor speed error is suppressed to zero quicker than the baseline PID
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Figure E-4: Causal unconstrained norm-optimal ILC compared with the baseline PID on the
low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid
fault, not shown in figure, as defined in Section 3-1
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79

controller manages to do, where also the 2-norm of the output error is significantly decreased.
That said, for this scenario with no input constraints, the norm-optimal ILC manages to do
a significantly better job in decreasing the rotor speed error and the accompanying 2-norm.
To do this, the norm-optimal ILC has to use even more of the input signal than was the case
for the non-causal controller, but this is within the controller’s scope.
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Figure E-5: Comparison of the causal unconstrained PID-type ILC with the causal unconstrained
norm-optimal ILC on the low-fidelity wind turbine model. Shown are the rotor speed error, blade
pitch and blade pitch rate of the final iterations. Also, the progression of the 2-norm of the output
error is shown. In the blade pitch rate plot the hardware limits are shown, but were not used
at this point. Visible in the plot is that the causal unconstrained norm-optimal ILC manages to
utilise more of the input signal resulting in an improved 2-norm of the output error.
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Appendix F

High input penalties in constrained
norm-optimal ILC on low-fidelity

In Section 4-4-2 a non-optimisation based constrained norm-optimal ILC has been presented.
There an external saturation block of the input and input rate of change has been used.
However, in Chapter 2 also a different non-optimisation based approach was presented, namely
using a high penalty weight W; with also a second variant where Wy penalises the rate of
change. The results of these methods were not able to actually get the input within bounds,
where specifically the input rate of change was problematic. Yet, in this Chapter some results
of these methods are presented.

In Figures F-1, F-2, F-3 and F-4 one can see the results of tuning, and a time-domain
simulation. These simulations are done with Wt shaped as in equation F-1 and also for Wt
shaped as in equation F-2. For both of these cases, the maximum input rate of change does
not decrease any more upon an increase of the magnitude of Wt at some point. The resulting
controller still violates the input constraints, meaning that this scheme is not sufficient for
as a grid fault controller for wind turbines. Working non-optimisation based alternatives are
demonstrated in Chapter 2.
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Figure F-1: Soft-constrained norm-optimal ILC. Shown are the ROC, the hardest input con-
straints, for different controller values. Visible is that for every controller setting the constraints
are violated. Here W% is shaped as equation F-1
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Figure F-2: Soft-constrained norm-optimal ILC results using W, = 1 and W; = 1 - 10* with W}
shaped as equation F-1. Visible is the the input rate of change constraints are still violated.
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Figure F-3: Soft-constrained norm-optimal ILC. Shown are the ROC, the hardest input con-
straints, for different controller values. Visible is that for every controller setting the constraints

are violated. Here W% is shaped as equation F-2
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Figure F-4: Soft-constrained norm-optimal ILC results using W, = 1 and W; = 1 - 10* with W}
shaped as equation F-2. Visible is the the input rate of change constraints are still violated.
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Appendix G

Constrained norm-optimal ILC using
optimisation on low-fidelity model,
alternative problem formulations

In this chapter some variants of the optimisation based constrained norm-optimal ILC, as in
Section 4-4-3, are presented. These variants have a different way of handling the input rate
of change constraints, but with less satisfactory results, meaning that the input constraints
are still violated. This is because the rate of change constraints have to use an approximation
of the feedback input signal used for the next iteration, leading to possible violation of said
constraint. The standard formulation used for this chapter is as follows, where the next
estimated input 0j41 is changed.

fj11 = argmin 7 (fj11)
J £it1

S-t'g(ﬁjJrl) < UAmax>
ﬁj—i—l < Umax,
ﬁj+1 Z Umin - (G-l)

With J(fj+1) as in equation 2-5, Ty the sampling time, uapax the maximum rate of change
of the input, umax the maximum input and up;, the minimum input. The superscript X?:b
indicates that the samples a up to and including b of iteration j are used of the variable
x € RY,

Working configuration, but without a tuned-down feedback controller

The first variant that is presented is the same as in Section 4-4-3 but without a tuned-down
feedback controller within the norm-optimal ILC. So in other words, here the same PID-
controller tuning is used as is in the baseline PID-controller. For clarification, this uses the
following rate of change formulation:
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Figure G-1: Results of optimisation based input constrained norm-optimal ILC with rate of
change constraint as in Equation G-2 during a grid fault, not shown in figure, as defined in
Section 3-1. In the bottom right one can see the feedforward and feedback parts of the ILC
algorithm split up, where one can see that the combined feedforward and feedback controller
violate the input constraints.

~2:IN ~1:N—1
Ui — Wi H /Ts < UAmax

9(j11) = (G-2)
This is combined with ;41 = fj11 + uj m,. The results of this controller setup can be seen in
Figure G-1. One can see that this ILC algorithm manages to exceed the performance of the
baseline PID controller, but in doing this, the input constraints are violated. Additionally, the
convergence of the output errors 2-norm happens over multiple steps, where in the constrained
norm-optimal controller with tuned-down feedback controller has convergence in a single step.

Direct estimation of feedback controller input using estimated next output error

In the previous section, the input signal of the feedback controller has been approximated
by using the previous input signal of the feedback controller. An alternative approach is to
directly calculate the next expected feedback signal, using the estimate &1 = e;—J(fj11—f;)
used within the ILC algorithm itself, as described in Chapter 2. Using this estimate of the
next input combined with a super-vector notation of the feedback PID-controller used within

the norm-optimal ILC, one can estimate the next input by the following description:

W1 = fi1 + (kpl + kT + ka(l = T3)) €11 (G-3)
using some of the matrix notation of Appendix B for matrices 77 and Tb. Now, equal to
the previous section, one can define the actual input rate of change constraint as g(fj11) =
ﬁ?ﬁ — ﬁjl-ﬂ_lH /Ts < Uamax- The results of this configuration, the optimisation based
constrained norm-optimal ILC can be seen in Figure G-2. One can see that the performance

of the controller in terms of the output error 2-norm is about what is to be expected, but
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Figure G-2: Results of optimisation based input constrained norm-optimal ILC with input es-
timation as in Equation G-3 during a grid fault, not shown in figure, as defined in Section 3-1.
In the bottom right one can see the feedforward and feedback parts of the ILC algorithm split
up, where one can see that the combined feedforward and feedback controller violate the input

constraints.

unfortunately the input constraints are violated. Here, mainly the input rate of change

constraints are violated right after the fault has started.

To mitigate this problem, one could reduce the input rate of change value uamax to 0.8 times
its original value, resulting in no further violation of the original constraint. See also Figure
G-3. In this plot the harsher input constraint does not result in a violation of the input
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Figure G-3: Results of optimisation based input constrained norm-optimal ILC with input esti-
mation as in Equation G-3 during a grid fault, not shown in figure, as defined in Section 3-1. The
rate of change constraint has here been increased 0.8 times the nominal level to make sure that
the actual input constraint is not violated. In the bottom right one can see the feedforward and
feedback parts of the ILC algorithm split up, where one can see that the combined feedforward
and feedback controller violate the input constraints.

Master of Science Thesis

D. Spijkerman



8&onstrained norm-optimal ILC using optimisation on low-fidelity model, alternative problem formulations

constraints for the actual input u;;1. This does, however, come at the expense of some
performance, since over the whole time range the input rate of change constraint is stricter,
whilst only in a small portion of the time frame an actual violation of said constraint is
observed. Though this method does yield the results that are desired, the implementation is
not neat or robust in any way, and as such is not recommended.

Direct estimation of feedback controller input using previous output error

In the previous section a direct calculation of the next input signal has been tried using
knowledge of the feedback controller. For this calculation, the next estimated output error has
been used. The results of this controller setup were unsatisfactory since the input constraints
were still violated. Therefore, a second attempt will also be proposed and tested using a
slightly modified input estimate. Here, instead of the estimate €;41, the previous measured
error e; is used, resulting in the following formulation for the input constraint:

U1 = i1 + (bpl + KTy + ka(I — 1)) €; (G-4)

The idea behind this slight alteration of the input estimation is that here no estimate input
error €;41 will have to be used, but instead the previous input error. And since it is assumed
that the output error settles to some steady-state value, the assumption used here of e; ~ €11
seems reasonable. The results of this setup can be seen in Figure G-4, where unfortunately
the input rate of change constraint is still violated.

A solution for this violation of the input constraint is to set a more stringent constraint in the
optimisation software, using g(j4+1) < 0.8uamax. This setup works, as can be seen in Figure
G-5, but is not a reliable method of using input constraints. Therefore, also this method is
not recommenced.

12.25 - Rotor speed o Normalised 2-norm rotor speed error
PID O PID
E Norm-optimal ILC Norm-optimal ILC
& 122 — — Reference 151
g / S~
& 1215 / T~ 16 o o o o
& / —
S —t == — 05
s -
12.05 . . . . . , 0 . . . : . : . ;
5 5.2 5.4 5.6 5.8 6 1 15 2 25 3 3.5 4 45 5
lteration
o - Blade pitch Final iteration 10 . Blade pitch rate
PID Fe——1——— Baseline PID
20 + Norm-optimal ILC & | | \ ILC: ff input
= g 5 “ || ——— ILC:ff + fb signal
o) | T
g9t \\ % 0 | | ‘ | ‘\ |
[0} = | [\ [——
d N i |17
£ —_— 5 \ A
= |
17 — T ° |
16 . . . . . , 10 . . . . . ,
5 5.2 5.4 5.6 5.8 6 5 5.2 5.4 5.6 5.8 6
Time [s] Time [s]

Figure G-4: Results of optimisation based input constrained norm-optimal ILC with input es-
timation as in Equation G-4 during a grid fault, not shown in figure, as defined in Section 3-1.
In the bottom right one can see the feedforward and feedback parts of the ILC algorithm split
up, where one can see that the combined feedforward and feedback controller violate the input
constraints.
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Figure G-5: Results of optimisation based input constrained norm-optimal ILC with input esti-
mation as in Equation G-4 during a grid fault, not shown in figure, as defined in Section 3-1. The
rate of change constraint has here been increased 0.8 times the nominal level to make sure that
the actual input constraint is not violated. In the bottom right one can see the feedforward and
feedback parts of the ILC algorithm split up, where one can see that the combined feedforward
and feedback controller violate the input constraints.

Conclusion

In this chapter multiple variants of the optimisation based constrained norm-optimal ILC
have been shown that will not be used. More specifically, multiple variants of the input
estimates for the next iteration have been demonstrated. The reasons why these variants do
not work as intended is due to violation of the input constraints caused by inaccurate input
estimates.
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Appendix H

Constrained controllers with causal
learning

In this chapter, the constrained controller is extended to also be causal with respect to the
grid fault. This means that the (supplemental) ILC control signal will only be introduced into
the system after the fault has occurred. Before this time, the baseline controllers is active.
For this section, the learning will start once the line voltage is only 80% of the nominal value.
This section should give more information about how much real-life performance could be
expected to be gained compared to the baseline controllers. In this section only the tuning
of the controllers are shown, with the comparison and conclusion in Chapter 4.

H-1 Causal constrained PID-type ILC on low-fidelity model

In this section, the causal constrained PID-type ILC is presented. The main difference between
it and the non-causal variant of the previous sections is that the learning starts only after the
grid fault has begun. The tuning of the controller is as such quite similar, and can be seen in
Table H-1. Here, one can see that using the same values as was the case for the non-causal
variant works best, with K, = 0.5, K;j =1 107% and K4 = 0.15. This controller tuning does
not have the absolute lowest final 2-norm, that is, for the controller with K, = 0.6, but for
that controller tuning, the maximum 2-norm is higher than one, as can also be seen in the
plot, and as such has worse performance for some of the intermediate iterations.

The time-domain results of this tuned controller can be seen in Figure H-1. Here, one can
see that in the first moments after the grid fault has started, the baseline and PID-type
ILC perform the same action, and in doing so fully saturate the controller. The difference
between the two controllers starts after the fault has ended, where the baseline controller
starts reducing the blade pitch angle much faster than the PID-type ILC. Due to the better
control actions of the PID-type ILC, it manages to bring the rotor speed back to zero error
much faster, and also with only very little overshoot, indicating a well damped system.
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The convergence of the PID-type ILC occurs within around 15 iterations in a monotonic
fashion. The final 2-norm of the output error is reduced to 0.78 times that of the baseline
controller, indicating a respectable improvement.

K, K; K4 | mean 2-norm max 2-norm final iter 2-norm
0.50 1-107° 0.15 0.8001 1.0000 0.7861
0.60 1-107° 0.15 0.8383 1.1489 0.7853
0.40 1-107° 0.15 0.8076 1.0000 0.7953
0.50 1-107° 0.10 0.8266 1.0000 0.8122
0.50 1-107° 0.20 0.8162 1.0000 0.8046
0.50 1-10=* 0.15 0.8021 1.0000 0.7873
0.50 1-107 0.15 5.2031 6.3336 0.8044
0.50 1-107% 0.15 0.8001 1.0000 0.7860

Table H-1: Tuning of the causal constrained PID-type ILC on the low-fidelity wind turbine model.
Shown are the mean, max, and final value of the 2-norm of the controller captured after each
ILC iteration. The 2-norm is normalised with respect to the baseline PID controller. Desirable is
a low final 2-norm with a max 2-norm equal to one.
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Figure H-1: Causal constrained PID-type ILC compared with the baseline PID on the low-fidelity
wind turbine model. Controller objective, reduce rotor overspeeding caused by grid fault, not
shown in figure, as defined in Section 3-1
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H-2 Causal constrained norm-optimal ILC using saturation on low-
fidelity model

Here the causal constrained norm-optimal ILC using saturation for the input constraints on
the low-fidelity model is shown. The tuning of the controller is started with the tuning values
used for the non-causal constrained norm-optimal ILC using saturation. The results of the
tuning can be seen in Table H-2. As one can see, using the same values as for the non-
causal controller yields the best results. This was also the case for the causal PID-type ILC,
indicating that perhaps the controller tuning is invariant for when learning starts. For the
final controller tuning values, W, = 0.5, Wy = 0.01, and Wa¢ = 0, the controller manages to
reduce the 2-norm of the output error to 0.79 times that of the baseline controller.

One can see from the plots that the convergence of the causal constrained norm-optimal
ILC using saturation occurs in a monotonic-like fashion for this scenario. Moreover, this
monotonic-like behaviour can be seen for all of the controller tunings. This indicates that
the controller is much more robust against bad controller tuning compared to the causal
constrained PID-type ILC. Also noteworthy is that the performance of this constrained norm-
optimal ILC does not change significantly with different tuning values and only starts to lose
significant performance when the controller tuning is off by a large degree. This is also a
positive aspect of the causal constrained norm-optimal ILC using saturation.

In Figure H-2 one can see the time-domain performance of the casual constrained norm-
optimal ILC. One can see that the norm-optimal ILC manages to steer the rotor speed much
faster to the reference signal but does suffer from some overshoot in the output. Convergence
of the 2-norm happens in around seven iterations, but does show some strange jumping
behaviour after the tenth iteration, where the 2-norm increases slightly. The output error
2-norm does, however, again converge to a lower value after this sudden slight jump.

H-3 Causal constrained norm-optimal ILC using optimisation on
low-fidelity model

In this section a causal constrained norm-optimal ILC using optimisation on the low-fidelity
wind turbine model is presented. The controller tuning can be seen in Table H-3. Tuning
has started with the controller values found for the non-causal constrained norm-optimal

We Wr  War | mean 2-norm  max 2-norm final iter 2-norm
0.5 0.01 0 0.8173 1.0000 0.7959
1.0 0.01 0 0.8226 1.0000 0.7982
10 0.01 0 0.8560 1.0000 0.8308
10 0.10 0 0.8226 1.0000 0.7982
10 1.00 0 0.8292 1.0000 0.8113

Table H-2: Tuning of the causal constrained norm-optimal ILC using saturation on the low-fidelity
wind turbine model. Shown are the mean, max, and final value of the 2-norm of the controller
captured after each ILC iteration. The 2-norm is normalised with respect to the baseline PID
controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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Figure H-2: Causal constrained norm-optimal ILC using saturation compared with the baseline
PID on the low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused
by grid fault, not shown in figure, as defined in Section 3-1

using optimisation as a starting point. Similarly as for the previous causal controller, using
the controller tuning values from the non-causal controller yields a properly tuned controller,
using W, = 300, Wt = 0.01, and Wa; = 0. The controller is quite robust for bad tuning values.
This is also evident by the near-identical performance of the controller for a large spread of
the controller tunings as can be seen in the table. Only once one pushes the controller tuning,
a significant decrease in performance is observed.

The time domain results of the tuned causal optimisation based constrained norm-optimal
ILC can be seen in Figure H-3. From the results one can see that the norm-optimal ILCs
start pitching the blades a bit later compared to the baseline PID controller. This also results
in a slight increase of the maximum rotor speed error. That said, the norm-optimal ILC still
manages to reduce the 2-norm of the output error to about 0.8 times that of the baseline
controller. Also, the convergence rate of this controller is good with convergence after the
third iteration.

We Wi  Was | mean 2-norm  max 2-norm final iter 2-norm
300 0.01 0 1.0465 1.9697 0.8062

100 0.01 0 1.0465 1.9697 0.8062

10 0.01 0 1.0466 1.9697 0.8063

1 0.01 0 1.0552 1.9697 0.8181
1000 0.01 0 1.0463 1.9697 0.8060

Table H-3: Tuning of the optimisation based causal constrained norm-optimal ILC on the low-
fidelity wind turbine model. Shown are the mean, max, and final value of the 2-norm of the
controller captured after each ILC iteration. The 2-norm is normalised with respect to the baseline
PID controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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H-4 Causal constrained PID-type ILC on high-fidelity model

After testing the causal constrained ILC on the low-fidelity model, tests on the high-fidelity
model will also be made. We start here with the causal constrained PID-type ILC on the
high-fidelity model. This controller will, in the same way as for the low-fidelity model, start
learning after the fault has started. This should provide a realistic performance indication of
this controller during real-world usage.

The first step is controller tuning, as can be seen in Table H-4. As tuning the causal PID-type
ILC was quite a cumbersome process with many attempted controller tunings, only a select
number of tuning values have been shown here. The final used controller settings are K}, = 0,
Ki =0, Kq = 51072 with the low-pass filter disabled. This resulted in a reduction of the
2-norm to 0.92 times that of the baseline controller for the final iteration.

Though the final controller tuning leads to a reduction of the 2-norm of the output error,
users of this controller should be mindful, that many controller tunings lead to a diverging
solution with a 2-norm greater than one after some iterations. This is also clear when looking
at the complete tuning overview in the Appendix. There are also no guarantees that this will
not also happen for the here shown final controller setting. This is especially true since no
steady-state value of the output error 2-norm has been reached, as was the case for some of
the controllers shown earlier. That said, one could employ mitigating schemes that can, for
example, prevent further learning after a fixed number of learning steps or once the output
error 2-norm starts increasing. Such schemes could drastically reduce the difficulty of tuning
this controller whilst also improving the predictability of the controller in terms of the output
errors 2-norm reduction.

The results of the final tuning of the causal constrained PID-type ILC can be seen in Figure
H-4. Looking at the final rotor speed of the ILC algorithm, it is clear that the main result
of this controller is a slight reduction of the magnitude of the rotor speed oscillations. When
also looking at the final blade pitch input signal, it is clear that no significant alterations
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Figure H-3: Optimisation based causal constrained norm-optimal ILC compared with the baseline
PID on the low-fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused
by grid fault, not shown in figure, as defined in Section 3-1
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K, K; Kq (filter cut-off ‘ mean 2-norm max 2-norm final iter 2-norm
0 0 0.005 Inf 0.9296 1.0000 0.9248
0 0 0.001 Inf 0.9419 1.0000 0.9338
0 0 0.005 10 1.0355 1.0727 1.0727
0 0 0.005 50 0.9631 1.0000 0.9944

Table H-4: Tuning of the causal constrained PID-type ILC on the high-fidelity wind turbine
model. The filter cut-off corresponds to the cut-off frequency off the low-pass filter after the ILC
algorithms output, where Inf corresponds to a disabled cut-off filter. Shown are the mean, max,
and final value of the 2-norm of the controller captured after each ILC iteration. The 2-norm is
normalised with respect to the baseline PID controller. Desirable is a low final 2-norm with a max
2-norm equal to one.

Rotor speed Normalised 2-norm rotor sgeed error
_ 1000000000000 0DOOOOOO
E PID O PID
o 84 PID-type ILC 0.98 O PID-type ILC
> — — — Reference
582 096
o
n 8 0000
g L OO0 Q00 ON A pu
_g 0.94 O'OVQ‘/QJOOOO()Q
738 092 ‘ ‘ ‘ ‘
o 5 10 15 20
Iteration
175 Blade pitch Final iteration 17Béade pitch PID-type ILC over iterations
PID é
S PID-type ILC S ' 5
S S 8
o o 17
2 2 | ™ 13
< <
16.5 . : : * * ! 16.5 20
0 5 10 15 20 25 30 0 10 20 30
Time [s] Time [s]

Figure H-4: Causal constrained PID-type ILC compared with the baseline PID on the high-
fidelity wind turbine model. Controller objective, reduce rotor overspeeding caused by grid fault,
not shown in figure, as defined in Section 3-1

have been applied compared to the baseline feedback controller. The general shape of the
blade pitch signal is the same, but higher-frequency peaks to the blade pitch signal are added,
slightly increasing the performance of the controller compared to the baseline controller. If
these results are, however, compared with the non-causal variant on the same high-fidelity
model, the results are quite in-line in terms of the final 2-norm of the output error.

H-5 Causal constrained norm-optimal ILC using saturation on high-
fidelity model

In this section, a causal constrained norm-optimal ILC using saturation on the high-fidelity
wind turbine model is presented. We will start with tuning the controller, as can be seen in
Table H-5. The first point to notice with tuning this controller is how easy it is compared to
the causal PID-type controller of the previous section. The best results are with the controller
tuning We = 10, Wy = 1 and Wy = 0. Using these controller settings, a final 2-norm of
the output error of 0.80 was achieved. Notice also that the controller quickly converges after
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We Wy Was | mean 2-norm max 2-norm final iter 2-norm
0.01 1 0 0.9993 1.0000 0.9992

0.1 1 0 0.9751 1.0000 0.9681

1 1 0 0.8876 1.0000 0.8705

10 1 0 0.8259 1.0000 0.8085

100 1 0 0.8306 1.0000 0.8314
1000 1 0 0.9984 1.0953 1.0953

Table H-5: Tuning of the causal constrained norm-optimal ILC using saturation on the high-
fidelity wind turbine model. Shown are the mean, max, and final value of the 2-norm of the
controller captured after each ILC iteration. The 2-norm is normalised with respect to the baseline
PID controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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Figure H-5: Causal constrained norm-optimal ILC using saturation compared with the baseline
PID on the high-fidelity wind turbine model. Controller objective, reduce rotor overspeeding
caused by grid fault, not shown in figure, as defined in Section 3-1

the second iteration and stays at this (approximate) steady-state value for the remaining
iterations. Only for the last two controller settings, no steady-state value of the output errors
2-norm has been reached. Note also that increasing the penalty on the rotor speed error has
an almost direct decrease of the output error 2-norm. Only after exceeding W, = 100, the
2-norm of the output error stops decreasing and even increases after some iterations. This
does, however, indicate the ease with which this controller can be tuned.

In Figure H-5 one can see the time-domain results of the causal saturation based constrained
norm-optimal ILC. Investigating the rotor speed, one can see that the norm-optimal ILC
manages to drastically reduce the magnitude of the rotor speed oscillations present after the
ten-second mark. This reduction in oscillations means that after the 20 second mark the
wind turbine operates almost in steady-state conditions where the nominal controller could
potentially take over without the help of the ILC algorithms additional feedforward signal.
The blade pitch signal is also quite different when compared to the baseline feedback controller.
The input signal of the baseline controller is relatively smooth, where the norm-optimal input
signal has much more movement that is used to reduce the rotor speed oscillations.
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H-6 Causal constrained norm-optimal ILC using optimisation on
high-fidelity model

The last controller to be presented here is the causal optimisation based constrained norm-
optimal ILC. As was already discussed in Section 4-5-3, the optimisation based controller
works best when only optimising seven seconds of feedforward input data. This limitation to
only seven seconds of feedforward learning is due technical reasons, causing the optimiser to
run out of memory for larger time frames. Therefore, all results in this section are performed
with seven seconds of feedforward input after the grid fault. This means that this is a causal
controller that after said seven seconds relies again on the nominal baseline controller to take
over. Advantage of this approach is that the transition back to the nominal controller is also
considered here.

As has been the case for the other controller, firstly the controller is tuned as can be seen in
Table H-6. Visible are that the tunings of these controllers leads with quite similar results,
except for the case of W, = 0.1. Still, a best-performing controller has been identified with
the tuning W, = 10, Wy = 1, and Wy = 0. This controller tuning does not lead to the
absolute lowest final 2-norm, but it does have the lowest mean 2-norm of the output error,
indicating that the 2-norm decreases the quickest. That said, all three final tuning values
tested work quite well, despite the large range of parameter values of the ILC algorithm.
This also indicates how robust this controller is to bad tunings, and that only if the tuning is
drastically off, much performance is left untapped.

The controller time domain results can be seen in Figure H-6. Here one can see how the opti-
misation based norm-optimal controller manages to reduce large amounts of the rotor speed
oscillations compared to the baseline controller. This despite the fact that the causal opti-
misation based constrained norm-optimal ILC only provides a feedforward signal for seven
seconds. After these seven seconds of additional feedforward signal the baseline feedback
controller again takes over sole control, and manages to keep this reduced rotor speed oscilla-
tions for the remaining time. This also makes for easy integration of this controller with the
existing control scheme, as it has been shown that if an additional control signal is added to
that of the baseline controller for only the first seven seconds after the grid fault, a reduction
in the rotor speed error 2-norm and rotor speed oscillations can be observed.

We Wi War | mean 2-norm max 2-norm final iter 2-norm

01 1 0 1.0000 1.0000 1.0000
1 1 0 0.7622 1.0000 0.7014
10 1 0 0.7518 1.0000 0.7020
100 1 0 0.7661 1.0000 0.7441

Table H-6: Tuning of the optimisation based causal constrained norm-optimal ILC on the high-
fidelity wind turbine model. Shown are the mean, max, and final value of the 2-norm of the
controller captured after each ILC iteration. The 2-norm is normalised with respect to the baseline
PID controller. Desirable is a low final 2-norm with a max 2-norm equal to one.
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Figure H-6: Optimisation based causal constrained norm-optimal ILC compared with the baseline
PID on the high-fidelity wind turbine model. Controller objective, reduce rotor overspeeding
caused by grid fault, not shown in figure, as defined in Section 3-1
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AC
BHawC
DC
EU
ILC
LVRT
MIMO
MPC
PLL
PMSG
SISO
TSO
UPS
WT
ZVRT

Alternating current

Bonus Horizontal axis wind turbine simulation Code
Direct current

FEuropean Union

Iterative Learning Control

low-voltage ride-through

Multiple Input Multiple Output

Model Predictive Control

Phase-Locked Loop

Permanent Magnet Synchronous Generator
Single Input Single Output

Transmission System Operator
Uninterruptible power supply

wind turbine

zero-voltage ride-through
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